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ABSTRACT

The discrete dynamical system of a continuous self-map is generated by iteration

of the map; however, the iteration itself, being an operator on the space of continuous

self-maps, may generate unusual dynamical behaviours. In this thesis, we prove that the

iteration operator is continuous on the space of all continuous self-maps of a compact

metric space and therefore induces a discrete dynamical system on the space. We also

show how its fixed points and periodic points are determined, and characterize them

in the case that the compact metric space is a compact interval or the unit circle by

discussing the Babbage equation. Furthermore, we prove that all orbits of the iteration

operator are bounded, but most fixed points are not stable. The boundedness and in-

stability exhibit a complex behaviour of the iteration operation, but we prove that this

complex behaviour is not chaotic in Devaney’s sense.

Another complicated yet critical discrete dynamical system is that which emanates

due to a continuous piecewise monotone self-map on an interval. In the kneading theory

developed by Milnor and Thurston, it is proved that the kneading matrix and the knead-

ing determinant associated with such a map are invariants under orientation-preserving

conjugacy. We consider whether this result is valid for orientation-reversing conjugacy.

We also present applications of obtained results towards the computational complexity

of kneading matrices and the classification of maps up to topological conjugacy. Fur-

thermore, a relation between kneading matrices of maps and their iterates for a class of

chaotic maps is described.

Closely related is the theory of iterative equations. There are obtained many re-

sults on solutions of such equations involving a linear combination of iterates, called

polynomial-like iterative equations. We investigate an iterative equation with multipli-

cation, a nonlinear combination of iterates, and give results on the existence, unique-

ness, stability, and construction of its continuous solutions.

Our study not only addresses essential problems in the theory of dynamical systems

and iterative equations but also exhibits subtle interplay between these two areas.

Keywords: Iteration operator, Babbage equation, dynamical system, chaos, piecewise

monotone map, turning point, topological conjugacy, kneading matrix, kneading deter-

minant, iterative equation, Banach contraction principle.
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CHAPTER 1

INTRODUCTION

“The only impossible journey is the one you never begin.”

- Anthony Robbins

Iteration theory is one of the important areas of research in nonlinear analysis, and
much of the modern research is focused on the study of dynamical systems and func-
tional equations. Targoński (1995) also has stated that “Iteration can be considered as

a field of research bordering on functional equations as well as on dynamics”. Dy-

namical systems, being models describing the temporal evolution of systems, have ap-
plications to a wide variety of fields, both in and outside mathematics. The growth of
many physical processes and the stability of their long-term behaviour can be studied in
terms of dynamical systems. For example, population biologists use logistic maps to set
up a mathematical model for population growth, whereas physicists use the so-called
Duffing equation to model damped oscillators. Another typical application is that any
problem whose solving technique involves iteration scheme, such as the problem of
finding roots of a polynomial using the Newton-Raphson method, can be considered as
a problem in dynamical systems.

On the other hand, the search for solutions of functional equations, in particular it-

erative equations, is also an old, frequent and significant problem for many applications
in science and engineering. The iterative root problem, rooted in the classical works of
Babbage (1815), can be used to solve the embedding flow problems (Fort (1955)) and
the invariant curve problem (Kuczma et al. (1990)). The Schröder’s equation (Schröder
(1870)) is useful in analysing discrete dynamical systems by finding a new coordinate
in which the system looks simpler. Moreover, functional equations also have applica-
tions to economics, game theory, geometry, neural networks, and artificial intelligence
(Aczél (1966); Iannella and Kindermann (2005)). Additionally, fixed point theory (Zei-
dler (1986)), phantom iterates (Targoński (1985)), and fractals (Mandelbrot (1982)) are
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some other interesting topics in iteration theory. This thesis considers certain aspects
involving iteration operation, which confines mainly to the theory of dynamical systems
and iterative equations.

1.1 PRELIMINARIES

The following three subsections give a brief account of certain notions in the theory
of dynamical systems, Milnor-Thurston’s kneading theory for continuous piecewise
monotone maps, and the theory of iterative equations, which together constitute the
preliminaries of our work.

1.1.1 Discrete Dynamical Systems

A continuous map f : X → X , where X is a metric space equipped with the metric d,
defines a discrete dynamical system (X , f ) (see e.g. Brin and Stuck (2002); Holmgren
(1994)) with its iteration semigroup { f k : k ≥ 0} and the orbit of any x ∈ X under f

is the sequence x, f (x), f 2(x), . . . , where f k denotes the kth order iterate of f , which is
defined by the composition f k := f ◦ f ◦ · · · (k times) · · · ◦ f , i.e., recursively by

f k(x) := f ( f k−1(x)), f 0(x) := id(x), ∀x ∈ X ,

id being the identity map on X . A point x0 ∈ X is called a periodic point of f if f k(x0) =

x0 for some k∈N and the least such k is called the period of x0. Periodic points of period
1 are called fixed points of f . In order to emphasize the dependence on the space X ,
we use Fix( f ;X) and Per( f ;X) to denote the set of all fixed points and the set of all
periodic points of f in X , respectively. For real maps, we have the following classical
result.

Theorem 1.1.1. (Sarkovskiı̆ (1965)) Consider the relation / on N defined as follows:

n1 / n2 if for any continuous map of R into itself the existence of a periodic point of

period n2 follows from the existence of a periodic point of period n1. Then / transforms

N into an ordered set, ordered in the following way:

3/5/7/9/11/ · · ·/3 ·2/5 ·2/ · · ·/3 ·22 /5 ·22 / · · ·/23 /22 /2/1.

Let (X , f ) be a discrete dynamical system, where X is a metric space endowed with
metric d. As defined in Holmgren (1994), f is said to be topologically transitive if for
every pair of open sets U,V in X there exist x ∈U and n ∈ N such that f n(x) ∈ V . f

is said to be sensitively dependent on initial conditions if there exists δ > 0 such that
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for every x ∈ X and every ε > 0 there exist y ∈ X and n ∈ N such that d(x,y) < ε and
d
(

f n(x), f n(y)
)
> δ . As defined in Devaney (2003), f is said to be chaotic in Devaney’s

sense if (i) the set of periodic points of f is dense in X , (ii) f is topologically transitive,
and (iii) f exhibits sensitive dependence on initial conditions. An account of various
elementary concepts in dynamical systems can be found in, for example, Collet and
Eckmann (1980); Devaney (2003); Brin and Stuck (2002); Lind and Marcus (1995);
Milnor (2006); de Vries (2014) and Ruette (2017).

Although it is Devaney’s definition that is most popular now, it was Li and Yorke
(1975) who gave the first mathematical definition of chaos. A pair (x,y) ∈ X×X is said
to be

(i) proximal if liminf
k→∞

d( f k(x), f k(y)) = 0,

(ii) asymptotic if lim
k→∞

d( f k(x), f k(y)) = 0,

(iii) Li-Yorke if it is proximal but not asymptotic, i.e., the orbits of x and y get arbitrarily
close to each other, but infinitely often, they are at a positive distance.

A subset S of X is said to be scrambled if the pair (x,y) is Li-Yorke whenever x,y ∈ S

such that x 6= y. The system (X , f ) is said to be Li-Yorke chaotic if X has an uncountable
scrambled set. These two definitions of chaos, in some sense, describe the complexity
of a system using the behaviours of points under iteration. Moreover, it is proved in
Huang and Ye (2002) that for compact spaces the chaos in the sense of Devaney is
stronger than that of Li–Yorke.

Example 1.1.2. The Logistic map L : [0,1] → [0,1] defined by L(x) = 4x(1− x) is
chaotic in the sense of Devaney and Li-Yorke.

More generally, for interval maps, we have the following celebrated result.

Theorem 1.1.3. (Theorem 1 of Li and Yorke (1975)) Let J be an interval in R. If

f : J → J is continuous and has a periodic point of period three, then it is Li-Yorke

chaotic.

1.1.2 Milnor-Thurston’s Kneading Theory

Continuous piecewise monotone self-maps of a compact interval in the real line pro-
vide interesting examples of discrete dynamical systems (Devaney (2003); Holmgren
(1994); Preston (1983, 1988)), however their behaviour can be very complex. Mil-
nor and Thurston have developed the so-called kneading theory (Milnor and Thurston
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(1977, 1988)) to analyse the iterates of such maps, which makes use of advanced tech-
niques from combinatorics and analysis. They associated with each piecewise mono-
tone map a matrix and an unusual determinant, called the kneading matrix and kneading
determinant, respectively. In some sense, this matrix contains most of the crucial com-
binatorial information of the map and its iterates.

Let I = [a,b] be a compact interval in R such that a < b and C (I) :=C0(I, I) consist
of all continuous self-maps of I. As defined in Milnor and Thurston (1988), an element
f ∈ C (I) is said to be piecewise monotone if there exists a partition a = c0 < c1 < · · ·<
cm < cm+1 = b of I such that the restriction of f to subintervals I j = [c j−1,c j] is strictly
monotone for 1≤ j ≤ m+1. Let f ∈M (I), the set of all piecewise monotone maps in
C (I), and suppose that the minimal choice for the ci’s is made so that f is not monotone
in any neighbourhood of ci for 1 ≤ i ≤ m. Then the points c1,c2, . . . ,cm are called the
turning points of f and the subintervals I j, j = 1,2, . . . ,m+1, the laps of f . A map f in
M (I) with exactly one turning point is called a unimodal map. For f ∈M (I), let T ( f )

denote the set of turning points of f , #T ( f ) the number of turning points of f and L( f )

the set of laps of f .

The set M (I) is closed with respect to composition of maps. In fact,

T ( f ◦g) =
(
T (g)∪g−1(T ( f )

))
∩ (a,b). (1.1.1)

So, in particular, if f ∈M (I), then f k ∈M (I) satisfying that

T ( f k) = {x ∈ (a,b) : f l(x) ∈ T ( f ) for some 0≤ l ≤ k−1} (1.1.2)

for each k ∈ N.

Let V be the (m+ 1)-dimensional vector space over Q with an ordered basis the
set of formal symbols I1, I2, . . . , Im+1 and V [[t]] be the Q[[t]]-module consisting of all
formal power series with coefficients in V . For each x ∈ I and k ≥ 0, let

A( f k(x)) :=

{
I j if f k(x) ∈ I j and f k(x) /∈ T ( f ), 1≤ j ≤ m+1,
Ci if f k(x) = ci, 1≤ i≤ m,

where Ci := 1
2(Ii + Ii+1) for 1≤ i≤ m, and let

A(x, f ; t) := ∑
k≥0

A( f k(x))tk.

The symbol A(x) is called the address of x. For k ≥ 0, we denote A( f k(x)) by Ak(x, f ).

Given any subinterval I′ of I, we write f ↗ I′ (resp. f ↘ I′) if the restriction of f
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to I′ is strictly increasing (resp. strictly decreasing). For each symbol I j, we define its
sign by

ε(I j) =

{
+1 if f ↗ I j,

−1 if f ↘ I j,

and for each of the vector C j corresponding to the turning point c j, let ε(C j) := 0. For
each x ∈ I, let

ε(x, f k) := ε(Ak(x, f )) for k ≥ 0,

θ(x, f 0) := A0(x, f ), and θ(x, f k) :=

(
k−1

∏
l=0

ε(x, f l)

)
Ak(x, f ) for k ≥ 1.

The corresponding formal power series are defined by

ε(x, f ; t) = ∑
k≥0

εk(x, f )tk and θ(x, f ; t) = ∑
k≥0

θk(x, f )tk,

where εk(x, f ) and θk(x, f ) denote ε(x, f k) and θ(x, f k), respectively.

Consider V [[t]] in the formal power series topology in which the submodules tkV [[t]]

form a basis for the neighbourhoods of zero. For each x ∈ [a,b) and k ≥ 0, let

A( f k(x+)) := lim
y↓x

Ak(y, f ), εk(x+, f ) := lim
y↓x

εk(y, f )

and

θk(x+, f ) := lim
y↓x

θk(y, f ).

Also, for each x ∈ (a,b] and k ≥ 0, the limits A( f k(x−)), εk(x−, f ) and θk(x−, f ) are
defined similarly. Then it follows that

εk(x+, f ) = ε(Ak(x+, f )) for x ∈ [a,b), k ≥ 0,

and

εk(x−, f ) = ε(Ak(x−, f )) for x ∈ (a,b], k ≥ 0,

where Ak(x+, f ) and Ak(x−, f ) denote A( f k(x+)) and A( f k(x−)), respectively. More-
over,

Ak(ci+, f ) = Ak(ci−, f ) for 1≤ i≤ m and k ∈ N. (1.1.3)
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For each x ∈ [a,b), let θ(x+, f ) := lim
y↓x

θ(y, f ), and for each x ∈ (a,b], let θ(x−, f ) :=

lim
y↑x

θ(y, f ). Then

θ(x+, f ; t) = ∑
k≥0

θk(x+, f )tk for x ∈ [a,b)

and

θ(x−, f ; t) = ∑
k≥0

θk(x−, f )tk for x ∈ (a,b].

As defined in Milnor and Thurston (1988), the measure of discontinuity θ(ci+, f ; t)−
θ(ci−, f ; t), evaluated at ci, is called the ith kneading increment ν(ci, f ; t) of f for
1 ≤ i ≤ m. The matrix N( f ; t) = [Ni j( f ; t)] of order m× (m+1), with entries in Z[[t]],
obtained by setting

ν(ci, f ; t) = Ni1( f ; t)I1 +Ni2( f ; t)I2 + · · ·+Ni,m+1( f ; t)Im+1, for 1≤ i≤ m

is called the kneading matrix of f . We can write the matrix N( f ; t) as a power se-
ries ∑k≥0[N

k
i j( f ; t)]tk, where the coefficients [N0

i j( f ; t)], [N1
i j( f ; t)], . . . are matrices with

integer entries. For k ≥ 1, the entry Nk
i j( f ; t) of [Nk

i j( f ; t)] is non-zero if and only if
Ak(ci+, f ) = I j, each non-zero entry being either +2 or −2 according as ci is a local
minimum or a local maximum point of f k. On the other hand, for k = 0, the matrix
[N0

i j( f ; t)] is given by

[N0
i j( f ; t)] =



−1 1 0 0 · · · 0 0 0
0 −1 1 0 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · −1 1 0
0 0 0 0 · · · 0 −1 1


m×(m+1)

and in fact, it is independent of the map f . Let Nk( f ; t) denote the matrix [Nk
i j( f ; t)] for

k ≥ 0, and M( f ; t) := ∑k≥1 Nk( f ; t)tk.

For 1 ≤ j ≤ m+ 1, let N( j)( f ; t) denote the m×m matrix obtained by deleting the
jth column of N( f ; t). Then the power series

(−1) j+1(1− ε(I j)t
)−1 det

(
N( j)( f ; t)

)
is indeed independent of the choice of j for 1≤ j≤m+1 and this common expression,
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denoted by D( f ; t), is called the kneading determinant of f . The power series D( f ; t)
has leading coefficient +1, and hence is a unit in the ring Z[[t]]. Moreover, it is proved
in Milnor and Thurston (1988) that

D( f ; t) = 1+ ∑
k≥1

(
k

∏
l=1

εl(c+, f )

)
tk,

whenever f is a unimodal map with turning point c.

Example 1.1.4. For the Tent map T : [0,1]→ [0,1] defined by T(x) = 1−|1−2x|, we
have

D(T; t) = 1− t− t2− t3−·· ·

and N(T; t) = [N11(T; t), N12(T; t)], where

N11(T; t) =−1+2t2 +2t3 + · · · and N12(T; t) = 1−2t.

Example 1.1.5. Let g be defined by

g(x) = 64x4−128x3 +80x2−16x+1, ∀x ∈ [0,1].

Then g ∈M ([0,1]) such that

T (g) =
{

d1 =
2−
√

2
4 , d2 =

1
2 , d3 =

2+
√

2
4

}
and

L(g) =
{

J1 =
[
0, 2−

√
2

4

]
, J2 =

[
2−
√

2
4 , 1

2

]
, J3 =

[
1
2 ,

2+
√

2
4

]
, J4 =

[
2+
√

2
4 ,1

]}
.

Also, ν(di,g; t) = 2tJ1− Ji + Ji+1 +(−2t2− 2t3− ·· ·)J4 for i = 1,3 and ν(d2,g; t) =
−Ji + Ji+1 +(−2t−2t2 + · · ·)J4. Therefore

N(g; t) =

−1+2t 1 0 −2t2−2t3−·· ·
0 −1 1 −2t−2t2−·· ·
2t 0 −1 1−2t2−2t3−·· ·


3×4

, (1.1.4)

and hence D(g; t) = 1−3t−3t2−·· · .

The kneading theory has slight modifications made by Preston (1989), wherein the
kneading matrix is indeed a square matrix of order m and the corresponding kneading
determinant is the usual determinant. Moreover, being an important area of research in
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symbolic dynamics, this theory has been developed in various aspects. Preston (1989)
extended this theory for piecewise monotone maps which have discontinuities at their
turning points. Alves and Sousa Ramos (1999), using a functorial approach to this the-
ory, have given explicit methods to compute the lap numbers and periodic points of
piecewise monotone maps. Mendes and Ramos (2004) have developed a kneading the-
ory for two-dimensional triangular maps and thereby exhibited adequate techniques for
rigorous computation of the topological entropy of such maps. The other advancements
in this theory also include kneading with weights (Rugh and Lei (2015)), and kneading
theory for tree maps (Alves and Sousa Ramos (2004)).

1.1.3 Iterative Equations

Being an important operation in the present era of informatics, iteration gets more and
more attractive to researchers and attentions were paid to those functional equations
involving iteration, called iterative equations (Kuczma et al. (1990); Baron and Jarczyk
(2001); Zdun and Solarz (2014)). The general form of such equations can be presented
as

Φ( f (x), f 2(x), . . . , f m(x)) = F(x), x ∈ X , (1.1.5)

where X is a non-empty set, F and Φ are given functions, and f is unknown. Some
special cases of this equation, for example, dynamics of a quadratic map (Devaney
(2003)) and Feigenbaum’s equation related to period doubling bifurcations (McCarthy
(1983)), are interesting topics in dynamical systems.

Although there can be found several papers (Murugan and Subrahmanyam (2006);
Wang and Si (2001)) on the general Lipschitzian Φ, more efforts were still made to the
basic form

f m(x) = F(x), (1.1.6)

called the iterative root problem. After Babbage (1815) initiated the research of solving

f m(x) = id(x), (1.1.7)

usually called the Babbage equation, (1.1.6) has been studied extensively in various
aspects, see for instance, for continuous maps on intervals (Kuczma (1968); Targoński
(1981); Baron and Jarczyk (2001); Li and Zhang (2018); Li and Liu (2019)), continu-
ous complex maps (Zdun (2000); Jarczyk (2003)), continuous maps on planes and Rn
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(Leśniak (2002)), and set valued maps (Nikodem and Zhang (2004); Li (2009); Li et al.
(2009)).

Usually, a solution φ of (1.1.7) is referred to as an mth order unit iterative root if m

is the smallest positive integer such that (1.1.7) is satisfied. In particular, as in Kuczma
(1968) (p. 290), for m = 2 every solution of (1.1.7), whose inverse is itself, is called an
involutory function. The following lemma gives a necessary condition on the exponent
m for existence of solutions.

Lemma 1.1.6. If f is an mth order unit iterative root and f k = id, then m | k.

Proof. Let k be a positive integer such that f k = id. Then, by division algorithm, k =

mq+ r for some q ∈ N and r ∈ {0,1, . . . ,m−1}. Also,

f r = id◦ f = ( f m)q ◦ f r = f mq+r = f k = id.

Therefore, by our assumption on m, we must have r = 0. Hence m | k.

Let S1 := {eiθ : 0≤ θ < 2π} denote the unit circle in C. Given z0,z1, . . . ,zm−1 ∈ S1

with m ≥ 2, we write z0 ≺ z1 ≺ ·· · ≺ zm−1 if there exist t1, t2, . . . , tm−1 ∈ R such that
0 < t1 < t2 < .. . < tm−1 < 1 and z j = z0e2πit j for 1≤ j ≤ m−1. In this case, we have

z j(mod m) ≺ z j+1(mod m) ≺ ·· · ≺ z j+m−1(mod m), ∀ j ∈ N,

so that “≺” is indeed a cyclic order on S1. For any two distinct points z1,z2 ∈ S1, define
the arcs (z1,z2), [z1,z2) and (z1,z2] by

(z1,z2) = {z ∈ S1 : z1 ≺ z≺ z2},

[z1,z2) = (z1,z2)∪{z1} and (z1,z2] = (z1,z2)∪{z2}.

Then we have

(z1,z2) = {e2πit ∈ S1 : t ∈ (t1, t2)},

where t1, t2 are unique reals such that z1 = e2πit1,z2 = e2πit2 and 0≤ t1 < t2 < t1+1 < 2.
It is known (cf. Block and Coppel (1992); Wall (1993)) that for every homeomor-

phism F : S1→ S1 there exists a homeomorphism f : R→ R satisfying one of the Abel

equations

f (t +1) = f (t)+1 if f is strictly increasing,

f (t +1) = f (t)−1 if f is strictly decreasing
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such that

F(e2πit) = e2πi f (t), ∀t ∈ R.

Every such f is called a lift of F . We say that F preserves (or reverses) orientation
accordingly as f is strictly increasing (or decreasing) on R.

On a general set E, the mth order unit iterative roots are formulated in Kuczma
(1968).

Lemma 1.1.7. (Theorem 15.1 of Kuczma (1968)) Let {m0, ...,mr}, where 1 = m0 <

m1 < · · ·< mr = m, be the complete set of divisors of m and let

E =
r⋃

i=0

mi⋃
j=1

U i
j

be a decomposition of E into disjoint sets such that the sets U i
1,U

i
m1
, . . . ,U i

mi
have the

same cardinality for each 1 ≤ i ≤ r. For 1 ≤ i ≤ r and 1 ≤ j ≤ mi− 1, let fi j be an

arbitrary one-to-one map of U i
j onto U i

j+1. Then the formula

f (x) :=


x for x ∈U0

1 ,

fi j(x) for x ∈U i
j, j = 1,2, . . . ,mi−1, i≥ 1,

f−1
i1
(
· · ·
(

f−1
i,mi−1(x)

)
· · ·
)

for x ∈U i
mi
, i≥ 1

defines the general solution of φ m = id on E.

The following three lemmas together describe the general continuous solutions of
(1.1.7) on the compact interval [a,b] in R and S1, each of which can also be deduced
from Lemma 1.1.7.

Lemma 1.1.8. (McShane (1961); Vincze (1959)) If f ∈C ([a,b]) is a solution of (1.1.7),
then either f = id or f is a decreasing involutory function on [a,b] (i.e.,

f (x) =

{
φ0(x) if x ∈ [a,x0],

φ
−1
0 (x) if x ∈ [x0,b],

where x0 ∈ [a,b] and φ0 : [a,x0]→ [x0,b] is a decreasing bijective map).

Lemma 1.1.9. (Jarczyk (2003)) Let f ∈ C (S1) be a solution of (1.1.7) and has a fixed

point in S1.

(i) If f is orientation-preserving, then f is the identity map.
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(ii) If f is orientation-reversing, then f is an involution (i.e.,

f (z) =


φ0(z) if z ∈ [z0,z1),

z1 if z = z1,

φ
−1
0 (z) if z ∈ (z1,z0),

where z0,z1 ∈ S1 and φ0 : [z0,z1)→ (z1,z0] is an arbitrary homeomorphism such

that φ0(z0) = z0).

Lemma 1.1.10. (Jarczyk (2003)) All mth order iterative roots of identity in C (S1) hav-

ing no fixed points in S1 are given by

f (z) =

{
φ0(z) if z ∈ [z0,zm−1),

(φ1 ◦φ2 ◦ · · · ◦φm−1)
−1(z) if z ∈ [zm−1,z0)

(1.1.8)

with

φ j := φ0|[z j(m−k)−1,z j(m−k))
for 1≤ j ≤ m−1,

where k is an integer in {1,2, . . . ,m−1} relatively prime to m and z0,z1, . . . , zm−1 are

some points in S1 such that z0 ≺ z1 ≺ ·· · ≺ zm−1, and φ0 : [z0,zm−1)→ [zk,zk−1) is any

arbitrary homeomorphism such that

φ0([z j−1,z j)) = [z j−1+k,z j+k) for 1≤ j ≤ m−1

with z j := z j(mod m) for j ≥ m.

