
HARDWARE-BASED ACCELERATION OF

NETWORK-ON-CHIP SIMULATION USING FPGAs

A Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

PRABHU PRASAD B M

(155113 CS15F10)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

DECEMBER, 2020

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Hardware-based acceleration of

Network-on-Chip simulation using FPGAs which is being submitted to the National

Institute of Technology Karnataka, Surathkal in partial fulfilment of the require-

ments for the award of the Degree of Doctor of Philosophy in Department of Computer

Science and Engineering is a bonafide report of the research work carried out by me.

The material contained in this Research Thesis has not been submitted to any University

or Institution for the award of any degree.

Prabhu Prasad B M, 155113CS15F10

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: Dec 29, 2020

CERTIFICATE

This is to certify that the Research Thesis entitled Hardware-based acceleration of

Network-on-Chip simulation using FPGAs submitted by Prabhu Prasad B M (Reg-

ister Number: 155113 CS15F10) as the record of the research work carried out by him,

is accepted as the Research Thesis submission in partial fulfillment of the requirements

for the award of degree of Doctor of Philosophy.

Dr. Basavaraj Talawar

Research Guide

Dr. Alwyn Roshan Pais

Chairman - DRPC

To

Mother Nature and My Family

ACKNOWLEDGEMENTS

Firstly, I thank my advisor, Dr. Basavaraj Talawar, for his invaluable guidance, immense

support and encouragement throughout my Ph.D. at the Department of Computer Sci-

ence and Engineering, National Institute of Technology Karnataka, Surathkal.

I would like to thank my Research progress assessment committee members Dr.

Ramesh Kini M, Associate Professor in the Department of Electronics and Communi-

cation Engineering, and Dr. Shashidhar G Koolagudi, Associate Professor in the De-

partment of Computer Science and Engineering, for their encouragement and insightful

comments, which helped me in improving my research work.

I whole heartedly express my gratitude to Dr. Alwyn Roshan Pais, Head of the

Department, Department of Computer Science and Engineering, NITK Surathkal for

his support and valuable suggestions during my doctoral studies.

I would like to thank all the faculty members and non-teaching staff of the Depart-

ment of Computer Science and Engineering for helping me directly or indirectly in the

completion of my research work.

My special thanks to my research lab partners and colleagues with whom I have

shared many precious moments during my Ph.D.

I cannot thank my family - Appaji, Amma, Madhu, my better half Rashmi and my

adorable kids Bhumika and Varshini - enough. Without you, this journey would not

have been possible.

Finally, I would like to thank everyone who is directly and indirectly responsible for

the successful completion of my doctoral research work.

Prabhu Prasad B M

ABSTRACT

Replacing the conventional bus-based architectures, Network-on-Chip (NoC) has be-

come a tangible on-chip communication framework in the many-core processors, Chip

Multi-Processors (CMPs), and Multi-Processor System-on-Chips (MPSoCs). Also,

NoCs have become an integral part of the heterogeneous systems with application-

specific accelerators such as databases, graph processing, and deep neural networks.

In these heterogeneous systems, it is the responsibility of NoCs to interconnect various

components. More number of cores are being incorporated in state-of-the-art homoge-

neous and heterogeneous multi-core processors to achieve high performance and better

power efficiency. Likewise, to achieve high performance in the target applications, var-

ious components such as processing cores, input/output peripherals, and memory com-

ponents being integrated on heterogeneous systems are also increasing. When there is

an increase in the number of interconnected components, the performance of the tar-

get application becomes highly dependent on the performance of NoC. Hence, there is

a need to model and evaluate large NoC designs quickly and accurately as thousands

of cores are targeted in the near future multi-core architectures due to the advances

in CMOS technology. NoC modeling helps understand the impact of various design

parameters on the overall system and the performance characteristics.

A crucial hurdle in the design and evaluation of large-scale NoC is the lack of rapid

methodologies for modeling, which can deliver a high level of accuracy. Analytical

models compromise accuracy to achieve results in a short period of time. Hence, to per-

form the design space exploration of NoCs, designers frequently employ the software

simulators. The software simulators provide better accuracy than analytical modeling.

When a large-scale NoC with a huge number of nodes is being simulated, the software

simulators tend to become too slow. To address the issue of simulation speed, an Field

Programmable Gate Arrays (FPGA) based NoC simulation acceleration framework has

been proposed in this thesis. A fully parameterized FPGA based NoC simulation frame-

work called YaNoC has been proposed. YaNoC supports the design space exploration

of various NoC topologies considering a rich set of router micro-architectural param-

eters. To simulate the larger topologies, the hard blocks of the FPGA, such as Block

RAMs (BRAMs) and DSP blocks, have been employed to map the NoC router compo-

nents such as FIFO buffers and the crossbar, respectively. Further, a lightweight NoC

router architecture has been proposed to reduce the area utilization and improve network

performance.

The thesis’s initial work employs profiling to analyze the performance of the Book-

sim2.0 NoC software simulator with various design decision parameters and memory

configurations. Various cache design parameters such as cache size, block size, and

associativity have been considered to simulate the NoC topologies of Booksim2.0 to

observe the effect of cache configurations. The hotspots of the Booksim2.0 simulator

are identified, and software optimizations are employed to improve the performance of

the Booksim2.0. To reduce the execution time of Booksim2.0, optimization method-

ologies such as vectorization and thread parallelization are employed. The OpenMP

programming model is used for parallelizing and vectorizing the source code of Book-

sim2.0.

Due to high synchronization cost, the gain achieved in simulation speed is not sig-

nificant. Higher simulation speed can be achieved by sacrificing the simulation accuracy

to mitigate the complexity of synchronizations. FPGA-based simulators are becoming

a promising approach for enhancing the speed of simulations. An FPGA-based NoC

simulation acceleration framework called YaNoC, supporting design space exploration

of standard and custom NoC topologies considering a full set of NoC router micro-

architectural parameters, has been proposed. YaNoC is capable of designing custom

routing algorithms, various traffic patterns. Obtained results show that the YaNoC con-

sumes fewer hardware resources and is faster than the other FPGA based NoC simula-

tion acceleration platforms.

Most of the state-of-the-art FPGA based simulators utilize soft logic only for mod-

eling the NoCs, leaving out the hard blocks unutilized. The FPGA soft logic resources

become a limiting factor when simulating a large NoC topology. Multiple FPGAs with

off-chip memory can be employed to overcome the limitation of the FPGA resources.

ii

The entire system becomes more complex and slow by using these approaches, leading

to a reduction in the system’s performance. Instead of having a multi-FPGA setup to

simulate larger topologies, the hard blocks of an FPGA have been utilized efficiently

to map the NoC router components. The functionality of the NoC router’s buffer and

crossbar switch are embedded in the BRAMs and the wide multiplexers of the DSP48E1

slices. A substantial decrease in the Configurable Logic Blocks (CLBs) utilization of

NoC topologies on the FPGA is observed by embedding the functionality of the buffers

and crossbar on the hard blocks of the FPGA compared to other state-of-the-art works.

Lightweight and high-performance NoC architecture is suitable for designing the

heterogeneous systems to achieve area reduction and to improve the overall system

performance. A low latency router with a look-ahead bypass called LBNoC has been

proposed. The techniques such as single cycle router pipeline bypass, adaptive routing

module, parallel virtual channel and switch allocation, combined flow control mecha-

nism like virtual cut through, and wormhole switching are employed in designing the

LBNoC router. The input buffer modules of NoC router are mapped on the FPGA

BRAM hard blocks to utilize resources efficiently.

Keywords: Network-on-Chip, NoC, FPGA, Simulation acceleration, Performance

analysis, DSP48E1, BRAM

iii

CONTENTS

List of Figures x

List of Tables xiii

List of Abbreviations xv

1 Introduction 1

1.1 Problem Description . 3

1.2 Thesis Contributions . 4

1.3 Thesis Organization . 5

2 Background and Literature Review 7

2.1 Field Programmable Gate Array . 7

2.2 NoCs : an overview . 9

2.3 Related work . 13

3 Analysis and performance enhancement of BookSim 2.0 NoC simulator 19

3.1 Methodology . 19

3.2 Profiling and Software optimization techniques 21

3.3 Profiling, Performance Optimization Tools and Experimental method-

ology . 23

3.4 Results and Discussion . 25

3.5 Optimization Strategies . 32

3.6 Summary . 38

4 YaNoC - An FPGA based NoC simulation acceleration framework 39

4.1 Introduction . 39

4.2 YaNoC - Design and Implementation 40

4.3 Design of Mesh and Diagonal Mesh (DMesh) topologies 46

4.4 Experimental Results . 54

v

4.5 YaNoC vs. State-Of-The-Art . 63

4.6 Summary . 64

5 Mapping the NoC router components on the Hard-blocks of the FPGA 65

5.1 Introduction . 65

5.2 NoC Router Architecture . 67

5.3 Block RAMs as the buffers . 68

5.4 DSP48E1 tile as the Crossbar Switch 70

5.5 Results and Discussion . 74

5.6 Summary . 83

6 Optimization of the NoC router for achieving low latency and area 85

6.1 Introduction . 85

6.2 Related Work . 86

6.3 LBNoC-FPGA based Bypass NoC Framework 88

6.4 Results and Discussion . 100

6.5 Comparison with the State-of-the-Art NoC architectures 108

6.6 Summary . 115

7 Conclusions and future work 117

7.1 Conclusions . 117

7.2 Future work . 119

Bibliography 121

Publications 135

vi

LIST OF FIGURES

2.1 A generic architecture of Xilinx FPGA 8

2.2 Architecture of the Configurable Logic Block (Xilinx Inc (2016)) 9

2.3 An NoC router micro-architecture with M input/output ports, N-virtual

channels at each input port and M × M Crossbar switch (Jerger and Peh

2009) . 11

2.4 Various NoC topologies . 12

3.1 BookSim 2.0 Execution time of k-ary n-dimensional Mesh networks(n=2,3

and 4). 20

3.2 Average I1 MPKI of BookSim 2.0 for Mesh topology.(MPKI is aver-

aged over topology sizes mentioned in Table 3.1 and L1 cache configu-

rations were varied as shown in Table 3.2) 26

3.3 Average D1 MPKI of BookSim 2.0 for Mesh topology. (MPKI is aver-

aged over topology sizes mentioned in Table 3.1 and L1 cache configu-

rations were varied as shown in Table 3.2) 28

3.4 Average LL MPKI of BookSim 2.0 for Mesh topology. (MPKI is aver-

aged over topology sizes mentioned in Table 3.1 and LL cache config-

urations were varied as shown in Table 3.2) 30

3.5 CPI for BookSim 2.0 running various sizes of Mesh topology 32

3.6 Cache misses before and after optimization 33

3.7 Speedup achieved before and after optimization 34

3.8 Simulation execution times before and after improvements 37

3.9 Speedups with Mesh topology of varying sizes 37

vii

4.1 Architecture of the proposed YaNoC FPGA based NoC simulation ac-

celeration framework . 41

4.2 (a)Flit types and (b)Packet structure used in experiments. (Time stamp

field is useful in calculating the latency of a packet) 42

4.3 Modified router architecture supporting Congestion aware adaptive rout-

ing . 43

4.4 A High-level block diagram of YaNoC consisting of Host PC connected

to an FPGA Board. 45

4.5 Simulation framework flow . 46

4.6 Mesh and Diagonal Mesh topologies (Red and Green colors indicate the

routes calculated by XY and novel shortest path XY routing algorithms) 48

4.7 Interconnection of the Router 12 with other Routers in DMesh topology 51

4.8 Load Delay graph of 6x6 Mesh and Torus Topologies under Random

Permutation Traffic patterns (a)Buffer Depth=8 flits and (b)Buffer Depth=16

flits . 59

4.9 Load delay graph of 8x8 Mesh and Torus topologies under Bit comple-

ment traffic patterns (a)buffer depth=8flits and (b)buffer depth=16flits . 60

4.10 (a) Load delay graph of Fat tree with buffer depth 8 and 16 flits under

Random permutation traffic pattern(b)Load delay graph for Mesh and

DMesh topologies under Uniform traffic 61

4.11 Load Delay graph of Mesh Topology under (a)Uniform and (b)Transpose

traffic patterns . 62

5.1 Functional diagram of the proposed FPGA based NoC framework. (a)

an NoC topology, (b)Processing Element (PE), (c)Proposed router ar-

chitecture . 67

5.2 Architecture of the Xilinx BRAM hard block (Xilinx Inc 2019) 68

5.3 Illustration of mapping the input ports to the BRAM based buffer 69

5.4 Bypassing an empty Buffer . 69

5.5 Two DSP48E1 slices connected by dedicated cascade links form a sin-

gle DSP tile (Xilinx Inc 2018) . 71

viii

5.6 Illustration of mapping the input ports to the DSP48E1 based crossbar . 72

5.7 (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and

(f) - Saturation Throughput for the 6 × 6 Mesh and Torus topologies

under CLB and BRAM-DSP based FIFO and crossbar implementation

considering NN, RP, HS, TO and BC traffic patterns 79

5.8 (a), (b), (c), (d) - Load vs Latency comparison (e) saturation throughput

of the Mesh topologies employing proposed BRAM-DSP router arhchi-

tecture and CONNECT, DART NoC architectures 82

6.1 The overall architecture of LBNoC-framework implemented on Xilinx

Zynq 7000 ZC702 SoC. The PS consists of two core ARM Cortex-A9

processors and the PL has Artix-7 FPGA 89

6.2 Two clock cycle Low latency router architecture implemented in LB-

NoC framework(The router is highly parameterized with combined VC

and Switch allocation stages) . 90

6.3 The architecture of Input buffer employed in designing low latency router 91

6.4 Free VC availability check and count 92

6.5 Request filter logic . 93

6.6 Parallel virtual channel and switch allocator 94

6.7 Pipeline stages of conventional and LBNoC router architecture 97

6.8 Proposed adaptive look-ahead routing module 98

6.9 Flit structure employed in LBNoC Framework 100

6.10 Performance comparison of 4x4 and 5x5 NoCs topologies with various

configurations under a different type of traffic patterns. 105

6.11 Throughput comparison of 4x4 and 5x5 NoCs topologies with various

configurations under a different type of traffic patterns. 107

6.12 Average packet latency comparison between LBNoC, CONNECT (Pa-

pamichael and Hoe 2015) and ProNoC (Monemi et al. 2017) consid-

ering different types of traffic patterns 110

6.13 Throughput comparison of LBNoC, ProNoC and CONNECT NoC ar-

chitecture . 111

ix

6.14 Area, Frequency and Power utilization of various router architectures . . 112

6.15 Average packet latency comparison between LBNoC, SOTA(Stanford

Concurrent VLSI Architecture Group. 2014), Shared-buffer (Soteriou

et al. 2009) and PCA (Yan et al. 2015) considering different types of

traffic patterns . 114

6.16 Throughput comparison of LBNoC, SOTA, Shared-buffer and PCA NoC

architectures . 115

x

LIST OF TABLES

2.1 Comparison of the proposed and the other FPGA-based NoC simulators 18

3.1 Experimental setup . 25

3.2 Different L1 Instruction(I1), L1 Data (D1) and Last Level (LL) Cache

Configurations Used In Experiments 25

3.3 Effect on misses due to various I1 and D1 cache configurations 27

3.4 Effect on misses due to various Last Level (LL) cache configurations . . 30

3.5 Analysis of miss rates of Hotspot methods in BookSim 2.0 31

3.6 Unused functions in BookSim 2.0 source code 33

3.7 Replacing post-increment operator by pre-increment operator 35

3.8 Identifying the memory access pattern of BookSim 2.0 source code . . 36

4.1 Configurable router architectural parameters 40

4.2 Experimental setup details . 54

4.3 Resource utilization of 6×6 (36 node)Mesh and Torus topologies under

various configurations of Flit Width(FW) and Buffer Depth (BD) 55

4.4 Resource utilization of 8×8 (64 node)Mesh and Torus topologies under

various configurations of Flit Width (FW) and Buffer Depth (BD) . . . 55

4.5 Resource utilization of 56 node Fat tree topology under various config-

urations of Flit Width (FW) and Buffer Depth (BD) 56

4.6 Resource utilization of a Single Router 57

4.7 LUT Utilization of 5 and 9 Port Router Components 58

4.8 Synthesis results of YaNoC on Artix-7 FPGA device (XC7A100T, speed-

3) . 58

xi

4.9 Synthesis results of 36-Node Mesh based topology on Artix-7 FPGA

device (XC7A100T, speed-3) . 61

4.10 Resource utilization of CONNECT and YaNoC on Artix-7 FPGA de-

vice (XC7A100T, speed-3) for 6× 6 Mesh and DMesh topologies . . . 63

4.11 Resource utilization of DART and YaNoC on Artix-7 FPGA device

(XC7A100T, speed-3) for 3× 3 Mesh topology 64

5.1 4:1 Multiplexer operating signals based on the grant signals from the arbiter . 72

5.2 DSP48E1-I slice configuration based on the arbiter encoded signal 72

5.3 DSP48E1-II slice configuration based on the arbiter encoded signal 73

5.4 Experimental setup details . 75

5.5 Resource utilization of NoC Router considering CLB and BRAM-DSP

mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA 75

5.6 Resource utilization of 6×6 Mesh topology with CLB and BRAM-DSP

mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA with XY

routing . 77

5.7 Resource utilization of 6 × 6 Torus topology with CLB and BRAM-

DSP48E1

mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA with XY

routing . 77

5.8 FPGA synthesis results of the 6× 6 Mesh topology considering the

proposed BRAM-DSP implementation and CONNECT’s implementa-

tion

on Artix 7 (XC7A100T) board with BD=6 and FW=64 80

5.9 Hardware utilization results of the 3× 3 Mesh topology with

proposed BRAM-DSP implementation and DART’s implementation

on Artix 7 (XC7A100T) FPGA . 81

5.10 Features supported in the proposed BRAM-DSP NoC architecture

and the other state-of-the-art NoC architectures 83

6.1 The conventional allocator. V and P represent number of VCs per port

and number of ports . 92

xii

6.2 The proposed parallel allocator. V and P denotes number of VCs per

port and number of ports . 95

6.3 Experimental setup details . 100

6.4 FPGA memory buffers using three implementation alternatives with

constant flit width of 32-bit. 101

6.5 FPGA memory buffers using three implementation alternatives with

constant buffer depth of 15 flits. 101

6.6 Synthesis results of various configurations of Input buffer in LBNoC

router with 64-bit flit width . 102

6.7 Synthesis results of various configurations of Input buffer in LBNoC

router with 128-bit of flit width . 102

6.8 Synthesis results of merged FIFO buffers at each input port and Con-

ventional FIFO buffers . 103

6.9 Synthesis results of Queue of free VCs selection and Conventional VC

allocator implementation . 103

6.10 Synthesis results of Full and Decomposed Crossbar with IN/OUT ports 104

6.11 Synthesis results of Mesh topology of size 4× 4 and 5× 5 with various

configuration of input parameters . 104

6.12 Resource utilization and Maximum operating frequency of Different

NoC configurations considering 4× 4 mesh topology 108

6.13 Resource utilization and Maximum operating frequency of Different

NoC configurations considering 4× 4 mesh topology 113

xiii

LIST OF ABBREVIATIONS

Abbreviations Expansion

ASIC Application Specific Integrated Circuit

CMP Chip Multi-Processor

CPI Cycles per Instruction

FF Flip Flop

FPGA Field Programmable Gate Array

IP Core Intellectual Property Core

LFSR Linear Feedback Shift Register

LUT Look Up Table

MPKI Misses per Kilo Instruction

MPSoC Multiprocessor System-on-Chip

NoC Networks-on-Chip

PE Processing Element

SA Switch Allocation

SoC System-on-Chip

ST Switch Traversal

TDM Time Division Multiplexing

TG Traffic Generator

TR Traffic Receptor

VC Virtual Channel

xv

CHAPTER 1

INTRODUCTION

The multi-core architecture consists a number of cores that can perform application-

specific tasks or more generic operations such as arithmetic logical operations. State-

of-the-art applications require a more number of cores on a single chip to perform a wide

variety of computations. These cores have to be interconnected efficiently to achieve

better communication and computational performance. In a point-to-point bus-based

communication infrastructure, the access to the bus is managed by the control logic.

Also, data can only be transmitted by a single core. Although the bus-based commu-

nication provides flexibility, there lacks the provision of scalability. With the advent

of VLSI technology, thousands of cores can be integrated on a single chip. With more

number of cores on a chip, the wire length between the cores increases in a bus-based

architecture in turn, leading to increased power consumption. The bus-based systems

offer a very low throughput as only a single core can be accessed at a time.

The NoC has become the tangible on-chip communication technique (Benini and

De Micheli (2002); Dally and Towles (2001)). A network of routers are used to inter-

connect the cores in the NoC paradigm. These routers communicate with one another,

employing the packet-switching mechanism. The lightweight protocols used in the data

networks can be employed in the NoC scenario. Hence, NoCs have been employed as

the on-chip interconnect in many of the state-of-the-art heterogenous application spe-

cific architectures, multi-core processors, and MPSoCs (Akopyan et al. (2015); Ax et al.

(2018); Balkind et al. (2016); Bohnenstiehl et al. (2017); Chen et al. (2017); Luo et al.;

1

1. Introduction

Sodani et al. (2016)).

The time taken to model and evaluate large-scale NoC designs has to be less as

thousands of cores are targetted in the near future. These results help in exploring

the performance characteristics along with the effect on the overall system. The sys-

tem architects will be able to understand the impact of various NoC design parameters

before chip fabrication by reducing the total cost. NoC researchers rely upon the cycle-

accurate software power and performance simulators (viz. Orion (Kahng et al. (2012)),

Garnet (Agarwal et al. (2009)), SICOSYS (Puente et al. 2002), Noxim (Catania et al.

2016), BookSim2.0 (Jiang et al. 2013)) to explore the microarchitectural design space

of on-chip networks.

To offer speed, accuracy, completeness, flexibility, and usability, the computer sys-

tem simulators are commonly implemented in software. A continuous advance in the

computer system complexity can be observed over time rapidly at a faster pace than

the growth in the performance of the computers. As a result, computer simulation per-

formance is declining compared to the next generation of the computer system being

simulated. For example, software simulators tend to become slower when the number

of cores has been increased. This situation is called as the simulation wall (Angepat

et al. (2014)). Li-Shiuan Peh and Dally (2001); Ogras et al. (2010) propose the analyt-

icals model which are extremely fast. But, in many cases, these analytical models can

be considerably inaccurate.

The fast and precise software simulators provide a platform for performing design

space exploration of various NoC architectures. Employing techniques such as thread-

level parallelism with these simulators to improve the simulation speed is difficult due

to high synchronization cost. Higher simulation speed can be achieved by sacrificing

the simulation accuracy to mitigate the complexity of synchronizations (Prasad et al.

2019). Next generation computer systems make extensive use of hardware-level par-

allelism to achieve high performance. A quick and advantageous solution to software

only simulators is to implement FPGA based simulator accelerators which provide the

hardware-level parallelism needed in the precise simulation of the computer systems.

FPGAs are programmable devices composed of the humongous number of lookup ta-

2

1.1. Problem Description

bles interconnected with each other. Any arbitrary logic functions can be realized using

these lookup tables. Contrary to the hard-wired ASICs, which map the silicon’s logic

permanently, the hardware of FPGAs can be reconfigurable based on the increments

being made to the design like the software development. Thanks to its reprogram-

ming ability, FPGAs allow the implementation and maintenance of hardware at lower

cost and time than a dedicated integrated circuit would have needed. To improve the

performance of the simulations, FPGA-based simulators have been proposed (Kamali

and Hessabi (2016); Lotlikar et al. (2011); Papamichael (2011); Wang et al. (2014);

Wolkotte et al. (2007)). Various activities of the software simulator are parallelized and

executed on the FPGA fabric resources to achieve a better speed up.

1.1 PROBLEM DESCRIPTION

A simulation platform that is flexible, fast, and robust is needed for the realization of the

NoC architectures. The NoC community uses the cycle-accurate software simulators for

the design space exploration. The NoC parameters such as topology, routing algorithm,

flow control, and router micro-architecture, including buffer management and allocation

schemes, can be analyzed using these simulators. Since thousands of cores have a

significant role in the near future many-core architectures, the large scale NoC designs

have to be modeled and evaluated to analyze the performance parameters and effect on

the system. As the number of simulated cores increases, software simulators tend to

become slower due to the simulation wall phenomenon. A crucial hurdle in the design

and evaluation of large-scale NoC is the lack of fast simulators for modeling, which can

deliver a high level of accuracy.

1.1.1 Research Objectives

1. Study and performance enhancement of NoC architecture simulator.

• Analysis and software optimizations for NoC simulator.

• Comparative study of optimized NoC simulator with existing hardware-

based NoC simulator.

2. Implementation of fully parameterized FPGA accelerated NoC architecture sim-

3

1. Introduction

ulator.

• Employing various Hard blocks of the FPGAs for efficient resource utiliza-

tion.

• Optimization of NoC router architecture to reduce the area utilization and

improve network performance.

1.2 THESIS CONTRIBUTIONS

Contributions from this thesis are listed below:

1. Analysis of the performance of the BookSim 2.0 NoC simulator with various

memory configurations to observe the effect on the speed of the simulation by

using the profiling techniques considering various topologies and configurations

of the NoC router components. Various software optimization techniques are

employed to improve the performance of the BookSim 2.0 simulator.

2. A highly configurable FPGA based NoC simulation acceleration framework called

YaNoC is developed for design space exploration of various NoC configurations.

Various topologies considering several router micro-architectural parameters can

be simulated using YaNoC.

3. The hard blocks of FPGA, such as DSP48E1 and BRAM blocks are used ef-

ficiently to map the functionality of the router micro-architectural components

such as buffers and crossbar. Comparison of the proposed BRAM and DSP48E1

based router architecture with the other state-of-the-art FPGA based NoC router

architectures.

4. A router architecture with an optimized area consuming less power and providing

high performance for NoCs in FPGA is proposed. The proposed architecture is

verified using a framework called LBNoC. LBNoC is capable of design space

exploration of topologies considering various configurations.

4

1.3. Thesis Organization

1.3 THESIS ORGANIZATION

The thesis is organized as follows:

Chapter 2: Background and literature review introduces the FPGAs and NoC con-

cepts briefly and summarizes the survey of NoC software simulators and methodologies

employed for the FPGA based simulation acceleration.

Chapter 3: Study and performance enhancement of NoC architecture simula-

tor presents the profiling techniques and software optimization techniques employed

for improving the performance of BookSim 2.0 software simulations.

Chapter 4: YaNoC - An FPGA based NoC simulation acceleration framework

presents an FPGA based NoC simulation acceleration framework called YaNoC. The

framework is analysed considering various NoC configuration and topologies. A novel

congestion aware routing algorithm has been proposed and a comparative analysis with

the existing algorithms has been performes.

Chapter 5: Mapping the NoC router components on the Hard-blocks of the

FPGA presents the techniques of mapping the NoC router components on the hard-

blocks of the FPGA. The NoC router’s crossbar has been efficiently mapped on the

DSP48E1 blocks and the FIFO buffers are mapped on the BRAM blocks of the Xilinx

FPGA. A comparison with soft-logic only implementation and the hard-block mapping

has been carried out in this chapter.

Chapter 6: Optimization of the NoC router for achieving low latency and area

presents an optimized NoC router architecture called LBNoC. Various techniques em-

ployed to reduce the latency and the area of the NoC router are detailed in this chapter.

In Chapter 7: Conclusions, the contributions of this thesis, along with some im-

portant conclusions have been summarized.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, a brief background on FPGAs has been provided. Later, we discuss the

basic concepts of NoCs and explain various factors influencing the performance of the

same. Finally, various software and FPGA based NoC simulators have been reviewed.

2.1 FIELD PROGRAMMABLE GATE ARRAY

The state-of-the-art FPGAs mainly contain:

• Configurable logic blocks

• Routing fabric

• Input/output blocks

• Embedded hard blocks

Fig. 2.1 shows the generic architecture of an FPGA. The Configurable logic blocks

(CLBs) are placed in an island fashion. The CLBs are interconnected through the flex-

ible routing fabric. The I/O blocks are placed at the borders of the grid to enable the

off-chip communications. The DSP blocks and the Block RAMs constitute the embed-

ded hard blocks. These hard blocks are placed in the columnar configuration and are

spread across the FPGA. Further, the DSP blocks can be cascaded with one another

through the dedicated interconnections.

7

2. Background and Literature Review

Figure 2.1: A generic architecture of Xilinx FPGA

2.1.1 Configurable logic blocks

All the sequential and combinational logic can be implemented employing the CLBs. In

the Xilinx 7 series FPGAs, each CLB contains a pair of slices which can work indepen-

dently (Xilinx Inc (2016)). Each slice is made up of four Lookup Tables (LUTs), eight

Flip-flops (FFs), multiplexers and the carry logic. Various functions can be generated

by combining LUTs through the multiplexers. Fig. 2.2 shows the structure of a CLB.

2.1.2 Routing fabric

Connections between various components of the FPGAs is facilitated through the rout-

ing fabric. The routing fabric consists of the connection boxes and the switch boxes.

2.1.3 Input/output resources

The I/O resources in the FPGA are placed at the periphery to connect with the external

entities. A wide variety of I/O standards along with high speed serial standards are

supported by the FPGAs. Further, the I/O resources are clubbed into banks.

8

2.2. NoCs : an overview

Figure 2.2: Architecture of the Configurable Logic Block (Xilinx Inc (2016))

2.1.4 Embedded hard blocks

Various arbitrary arithmetic operations can be implemented by programming the CLBs.

Also, the CLBs can be used as small memories. But, the CLBs consume more FPGA

area and become slower when implementing many such functions. To provide the flex-

ibility for the designers, modern FPGAs embed the optimized hard-wired ASIC like

blocks such as Block RAMs (BRAMs) and DSPs to perform specific functionalities.

Mapping the functions on embedded hard-blocks improves the performance and re-

duces the power consumption in comparison with the same functions mapped on the

CLBs (Ronak and Fahmy 2016). By employing the hard-blocks in the design, a reduc-

tion in the usage of CLB resources can be observed. The BRAMs (Xilinx Inc 2019)

and DSP blocks (Xilinx Inc 2018) are discussed in detail in Chapter 5.

2.2 NOCS : AN OVERVIEW

The NoC architecture is composed of links, routers, and network interface (Benini and

De Micheli (2002); Dally and Towles (2001); Guerrier and Greiner (2000)). The com-

munication between the routers takes place in the form of packets. In NoC, packets can

be further divided into several flow control units (flits). Flit is the largest number of bits

of data that can be transmitted between two routers at a given point of time. Flow con-

trol determines how the packets are transmitted between two nodes/cores. Specifically,

flow control determines when the flits can be forwarded from one router to the next

router. There exist various kinds of flow control mechanisms such as store-and-forward

9

2. Background and Literature Review

packet switching (Dally and Towles (2004)), virtual cut-through (Kermani and Klein-

rock (1979)), and wormhole switching (Dally et al. (1986)) to transmit the flits. The

Virtual Channels (VCs) mechanism has been implemented in Dally (1992) to prevent

the deadlock and to achieve better performance.

The performance of an NoC architecture depends on various factors such as topol-

ogy, the configuration of the router micro-architectural components, and routing algo-

rithms. All these entities are explained below:

2.2.1 Links

A communication link is composed of a set of wires connecting two routers in the

network. Channel, and link mean a group of wires connecting two entities. Typically,

an NoC link has two physical channels making a full-duplex connection between the

routers.

2.2.2 Router

A router is composed of a set of input ports and output ports, switching matrix con-

necting the input port to output port, and a local port to access the processing element

connected to this router. Fig. 2.3 depicts the micro-architecture of the router. Following

are the pipeline stages of router architecture (Dally and Towles (2001, 2004); Pande

et al. (2005)).

Buffer write: On arrival of head flit at an input port, it is first decoded and is buffered

according to its input Virtual Channel (VC).

Route computation: Head flit contains route information. At this stage, route computa-

tion is performed to determine the output port for the packet. To this end, the head flit

indicates the VC that it belongs to, the VC state is updated, and the next output port is

computed based on routing algorithms. The routing algorithms can be categorized into

oblivious and adaptive algorithms (Jerger and Peh (2009)).

Virtual Channel allocation: The head flit arbitrates for the available VC on its output

port.

Switch allocation: The header flits are arbitrated for accessing the output port.

Switch traversal: On winning the arbitration, the flit moves to the switch traversal stage,

10

2.2. NoCs : an overview

Figure 2.3: An NoC router micro-architecture with M input/output ports, N-virtual
channels at each input port and M × M Crossbar switch (Jerger and Peh 2009)

where it traverses the crossbar and is transmitted on the output port.

Link traversal: Flits travel to the next node.

2.2.3 Network adapter

A Network adapter (NA) or network interface (NI) is the third building block of NoC.

The Processing Elements (PEs) and the network are connected logically, employing

the NA. Each PE may have a distinct interface protocol with respect to the network.

Separation of computation and communication is done with the help of NA.

2.2.4 Topology

The PEs are arranged in a particular pattern with the help of wires/links. This arrange-

ment is called the Topology. The PEs in the NoC can be interconnected in various

topologies such as Mesh-based, Tree-based, and user-specific architectures (Bjerregaard

and Mahadevan 2006; Pande et al. 2005) as shown in Fig. 2.4.

11

2. Background and Literature Review

(a)Mesh (b)Torus (c)BTree (d)FatTree

(e)Ring (f)Star

Figure 2.4: Various NoC topologies

2.2.5 NoC performance parameters

Different NoC architectures are compared by using a standard set of performance met-

rics such as throughput, latency, energy/power, and area overhead (Jerger and Peh

2009).

2.2.5.1 Throughput

It is defined as the maximum traffic accepted by the network, that is, the maximum

amount of information delivered per time unit. For message passing systems, message

throughput can be defined as TP, (Equation 2.1):

TP = (Total Messages completed * Message length) / (Number of PE blocks * Total Time) (2.1)

Here, Total Messages completed means that the whole message has arrived at the

destination node; Message length is the total number of flits; Number of PE blocks is

the number of functional cores involved in communication; Total Time is the difference

of time between the first flit generated, and the last flit received.

2.2.5.2 Average Packet Latency

The latency is defined as the cycle time required by the packet to travel from source pro-

cessing elements to the destination processing elements. The average packet latency is

12

2.3. Related work

given by the equation 2.2:

Avglat = 1/N
N�

i=1

Li (2.2)

where N refers to the total number of flits accepted by the all destination nodes and Li

refers to the latency of the ith flit received by its destination processing element.

2.2.5.3 Area

In the NoC architecture design, the presence of the input buffers, Switch allocator,

crossbar switch and the interfaces results in the silicon area overhead.The area of NoC

architecture is given by equation 2.3 and 2.4:

NoCArea = RoutersArea + LinksArea (2.3)

RouterArea = IBArea +RCLArea + CrossbarArea (2.4)

Where IB is Input Buffer of NoC router, RCL is the Router Control Logic such as

routing logic, VC and Switch allocation logic.

2.2.5.4 Power

The total power consumed by the NoC architecture can be breaken down into router,

links, input/output and clock distribution power. The router power consumption in-

cludes FIFO buffer, routing algorithm, allocator and crossbar switch power. The total

power of NoC architecture is given by 2.5 and 2.6:

PNoC = Prouter + Plink + PInterfaces + Pclk (2.5)

Prouter = PFIFO + Proutelogic + Pallocator + Pcrossbar (2.6)

2.3 RELATED WORK

In this section, state-of-the-art in the area of NoC software simulators and FPGA based

emulators have been introduced.

13

2. Background and Literature Review

2.3.1 Software simulators

Area, performance and power are the important design decision parameters in designing

NoCs. Hence, there is a need to estimate the NoC area, performance and power con-

sumption in the early stages of the design. Researchers rely upon simulators to evaluate

the power and performance of the NoCs. Many of the full-system simulators such as

Gem5 (Binkert et al. 2011) and MARSS (Patel et al. 2011) provide the flexibility

to study the NoCs with many-core systems and other components. The full system

simulators are cycle-accurate. But, when there are a large number of simulated cores,

the time taken is excessive. ZSim (Sanchez and Kozyrakis (2013)) is a parallelized

full-system simulator that proposes a technique in which the simulation is divided into

several small intervals of many thousand cycles. During the simulation of the proces-

sor cores parallelly, the resource contentions are ignored, and the zero load latency has

been employed for all types of memory accesses. By doing so, ZSim achieves speed by

sacrificing accuracy.

Orion simulator (Kahng et al. 2012) includes a set of the architectural area and

power models for on-chip interconnection routers. A classic five-stage pipelined router

with virtual channel flow control has been modeled in GARNET (Agarwal et al. 2009).

GARNET has been integrated with Gem5 (Binkert et al. 2011) full system simulator.

NoC micro-architectural details such as input buffers, routing logic, allocators, and the

crossbar switch are modeled. The workload traffic running on Gem5 can be analyzed

using GARNET.

BookSim 2.0 (Jiang et al. 2013) is a cycle-accurate simulator. It is flexible in terms

of modeling network components. A large set of network parameters that are config-

urable such as routing algorithm, topology, flow control, and router micro-architecture,

are implemented. Noxim (Catania et al. 2015, 2016), is another NoC simulator which

is implemented in SystemC. Noxim is capable of simulating wireless NoCs. NOCulator

(CMU-SAFARI 2018), Access Noxim (Access IC Lab 2018) and VisualNoC (Wang

et al. 2016) are other popular NoC simulators. A modular, open-source NoC simu-

lator based on OMNeT++ (Varga 1999) has been presented in HNOCS (Ben-Itzhak

et al. 2012). Heterogeneous NoCs with variable link capacities and the number of

14

2.3. Related work

VCs per unidirectional port are supported in HNOCS. Statistical measurements such

as latency in between source and destination, throughput and VC acquisition latencies

are provided by HNOCS. An NoC simulator calculating the accurate cycle timings with

wormhole switching has been proposed in Ting-Shuo Hsu et al. (2015). The flit propa-

gation model calculating the flit timings at I/O ports of FIFOs and switches play a vital

role in Ting-Shuo Hsu et al. (2015).

The performance of computer simulation is ever decreasing relative to the next

generation of computers being simulated due to the phenomenon of simulation wall

Angepat et al. (2014). Hence, there is a need for simulation techniques which can yield

the results quickly.

2.3.2 FPGA based NoC simulation frameworks

Due to their prominent features supporting highly parallel operations, reconfigurability

and programmability, FPGAs have become a vehicle for NoC simulation acceleration.

Employing the FPGA fine-grain parallelism, several works such as ProtoFlex (Chung

et al. (2009)), RAMP Gold (Tan et al. (2010)), RAMP White (Chiou et al. (2007)),

RAMP Red (Wee et al. (2007)) have shown that a remarkable improvement in the em-

ulation performance can be achieved.

In Lotlikar et al. (2011), an NoC emulation environment on FPGA called AcENoCs

has been proposed. Both of the software and hardware components of the FPGAs have

been utilized by AcENoCs. The Microblaze softcore processor hosts Traffic generators,

clock generation, and traffic sinks. The generation of the clock on software is flexible

but potentially slow. The hardware platform is the network-on-chip to be emulated.

AcENoCs supports the design of Mesh topology only.

Fast Interconnect Simulation Techniques (FIST) has been proposed in Papamichael

et al. (2011). The time consuming detailed NoC models of full system simulators can

be replaced by FIST as it incorporates a fast and simple packet latency estimator. The

ideas from execution-driven and analytical network modeling simulation models are

combined to build FIST. The latency estimation of a packet is done by determining the

routers traversed by the packet. Latencies depending on the load, are then added to give

15

2. Background and Literature Review

the packet latency. Due to this approach, FIST is not appropriate for a thorough analysis

of networks.