As indicated in Kuczma (1968), every decreasing involutory function on [a,b] has
a graph symmetric with respect to the diagonal of [a,b]× [a,b]. More precisely, any
solution of (1.1.7) on [a,b] for general m is also a 2nd order unit iterative root. If m

is odd, then the solution is uniquely the identity id; if m is even, then the solution is
either id or a decreasing involutory function on [a,b]. As seen in Lemma 1.1.9, similar
conclusions hold if the solution of (1.1.7) on S1 has a fixed point.

Usually, a solution f of (1.1.6) is called an mth order iterative root of F . For interval
maps, we have the following classical result.

Theorem 1.1.11. (Theorem 11.2.2 of Kuczma et al. (1990)) Let J be an interval in R.

If F ∈ C (J) is strictly increasing, then it has strictly increasing iterative roots of all

orders.
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Recently, the generalized form

α1 f (x)+ · · ·+αn f n(x) = F(x) (1.1.9)

of (1.1.6) with Φ in a linear combination, called the polynomial-like iterative equation,
is also being investigated for more concrete properties.

Let Cb(R) be the Banach space of all bounded continuous self-maps of R with the
uniform norm ‖ · ‖, defined by ‖ f‖ = sup{| f (x)| : x ∈ R}. Let I := |a,b|, where |a,b|
denotes either an open interval (a,b), a semi-closed interval [a,b) or (a,b], or a closed
interval [a,b] in R, and one or both of the endpoints of I may be infinite. For ζ ∈ Ī, the
closure of I, and λ ∈ [0,1), let

Rζ ,λ [R;I] := { f ∈ Cb(R) : f |I is strictly increasing and satisfies (A1) and (A2)},

where

(A1) ( f (x)− (1−λ )x)(ζ − x)> 0 for x 6= ζ ,

(A2) ( f (x)− (1−λ )ζ )(ζ − x)< 0 for x 6= ζ .

Then we have the following results on construction of solutions for

f n(x) =
n−1

∑
k=1

λk f k(x)+F(x), (1.1.10)

which is indeed equivalent to (1.1.9).

Lemma 1.1.12. (Xu and Zhang (2007a)) Let λ ∈ [0,1) and F ∈ Ra,λ [I;I]. Then for

arbitrary x0 ∈ (a,b|, (1.1.10) has a solution in Ra,0[I1; I1], where I1 = [a,x0]. More

concretely, for every arbitrary x0 ∈ (a,b|, there exists a strictly decreasing sequence

(x1,x2, . . . ,xn−1) in (a,x0) such that the sequence (xm) defined recursively by

xn+m =
n−1

∑
j=1

λ jx j+m +F(xm) for m≥ 0 (1.1.11)

satisfies the conditions (i) xm+1 ∈ (a,xm) for m≥ 1, (ii) (a,x0] =
∞⋃

m=1
[xm,xm−1], and

f (x) :=

{
a if x = a,

fm(x) if x ∈ [xm,xm−1], m≥ 1

is a solution of (1.1.10) in Ra,0[I1; I1], where f j : [x j,x j−1]→ [x j+1,x j] is an arbitrary
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order-preserving homeomorphism for 1≤ j ≤ n−1 and fm : [xm,xm−1]→ [xm+1,xm] is

the order-preserving homeomorphism defined recursively by

fm(x) = λn−1x+λn−2 f−1
m−1(x)+ · · ·+λ1 f−1

m−n+2 ◦ f−1
m−n+3 ◦ · · · ◦ f−1

m−1(x)

+F ◦ f−1
m−n+1 ◦ f−1

m−n+2 ◦ · · · ◦ f−1
m−1(x), x ∈ [xm,xm−1], for m≥ n.

Lemma 1.1.13. (Xu and Zhang (2007a)) Let λ ∈ [0,1) and F ∈ Rb,λ [I;I]. Then for

every arbitrary x0 ∈ |a,b), (1.1.10) has a solution in Rb,0[I2; I2], where I2 = [x0,b]. More

concretely, for every arbitrary x0 ∈ |a,b), there exists a strictly increasing sequence

(x1,x2, . . . ,xn−1) in (x0,b) such that the sequence (xm) defined recursively by (1.1.11)

satisfies the conditions (i) xm+1 ∈ (xm,b) for m≥ 1, (ii) [x0,b) =
∞⋃

m=1
[xm−1,xm], and

f (x) :=

{
fm(x) if x ∈ [xm−1,xm], m≥ 1,

b if x = b,

is a solution of (1.1.10) in Rb,0[I2; I2], where f j : [x j−1,x j]→ [x j,x j+1] is an arbitrary

order-preserving homeomorphism for 1≤ j ≤ n−1 and fm : [xm−1,xm]→ [xm,xm+1] is

the order-preserving homeomorphism defined recursively by

fm(x) = λn−1x+λn−2 f−1
m−1(x)+ · · ·+λ1 f−1

m−n+2 ◦ f−1
m−n+3 ◦ · · · ◦ f−1

m−1(x)

+F ◦ f−1
m−n+1 ◦ f−1

m−n+2 ◦ · · · ◦ f−1
m−1(x), x ∈ [xm−1,xm], for m≥ n.

Further, differentiable solutions, convex solutions and decreasing solutions, and
equivariant solutions of (1.1.9) are discussed in Zhang (1990); Xu and Zhang (2007b),
and Zhang (2000), respectively.

1.2 ORGANIZATION OF THE THESIS

In this section, we give a more detailed outline of the contents of this thesis. The present
work is focused mainly on investigating certain dynamical behaviours of various essen-
tial classes of continuous maps. Indeed, we study the dynamical systems generated
by iteration operators on function spaces, and those by continuous maps on compact
intervals. We also discuss continuous solutions for a class of iterative equations with
multiplication. The proposed thesis consists of five chapters, which we have organized
as follows.

This introductory chapter summarizes the context, motivation, and main contribu-
tions of this thesis. More precisely, to make the discussions self-contained, a concise
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introduction to the theory of discrete dynamical systems, the theory of iterative equa-
tions, and Milnor-Thurston’s kneading theory are presented. Further, a detailed review
of the literature related to the present work is conducted.

As known from Li and Yorke (1975), even for interval maps, the existence of some
periodic points may result in complex dynamical behaviours, in which more concepts
such as topological transitivity, sensitive dependence, and chaos are involved. In those
dynamic behaviours, the operation of iteration plays an important role.

Let (K,d) be a compact metric space and C (K) consist of all continuous self-maps
of K, which is also a complete metric space equipped with the supremum metric

ρ( f ,g) := sup
{

d
(

f (x),g(x)
)

: x ∈ K
}
. (1.2.1)

For each n ∈ N, the nth order iteration defines the map Jn : C (K)→ C (K) such that

Jn f = f n. (1.2.2)

The map Jn, called the iteration operator of order n on C (K), is nonlinear. Many in-
teresting and complicated properties of Jn were investigated by discussion of iterates
(Blokh (1992); Milnor and Thurston (1988)), iterative roots (Babbage (1815); Böde-
wadt (1944); Fort (1955); Zhang (1997)) and solutions of iterative equations (Jarczyk
(1996); Kuczma (1960)). It is proved in Zhang and Zhang (2011) that Jn is continu-
ous on C ([a,b]) for any closed interval [a,b] of R, which proposes a further study on
dynamics of Jn.

In Chapter 2, we investigate some dynamical behaviours of Jn. For an arbitrary
compact metric space K, we generally prove the continuity of Jn on the space C (K) of
continuous self-maps, implying that the operator Jn defines a discrete dynamical sys-
tem on C (K). Then we show how a fixed point or periodic point of Jn is determined.
In section 2.2 we characterize all fixed points and periodic points of the system in the
case that K is a compact interval by discussing the Babbage equation. We do the same
in the case that K is the unit circle S1 in section 2.3. Further, we prove that every orbit
of Jn is bounded and every fixed point of Jn which equals the identity on its range is
not Lyapunov stable. The boundedness and instability exhibit a complex behaviour of
Jn, but we prove that Jn is not topologically transitive and therefore is not chaotic on
C (K) in Devaney’s sense (see Theorem 2.5.1).

Let f ∈ C (I) and g ∈ C (J), where J = [c,d] is a compact interval in R such that
c < d. As in Holmgren (1994), we say that f is topologically h-conjugate (or simply
conjugate) to g if there exists a homeomorphism h : I→ J such that h◦ f = g◦h. In this
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case, h is called a topological conjugacy. It is proved in Milnor and Thurston (1988)
that the kneading matrix and the kneading determinant associated with a continuous
piecewise monotone map are invariant under orientation-preserving topological conju-
gacy. In Chapter 3, we consider if this result is valid for orientation-reversing conjugacy.
More concretely, in section 3.1, we prove that the kneading matrix is no longer an in-
variant under orientation-reversing conjugacy while the kneading determinant is (see
Theorem 3.1.7 and Corollary 3.1.9). Then, in section 3.2, we present two applications
of our results- these to the reduction of computational complexity, and the nonexistence
of topological conjugacy between continuous piecewise monotone maps.

As seen in section 1.1.2, the kneading matrix of an f ∈M (I) with m turning points
is an m× (m+1) matrix with entries from the ring of formal power series with integer
coefficients. Moreover, the iterates of f satisfy the ascending relation

#T ( f )≤ #T ( f 2)≤ #T ( f 3)≤ ·· · . (1.2.3)

Therefore the process of finding the kneading matrices of higher order iterates of f

involves tedious computations. In section 3.4, we describe a relation between kneading
matrices of maps and their iterates for tent-like maps, the family of chaotic maps each
of which is onto on its every lap (see Theorem 3.4.2). We also define the modified
kneading matrix for such maps and describe a relationship between the corresponding
determinant and the usual kneading determinant.

As observed in section 1.1.3, plentiful results were obtained by various researchers
on the solutions of (1.1.5) whenever Φ is a linear combination of iterates of f . However,
it is also interesting to discuss Φ of nonlinear combinations, for instance, considered as
in Zdun and Zhang (2007) on the unit circle.

In Chapter 4, we consider the iterative equation with multiplication

(g(x))α1(g2(x))α2 · · ·(gn(x))αn = G(x), (1.2.4)

i.e., Φ(u1,u2, . . . ,un) = ∏
n
k=1 uαk

k , where G is given and g is unknown. Unlike those
Murugan and Subrahmanyam (2006); Si (1995); Wang and Si (2001); Si and Zhang
(1998); Zhang (1988, 1989) on compact intervals, our work to (1.2.4) is concentrated
in solving (1.1.9) on the whole R. Our strategy is to restrict our discussion of (1.2.4)
on R+ := (0,+∞) and use an exponential function to reduce in conjugation to the well-
known form of polynomial-like iterative equation (1.1.9) on the whole R (see Proposi-
tion 4.1.1). Note that all found results on the solutions of (1.1.9) are given either on a
compact interval or near a fixed point, none of which can be applied to our case. We
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generally discuss (1.1.9) on the whole R and use obtained result to give solutions of
equation (1.2.4) on R+ and R− := (−∞,0). Our approach here is twofold. First, us-
ing the Banach contraction principle, we give sufficient conditions for existence and
uniqueness of continuous solutions for (1.2.4). We also prove that the obtained solution
depends on G continuously. Then, using the second method we construct its solutions,
sewing piece by piece as done in Xu and Zhang (2007a); Zhang et al. (2013).

The main focus of the present work is to study the dynamical behaviours of con-
tinuous maps. More precisely, we consider the discrete dynamical systems of iteration
operators, the iterates of continuous piecewise monotone maps on intervals, and an it-
erative equation with multiplication. Chapter 5 presents the conclusions of this thesis
describing the scope for future research in these areas.
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CHAPTER 2

THE ITERATION OPERATOR Jn

“Few ideas work on the first try. Iteration is key to innovation.”

- Sebastian Thrun

In this chapter, we investigate some critical dynamical properties of the iteration
operator Jn, defined as in (1.2.2), on the space C (K) of continuous self-maps of a
compact metric space K.

2.1 DYNAMICAL SYSTEM OF ITERATION

Let K be a compact metric space with metric d. In this section we prove (C (K),Jn)

to be a discrete dynamical system indeed by showing the continuity of Jn on C (K).

Theorem 2.1.1. Jn is continuous on C (K) for each n ∈ N.

Proof. Since J1 is the identity operator on C (K), clearly it is continuous. In what
follows, we assume that n ≥ 2. Let f ∈ C (K) and ( fk)k∈N be any sequence in C (K)

converging to f . Then for each x ∈ K and k ∈ N, we have

d
(

f n
k (x), f n(x)

)
≤ d

(
f n
k (x),( f n−1 ◦ fk)(x)

)
+d
(
( f n−1 ◦ fk)(x), f n(x)

)
≤ ρ( f n−1

k , f n−1)+ρ( f n−1 ◦ fk, f n) (by using (1.2.1))

≤ ρ( f n−1
k , f n−2 ◦ fk)+ρ( f n−2 ◦ fk, f n−1)+ρ( f n−1 ◦ fk, f n)

≤ ρ( f n−2
k , f n−2)+ρ( f n−2 ◦ fk, f n−1)+ρ( f n−1 ◦ fk, f n).

Proceeding as above, by induction we obtain

d
(

f n
k (x), f n(x)

)
≤ ρ( fk, f )+ρ( f ◦ fk, f 2)+ · · ·+ρ( f n−1 ◦ fk, f n)
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for every x ∈ K and k ∈ N. This implies

ρ( f n
k , f n)≤ ρ( fk, f )+ρ( f ◦ fk, f 2)+ · · ·+ρ( f n−1 ◦ fk, f n) (2.1.1)

for every k ∈ N.

Claim: f j ◦ fk→ f j+1 as k→ ∞ uniformly on K for each j = 1,2, . . . ,n−1.

Let 1 ≤ j ≤ n− 1 and ε > 0. Since f j is uniformly continuous on K, there exists
δ > 0 such that

d
(

f j(x), f j(y)
)
< ε (2.1.2)

whenever x,y ∈ K with d(x,y)< δ . Since ( fk)k∈N converges to f uniformly on K, there
exists n0 ∈ N such that

d
(

fk(x), f (x)
)
< δ , ∀k ≥ n0 and ∀x ∈ K.

It follows from (2.1.2) that

d
(
( f j ◦ fk)(x),( f j ◦ f )(x)

)
< ε, ∀k ≥ n0 and ∀x ∈ K.

This proves the claim.

Hence, by the claimed fact, we see from (2.1.1) that ρ( f n
k , f n)→ 0 as k→ ∞, i.e.,

Jn fk→Jn f as k→ ∞, which shows that Jn is continuous on C (K).

The most fundamental problems on dynamical systems are concerning fixed points
and periodic points. Since J k

n f = f nk
by (1.2.2), we see that f ∈ C (K) is a fixed point

of Jn if and only if f satisfies the functional equation

f n = f , (2.1.3)

and f ∈ C (K) is a k-periodic point of Jn if and only if f satisfies

f nk
= f , f nk−1

6= f and f ni
6= f , ∀i = 2, ...,k−2 with i - (k−1). (2.1.4)

So, the fixed points and periodic points of Jn are related to solutions of the Bab-
bage equation (1.1.7). The functional equations in (2.1.3) and (2.1.4) cannot be simply
treated as the Babbage equation (1.1.7) because the range of f may not be the whole K.
In what follows, we need to consider restriction of maps. For any f ∈ C (K) and A⊆ K,
let R( f ) denote the range of f and f |A be the restriction of f to A.
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Lemma 2.1.2. Let n ∈ N. Then f ∈ C (K) is a solution of the equation

φ
n = φ (2.1.5)

on K if and only if f is a continuous extension of the solution g|R(g) of the Babbage

equation

φ
n−1 = id (2.1.6)

on R(g) to K for some g ∈ C (K) such that R( f ) = R(g).

Proof. If f ∈ C (K) is a solution of (2.1.5), then f n−1( f (x)
)
= f (x) for all x ∈ K, i.e.,

f n−1(y) = y for all y ∈R( f ). Therefore f |R( f ) is a solution of (2.1.6) on R( f ). Let
g := f . Then f is a continuous extension of the solution g|R(g) on R(g) to K such that
R( f ) = R(g).

Conversely, let g ∈ C (K) be such that g|R(g) is a solution of (2.1.6) on R(g) and f

be any continuous extension of g|R(g) to K such that

R( f ) = R(g). (2.1.7)

Then f ∈ C (K) clearly and, since f is an extension of g|R(g) to K, we have

f |R(g) = g|R(g). (2.1.8)

Therefore, for every x ∈ K we have

f n(x) = f n−1( f (x)
)
= f n−1|R( f )

(
f (x)

)
=
(

f |R( f )
)n−1( f (x)

)
=
(
g|R(g)

)n−1( f (x)
)

by (2.1.7) and (2.1.8). As g|R(g) satisfies (2.1.6) on R(g), using (2.1.7) we get

f n(x) = id
(

f (x)
)
= f (x), ∀x ∈ K.

Hence f is a solution of (2.1.5) on K.

Having Lemma 1.1.7, which describe all the mth order unit iterative roots on a gen-
eral set E, we are ready to define

U m
E := { f ∈ C (K) : f |E is an mth order unit iterative root on E and R( f ) = E}

for any subset E of K and m ∈ N. Since Fix(J1;C (K)) = C (K), i.e., the problem of
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fixed points of J1 is trivial, we focus on Jn with n≥ 2. We give the following results
on fixed points and periodic points.

Theorem 2.1.3. Let n,k ≥ 2 be integers. Then

(i) f ∈ C (K) is a fixed point of Jn if and only if f ∈U m
E for a compact subset E of K

and an integer m≥ 1 dividing n−1 exactly.

(ii) f ∈ C (K) is a k-periodic point of Jn if and only if f ∈U m
E for a compact subset

E of K and an integer m > 1 satisfying that

m | (nk−1) and m - (n j−1) for 1≤ j ≤ k−1. (2.1.9)

Proof. If f ∈ C (K) is a fixed point of Jn, then f n = f on K. By Lemma 2.1.2, there
exists g ∈ C (K) such that g|R(g) satisfies φ n−1 = id on R(g) and f is a continuous
extension of g|R(g) to K with R( f ) = R(g). In fact, we take g = f . Then E := R( f )

is a compact subset of K. Let m be the least positive integer such that ( f |E)m = id.
Such an m exists since ( f |E)n−1 = id, and moreover m divides n− 1 by Lemma 1.1.6.
Therefore, f ∈U m

E .
Conversely, let f ∈U m

E for a compact subset E of K and an integer m≥ 1 dividing
n−1. Then there exists l ∈ N such that n−1 = ml and

( f |R( f ))
n−1 = ( f |E)n−1 = ( f |E)ml = (( f |E)m)l = idl = id.

This implies that f n = f on K, and therefore f is a fixed point of Jn. This proves result
(i).

In order to prove result (ii), assume n > 1 since J1 does not have a k-periodic point
for k ≥ 2. Let f ∈ C (K) be a k-periodic point of Jn. Then

f nk
= f and f n j

6= f for 1≤ j ≤ k−1 (2.1.10)

on K. Since f is a fixed point of Jnk , by result (i) there exist a compact subset E

of K and an m ∈ N dividing nk− 1 such that f ∈ U m
E . If m = 1, then f |R( f ) = id so

that f n = f on K, a contradiction to (2.1.10). So m > 1. If m divides n j− 1 for some
1≤ j ≤ k−1, then ( f |R( f ))

n j−1 = id so that f n j
= f on K, a contradiction to (2.1.10).

So m - (n j− 1) for 1 ≤ j ≤ k− 1. This proves the direct implication in result (ii). For
the converse, let f ∈U m

E for a compact subset E of K and an integer m > 1 satisfying
(2.1.9). Choose l ∈ N such that nk−1 = ml. Then

( f |R( f ))
nk−1 = ( f |E)nk−1 = ( f |E)ml = (( f |E)m)l = idl = id,
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implying that f nk
= f . If f n j

= f for some 1≤ j≤ k−1, then ( f |E)n j−1 = ( f |R( f ))
n j−1

= id, implying that m divides n j−1, a contradiction to (2.1.9). So f n j 6= f for 1≤ j ≤
k−1, and thus f is a k-periodic point of Jn.

Example 2.1.4. Consider f (x) = |x|. Then f ∈ C ([−1,1]). Clearly, f ∈ U 1
[0,1]. By

result (i) of Theorem 2.1.3, f is a fixed point of Jn on [−1,1] for each n≥ 2.

Example 2.1.5. For any n ≥ 2 and k ∈ N, consider the discrete metric space Fn,k :=
{1,2, . . . ,nk−1}. Then the map f : Fn,k→ Fn,k defined by

f ( j) =

{
j+1 if j = 1,2, . . . ,nk−2,
1 if j = nk−1

lies in U nk−1
Fn,k

. By result (ii) of Theorem 2.1.3, f is a k-periodic point of Jn in C (Fn,k).

Example 2.1.6. The map f : S1→ S1 defined by f (eiθ )= ei(θ+ π

2 ) lies in U 4
S1 . Therefore,

by result (ii) of Theorem 2.1.3, f is a 2-periodic point of J3.

The above results are given for general K. If we consider K to be K = [a,b] or
K = S1 concretely, we may obtain more details on fixed points and periodic points of
Jn, as seen in next two sections.

2.2 DISCUSSION ON [a,b]

For more detailed results, in this section we focus on the case K = I := [a,b], a compact
interval, and discuss fixed points and periodic points of iteration operators on C (I).

In what follows, we refer to monotonically increasing (or decreasing) functions sat-
isfying (2.1.5) as monotonically increasing (or decreasing) fixed point of Jn.

Theorem 2.2.1. Every monotonic fixed point f of J2 in C (I) is of the first form in

(2.2.1). Every monotonic fixed point f of J3 in C (I) is of one of the following two

forms

f (x) =


c if a≤ x≤ c,

x if c≤ x≤ d,

d if d ≤ x≤ b,

f (x) =


d if a≤ x≤ c,

g(x) if c≤ x≤ d,

c if d ≤ x≤ b,

(2.2.1)

where c,d ∈ I satisfy c≤ d and g ∈ C ([c,d]) is a decreasing involutory map.

Proof. Let f be a fixed point of J3. Since f 3 = f , by result (i) of Theorem 2.1.3,
there exists a closed subinterval J = [c,d] of I such that f ∈U m

J for a certain integer m

21



dividing 2. Then

( f |J)2 = id and R( f ) = J. (2.2.2)

Case (a): If f is monotonically increasing, then by Lemma 1.1.8 we see from the first
result of (2.2.2) that f |J = id. Outside J we see from the second result of (2.2.2) that
f (x) = c for all x ∈ [a,c] and f (x) = d for all x ∈ [d,b]. Hence f is of the first form.

Case (b): If f is monotonically decreasing, then again by Lemma 1.1.8 we see from
the first result of (2.2.2) that f |J is a decreasing involutory function g on J. Outside J

we see from the second result of (2.2.2) that f (x) = d for all x ∈ [a,c] and f (x) = c for
all x ∈ [d,b]. Therefore f is of the second form.

The above theorem is only applicable to monotonic fixed points. There exist fixed
points of J2 or J3 which are not monotonic. For example, as considered in Example
2.1.4, the function f (x) = |x| on [−1,1] is not a monotonic map on [−1,1] but a fixed
point of J2.

The ‘monotone’ in Theorem 2.2.1 need not mean ‘strict monotone’. For instance,
it may happen that [c,d] $ I with a < c in the first form of (2.2.1). In that case, we
have f (x) = c for x ∈ [a,c], implying that f is not strictly monotone. For a specific
example, consider the map f on [−1,1] defined by f (x) = 0 if x ∈ [−1,0] and f (x) = x

if x ∈ [0,1]. One can check that f is a fixed point of J2. Moreover, f is monotonic but
not strictly monotonic. For strictly monotonic ones, we have the following.