An FPGA based NoC emulation supporting the direct implementation and virtual-

ized implementation has been proposed in Papamichael (2011). The NoCs to be em-

ulated are directly implemented on the FPGA. A Time Division Multiplexing (TDM)

approach is employed to support the virtualized implementation of NoCs. The traffic

tables needed for the simulation are stored in the off-chip DRAM. Thus, the overall sys-

tem performance can be confined by the latency and bandwidth of the DRAM access.

An FPGA-based NoC emulator has been proposed in DART (Wang et al. 2014).

Global interconnect across all the nodes is provided. Any topology can be emulated

by DART, leaving out the resynthesis of design utilizing these global interconnects

and employing a software tool by configuring the routing tables properly. Most of

the FPGA resources are consumed by the global interconnect. DART minimizes the

expense of global interconnect by clustering many nodes into a partition and employing

a crossbar for the clusters instead of a full crossbar for all nodes. This leads to the

complex hardware, and the size of the routing tables becomes larger on increasing the

number of nodes. With a large number of nodes, the off-chip DRAM has to be used to

store the routing tables, which becomes unavoidable.

An FPGA emulation platform called Ultra-Fast has been proposed in Thiem Van

Chu et al. (2015). Ultra-Fast employs two methods enabling swift emulations of larger

NoC architectures on a single FPGA. The time of network being simulated is decoupled

from the time of traffic generation units to model the Synthetic workloads accurately. To

emulate the entire network utilizing more physical nodes, the TDM approach has been

employed. Authors have considered Mesh topology with the look-ahead XY routing

and the credit-based flow control.

AdapNoC, a fast and flexible FPGA based NoC simulator, has been proposed in

Kamali and Hessabi (2016). Various router micro-architectural parameters are config-

urable in AdapNoC. Transplantable Traffic Generators and Receptors running on the

software side are supported. To simulate larger topologies and reducing the simulation

16

2.3. Related work

time drastically, Dual clock virtualization methodology has been employed. AdapNoC

supports Adaptive Toggle Dimension Order Routing (ATDOR) as a known adaptive

routing algorithm. Only Mesh and Torus topologies are supported by AdapNoC. DuC-

NoC (Kamali et al. (2018)) is another version of AdapNoC. DuCNoC employs Xilinx

Zynq-7000 SoC. Two soft-core ARM processors are used to model the traffic genera-

tor and traffic receptors. Employing an approach similar to DuCNoC, an FPGA based

NoC emulator has been proposed in Drewes et al. (2017). An NoC of size 8× 8 can be

emulated in Drewes et al. (2017).

An NoC RTL generator called CONNECT has been proposed in Papamichael and

Hoe (2015). For any topology design, the route information of packets is stored in the

routing table. Packets are routed from source to destination using these tables. CON-

NECTs implementation of the NoC topology uses LUTs for designing input memory

buffers. This causes high resource usage when using wide buffer sizes.

Bufferless customized unidirectional Torus topology with Deflective routing has

been implemented in Hoplite (Kapre and Gray (2015)). By incorporating bufferless

deflective routing, the hardware required by buffers can also be saved, reducing power

consumption. Crossbar’s cost is reduced considerably by doing so as the unidirectional

Torus topology accepts packets only from two neighboring ports and a local port, thus

reducing the crossbar complexity. Hoplite supports the design of unidirectional, buffer-

less, deflection-routed torus networks only. Hoplite DSP (Chethan and Kapre (2016))

extends the concepts of Hoplite to map the routers on the DSP48E1 blocks of the Xilinx

FPGA.

Table 2.1 provides a comparison of the state-of-the-art FPGA based NoC simulators

and the proposed work. As seen from Table 2.1, our work supports various standard

NoC topologies and also provides the provision for designing the custom topologies.

The table-based routing algorithm has been implemented to design the custom topolo-

gies and the congestion-aware adaptive routing algorithm to achieve better performance.

Various hard blocks of FPGA, such as DSP48E1 and the BRAMs, are used efficiently

to map the NoC router micro-architectural components.

17

2. Background and Literature Review

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

th
e

pr
op

os
ed

an
d

th
e

ot
he

rF
PG

A
-b

as
ed

N
oC

si
m

ul
at

or
s

FP
G

A
ba

se
d

N
oC

To
po

lo
gy

R
ou

tin
g

R
ou

te
r

FP
G

A
H

w
/S

w
FP

G
A

co
m

po
ne

nt
s

si
m

ul
at

io
n

m
ic

ro
In

te
rf

ac
e

fo
rm

ap
pi

ng
fr

am
ew

or
k

-a
rc

hi
te

ct
ue

ro
ut

er
co

m
po

ne
nt

s

M
es

h
Tr

ee
C

us
to

m
D

oR
Ta

bl
e

A
da

pt
iv

e
N

o.
of

V
C

Pi
pe

lin
e

C
L

B
D

SP
B

R
A

M
ba

se
d

ba
se

d
ba

se
d

po
rt

s
st

ag
es

A
cE

N
oC

s
Y

es
N

o
N

o
Y

es
N

o
N

o
5

2
1

V
5

R
S2

32
Y

es
N

o
N

o
L

ot
lik

ar
et

al
.(

20
11

)
Pa

pa
m

ic
ha

el
Y

es
N

o
N

o
Y

es
N

o
N

o
4/

8/
12

2/
4/

8
-

V
5

U
A

R
T

Y
es

N
o

N
o

Pa
pa

m
ic

ha
el

(2
01

1)
Z

ha
ng

Y
es

N
o

N
o

Y
es

N
o

N
o

5
2/

4
3+

V
6

-
Y

es
N

o
N

o
Z

ha
ng

et
al

.(
20

13
)

D
A

R
T

Y
es

Y
es

N
o

Y
es

N
o

N
o

up
to

8
up

to
4

5
V

6
PC

Ie
Y

es
N

o
Y

es
W

an
g

et
al

.(
20

14
)

U
ltr

aN
oC

Y
es

N
o

N
o

Y
es

N
o

N
o

5
1/

2
4/

5
V

7
-

Y
es

N
o

Y
es

T
hi

em
V

an
C

hu
et

al
.(

20
15

)
A

da
pN

oC
Y

es
N

o
N

o
Y

es
N

o
Y

es
5

up
to

4
4/

5
V

7
PC

Ie
Y

es
N

o
Y

es
K

am
al

ia
nd

H
es

sa
bi

(2
01

6)
H

op
lit

e
D

SP
U

ni
di

re
ct

io
na

l
N

o
N

o
Y

es
N

o
N

o
3

B
uf

fe
rl

es
s

-
V

7
-

Y
es

Y
es

N
o

C
he

th
an

an
d

K
ap

re
(2

01
6)

To
ru

s
SR

N
oC

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

5
up

to
8

5
V

7
PC

Ie
Y

es
N

o
Y

es
X

u
et

al
.(

20
19

)
Pr

op
os

ed
Y

es
Y

es
Y

es
Y

es
Y

es
Y

es
3/

5/
7

2/
4/

8
2/

5
A

rt
ix

7
U

SB
-U

A
R

T
Y

es
Y

es
Y

es
w

or
k

Z
yn

q
70

00

18

CHAPTER 3

ANALYSIS AND PERFORMANCE ENHANCEMENT
OF BOOKSIM 2.0 NOC SIMULATOR

The Network-on-Chip (NoC) is now an integral component in the MPSoCs and CMPs

(Dally and Towles 2001). The communication time can influence the total turnaround

time of the application significantly (Pande et al. 2005). NoC researchers have relied

on cycle-accurate power and performance software simulators (viz. Orion (Kahng et al.

2012) (Kahng et al. 2015)), GARNET (Agarwal et al. 2009), Noxim (Catania et al.

2015) (Catania et al. 2016)), SICOSYS (Puente et al. 2002), BookSim 2.0 (Jiang et al.

2013)) to explore the micro-architectural design space of on-chip networks. Amongst

these, BookSim 2.0 has emerged as one of the prominent NoC performance analysis

tools.

In this Chapter, the performance of the BookSim 2.0 NoC simulator considering

various memory configurations of the system is analysed. Also, the locations at which

most of the execution time is spent during simulation are identified. Programming

paradigms are applied to improve the performance of the simulator.

3.1 METHODOLOGY

BookSim 2.0 offers network parameters such as topology, routing algorithm, flow con-

trol, and router micro-architecture, including buffer management and allocation schemes

as input parameters for simulating NoC architectures. Simulating large NoC archi-

tectures take days together to complete. Hence, there is a need for fast design space

19

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

E
X

E
C

U
T

IO
N

 T
IM

E
 (

H
O

U
R

S
)

TOPOLOGY SIZE (nxn)

EXECUTION TIME VS TOPOLOGY SIZE MESH WITH UNIFORM TRAFFIC

EXECUTION TIME (HOURS) of n=2D
EXECUTION TIME (HOURS) of n=3D
EXECUTION TIME (HOURS) of n=4D

Figure 3.1: BookSim 2.0 Execution time of k-ary n-dimensional Mesh networks(n=2,3
and 4).

exploration of NoC architectures, which help designers to reduce the time and effort

spent in the development of a common on-chip framework. From Fig. 3.1, it can be

observed that the execution time of BookSim 2.0 simulator varies as the topology size

is increased. It can be seen that the execution time varies from 6 seconds to 10 days

simulating 4×4 and 54×54 NoC architectures of Mesh topology. By increasing the di-

mension from 2 to 3 and 4, the time taken can be even more. The increase in execution

time could be because of cache behavior and the way memory is accessed. To analyze

the cache behavior and memory access patterns, we use profiling methodology.

Profiling refers to the ability to measure an application’s performance and diagnose

potential problems. Profilers can identify the Hotspots where the program spends most

of its execution time and memory access patterns. Profiling BookSim 2.0 reveals the

dependence of the cache and memory behavior on the input data. Valgrind (Nethercote

and Seward (2007)) is used to map the cache and memory usage patterns of BookSim

2.0. Valgrind is a dynamic binary instrumentation framework for building dynamic

binary analysis tools. Cachegrind tool of the Valgrind framework has been employed

for profiling BookSim 2.0 considering various cache configurations.

Based on profiling, the best cache configuration in which the cache misses is mini-

20

3.2. Profiling and Software optimization techniques

mum and memory access patterns of BookSim 2.0 which help in improving the perfor-

mance, are identified. Further, we use software optimization techniques such as removal

of unused functions, loop optimizations and pre-increment operator for non-primitive

data types to minimize the cache misses.

To reduce the execution time of BookSim 2.0, optimization methodologies such

as vectorization and thread parallelization are employed. The OpenMP programming

model is used for parallelizing and vectorizing the source code of BookSim 2.0.

3.2 PROFILING AND SOFTWARE OPTIMIZATION TECHNIQUES

The tools and principal works that have used profiling to study application behavior

and works that have optimized the application for performance are discussed below.

Optimizations based on program input, cache access behavior and memory reference

patterns are listed.

3.2.1 Profiling based on program input

Understanding the influence of input data on the overall performance of an application

is a crucial aspect of software development. Frameworks have been proposed to dy-

namically estimate the size of the input to derive cost functions (Coppa et al. (2014b)

Nistor and Ravindranath (2014)). Input-sensitive profiling (Coppa et al. (2014a)) dis-

covers workload-dependent performance bottlenecks. The growth rate of an application

is recorded as a function of input sizes to the routines of the application in the aprof

tool (Coppa et al. (2014a)). Algorithmic profiler (Zaparanuks and Hauswirth (2012))

infers an empirical cost function by automatically determining the “inputs” to a pro-

gram, by measuring the program’s “cost” for a given input. To achieve low overheads

for deployment in data centers, instant profiling (Mahlke et al. (2013)) interleaves na-

tive execution and instrumented execution according to configurable profiling duration

and frequency parameters. Causal profiling (Curtsinger and Berger (2015)) runs per-

formance experiments to calculate the impact of any potential optimization by virtually

speeding up code during program execution. Pipelined Profiling and Analysis on Multi-

core Systems-PiPA (Zhao et al. (2008)) aims to reduce the cost of user-defined analysis

tools in instrumentation by parallelizing dynamic program profiling in multi-core sys-

21

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

tems.

3.2.2 Profiling for cache performance

Prefetching and profiling can help computing systems better mitigate performance losses

due to limited cache bandwidth. Cache profiling can improve a program’s performance

by focusing on the programmer’s attention on problematic code sections and provid-

ing insight into appropriate program transformations. Several proposals exist to use

profile based application-level knowledge to manage the contents of caches (Cherniack

et al. (2003)). The Cachetor run-time profiling tool (Nguyen and Xu (2013)) identifies

and reports operations generating invariant data values. Cachetor uses dynamic depen-

dence profiling and value profiling to expose caching opportunities to improve program

performance. Phase guided cache profiling (Sembrant et al. (2012)) has been used to

model the cache miss ratio as a function of the cache allocation over time. The Pharo

code profiler (Infante (2014)) addresses the problem of identifying memory savings op-

portunities by employing object caches in the context of the Smalltalk programming

language. Pharo identifies and monitors instance creations and the mutations of these

instances. Valgrind variants have been used to study the cache behavior of multimedia

applications to optimize performance (Asaduzzaman and Mahgoub (2006)). The CProf

cache profiling system (Lebeck and Wood (1994)) lets programmers identify hot spots

by providing cache performance information at the source-line and data-structure level.

3.2.3 Memory usage based profiling

Memory accesses have a significant influence on the total application performance.

Several profiling frameworks have been proposed to analyze memory accesses in appli-

cations and input dependent main memory growth patterns. The Toddler framework

(Nistor et al. (2013)) implemented for Java applications, reports loops whose com-

putation has repetitive and partially similar memory-access patterns across iterations.

MemInsight (Jensen et al. (2015)) implements fine-tuned source-code instrumentation

to provide time-varying analysis of the memory behavior of JavaScript applications.

JSWhiz (Pienaar and Hundt (2013)) is a compiler extension for analyzing memory

leaks in JavaScript programs. LeakChaser (Xu et al. (2011)) is a specification-based

22

3.3. Profiling, Performance Optimization Tools and Experimental methodology

technique that can capture unnecessary references leading to memory leaks. Reference

propagation (Yan et al. (2012)) provides information specific to reference producers and

their run-time contexts to reveal inefficiencies in the code. Data-centric profiling for

parallel programs (Liu and Mellor-Crummey (2013)) has been used to measure mem-

ory access latency. Hardware counters are used to attribute latency metrics to variables

and instructions.

3.2.4 Techniques for minimizing Cache misses

Code transformation techniques such as loop unrolling, loop fusion, loop distribution

have been employed in Porterfield (1989) to minimize the cache misses of applications.

In Kowarschik and Wei (2003), Data access optimizations that change the order of

execution of the nested loops are used. These techniques improve the temporal locality

of the cache, reducing the cache misses. In Song et al. (2003), techniques such as loop

invariant code motion, loop unrolling and loop peeling have been demonstrated.

3.2.5 Performance improvement of applications

The performance of an application can be improved by using techniques such as vector-

ization and threading. Larsen et al. (2005) vectorizes operations in the important loops

of a program to improve overall resource utilization, allowing for software pipelines

with shorter initiation intervals. In Nie et al. (2010), two ways of exploiting the data

parallelism in Java using vectorization are introduced. In Randall and Lewis (2002),

OpenMP programming model has been employed to parallelize the Ant colony opti-

mization algorithm.

3.3 PROFILING, PERFORMANCE OPTIMIZATION TOOLS AND EXPERI-
MENTAL METHODOLOGY

Profiling has been employed for measuring the application performance, identifying

Hotspots, and diagnosing potential problems. Valgrind (Nethercote and Seward (2007))

has been used for profiling BookSim 2.0. Cachegrind, one of the tools of Valgrind suite

is used to simulate the behavior of a program with the cache hierarchy and branch

predictor of the system. Cachegrind simulates a system with independent first-level

(L1) instruction and data caches(I1 and D1), backed by a unified last-level cache(LL).

23

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

Callgrind - another tool of Valgrind suite has been employed to record call history of

the functions in BookSim 2.0. KCachegrind - a GUI based tool is used for identifying

the Hotspots of BookSim 2.0. Employing these tools, the best cache configuration in

which the cache misses are minimum is identified. Also, memory access patterns of

BookSim 2.0 which help in improving the performance, are identified.

Cppcheck (Daniel Marjamki (2011)) is used to detect the types of bugs that the

compilers normally do not detect, such as unused functions. The techniques such as

reversing loop iterations and replacing post-increment operator with pre-increment op-

erator etc. have been adopted to reduce the cache misses. Further, vectorization and

thread parallelization techniques are applied to improve the performance of BookSim

2.0. Intel Advisor suite (Intel Corporation (2017)) has been employed to identify the

top time-consuming loops of BookSim 2.0. Based on these analyses, we employ the

OpenMP programming model to parallelize the top time-consuming loops of BookSim

2.0.

3.3.1 Experimental methodology

The cache design and BookSim 2.0 configuration parameters considered for experi-

ments in this work are shown in Table 3.1. Cache simulation has been performed con-

sidering the Cachegrind simulator. Various cache configurations shown in Table 3.2

are simulated using Cachegrind tool of Valgrind suite to analyze the cache behavior

and memory usage of BookSim 2.0 considering various topology sizes. Based on these

analyses, the best cache configuration with a minimum number of cache misses has

been identified. The optimization techniques such as reversing loop iterations, removal

of unused functions, and replacing post-increment operator with pre-increment operator

have been adopted to reduce the cache misses.

Further, techniques such as vectorization, and thread parallelization are employed

to speedup the simulation execution time of BookSim 2.0.

24

3.4. Results and Discussion

Table 3.1: Experimental setup

System Configuration

Cache Hierarchy (I1+D1)L1 and LL
L1 Cache size 32KB and 64KB
Last Level (LL) Cache size 512KB 4MB and 8MB
L1, LL Cache Line size 32B and 64B
Write Policy Write Allocate
Page Replacement LRU
L1 Associativity 2,4 and 8-way
LL Associativity 4,8 and 16-way
Tools used Valgrind, Cachegrind, Kcachegrind,

Intel Advisor and Cppcheck
Network Configuration Input to BookSim 2.0

Topology Type Mesh and Torus
Network size 4× 4, 6× 6,, 30× 30
Traffic Pattern Uniform random
Number of Virtual Channels 8
Virtual Buffer Size 8
Packet Size 20 flits
Sample Period 1000 cycles
Maximum Number of Samples 10
Latency Threshold 109

Injection Rate 0.005
Routing Algorithm Dimension Order Routing

Table 3.2: Different L1 Instruction(I1), L1 Data (D1) and Last Level (LL) Cache Con-
figurations Used In Experiments

L1 cache configuration LL cache configuration

Sl No. I1 and Associativity Block Sizes LL Associativity Block Sizes
D1 cache sizes cache sizes

1 32KB/32KB 2,4,8-Way 32B,64B 512KB 4,8,16-Way 32B,64B
2 64KB/64KB 2,4,8-Way 32B,64B 8MB 4,8,16-Way 32B,64B

3.4 RESULTS AND DISCUSSION

3.4.1 Identifying the best cache configuration

The performance of cache memory is studied considering various cache and topology

sizes. 12 different cache configurations are employed for First level Instruction cache

(I1), First Level Data cache (D1), and Last Level Cache (LL) for analyzing the effect of

cache size, block size and associativity as shown in Table 3.2. BookSim 2.0 simulations

are run for 2D Mesh topology of sizes ranging from 4× 4, 6× 6, ... , 30× 30.

Cache misses are classified as Compulsory, Capacity, and Conflict misses. The

25

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

cache performance can be improved by reducing these misses. The compulsory misses

can be minimized by increasing the block size. But, this may lead to an increase in

conflict misses. The larger associative cache can be employed in order to minimize

conflict misses. As the cache size increases, the capacity misses will be minimized as

larger caches are available to store the program data. In Fig. 3.2 and 3.3, the values are

obtained by computing the average MPKIs of 14 different network sizes considering all

the cache configurations, as shown in Table 3.2 .

In Fig. 3.2 and 3.3, each bar represents a particular cache configuration. The values

are obtained by averaging the MPKI of 14 experiments of Mesh topology from 4 × 4,

6× 6, ... , 30× 30 network size. All the other values are computed in a similar way.