Corollary 2.2.2. If f is a strictly monotonic fixed point of J3 in C (I), then either

f = id or f is a strictly decreasing involutory function on I.

Proof. Since f is monotonic fixed point of J3, it follows that f is either of the forms
given in Theorem 2.2.1. In any case c = a and d = b, as f is strictly monotone on I.

Theorem 2.2.1 gives results only for J2 and J3, but not for the generic Jn. In
what follows, we show that those monotonic fixed points of J2 and J3 are important
representatives for the generic Jn. Let Cid(I) and Cinv(I) consist of all continuous self-
maps of I which are the identity and decreasing involutions on their range, respectively.
By Theorem 2.2.1, monotonic fixed points of J3 are in both classes Cid(I) and Cinv(I)

but monotonic fixed points of J2 are all in the same class Cid(I). The following results
(i) and (ii) of Theorem 2.2.3 together describe all fixed points of Jn for any n≥ 2.

Theorem 2.2.3. The following statements are true for system
(
C (I),Jn

)
:

(i) Fix(Jm;C (I)) = Fix(Jn;C (I)) if integers m,n≥ 2 satisfy m≡ n(mod 2).
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(ii) Fix(J2;C (I)) ( Fix(J3;C (I)). More precisely, Fix(J2;C (I)) = Cid(I) and

Fix(J3;C (I)) = Cid(I)∪Cinv(I).

Proof. For result (i), it suffices to show that for n≥ 2

Fix(Jn;C (I)) =

{
Fix(J2;C (I)) if n≡ 0(mod 2),
Fix(J3;C (I)) if n≡ 1(mod 2).

First, consider the case that n≥ 2 such that n≡ 0(mod 2). Clearly, Fix(J2;C (I))⊆
Fix(Jn;C (I)). For the reverse inclusion, consider an arbitrary f ∈ Fix(Jn;C (I)).
Since f n−1 = id on R( f ) and n− 1 is odd, by Lemma 1.1.8, f |R( f ) = id. Therefore
f 2 = f on I, and hence Fix(Jn;C (I))⊆ Fix(J2;C (I)).

Next, consider the case that n > 2 such that n≡ 1(mod 2), i.e., n = 2l +1 for some
l ∈ N. Consider an arbitrary f ∈ Fix(J3;C (I)). Since f 2 = id on R( f ), we have

f n(x) = f 2l+1(x) = f 2l( f (x)) = id( f (x)) = f (x), ∀x ∈ I,

i.e., f ∈ Fix(Jn;C (I)). Therefore Fix(J3;C (I)) ⊆ Fix(Jn;C (I)). For the reverse
inclusion, consider any f ∈ Fix(Jn;C (I)). Then f 2l = id on R( f ) and therefore by
Lemma 1.1.8, f is either identity or a decreasing involutory map on R( f ). This implies
f 3 = f on I, and therefore f ∈ Fix(J3;C (I)). This proves result (i).

If f ∈ Fix(J3;C (I)), then f 2 = id on R( f ) and therefore by Lemma 1.1.8, either
f |R( f ) is the identity map or a decreasing involution. This implies f ∈ Cid(I)∪Cinv(I).
The reverse inclusion also follows, since f 3 = f whenever f |R( f ) is the identity map or
a decreasing involution. Therefore Fix(J3;C (I)) = Cid(I)∪Cinv(I).

If f ∈ Fix(J2;C (I)), then clearly f 3 = f and f |R( f ) = id, implying that f ∈Cid(I).
On the other hand, if f ∈ Cid(I), then f |R( f ) = id, implying that f 2 = f . Hence
Fix(J2;C (I)) = Cid(I). This proves the second result of (ii).

The first result of (ii) follows from second and noting that the map f : I→ I defined
by f (x) = a+b− x,∀x ∈ I is a continuous decreasing involutory map.

Theorem 2.2.1 together with result (i) of Theorem 2.2.3 shows that Theorem 2.2.1
is indeed true for every integer n ≥ 2. More precisely, monotonic fixed points of Jn

coincide with those of J2 and J3 accordingly as n is even and odd, respectively. So
Theorem 2.2.1 actually gives results for the representatives.

Although we can find many fixed points of Jn, the following result shows that there
are no nontrivial periodic points.

Theorem 2.2.4. For each n ∈ N, Jn does not have periodic points of period k ≥ 2 in

C (I).
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Proof. Since every element of C (I) is a fixed point of J1, we see that J1 has no
periodic point of period k for k≥ 2. Let n≥ 2 and suppose that Jn has a periodic point
f of period k ≥ 2 in C (I). Then f satisfy (2.1.10) on I. Since k ≥ 2, clearly f is a
non-constant map on I. Since f nk

= f on I, we have f nk−1 = id on R( f ), and therefore
by Lemma 1.1.8, either f |R( f ) = id or f |R( f ) is a decreasing involutory function. We
discuss in the two cases.

Case (a): If f |R( f ) = id, then we have

f 2(x) = f
(

f (x)
)
= ( f |R( f ))

(
f (x)

)
= id

(
f (x)

)
= f (x),

for all x ∈ I so that f 2 = f and hence f nk−1
= f on I, a contradiction to (2.1.10), as

n,k ≥ 2.

Case (b): If f |R( f ) is a decreasing involutory function, then

f j =

{
f if j = 1,3,5, . . . ,
f 2 if j = 2,4,6, . . .

(2.2.3)

on I. If n is odd, then n j is odd for every j ∈ N. By (2.2.3), f n j
= f on I for all j ∈ N,

implying in particular that f nk−1
= f on I, a contradiction to (2.1.10), since n,k ≥ 2.

Therefore n and hence nk is even. By (2.2.3), we have f nk
= f 2 on I. This implies

f 2 = f on I, and therefore id =
(

f |R( f )
)2

= f 2|R( f ) = f |R( f ), a contradiction, since
f |R( f ) is a non-constant decreasing map on R( f ).

Thus Jn has no periodic point of period k for k ≥ 2.

As observed before, every element of C (I) is a fixed point for J1. So in particular,
J1 has a dense set of periodic points in C (I). However, this is not true for n > 1, which
can be viewed as a consequence of the following.

Theorem 2.2.5. Fix(J3;C (I)) is not dense in C (I).

Proof. Let f : I→ I be defined by

f (x) = a+
(x−a)2

b−a
, ∀x ∈ I

and let ε = 3(b−a)
16 .

Claim: Bρ( f ,ε)∩Fix(J3;C (I)) = /0.

For an indirect proof, assume that there exists g ∈ Bρ( f ,ε) such that J3(g) = g.
Then ρ(g, f )< ε , and (g|R(g))

2 = id. By Lemma 1.1.8, g|R(g) is either the identity map
or a decreasing involution. We discuss in the two cases.
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Case (a): If g|R(g) = id, then

0≤ x−
(

a+
(x−a)2

b−a

)
= |id(x)− f (x)|

= |g|R(g)(x)− f (x)| ≤ ρ(g, f )< ε, ∀x ∈R(g),

which implies that R(g)⊆ [a, 3a+b
4 ]∪ [a+3b

4 ,b] and therefore either R(g)⊆ [a, 3a+b
4 ] or

R(g) ⊆ [a+3b
4 ,b] because R(g) is connected. This is a contradiction; otherwise, the

inclusion R(g)⊆ [a, 3a+b
4 ] implies that

f (b)−g(b)≥ b− 3a+b
4

=
3(b−a)

4
>

3(b−a)
16

= ε,

and the inclusion R(g)⊆ [a+3b
4 ,b] implies that

g(a)− f (a)≥ a+3b
4
−a =

3(b−a)
4

>
3(b−a)

16
= ε.

Case (b): If g|R(g) is a decreasing involutory map, then R(g) = [c,d] for some c,d ∈ I

such that g(c) = d and g(d) = c. We have∣∣∣∣a+ (c−a)2

b−a
−d
∣∣∣∣= | f (c)−g(c)|< ε,

implying that

a+
(c−a)2

b−a
− ε < d < a+

(c−a)2

b−a
+ ε. (2.2.4)

Also ∣∣∣∣a+ (d−a)2

b−a
− c
∣∣∣∣= | f (d)−g(d)|< ε,

implying that

a+
(d−a)2

b−a
− ε < c < a+

(d−a)2

b−a
+ ε. (2.2.5)

It follows from (2.2.4) and (2.2.5) that

d− c <
(

a+
(c−a)2

b−a
+ ε

)
−
(

a+
(d−a)2

b−a
− ε

)
=

(c+d−2a)(c−d)
b−a

+2ε,

which can be simplified as
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d− c < 2ε
b−a

(b−a)+(c+d−2a)
< 2ε.

It follows that the length of the interval R(g) is less than 2ε . Thus, either c−a≥ ε or
b−d ≥ ε; otherwise, c−a < ε and b−d < ε , implying that

b−a = (b−d)+(d− c)+(c−a)< 4ε =
3(b−a)

4
< b−a,

a contradiction. This implies that either g(a)− f (a) ≥ ε or f (b)−g(b) ≥ ε , a contra-
diction to our assumption that ρ( f ,g)< ε .
Therefore the claim is proved and the result follows.

Theorems 2.2.4, 2.2.5 and 2.2.3 together show that Jn does not have a dense set of
periodic points in C (I) for n≥ 2.

2.3 DISCUSSION ON S1

The following two theorems characterize fixed points and periodic points of Jn in
C (S1), respectively.

Theorem 2.3.1. Let n ∈ N. Then f ∈ C (S1) is a fixed point of Jn if and only if one

of the following conditions is satisfied: (i) f |R( f ) is the identity map, (ii) f |R( f ) is an

orientation-reversing involution, or (iii) f is of the form (1.1.8) for a divisor m of n−1.

Proof. Let n ∈ N. To find all fixed points of Jn in C (S1), in view of Lemma 2.1.2,
it suffices to find all f ∈ C (S1) satisfying the equation φ n−1 = id on R( f ). So let
f ∈C (S1) be such that f n−1 = id on R( f ). We discuss in the two cases that R( f ) = S1

and R( f )( S1 separately.
Case (a): Suppose that R( f ) = S1. If f has a fixed point, then by Lemma 1.1.9, f

is either the identity map or an involution according as f is orientation-preserving or
orientation-reversing. If f has no fixed points, then by Lemma 1.1.10, f is of the form
(1.1.8) for some divisor m of n−1.
Case (b): Suppose that R( f ) ( S1. Then R( f ) is either a singleton set or an arc
in S1, because S1 is connected and compact. If R( f ) is a singleton set, then f is a
constant map on S1. If R( f ) is an arc, say [z1,z2] for some z1,z2 ∈ S1, then con-
sider a homeomorphism h f : R( f )→ [t1, t2], where t1, t2 are unique reals satisfying
the conditions z1 = e2πit1,z2 = e2πit2 and 0 ≤ t1 < t2 < t1 + 1 < 2. Define a map
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H f : C (R( f ))→ C ([t1, t2]) by H f (g) := h f ◦ g ◦ h−1
f for all g ∈ C (R( f )). Then H f

is a bijective, bi-continuous map such that H f ◦Jn = Jn ◦H f (i.e., (C (R( f )), Jn)

is topologically H f -conjugate to (C ([t1, t2]),Jn)). Now since f n−1 = id on R( f ), we
have H f ( f n−1) = H f (id) = id on [t1, t2]. i.e., (h f ◦ f ◦h−1

f )n−1 = id on [t1, t2]. Therefore
by Lemma 1.1.8, h f ◦ f ◦h−1

f is either the identity map or a decreasing involutory map
on [t1, t2]. This implies that f |R( f ) is either identity map or an orientation-reversing
involutory map.

Conversely, if f ∈ C (S1) satisfies either of the conditions (i) and (ii), then f n = f

on S1 implying that f is a fixed point of Jn. If f satisfies (iii), then by Lemma 1.1.10
we have f m = id on S1, and therefore f n−1 = id on S1 as m divides n−1. Therefore f

is a fixed point of Jn

Theorem 2.3.2. Let n,k≥ 2. Then f ∈C (S1) is a k-periodic point of Jn if and only if f

is of the form (1.1.8) for some m> 1 such that m | nk−1 and m - n j−1 for 1≤ j≤ k−1.

Proof. Let f ∈ C (S1) be a k-periodic point of Jn. Then f satisfies (2.1.10) on S1 and
also by result (ii) of Theorem 2.1.3, f ∈U m

E for some compact subset E of S1 and m> 1
satisfying (2.1.9). In fact, here E =R( f ). We assert that E = S1. Note that E, being the
image of connected and compact set S1 under f , is either a singleton set, an arc or S1.
If E is a singleton, then f is a constant map on S1, and therefore f n = f , a contradiction
to (2.1.10). If E is an arc, then f |E is either the identity map or an orientation-reversing
involution. In any case, we arrive at a contradiction to (2.1.10). Therefore E = S1 so
that f ∈U m

S1 . This implies by Lemma 1.1.10 that, f is of the form (1.1.8).
Conversely, if f is of the form (1.1.8) for some m > 1 such that m | nk − 1 and

m - n j−1 for 1≤ j ≤ k−1, then clearly f ∈U m
S1 with m > 1 satisfying (2.1.9) so that

by result (ii) of Theorem 2.1.3, f is a k-periodic point of Jn.

2.4 STABILITY IN Jn

In this section we study stability of fixed points in the dynamical system of iteration
Jn. We focus on the classes Cid(I) and Cid(S1), but leave the stability problem on
Cinv(I), Cinv(S1) and periodic points open in Chapter 5.

Theorem 2.4.1. All orbits of Jn are bounded.

Proof. Since K is assumed to be a compact metric space in the beginning of section
2.1, it is bounded. So there exist y ∈ K and M > 0 such that d(x,y) ≤ M

2 , implying
that d( f nk

(x), f nl
(x))≤ d( f nk

(x),y)+d(y, f nl
(x))≤M for all x ∈ K and k, l ∈ N. Thus

ρ( f nk
, f nl

)≤M for all k, l ∈ N, implying that the orbit of f under Jn is bounded.
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As defined in Milnor (2006), the orbit { f n(x)} of a discrete dynamical system
(X , f ), where X is a metric space equipped with the metric d, is said to be (Lyapunov)

stable if for every ε > 0 there exists δ > 0 such that

d( f k(x), f k(y))< ε,∀k ∈ N whenever y ∈ X satisfies d(x,y)< δ .

The following two theorems prove that most fixed points of Jn are not stable.

Theorem 2.4.2. Let n ∈ N and f ∈ Cid(I). Then f is stable for Jn if and only if f is a

constant map on I.

Proof. Let n∈N and f ∈Cid(I) be a constant map on I. For given ε > 0, choose δ = ε .
Then for every k ∈ N and g ∈ C (I) with ρ( f ,g)< δ , we have

| f (x)−gk(x)|= | f (gk−1(x))−g(gk−1(x))| ≤ ρ( f ,g)< ε,∀x ∈ I,

implying ρ( f ,gk)< ε , and hence in particular ρ( f nk
,gnk

)< ε . Therefore f is stable.

Conversely, suppose that f ∈ Cid(I) is a non-constant map on I. Then there exist
c,d ∈ I with c < d such that R( f ) = [c,d] and f |[c,d] = id. For each η > 0, let gη : I→ I

be the map defined by

gη(x) =


f (x) if x ∈ [a,c]∪ [d,b],
c+(x− c)(1−η) if x ∈ [c, c+d

2 ],

x(1+η)−dη if x ∈ [c+d
2 ,d].

Then gη ∈ C (I) for each η > 0. Let ε = d−c
8 and for any δ > 0, choose ηδ > 0 such

that ηδ < min{ δ0
d−c ,1} for some 0 < δ0 < δ .

Claim: ρ( f ,gηδ
)< δ and ρ( f ,gnk0

ηδ
)≥ ε for some k0 ∈ N.

Consider any x∈ I. If x∈ [a,c]∪ [d,b], then | f (x)−gηδ
(x)|= | f (x)− f (x)|= 0< δ0.

If x ∈ (c, c+d
2 ), then

| f (x)−gηδ
(x)|= |x− (c+(x− c)(1−ηδ ))|= (x− c)ηδ < (x− c)

δ

d− c
< δ0.

If x ∈ [c+d
2 ,d), then

| f (x)−gηδ
(x)|= |x− (x(1+ηδ )−dηδ )|= (d− x)ηδ < (d− x)

δ

d− c
< δ0.

Therefore | f (x)−gηδ
(x)|< δ0,∀x ∈ I and hence ρ( f ,gηδ

)≤ δ0 < δ .
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Now for any x ∈ [c, c+d
2 ], we have

gηδ
(x) = x(1−ηδ )+ cηδ ≥ c(1−ηδ )+ cηδ = c,

gηδ
(x)≤ c+d

2
(1−ηδ )+ cηδ =

c+d
2
− d− c

2
ηδ <

c+d
2

,

implying that gηδ
(x) ∈ [c, c+d

2 ]. Therefore gηδ
([c, c+d

2 ])⊆ [c, c+d
2 ]. By induction,

gk
ηδ
(x) = c+(x− c)(1−ηδ )

k (2.4.1)

for every x ∈ [c, c+d
2 ] and k ∈ N. Let y = c+d

2 . Since ηδ ∈ (0,1), (2.4.1) implies that
gk

ηδ
(y)→ c as k→∞. So there exists N ∈N such that |gk

ηδ
(y)−c|< ε,∀k≥ N. Choose

k0 ∈ N so large that nk0 > N. Then gnk0
ηδ

(y)− c < d−c
8 , i.e., −gnk0

ηδ
(y)>−7c+d

8 . Thus

f nk0
(y)−gnk0

ηδ
(y) = (1− (1−ηδ )

nk0
)(d− c)/2 > 0,

and therefore

| f nk0
(y)−gnk0

ηδ
(y)|= f nk0

(y)−gnk0
ηδ

(y)>
c+d

2
− 7c+d

8
=

3(d− c)
8

>
d− c

8
= ε,

implying that

ρ( f ,gnk0
ηδ

) = ρ( f nk0
,gnk0

ηδ
)≥ | f nk0

(y)−gnk0
ηδ

(y)|> ε.

This proves the claim, and therefore f is not stable, a contradiction. Hence f is a
constant map on I.

Theorem 2.4.3. Let n ∈ N and f ∈ Cid(S1), where Cid(S1) consists of all continuous

self-maps of S1 which are the identity on their range. Then f is stable for Jn if and

only if f is a constant map on S1.

Proof. The proof of “only if” part is similar to that of Theorem 2.4.2. We prove “if”
part by the method of contradiction. Let n ∈ N and suppose that f ∈ Cid(S1) is a non-
constant map on S1. Then f |R( f ) = id such that either R( f ) = S1 or R( f ) = [z1,z2] for
some z1 = eit1 , z2 = eit2 ∈ S1 with 0≤ t1 < t2 < 2π . For each η > 0, let gη : S1→ S1 be
the map defined by

gη(eit) =


f (eit) if t ∈ [0,2π)\ [t1, t2],

ei[t1+(t−t1)(1−η)] if t ∈ [t1,
t1+t2

2 ],

ei[t(1+η)−t2η ] if t ∈ [ t1+t2
2 , t2].
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Then gη ∈ C (S1) for each η > 0. Let ε = t2−t1
2
√

2π
and for any δ > 0, choose ηδ > 0 such

that ηδ < min{ 2δ0
t2−t1

,1} for some 0 < δ0 < δ .

Claim: ρ( f ,gηδ
)< δ and ρ( f ,gnk0

ηδ
)≥ ε for some k0 ∈ N.

Consider any t ∈ [0,2π). If t ∈ [0,2π)\ [t1, t2], then

| f (eit)−gηδ
(eit)|= | f (eit)− f (eit)|= 0 < δ0.

If t ∈ (t1,
t1+t2

2 ), then

| f (eit)−gηδ
(eit)| = |eit− ei[t1+(t−t1)(1−ηδ )]|

= |1− eiηδ (t1−t)|

= 2
∣∣∣∣sin

(
ηδ (t1− t)

2

)∣∣∣∣
≤ |ηδ (t1− t)|= (t− t1)ηδ <

t2− t1
2

2δ0

t2− t1
= δ0.

If t ∈ [ t1+t2
2 , t2), then by a similar argument, we have | f (eit)−gηδ

(eit)|< δ0. Therefore

| f (eit)−gηδ
(eit)|< δ0, ∀t ∈ [0,2π)

and hence ρ( f ,gηδ
)≤ δ0 < δ . Now, for any t ∈ [t1,

t1+t2
2 ], we have

t1 = t1(1−ηδ )+ t1ηδ ≤ t(1−ηδ )+ t1ηδ

= t1 +(t− t1)(1−ηδ )

≤ t1 + t2
2

(1−ηδ )+ t1ηδ

=
t1 + t2

2
− t2− t1

2
ηδ <

t1 + t2
2

,

implying that gηδ
(eit) ∈ [z1,w], where w := ei t1+t2

2 . Therefore gηδ
([z1,w]) ⊆ [z1,w].

Hence it can be shown by induction that

gk
ηδ
(eit) = ei[t1+(t−t1)(1−ηδ )

k],

for every t ∈ [t1,
t1+t2

2 ] and k ∈ N. Also

sin
( t

2

)
≥ t

π
∀t ∈ [0,π],

and therefore

|eit−1|=
√

2sin
( t

2

)
≥
√

2t
π

,∀t ∈ [0,π]. (2.4.2)
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Now for each k ∈ N, we have

| f (w)−gk
ηδ
(w)| = |ei t1+t2

2 − ei[t1+(
t1+t2

2 −t1)(1−ηδ )
k]|

= |1− e−i[ t2−t1
2 (1−(1−ηδ )

k)]|

= |ei[ t2−t1
2 (1−(1−ηδ )

k)]−1|, (2.4.3)

and

0≤ t2− t1
2

[1− (1−ηδ )
k]<

t2− t1
2

<
t2
2
≤ 2π

2
= π,

implying by (2.4.2) that

|ei[ t2−t1
2 (1−(1−ηδ )

k)]−1| ≥
√

2
π
· t2− t1

2
[1− (1−ηδ )

k]

=
t2− t1√

2π
[1− (1−ηδ )

k],

for each k ∈ N. Then (2.4.3) implies that

| f (w)−gk
ηδ
(w)| ≥ t2− t1√

2π
[1− (1−ηδ )

k], (2.4.4)

for each k ∈ N. Since 1− (1−ηδ )
k → 1 as k→ ∞, there exists N ∈ N such that (1−

ηδ )
k < 1

2 ,∀k≥N. Choose k0 sufficiently large such that nk0 >N. Then 1−(1−ηδ )
nk0 >

1
2 , and therefore from (2.4.4) we have

| f (w)−gnk0
ηδ

(w)| ≥ t2− t1√
2π
· 1

2
=

t2− t1
2
√

2π
= ε,

which implies that

ρ( f ,gnk0
ηδ

) = ρ( f nk0
,gnk0

ηδ
)≥ | f nk0

(w)−gnk0
ηδ

(w)| ≥ ε.

This proves the claim, from which it follows that f is not stable, a contradiction. Hence
f is a constant map on S1.

2.5 Jn IS NOT CHAOTIC

Although, as seen in section 2.4, all orbits of the iteration operator Jn are bounded,
most of its fixed points are unstable, thereby exhibiting a complex behaviour of Jn. In
this section we prove that the complex behaviour is not chaotic in Devaney’s sense.
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As observed in section 2.2, the set Per(Jn;C (I)) is not dense in C (I), and therefore
Jn is not chaotic on C (I) for n ≥ 2. More generally, we have the following result for
any compact metric space K.

Theorem 2.5.1. Jn is not topologically transitive on C (K) for each n ∈ N. Moreover,

Jn does not exhibit sensitive dependence on initial conditions for each n ∈ N.