3.4.1.1 L1 instruction (I1) cache analysis

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

32KB 64KB 32KB 64KB

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> I1 CACHE SIZE <-----64B CACHE LINE------>

AVERAGE I1 MPKI OF BOOKSIM2.0-MESH TOPOLOGY

2way, L1 Instruction cache
4way, L1 Instruction cache
8way, L1 Instruction cache

6
.6

6

4
.6

4

3
.1

6

2
.4

52
.7

4
.1

9

1
.1

8

0
.0

7

1
.7

4

2
.3

5

0
.5

0
.1

3

Figure 3.2: Average I1 MPKI of BookSim 2.0 for Mesh topology.(MPKI is averaged
over topology sizes mentioned in Table 3.1 and L1 cache configurations were varied as
shown in Table 3.2)

Effect of cache size on I1 cache misses: From Fig. 3.2, it can be seen that I1 cache

misses are reduced by 30.3% when the cache size is increased from 32KB to 64KB for

2-way, 32B line I1 cache. Considering 64B cache line for the same configuration, the

cache misses are reduced by 22.47%.

As shown in Table 3.3, 2.73% to 45.24% reduction of misses is observed for all the

26

3.4. Results and Discussion

other cache configurations when I1 cache size is increased from 32KB to 64KB.

Effect of associativity on I1 cache misses: From Fig. 3.2, it can be seen that when

the cache configurations are changed from 2-way to 4-way, considering 32KB I1 cache

with 32B line size, the misses are reduced by 59.45%. When the cache configurations

are changed from 2-way to 8-way, the misses reduced by 73.87%.

A reduction of 56.40% to 74.00% is observed by replacing 2-way I1 cache by cor-

responding 8-way I1 cache as shown in Table 3.3. Conflict misses are reduced when

the associativity is increased from 2 to 4-way and 2 to 8-way, as more blocks in the set

can be accommodated.

Effect of cache line size on I1 cache misses: It can be seen from Fig. 3.2 that, for

2-way 32KB I1 cache, by increasing the cache line size from 32B to 64B, the misses

are reduced by 30.33%. This is due to a good spatial locality of reference.

The reduction of misses from 32.7% to 91.8% is observed for all the other cache

configurations when I1 line size is increased from 32B to 64B, as shown in Table 3.3.

Based on the above observations, maximum cache miss reduction of 98.94% can be

seen when moving from 2-way, 32KB I1 cache with 32B line to 4-way, 64KB I1 cache

with 64B line.

Table 3.3: Effect on misses due to various I1 and D1 cache configurations

Reduction in I1 Misses

Configurations Design Choices Reduction in Misses
32KB vs 64KB 2,4,8-way & 32B,64B 2.73% to 45.24%
2-way vs 8-way 32KB,64KB & 32B,64B 32.7% to 91.8%
32B vs 64B 2,4,8-way & 32KB,64KB 56.40% to 74.00%

Reduction in D1 Misses
Configurations Design Choices Reduction in Misses
32KB vs 64KB 2,4,8-way & 32B,64B 5.16% to 5.80%
2-way vs 8-way 32KB,64KB & 32B,64B 0.78% to 3.35%
32B vs 64B 2,4,8-way & 32KB,64KB 21.16% to 22.00%

3.4.1.2 L1 data (D1) cache Analysis

Effect of cache size on D1 cache misses: An increase in the size of D1 cache in an

incremental manner yields to improved D1 cache performance. From Fig. 3.3, for 2-

27

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

 0

 20

 40

 60

32KB 64KB 32KB 64KB

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> D1 CACHE SIZE <-----64B CACHE LINE------>

AVERAGE D1 MPKI OF BOOKSIM2.0- MESH TOPOLOGY

2way, L1 Data cache
4way, L1 Data cache
8way, L1 Data cache

4
7
.8

1

4
5
.8

7

3
8
.2

6

3
5
.2

8

4
6
.7

6

4
4
.3

6

3
6
.6

8

3
4
.7

6

4
7
.4

4

4
4
.4

5

3
7
.0

2

3
5
.4

5

Figure 3.3: Average D1 MPKI of BookSim 2.0 for Mesh topology. (MPKI is averaged
over topology sizes mentioned in Table 3.1 and L1 cache configurations were varied as
shown in Table 3.2)

way D1 cache with 32B line, when the configurations are changed from 32KB to 64KB

cache, the misses are reduced by 4.18%. For 64B cache line, 7.78% reduction in misses

is observed when moving from 32KB to 64KB.

For all other cache configurations, 5.16% to 5.80% reduction of misses were ob-

served on increasing D1 cache size from 32KB to 64KB as shown in Table 3.3.

Effect of associativity on D1 cache misses: In Fig. 3.3, increasing the associativity

from 2-way to 4-way for 32KB D1 cache with 32B line, the misses are reduced by

2.12%. On changing the associativity from 2-way to 8-way, the misses are reduced by

0.77%.

From Table 3.3, 0.78% to 3.35% reduction of misses is observed for all the other

cache configurations on moving from lower to higher associativity level. The conflict

misses arising from blocks of main memory mapping to the same position in the cache

can be reduced by increasing the associativity from 2-way to 8-way.

Effect of cache line on D1 cache misses: From Fig. 3.3, the misses reduced by

19.97% on increasing the cache line from 32B to 64B for 2way, 32KB D1 cache.

28

3.4. Results and Discussion

Reduction of misses from 21.16% to 22.00% is observed for other cache configura-

tions on increasing cache line from 32B to 64B as shown in Table 3.3. Increasing the

cache line, more data can be fetched from LL cache into D1 cache. This reduces the

compulsory misses.

Based on the above observations, maximum cache miss reduction of 27.29% can be

seen when moving from 2way, 32KB D1 cache with 32B line to 4way, 64KB D1 cache

with 64B line.

Comparing I1 and D1 cache analysis, the reduction observed in I1 cache is much

more than D1 cache as I1 caches exhibit better spatial locality of reference.

Based on the above analysis of I1 and D1 caches, medium associative, higher cache

size with larger cache line performs better than all other cache configurations. Our

experiments show that 4-way, (64KB+64KB) L1 cache with 64B line L1 configuration

is appropriate for running the BookSim 2.0 simulations.

3.4.1.3 Last level (LL) cache analysis

The last level cache size of 512KB, 4MB and 8MB are used to identify the appropriate

LL cache configuration. 512KB and 8MB LL cache size have been considered for last

level cache analysis as the changes in cache misses can be observed more clearly.

In Fig. 3.4, the values are obtained by computing the average MPKIs of 14 different

network sizes considering all the cache configurations, as shown in Table 3.2.

Effect of cache size on LL cache misses: From Fig. 3.4, for 4-way LL cache with

32B line, on moving from 512KB to 8MB cache, the misses are reduced by 4.13%.

Similarly, for the 64B cache line, 6.67% reduction in misses is observed. As shown in

Table 3.4, 2.54% to 65.90% reduction of misses were observed for all the other cache

configurations when moving from 512KB to 8MB of LL cache size.

Effect of associativity on LL cache misses: From Fig. 3.4, increasing the associa-

tivity from 4-way to 8-way for 512KB LL cache with 32B line, the misses are reduced

by 2.48%. On moving from 4-way to 16-way, the misses are reduced by 15.7%. Reduc-

tion of misses from 0.86% to 73.21% is observed for all the other cache configurations

29

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

4 8 16 4 8 16

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> ASSOCIATIVITY <-----64B CACHE LINE------>

AVERAGE LL MPKI OF BOOKSIM2.0-MESH TOPOLOGY

512KB LL CACHE

8MB LL CACHE

1
.2

1

1
.1

8

1
.0

2

1
.2

1
.1

6

0
.8

8

1
.1

6

1
.1

5

0
.8

6

1
.1

2

1
.1

4

0
.3

Figure 3.4: Average LL MPKI of BookSim 2.0 for Mesh topology. (MPKI is averaged
over topology sizes mentioned in Table 3.1 and LL cache configurations were varied as
shown in Table 3.2)

Table 3.4: Effect on misses due to various Last Level (LL) cache configurations

Reduction in LL Misses

Configurations Design Choices Reduction in Misses
512KB vs 8MB 4,8,16-way & 32B, 64B 2.54% to 65.90%
4-way vs 16-way 512KB, 8MB & 32B, 64B 0.86% to 73.21%
32B vs 64B 4,8,16-way & 512KB, 8MB 0.87% to 65.11%

on moving from 4 to 8-way and 4 to 16-way respectively, as shown in Table 3.4. The

conflict misses arising from blocks of main memory mapping to the same position in

the cache can be reduced when moving from 4-way to 16-way.

Effect of cache line on LL cache misses: In Fig. 3.4, the misses are reduced by

0.83% by increasing the cache line from 32B to 64B for 4-way, 512KB LL cache. As

seen from Table 3.4, the reduction of misses from 0.87% to 65.11% is observed for

other cache configurations. Increasing the cache line from 32B to 64B, more data can

be fetched from the main memory to LL cache and the possibility of finding the required

data will be high. This reduces the compulsory misses.

Based on the above analysis of LL cache, higher associative, higher cache size with

30

3.4. Results and Discussion

Table 3.5: Analysis of miss rates of Hotspot methods in BookSim 2.0

24× 24 Mesh topology

Method Name I Refs (32KB+32KB) (64KB+64KB) Reduction
L1 Miss L1 Miss of Misses

Simulate(BookSimConfig) 14.5 2.12 1.85 12.73%
TrafficManager::Run() 14.1 2.07 1.72 16.91%
TrafficManager::Step() 14.1 2.07 1.72 16.91%
TrafficManager::SingleSim() 14.1 2.07 1.72 16.91%
Network::Evaluate() 6.32 0.71 0.64 9.86%
Router::Evaluate() 5.81 0.53 0.48 9.44%
IQRouter::InternalStep() 5.21 0.49 0.41 16.33%
Network::WriteOutput() 3.42 0.38 0.37 2.63%
Network::ReadInputs() 3.91 0.32 0.29 9.37%
SparseAllocate::Clear() 3.12 0.26 0.21 19.23%

larger cache line performs better than all other cache configurations. From our exper-

iments, 16-way, 8MB LL cache with 64B line LL cache configuration is found to be

appropriate for running the BookSim 2.0 simulations.

By all these observations, it can be inferred that 4-way, (64KB+64KB) L1 cache

with 64B cache line and 16-way 8MB LL cache with 64B line is the optimal cache

configuration for running BookSim 2.0.

3.4.2 Hotspot and CPI analysis

The instruction references, L1(I1+D1) and LL cache misses for all the methods of

BookSim 2.0 are extracted by employing Kcachegrind tool. The methods shown in

Table 3.5 are identified as hotspots, as most of the execution time is spent in them.

The reduction of misses from 2.1% to 24.22% is observed on moving from 32KB+32KB

L1 cache to 64KB+64KB L1 cache configuration for all the other hotspot methods of

BookSim 2.0 for topology size varied from 4× 4 to 30× 30.

CPI is one of the critical parameters to measure the performance of BookSim 2.0

with the worst and best cache configurations. From Fig. 3.5, it can be seen that for

the worst cache configuration, i.e. 2-way, 32KB+32KB L1 cache, 4-way 512KB LL

cache with 32B line, CPI is 5.68 for 14×14 Mesh Topology. Employing the best cache

configuration, i.e. 4-way, 64KB+64KB L1 cache, 16-way 8MB LL cache with 64B

31

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

 0

 1

 2

 3

 4

 5

 6

 7

4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
Y

C
L
E

S
 P

E
R

 I
N

S
T

R
U

C
T

IO
N

TOPOLOGY SIZE(nxn)

CPI OF BOOKSIM2.0 SIMULATOR WITH DIFFERENT CACHE CONFIGURATION-MESH TOPOLOGY

2way,32KB+32KB L1,4way,512KB LL,32B Cache Line
4way,64KB+64KB L1,16way,8MB LL,64B Cache Line

Speedup

1
.8

3

2
.4

4

3
.8

6

5
.2

9 5
.6

4

5
.6

8

5
.6

3

5
.5

7

5
.4

8

5
.3

7

5
.2

4

5
.1

2

4
.9

7

4
.8

1

1
.3

9

1
.4

6

1
.4

5

1
.4

2

1
.4

1
.3

9

1
.3

8

1
.3

8

1
.5

1

2
.0

1

2
.7

3 3
.0

9

3
.1

5

3
.1

3

1
.3

2 1
.6

7

2
.6

6

3
.7

3 4
.0

3

4
.0

9

4
.0

8

4
.0

4

3
.6

3

2
.6

7

1
.9

2

1
.6

6

1
.5

8

1
.5

4

Figure 3.5: CPI for BookSim 2.0 running various sizes of Mesh topology

line size, the CPI reduces to 1.39. Speedup of 4.1× is observed when the best cache

configuration is used. For the smaller Mesh topology sizes, the cache misses are lower

as there is less traffic generated. Hence, the speedup for the topology sizes 4 × 4 and

6 × 6 is in the range of 1.32× to 1.67×. As the topology size increases, the higher

cache configuration yields better performance. Hence, it can be observed in Fig. 3.5

that the speedup achieved for the larger topology sizes is in the range of 2.66× to 4.04×.

From these experiments, it is evident that increasing cache configuration improves the

performance of BookSim 2.0 simulations.

3.5 OPTIMIZATION STRATEGIES

In this section, the techniques which are used to optimize the cache misses have been

explained. The best cache configuration for BookSim 2.0 has been identified using

Valgrind profiling tool. Further, the cache misses have been minimized and the perfor-

mance of BookSim 2.0 is improved by considering 4-way, (64KB+64KB) L1 cache and

16-way, 8MB LL cache with 64B block size cache configuration.

3.5.1 Minimizing the cache misses
3.5.1.1 Removal of unused functions

Cppcheck (Daniel Marjamki (2011)), a static analysis tool, has been employed to reduce

the cache misses of BookSim 2.0. Table 3.6 shows the list of unused functions in various

32

3.5. Optimization Strategies

Table 3.6: Unused functions in BookSim 2.0 source code

File Name Line Number Unused Function Name

outputset.cpp 46 Add()
module.cpp 80 Debug()
network.cpp 260, 283 DumpChannelMap(), DumpNodeMap()
iq router.cpp 2308 GetBufferOccupancyForClass()

source files of BookSim 2.0. These unused functions are removed from the source code.

As shown in Fig. 3.6, the cache misses for 30×30 sized mesh network is 49.23M for the

execution that contains the unused function. Removing the unused functions, the misses

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
A

C
H

E
 M

IS
S

E
S

 I
N

 M
IL

L
IO

N

TOPOLOGY SIZE(nxn)

CACHE MISSES REMOVING UNUSED FUNCTIONS OF BOOKSIM2.0

Misses-Before removal of unused functions
Misses-After removal of unused functions

0
.9

5

1
.9

6

3
.3

9 5
.8

3

7
.4

7 1
0
.2

5 1
3
.4

1 1
6
.8

6 2
0
.9

6 2
5
.5

5

3
0
.7

1

3
6
.3

5

4
2
.3

5

4
9
.2

3

0
.5

9

1 1
.5

7

2
.1

5

3
.2

1

4
.3

2

5
.5

9

6
.9

6

8
.6

1

1
0
.4

4

1
2
.5

1

1
2
.5

1 1
7
.1

7

1
9
.9

3

Figure 3.6: Cache misses before and after optimization

are reduced to 19.93M (48.83% reduction of misses was observed). Speedup of 1.18×
is observed as shown in Fig. 3.7. By employing this optimization technique, 18.52%

average reduction of misses is observed for all the other Mesh topology. Speedup of

1.01× to 1.43× is observed for all the other network sizes of Mesh topology as shown

in Fig. 3.7.

3.5.1.2 Loop optimization

Loops account for more cache misses relative to other components of a program (Porter-

field (1989)). These misses can be optimized by employing techniques such as loop

unrolling, loop tiling and loop rotation, etc. The technique of loop reversal has been

33

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
P

E
E

D
U

P

TOPOLOGY SIZE(nxn)

SPEEDUP ACHIEVED BY EMPLOYING OPTIMIZATIONS

Speedup achieved by loop optimization technique
Speedup achieved by removal of unused functions

1
.6

1

1
.9

6 2
.1

5
9

2
.7

1

2
.3

2

2
.3

3

2
.3

9

2
.4

2

2
.4

3

2
.4

4

2
.4

5

2
.4

6

2
.4

6

2
.4

7

1
.0

2

1
.0

1 1
.1 1
.1

8 1
.3

2

1
.3

2

1
.4

3

1
.3

9

1
.3

9

1
.4

1

1
.3

2

1
.2

8

1
.2

3

1
.1

8

Figure 3.7: Speedup achieved before and after optimization

employed to reduce the misses. A reduction in misses of 5.34% has been observed

by applying this technique for the loops. From Fig. 3.7 it can be observed that, the

maximum speedup of 2.47× is observed for 30× 30 network topology. From 1.61× to

2.71× speedup has been observed for all the other topology sizes.

The below code snippet shows the technique employed:

Before:

for (int subnet = 0; subnet < subnets; ++subnet) {
for (int n = 0; n < nodes; ++n) {
After:

for (int subnet = subnets; subnet−− ;) {
for (int n = nodes; n−−;) {

3.5.1.3 Pre-Increment Operator

Employing the pre-increment operator instead of post-increment operator in the source

code can improve the performance of an application. The pre-increment operator does

a single operation such as incrementing the value but, the post-increment operator does

three operations: save the current value, increment the value and return the old value.

34

3.5. Optimization Strategies

Table 3.7: Replacing post-increment operator by pre-increment operator

File Name Line Number Function Name Improvement

allocator.cpp 406, 418 SparseAllocator::PrintRequests 2.2 %
islip.cpp 78,102,134,167 iSLIP Sparse::Allocate() 3.2 %

selalloc.cpp
86,115,153,183 SelAlloc::Allocate() 3.4 %
233,244 SelAlloc::PrintRequests() 3.6 %

prio arb.cpp
57 PriorityArbiter::AddRequest() 3.8 %
92,119,141 PriorityArbiter::RemoveRequest() 3.8 %
119,141 PriorityArbiter::Arbitrate() 3.7 %

config utils.cpp
267,278,285 Configuration::WriteFil() 3.6 %
302,311,318 Configuration::WriteMatlabFile() 3.9 %

anynet.cpp

93,100,105,111,120 AnyNet:: ComputeSize() 3.3 %
143,158,181,186 AnyNet:: BuildNet() 3.9 %
272,282,297,315 AnyNet::buildRoutingTable() 3.4 %
489 AnyNet::readFile() 3.1 %

outputset.cpp 72 OutputSet::Add 3.2 %

trafficmanager.cpp
1404,1415 TrafficManager:: DisplayRemaining 3.5 %
1484,1590 TrafficManager:: SingleSim() 3.9 %

The performance of an application is not affected, using pre and post-increment when

the data type is primitive. For the non-primitive data types, using pre-increment op-

eration improves the performance. Cppcheck tool has been used to identify the post-

increment operators in the C++ source code of BookSim 2.0.

$ cppcheck −−enable=performance /booksim/src/

The above mentioned command detects the post-increment operators in the source code

of BookSim 2.0. It can be seen that the output of Cppcheck contains names of methods

in the classes of source code and line number of post-increment operator.

Output:

/booksim2-master/src/trafficmanager.cpp:1403]: (performance)

Prefer prefix ++/- - operators for non-primitive types.

Table 3.7, shows the different locations of the code which are using post-increment op-

erators. These operators are replaced by pre-increment operator in 8 source files, 42

lines of BookSim 2.0. As seen from the “Improvement” column of the table, the cache

misses are reduced from 2.2% to 3.9%.

3.5.2 Improving performance of BookSim 2.0

The techniques such as vectorization, multi-threading and OpenMP programming mod-

els are employed to parallelize the portions of the BookSim 2.0 source code. The most

35

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

time-consuming loops are identified employing the Intel Advisor tool. Memory access

patterns have an impact on improving the performance of an application. The Intel

vectorization tool has been employed to identify the stride access patterns of BookSim

2.0. 17% of memory instructions are unit stride, 34% of memory instructions are fixed

non-unit stride and 49% of memory instructions are variable stride after annotating Sin-

glesim method of TrafficManager class of BookSim 2.0. Based on these observations,

the performance of BookSim 2.0 has been improved by changing unaligned memory

accesses to aligned memory access. The compiler directive shown below is inserted in

the source files of BookSim 2.0 to change unaligned to aligned memory access based

on memory access pattern analysis as shown in Table 3.8.