Proof. Let f1, f2 be constant functions on K with f1 6= f2. Then f1, f2 ∈ C (K). Since
C (K) is Hausdorff, there exist disjoint open sets U1 and V1 in C (K) containing f1 and
f2, respectively. Choose ε > 0 such that

Bρ( f1,ε)⊆U1 and Bρ( f2,ε)⊆V1. (2.5.1)

Let U = Bρ( f1,ε) and V = Bρ( f2,ε). Since U1 and V1 are disjoint, by (2.5.1) it follows
that U and V are disjoint. Also, for each f ∈U , x ∈ K and k ∈ N, we have

d
(

f1(x), f k(x)
)

= d
(

f k
1 (x), f k(x)

)
= d

(
f1
(

f k−1
1 (x)

)
, f
(

f k−1(x)
))

= d
(

f1
(

f k−1(x)
)
, f
(

f k−1(x)
))

(since f1
(

f k−1
1 (x)

)
= f1

(
f k−1(x)

)
)

≤ ρ( f1, f )< ε,

implying that ρ( f1, f k) < ε for all f ∈U and k ∈ N. So f k ∈U , and thus in particular
J k

n f = f nk ∈U for all f ∈U and k ∈ N. Therefore J k
n f /∈V for all f ∈U and k ∈ N.

Hence Jn is not topologically transitive.
In order to prove the second result, consider any δ > 0. Let ε = δ and f ∈ C (K) be

any constant function. Then for each x ∈ K, k ∈ N and g ∈ C (K) with ρ( f ,g)< ε , we
have

d
(

f k(x),gk(x)
)

= d
(

f
(

f k−1(x)
)
,g
(
gk−1(x)

))
= d

(
f
(
gk−1(x)

)
,g
(
gk−1(x)

))
(since f

(
f k−1(x)

)
= f
(
gk−1(x)

)
)

≤ ρ( f ,g)< ε = δ ,

implying that ρ
(
J k

n f ,J k
n g
)
< δ for all k ∈ N and g ∈ C (K) with ρ( f ,g)< ε . Hence

Jn does not exhibit sensitive dependence on initial conditions.

As mentioned in the beginning of this section, Theorem 2.5.1 shows that Jn is
not chaotic on C (K), where K is any compact metric space, but Theorems 2.4.1, 2.4.2
and 2.4.3 tell that the dynamical behaviour of Jn is complex. The following example
shows that how complex an orbit of the iteration operator Jn can be.
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Example 2.5.2. Let f be the identity map on [0,1]. Let ε = 1
8 , δ = 0.1, δ0 = 0.08,

ηδ = 0.05 and g2 be the map gηδ
as defined in Theorem 2.4.2. Define the maps g1,

g3 : [0,1]→ [0,1] by g1(x) = 0.95x for all x ∈ [0,1], and

g3(x) =


2x if 0≤ x≤ 0.04,
x+0.04 if 0.04≤ x≤ 0.08,
−2x+0.28 if 0.08≤ x≤ 0.12,
1
11(12x−1) if 0.12≤ x≤ 1.

Then f ∈ Fix(J2;C ([0,1])) and g1,g2,g3 ∈C ([0,1]). An easy computation shows that
ρ(g j, f )< δ for j = 1,2,3. Also,

g23

1 (0.5) = 0.331710, g23

2 (0.5) = 0.331710 and g23

3 (0.5) = 0.118738,

implying that ρ(g23

j , f ) > ε for each j = 1,2,3. Indeed, the identity map is not stable
for J2.

In order to illustrate the complexity of iteration operator J2, we investigate the
asymptotic behaviour of the orbits of g1,g2 and g3 (see Figures 2.1, 2.2 and 2.3). We
have gk

1(x) = 0.95kx for all k ∈ N and ∀x ∈ [0,1]. Therefore the sequence of maps
(gk

1)k∈N and hence the orbit (g2k

1 )k∈N∪{0} of g1 converges uniformly to the zero map on
[0,1]. As noted in the proof of Theorem 2.4.2, gk

2(x)→ 0 as k→∞, for each x∈ [0,0.5].
Also, for each x ∈ [0.5,1), there exists kx ∈ N such that gkx

2 (x) ∈ [0,0.5]. Moreover,
g2(1) = 1. Thus the sequence of maps (gk

2)k∈N and hence the orbit (g2k

2 )k∈N∪{0} of g2

converges pointwise to the discontinuous map f2 : [0,1]→ [0,1] defined by

f2(x) =

{
0 if 0≤ x < 1,
1 if x = 1.

The point x = 0.04 is a 3-periodic point of g3 and therefore the orbit (g2k

3 )k∈N∪{0}

of g3 does not converge. In fact, by Theorem 1.1.1, g3 has periodic points of all peri-
ods, and moreover by Theorem 1.1.3, it is chaotic in the sense of Li-Yorke. However,
g3([0, 1

2 ]) ⊆ [0, 1
2 ], implying that g3 is not topologically transitive and therefore is not

chaotic in the sense of Devaney.
Thus, although all the orbits of J2 are bounded, it is possible that an orbit may not

converge or, even if it converges, the limit function may not be in C ([0,1]).
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Figure 2.1 Iterates of g1 under J2

Figure 2.2 Iterates of g2 under J2
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Figure 2.3 Third iterate of g3 under J2
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CHAPTER 3

TOPOLOGICAL CONJUGACY AND
KNEADING THEORY

“The important thing is not to stop questioning.

Curiosity has its own reason for existing.”

- Albert Einstein

In this chapter, we study the iterates of an important class of non-monotone maps,
the continuous piecewise monotone self-maps of compact intervals.

3.1 NON-INVARIANCE OF KNEADING MATRIX

Let I = [a,b] be a compact interval in R such that a < b. As defined in section 1.1.2, a
point c ∈ (a,b) is said to be a turning point of an f ∈M (I) if f is strictly monotone in
no neighbourhood of c. It follows that each c ∈ T ( f ) is either a local minimum or local
maximum point of f . More concretely, we have the following.

Proposition 3.1.1. (Lemma 2.1 of Zhang (1997)) Let f ∈M (I). Then c ∈ T ( f ) if and

only if for every ε > 0 there exist x,y ∈ I with x 6= y, |x− c| < ε and |y− c| < ε such

that f (x) = f (y).

One of the main results in kneading theory is the following.

Theorem 3.1.2. (Milnor and Thurston (1988)) Let f ∈M (I) and g ∈M (J), where

J = [c,d] is a compact interval in R with c < d. If f is h-conjugate to g, given that h is

orientation-preserving, then N( f ; t) = N(g; t) and D( f ; t) = D(g; t).

In this section, we consider if the above theorem is valid when h is orientation-
reversing. Henceforth, for the entirety of this section and the one that follows, un-
less stated otherwise, let f ∈M (I) and g ∈M (J) such that T ( f ) = {c1,c2, . . . ,cm},
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T (g) = {d1,d2, . . . ,dn}, L( f ) = {I1, I2, . . . , Im+1} and L(g) = {J1,J2, . . . ,Jn+1}, where
I j = [c j−1,c j] for 1 ≤ j ≤ m+ 1 and Ji = [di−1,di] for 1 ≤ i ≤ n+ 1 with c0 = a,
cm+1 = b, d0 = c and dn+1 = d. To prove our main result, we require the following
three technical lemmas, the first of which is an immediate consequence of the conju-
gacy, but we include its proof for completeness.

Lemma 3.1.3. If f is h-conjugate to g, then #T ( f ) = #T (g).

Proof. To prove n = m, it suffices to show that

T (g) = {h(c1),h(c2), . . . ,h(cm)}. (3.1.1)

Let 1≤ i≤m and ε > 0 be arbitrary. Choose δ > 0 such that (ci−δ ,ci+δ )⊆ h−1(U),
where U := (h(ci)− ε,h(ci)+ ε). Since ci ∈ T ( f ), by Proposition 3.1.1, there exist
x,y ∈ I with ci−δ < x < ci < y < ci +δ such that f (x) = f (y), implying that

g
(
h(x)

)
= (g◦h)(x) = (h◦ f )(x) = h

(
f (x)

)
= h

(
f (y)

)
= (h◦ f )(y) = (g◦h)(y) = g

(
h(y)

)
.

Since x,y ∈ (ci− δ ,ci + δ ) ⊆ h−1(U), clearly h(x),h(y) ∈ U . Further, either h(x) <

h(ci) < h(y) or h(y) < h(ci) < h(x) according as h preserves or reverses orientation,
respectively. Hence, by Proposition 3.1.1, we have h(ci) ∈ T (g).

For the reverse inclusion, consider an arbitrary w∈ T (g) and suppose that w 6= h(ci)

for all 1≤ i≤ m. Then h−1(w) /∈ T ( f ), implying by Proposition 3.1.1 that f is strictly
monotone on V :=

(
h−1(w)−δ ,h−1(w)+δ

)
for some δ > 0. Let f ↗V . The proof in

the case that f ↘V is similar.
Claim: g is strictly monotone on the neighbourhood W := h(V ) of d.

Since h−1 is continuous, clearly W is a neighbourhood of d in J. Consider arbitrary
u,v ∈W such that u < v. Then u = h(x) and v = h(y) for some x,y ∈V . If h preserves
orientation, then x < y, implying that f (x)< f (y). Now,

g
(
h(x)

)
= (g◦h)(x) = (h◦ f )(x) = h

(
f (x)

)
< h

(
f (y)

)
= (h◦ f )(y) = (g◦h)(y) = g

(
h(y)

)
,

and therefore g(u)< g(v). We arrive at the same conclusion if h is orientation-reversing.
So, g↗W , and the claim is proved.

Hence, by the claimed fact, there exists δ1 > 0 such that g is strictly monotone on
(w− δ1,w+ δ1), a contradiction to our assumption that w ∈ T (g). So, w = h(ci) for
some 1≤ i≤ m. Therefore the assertion (3.1.1) is proved and the result follows.
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Lemma 3.1.4. Let f be h-conjugate to g. Then the following statements are true.

(i) If h is orientation-preserving, then di = h(ci) for 1 ≤ i ≤ m and J j = h(I j) for 1 ≤
j ≤ m+1.

(ii) If h is orientation-reversing, then di = h(cm+1−i) for 1≤ i≤m and J j = h(Im+2− j)

for 1≤ j ≤ m+1.

Proof. By Lemma 3.1.3, we have n = m and T (g) = {h(c1),h(c2), . . . ,h(cm)}. If h

preserves orientation, then h(c1) < h(c2) < · · · < h(cm), implying that di = h(ci) for
1 ≤ i ≤ m. Further, by intermediate value theorem, we obtain J j = h(I j) for 1 ≤ j ≤
m+1. This proves result (i). The proof of result (ii) is similar.

Lemma 3.1.5. Let f be h-conjugate to g. Then the following statements are true.

(i) If h is orientation-reversing, then ε(J j) = ε(Im+2− j) for 1≤ j ≤ m+1.

(ii) If h is orientation-preserving, then ε(J j) = ε(I j) for 1≤ j ≤ m+1.

(iii) For 1≤ i≤ m and k ≥ 0,

ε(A((h◦ f k)(ci+))) = εk(ci+, f ) (3.1.2)

and

ε(A((h◦ f k)(ci−))) = εk(ci−, f ). (3.1.3)

Proof. By Lemma 3.1.3, we have n = m and g satisfies (3.1.1). Consider an arbitrary
j ∈ {1,2, . . . ,m+1}. In the case that ε(Im+2− j) =+1, we have to show that g↗ J j. So,
let x,y ∈ J j such that x < y. Since h : I→ J is an injective map, by result (ii) of Lemma
3.1.4, it follows that h : Im+2− j → J j is a bijective map. Let u,v ∈ Im+2− j be such that
h(u) = x and h(v) = y. Since h↘ Im+2− j, we have v < u, and therefore f (v) < f (u),
implying that (h◦ f )(u)< (h◦ f )(v). Hence

g(x) = (h◦ f )(h−1(x)) = (h◦ f )(u)

< (h◦ f )(v) = (h◦ f )(h−1(y)) = g(y),

which proves that g↗ J j. The proofs of the equality ε(J j) = ε(Im+2− j) in the case that
ε(Im+2− j) =−1, and that of result (ii) are similar.

Next, we prove result (iii). Consider the case that h reverses orientation. Let 1 ≤
i≤ m and k ≥ 0 be arbitrary.
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Claim: A((h ◦ f k)(ci+)) = J j whenever j ∈ {1,2, . . . ,m+ 1} such that Ak(ci+, f ) =

Im+2− j.
Let Ak(ci+, f ) = Im+2− j, where j ∈ {1,2, . . . ,m + 1}. Choose δ > 0 such that

A( f k(x)) = Im+2− j for ci < x < ci+δ . Then (h◦ f k)(x)∈ h(Im+2− j) for ci < x < ci+δ .
By result (ii) of Lemma 3.1.4, we have h(Im+2− j) = J j. So, A((h ◦ f k)(x)) = J j for
ci < x < ci + δ , implying that A((h ◦ f k)(ci+)) = J j. This proves the claim. By
result (i), we have ε(J j) = ε(Im+2− j). Hence, by the claimed fact, it follows that
ε(A((h◦ f k)(ci+))) = ε(Ak(ci+, f )), proving (3.1.2). The proofs of (3.1.3), and those
of (3.1.2) and (3.1.3) in the case that h is orientation-preserving are similar.

Corollary 3.1.6. Let m be an even positive integer. If f ↗ I1 and g↘ J1, then f is not

conjugate to g.

Proof. Since f ↗ I1 and g↘ J1, by definition ε(I1) = +1 and ε(J1) = −1. Suppose
that there exists a conjugacy h of f and g. If h preserves orientation, then by result (ii)
of Lemma 3.1.5, we have ε(J1) = ε(I1) = +1, which is a contradiction. If h reverses
orientation, then by result (i) of Lemma 3.1.5, ε(Jm+1) = ε(I1) = +1. This implies that
ε(J j) = +1 for every odd j ∈ {1,2, . . . ,m+1}, because m+1 is odd. So, in particular
ε(J1) = +1, again a contradiction. Hence f is not conjugate to g.

Having Lemmas 3.1.3, 3.1.4 and 3.1.5, we are ready to prove our main result.

Theorem 3.1.7. Let f be h-conjugate to g, given that h is orientation-reversing. Then

N(g; t) =−SmN( f ; t)Sm+1, (3.1.4)

where Sm := [si j]m×m such that

si j =

{
1 if i+ j = m+1,
0 otherwise.

Proof. By Lemma 3.1.3, we have n = m and g satisfies (3.1.1). Consider an arbitrary
i ∈ {1,2, . . . ,m} and l ∈ N. Then

A((gl ◦h)(cm+1−i−)) = lim
y↑cm+1−i

A((gl ◦h)(y)) = lim
y↑cm+1−i

A(gl(h(y))). (3.1.5)

Since h is an orientation-reversing homeomorphism, it follows that y ↑ cm+1−i if and
only if h(y) ↓ h(cm+1−i). Therefore

lim
y↑cm+1−i

A((gl(h(y))) = lim
h(y)↓h(cm+1−i)

A((gl(h(y))) = A(gl(h(cm+1−i)+)),
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implying by (3.1.5) that

A((gl ◦h)(cm+1−i−)) = A(gl(h(cm+1−i)+)).

Since h reverses orientation, by result (ii) of Lemma 3.1.4, we have di = h(cm+1−i), and
therefore

Al(di+,g) = A((gl ◦h)(cm+1−i−)). (3.1.6)

Since f is h-conjugate to g, we have gl ◦h = h◦ f l , implying that

A((gl ◦h)(cm+1−i−)) = A((h◦ f l)(cm+1−i−)). (3.1.7)

Using (3.1.7) in (3.1.6), we have

Al(di+,g) = A((h◦ f l)(cm+1−i−)), (3.1.8)

and hence
εl(di+,g) = ε(A((h◦ f l)(cm+1−i−))). (3.1.9)

Now

A((gl ◦h)(cm+1−i+)) = lim
y↓cm+1−i

A((gl(h(y))))

= lim
h(y)↑h(cm+1−i)

A((gl(h(y))))

= A(gl(h(cm+1−i)−)) = Al(di−,g). (3.1.10)

Also, by using (1.1.3) for g, we have Al(di−,g) = Al(di+,g). Therefore, (3.1.10) im-
plies that

A
(
(gl ◦h)(cm+1−i+) = Al(di+,g)

= A((gl ◦h)(cm+1−i−)) (by using (3.1.6)).

Thus
A((h◦ f l)(cm+1−i−)) = A((h◦ f l)(cm+1−i+)), (3.1.11)

and hence
ε(A((h◦ f l)(cm+1−i−))) = ε(A((h◦ f l)(cm+1−i+))). (3.1.12)

Moreover, by (3.1.2) we have

ε(A((h◦ f l)(cm+1−i+))) = ε(A( f l(cm+1−i+))), (3.1.13)
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and
ε(A(h(cm+1−i−))) = ε(A(cm+1−i−)) =−ε(A(cm+1−i+)), (3.1.14)

where the last equality in (3.1.14) is true, because A(cm+1−i−) and A(cm+1−i+) are two
consecutive laps of f . Thus from (3.1.9) and (3.1.8), we obtain

θk(di+,g) =

(
k−1

∏
l=0

εl(di+,g)

)
Ak(di+,g)

=

(
k−1

∏
l=0

ε(A((h◦ f l)(cm+1−i−)))

)
A((h◦ f k)(cm+1−i−))

= −ε(A(cm+1−i+))

(
k−1

∏
l=1

ε(A((h◦ f l)(cm+1−i+)))

)
A((h◦ f k)(cm+1−i+), (3.1.15)

for each k ∈ N, where the equality in (3.1.15) follows from (3.1.14), (3.1.12) and
(3.1.11). Using (3.1.13) in this equation, we have

θk(di+,g) = −ε(A(cm+1−i+))

(
k−1

∏
l=1

ε(A( f l(cm+1−i+)))

)
A(h( f k(cm+1−i+)))

= −

(
k−1

∏
l=0

ε(A( f l(cm+1−i+)))

)
A(h( f k(cm+1−i+)))

= −

(
k−1

∏
l=0

εl(cm+1−i+, f )

)
A(h( f k(cm+1−i+))) (3.1.16)

for every k ∈ N. Now, for a fixed k ∈ N, A(h( f k(cm+1−i+))) = Jm+2− j whenever
A( f k(cm+1−i+))= I j for some j∈{1,2, . . . ,m+1} and conversely. Thus, from (3.1.16),
it follows that the coefficient of J j in θk(di+,g) is equal to −ve of the coefficient of
Im+2− j in θk(cm+1−i+, f ). This holds for every k ∈N. By a similar argument, it follows
that

θk(di−,g) =−

(
k−1

∏
l=0

εl(cm+1−i−, f )

)
A(h( f k(cm+1−i−))),

for 1 ≤ i ≤ m and k ∈ N, and the coefficient of J j in θk(di−,g) is equal to −ve of the
coefficient of Im+2− j in θk(cm+1−i−, f ). Therefore

M(g; t) = [Mi j(g; t)] = −[Mm+1−i,m+2− j( f ; t)]

= −Sm[Mi j( f ; t)]Sm+1 =−SmM( f ; t
)
Sm+1. (3.1.17)
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Also, N0(g; t) =−SmN0( f ; t)Sm+1. Thus, from (3.1.17), we have

N(g; t)=N0(g; t)+M(g; t)=−SmN0( f ; t)Sm+1−Sm[Mi j( f ; t)]Sm+1 =−SmN( f ; t)Sm+1.

This proves (3.1.4) and the proof is completed.

Lemma 3.1.8. If N(g; t) =−SmN( f ; t)Sm+1 for some m ∈ N, then D(g; t) = D( f ; t).

Proof. Without loss of generality, we assume that f ↗ I1. Then

D( f ; t) = (−1)1+1(1− ε(I1)t
)−1 det

(
N(1)( f ; t)

)
= (1− t)−1 det

(
N(1)( f ; t)

)
, (3.1.18)

and

D(g; t) = (−1)(m+1)+1(1− ε(Jm+1)t
)−1 det

(
N(m+1)(g; t)

)
= (−1)m+2(1− ε(Jm+1)t

)−1 det
(
N(m+1)(g; t)

)
. (3.1.19)

Since N(g; t) =−SmN( f ; t)Sm+1, we have N(m+1)(g; t) =−SmN(1)( f ; t)Sm. Therefore

det
(
N(m+1)(g; t)

)
= (−1)m(detSm)

2 det
(
N(1)( f ; t)

)
= (−1)m det

(
N(1)( f ; t)

)
,

because detSm = (−1)b
m
2 c. Hence from (3.1.18) and (3.1.19), we obtain

D(g; t) =
(
1− ε(Jm+1)t

)−1
(1− t)D( f ; t). (3.1.20)

By result (i) of Lemma 3.1.5, we have ε(Jm+1)= ε(I1), and therefore ε(Jm+1)= 1, since
ε(I1) = 1. Then (3.1.20) implies that D(g; t) = (1− t)−1(1− t)D( f ; t) = D( f ; t).

Theorem 3.1.7 shows that the kneading matrices N( f ; t) and N(g; t) are not equal
whenever f and g are h-conjugates, given that h is orientation-reversing. However,
since the matrices Sm and Sm+1 are invertible, Theorems 3.1.2 and 3.1.7 together imply
that N( f ; t) and N(g; t) are equivalent whenever f and g are topologically conjugates.
Further, Theorem 3.1.7 and Lemma 3.1.8 together prove the following.

Corollary 3.1.9. Let f be h-conjugate to g, given that h is orientation-reversing. Then

D(g; t) = D( f ; t).

Although that of Milnor and Thurston motivated our work, we can indeed deduce
Theorem 3.1.7 from Theorem 3.1.2 as follows. Let f be h-conjugate to g, given that h
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is orientation-preserving. Define f1 : I→ I by

f1(x) = a+b− f (a+b− x), ∀x ∈ I.

Then f1 ∈M (I), f is h1-conjugate to f1, and f1 is h◦h1-conjugate to g, where h1 : I→ I

is defined by h1(x) = a+b− x,∀x ∈ I. Since h1 and h◦h1 are orientation-reversing, by
Theorem 3.1.7, we have N( f1; t) = −SmN( f ; t)Sm+1 and N(g; t) = −SmN( f1; t)Sm+1

such that m = #T ( f )(= #T ( f1) = #T (g)). Therefore

N(g; t) =−Sm(−SmN( f ; t)Sm+1)Sm+1 = S2
mN( f ; t)S2

m+1 = N( f ; t),

proving Theorem 3.1.2. On the other hand, we cannot use the above approach to deduce
Theorem 3.1.2 from Theorem 3.1.7 because an orientation-reversing homeomorphism
can never be equal to the composition of two or more orientation-preserving homeo-
morphisms.

Further, converses of Theorems 3.1.7 and Corollary 3.1.9 are not valid in general.
For example, consider the maps f , g : [0,1]→ [0,1] defined by

f (x) =

{
x if 0≤ x≤ 1

2 ,

1− x if 1
2 ≤ x≤ 1,

and g(x) = 1− 2x(1− x), ∀x ∈ [0,1]. Then f ,g ∈M ([0,1]) such that T ( f ) = {c1},
L( f )= {I1, I2}, T (g)= {d1} and L(g)= {J1,J2}, where c1 = d1 =

1
2 , I1 = J1 = [0, 1

2 ] and
I2 = J2 = [1

2 ,1]. Since f (I)⊆ I1, we have A0(c1+, f )= I2 and Ak(c1+, f )= I1 for k≥ 1.
Also, ε0(c1+, f ) = −1 and εk(c1+, f ) = 1 for k ≥ 1. Therefore θ0(c1+, f ) = I2 and
θk(c1+, f ) =−I1 for k ≥ 1, implying that

θ(c1+, f ; t) = I2− I1t− I1t2−·· ·= (−t− t2−·· ·)I1 + I2.

Further, A0(c1−, f ) = I1, and since Ak(c1−, f ) = Ak(c1+, f ), we get that A1(c1−, f ) =

I1 for k ≥ 1. Moreover, εk(c1−, f ) = 1 for k ≥ 0. Therefore θ0(c1−, f ) = I1 for k ≥ 0,
implying that

θ(c1−, f ; t) = I1 + I1t + I1t2 + · · ·= (1+ t + t2 + · · ·)I1.

Thus

ν(c1, f ; t) = (I2− I1)−2I1t−2I1t2−·· ·= (−1−2t−2t2−·· ·)I1 + I2,
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and hence

N( f ; t) =
[
−1−2t−2t2−·· · , 1

]
1×2 .

Since g(J)⊆ J2, by a similar argument as above, we obtain

ν(d1,g; t) = (J2− J1)+2J2t +2J2t2 + · · ·=−J1 +(1+2t +2t2 + · · ·)J2.

Therefore

N(g; t) =
[
−1, 1+2t +2t2 + · · ·

]
1×2 .

Clearly, N(g; t) = −S1N( f ; t)S2 and D(g; t) = D( f ; t). However, [0, 1
2 ] and {1

2 ,1} are
precisely the set of fixed points of f and g, respectively. Therefore f and g are not topo-
logically conjugates, because g has only two fixed points whereas f has uncountably
many.

As defined in Holmgren (1994), we say that f is topologically h-semiconjugate to
g if there exists a continuous onto map h : I→ J such that h ◦ f = g ◦ h. As proved in
Remark 3.16 of Block et al. (2012), the map f ∈M ([0,1]) defined by

f (x) =


8
3x if 0≤ x≤ 3

8 ,

2− 8
3x if 3

8 ≤ x≤ 3
4 ,

2x− 3
2 if 3

4 ≤ x≤ 1

with T ( f ) = {3
8 ,

3
4} is h-semiconjugate to the tent map T defined in Example 1.1.4,

where a semiconjugacy h is given in Figure 4 of Block et al. (2012). However, f and
T do not have the same number of turning points. Further, h(3

8) 6=
1
2 although 3

8 is a
turning point of f , and h( 9

32) =
1
2 although 9

32 is not a turning point of f . Therefore
h does not map a turning point of f to the turning point of T and maps a point that is
not a turning point of f to the turning point of T. Hence the results of Lemmas 3.1.3,
3.1.4 and 3.1.5, and Theorems 3.1.7 and 3.1.9 are not true in general whenever f is
h-semiconjugate to g.

Example 3.1.10. Let f : [0,1]→ [0,1] be defined by

f (x) = T2(x), ∀x ∈ [0,1],

where T is the Tent map defined as in Example 1.1.4. Then f ∈M ([0,1]) such that
T ( f ) = {c1,c2,c3} and L( f ) = {I1, I2, I3, I4}, where c1 =

1
4 , c2 =

1
2 , c3 =

3
4 , I1 =

[
0, 1

4

]
,
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I2 =
[1

4 ,
1
2

]
, I3 =

[1
2 ,

3
4

]
and I4 =

[3
4 ,1
]
.

We have f (c1) = f (c3) = 1, f (c2) = 0, ε(I1) = ε(I3) =+1 and ε(I2) = ε(I4) =−1.
Since f (0) = f (1) = 0,

f k(ci) =

{
0 if i = 1,3 and k ≥ 2,
0 if i = 2 and k ≥ 1.

Now, for each i = 1,3, we have A0(ci+, f ) = Ii+1, A1(ci+, f ) = I4, and Ak(ci+, f ) =

I1 for k ≥ 2. Therefore ε0(ci+, f ) = ε1(ci+, f ) = −1, and εk(ci+, f ) = 1 for k ≥ 2.
Hence θ0(ci+, f ) = Ii+1, θ1(ci+, f ) =−I4, and θk(ci+, f ) = I1 for k ≥ 2. This implies
that

θ(ci+, f ; t) = Ii+1− I4t + I1t2 + I1t3 + · · ·= (t2 + t3 + · · ·)I1 + Ii+1− tI4

for i = 1,3. Also, A0(ci−, f ) = Ii. Further, since Ak(ci−, f ) = Ak(ci+, f ), we have
A1(ci−, f ) = I4 and Ak(ci−, f ) = I1 for k ≥ 2. Therefore ε0(ci−, f ) = 1, ε1(ci−, f ) =

−1, and εk(ci−, f ) = 1 for k≥ 2. Hence θ0(ci−, f ) = Ii, θ1(ci−, f ) = I4, and θk(ci−, f )

=−I1 for k ≥ 2. This implies that

θ(ci−, f ; t) = Ii + I4t− I1t2− I1t3−·· ·= (−t2− t3−·· ·)I1 + Ii + tI4,

and therefore

ν(ci, f ; t) = (Ii+1− Ii)−2I4t +2I1t2 +2I1t3 · · ·= (2t2 +2t3 + · · ·)I1− Ii + Ii+1−2tI4

for i = 1,3. By a similar argument as above, we obtain

ν(c2, f ; t) = (2t +2t2 + · · ·)I1− Ii + Ii+1.

Thus

N( f ; t) =

−1+2t2 +2t3 + · · · 1 0 −2t

2t +2t2 + · · · −1 1 0
2t2 +2t3 + · · · 0 −1 1−2t


3×4

,

and hence D( f ; t) = (−1)1+1(1− t)−1(1−4t) = 1−3t−3t2−·· · .

Let g ∈M ([0,1]) be defined as in Example 1.1.5. Then f and g are topologically
conjugates, where a conjugacy h is given by

h(x) =
2
π

arcsin(
√

1− x), ∀x ∈ [0,1].
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Also, as seen in Example 1.1.5, N(g; t) is given by (1.1.4) and D(g; t) = 1− 3t −
3t2 − ·· · . Clearly D( f ; t) = D(g; t), and an easy computation shows that N(g; t) =
−S3N( f ; t)S4.

3.2 SOME CONSEQUENCES

In this section, we discuss two immediate consequences of Theorem 3.1.7.

3.2.1 Reduction of Computational Complexity

The kneading matrix of a map f in M (I) captures crucial dynamical information of all
the iterates of f . Moreover, by (1.1.2), it follows that f satisfies the ascending relation
(1.2.3). Therefore the ‘complexity’ of the behaviour of the iterates of f increases with
the increase in the order of iteration. So, in general, the process of finding the kneading
matrix of a piecewise monotone map involves tedious computations. However, Theo-
rem 3.1.7 is very effective in reducing this computational complexity to a reasonable
extent. More precisely, if

N↗ = {N( f ; t) : #T ( f ) is odd and f ↗ I1}

and

N↘ = {N(g; t) : #T (g) is odd and g ↘ J1},

then from Theorem 3.1.7 and the following corollary it follows that any one of the two
sets N↗ and N↘ completely determines the other.

Corollary 3.2.1. If f satisfy that #T ( f ) is odd and f ↗ I1, then there exists g such that

g↘ J1 and g is topologically conjugate to f .

Proof. Let #T ( f ) = m such that m is a positive odd integer. Let g := h◦ f ◦h−1, where
h : I→ J is the orientation-reversing homeomorphism defined by

h(x) =
c−d
b−a

x+
bd−ac
b−a

, ∀x ∈ I.

Then g ∈M (J) and g is h-conjugate to f . Since f ↗ I1, we have ε(I1) = +1, implying
by result (i) of Lemma 3.1.5 that ε(Jm+1) = +1. Then ε(J j) = +1 for every even
j ∈ {1,2, . . . ,m+ 1}, because m+ 1 is even. This implies that ε(J1) = −1, and hence
g↘ J1.
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3.2.2 Classification up to Topological Conjugacy

As seen in section 3.1, Theorems 3.1.2 and 3.1.7 together imply that any f ∈M (I) and
g∈M (J) such that #T ( f ) = #T (g) =m are not topologically conjugates whenever nei-
ther of the relations N( f ; t) = N(g; t) and N( f ; t) =−SmN(g; t)Sm+1 are satisfied. This
provides a combinatorial approach to prove the nonexistence of topological conjugacy
and thereby helps to classify the dynamical systems up to topological conjugacy. As an
illustration, we have the following.

Example 3.2.2. Consider the maps f ,g : [0,1]→ [0,1] defined by

f (x) =


2.8x+0.3 if 0≤ x≤ 0.25,
−2.8x+1.7 if 0.25≤ x≤ 0.5,

7x−3.2 if 0.5≤ x≤ 0.6,
−1.125x+1.675 if 0.6≤ x≤ 1,

and

g(x) =


−6.5x+0.65 if 0≤ x≤ 0.1,
1.5x−0.15 if 0.1≤ x≤ 0.6,
−2.5x+2.25 if 0.6≤ x≤ 0.9,

4x−3.6 if 0.9≤ x≤ 1.

Then f ,g ∈M ([0,1]) (see Figure 3.1) such that

T ( f ) = {c1 = 0.25, c2 = 0.5, c3 = 0.6}, T (g) = {d1 = 0.1, d2 = 0.6, d3 = 0.9},

L( f ) = {I1 = [0,0.25], I2 = [0.25,0.5], I3 = [0.5,0.6], I4 = [0.6,1]}

and
L(g) = {J1 = [0,0.1], J2 = [0.1,0.6], J3 = [0.6,0.9], J4 = [0.9,1]}.

Claim: N(g; t) 6= N( f ; t) and N(g; t) 6=−S3N( f ; t)S4.
For an indirect proof, assume that N(g; t) =N( f ; t) or N(g; t) =−S3N( f ; t)S4. Then

an easy computation shows that

N2
24( f ; t) = N2

24(g; t) or N2
24( f ; t) =−N2

21(g; t). (3.2.1)

Since f 2(c2) = f 2(0.5) = 0.86 ∈ I4 \ T ( f ), we have A2(c2+, f ) = A2(c2−, f ) = I4,
implying that N2

24( f ; t) 6= 0. Similarly, since g2(d2) = g2(0.6) = 0.375 ∈ J2 \T (g), we
get that A2(d2+,g) =A2(d2−,g) = J2. This implies N2

22(g; t) 6= 0, and hence N2
21(g; t) =

N2
24(g; t) = 0, because N2

2 j(g; t) 6= 0 for one and only one j ∈ {1,2,3,4}. Thus, N2
24( f ; t)
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Figure 3.1 Maps f and g

6= N2
24(g; t) and N2

24( f ; t) 6= −N2
21(g; t), a contradiction to (3.2.1). Hence, the claim is

proved, which implies by Theorems 3.1.2 and 3.1.7 that f and g are not conjugates.

The above results are for general f ∈M (I). If we consider f to be in a particular
subclass of M (I), we may obtain more details on the dynamics of f , as seen in the
following sections.

3.3 THE COMBINATORICS OF TENT-LIKE MAPS

For each f ∈ C (I), let I f := { f l| l ≥ 0}, the set of iterates of f . As seen in section
1.1.2, the kneading matrix N( f ; t) of an f ∈M (I) contains important combinatorial
information concerning all the elements of I f and hence that of I f k for each k ∈ N,
because I f k ⊆I f . Motivated by this observation, we expect that N( f k; t) and N( f ; t)
are related for every k ∈ N. However, the problem of finding a matrix equation that
relates these two matrices is highly non-trivial because the order of these matrices is
different, and the problem of computing the kneading matrix of a map is very hard. In
this section, we derive matrix equations that relate the kneading matrices of the map
and its iterates for the family of tent-like maps, i.e., the set

M0(I) =
{

f ∈M (I) : f
(
T ( f )∪{a,b}

)
⊆ {a,b}

}
,

of all chaotic maps in M (I) each of which is onto on its every lap.
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Proposition 3.3.1. (i) If f ,g ∈M0(I), then f ◦ g ∈M0(I). (ii) If f ∈M0(I), then

f k ∈M0(I) for each k ∈ N.

Proof. Given f ,g ∈M0(I), clearly f ◦g ∈M (I) and ( f ◦g)({a,b})⊆ {a,b}. Also, if
c∈ T ( f ◦g), then by (1.1.1) we have c∈ T (g) or g(c)∈ T ( f ), implying that ( f ◦g)(c)∈
{a,b}. Therefore f ◦ g ∈M0(I), proving result (i). Result (ii) follows from (i) by
induction.

For each k ∈ N and n1,n2, . . . ,nk ∈ N∪{0}, let

S(n1,n2, . . . ,nk) :=
k

∑
j=1

S j(n1,n2, . . . ,nk),

where

S j(n1,n2, . . . ,nk) := ∑
1≤i1<i2<···<i j≤k

ni1ni2 · · ·ni j for 1≤ j ≤ k.

Proposition 3.3.2. (i) If f1, f2, . . . , fk ∈M0(I), then

#T ( f1 ◦ f2 ◦ · · · ◦ fk) = S(#T ( f1),#T ( f2), . . . ,#T ( fk)). (3.3.1)

(ii) If f ∈M0(I) such that #T ( f ) = m, then #T ( f k) = (m+1)k−1 for each k ∈ N.

(iii) #T ( f k)≡ #T ( f )(mod 2) for each f ∈M0(I) and k ∈ N.

Proof. We prove result (i) by induction on k. For each f1 ∈M0(I), we have S(#T ( f1))=

S1(#T ( f1)) = #T ( f1), and therefore (3.3.1) is true for k = 1.
To prove it for k = 2, consider arbitrary f1, f2 ∈M0(I) such that #T ( f1) = m1 and

#T ( f2) = m2. If m1 = m2 = 0, then f1 ◦ f2 is strictly monotone on I, implying that

#T ( f1 ◦ f2) = 0 = S(0,0) = S(m1,m2).

If m1 = 0 and m2 6= 0, then by using (1.1.1) for f1 and f2, we have T ( f1 ◦ f2) = T ( f2),
and hence #T ( f1 ◦ f2) = m2 = S(0,m2) = S(m1,m2). If m1 6= 0 and m2 = 0, then again
by using (1.1.1) for f1 and f2, we obtain

T ( f1 ◦ f2) = f−1
2 (T ( f1))∩ (a,b).

Also, since f2 is strictly monotone on I, we get that

#{c : c ∈ f−1
2 (T ( f1))∩ (a,b)}= #T ( f1).
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Therefore #T ( f1 ◦ f2) = #T ( f1) = m1 = S(m1,0) = S(m1,m2).

Now, let both m1 and m2 be non-zero. Let T ( f1) = {c1,c2, . . . ,cm1}, T ( f2) =

{d1,d2, . . . ,dm2}, L( f1) = {I1, I2, . . . , Im1+1} and L( f2) = {J1,J2, . . . ,Jm2+1}, where a =

c0 < c1 < · · ·< cm1 < cm1+1 = b, I j = [c j−1,c j] for 1≤ j≤m1+1, a = d0 < d1 < d2 <

· · ·< dm2 < dm2+1 = b and Ji = [di−1,di] for 1≤ i≤ m2 +1. Since f2(T ( f2))⊆ {a,b},
by using (1.1.1) for f1 and f2, we have

T ( f1 ◦ f2) = T ( f2)
⊔( m2⊔

j=0

( f−1
2 (T ( f1))∩ (d j,d j+1))

)
, (3.3.2)

where t indicates that the union is disjoint. Also, since f2 is strictly monotone on
(d j,d j+1), there exists unique pi ∈ (d j,d j+1) such that f2(pi) = ci for each 0≤ j ≤ m2

and 1 ≤ i ≤ m1,. That is, f−1
2 (ci)∩ (d j,d j+1) is a singleton set for all 1 ≤ i ≤ m1 and

0≤ j ≤ m2. Therefore, from (3.3.2) we have

#T ( f1 ◦ f2) = #T ( f2)+
m2

∑
j=0

#{d : d ∈ f−1
2 (T ( f1))∩ (d j,d j+1)}

= m2 +
m2

∑
j=0

m1

∑
i=1

#{d : d ∈ f−1
2 (ci)∩ (d j,d j+1)}

= m2 +
m2

∑
j=0

m1

∑
i=1

1 = m2 +m1(m2 +1) = S(m1,m2).

proving (3.3.1) for k = 2. Next, suppose that (3.3.1) true for certain k ≥ 2 and consider
arbitrary f1, f2, . . . , fk+1 in M0(I) such that #T ( f j) = m j for 1 ≤ j ≤ k+ 1. Let g :=
f1 ◦ f2 ◦ · · · ◦ fk. Then, by using (3.3.1) for the case k = 2, we have

#T (g◦ fk+1) = S(#T (g),mk+1) = S1(#T (g),mk+1)+S2(#T (g),mk+1)

= #T (g)+mk+1 +#T (g) ·mk+1. (3.3.3)

By induction hypothesis, #T (g) = S(m1,m2, . . . ,mk). Therefore, by (3.3.3) we have

#T (g◦ fk+1) = S(m1,m2, . . . ,mk)+mk+1 +S(m1,m2, . . . ,mk)mk+1. (3.3.4)

Now,

S1(m1,m2, . . . ,mk+1) = S1(m1,m2, . . . ,mk)+mk+1, (3.3.5)

Sk+1(m1,m2, . . . ,mk+1) = Sk(m1,m2, . . . ,mk)mk+1, (3.3.6)

S j(m1,m2, . . . ,mk+1) = S j(m1,m2, . . . ,mk)+S j−1(m1,m2, . . . ,mk)mk+1 (3.3.7)
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for 2≤ j ≤ k. Therefore by adding the equations (3.3.5), (3.3.6) and (3.3.7), on simpli-
fication, we obtain

S(m1,m2, . . . ,mk+1) = S(m1,m2, . . . ,mk)+mk+1 +S(m1,m2, . . . ,mk)mk+1

= #T (g◦ fk+1) (by using (3.3.4))

= #T ( f1 ◦ f2 ◦ · · · ◦ fk+1).

Thus, (3.3.1) is true for k+1, and therefore by induction it is true for every k ∈N. This
proves result (i).

In order to prove result (ii), consider an arbitrary f ∈M0(I) such that #T ( f ) = m

and let k ∈ N. Set m j = m for 1≤ j ≤ k. Then

S j(m1,m2, . . . ,mk) = ∑
1≤i1<i2<···<i j≤k

m j =

(
k
j

)
m j

for 1≤ j ≤ k, implying by result (i) that

#T ( f k) = S(m1,m2, . . . ,mk) =
k

∑
j=1

(
k
j

)
m j = (m+1)k−1.

Result (iii) follows from (ii) by observing that (m+1)k−1≡ m(mod 2).

We now introduce some particular subsets of M0(I). Let

M↗(I) := { f ∈M0(I) : T ( f ) = /0, f (a) = a and f (b) = b} ,

M↘(I) := { f ∈M0(I) : T ( f ) = /0, f (a) = b and f (b) = a} ,

M∧(I) := { f ∈M0(I) : f is unimodal and f (a) = f (b) = a} ,

M∨(I) := { f ∈M0(I) : f is unimodal and f (a) = f (b) = b} ,

MN(I) := { f ∈M0(I) : T ( f ) 6= /0, f (a) = a and f (b) = b} ,

M N(I) := { f ∈M0(I) : T ( f ) 6= /0, f (a) = b and f (b) = a} ,

MM(I) := { f ∈M0(I) : T ( f ) 6= /0 and f (a) = f (b) = a} ,

MW(I) := { f ∈M0(I) : T ( f ) 6= /0 and f (a) = f (b) = b} .

Then M0(I) is indeed the disjoint union of M↗(I), M↘(I), MN(I), M N(I), MM(I)

and MW(I).

Proposition 3.3.3. (i) If f ,g ∈MN(I), then f ◦ g ∈MN(I). This is also true when

MN(I) is replaced by M↗(I), MM(I) and MW (I).
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(ii) If f k ∈M0(I) for some k ∈ N, then f ∈M0(I). This is also true when M0(I) is

replaced by MM(I) and MW (I).

Proof. Consider arbitrary f ,g∈MN(I). Then by result (i) of Proposition 3.3.1, we have
f ◦g∈M0(I). Also, f (a) = g(a) = a and f (b) = g(b) = b, implying that ( f ◦g)(a) = a

and ( f ◦g)(b) = b. Therefore f ◦g ∈MN(I), proving result (i) for MN(I). The proofs
for M↗(I),MM(I), and MW (I) are similar.

In order to prove result (ii), consider an arbitrary f ∈ C (I) such that f k ∈M0(I) for
some k ≥ 2. Then, clearly f ∈M (I). We discuss in the two cases.

Case (a): Suppose that #T ( f k) = 0. Then f is strictly monotone on I. Also, since f k is
onto on I, so is f . Therefore f ({a,b})⊆ {a,b}, and hence f ∈M0(I).

Case (b): Suppose that #T ( f k) 6= 0. Since f k−1 is onto, there exists u ∈ I such that
f k−1(u) = a. If u = a, then f (a) = f ( f k−1(a)) = f k(a) ∈ {a,b}. If u = b, then f (a) =

f ( f k−1(b)) = f k(b) ∈ {a,b}. If u ∈ (a,b), then u ∈ T ( f k−1) ⊆ T ( f k), implying that
f (a) = f ( f k−1(u)) = f k(u) ∈ {a,b}. Thus f (a) ∈ {a,b}. By a similar argument, it
follows that f (b) ∈ {a,b}.

Next, consider an arbitrary w∈ T ( f ). Since f k−1 is onto, there exists v∈ I such that
f k−1(v) = w, implying that v ∈ f−(k−1)(w) ⊆ f−(k−1)(T ( f )) ⊆ T ( f k). Then f (w) =

f ( f k−1(v)) = f k(v) ∈ {a,b}. Therefore f ∈M0(I).

For each m ∈ N∪{0}, let MM,m(I) := { f ∈MM(I) : #T ( f ) = m} and MW,m(I),
MN,m(I), M N,m(I) be defined similarly.

Lemma 3.3.4. The kneading matrix N( f ; t) is independent of the choice of f in MM,m(I)

for each m ∈ N. This is also true if MM,m(I) is replaced by MW,m(I), MN,m(I) and

M N,m(I).

Proof. Let m ∈ N and f ∈MM,m(I). Then

f (ci) =

{
b if i ∈ {1,3, . . . ,m},
a if i ∈ {2,4, . . . ,m−1},

and

ε(I j) =

{
+1 for j ∈ {1,3,5, . . . ,m},
−1 for j ∈ {2,4,6, . . . ,m+1}.

(3.3.8)

Also, since f (a) = f (b) = a, we have

f k(ci) =

{
a if i ∈ {1,3, . . . ,m} and k ≥ 2,
a if i ∈ {2,4, . . . ,m−1} and k ≥ 1.

(3.3.9)
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Let i ∈ {2,4,6, . . . ,m− 1} be arbitrary. Since A0(ci+, f ) = Ii+1 and Ak(ci+, f ) =

I1 for k≥ 1, by (3.3.8) we have εk(ci+, f ) = 1 for k≥ 0, implying that θ0(ci+, f ) = Ii+1

and θk(ci+, f ) = I1 for k ≥ 1. Therefore

θ(ci+, f ; t) = Ii+1 + I1t + I1t2 + I1t3 + · · ·= (t + t2 + t3 + · · ·)I1 + Ii+1.

Also, A0(ci−, f ) = Ii, and since Ak(ci−, f ) = Ak(ci+, f ), we have Ak(ci−, f ) = I1 for
k≥ 1. Therefore, by (3.3.8) we get ε0(ci−, f ) =−1 and εk(ci−, f ) = 1 for k≥ 1, which
implies that θ0(ci−, f ) = Ii and θk(ci−, f ) =−I1 for k ≥ 1. Hence

θ(ci−, f ; t) = Ii− I1t− I1t2− I1t3−·· ·= (−t− t2− t3−·· ·)I1 + Ii,

and thus

ν(ci, f ; t) = θ(ci+, f ; t)−θ(ci−, f ; t)

= (Ii+1 + I1t + I1t2 + · · ·)− (Ii− I1t− I1t2−·· ·)

= (Ii+1− Ii)+2I1t +2I1t2 + · · ·

= (2t +2t2 + · · ·)I1− Ii + Ii+1.