#pragma omp simd aligned()

Table 3.8: Identifying the memory access pattern of BookSim 2.0 source code

Memory Access Pattern Source Nested Function Name Line Number

Constant stride
trafficmanager.cpp RetireFlit

672
680

stl map.h construct 1521

Uniform stride

credit.cpp New 52
network.cpp WriteCredit 229
new allocator.h construct 104
stats.cpp AddSample 107

trafficmanager.cpp
step

1267
1268

RetireFlit 649

Variable stride

credit.cpp Reset 47, 48,49
credit.cpp New 58
network.cpp WriteCredit 229
new allocator.h construct 104
stats.cpp AddSample 114

trafficmanager.cpp

step
1252
1253

RetireFlit

655, 660, 673
678, 679, 681
686, 692, 696
711, 731, 736, 752

Further, OpenMP programming model and SIMD constructs are employed to par-

allelize and vectorize the most time-consuming portions of BookSim 2.0. Execution

times of sequential code with parallel code are compared considering different network

topology size of BookSim 2.0 with Mesh topology, as shown in Fig. 3.8. The speedup

36

3.5. Optimization Strategies

of 2.93× as shown in Fig. 3.9 has been achieved by parallelizing the sequential code

of BookSim 2.0 using OpenMP constructs considering 30 × 30 network size of Mesh

topology. 1.07× to 3.0× speedup was observed for all the other sizes of Mesh topology.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 4 8 12 16 20 24 28 32

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

TOPOLOGY SIZE(nxn)

PEFORMANCE IMPROVEMENT OF BOOKSIM2.0 USING OPENMP, OPENMP+SIMD

Normal Execution of Booksim2.0
OpenMP based execution of Booksim2.0

OpenMP+SIMD based execution of Booksim2.0

Figure 3.8: Simulation execution times before and after improvements

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
p
e
e
d
u
p

TOPOLOGY SIZE(nxn)

SPEEDUP OF BOOKSIM2.0 USING OPENMP AND OPENMP+SIMD

Speedup achieved by using OpenMP programming
Speedup achieved by using OpenMP+SIMD programming

1
.0

7 1
.2

5

1
.6

5

2
.1

3

2
.2

5

2
.2

3

2
.3 2

.4 2
.5

4

2
.5

5

2
.5

4

2
.2

4

2
.9

3

3
.9

7

3
.3

7

3
.0

1

3
.3 3
.4

3

3
.2

3
.6

9

2
.9

9

2
.9

7

2
.8

8 3
.0

4

3

2
.6

4

3
.4

3

Figure 3.9: Speedups with Mesh topology of varying sizes

Also, the SIMD construct is used with the OpenMP programming model to achieve

fine-grain parallelization. By using SIMD with OpenMP model, the performance im-

provement of 3.97× is observed for 4×4 Mesh topology. And, the speedup from 2.64×
to 3.69× is observed for all the other sizes of Mesh topology. The overall traffic statis-

tics of BookSim 2.0 observed in both the executions matched each other. The pragma

37

3. Analysis and performance enhancement of BookSim 2.0 NoC simulator

constructs used to parallelize and vectorize the code are shown below:

#pragma omp parallel for

#pragma omp parallel simd for

From Fig. 3.8 and 3.9, it can be inferred that parallelization and vectorization reduce

the execution time of 30 × 30 Mesh topology from 60 to 14 minutes and 12 minutes,

respectively.

3.6 SUMMARY

In this chapter, the profiling and software optimization strategies that can improve the

performance of BookSim 2.0 NoC simulator are discussed. Profiling BookSim 2.0 helps

in understanding the effect of various input parameters.

The cache design parameters such as cache size, associativity, cache line size, re-

placement algorithm and cache write policy are considered for the experiments. Hotspot

methods of BookSim 2.0 simulator, where most of the execution time is spent, are iden-

tified employing the KCachegrind tool. The software optimization techniques employed

to reduce the cache misses. Vectorization and parallelization are employed to improve

the performance of the BookSim 2.0 simulator. By using the Intel advisor tool, the top

time-consuming loops in BookSim 2.0 source code have been identified. The OpenMP

programming model has been used to parallelize the time-consuming loops in the sim-

ulator.

FPGA based simulation accelerations are proven to provide better speedup and ac-

curacy compared to the software simulators (Angepat et al. (2014)). An FPGA based

NoC simulation acceleration platform is proposed in the subsequent chapters. The pro-

posed framework is capable of design space exploration of standard and custom NoC

topologies considering a full set of micro-architectural parameters.

38

CHAPTER 4

YANOC - AN FPGA BASED NOC SIMULATION
ACCELERATION FRAMEWORK

In this Chapter, an FPGA based NoC simulation acceleration framework supporting

design space exploration of standard and custom NoC topologies considering a full set

of micro-architectural parameters is presented. For conventional NoCs, the standard

minimal routing algorithms are supported. For designing the custom topologies, the

table-based routing has been implemented. A custom topology called Diagonal Mesh

has been evaluated employing the table-based and novel shortest path routing algo-

rithms. A congestion aware adaptive routing has been proposed to route the packets

along the minimally congested path.

4.1 INTRODUCTION

Highly reconfigurable LUTs act as the building blocks of FPGAs. Any arbitrary func-

tion can be realized by employing the LUTs. FPGAs allow the events to be executed

in parallel. Features mentioned above helped the researchers to employ FPGAs for

simulation acceleration by parallelizing various functionalities of a simulator.

To expedite the speed of simulation compared to the software simulators, an FPGA

based NoC simulation framework called YaNoC has been presented in this chapter.

YaNoC supports the design space exploration of standard NoC topologies such as Mesh,

Torus, Ring, and Tree-based topologies along with the Custom topologies. Also, YaNoC

supports the creation of standard and custom routing algorithms, generation of synthetic

39

4. YaNoC - An FPGA based NoC simulation acceleration framework

Table 4.1: Configurable router architectural parameters

Router Parameter Range of values

Topology Mesh based, Ring based, Tree based, Custom
Flit buffer depth Variable

Flit width Variable
Ports 2 to 16

Routing Algorithms Standard minimal routing, Table based
Congestion aware adaptive routing,

Nearest neighbor
Arbitration schemes Round Robin and Priority based

Traffic patterns Uniform random, Bit complement,
Transpose, Random permutation

traffic patterns, and exploration of a full set of micro-architectural parameters.

4.2 YANOC - DESIGN AND IMPLEMENTATION

Fig. 4.1 shows the architecture of YaNoC simulation acceleration engine. YaNoC has

been designed to be highly parameterizable, modular, easily adaptable to new NoC ar-

chitectures as per the design requirements. The list of configuration parameters YaNoC

are shown in Table 4.1. The configuration parameters and their corresponding hardware

modules are detailed in this section.

4.2.1 YaNoC configuration parameters

To provide the maximum flexibility, YaNoC parameterizes all the components of the

NoC. If a design with 32-bit flit width and buffer depth of 8 flits has to be evaluated,

these parameters have to be specified in the configuration file. The Automated Verilog

HDL Generator generates the Verilog code corresponding to this configuration. When

there is a need to evaluate 64-bit flit width and buffer depth to be of 4 flits, the older con-

figuration file can be modified according to the new requirement. Automated Verilog

HDL Generator generates the code for considering this configuration. Similar to the flit

size and flit buffer depth, if there is a need to evaluate the conventional XY and Table

based routing algorithms for Mesh topology, the parameters for routing algorithms can

be modified accordingly.

40

4.2. YaNoC - Design and Implementation

Arbiter

Routing

 Input Buffer

Switch Allocator

 Verilog RTL code
 Generator

Flit Width
Buffer Depth

XY Routing
Table Based
Shortest Path
Nearest Neighbour

Round Robin
Fixed Priority

Flit Width
Buffer Depth

Topology Size
Topology Type
Traffic Pattern
Arbitration Type
Routing Type
Flit Width
Buffer Depth
Number of VCs

Mesh-based
Tree-based
Ring -based
Custom

Uniform Random
Bit Complement
Random Permutation

Transpose

Crossbar Switch

 Input
Ports Output

Ports

 Configuration parametersFunctional Module

 Output Buffer

 Synthesizable
 Verilog RTL code

Figure 4.1: Architecture of the proposed YaNoC FPGA based NoC simulation acceler-
ation framework

4.2.2 Router architecture

The router module consists of micro-architectural components such as I/O buffers,

Route compute logic, Arbitration unit, Crossbar unit, and Traffic generator (Source/Sink).

4.2.2.1 Flit buffer

The incoming flits are stored in buffers implemented employing the FIFO mechanism.

The buffer depth is parameterized to provide the flexibility to explore various kinds of

41

4. YaNoC - An FPGA based NoC simulation acceleration framework

Figure 4.2: (a)Flit types and (b)Packet structure used in experiments. (Time stamp field
is useful in calculating the latency of a packet)

flit width.

4.2.2.2 Flit structure

YaNoC supports flits of variable widths. The structure of the head, body and tail flits

are shown in Fig. 4.2(a). The size of each flit is of 32-bit. The fields for flit type,

destination address, timestamp, and packet id are incorporated in the header flit. Body

flit embodies the fields for flit type and payload. To calculate latency of the network,

the tail flit comprises of timestamp similar to head flit. Fig. 4.2(b) shows the packet

format employed in the experiments. The packet of length 128-bit length comprises of

a head flit, two body flits, and a tail flit.

4.2.2.3 Input/Output ports

It is advantageous to have the reconfigurable ports while building various topologies.

The ring topology has 3 ports in which two of them are used to communicate between

the neighboring cores, and the remaining port is used to connect to the local process-

ing element of that core. Similarly, Mesh and DMesh topologies have 5 and 9 ports

for communication. The provision for variable ports is provided in YaNoC to explore

42

4.2. YaNoC - Design and Implementation

Figure 4.3: Modified router architecture supporting Congestion aware adaptive routing

various custom topologies.

4.2.2.4 Routing algorithms

The standard minimal dimension-order (XY) routing algorithm for conventional NoCs

is supported. Table-based routing is implemented to support the creation of custom

topologies. The output ports to all the destinations in the network are stored in the

LUTs. The entries in routing LUTs are large for larger networks. Distributed RAMs

(DRAM) of FPGA are employed in the proposed architecture to implement the rout-

ing tables. A single DRAM is typically single-bit wide memory with 16-64 elements

constrained to a specific FPGA family. As the entries in routing tables are a maximum

of 3-bit wide, they are mapped very efficiently to DRAMs. A custom topology called

Diagonal Mesh (DMesh) has been evaluated using table-based and a novel shortest path

version of the XY routing algorithm.

The standard and table-based routing algorithms do not consider the congestion

state of the network under analysis for route computation. A congestion aware adaptive

routing has been proposed to consider the traffic condition in the network. The conges-

tion aware adaptive routing algorithm has negligible FPGA area overhead compared to

the conventional XY routing.

43

4. YaNoC - An FPGA based NoC simulation acceleration framework

Fig. 4.3 shows the modified router architecture supporting the Congestion aware

adaptive routing algorithm. The modified router architecture includes the logic for

neighboring router congestion information and adaptive route computation. The work-

ing of the proposed adaptive routing algorithm has been detailed in Section 4.3.4.

4.2.2.5 Arbitration schemes

To ensure fairness in the allocation of resources, round-robin and priority based arbitra-

tion schemes have been implemented.

4.2.3 Traffic generator

The Traffic Generator (TG) module takes care of the generation of various synthetic

traffic patterns. Linear Feedback Shift Register (LFSR) mechanism has been employed

to introduce randomness in the traffic being generated. The TG module is incorporated

into each router. The LFSR modules generate traffic according to the traffic pattern and

the specified injection rate.

To calculate the latency of the network, a source generating the packet inserts 14-bit

timestamp to head and tail flits. The traffic sink is responsible for ejecting the flits and

calculating the latency of the network.

4.2.4 Software tools supporting YaNoC
4.2.4.1 Automated Verilog HDL generator

A Hardware Description Language (HDL) generator has been developed in python to

generate the synthesizable Verilog code of a specified configuration. The automated

Verilog HDL Generator generates the synthesizable Verilog HDL code based on the

specified configuration parameters such as type and size of topology, link width, flit

buffer depth, buffer width, routing algorithm, and arbiter type.

4.2.4.2 Routing table generator

Along with the support for the generation of synthesizable Verilog HDL, YaNoC also

includes the software tools developed in Python to automatically generate routing ta-

bles for Mesh, Torus, Fat tree, and DMesh topologies. The routing table for each node

44

4.2. YaNoC - Design and Implementation

Figure 4.4: A High-level block diagram of YaNoC consisting of Host PC connected to
an FPGA Board.

containing the entries of the shortest path to every other node in the topology is pop-

ulated upon executing these scripts. For example, Routing tables of XY routing for

Mesh-based, Shortest path routing for Ring based topologies, Nearest Ancestor First

for Tree-based topologies is populated depending on the selected configuration.

4.2.4.3 YaNoC portal

Also, YaNoC consists of a JTAG connection between the host PC and the FPGA board.

A portal has been developed for interaction with the simulation engine located on FPGA

and the host PC. Simulation results from the FPGA can be accessed by using the portal,

as shown in Fig. 4.4.

4.2.5 Design phase

To ensure the functional correctness of the NoC synthesized by YaNoC, we split the

software cycle into the correctness and implementation phase. In the correctness phase,

the design to be simulated on FPGA has been thoroughly analyzed considering clock

by clock transitions. The flit traversal through each pipeline stage has been analyzed the

functional correctness. In the implementation phase, the HDL for required NoC design

is generated with the help of Automated Verilog HDL Generator, and it is programmed

on the FPGA using Xilinx Vivado suite.

The proposed platform consists of a host PC, JTAG cable connecting the host PC

and FPGA board, and Xilinx Artix 7 FPGA (XC7A100T). The NoC simulation engine

is hosted on Artix7 FPGA board (Fig. 4.4). The following steps describe the flow of

the YaNoC framework shown in Fig. 4.5.

45

4. YaNoC - An FPGA based NoC simulation acceleration framework

NoC architecture specification

Topology size
Topology type
Buffer depth
Buffer size
Arbitration type
Routing type

Automated
 Verilog HDL Generator

NoC HDL
 Hardware

 Library using
python

NoC architecture design
decision parameters

Synthesize & Configure
FPGA

FPGA Tool
(Xilinx ISE/Vivado)

Simulate NoC Architecture

Target
Scheduled
Application

Binary

 Verilog code

Experimental data profiling

Experimental
results such as
 Latency, Area,
Execution time

.bit
 file

FPGA execution
Raw data

Results

Figure 4.5: Simulation framework flow

1. The configuration file is updated by the user to reflect the correct parameters of

the NoC to be simulated.

2. The YaNoCs automated HDL generator generates synthesizable Verilog HDL.

The bitstream (.bit) file is obtained by Xilinx ISE/Vivado design suites.

3. The .bit file is programmed on the FPGA through the JTAG cable. UART is used

for transferring data from the FPGA to the PC.

4. The NoC to be simulated is programmed on the FPGA. The latency results of

simulation are extracted from the portal developed for interaction with the FPGA

through UART communication.

5. The hardware resource consumption is obtained from the design summary of Xil-

inx ISE/Vivado.

4.3 DESIGN OF MESH AND DIAGONAL MESH (DMESH) TOPOLOGIES

YaNoC is capable of simulating standard and custom topologies. The design of custom

topology is possible because of the table-based routing approach. Along with the sup-

46

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

port for table-based routing approach, the route computation template can be modified

as per the user logic to route the packets in the network.

4.3.1 Design of DMesh topology in YaNoC

To design an application-specific custom topology, interconnection in between nodes

and routing tables along with the other router micro-architectural parameters have to

be specified in the configuration file. This file is given as the input to the Automated

Verilog HDL Generator to generate the synthesizable Verilog HDL code.

4.3.2 Design of DMesh routing algorithm in YaNoC

Table based routing is used to store routing information in case of custom topologies

whose route compute modules are complex to design. Along with the table-based rout-

ing approach, we demonstrate the flexibility of YaNoC in designing a user-specific rout-

ing algorithm for DMesh topology.

The novel routing algorithm for routing the packets in the shortest path has been

designed. The logic for calculating the shortest path can be implemented in the route

compute template. Changes made to the route compute logic can be seen in the code

snippet shown below. Fig. 4.6(a) and 4.6(b) show the 6×6 Mesh and DMesh topologies.

The arrows in red color of Fig. 4.6(a) indicates the route followed by the conventional

XY routing algorithm. In this case, it takes 10 hops to reach the destination “55” from

the source “00”. Employing the proposed novel routing algorithm, the shortest path

between a source and destination pairs has been achieved in the DMesh topology. The

arrows in green in Fig. 4.6(b) represents the route followed by the flits employing the

proposed routing algorithm. It can be seen that it takes only 5 hops from “00” node to

“55” node through the diagonal nodes (“11”, “22” and so on).

Code snippet of shortest path routing algorithm for DMesh topology

module compute(Li,port num next);

/* Lo, Eo, No, Wo, So, NEo, SEo, NWo and SWo are the output

47

4. YaNoC - An FPGA based NoC simulation acceleration framework

(a) 6x6 Mesh topology. (b) 6x6 Diagonal Mesh topology.

Figure 4.6: Mesh and Diagonal Mesh topologies (Red and Green colors indicate the
routes calculated by XY and novel shortest path XY routing algorithms)

ports corresponding to Local, East, North, West, South, NorthEast,

SouthEast, NorthWest and SouthWest directions respectively.

*/

/* Assign 1, 2, 3, 4, 5, 6, 7, 8 and 9 to Local, East, North,

West, South, NorthEast, SouthEast, NorthWest and SouthWest

ports respectively. */

assign Lo = 4’b0001;//LOCAL OUT

assign Eo = 4’b0010;//EAST OUT

assign No = 4’b0011;//NORTH OUT

assign Wo = 4’b0100;//WEST OUT

assign So = 4’b0101;//SOUTH OUT

assign NEo = 4’b0110;//NORTH EAST OUT

assign SEo = 4’b0111;//SOUTH EAST OUT

assign NWo = 4’b1000;//NORTH WEST OUT

assign SWo = 4’b1001;//SOUTH WEST OUT

/* (xc,yc) and (xd,yd) are the current node and destination

node x and y co-ordinates respectively. The route computation

is done by considering these values. */

assign xc = r1[2:0];

48

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

assign yc = r1[7:5];

assign xd = Li[2:0];

assign yd = Li[7:5];

/* Following if-else conditions are checked to find out the

shortest path computation from a current node to the destination

node. */

always@(*)begin

// Condition for NorthEast Output port. If true, NEo will

be the output port.

if (xc[2:0]<xd[2:0]&&yc[2:0]>yd[2:0])

begin

port num next = NEo;

end

//Condition for SouthEast Output port. If true, SEo will

be the output port.

else if(xc[2:0]<xd[2:0]&&yc[2:0]<yd[2:0])

begin

port num next = SEo;

end

// Conditions for rest of the ports can be included as

shown above.

end

endmodule

4.3.2.1 Routing tables

A routing table is stored in each router. The routing table contains route to all the other

routers in the network. Below lines specify the routing table for a Router with ID “0”

in a 2× 2 Mesh topology.

#Router ID Dest Out Port

0 0 //Local

1 1 //East

49

4. YaNoC - An FPGA based NoC simulation acceleration framework

2 4 //South

3 1 //East

Above mentioned syntax is used to design the DMesh topology. The architecture

of the DMesh is shown in Fig. 4.6(b). Each router in the DMesh topology consists of

9-ports for communicating with neighboring nodes. The nodes are interconnected via

links from these ports. Fig. 4.7 shows the interconnection of the Router “12” with all

its neighbors in the DMesh topology.

Below lines enumerate the “Network Topology” entries for the Router with ID “12”.

Router Link From Router Link To

#(port num:src node) (port num:neighbor node)

1 : R12 2 : R13

2 : R12 1 : R11

3 : R12 4 : R02

4 : R12 3 : R22

5 : R12 8 : R03

6 : R12 7 : R01

7 : R12 6 : R23

8 : R12 5 : R21

4.3.3 DMesh topology configuration

YaNoC generates the synthesizable Verilog code, considering the entries in a configura-

tion file. YaNoC supports up to 16 router ports. These ports can be used to interconnect

the router modules to form a custom topology. The nodes have to be interconnected in a

specific manner to form a topology. In YaNoC, the interconnection between source and

destination nodes, along with the port numbers, are enumerated to specify the network

topology. Below code snippet shows the interconnection of two nodes 0 and 1:

#Router Link From Router Link To

50

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

Figure 4.7: Interconnection of the Router 12 with other Routers in DMesh topology

#(port num:src node) (port num:neighbor node)

1:R0 2:R1

#Local Conn Port (Port number for connecting the Processing

Element)

#(port num:node)

0 : R0

0 : R1

The routing table of a node consists of output ports for all the other nodes in the

network. Considering 6 × 6 DMesh topology, the routing table for each Router con-

sists of 36 entries. Each row in the routing table consists of Router ID along with its

output port from the current Router. Along with the above-detailed modifications in the

configuration file, the parameters shown in Table 4.2 are used.

Once all these entries are configured, the Verilog generator of YaNoC generates the

synthesizable Verilog code, which can be imported in Xilinx ISE/Vivado design suite.

The bitstream file generated following the Synthesis, Translation, and Place and Route

processes can be programmed on the FPGA board to simulate the DMesh topology.

51

4. YaNoC - An FPGA based NoC simulation acceleration framework

4.3.4 Congestion aware adaptive routing algorithm for Mesh based topologies

Employing the proposed adaptive routing algorithm, packets are routed along the mini-

mally congested communication path. In a given 2D Mesh topology, if the current and

destination addresses are same ((xc=xd) and (yc=yd)), the flit has reached its destina-

tion and is forwarded via the local port to the processing element. When the current and

destination nodes are different ((xc!=xd) and (yc!=yd)) the flit is forwarded to the neigh-

boring nodes through E/W/N/S directions from the current node based on congestion in

the network.

Congestion weights for each direction are calculated employing the weight calcu-

lation technique. The first priority is given to the West port if (xdiff<0) where xdiff is

(xd-xc). To avoid the deadlock condition, second priority is given to South port, and the

third priority is shared among the East and the North ports. Similarly, when (xdiff>0),

the first priority is given to the East port. For the deadlock avoidance, the second prior-

ity is given to North port and the third priority is shared among the West and the South

ports. The conditions discussed above are shown in Equations 4.1 and 4.2.

P [E/W/N/S] = {3/1/3/2} (4.1)

P [E/W/N/S] = {1/3/2/3} (4.2)

The algorithm for calculating the priorities of all the ports of a router is shown in

Algorithm 1.

Once the priorities of the ports have been calculated, weights corresponding to the

buffer occupancy of the router is computed.

We employ 2-bit values for indicating the congestion in the communicating routers.

The values 00, 01, 10 and 11 represent the empty(0%), half full(50%), nearly full(75%)

and full (100%) occupancy of the buffers of a router. A router has to exchange these

congestion status bits with its neighboring routers to make the correct routing decision.

The information of all the ports of a router except the local port needs to be exchanged.

Once the weight values : Wempty, Whalf full, Wnearly full and Wfull are calculated, W[i],

the total weight for each port i � {E,W,N,S} is calculated by using the Equation 4.3. The

values 2, 3, 5 and 10 are assigned for Wempty, Whalf full, Wnearly full and Wfull for fair

52

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

Algorithm 1: Priority calculation for E/W/N/S directions
Input: Co-ordinates of current node (xc,yc), destination node (xd,yd)
Output: Priority Matrix of all the ports P[E/W/N/S]
xdiff = xd− xc
ydiff = yd− yc
if xdiff < 0 then

P [E/W/N/S] = 3/1/3/2;
else if xdiff > 0&&ydiff < 0 then

P [E/W/N/S] = 1/2/2/3;
else if xdiff > 0&&ydiff > 0 then

P [E/W/N/S] = 2/3/3/1;
else if xdiff > 0 then

P [E/W/N/S] = 1/3/2/3 ;
else if ydiff > 0 then

P [E/W/N/S] = 2/2/3/1;
else if ydiff < 0 then

P [E/W/N/S] = 2/2/1/3;

Algorithm 2: Congestion aware adaptive routing algorithm for Mesh based
topologies

Input: Co-ordinates of current node (xc,yc), destination node (xd,yd) and the
number of ports (E,W,N,S) Output: Selected output port
W [E/W/N/S] = 0
for i = E to S do

Calculate P[i] using Algorithm 1.
if empty == 00 then

Wempty[i] = 2; Whalf full/nearly full/full[i] = 0
else if half full == 01 then

Whalf full[i] = 3; Wempty/nearly full/full[i] = 0;
else if nearly full == 10 then

Wnearly full[i] = 5; Wempty/half full/full[i] = 0;
else if full == 11 then

Wfull[i] = 10; Wempty/halffull/nearlyfull[i] = 0;
W[i]= P[i]+Wempty[i]+Whalf full[i]+Wnearly full[i]+Wfull[i];

end
min = W[E];
for i = W to S do

if w[i] < min then
min = w[i]; output channel = i;

end

53

4. YaNoC - An FPGA based NoC simulation acceleration framework

calculation of the weight matrix. The port with minimal weight value is chosen as the

final output port. The adaptive routing algorithm is shown in Algorithm 2.

W [i] = P [i] +Wempty +Whalffull +Wnearlyfull +Wfull (4.3)

The current status information of the (i+1)th router is taken into consideration at

the ith router to achieve the adaptiveness in the NoC router architecture. “Neighbor-

ing Router Congestion Status” monitors the congestion status of all neighboring router

ports. The “Adaptive Route Computation” unit calculates the priority for the ports in

all directions as discussed above. The deadlock avoidance is taken care of implicitly in

the proposed routing algorithm as there are priorities assigned to each direction, and no

turns leading to a deadlock are encountered by the flit.

Table 4.2: Experimental setup details

Experimental setup

Topology 6× 6 and 8× 8 Mesh, Torus,
56 node Fat tree and 6× 6 Diagonal Mesh

Buffer type FIFO buffer
Buffer Depth 4, 8, 16, 32, 64 flits
Arbiter type Round-robin
Routing Algorithm XY (Dimension-order),

Novel shortest path XY routing,
Table based, Congestion Aware Adaptive

Router pipeline depth 5-stage
Flow control Wormhole
Flit Width 16, 32 bits
Packet length 4 and 8 flits
Traffic pattern Uniform random, Random

Permutation, Bit complement,
Transpose

4.4 EXPERIMENTAL RESULTS

Synthesis results of the simulation are extracted from the Design Summary of Xilinx

Vivado. Results include resource usage for Xilinx Artix-7 FPGA (XC7A100T part,

CSG324 package, speed grade -3). The NoCs are tested with injection rates of 0.01

to 0.5 using Uniform random, Transpose, Bit complement, and Random permutation

traffic patterns. Table 4.2 shows the experimental setup details. The proposed YaNoC

framework is capable of simulating the Mesh, Torus, and Fat tree topologies. Along

54

4.4. Experimental Results

Table 4.3: Resource utilization of 6 × 6 (36 node)Mesh and Torus topologies under
various configurations of Flit Width(FW) and Buffer Depth (BD)

FW 16bits 32bits
BD 4 8 16 32 64 4 8 16 32 64

6x6
LUT(%) 32.33 33.85 34.03 35.13 37.97 34.45 35.65 37.17 38.30 41.17

Mesh
DRAM(%) 7.58 7.58 7.58 7.58 11.37 11.37 11.37 11.37 11.37 18.95

FF(%) 12.62 13.05 13.47 13.90 14.32 15.00 15.14 15.88 16.30 16.73

6x6
LUT 40.15 41.28 42.13 43.84 47.24 53.72 54.85 55.70 57.41 63.09

Torus
DRAM(%) 11.37 11.37 11.37 11.37 22.74 22.74 22.74 22.74 22.74 41.68

FF(%) 15.54 15.97 16.40 16.82 17.25 23.51 23.93 24.36 24.79 25.21

Table 4.4: Resource utilization of 8 × 8 (64 node)Mesh and Torus topologies under
various configurations of Flit Width (FW) and Buffer Depth (BD)

FW 16bits 32bits
BD 4 8 16 32 64 4 8 16

8x8
LUT(%) 62.15 63.67 65.05 67.37 69.58 67.84 69.33 70.93

Mesh
DRAM(%) 20.21 20.21 20.21 20.21 26.95 26.95 26.95 26.95

FF(%) 25.57 26.33 27.07 27.84 28.04 29.26 30.02 30.77

8x8
LUT 71.32 73.34 74.85 77.88 83.94 95.68 97.83 99.40

Torus
DRAM(%) 26.95 26.95 26.95 26.95 40.42 40.42 40.42 40.42

FF(%) 27.57 28.33 29.09 29.84 30.60 41.66 42.42 43.18

with these topologies, the user-specific custom topologies can be designed, as explained

in Section 4.3.1.

4.4.1 FPGA synthesis results of Mesh based and Fat tree topologies

Tables 4.3, 4.4, and 4.5 show the synthesis results of Mesh, Torus, and Fat Tree topolo-

gies, respectively. Our Automated Verilog HDL Generator generates the Verilog HDL

code for all these topologies. To optimize the FPGA resource usage, the router micro-

architectural parameters are fine-tuned. The synthesis results presented in the tables

include the percentage of LUTs, DRAMs, and FFs consumed for a particular NoC con-

figuration.

In Table 4.3, Flit Width (FW) is varied from 16 to 32 bits, and Buffer Depth (BD)

is varied between 4 to 64. An increase in the FPGA resources is observed when we

increase FW and BD parameters. The LUT and FF usage is increased from 32.23%

to 34.45% and 12.62% to 15.00%, considering for the BD of 4 and FW of 16 and 32

bits, respectively. Similar behavior can be observed for all the other configurations.

55

4. YaNoC - An FPGA based NoC simulation acceleration framework

Table 4.5: Resource utilization of 56 node Fat tree topology under various configura-
tions of Flit Width (FW) and Buffer Depth (BD)

FW 16bits 32bits

BD 4 8 16 32 64 4 8 16 32 64

56N
LUT(%) 41.21 42.62 43.68 45.80 50.04 56.96 58.37 59.07 60.13 67.20

Fat tree
DRAM(%) 14.15 14.15 14.15 14.15 28.29 28.29 28.29 28.29 28.89 51.87

FF(%) 16.06 16.59 17.12 17.65 18.18 26.06 26.59 27.12 27.65 28.18

The DRAM usage remains unchanged for the BD till 32. When we increase the BD

beyond 32, an increase in the DRAM usage is observed. The same behavior is observed

for both the 6 × 6 Mesh and Torus topologies. The proposed design is optimized such

that the DRAMs are capable of supporting the BD till 32 without any change in their

usage. But, when we increase the BD beyond 32, more number of DRAMs are needed

to support the configuration.

Comparing the 6 × 6 Mesh and Torus topologies in Table 4.3, it can be observed

that the Torus topology consumes more FPGA resources than the Mesh topology. Con-

sidering the BD of 4 and FW of 16, the 6× 6 Mesh topology consumes 32.33% LUTs

and 12.62% of FFs. Whereas the 6 × 6 Torus topology consumes 40.15% LUTs and

15.54% FFs. Similar behavior is observed for all the other configurations of BD and

FW. The configuration of the boundary routers and more number of links present in the

Torus topology results in the increase of FPGA resources compared to Mesh topology.

Table 4.4 shows the synthesis results of 8 × 8 Mesh and Torus topologies by con-

sidering the BD of 4 to 64 and FW of 16 to 32 bits. When we increase the BD and FW

parameters, an increase in the FPGA resources is observed. The behavior of DRAM

resource consumption is similar to that of 6× 6 Mesh and Torus topologies. Inferences

similar to that of 6 × 6 Mesh and Torus topologies can be drawn with respect to 8 × 8

Mesh and Torus topologies. Considering the FW of 32 bits and the BD of 32 and 64,

the 8 × 8 Mesh and Torus topologies exceeded the FPGA resources. Hence, the result

for the same configurations has not been shown in Table 4.4.

Table 4.5 shows the synthesis results for the 56 node Fat tree topology. Increasing

the BD and FW parameters yield an increase in FPGA resource utilization. The LUT

and FF usage is increased from 41.21% to 56.96% and 16.06% to 26.06%, considering

56

4.4. Experimental Results

Table 4.6: Resource utilization of a Single Router

Resource utilization of Router
5-port 9-port

LUT 775 2647
FF 550 1098
DRAM 120 216

the BD of 4 and FW of 16 and 32 bits, respectively. Comparing the 56 node Fat tree

and 6 × 6 Mesh and Torus topologies, the 56 node Fat tree consumes more hardware

resources. This is because of the more number of nodes in the Fat tree compared to

the 6 × 6 Mesh and Torus topologies. The major findings from the experiments are

summarized below:

• An increase in LUTs and FFs resource is observed when the FW and BD are

increased considering all the topologies.

• The DRAM usage remains unchanged for BD parameters till 32. When BD pa-

rameter is increased beyond 32, an increase in DRAM usage has been observed.

• The Torus topology consumes more hardware resources than the Mesh topology

as it contains more number of links and the configuration of the boundary routers.

• The Fat tree topology consumes more FPGA resources than the 6 × 6 Mesh and

Torus. And, fewer FPGA resources than the 8× 8 Mesh and Torus topologies.

4.4.2 FPGA synthesis results of Custom (DMesh) topology

Table 4.6 shows the area utilization of 5-port and 9-port routers. 9-port router consumes

2× resources than that of the 5-port router as a complex control logic is required to

implement a 9-port router.

Table 4.7 shows the resource utilization breakdown of router components on the

Xilinx Artix7 XC7A100T device. Due to more number of ports in the DMesh topology,

its components consume 2× the resources of Mesh topology.

Table 4.8 shows the results considering XY and the novel shortest path version of

the XY routing algorithms for Mesh and DMesh topologies, respectively. It can be seen

57

4. YaNoC - An FPGA based NoC simulation acceleration framework

Table 4.7: LUT Utilization of 5 and 9 Port Router Components

5-port Router 9-port Router

Input buffer 240 522
Router logic 26 127

Arbiter 184 808
Crossbar 301 1093
Allocator 23 95

that the resource consumption of DMesh topology is more compared to the normal

Mesh topology as there are more number of ports which in turn leads to more number

of router micro-architectural components. Hence, the DMesh topology consumes 2.3×
resources than the Mesh topology.

Table 4.8: Synthesis results of YaNoC on Artix-7 FPGA device (XC7A100T, speed-3)

Flit width=32-bits Flit buffer width=8

XY Novel shortest Table Based
path XY

Mesh DMesh Mesh DMesh
%LUT 35.65 87.55 27.70 67.76
%DRAM 11.37 20.46 11.12 20.02
%FF 15.14 20.62 13.08 19.89

Our framework is also capable of supporting table-based routing algorithm for cus-

tom topologies. Table 4.8 shows the synthesis results of Mesh and DMesh topologies

considering the table-based routing. The table-based routing consumes 12% and 20%

fewer LUTs compared to XY and novel shortest path version of the XY routing algo-

rithms for Mesh and DMesh topologies, respectively. This is because, the route com-

pute logic in these algorithms has been replaced by the routing tables. The routing

tables store route to all the other nodes in the topology. As the entries in routing tables

are maximum of 3 bits wide, they are mapped very efficiently to the LUTs.

4.4.3 Latency analysis

Average packet latency comparison of Mesh, Torus, Fat tree, and Dmesh topologies is

described in this section.

Fig. 4.8 shows the average packet latency of 6×6 Mesh and Torus topologies under

58

4.4. Experimental Results

 100

 200

 300

 400

 500

 0 0.05 0.1 0.15 0.2 0.25

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 8BD
Torus 6x6 8BD

(a) 6x6 Topology with Buffer Depth(BD) - 8

 100

 200

 300

 400

 500

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 16BD
Torus 6x6 16BD

(b) 6x6 Topology with Buffer Depth(BD) - 16

Figure 4.8: Load Delay graph of 6x6 Mesh and Torus Topologies under Random Per-
mutation Traffic patterns (a)Buffer Depth=8 flits and (b)Buffer Depth=16 flits

random permutation traffic pattern. From Fig. 4.8(a), the Mesh topology has lower

average packet latency at lower injection rates compared to the Torus topology. An

increase in latency is observed with increasing the injection rate. Mesh topology is the

first to saturate at about 10% of the traffic load. The Torus topology saturates at 22% of

the traffic load. Under Random permutation traffic pattern, the Torus topology showed

fairly good performance compared to Mesh topology. From Fig. 4.8(b), 5%(i.e., from

10% to 15%) increase in saturation throughput of Mesh topology is observed. This is

due to the effect of increase in the size of the BD. Mesh and Torus topologies saturate

at 15% and 24% of the traffic, respectively. The packet latency decreases significantly

across all loads as we move from BD of 8 to 16 flits.

Fig. 4.9 shows the network performance of the 8 × 8 Mesh and Torus topologies

under Bit complement traffic. From Fig. 4.9(a) we observed that the Mesh topology sat-

urates at lower traffic loads compared to Torus topology. The Torus topology saturates

at 28% of the traffic load. As we increase the BD from 8 to 16, the saturation through-

put of Mesh and Torus topologies increase by 25% and 12%, respectively as shown in

Fig. 4.9(b). The average packet latency reduction of 3.5% is observed increasing the

BD from 8 to 16.

Network performance of Fat tree topology under Random permutation traffic is

shown in Fig. 4.10 (a). We observed that the 56-node Fat tree with BD of 16 has a

higher saturation throughput compared to BD of 8. The larger BD accommodates more

59

4. YaNoC - An FPGA based NoC simulation acceleration framework

packets resulting in a reduction of the packet contention in the network. The 56-node

Fat tree with BD of 8 and 16 saturate at 40% and 45% of the traffic load, respectively.

The average packet latency reduction of 20.5% is observed when the BD is increased

from 8 to 16.

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Bit Complement Traffic Pattern

Mesh 8x8 8BD
Torus 8x8 8BD

(a) 8x8 Topology with BD=8 flits

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Bit Complement Traffic Pattern

Mesh 8x8 16BD
Torus 8x8 16BD

(b) 8x8 Topology with BD=16 flits

Figure 4.9: Load delay graph of 8x8 Mesh and Torus topologies under Bit complement
traffic patterns (a)buffer depth=8flits and (b)buffer depth=16flits

Fig. 4.10 (b) plots the behavior of average network packet latency vs. injection rate

under Uniform random traffic pattern. It can be seen that the Mesh topology saturates

at the injection rate of 45%. DMesh topology sustains the traffic load till injection

rate of 55%. This is because of the higher Bisection bandwidth and connectivity of

DMesh topology. The maximum hops (Hmax) for a packet to traverse from one end to

its diagonally opposite end in Mesh and DMesh topology can be calculated using the

equations 4.4, 4.5, 4.6 and 4.7 where M and N are the number of nodes along X and

Y axes. When M and N equal, from Equations 4.5 and 4.6 it can be seen that DMesh

takes 50% of the number of hops taken in Mesh topology. Hence, the latency in DMesh

is less than the latency in conventional XY routing in Mesh. As there are diagonal links

between nodes in DMesh topology, our algorithm chooses the shortest path leading to

the destination.

Hmax(Mesh) = (M +N)− 2 (4.4)

Hmax(Mesh) = 2(N − 1) ifM = N (4.5)

Hmax(DMesh) = (N − 1) ifN > M (4.6)

60

4.4. Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Fat tree 56-node 8BD
Fat tree 56-node 16BD

(a) Fat Tree Topology with Buffer Depth(BD) 8
and 16

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Uniform Random Traffic Pattern

36 node DMesh
36 node Mesh

(b) Mesh and DMesh topologies

Figure 4.10: (a) Load delay graph of Fat tree with buffer depth 8 and 16 flits under Ran-
dom permutation traffic pattern(b)Load delay graph for Mesh and DMesh topologies
under Uniform traffic

Hmax(DMesh) = (M − 1) ifM > N (4.7)

On an average, DMesh topology offers 50% lesser latency than the Mesh topology.