By a similar argument as above, we obtain ν(ci, f ; t) = (2t2 +2t3 + · · ·)I1− Ii + Ii+1−
2tIm+1 for each i ∈ {1,3,5, . . . ,m}. Therefore the kneading matrix of f is

N( f ; t) =



−1+2t2 +2t3 + · · · −2t

2t +2t2 + · · · 0
2t2 +2t3 + · · · −2t

2t +2t2 + · · · 0
... Mm

...
2t +2t2 + · · · 0
2t2 +2t3 + · · · 1−2t


m×(m+1)

, (3.3.10)

where Mm is the m× (m−1) matrix obtained from N0( f ; t) by deleting its first and last
columns. Since f ∈MM,m(I) was arbitrary, (3.3.10) is true for every f ∈MM,m(I).
Therefore N( f ; t) is independent of the choice of f in MM,m(I).

Next, to prove the result for MW,m(I), consider an arbitrary f ∈MW,m(I). Let
g := h ◦ f ◦ h−1, where h : I → I is the orientation-reversing homeomorphism defined
by h(x) = a+b− x. Then g ∈M (I) and g is topologically h-conjugate to f , implying
by Lemma 3.1.3 that #T (g) = m. Also, since f (a) = f (b) = a, h(a) = h−1(a) = b and
h(b) = h−1(b) = a, we have g({a,b}) ⊆ {a,b} such that g(a) = g(b) = a. Further, as
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seen in the proof of Lemma 3.1.3, we have T (g) = h(T ( f )), and therefore g(T (g)) ⊆
{a,b}. Hence g ∈MM,m(I), and thus by the result for MM,m(I), it follows that N(g; t)
is equal to the matrix on the right hand side of (3.3.10). Since f is h-conjugate to g, by
Theorem 3.1.7, we have N(g; t) = −SmN( f ; t)Sm+1. Therefore the kneading matrix of
f is

N( f ; t) = −SmN(g; t)Sm+1

=



−1+2t −2t2−2t3−·· ·
0 −2t−2t2−·· ·
2t −2t2−2t3−·· ·
0 −2t−2t2−·· ·
... Mm

...
0 −2t−2t2−·· ·
2t 1−2t2−2t3−·· ·


m×(m+1)

. (3.3.11)

Since f ∈MW,m(I) was arbitrary, (3.3.11) is true for every f ∈MW,m(I). The proofs
for MN,m(I) and M N,m(I) are similar to that for MM,m(I). In fact, it follows that

N( f ; t) =



−1 −2t−2t2−2t3−·· ·
2t +2t2 + · · · 0

0 −2t−2t2−2t3−·· ·
2t +2t2 + · · · 0

... Mm
...

0 −2t−2t2−2t3−·· ·
2t +2t2 + · · · 1


m×(m+1)

(3.3.12)

whenever f ∈MN,m(I) and

N( f ; t) =



−1+2t +2t3 + · · · −2t2−2t4−·· ·
2t2 +2t4 + · · · −2t−2t3−·· ·
2t +2t3 + · · · −2t2−2t4−·· ·
2t2 +2t4 + · · · −2t−2t3−·· ·

... Mm
...

2t +2t3 + · · · −2t2−2t4−·· ·
2t2 +2t4 + · · · 1−2t−2t3−·· ·


m×(m+1)

(3.3.13)

whenever f ∈M N,m(I).
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Parity f ∈ g ∈ f ◦g ∈ g◦ f ∈ N( f ◦g; t) N(g◦ f ; t) Conclusion
MM,m1(I) MN,m2(I) MM,m(I) MM,m(I) NM,m(t) NM,m(t) (∗)

m1 odd MM,m1(I) M N,m2(I) MM,m(I) MW,m(I) NM,m(t) NW,m(t) (∗∗)
m2 even MW,m1(I) MN,m2(I) MW,m(I) MW,m(I) NW,m(t) NW,m(t) (∗)

MW,m1(I) M N,m2(I) MW,m(I) MM,m(I) NW,m(t) NM,m(t) (∗∗)
MN,m1(I) MN,m2(I) MN,m(I) MN,m(I) NN,m(t) NN,m(t) (∗)

m1 even MN,m1(I) M N,m2(I) M N,m(I) M N,m(I) N N,m(t) N N,m(t) (∗)
m2 even M N,m1(I) M N,m2(I) MN,m(I) MN,m(I) NN,m(t) NN,m(t) (∗)

Table 3.1 Comparison of N( f ◦g; t) and N(g◦ f ; t)

An easy computation shows that N( f ; t) =−SmN(g; t)Sm+1 whenever f ∈MM,m(I)

and g ∈MW,m(I). However, this relation is not true when MM,m(I) and MW,m(I) are
replaced by MN,m(I) and M N,m(I), respectively. In fact, it follows from Corollary 3.1.6
that f is not conjugate to g whenever f ∈MN,m(I) and g ∈M N,m(I).

For each m ∈ N, let NM,m(t) := N( f ; t) for some f ∈MM,m(I). The matrices
NW,m(t), NN,m(t) and N N,m(t) are defined similarly. Although any two arbitrary f ,g ∈
M0(I) do not commute in general, the kneading matrices of composite maps f ◦g and
g◦ f are related as described in the following.

Theorem 3.3.5. If f ,g∈M0(I), then N( f ◦g; t) =N(g◦ f ; t) or N( f ◦g; t) =−SmN(g◦
f ; t)Sm+1 for some m ∈ N.

Proof. Consider arbitrary f ,g ∈M0(I). Without loss of generality, we assume that
either T ( f ) 6= /0 or T (g) 6= /0. Let #T ( f ) = m1 and #T (g) = m2 such that m1,m2 ≥ 0,
but not both zero. Since S(m1,m2) = S(m2,m1), by result (i) of Proposition 3.3.2, we
have #T ( f ◦g) = #T (g◦ f ). Let this common number be m.

Suppose that both m1 and m2 are odd. Then it suffices to consider the following
cases.
Case (a): If f ∈MM,m1(I) and g ∈MM,m2(I), then f ◦g, g◦ f ∈MM,m(I), and hence
by Lemma 3.3.4, N( f ◦g; t) = NM,m(t) = N(g◦ f ; t).
Case (b): If f ∈MM,m1(I) and g ∈MW,m2(I), then f ◦ g ∈MM,m(I) and g ◦ f ∈
MW,m(I). Therefore, by Lemma 3.3.4, N( f ◦g; t) = NM,m(t) and N(g◦ f ; t) = NW,m(t).
This implies N( f ◦g; t) = NM,m(t) =−SmNW,m(t)Sm+1 =−SmN(g◦ f ; t)Sm+1.
Case (c): If f ∈MW,m1(I) and g ∈MW,m2(I), then f ◦ g, g ◦ f ∈MW,m(I). So, again
by Lemma 3.3.4, N( f ◦g; t) = NW,m(t) = N(g◦ f ; t).

Remaining instances for the parities of m1 and m2, and the corresponding cases can
be discussed similarly. A summary of the premises and the corresponding conclusions
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is given in Table 3.1, where (∗) and (∗∗) denote the equations N( f ◦g; t) = N(g◦ f ; t)
and N( f ◦g; t) =−SmN(g◦ f ; t)Sm+1, respectively.

Corollary 3.3.6. D( f ◦g; t) = D(g◦ f ; t) for every f ,g ∈M0(I).

Proof. Since f ,g ∈M0(I), by Theorems 3.3.5, we have N( f ◦ g; t) = N(g ◦ f ; t) or
N( f ◦ g; t) = −SmN(g ◦ f ; t)Sm+1 for some m ∈ N. In the first case, the equality D( f ◦
g; t) = D(g ◦ f ; t) follows from the definition of kneading determinant, while in the
second, it follows from Lemma 3.1.8.

3.4 RELATION BETWEEN N( f k; t) AND N( f ; t)

Although we aim to describe a relation between N( f k; t) and N( f ; t), in view of the
relation N( f ; t) = N0( f ; t)+M( f ; t), where N0( f ; t) is independent of choice of f , it
suffices to describe a relation between M( f k; t) and M( f ; t). So in what follows, we
prove results for M( f ; t) instead of N( f ; t).

For k, l ≥ 1, let ek denote the matrix [0,0, . . . ,0,1]1×k, Ik the identity matrix of order
k, Ok×l the zero matrix of order k× l, and Rk×l the k× l matrix [ri j] defined by

ri j =

{
1 if i = j = 1 or i = k and j = l,

0 otherwise.

For each positive even integer k, let Ik denote the transpose of [I2 I2 · · ·I2]2×k. As
defined in Preston (1988), an f ∈M (I) is said to be uniformly piecewise linear if it
is linear on each of its laps with slope ±α for some positive real α . For k ≥ 1, let
fN,k, fM,k, fW,k and f N,k be the uniformly piecewise linear maps in MN,k(I), MM,k(I),
MW,k(I) and M N,k(I), respectively. The following theorem describe a relation between
kneading matrices of elements of M0(I) with that of bimodal or trimodal uniformly
piecewise linear maps, whose dynamical properties are relatively easy to investigate.

Theorem 3.4.1. (i) If f ∈MM,m(I), then

M( f ; t) =

[
Im−1 O(m−1)×1

O1×2 1

]
M( fM,3; t)R4×(m+1). (3.4.1)

(ii) If f ∈MW,m(I), then

M( f ; t) =

[
Im−1 O(m−1)×1

O1×2 1

]
M( fW,3; t)R4×(m+1). (3.4.2)
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(iii) If f ∈MN,m(I), then M( f ; t) = ImM( fN,2; t)R3×(m+1).

(iv) If f ∈M N,m(I), then M( f ; t) = ImM( f N,2; t)R3×(m+1).

Proof. Consider an arbitrary f ∈MM,m(I). Since fM,3 ∈MM,3(I), by (3.3.10) we have

M( fM,3; t) =

2t2 +2t3 + · · · 0 0 −2t

2t +2t2 + · · · 0 0 0
2t2 +2t3 + · · · 0 0 −2t


3×4

.

Let

A =

[
2t2 +2t3 + · · ·
2t +2t2 + · · ·

]
2×1

and B =

[
−2t

0

]
2×1

.

Then

M( fM,3; t) =

[
A O2×1 O2×1 B

2t2 +2t3 + · · · 0 0 −2t

]
3×4

.

Therefore, by (3.3.10) we have

M( f ; t) =



A B

A B
... Om×(m−1)

...
A B

2t2 +2t3 + · · · −2t


m×(m+1)

=



I2

I2
... O(m−1)×1

I2

O1×2 1


m×3

[
A O2×1 O2×1 B

2t2 +2t3 + · · · 0 0 −2t

]
R4×(m+1)

=

[
Im−1 O(m−1)×1

O1×2 1

]
M( fM,3; t)R4×(m+1),

proving (3.4.1).

Next, consider an arbitrary f ∈MW,m(I). Let g and h be the maps defined as in
Lemma 3.3.4. Then g ∈MM,m(I) and g is h-conjugate to f . Therefore, by result (i), we
have

M(g; t) =

[
Im−1 O(m−1)×1

O1×2 1

]
M( fM,3; t)R4×(m+1). (3.4.3)

Also, since h is orientation-reversing, by Theorem 3.1.7 we get
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M(g; t) =−SmM( f ; t)Sm+1. (3.4.4)

Further, as fM,3 is h-conjugate to fW,3, again by Theorem 3.1.7 we have

M( fM,3; t) =−S3M( fW,3; t)S4. (3.4.5)

Now, by using (3.4.4) and (3.4.5) in (3.4.3), we have

SmM( f ; t)Sm+1 =

[
Im−1 O(m−1)×1

O1×2 1

]
S3M( fW,3; t)S4R4×(m+1),

implying that

M( f ; t) =

[
1 O1×2

O(m−1)×1 Im−1

]
M( fW,3; t)R4×(m+1). (3.4.6)

But [
1 O1×2

O(m−1)×1 Im−1

]
M( fW,3; t) =

[
Im−1 O(m−1)×1

O1×2 1

]
M( fW,3; t).

Therefore (3.4.2) follows from (3.4.6). This proves results (ii). The proofs of results
(iii) and (iv) are similar to that of (i).

We now derive a relation between M( f k; t) and M( f ; t) for maps in M0(I).

Theorem 3.4.2. (i) If f ∈MN,m(I), then

M( f k; t) = [Il Ol×(m−2)]M( f ; t)R(m+1)×(l+1), ∀k ≥ 1,

where l = (m+1)k−1. This is also true when MN,m(I) is replaced by M N,m(I)

and k is a positive odd integer.

(ii) If f ∈MM,m(I), then

M( f k; t) =

[
Il−1 O(l−1)×(m−2)

O1×2 em−2

]
M( f ; t)R(m+1)×(l+1), ∀k ≥ 1,

where l = (m+1)k−2. This is also true when MM,m(I) is replaced by MW,m(I).

Proof. Let f ∈MN,m(I) and k ∈N be arbitrary. Then, by result (i) of Proposition 3.3.3,
we have f k ∈MN,m(I). Also, from result (ii) of Proposition 3.3.2, we get #T ( f k) =

57



(m+1)k−1. Therefore f ∈MN,(m+1)k−1(I). Hence, by Lemma 3.3.4, we have

M( f ; t) =


A B
... Ol×(l−1)

...
A B


l×(l+1)

,

where l = (m+1)k−1,

A =

[
0

2t +2t2 + · · ·

]
2×1

and B =

[
−2t−2t2−2t3−·· ·

0

]
2×1

.

Thus

M( f ; t) =


I2
... Ol×(m−2)

I2


l×m


A B
... Om×(m−1)

...
A B


m×(m+1)

R(m+1)×(l+1)

=[Il Ol×(m−2)]M( f ; t)R(m+1)×(l+1),

proving the first part of result (i). The proofs of the second part and that of result (ii) are
similar. In fact, by a similar argument as in Theorem 3.4.1, we can indeed prove result
(ii) for MW,m(I) from that for MM,m(I).

3.5 RELATION BETWEEN D( f k; t) AND D( f ; t)

In this section, we derive a relation between D( f k; t) and D( f ; t) for maps in M0(I).

Lemma 3.5.1. Let m ∈ N. Then

det(N(1)
M,m(t)) = det(N(1)

W,m(t)) = 1− (m+1)t (3.5.1)

and

det(N(m+1)
N,m (t)) = det(N(m+1)

N,m (t)) =
1− (m+1)t

1− t
.

Proof. First, by induction on m, we prove the following result (R) on determinants.
(R): If Am is a square matrix of order m≥ 2 defined by
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Am =



1 0 0 · · · 0 0 a1m

−1 1 0 · · · 0 0 a2m

0 −1 1 · · · 0 0 a3m
...

...
... . . . ...

...
...

0 0 0 · · · −1 1 am−1m

0 0 0 · · · 0 −1 1+amm


m×m

,

then detAm = 1+a1m +a2m + · · ·+amm.

We have

A2 =

[
1 a12

−1 1+a22

]
,

so that detA2 = 1+a12 +a22, and therefore the result is true for m = 2. Now, let m > 2
and suppose that the result is true for m−1. Then, by expanding the determinant about
first row, we have

detAm = detBm−1 +(−1)m+1a1m detUm−1, (3.5.2)

where

Bm−1 =



1 0 · · · 0 0 a2m

−1 1 · · · 0 0 a3m
...

... . . . ...
...

...
0 0 · · · −1 1 am−1m

0 0 · · · 0 −1 1+amm


(m−1)×(m−1)

and

Um−1 =



−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1


(m−1)×(m−1)

.

Note that detUm−1 = (−1)m−1. Also, by induction hypothesis, we have detBm−1 =

1+a2m +a3m + · · ·+amm. Therefore, by (3.5.2), we get
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detAm = 1+a2m +a3m + · · ·+amm +(−1)m+1a1m(−1)m−1

= 1+a1m +a2m + · · ·+amm,

proving the result for m. Hence, by induction, the result (R) is valid for each m≥ 2.
We now prove the identity

det(N(1)
M,m(t)) = 1− (m+1)t, m≥ 1. (3.5.3)

By (3.3.10), we have N(1)
M,1(t) = [1−2t], implying that det(N(1)

M,1(t)) = 1−2t. If m > 1,
then by (3.3.10) and result (R), we obtain

det(N(1)
M,m(t)) = 1+

(
(−2t +0)+ · · ·((m−1)/2 times) · · ·(−2t +0)

)
−2t

= 1−2t
(

m−1
2

)
−2t = 1− (m+1)t.

Hence, (3.5.3) is proved. The proofs of other identities are similar.

Theorem 3.5.2. Let m ∈ N. If f ∈MM,m(I)∪MW,m(I)∪MN,m(I), then

D( f k; t) =
1− (m+1)kt
1− (m+1)t

D( f ; t), ∀k ∈ N. (3.5.4)

This is also true when MN,m(I) is replaced by M N,m(I) and k is any positive odd integer.

Proof. Let f ∈MM,m(I) and let k ∈ N be arbitrary. By definition, we have

D( f ; t) = (1− t)−1 det(N(1)( f ; t)).

Since N( f ; t) = NM ,m(t), by (3.5.1) we get that det(N(1)( f ; t)) = 1− (m+1)t. There-
fore

D( f ; t) = (1− t)−1(1− (m+1)t). (3.5.5)

By Propositions 3.3.3 and 3.3.2, we have f k ∈MM,(m+1)k−1(I), implying that N( f k; t)=
NM,(m+1)k−1(t) and ε(I′1) = 1, where I′1 is the first lap of f k. Therefore by (3.5.1) we get
det(N(1)( f k; t)) = 1− (m+1)kt, and thus

D( f k; t) = (1− ε(I′1)t)
−1 det(N(1)( f k; t)) = (1− t)−1(1− (m+1)kt). (3.5.6)

Then (3.5.4) follows from (3.5.5) and (3.5.6), proving the result for MM,m(I). The
proofs for MW,m(I), MN,m(I) and M N,m(I) are similar.
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3.6 MODIFIED KNEADING MATRIX

As seen in section 1.1.2, the kneading matrix of an f ∈M (I) is defined using only
the kneading increments corresponding to the turning points of f . In what follows, we
use the ‘kneading data’ associated with endpoints a and b of I, with suitable one-sided
limits, to define a new kneading matrix for f .

Let ν(c0, f ; t) := θ(c0+, f ; t) and ν(cm+1, f ; t) :=−θ(cm+1−, f ; t) Then the modi-

fied kneading matrix of f , denoted by N′( f ; t), is defined by

N′( f ; t) =

 N′01( f ; t) N′02( f ; t) · · · N′0,m+1( f ; t)
N( f ; t)

N′m+1,1( f ; t) N′m+1,2( f ; t) · · · N′m+1,m+1( f ; t)


(m+2)×(m+1)

,

where the entries N′i j( f ; t) for i = 0,m+1 and j = 1,2, . . .m+1 are obtained by setting

ν(c0, f ; t) = N′01( f ; t)I1 +N′02( f ; t)I2 + · · ·+N′0,m+1( f ; t)Im+1

and

ν(cm+1, f ; t) = N′m+1,1( f ; t)I1 +N′m+1,2( f ; t)I2 + · · ·+N′m+1,m+1( f ; t)Im+1.

For 1≤ i≤m+2, let N′(i)( f ; t) denote the (m+1)×(m+1) matrix obtained by deleting
the ith row of N′( f ; t).

Theorem 3.6.1. (i) If f ∈MM,m(I)∪MW,m(I), then

D( f ; t) = detN′(i)( f ; t), i = 1,m+2. (3.6.1)

(ii) If f ∈MN,m(I)∪M N,m(I), then

D( f ; t) = (−1)i detN′(i)( f ; t), i = 1,m+2.

Proof. Let f ∈MM,m(I). Then f k(c0)= f k(cm+1)= a for each k∈N. Since Ak(c0+, f )

= I1 and εk(ci+, f ) = 1, we have θk(c0+, f ) = I1 for all k ≥ 0. Therefore

ν(c0, f ; t) = θ(c0+, f ; t) = I1 + I1t + I1t2 + I1t3 + · · ·

= (1+ t + t2 + t3 + · · ·)I1.

Also, since A0(cm+1−, f ) = Im+1 and Ak(cm+1−, f ) = I1, we get ε0(cm+1−, f ) = −1
and εk(cm+1−, f ) = 1 for all k ≥ 1, respectively. Therefore θ0(cm+1−, f ) = Im+1 and
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θk(cm+1−, f ) =−I1 for k ≥ 1. Hence

ν(cm+1, f ; t) =−θ(cm+1−, f ; t) = −Im+1 + I1t + I1t2 + I1t3 + · · ·

= (t + t2 + t3 + · · ·)I1− Im+1.

Further, since f ∈MM,m(I), we have N( f ; t) = NM,m(t). Therefore

N′( f ; t) =

1+ t + t2 + · · · 0 0 · · · 0 0
NM,m( f ; t)

t + t2 + t3 + · · · 0 0 · · · 0 −1


(m+2)×(m+1)

,

and thus

detN′(m+2)( f ; t) = (1+ t + t2 + · · ·)detN(1)( f ; t)

= (1− t)−1 detN(1)( f ; t)

= (−1)1+1(1− ε(I1)t)−1 detN(1)( f ; t) = D( f ; t).

Moreover, sine m is odd, we have

detN(1)( f ; t) =−(1− t)(1+ t)−1 detN(m+1)( f ; t).

Therefore

detN′(1)( f ; t) = (−1)(m+1)+1(t + t2 + · · ·)detN(1)( f ; t)

+(−1)(m+1)+(m+1)(−1)detN(m+1)( f ; t)

= (t + t2 + · · ·)(1− t)(1+ t)−1 detN(m+1)( f ; t)−detN(m+1)( f ; t)

= −(1+ t)−1 detN(m+1)( f ; t)

= (−1)(m+1)+1(1− ε(Im+1)t)−1 detN(m+1)( f ; t)

= D( f ; t).

This proves (3.6.1) for f ∈MM,m(I). The proofs of (3.6.1) for f ∈MW,m(I) and that
of result (ii) are similar.
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CHAPTER 4

AN ITERATIVE EQUATION WITH
MULTIPLICATION

“A problem well put is half solved.”

- John Dewey

In this chapter, we give results on existence, uniqueness, stability and construction
of solutions of (1.2.4) on R+ and R−.

4.1 SOME TECHNICAL LEMMAS

Let Cb(R+) consist of all bounded continuous self-maps of R+, and let Cb(R) be de-
fined as in section 1.1.3. Consider g on R+. We can use the exponential map ψ(x) = ex

to conjugate g to a map on the whole R, i.e., let f (x) := logg(ex), a map from R into R
(one-to-one if g is one-to-one), and reduces equation (1.2.4) to the polynomial-like one

α1 f (x)+α2 f 2(x)+ · · ·+αn f n(x) = F(x), x ∈ R, (4.1.1)

where F(x) := logG(ex).

Proposition 4.1.1. The map g is a solution (resp. unique solution) of (1.2.4) in X ⊆
Cb(R+) if and only if f (x) := ψ−1(g(ψ(x))) is a solution (resp. unique solution) of

(4.1.1) in Y ⊆ Cb(R), where ψ(x) = ex and Y = {ψ−1 ◦g◦ψ : g ∈X }.

Proof. Let g be a solution of (1.2.4) in X . Since ψ is a homeomorphism of R onto
R+, clearly Y ⊆ Cb(R) and f ∈ Y . Also, for each x ∈ R, we have

n

∑
k=1

αk f k(x) =
n

∑
k=1

αk loggk(ex) = log

(
n

∏
k=1

(gk(ex))αk

)
= logG(ex) = F(x),
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implying that f is a solution of (4.1.1) on R. The converse follows similarly. Now,
in order to prove the uniqueness, assume that (1.2.4) has a unique solution in X and
suppose that f1, f2 are any two solutions of (4.1.1) in Y . Then, by “if” part of what
we have proved above, there exist solutions g1 and g2 of (1.2.4) in X such that f1 =

ψ−1 ◦g1 ◦ψ and f2 = ψ−1 ◦g2 ◦ψ . By our assumption, we have g1 = g2 and therefore
f1 = f2. The proof of converse is similar.

Considering g on R−, we have the following.

Proposition 4.1.2. Let αk ∈ Z for 1≤ k ≤ n such that ∑
n
k=1 αk is odd. Then the map g

is a solution (resp. unique solution) of (1.2.4) in X ⊆ Cb(R−) if and only if h(x) :=
ψ−1(g(ψ(x))) is a solution (resp. unique solution) of the equation

(h(x))α1(h2(x))α2 · · ·(hn(x))αn = H(x) (4.1.2)

in Y ⊆Cb(R+), where ψ(x) =−x, H(x) = ψ−1(G(ψ(x))) and Y = {ψ−1 ◦g◦ψ : g∈
X }.

Proof. Let g be a solution of (1.2.4) in X . Since ψ is a homeomorphism of R+ onto
R−, clearly Y ⊆ Cb(R+) and h ∈ Y . Also, for each x ∈ R+ and k ∈ {1,2, . . . ,n}, we
have H(x) =−G(−x) and hk(x) =−gk(−x). Therefore,

n

∏
k=1

(hk(x))αk =
n

∏
k=1

(−gk(−x))αk

= (−1)∑
n
k=1 αk

n

∏
k=1

(gk(−x))αk

= −
n

∏
k=1

(gk(−x))αk

= −G(−x) = H(x)

since ∑
n
k=1 αk is odd, implying that h is a solution of (4.1.2) on R+. The converse

follows similarly. Further, the proof of uniqueness is similar to that of Proposition
4.1.1.

By Proposition 4.1.1, it suffices to prove existence for (4.1.1) on the whole R in
order to prove the existence of solution for (1.2.4) on R+. Further, in order to extend
the solutions from R+ to its closure, we require the continuity of g and G at 0, i.e., we
require the necessary conditions limx→−∞ F(x) = logG(0), limx→−∞ f k(x) = loggk(0)
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for all 1≤ k ≤ n and

n

∑
k=1

αk loggk(0) = logG(0).

These conditions can indeed be satisfied if ∑
n
k=1 αk = 1, G|R(G) = id, 0 /∈R(G), and

g≡ G on [0,+∞).

Let I = [a,b] and J = [c,d] be compact intervals in R and R+ respectively with non-
empty interiors. Let C (R, I) (resp. C (I, I)) be the set of all continuous maps of R (resp.
I) into I. Similarly we define C (R+,J) and C (J,J). For any f in C (R, I) or C (I, I), let

‖ f‖I := sup{| f (x)| : x ∈ I},

and for any g in C (R+,J) or C (J,J), let

‖g‖J := sup{|g(x)| : x ∈ J}.

For any map f , let R( f ) denote the range of f . For M,δ ≥ 0, let

FI(δ ,M) := { f ∈ Cb(R) : R( f ) = I, f (a) = a, f (b) = b and

δ (x− y)≤ f (x)− f (y)≤M(x− y),∀x,y ∈ I with x≥ y},

GJ(δ ,M) := {g ∈ Cb(R+) : R(g) = J,g(c) = c,g(d) = d and(
x
y

)δ

≤ g(x)
g(y)

≤
(

x
y

)M

,∀x,y ∈ J with x≥ y

}
.

Then it can be observed that FI(δ ,M)⊆FI(δ1,M1) and GJ(δ ,M)⊆ GJ(δ1,M1) when-
ever δ ≥ δ1 ≥ 0 and M1 ≥M ≥ 0.

Proposition 4.1.3. Let M,δ ≥ 0. Then g ∈ GJ(δ ,M) if and only if ψ−1 ◦ g ◦ψ ∈
FI(δ ,M), where ψ(x) = ex and I = log(J) := {logx : x ∈ J}.

Proof. Let g ∈ GJ(δ ,M) and I := log(J) = [a,b]. Then a = logc and b = logd. Clearly,
f := ψ−1 ◦g◦ψ ∈ Cb(R). Also, we have f (a) = logg(ea) = logg(c) = logc = a, and
similarly f (b) = b. So, I ⊆R( f ). The reverse inclusion follows by definitions of f and
I, because R(g) = J. Therefore R( f ) = I.

Next, let x,y ∈ I with x≥ y. Then there exist u,v ∈ J with u≥ v such that x = logu

and y = logv. So, from the assumption on g, we have(u
v

)δ

≤ g(u)
g(v)

≤
(u

v

)M
,
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implying that

δ log
(

ex

ey

)
≤ log

(
g(ex)

g(ey)

)
≤M log

(
ex

ey

)
.

i.e., δ (x−y)≤ f (x)− f (y)≤M(x−y). Therefore f ∈FI(δ ,M). The converse follows
similarly.

Proposition 4.1.4. If M < 1 or δ > 1, then GJ(δ ,M) = /0. If M = 1 or δ = 1, then

GJ(δ ,M) := {g ∈ Cb(R+) : g|J = id}.

Proof. Let g ∈ GJ(δ ,M). Then by Proposition 4.1.3, f := ψ−1 ◦ g ◦ψ ∈ FI(δ ,M),
where ψ(x) = ex and I = log(J). So, for any x,y ∈ I such that x≥ y, we have

δ (x− y)≤ f (x)− f (y)≤M(x− y). (4.1.3)

If M < 1, then by setting y = a in (4.1.3), we get that f (x)< x,∀x ∈ I with x > a. This
is a contradiction to the fact that f (b) = b, because b > a. So, FI(δ ,M) = /0 and hence
GJ(δ ,M) = /0, whenever M < 1. A similar argument holds when δ > 1.

If M = 1, then from (4.1.3), we have

f (x)− f (y)≤ (x− y), ∀x,y ∈ I with x≥ y. (4.1.4)

Now for x = b, (4.1.4) implies that f (y) ≥ y,∀y ∈ I with y < b. Moreover, setting
y = a in (4.1.4), we have f (x) ≤ x,∀x ∈ I with x > a. Thus f (x) = x,∀x ∈ I, and
therefore f |I = id. This implies that g|J = id. The reverse inclusion is trivial. So,
GJ(δ ,M) := {g ∈ Cb(R+) : g|J = id}. A similar argument holds when δ = 1.

Proposition 4.1.5. The set FI(δ ,M) is a complete metric space under the metric in-

duced by ‖ · ‖.

Proof. It can be easily seen that FI(δ ,M) is a closed subset of Cb(R). So, since Cb(R)
is complete with respect to the metric induced by ‖ · ‖, it follows that FI(δ ,M) is also
complete.

In view of Proposition 4.1.4, we cannot seek solutions of (1.2.4) without imposing
conditions on M and δ . So, henceforth we assume that 0 < δ ≤ 1 ≤ M. We need
the following six technical lemmas, the last three of which look similar to some of the
results given in Murugan and Subrahmanyam (2009). However, we have to rewrite
their proofs carefully because of the following difference: It is assumed in Murugan
and Subrahmanyam (2009) that f ∈ C (I, I) and f is a homeomorphism of I onto itself,
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implying that f−1 is well defined on the whole domain I of f , but this thesis deals with
f ∈ C (R, I) satisfying that f |I is a homeomorphism of I onto itself. So, f is not a
homeomorphism on R, that is, f−1 is not defined on the whole R. In this case, we can
consider only the inverse of f |I . For a specific instance, the conclusion L f ∈FI(K0,K1),
made in Lemma 3.2 of Murugan and Subrahmanyam (2009), is not true here, simply
because we have defined L f only on I. However, even if we define it on the whole of R,
it does not belong to FI(K0,K1), because in that case R(L f ) 6= I. So, in view of this,
we include their proofs here in order to avoid ambiguities.

Lemma 4.1.6. (Zhang (1990)) Let f ,g ∈ C (I, I) satisfy | f (x)− f (y)| ≤ M|x− y| and

|g(x)−g(y)| ≤M|x− y| for all x,y ∈ I, where M ≥ 1. Then

‖ f k−gk‖I ≤

(
k−1

∑
j=0

M j

)
‖ f −g‖I for k = 1,2, . . . . (4.1.5)

Lemma 4.1.7. (Zhang and Baker (2000)) Let f ∈C (I, I) satisfy f (a) = a, f (b) = b and

δ (x− y) ≤ f (x)− f (y) ≤ M(x− y) for all x,y ∈ I with x ≥ y, where 0 < δ ≤ 1 ≤ M.

Then f is a homeomorphism of I onto itself and

1
M
(x− y)≤ f−1(x)− f−1(y)≤ 1

δ
(x− y), (4.1.6)

for each x,y ∈ I with x≥ y.

Lemma 4.1.8. (Zhang and Baker (2000)) Let f ,g : I→ I be homeomorphisms such that

δ (x−y)≤ f (x)− f (y)≤M(x−y) and δ (x−y)≤ g(x)−g(y)≤M(x−y) for all x,y∈ I

with x≥ y, where 0 < δ ≤ 1≤M. Then

δ‖ f−1−g−1‖I ≤ ‖ f −g‖I ≤M‖ f−1−g−1‖I.

For αk ≥ 0 (1≤ k ≤ n) with ∑
n
k=1 αk = 1 and f ∈FI(δ ,M), define L f : I→ I by

L f (x) = α1x+α2 f (x)+ · · ·+αn f n−1(x), ∀x ∈ I.

Lemma 4.1.9. Let f ∈FI(δ ,M), where 0 < δ ≤ 1 ≤M. Then L f (a) = a, L f (b) = b,

R(L f ) = I and

K0(x− y)≤ L f (x)−L f (y)≤ K1(x− y), (4.1.7)

for each x,y ∈ I with x≥ y, where K0 := ∑
n
k=1 αkδ k−1 and K1 := ∑

n
k=1 αkMk−1.
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Proof. It can be easily seen that L f (a) = a, L f (b) = b and R(L f ) = I. Also, for any
x,y ∈ I with x≥ y, we have

L f (x)−L f (y) =
n

∑
k=1

αk f k−1(x)−
n

∑
k=1

αk f k−1(y)

=
n

∑
k=1

αk( f k−1(x)− f k−1(y))

≤

(
n

∑
k=1

αkMk−1

)
(x− y) = K1(x− y)

and

L f (x)−L f (y) =
n

∑
k=1

αk f k−1(x)−
n

∑
k=1

αk f k−1(y)

=
n

∑
k=1

αk( f k−1(x)− f k−1(y))

≥

(
n

∑
k=1

αkδ
k−1

)
(x− y) = K0(x− y).

This completes the proof.

Lemma 4.1.10. Let 0 < δ ≤ 1≤M and f ∈FI(δ ,M). Then

1
K1

(x− y)≤ L−1
f (x)−L−1

f (y)≤ 1
K0

(x− y), (4.1.8)

for each x,y ∈ I with x≥ y, where K0,K1 are as in Lemma 4.1.9.

Proof. Follows from the proof of Lemma 4.1.7, by noting from Lemma 4.1.9 that
L f (a) = a, L f (b) = b, R(L f ) = I and L f satisfies (4.1.7) with 0 < K0 ≤ 1≤ K1.

Lemma 4.1.11. Let 0 < δ ≤ 1≤M and f1, f2 ∈FI(δ ,M). Then

‖L f1−L f2‖I ≤ K2‖ f1− f2‖I and ‖L−1
f1 −L−1

f2 ‖I ≤
K2

K0
‖ f1− f2‖I,

where K0,K1 are as in Lemma 4.1.9 and K2 := ∑
n
k=2 αk(∑

k−2
j=0 M j).

Proof. Let f1, f2 ∈FI(δ ,M). Then for each x ∈ I, we have

|L f1(x)−L f2(x)| =

∣∣∣∣∣ n

∑
k=1

αk f k−1
1 (x)−

n

∑
k=1

αk f k−1
2 (x)

∣∣∣∣∣
≤

n

∑
k=2

αk| f k−1
1 (x)− f k−1

2 (x)|
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≤
n

∑
k=2

αk‖ f k−1
1 − f k−1

2 ‖I

≤

(
n

∑
k=2

αk

(
k−2

∑
j=0

M j

))
‖ f1− f2‖I (using Lemma 4.1.6)

= K2‖ f1− f2‖I,

implying that

‖L f1−L f2‖I ≤ K2‖ f1− f2‖I. (4.1.9)

Moreover, since L f1,L f2 : I→ I are homeomorphisms satisfying (4.1.7) with 0 < K0 ≤
1≤ K1, by Lemma 4.1.8 we have

‖L−1
f1 −L−1

f2 ‖I ≤
1

K0
‖L f1−L f2‖I. (4.1.10)

Therefore (4.1.9) and (4.1.10) together implies that

‖L−1
f1 −L−1

f2 ‖I ≤
K2

K0
‖ f1− f2‖I. (4.1.11)

This completes the proof.

4.2 EXISTENCE, UNIQUENESS AND STABILITY

In this section we give results on existence, uniqueness and stability of solutions of
(1.2.4).

Theorem 4.2.1. Let 0 < α1 < 1, αk ≥ 0 for 2 ≤ k ≤ n such that ∑
n
k=1 αk = 1 and

G∈ GJ(K1δ ,K0M), where J = [c,d], c < d and 0 < δ ≤ 1≤M. Let K0,K1 and K2 be as

defined in Lemmas 4.1.9 and 4.1.11, respectively. If K2 < K0, then (1.2.4) has a unique

solution in GJ(δ ,M).

Proof. Let G ∈ GJ(K1δ ,K0M), a := logc and b := logd. Then we obtain the interval
I = [a,b] with a < b, which satisfies I = logJ. By Proposition 4.1.3, we have F :=
ψ−1 ◦G◦ψ ∈FI(K1δ ,K0M), where ψ(x) = ex.

Define T : FI(δ ,M)→ Cb(R) by

T f (x) = L−1
f (F(x)), x ∈ R.

By definitions of F and L f , we have T f (a) = a and T f (b) = b. This implies that
I ⊆R(T f ). Also, since L−1

f : I→ I, we have R(L−1
f ) ⊆ I, and therefore R(T f ) ⊆ I.
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So, R(T f ) = I. Further, for any x,y ∈ I with x≥ y, as F ∈FI(K1δ ,K0M), we have

T f (x)−T f (y) = L−1
f (F(x))−L−1

f (F(y))

≤ 1
K0

(F(x)−F(y)) (by using Lemma 4.1.10)

≤ 1
K0

K0M(x− y)

= M(x− y)

and

T f (x)−T f (y) = L−1
f (F(x))−L−1

f (F(y))

≥ 1
K1

(F(x)−F(y)) (again by using Lemma 4.1.10)

≥ 1
K1

K1δ (x− y)

= δ (x− y).

Hence T f ∈FI(δ ,M), which proves that T is a self-map on FI(δ ,M).

We now prove that T is a contraction. For f1, f2 ∈FI(δ ,M) and x ∈ R, we have

|T f1(x)−T f2(x)| = |L−1
f1 (F(x))−L−1

f2 (F(x))|

≤ ‖L−1
f1 −L−1

f2 ‖I (since F(x) ∈ I)

≤ K2

K0
‖ f1− f2‖I (by using Lemma 4.1.11)

≤ K2

K0
‖ f1− f2‖, (4.2.1)

implying that ‖T f1− T f2‖ ≤ K2
K0
‖ f1− f2‖. Since 0 < K2 < K0, it follows that T is

a contraction. By Proposition 4.1.5, FI(δ ,M) is complete, and hence by Banach’s
contraction principle, T has a unique fixed point in FI(δ ,M). That is, there exists
unique f ∈FI(δ ,M) such that L−1

f (F(x)) = f (x),∀x ∈ R, which proves that f is the
unique solution of (4.1.1) in FI(δ ,M). This implies by Propositions 4.1.1 and 4.1.3 that
g := ψ ◦ f ◦ψ−1 is the unique solution of (1.2.4) in GJ(δ ,M). The proof is completed.

Although Lemmas 4.1.9, 4.1.10 and 4.1.11 are true for α1 ∈ [0,1], in Theorem 4.2.1
we have assumed that α1 ∈ (0,1) for the following reason: If α1 = 1, then g = G is the
unique solution of (1.2.4) so that the problem is trivial. On the other hand, if α1 = 0,
then we have K0 = ∑

n
k=2 αkδ k−1. So, the condition (in Theorem 4.2.1) K2 < K0 is not
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satisfied, because

K2 =
n

∑
k=2

αk

(
k−2

∑
j=0

M j

)
>

n

∑
k=2

αk ≥
n

∑
k=2

αkδ
k−1 = K0.

Thus this theorem is not true for α1 = 0. In particular, one cannot solve the iterative
root problem gn = G on R+ using this theorem.

Corollary 4.2.2. In addition to the assumptions of Theorem 4.2.1, suppose that G|J =
id. If K2 < K0, then G is the unique solution of (1.2.4) in GJ(δ ,M).

Proof. Follows by Theorem 4.2.1, because G is a solution of (1.2.4) in GJ(δ ,M).

Given G ∈ Y ⊆ Cb(R+), as in Agarwal et al. (2003), we say that a solution g of
(1.2.4) in X ⊆Cb(R+) depends continuously on G if for every ε > 0 there exists δ > 0
such that ‖g−g1‖< ε whenever G1 ∈ Y with ‖G−G1‖< δ , and g1 ∈X satisfy that

n

∏
k=1

(gk
1(x))

αk = G1(x), ∀x ∈ R+. (4.2.2)

Under the assumptions of Theorem 4.2.1, we will show that the solution obtained de-
pends continuously on the function G. More precisely, we have the following.

Theorem 4.2.3. In addition to assumptions of Theorem 4.2.1, suppose that G1 ∈GJ(K1δ ,

K0M) and g1 ∈ GJ(δ ,M) satisfies (4.2.2). Then

‖g−g1‖ ≤
d

c(K0−K2)
‖G−G1‖. (4.2.3)

Proof. Given G,G1,g and g1 as above, let F(x) = logG(ex),F1(x) = logG1(ex), f (x) =

logg(ex) and f1(x) = logg1(ex),∀x ∈ R. Since G,G1 ∈ GJ(K1δ ,K0M), by Proposition
4.1.3, we have F,F1 ∈FI(K1δ ,K0M), where I = [a,b] such that a = logc and b = logd.
Using a similar argument, we see that f , f1 ∈ FI(δ ,M). Moreover, f and f1 satisfy
equation (4.1.1) and the equation

n

∑
k=1

αk f k(x) = F1(x), x ∈ R,

respectively, implying that L−1
f (F(x)) = f (x) and L−1

f1
(F1(x)) = f1(x),∀x ∈ R. There-

fore, for each x ∈ R,

| f (x)− f1(x)| = |L−1
f (F(x))−L−1

f1 (F1(x))|
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≤ |L−1
f (F(x))−L−1

f1 (F(x))|+ |L−1
f1 (F(x))−L−1

f1 (F1(x))|

≤ ‖L−1
f −L−1

f1 ‖I +
1

K0
|F(x)−F1(x)| (using (4.1.8))

≤ K2

K0
‖ f − f1‖I +

1
K0
‖F−F1‖I (using (4.1.11))

≤ K2

K0
‖ f − f1‖+

1
K0
‖F−F1‖,

and hence

‖ f − f1‖ ≤
K2

K0
‖ f − f1‖+

1
K0
‖F−F1‖.

Since K2 < K0, the above inequality shows

‖ f − f1‖ ≤
1

K0−K2
‖F−F1‖. (4.2.4)

Since the map x 7→ ex is continuously differentiable on I with bounded derivative, it is
a Lipschitz map on I. In fact, |ex− ey| < eb|x− y| for all x,y ∈ I. So, for each x ∈ R+,
we have

|g(x)−g1(x)| = |e f (logx)− e f1(logx)|

< eb| f (logx)− f1(logx)| ≤ d‖ f − f1‖,

implying that

‖g−g1‖ ≤ d‖ f − f1‖

≤ d
K0−K2

‖F−F1‖ (using (4.2.4)). (4.2.5)

Since the map x 7→ logx is continuously differentiable on J with bounded derivative, it
is a Lipschitz map on J. In fact, | logx− logy|< 1

c |x− y| for all x,y ∈ J. Therefore, for
each x ∈ R, we have

|F(x)−F1(x)| = | logG(ex)− logG1(ex)|

≤ 1
c
|G(ex)−G1(ex)| ≤ 1

c
‖G−G1‖,

implying that

‖F−F1‖ ≤
1
c
‖G−G1‖. (4.2.6)
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Then (4.2.3) follows from (4.2.5) using (4.2.6).

The assumptions that 0 < α1 < 1 and ∑
n
k=1 αk = 1 made in Theorem 4.2.1 are not

strong. In fact, if α1 > 1 or ∑
n
k=1 αk > 1, then we can divide all the exponents αks in

(1.2.4) by ∑
n
k=1 αk to get the normalized equation, but the assumptions on G have to

be changed suitably. Moreover, by using the above observation, Theorem 4.2.1 and
Proposition 4.1.2, we can indeed extend the solutions of (1.2.4) on R+ to R− whenever
αk ∈ Z for 1≤ k ≤ n such that ∑

n
k=1 αk is odd.

4.3 CONSTRUCTION OF SOLUTIONS

The method used in section 4.2 is an application of Banach’s fixed point theorem, which
gives an recursive algorithm to approach the unique solution. Unlike section 4.2, in this
section we can use another method, sewing piece by piece, to find more continuous
solutions of (1.2.4) on the whole R+.

Consider (1.2.4) with real αks, 1≤ k≤ n, and without loss of generality assume that
αn 6= 0. Then (1.2.4) and its modified equation (4.1.1) can be represented equivalently
as

gn(x) =
n−1

∏
k=1

(gk(x))λkG(x) (4.3.1)

and (1.1.10), respectively, where λk is real for 1≤ k≤ n−1. Let λ := ∑
n−1
k=1 λk. We will

discuss for λ ≥ 0 and λ < 0 separately.

First, we consider the case that λ ≥ 0. In 2007, Xu and Zhang (2007a) proved the
existence of continuous solution of (1.1.10) on the compact interval I with the assump-
tion that λ ∈ [0,1). In what follows, solving (1.1.10) with λ ∈ [0,1) on the whole R,
we obtain solutions of (4.3.1) on R+.

Let I denote the interval |a,b| defined as in section 1.1.3, and let J = |c,d| be an
interval in R+, where c and d may be 0 and ∞ respectively. For ζ ∈ Ī, the closure of I,
η ∈ J̄ and λ ∈ [0,1), let

Sη ,λ [R+;J] := {g ∈ Cb(R+) : g|J is strictly increasing and satisfies (B1) and (B2)}

and Rζ ,λ [R;I] be defined as in section 1.1.3, where

(B1) (g(x)− x1−λ )(η− x)> 0 for x 6= η ,

(B2) (g(x)−η1−λ )(η− x)< 0 for x 6= η .
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Proposition 4.3.1. Let λ ∈ [0,1). Then a map g ∈ Sη ,λ [R+;J] for η ∈ J̄ if and only if

f = ψ−1 ◦g◦ψ ∈ Rζ ,λ [R;I], where ψ(x) = ex, ζ = logη and I= log(J).

Proof. Let g ∈ Sη ,λ [R+;J], where η ∈ J̄. Since f |I = ψ−1 ◦ (g|J)◦ψ and g|J is strictly
increasing, clearly f |I is also strictly increasing. In order to prove that f satisfies con-
dition (A1), consider any x ∈ I such that x 6= ζ . Let y ∈ J be such that x = logy. Then
either g(y)< y1−λ or g(y)> y1−λ according as y > η or y < η , respectively. This im-
plies that either f (x)< (1−λ )x or f (x)> (1−λ )x according as ether x > ζ or x < ζ ,
respectively. In any case, we have ( f (x)− (1− λ )x)(ζ − x) > 0. By a similar argu-
ment, using condition (B2) for g, we can prove that f satisfies condition (A2). Hence
f ∈ Rζ ,λ [R;I]. The converse follows similarly.

Theorem 4.3.2. Let λ ∈ [0,1) and G ∈ Sc,λ [R+;J] such that R(G) = R(G|J), where

J = |c,d]. Then (4.3.1) has solutions in Sc,0[R+;J]. Moreover, each solution depends

on n− 1 arbitrarily chosen orientation-preserving homeomorphisms f j : [x j,x j−1]→
[x j+1,x j], j = 1,2, . . . ,n− 1, where x0 = b and x1,x2, . . . ,xn are given as in Lemma

1.1.12.