Table 4.9: Synthesis results of 36-Node Mesh based topology on Artix-7 FPGA device
(XC7A100T, speed-3)

6x6 Mesh based topology
(Flit Width=32-bit, Buffer Depth=8)

H/W XY Proposed
utilization in % routing Adaptive routing
LUTs 35.65 37.31
DRAM 11.37 11.37
FFs 15.14 15.12

4.4.4 Analysis of Mesh topology with congestion aware adaptive routing algo-
rithm

6×6 Mesh topology is evaluated considering the conventional XY and the proposed

congestion aware adaptive routing algorithms. Hardware synthesis and latency analysis

results are detailed below.

4.4.4.1 Area resource utilization

Table 4.9 shows the detailed synthesis results of XY and proposed adaptive routing

algorithms for Mesh-based topologies. It can be seen that both algorithms consume the

61

4. YaNoC - An FPGA based NoC simulation acceleration framework

 0

 10

 20

 30

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance of Mesh topology under Uniform Random Traffic Pattern

XY Routing
Proposed Adaptive Routing

(a) Uniform traffic

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance of Mesh topology under Transpose Traffic Pattern

XY Routing
Proposed Adaptive Routing

(b) Transpose traffic

Figure 4.11: Load Delay graph of Mesh Topology under (a)Uniform and (b)Transpose
traffic patterns

same amount of DRAMs and FFs. The adaptive routing algorithm consumes 1.66%

more LUTs than the XY routing algorithm to store the 2-bit congestion information of

the neighboring routers and the routing logic.

4.4.4.2 Network latency analysis

The conventional XY and proposed adaptive routing algorithms are evaluated consid-

ering uniform and transpose traffic patterns. In the uniform traffic pattern, each node

sends a fixed-size packet consisting of 8 flits to random nodes with Bernoulli distribu-

tion. From Fig. 4.11 (a) it can be seen that both the XY and proposed routing algorithms

exhibit similar behavior for all the injection rates.

In transpose traffic pattern, a node (i,j) sends packets only to node (n-i,n-j) where

“n” is the network dimension. In this scenario, the XY routing saturates early compared

to the proposed adaptive routing algorithm. From Fig. 4.11 (b), it can be seen that

at the higher injection rates, the proposed adaptive routing algorithm for Mesh-based

topologies outperforms XY routing by reducing average packet latency by 55%.

4.4.5 Speedup

The simulation time of BookSim 2.0 simulator is measured on a computer with Core

i7 4770 CPU and 8GB memory. The speedup is calculated as the ratio of simulation

time in clock cycles of BookSim 2.0 to the simulation time of YaNoC. The simulation

62

4.5. YaNoC vs. State-Of-The-Art

for a 6× 6 network was run on both BookSim 2.0 and YaNoC. A speedup of 2548× is

observed over BookSim 2.0 simulator.

4.5 YANOC VS. STATE-OF-THE-ART

4.5.1 YaNoC and CONNECT

Table 4.10: Resource utilization of CONNECT and YaNoC on Artix-7 FPGA device
(XC7A100T, speed-3) for 6× 6 Mesh and DMesh topologies

XY Routing (% Utilization) Table based (% Utilization)
CONNECT YaNoC CONNECT YaNoC

Mesh
LUT 44.94 35.65 43.71 27.70

DRAM 27.54 11.37 26.39 11.12
FFs 6.71 15.14 5.91 13.08

DMesh
LUT Exceed 87.55 Exceed 67.76

DRAM Exceed 20.46 Exceed 20.02
FF Exceed 20.62 Exceed 19.89

The Verilog HDL code of 6× 6 Mesh and custom DMesh topologies are generated

from CONNECT (Papamichael and Hoe 2015) and YaNoC frameworks for comparing

the hardware resource utilization.

Considering XY routing algorithm, it can be observed from Table 4.10 that YaNoC’s

implementation of 6 × 6 Mesh topology consumes fewer resources (35.65% LUTs)

than CONNECT’s Mesh topology (44.94% LUTs). Similar behavior is observed for

the Table based routing algorithm. YaNoC’s Table based routing ensures that always

the shortest path is chosen between the communicating routers.

Also, for custom DMesh topology, the synthesis will not succeed as there is a

resource crunch employing CONNECT’s implementation. The Input Output Blocks

(IOBs) will exceed the limit of Artix7 FPGA board. Whereas, synthesis of YaNoC’s

HDL code succeeds, and the corresponding resource utilization is shown in Table 4.10.

Same behavior is observed for both the XY and table based routing algorithms.

Speedup of 500-1000× and 2548× has been observed in CONNECT and YaNoC,

respectively with respect to BookSim 2.0. YaNoC is 2.55× faster than CONNECT NoC

generator.

63

4. YaNoC - An FPGA based NoC simulation acceleration framework

Table 4.11: Resource utilization of DART and YaNoC on Artix-7 FPGA device
(XC7A100T, speed-3) for 3× 3 Mesh topology

DART YaNoC

%LUTs 30 12.41
%DRAMs 21.74 5.68

%FFs 19.28 5.40

4.5.2 YaNoC and DART

3× 3 network with XY routing algorithm of DART (Wang et al. 2014) and YaNoC are

compared in Table 4.11. It can be observed that % LUT consumption is 12.41 and 30

for YaNoC and DART implementations, respectively. Large topologies can be analyzed

by using YaNoC’s implementation on a small FPGA board like Artix7. Whereas, the

DART implementation consumes more FPGA resources and hence it requires high-end

FPGA boards for the analysis. DART simulation achieves over 100× speedup relative

to BookSim 2.0. YaNoC is 25× times faster than DART.

4.6 SUMMARY

An FPGA based simulation acceleration framework for design space exploration of

Network-on-Chips called YaNoC is presented in this chapter. YaNoC supports the de-

sign space exploration of various standard and custom NoC topologies. The router

micro-architectural parameters are highly configurable. The conventional routing algo-

rithms such as XY, Nearest neighbor are supported for mesh-based and Fat tree topolo-

gies. To support the design space exploration of custom topologies, YaNoC supports the

Table based routing algorithms. Also, a congestion-aware adaptive routing algorithm

has been proposed to route the flits. The Flit Width and Buffer Depth parameters are

varied to identify their effect on the performance of the network and the topologies. An

increase in LUTs and FFs resource has been observed varying the FW and BD in all the

topologies. YaNoC consumes fewer hardware resources than the state-of-the-art CON-

NECT and DART frameworks. And, YaNoC is 2.55× and 25× faster than CONNECT

and DART frameworks, respectively.

64

CHAPTER 5

MAPPING THE NOC ROUTER COMPONENTS ON
THE HARD-BLOCKS OF THE FPGA

The FPGA based NoC simulation framework - YaNoC proposed in the previous chapter

and the other state-of-the-art works utilize soft logic only for modeling the NoCs on the

FPGAs, leaving out the hard blocks unutilized. The functionality of the NoC router’s

buffer and crossbar switch have been embedded in the BRAMs and the wide multi-

plexers of the DSP48E1 slices in this Chapter. Employing the proposed techniques of

mapping the NoC router components on the FPGA hard blocks, an FPGA based NoC

simulation framework has been proposed in this chapter. A substantial decrease in the

CLB utilization of NoC topologies on the FPGA has been observed by embedding the

functionality of the buffers and crossbar on the hard blocks of the FPGA.

5.1 INTRODUCTION

The FPGAs are now vehicles for simulation acceleration due to their properties of

parallelism. The ASIC like hard blocks are embedded in the modern FPGAs to im-

prove the performance of common functionalities. The functionalities such as multiply-

accumulate, processing and data storage can be performed with the help of embedded

hard blocks such as DSP slices, Embedded processors and Block RAMs (BRAMs) re-

spectively. In addition to their usability, these hard blocks can also be used to support

the other functionalities.

The dual-port memory blocks with separate ports for writing or reading form the

65

5. Mapping the NoC router components on the Hard-blocks of the FPGA

BRAMs. The BRAMs are capable of storing several Kilobits of data. As the BRAMs

can be configured as memories with dual or single-port supporting various port widths,

they can be employed as an efficient on-chip memory. BRAMs can be configured as

a memory with large capacity with the help of cascading links present in the latest

FPGAs. In addition, BRAMs can be used as register files, FIFOs, etc.

DSP slices are primarily employed to perform signal processing tasks such as multiply-

accumulate and multiply efficiently. The arithmetic and logic operations along with

shift and pattern matching operations are supported by DSP slices of FPGAs. Multi-

ple DSP slices can be cascaded to support the operations wider than the port widths

supported. The DSP slices in the most recent Xilinx 7 Series FPGAs have a 740 MHz

(Xilinx Inc 2018) operating frequency.

All these features open up the opportunities for employing BRAM and the DSP

blocks for the applications other than Signal processing. The dual-port BRAM hard

blocks of the FPGA are employed to support the FIFO buffer functionality. And, the

five port NoC router crossbar switch has been embedded in a DSP tile consisting of two

DSP48E1 slices. An FPGA based NoC simulation acceleration framework is presented

in this chapter. The proposed framework is capable of utilizing both the Soft blocks

(CLBs made up of LUTs and FFs) and the Hard blocks (DSP48E1 slices and BRAMs)

of the Xilinx FPGAs. These characteristics allow us to make more efficient use of the

FPGA resources by mapping NoC topologies on both the soft and hard blocks.

Many state-of-the-art works utilize only the CLBs components (LUTs and FFs) of

the FPGA building the NoC simulators. The other components of the FPGA, such as the

DSP slices and BRAM blocks, which form the hard blocks, can be utilized to map the

NoC router component functionality. This results in reduced area resource utilization of

the soft logic substantially. The multiplexer implementation on the FPGAs consumes

more soft logic (CLBs), resulting in increased power and critical path delay. As an al-

ternative approach of modeling the Crossbar component of NoC routers by employing

the CLBs, the multiplexers present in the DSP48E1 slices can be used efficiently to

configure them as the Crossbar component of an NoC router. As the DSP48E1 slices

operate at a higher frequency, mapping the crossbar functionality yields the higher op-

66

5.2. NoC Router Architecture

Figure 5.1: Functional diagram of the proposed FPGA based NoC framework. (a) an
NoC topology, (b)Processing Element (PE), (c)Proposed router architecture

erating frequency of the whole circuit with reduced power consumption. The modern

FPGAs have a large number of BRAMs and DSP slices, due to which the higher fre-

quency of operation and an increase in execution speed and lower power consumption

can be achieved.

5.2 NOC ROUTER ARCHITECTURE

Fig. 5.1 shows an overview of the proposed FPGA based NoC simulator. The Process-

ing Elements (Fig. 5.1 (a)) (the traffic source and sink in our case) are interconnected

with the help of routers. The traffic generation module shown in Fig. 5.1 (b) con-

sists of the Source queue and the Traffic receptor modules. The Linear Feedback Shift

Register (LFSR) technique is used to generate several types of synthetic traffic patterns

such as Uniform random, Transpose, Random Permutation, Hotspot, Nearest neighbor,

Tornado and Bit-complement.

The Source queue stores the flits generated by the traffic generation module before

injecting them into the network. The source queues operate in the FIFO fashion. A

timestamp is appended to the head flits for indicating the time of injecting the flits into

the network.

The Traffic receptor module accounts for ejecting the flits once they reach their

67

5. Mapping the NoC router components on the Hard-blocks of the FPGA

Figure 5.2: Architecture of the Xilinx BRAM hard block (Xilinx Inc 2019)

destinations. Also, the statistics of the simulation, such as the number of flits received,

the number of flits transmitted, and the packet latency, are calculated based on the time

stamp stored in the head flit.

In this chapter, the crossbar functionality of an NoC router is mapped on the DSP48E1

hard blocks and the BRAMs are used for implementing the buffers. The framework is

capable of using both CLBs and the hard blocks for simulating NoC on the FPGA. The

proposed NoC router architecture is shown in Fig. 5.1 (c).

5.3 BLOCK RAMS AS THE BUFFERS

Fig. 5.2 shows the architecture of the Xilinx BRAM block (Xilinx Inc (2019)). The

BRAM blocks are capable of storing the data of size 36Kbits. They can also be config-

ured either as two standalone 18 Kb RAMs or as a 36 Kb RAM. The Write and Read

operations are synchronous, where these two ports are independent and symmetrical.

The Write and Read ports share only the stored data. Each port can be configured in-

dependently of the other port in one of the available widths. Also, the read port’s width

may not be the same as the width of the write port.

68

5.3. Block RAMs as the buffers

Figure 5.3: Illustration of mapping the input ports to the BRAM based buffer

Figure 5.4: Bypassing an empty Buffer

Fig. 5.3 shows an example of mapping the input port data to the dual-port BRAM

block. It can be seen that the North port’s input data “North Data in” is mapped to

the “DatainA” port of the BRAM block. Also, the write enable signal “Wr En North”

is mapped to the “WrE A” port. Similarly, the “North Data in” and “Wr En North”

are mapped to “DatainB” and “WrE B” ports along with clock “Clk” are mapped to

“Clk A” and “Clk B” ports. The output data of North and South ports “North Data Out”

and “South Data Out” can be seen at “Data out A” and “Data out B” ports.

To reduce the latency of the NoC under consideration, a control unit called

“buf empty checker” for monitoring the status of the buffer occupancy has been em-

ployed at the input ports as shown in Fig. 5.4. When the input buffer is empty, and

69

5. Mapping the NoC router components on the Hard-blocks of the FPGA

the desired output port is available for the incoming flit, the “buf empty checker” con-

trol unit makes sure that there shall be no request sent to the arbiter for allocating that

output port. The data from the input port shall be bypassed to the output port without

going through the arbitration stage. A reduction of two clock cycles in latency can be

observed by employing the “buf empty checker” unit.

5.4 DSP48E1 TILE AS THE CROSSBAR SWITCH

5.4.1 Xilinx DSP48E1 primitives

The architecture of the Xilinx DSP tile is shown in Fig. 5.5. The DSP48E1 slices

present in each DSP tile are interconnected with the help of the cascaded links Xilinx

Inc (2018). Each DSP48E1 slice contains various functional units such as a pre-adder,

multiplier, and an Arithmetic and Logic Unit (ALU). The pre-adder unit is responsible

for addition or the subtraction of 25-bit two inputs. The asymmetric 25-bit and 18-

bit inputs along with the pre-adder unit’s output form the input to the multiplier unit.

ALU’s inputs are formed from the output of the multiplier and the other 48-bit input.

The DSP blocks allow the dynamic reconfiguration of the arithmetic computations and

the data flow operations during runtime. Hence, by employing the technique of time-

multiplexing and the dynamic reconfiguration, complex data flow expressions requiring

complex computational power can be executed on the same DSP48E1 slice. The DSP

slice’s dynamic operation is achieved by modifying the OPMODE control signal of the

multiplexers.

5.4.2 Crossbar functionality on the DSP48E1 multiplexers

The ALU unit, multiplexers (namely X, Y, and Z) present in the DSP slice and their

control signals such as INMODE, ALUMODE, and OPMODE play an important role

in configuring the Crossbar switch functionality of the NoC router on the DSP tile. The

multiplexers are controlled dynamically based on the configuration of the OPMODE

signal. The mode of operation of the ALU unit such as the logical or the arithmetic

mode is controlled by the ALUMODE signal. In this work, the ALUMODE signal is

configured to make the ALU unit perform (X+Y+Z) operation.

A DSP tile which contains two DSP48E1 slices is used to map the crossbar func-

70

5.4. DSP48E1 tile as the Crossbar Switch

Figure 5.5: Two DSP48E1 slices connected by dedicated cascade links form a single
DSP tile (Xilinx Inc 2018)

tionality of a NoC router. These two DSP48E1 slices are interconnected with the help

of the PCIN, and PCOUT cascaded links. All the input ports except the local input have

been mapped to a 4:1 multiplexer to achieve better performance. The 4:1 multiplexer

bypasses the packets to the local output port depending on the arbiter signals for lo-

cal output. Using this circuitry has the advantage of bypassing the packets instead of

heading towards the crossbar to map the inputs to the local output.

An illustration of the implementation of the NoC Crossbar switch using the DSP48E1

slices is shown in Fig. 5.6. The A:B and C input ports of the DSP48E1-I and DSP48E1-

II slice are used for mapping the crossbar switch’s inputs. As the DSP48E1 slices sup-

port the dynamic reconfiguration, the crossbar’s inputs are mapped on the A:B and C

inputs of the DSP48E1 slices efficiently. To reduce the latency for the packets destined

for the sink at the LOCAL output port, a 4:1 multiplexer has been introduced in the

circuitry. By having the 4:1 multiplexer, the packets destined to the LOCAL output port

can now be bypassed directly to the sink instead of going through the crossbar traversal.

In the proposed work, the configuration of the OPMODE signals for X, Y, and Z

multiplexers of the DSP48E1 slices is highly dependent on the one-hot encoded signals

71

5. Mapping the NoC router components on the Hard-blocks of the FPGA

(a) (b)

Figure 5.6: Illustration of mapping the input ports to the DSP48E1 based crossbar

Table 5.1: 4:1 Multiplexer operating signals based on the grant signals from the arbiter

Output port Input port Arbiter encoded signal

Local

East 00010
North 00100
West 01000
South 10000

Table 5.2: DSP48E1-I slice configuration based on the arbiter encoded signal

Output Input Arbiter DSP48E1-I OPMODE
port port encoded signal input signal

West

Local 00001 C 0001100
East 00010 A:B 0000011

North 00100 C 0001100
South 10000 A:B 0000011

South

Local 00001 A:B 0000011
East 00010 C 0001100

North 00100 A:B 0000011
West 01000 C 0001100

72

5.4. DSP48E1 tile as the Crossbar Switch

Table 5.3: DSP48E1-II slice configuration based on the arbiter encoded signal

Output Input Arbiter DSP48E1-II OPMODE
port port encoded signal input signal

East

Local 00001 A:B 0000011
North 00100 C 0001100
West 01000 A:B 0000011
South 10000 C 0001100

North

Local 00001 C 0001100
East 00010 A:B 0000011
West 01000 C 0001100
South 10000 A:B 0000011

provided by the Arbiter. The one-hot encoded signals from the Arbiter for particular

input ports are as follows: 00001 - Local, 00010 - East, 00100 - North, 01000 - West,

10000 - South. The enable signals for the 4:1 Multiplexer depending on arbiter grant

signals are shown in Table 5.1. Various configurations of OPMODE signals for other

input ports and the mapping of the input ports to the corresponding DSP48E1 slice in-

put ports are shown in Tables 5.2 and 5.3. Various arbitration schemes, such as fixed

priority, weighted round-robin, and round-robin, are supported by the proposed frame-

work. The round-robin arbitration scheme is employed in this work to generate the

grant signals. The 5-bit one-hot encoded signal is allocated to each input port winning

the arbitration. The crossbar maps the input to the respective output port, which wins

the arbitration stage based on these signals. An approach similar to this is used in our

work: depending on these one-hot encoded signals from the arbiter, router input ports

are mapped to DSP48E1 slice inputs. The one-hot encoded signals from the arbiter are

used to configure the OPMODE control signals.

To overcome the deadlock state arising due to turns taken by the packets, the turn

models of Glass and Ni (1992) have been employed in this work. We also make an

assumption that an input port i only sends the data to the output port j where i �= j. The

deadlock situations and the critical path delay can be avoided by the assumption being

made.