Proof. Given G∈ Sc,λ [R+;J], by Proposition 4.3.1, we have F =ψ−1◦G◦ψ ∈Ra,λ [R;I],
where ψ(x) = ex and I= log(J). Also, since R(G) = R(G|J), it follows that R(F) =

R(F |I). So, F1 := F |I ∈ Ra,λ [I;I]. Therefore by Lemma 1.1.12, (1.1.10) has a solution
φ1 in Ra,0[I;I]. Let f be the extension of map φ1 to R defined by

f (x) = φ1 ◦F−1
1 ◦F(x), x ∈ R. (4.3.2)

We assert that f is a solution of (1.1.10) in Ra,0[R;I]. Being a strictly increasing con-
tinuous map, F1 : I→R(F1) has the inverse F−1

1 , which is also strictly increasing and
continuous on R(F1). Therefore, as R(F) =R(F1), clearly f is a well-defined map on
R. Also, f is continuous on R, being the composition of continuous maps φ1,F−1

1 and
F . Further, as φ1 ∈ Ra,0[I;I], it follows that f is strictly increasing on I, and satisfies the
conditions (A1) and (A2). Therefore f ∈ Ra,0[R;I]. Moreover, for each x ∈ R,

f n(x)−
n−1

∑
k=1

λk f k(x) = f n−1( f (x))−
n−1

∑
k=1

λk f k−1( f (x))

= f n−1|I( f (x))−
n−1

∑
k=1

λk f k−1|I( f (x))

(since f (x) ∈R( f ) = R( f |I)⊆ I)

= ( f |I)n−1( f (x))−
n−1

∑
k=1

λk( f |I)k−1( f (x))
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= φ
n−1
1 (φ1 ◦F−1

1 ◦F(x))−
n−1

∑
k=1

λkφ
k−1
1 (φ1 ◦F−1

1 ◦F(x))

= φ
n
1 (F

−1
1 ◦F(x))−

n−1

∑
k=1

λkφ
k
1 (F

−1
1 ◦F(x))

= F1(F−1
1 ◦F(x)) (since F−1

1 ◦F(x) ∈ I)

= F(x).

Therefore f is a solution of (1.1.10) in Ra,0[R;I]. Hence by Propositions 4.1.1 and 4.3.1,
g = ψ ◦ f ◦ψ−1 is a solution of (4.3.1) in Sc,0[R+;J]. Further, by Lemma 1.1.12, φ1 and
hence g depends on n− 1 arbitrarily chosen orientation-preserving homeomorphisms
f j : [x j,x j−1]→ [x j+1,x j], j = 1,2, . . . ,n−1, where x0 = b.

For the other class Sd,λ [R+;J], we can similarly prove the following result using
Lemma 1.1.13.

Theorem 4.3.3. Let λ ∈ [0,1) and G ∈ Sd,λ [R+;J] such that R(G) = R(G|J), where

J = [c,d|. Then (4.3.1) has solutions in Sd,0[R+;J]. Moreover, each solution depends

on n− 1 arbitrarily chosen orientation-preserving homeomorphisms f j : [x j−1,x j]→
[x j,x j+1], j = 1,2, . . . ,n− 1, where x0 = a and x1,x2, . . . ,xn are given as in Lemma

1.1.13.

In the special case that λ = 0, (4.3.1) reduces to the equation

gn(x) = G(x), (4.3.3)

i.e., the problem of iterative roots for a given function G. We have following results for
solutions of (4.3.3) on R+.

Corollary 4.3.4. Let G be a continuous function on R+ such that G is strictly increasing

on J, G(c) = c,G(d) < d,R(G) = [c,G(d)] and G(x) < x for x ∈ (c,d), where J =

[c,d]. Then (4.3.3) has solutions on R+. Moreover, each solution depends on n− 1
arbitrarily chosen orientation-preserving homeomorphisms f j : [x j,x j−1]→ [x j+1,x j],

j = 1,2, . . . ,n−1, where x0 = b and x1,x2, . . . ,xn are given as in Lemma 1.1.12.

Proof. Follows from Theorem 4.3.2, because G ∈ Sc,0[R+;J] with J = [c,d] such that
R(F) = R(F |J).

We have the following analogous result for the case G(x)> x, whose proof is similar.

Corollary 4.3.5. Let G be a continuous function on R+ such that G is strictly increasing

on J, G(c) > c,G(d) = d,R(G) = [G(c),d] and G(x) > x for x ∈ (c,d), where J =
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[c,d]. Then (4.3.3) has solutions on R+. Moreover, each solution depends on n− 1
arbitrarily chosen orientation-preserving homeomorphisms f j : [x j−1,x j]→ [x j,x j+1],

j = 1,2, . . . ,n−1, where x0 = a and x1,x2, . . . ,xn are given as in Lemma 1.1.13.

Theorems 4.3.2 and 4.3.3 each give infinitely many solutions of (4.3.1) on R+ since
infinitely many choices can be made for the initial function f1, f2, . . . , fn−1 in Lemmas
1.1.12 and 1.1.13. Similar conclusions hold for Corollaries 4.3.4 and 4.3.5.

Next, we consider the case that λ ≤ 0. In 2013, assuming that λ ≤ 0, Zhang et al.
(2013) proved the existence of continuous solutions for (1.1.10) on the compact interval
I. In what follows, solving (1.1.10) with λ ≤ 0 on the whole R, we obtain solutions of
(4.3.1) on R+. For compact intervals I = [a,b] and J = [c,d] of R and R+ respectively,
and for λ ∈ R, let

Aλ [R; I] := { f ∈ Cb(R) : f |I is strictly increasing, f (a) = λa and f (b) = λb},

Bλ [R+;J] := {g ∈ Cb(R+) : g|J is strictly increasing,g(c) = cλ and g(d) = dλ}.

Proposition 4.3.6. Let λ ∈ R. Then g ∈Bλ [R+;J] if and only if f = ψ−1 ◦ g ◦ψ ∈
Aλ [R; I], where ψ(x) = ex and I = log(J).

Proof. Let g ∈Bλ [R+;J], where λ ∈ R. Since f |I = ψ−1 ◦ (g|J)◦ψ and g|J is strictly
increasing, clearly f |I is also strictly increasing. Also, f (a) = logg(ea) = log(g(c)) =
log(cλ ) = λ logc = λa and similarly f (b) = λb. Hence f ∈ Aλ [R; I]. The converse
follows similarly.

Lemma 4.3.7. (Corollary 1 of Zhang et al. (2013)) Let λ ≤ 0 and F ∈A1−λ [I; I], where

I = [a,b]. Then (1.1.10) has infinitely many solutions in A1[I; I].

Remark 4.3.8. The proof of the above lemma, seen in pp. 82-89 of Zhang et al. (2013),
shows steps to obtain those solutions:

Step 1: For each ζ ,ξ ∈ (a,b) and λ ≤ 0, let

A ζ

λ
[I] := { f ∈ C (I,λ I) : f is strictly increasing on I, f (a) = λa, f (b) = λb,

f (x)> λx for x ∈ (a,b) and f is linear on [ζ ,b]},

Bξ

λ
[I] := { f ∈ C (I,λ I) : f is strictly increasing on I, f (a) = λa, f (b) = λb,

f (x)< λx for x ∈ (a,b) and f is linear on [a,ξ ]}.

In this step, we construct solutions of (1.1.10) for F ∈ A ζ

1−λ
[I]∪Bξ

1−λ
[I] (see

Theorem 1 in Zhang et al. (2013)). This enables us to construct a sequence (Fm)
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in A ζ

1−λ
[I]∪Bξ

1−λ
[I] which converges to a given function F of more general form

and find the corresponding solutions fm for m = 1,2, . . ..

Step 2: Using the sequential compactness of ( fm) and verifying that its limit f is a
solution of (1.1.10), we arrive at the existence of solution of (1.1.10) for F ∈
A1−λ [I]∪B1−λ [I], where

Aλ [I] := { f ∈ C (I,λ I) : f is strictly increasing on I, f (a) = λa,

f (b) = λb and f (x)> λx for x ∈ (a,b)},

Bλ [I] := { f ∈ C (I,λ I) : f is strictly increasing on I, f (a) = λa,

f (b) = λb and f (x)< λx for x ∈ (a,b)}

for λ ≤ 0 (see Theorem 2 in Zhang et al. (2013)).

Step 3: Dropping the assumption that location of F is below or above the line y =

(1−λ )x made in A1−λ [I] and B1−λ [I], we obtain solutions of (1.1.10) for F ∈
A1−λ [I; I] (see Corollary 1 in Zhang et al. (2013)). In fact, given any F ∈
A1−λ [I; I], let

Γ := {x ∈ I : F(x) = (1−λ )x}.

Then I = Γ∪ (∪ jI j) and I j’s are disjoint open intervals, denoted by (a j,b j)’s,
a j,b j ∈ Γ, such that F(x) 6= (1−λ )x for x∈ (a j,b j). Then either Fj ∈B1−λ [I] or
Fj ∈A1−λ [I], where Fj := F |I j for j = 1,2, . . .. By step 2, for each j the equation

f n(x) =
n−1

∑
k=1

λk f k(x)+Fj(x)

has a solution f j ∈ A1[I j; I j], which depends on the choice of a sequence (Fj,m)

in A ζ

1−λ
[I]∪Bξ

1−λ
[I]. Then it follows that the function f ∈A1[I; I] defined by

f (x) =

{
f j(x) if x ∈ I j,

x if x ∈ Γ

is a solution of (1.1.10) on I.

Since infinitely many choices can be made for every sequence (Fj,m), Lemma 4.3.7
indeed gives infinitely many solutions of (1.1.10) for F ∈A1−λ [I; I].

Theorem 4.3.9. Let λ ≤ 0 and G∈B1−λ [R+;J] such that R(G) = J1−λ := {x1−λ : x∈
J}, where J = [c,d]. Then (4.3.1) has infinitely many solutions in B1[R+;J]. Moreover,
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each solution depends on suitably chosen sequences (Fj,m)’s for j = 1,2, . . . as indicated

in the above Remark 4.3.8.

Proof. Given G ∈ B1−λ [R+;J], by Proposition 4.3.6, we have F = ψ−1 ◦G ◦ψ ∈
A1−λ [R; I], where ψ(x) = ex and I = log(J). Also, since R(G) = J1−λ , we have
R(F) = (1−λ )I. So F1 := F |I ∈ A1−λ [I; I], and therefore by Lemma 4.3.7, (1.1.10)
has a solution φ1 in A1[I; I]. Let f be the extension of φ1 to R as defined in (4.3.2).
We prove that f is a solution of (1.1.10) in A1[R+; I]. Being a strictly increasing con-
tinuous map, F1 : I → (1− λ )I has the inverse F−1

1 , which is also strictly increasing
and continuous on (1− λ )I. Therefore, as by assumption R(F) = R(F1), clearly f

is a well-defined map on R. Also, f is continuous on R, being the composition of
continuous maps φ1,F−1

1 and F . Further, as φ1 ∈ A1[I; I], it follows that f |I is strictly
increasing, f (a) = λa and f (b) = λb. Therefore f ∈ A1[R; I]. Moreover, by a simi-
lar argument as in the proof of Theorem 4.3.2, it can be shown that f is a solution of
(1.1.10) in A1[R; I]. Hence by Propositions 4.1.1 and 4.3.6, g = ψ ◦ f ◦ψ−1 is a solu-
tion of (4.3.1) in B1[R+;J]. Further, as indicated in Remark 4.3.8, construction of φ1

and hence that of g depends on the choice of sequences (Fj,m)’s for j = 1,2, . . ..

In the special case that λ = 0, we have the following result for solutions of iterative
root problem (4.3.3) on R+.

Corollary 4.3.10. Let G be a continuous function on R+ such that G is strictly in-

creasing on J, G(c) = c, G(d) = d and R(G) = J, where J = [c,d]. Then (4.3.3) has

infinitely many solutions on R+. Moreover, each solution depends on the suitably cho-

sen sequences (Fj,m)’s for j = 1,2, . . . as indicated in Remark 4.3.8.

Proof. Follows from Theorem 4.3.9, because G ∈B1[R+;J] such that R(G) = J.

By comparing the coefficients of gk, 1≤ k ≤ n, in equations (4.3.1) and (1.2.4), we
have αk =−λk for 1≤ k ≤ n−1 and αn = 1. Further, if λk ∈ Z for 1≤ k ≤ n−1, then
the assumption that ∑

n
k=1 αk is odd, made in Proposition 4.1.2, demands that 1−∑

n−1
k=1 λk

is odd, i.e., λ is even. Thus, using Proposition 4.1.2, we can indeed extend solutions of
(1.2.4) on R+ to R− whenever λk ∈ Z for all 1≤ k ≤ n−1 such that λ is even.

4.4 EXAMPLES AND REMARKS

Example 4.4.1. Consider the equation

(g(x))
3
4 (g2(x))

1
4 = G(x), (4.4.1)
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where G : R+→ R+ is defined by

G(x) =


1 if x ∈ (0,1],

e(1+logx) log
√

x if x ∈ [1,e],
e if x ∈ [e,∞).

Let f (x) := logg(ex) and F(x) := logG(ex) for x ∈ R. Then (4.4.1) reduces to the
polynomial-like equation

3
4

f (x)+
1
4

f 2(x) = F(x),

where F : R→ R is the map defined by

F(x) =


0 if x≤ 0,

x2+x
2 if x ∈ [0,1],
1 if x≥ 1.

Note that F ∈ FI(
1
2 ,

3
2), where I = [0,1]. Let δ = 2

3 and M = 2. Then K1δ = 1
2 ,

K0M = 3
2 , and therefore F ∈ FI(K1δ ,K0M). This implies by Proposition 4.1.3 that

G ∈ GJ(K1δ ,K0M), where J = [1,e]. Also, K2 =
1
4 < 11

12 = K0. Thus, all the hypotheses
of Theorem 4.2.1 are satisfied. Hence (4.4.1) has a unique solution g in GJ(

2
3 ,2).

Example 4.4.2. Consider the equation

(g2(x))3

(g(x))2 = G(x), (4.4.2)

where G : R+→ R+ is defined by

G(x) =


1 if x ∈ (0,1],
3
√

x if x ∈ [1,e],

e
1

3logx if x ∈ [e,∞).

Let f (x) := logg(ex) and F(x) := logG(ex) for x ∈ R. Then (4.4.2) reduces to

−2 f (x)+3 f 2(x) = F(x),

which is equivalent to

f 2(x)− 2
3

f (x) =
1
3

F(x),
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where F : R→ R is the map defined by

F(x) =


0 if x≤ 0,
x
3 if x ∈ [0,1],
1
3x if x≥ 1.

Note that H := 1
3F ∈ R0, 2

3
[R; I], where I = [0,1]. Therefore by Proposition 4.3.1, it

follows that the map G1 defined by G1(x)= eH(logx) lies in S1, 2
3
[R+;J], where J = [1,e].

Also, since R(H) = [0, 1
9 ] =R(H|I), we have R(G1) = [1, 9

√
e] =R(G1|J). Therefore,

by Theorem 4.3.2,

(g2(x))

(g(x))
2
3
= G1(x),

and hence (4.4.2) has a solution g on R+.

Example 4.4.3. Consider the equation

(g2(x))3(g(x))6 = G(x), (4.4.3)

where G : R+→ R+ is defined by

G(x) =


1 if x ∈ (0,1],
x3 if x ∈ [1,2],

7x+2
x if x ∈ [2,∞).

Then G ∈B3[R+;J], where J = [1,2]. Also, R(G) = J3. Hence by Theorem 4.3.9,
(4.4.3) has a solution in B1[R+;J].

We make the following observations regarding the two approaches (i.e., using fixed
point theorem and constructing solutions piece by piece) considered to solve (1.2.4).
First, the solutions g of (1.2.4) obtained in Theorems 4.3.2 and 4.3.3 have exactly one
fixed point at an end-point of R(g), whereas each solution g obtained in Theorems 4.2.1
and 4.3.9 has fixed points at both end-points of R(g). Second, as noted before, using
Theorem 4.2.1, we cannot solve iterative root problem (4.3.3). On the other hand, we
can indeed obtain solutions of (4.3.3) using Corollaries 4.3.4, 4.3.5 and 4.3.10.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

“Our imagination is the only limit to what we can hope to have in the future.”

- Charles F. Kettering

In this thesis, we have addressed some problems which are mainly concerned about
the iteration of continuous maps. One of the main contributions of our work is to ex-
hibit a subtle interplay between the theory of dynamical systems and iterative equations.
Chapter 2 reports an investigation of various dynamical properties such as fixed points,
periodic points, stability, and chaoticness concerned with iteration operators on C (K)

for a compact metric space K. The approach used here is to study the dynamic be-
haviours using solutions of the Babbage equation. Indeed, we have proved that the
iteration operator is not chaotic, but most of the fixed points are unstable, thereby ex-
hibiting its complex behaviour. On the other hand, Chapter 4 presents results on contin-
uous solutions of an iterative equation with multiplication, and the strategy employed is
to use an exponential map to reduce this equation in conjugation to the popular form of
a polynomial-like iterative equation. Another focus of this thesis is on topological con-
jugacy itself. Chapter 3 proves the relation that N(g; t) =−SmN( f ; t)Sm+1 whenever f

and g are h-conjugates with #T ( f ) = m such that h is orientation-reversing. This iden-
tity, in contrast with the Milnor-Thurston’s result for the orientation-preserving case,
proves that the kneading matrix associated with a piecewise monotone map is not an
invariant under orientation-reversing conjugacy. To obtain more details on the dynam-
ics, the thesis also considers the study of a particular subfamily of such maps, called
the tent-like maps, and describes the relationship between kneading matrices of these
maps with that of their iterates. Additionally, some interesting problems have been left
for the future. The following ideas or questions could be considered.

Since any non-constant map f in Cid(I) or Cid(S1) has a unique choice for f |R( f ),
namely id, we were indeed able to use the definition of stability to prove the instability
of such maps in Theorems 2.4.2 and 2.4.3. However, if f is in Cinv(I) or Cinv(S1) (con-
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sisting of all continuous self-maps of S1 which are orientation-reversing involutions on
their range), then f |R( f ) has uncountably many choices and therefore the case-wise ap-
proach used in the proofs of above two theorems is impractical. Thus the problem of
stability of fixed points of Jn, which are in Cinv(I) and Cinv(S1), is highly nontrivial.
Additionally, although Jn does not have a non-trivial periodic point in C (I) by Theo-
rem 2.2.4, the problem of stability of periodic points of Jn in C (S1) is also difficult.
Further, it could be interesting to consider the study of the dynamics of Jn on C (K)

whenever K is not compact. Remark that we have already taken the first step towards
this problem by proving that Jn is indeed continuous on C (K) whenever K is a locally
compact Hausdorff space (see Appendix A).

In section 3.4, we have described the relationship between N( f k; t) and N( f ; t) for
f ∈M0(I). It would be natural to consider this problem for a generic f ∈M (I). More
generally, it could also be interesting to investigate the relationship between N( f ◦g; t),
N( f ; t) and N(g; t) for arbitrary f ,g ∈M (I). Further, since both the kneading matrix
and the iterative root problem concern about iterates of maps, it would be interesting
to question, whether we can comment on solutions of the iterative root problem using
kneading theory. Besides these, it could be even more challenging, yet exciting to
develop a kneading theory for continuous maps with infinitely many turning points
similar to piecewise monotone maps.

We remind that in section 4.3 we did not complete our discussion for all λ ∈ R,
because we have assumed that 0 ≤ λ < 1 in Theorems 4.3.2 and 4.3.3. Remark that
theses theorems are not necessarily valid for λ ≥ 1, and therefore our current approach
cannot be used in this case to solve (1.2.4) on R+. More precisely, if λ ≥ 1, then the sets
Sc,λ [R+;J] and Sd,λ [R+;J] are not necessarily nonempty. In fact, if G ∈ S1,3[R+; [1,2]],
then by using the conditions (B1) and (B2) we have 1 < G(2) < 1/4, which is a con-
tradiction. We arrive at a similar contradiction that 1 < G(1)< 1 if G ∈ S2,3[R+; [1.2]].
So, both the sets S1,3[R+; [1.2]] and S2,3[R+; [1.2]] are empty. Also, as observed at the
end of section 4.2 (resp. 4.3), we can extend the solutions of (1.2.4) (resp. (4.3.1)) on
R+ to R− whenever αk ∈ Z for 1 ≤ k ≤ n such that ∑

n
k=1 αk is odd (resp. whenever

λk ∈ Z for 1≤ k≤ n−1 such that λ is even). On the other hand, if αk ∈R\Z for some
1 ≤ k ≤ n, then for any G,g ∈ Cb(R−), x 7→∏

n
k=1(g

k(x))αk is a multi-valued complex
map, whereas x 7→ G(x) is a single valued real map. So, in order to obtain the equality
in (1.2.4), we have to choose branches of the complex logarithm suitably, which not
only depends on x but also on each term of the product ∏

n
k=1(g

k(x))αk . Therefore, solv-
ing (1.2.4) on R− in this case is very difficult. For a similar reason, solving (4.3.1) on
R− is difficult if λk ∈ R \Z for some 1 ≤ k ≤ n−1. Moreover, it could be exciting to
investigate (1.2.4) for differentiable, equivariant, and multivalued solutions.
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Appendix A

In this appendix, we prove that the iteration operator Jn is indeed continuous on C (K)

whenever K is a locally compact Hausdorff space.
Let X , Y and Z be topological spaces. As seen in Munkres (2000), the collection

{S (E,U) : E is a compact subset of X and U is open in Y}

such that

S (E,U) = { f ∈ C 0(X ,Y ) : f (E)⊆U}.

forms a subbasis for a topology on C 0(X ,Y ), called the compact-open topology. Fur-
ther, given a function f : X×Z→Y , there is a corresponding function F : Z→C 0(X ,Y ),
defined by the equation

F(z)(x) = f (x,z), (A.0.1)

called the induced map of f . Conversely, given F : Z→ C 0(X ,Y ), this equation defines
a corresponding function f of X × Z into Y . Moreover, when X is locally compact
Hausdorff, we have the following results.

Lemma A.0.1. (Theorem 46.10 in Munkres (2000), p 286) Let C 0(X ,Y ) have the

compact-open topology, where X be locally compact Hausdorff. Then the map E :
X ×C 0(X ,Y )→ Y defined by E (x, f ) = f (x) is continuous. The map E is called the

evaluation map.

Lemma A.0.2. (Theorem 46.11 in Munkres (2000), p 287) Let C 0(X ,Y ) be considered

in the compact-open topology, where X is locally compact Hausdorff. Then the map

f : X × Z → Y defined as in (A.0.1) is continuous if and only if the corresponding

induced map F : Z→ C 0(X ,Y ) is continuous.

Having the above two lemmas, we are ready to prove our desired result.
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Theorem A.0.3. If K is locally compact Hausdorff, then Jn is continuous on C (K) for

each n ∈ N.

Proof. First, we prove by induction that the iterated evaluation map En : K×C (K)→K

defined by

En(x, f ) = f n(x) (A.0.2)

is continuous for each n ∈ N. The case n = 1 follows by Lemma A.0.1, because E1 =

E . Suppose that En is continuous for certain n ≥ 2. To prove En+1 is continuous on
K ×C (K), consider the map Hn : K ×C (K)→ K ×C (K) defined by Hn = (En, p),
where p : K×C (K)→ C (K) is the projection map defined by

p(x, f ) = f .

Since En and p are continuous, so is Hn. Now

(E1 ◦Hn)(x, f ) = E1
(
En(x, f ), p(x, f )

)
= E

(
f n(x), f

)
= f n+1(x) = En+1(x, f )

for each (x, f ) ∈ K×C (K), implying that En+1 = E1 ◦Hn. Therefore En+1 is continu-
ous, being the composition of continuous maps E1 and Hn. Hence, by induction, En is
continuous on K×C (K) for each n ∈ N.

The iteration operator Jn : C (K)→ C (K) is actually the induced map of En : K×
C (K)→K for each n∈N. Since K is locally compact Hausdorff, by above discussions,
En is continuous for each n ∈ N. This implies by Theorem A.0.2 that Jn is continuous
on C (K) for each n ∈ N.
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