The configuration of the inputs at the right DSP48E1 slice has been carried out em-

ploying the Time-multiplexing technique. An illustration of mapping the NoC router’s

73

5. Mapping the NoC router components on the Hard-blocks of the FPGA

crossbar switch on the DSP tile is shown in Fig. 5.6. Suppose the flits of the router’s

WEST input are allocated with the NORTH output port and NORTH inputs are allo-

cated with the SOUTH output port in the first clock cycle as shown in Fig. 5.6(a),

the arbiter grant signals are monitored to configure the router inputs to the DSP cross-

bar. Corresponding to the arbiter grant signals i.e., 01000 and 00100, the WEST input

is configured on the C input of DSP48E1-II and and the NORTH input is configured

on the A:B input of DSP48E1-I by setting OPMODEDSP2 to 0001100 and OPMOD-

EDSP1 to 0000011. This configuration maps the WEST and NORTH input ports to the

NORTH and SOUTH output ports effectively. Further, when the EAST input is granted

with the LOCAL output port, the 4:1 multiplexer maps the EAST input port’s flits to

the sink at LOCAL output port, avoiding the DSP tile.

In the second clock cycle, when the LOCAL and SOUTH input ports are granted

with the EAST and WEST output ports, the arbiter grants 00001 and 10000 signals to

achieve this configuration. With these grant signals, the LOCAL input is mapped to

A:B input of DSP48E1-II slice, and SOUTH input is mapped to the DSP48E1-I slice.

And the OPMODEDSP1 signal is configured to 0001100 and OPMODEDSP2 signal is

configured to 0000011, as shown in Fig. 5.6 (b).

5.5 RESULTS AND DISCUSSION

The impact of varying the NoC parameters such as flit width, buffer width, buffer type,

crossbar type, and traffic patterns is studied in the experiments. The area and latency

performances are analyzed. The Xilinx Artix 7 FPGA board with XC7A100 T chip has

been employed in the experiments. The micro-architectural components of the NoC

architectures are designed by using Verilog HDL. The synthesis results are obtained

from Xilinx Vivado. The configurations used in the experiments is shown in Table 5.4.

5.5.1 FPGA utilization results
5.5.1.1 Router implementation

Table 5.5 shows the resource utilization of the Router architecture employing the CLB

and BRAM-DSP slices is shown. The resource utilization results for the CLB based

implementation of the topologies are obtained through YaNoC (Prabhu Prasad B M

74

5.5. Results and Discussion

Table 5.4: Experimental setup details

Experimental setup

Topology 3× 3 and 6× 6 Mesh-based topologies
Arbiter type Fixed priority and Round-robin
Flow control Wormhole switching

Crossbar mapping DSP48E1 and CLB based crossbar
Routing Algorithm Dimension-order (XY)

Router pipeline depth 5-stage
FIFO Buffer type CLB and BRAM based buffer

Buffer depth 6,8,10
Traffic pattern Random Permutation, Hotspot, Nearest Neighbor,

Tornado, Bit-complement,
Uniform Random, Transpose

Packet length 4-flits
Flit size 64, 128

FPGA Board Xilinx Artix 7 (XC7A100T)

Table 5.5: Resource utilization of NoC Router considering CLB and BRAM-DSP
mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA

Router Type Components LUTs FFs BRAMs DSPs

% # % # % # %

CLB Router
Router 735 1.16 545 0.43 - - - -
FIFO 45 0.07 62 0.05 - - - -

Crossbar 243 0.38 258 0.2 - - - -

BRAM DSP Router
Router 544 0.86 373 0.29 5 3.7 2 0.83
FIFO 18 0.03 14 0.01 1 0.74 - -

Crossbar 163 0.25 148 0.11 - - 2 0.83

et al. (2018)). The router with only CLB implementation consumes 1.16%, 0.43%

LUTs and FFs, respectively, without any BRAM or the DSP slice utilization. The router

implementation employing the FIFO buffer based BRAMs and DSP based crossbar

consumes 0.86%, 0.29% LUTs and FFs along with 3.7% and 0.83% BRAMs and DSPs,

respectively.

The CLB based FIFO implementation consumes 0.07%, 0.05% LUTs and FFs re-

spectively. And, the BRAM based FIFO implementation consumes 0.03%, 0.01%

LUTs and FFs along with 0.74% BRAMs. The CLB based Crossbar implementation

consumes 0.38%, 0.2% LUTs and FFs respectively. And, the DSP based Crossbar im-

plementation consumes 0.25%, 0.11% LUTs and FFs along with 0.83% DSPs.

75

5. Mapping the NoC router components on the Hard-blocks of the FPGA

The height of a DSP48E1 tile is equal to that of five CLBs Xilinx Inc (2018). Every

CLB is composed of 16 FF and 8 LUTs. Thus, each DSP48E1 is equivalent to 80FFs

and 40 LUTs . For the applications that leave the hard blocks resources unused, crossbar

configuration on the DSP tiles does not reflect any loss in the FPGA area utilization.

5.5.1.2 Topology implementation

Tables 5.6, 5.7 show the FPGA synthesis results of 36-node Mesh and Torus topologies

considering the proposed BRAM-DSP implementation and the CLB based implemen-

tation. XY routing algorithm is employed in the experiments. By supporting the pa-

rameterized values of Flit Width (FW) and BD (Buffer Depth), the proposed framework

is capable of modelling various NoC architectures. Various configurations of BD and

FW are shown in ‘Configuration’ column. The ‘CLB Implementation’ column shows

the FPGA resource consumption in ‘%’ considering the CLB implementation of the

topologies, and the ‘BRAM-DSP implementation’ column shows the FPGA resource

consumption in ‘%’ considering the BRAM based FIFO and DSP based crossbar im-

plementation.

From both tables it can be shown that the CLB based implementation of the Topolo-

gies consume more LUTs and FFs than the BRAM-DSP based implementation. This is

because of the efficient mapping of the NoC Router’s FIFO and Crossbar components

on the BRAM and DSP48E1 blocks.

In Table 5.6, considering the 6× 6 Mesh topology, for the BD of 6, when the FW is

increased from 64 to 128, an increase in the LUT utilization from 37.42% to 41.08%,

FF utilization from 15.32% to 15.69% and BRAM utilization from 49.55% to 54.13%

are observed. When we increase the FW and BD configurations, the consumption of

LUT, FF, and BRAM resources also increased with respect to all the topologies. Similar

behavior can be observed in the Torus topology. As the Torus topology consists of wrap-

around links in the boundary routers, the Torus topology has a higher hardware resource

consumption compared to the Mesh topology.

On average, the topologies implemented considering the proposed BRAM-DSP

components of the FPGA consumes 43.47%, 41.66% fewer LUTs, FFs, respectively,

76

5.5. Results and Discussion

compared to the topologies implemented considering the CLB only implementation. It

can be from all the experimental observations that the topologies implemented with the

proposed BRAM-DSP mapping of NoC router components occupy fewer FPGA soft

logic resources compared to the the topology implementation based on the CLBs.

Table 5.6: Resource utilization of 6× 6 Mesh topology with CLB and BRAM-DSP
mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA with XY routing

Configuration CLB BRAM-DSP

Flit Buffer LUT% FF% LUTRAM% LUT% FF% BRAM% DSP%
width depth

64
6 61.89 23.04 41.68 37.42 15.32 49.55 30
8 62.74 23.48 41.68 40.83 16.19 61.18 30

10 63.60 23.89 41.68 42.81 17.02 66.67 30

128
6 88.86 32.12 83.87 41.08 15.69 54.13 30
8 89.72 32.55 83.87 42.65 16.65 64.81 30

10 90.57 32.98 83.87 43.2 17.4 67.14 30

Table 5.7: Resource utilization of 6×6 Torus topology with CLB and BRAM-DSP48E1
mapping of FIFO and Crossbar on Artix 7(XC7A100T) FPGA with XY routing

Configuration CLB BRAM-DSP

Flit Buffer LUT% FF% LUTRAM% LUT% FF% BRAM% DSP%
width depth

64
6 62.74 23.48 41.68 41.83 15.78 51.86 30
8 62.91 23.61 41.68 42.57 16.22 62.96 30

10 64.98 24.28 41.68 43.73 16.73 66.67 30

128
6 88.98 33.21 83.87 45.98 15.96 59.26 30
8 90.31 33.84 83.87 47.55 16.94 66.73 30

10 90.97 34.13 83.87 48.47 17.63 68.14 30

5.5.2 Latency and saturation throughput analysis

The network latency is the amount of clock cycles taken by a packet from a given source

to reach a destination. Equation 5.1 gives the average packet latency:

Lavg = 1/N
k�

i=1

Li (5.1)

where Lavg is the average latency, the total amount of flits reached the destination is

denoted by N. And, the latency experienced by ith flit at the destination is denoted by

Li. The amount of flits transported from the source to the destination per a given unit of

time is called the throughput of the network.

77

5. Mapping the NoC router components on the Hard-blocks of the FPGA

The workload for NoC is modeled by the injection rate, length of the packets, and

the pattern of the traffic. Increased injection rate results in an increased number of

network packets. When the number of packets is more, a considerable amount of clock

cycles are taken by the packets to reach the destination from a given source. This

contributes to higher packet latency. When the injection rate is further increased, the

network nears a threshold, which leads to congestion. Packets are subject to exponential

latency growth due to congestion.

Various traffic patterns such as Bit-complement(BC), Random Permutation(RP),

Hotspot(HS), Nearest Neighbor(NN), and Tornado(TO) are used in the experiments

to analyze the latency-throughput performance of the 6× 6 Mesh and Torus topologies

considering the CLB and BRAM-DSP architecture of the NoC router.

The latency behavior of the 36-node Mesh and Torus topology implementations

based on the CLB and BRAM-DSP with respect to various traffic patterns referred

above is shown in Fig. 5.7. The average packet latency is denoted in clock cycles, and

the injection load is denoted flits per clock cycle per node.

From Fig. 5.7, it can be seen that the topologies employing the proposed router

architecture perform better compared to the CLB based router architecture under all the

traffic patterns. This is because of the “buf empty checker” control unit present in the

router. When the input buffer is empty, and the desired output port is available for the in-

coming flit, the buf empty checker control unit makes sure that there shall be no packet

sent to the arbiter for allocating that output port. The data from the input port shall be

bypassed to the output port without going through the arbitration stage. A reduction

of two clock cycles in latency can be observed by employing the “buf empty checker”

unit.

In Fig. 5.7, considering the 36-node Mesh topology implemented with the proposed

BRAM-DSP based router architecture, a reduction in average latency by 3.78%, 2.39%,

3.14%, 2.15%, 1.61% under the RP, BC, NN, TO and HS traffic patterns has been ob-

served compared to the CLB based topology implementation. Similarly, the 36-node

Torus topology with the proposed router architecture achieves the average latency re-

78

5.5. Results and Discussion

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Nearest Neighbor Traffic Pattern

Mesh 6x6 CLB
Mesh 6x6 BRAM-DSP

Torus 6x6 CLB
Torus 6x6 BRAM-DSP

(a)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 CLB
Mesh 6x6 BRAMDSP

Torus 6x6 CLB
Torus 6x6 BRAMDSP

(b)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Hotspot Traffic Pattern

Mesh 6x6 CLB
Mesh 6x6 BRAMDSP

Torus 6x6 CLB
Torus 6x6 BRAMDSP

(c)
 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

in(Load Flits/Cycle/Node)

Network Performance under Tornado Traffic Pattern

Mesh 6x6 CLB
Mesh 6x6 BRAMDSP

Torus 6x6 CLB
Torus 6x6 BRAMDSP

(d)

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 6x6 CLB
Mesh 6x6 BRAM-DSP

Torus 6x6 CLB
Torus 6x6 BRAM-DSP

(e)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

BitComplement NearestNeighborRandomPermutation Hotspot Tornado

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Traffic Pattern(s)

Saturation Throughput of 6x6 Mesh and Torus topologies

6x6 Mesh with CLB
6x6 Mesh with BRAMDSP

6x6 Torus with CLB
6x6 Torus with BRAMDSP

(f)

Figure 5.7: (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and (f) -
Saturation Throughput for the 6×6 Mesh and Torus topologies under CLB and BRAM-
DSP based FIFO and crossbar implementation considering NN, RP, HS, TO and BC
traffic patterns

ductions of 2.05%, 3.93%, 2.78%, 3.09%, 4.15% considering the RP, BC, NN, TO and

HS traffic patterns compared to the CLB based topology implementation.

The saturation throughput of 36-node Mesh and Torus topologies with respect to

the traffic patterns mentioned above considering the CLB and BRAM-DSP topology

implementation is shown in Fig. 5.7(f). The topologies perform better under the pro-

posed mapping of FIFO buffer on BRAM and Crossbar on the DSP implementation

along with the “buf empty checker” control unit to bypass the flits the output unit. Due

to its higher bisection bandwidth, the Torus topology can sustain traffic loads at higher

79

5. Mapping the NoC router components on the Hard-blocks of the FPGA

Table 5.8: FPGA synthesis results of the 6× 6 Mesh topology considering the
proposed BRAM-DSP implementation and CONNECT’s implementation
on Artix 7 (XC7A100T) board with BD=6 and FW=64

CONNECT PROPOSED WORK

LUT% 41.99 37.42
FF% 3.61 15.32

LUTRAM% 31.92 -
BRAM% - 49.55

DSP% - 30
Frequency(MHz) 146 306

injection rates compared to the Mesh topology.

5.5.3 Comparison with the CONNECT (Papamichael and Hoe (2015)) and DART
(Wang et al. (2014))

5.5.3.1 Topology implementation

The work proposed is compared with the CONNECT framework (Papamichael and Hoe

2015). The FPGA utilization of the 36-node Mesh topology implemented with the pro-

posed BRAM-DSP NoC architecture and the CONNECT NoC architecture considering

the buffer configuration of 6 BD and 64 FW are shown in Table 5.8. A single-stage

pipeline is used in CONNECT NoC architecture. Hence, CONNECT NoC consumes

lesser FF resources than the proposed BRAM-DSP NoC architecture, which employs

the five-stage pipeline. The topology implementation employing the proposed router

architecture consumes 10.88% fewer LUT resources than the CONNECT implemen-

tation. Also, as the hard blocks are employed in designing the router components, an

increase in the frequency of operation is observed. The architecture proposed is 2.09×
faster than CONNECT.

80

5.5. Results and Discussion

Table 5.9: Hardware utilization results of the 3× 3 Mesh topology with
proposed BRAM-DSP implementation and DART’s implementation
on Artix 7 (XC7A100T) FPGA

DART PROPOSED WORK

LUT% 36.37 9.85
FF% 11.12 3.72

BRAM% - 16.67
DSP% - 7.5

Frequency(MHz) 171 328

Table 5.9 provides the comparison of 9-node Mesh topology implemented consid-

ering the proposed BRAM-DSP NoC architecture and the DART (Wang et al. (2014))

NoC architecture. The 9-node Mesh topology implemented with the proposed BRAM-

DSP router architecture consumes 73.38% and 66.55% fewer LUTs and FFs, respec-

tively, than the DART NoC architecture. The proposed architecture is 1.91× faster than

the DART framework.

5.5.3.2 Latency evaluation

Fig. 5.8 shows the comparison of the latency performance of the Mesh topology based

on the proposed BRAM-DSP architecture and the CONNECT and DART architectures

with various traffic patterns such as Transpose, Bit-complement, Uniform random and

Nearest neighbor and . Million flits per second and Nanosecond (ns) are used to rep-

resent the load and delay, respectively. Mesh topology implementation based on the

proposed BRAM-DSP NoC router architecture has lower latency compared to the Mesh

topology based on the DART and CONNECT architectures. Mesh topology based on

the proposed BRAM-DSP NoC router architecture can sustain twice the load which can

be sustained by the Mesh topology based on DART and CONNECT architectures. The

topology based on CONNECT and DART NoC architectures saturate at lower injection

rates compared to the topology based on the proposed BRAM-DSP NoC architecture.

The proposed NoC architecture’s average packet latency is 24.8% and 19.1% lesser than

the CONNECT and DART architectures under Uniform random traffic (Fig. 5.8(a)).

Similarly, a reduction of 21.6% and 17.6% in average latency is observed under the

Transpose traffic pattern (Fig. 5.8 (b)). Under the NN traffic pattern, latency reduction

81

5. Mapping the NoC router components on the Hard-blocks of the FPGA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
v

e
ra

g
e
 P

a
c

k
e
t

la
te

n
c

y
(n

s
)

Load(in million flits/sec)

Network Performance under Uniform Random Traffic Pattern

Mesh 6x6 CONNECT
Mesh 6x6 BRAMDSP

Mesh 3x3 DART
Mesh 3x3 BRAMDSP

(a)
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25 30 35 40 45 50 55

A
v

e
ra

g
e
 P

a
c

k
e
t

la
te

n
c

y
(n

s
)

Load(in million flits/sec)

Network Performance under Transpose Traffic Pattern

Mesh 6x6 CONNECT
Mesh 6x6 BRAMDSP

Mesh 3x3 DART
Mesh 3x5 BRAMDSP

(b)

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Nearest Neighbor Traffic Pattern

Mesh 3x3 DART
Mesh 3x3 BRAM-DSP
Mesh 6x6 CONNECT

Mesh 6x6 BRAM-DSP

(c)
 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 3x3 DART
Mesh 3x3 BRAM-DSP
Mesh 6x6 CONNECT

MESH 6x6 BRAM-DSP

(d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

UniformRandom Transpose NearestNeighbor BitComplement

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t

Traffic Pattern(s)

Saturation Throughput of proposed work vs CONNECT and DART

6x6 Mesh-CONNECT
6x6 Mesh-proposed BRAM-DSP

3x3 Mesh-DART
3x3 Mesh-proposed BRAM-DSP

(e)

Figure 5.8: (a), (b), (c), (d) - Load vs Latency comparison (e) saturation throughput of
the Mesh topologies employing proposed BRAM-DSP router arhchitecture and CON-
NECT, DART NoC architectures

82

5.6. Summary

Table 5.10: Features supported in the proposed BRAM-DSP NoC architecture
and the other state-of-the-art NoC architectures

FPGA components Router components

CLBs BRAM DSP Buffered Router Bidirectional Ports
Hoplite-DSP Yes No Yes No No
CONNECT Yes No No Yes Yes

DART Yes Yes No Yes Yes
Proposed work Yes Yes Yes Yes Yes

of 21.11% and 23.39% is observed with respect to CONNECT and DART (Fig. 5.8 (c)).

Considering the BC traffic pattern and the topologies with proposed router architecture,

a reduction of 18.37% and 17.21% is observed with respect to CONNECT and DART

(Fig. 5.8(d)). Fig. 5.8(e) shows the saturation throughput of the 9-node and 36-node

Mesh topology with the proposed NoC architecture and the DART and CONNECT

NoC architectures.

The supported features by Hoplite-DSP (Chethan and Kapre (2016)), CONNECT,

and DART NoC architectures frameworks and the proposed BRAM-DSP NoC archi-

tecture are shown in Table 5.10. The proposed work efficiently utilizes the BRAMs and

DSP48E1 blocks of the FPGAs to configure the functionality of the components of an

NoC router.

5.6 SUMMARY

The unused hard blocks of the FPGA, such as BRAM and DSP48E1 blocks are em-

ployed to map the functionality of NoC router’s FIFO and Crossbar components. A

reduction of soft logic has been observed employing the proposed technique. A control

unit called “buf empty checker” has been included in the circuit to reduce the latency of

the network. The proposed framework performs favorably compared to the other state-

of-the-art FPGA based NoC simulation platforms. Further, optimizations to the router

architecture can be made to reduce the area and power consumed and providing a bet-

ter throughput. A router architecture with the optimizations such as single cycle router

bypass, parallel VC and SA, combined virtual cut-through and wormhole switching has

been proposed in the next Chapter.

83

CHAPTER 6

OPTIMIZATION OF THE NOC ROUTER FOR
ACHIEVING LOW LATENCY AND AREA

An FPGA based NoC using a low latency router with a look-ahead bypass (LBNoC) is

designed in this Chapter. The proposed design targets the optimized area with improved

network performance. The techniques such as single cycle router bypass, adaptive rout-

ing module, parallel virtual channel and switch allocation, combined virtual cut-through

and wormhole switching are employed in the design of the LBNoC router. The LBNoC

router is parameterizable with the network topology, traffic patterns, routing algorithms,

buffer depth, buffer width, number of VCs, I/O ports being configurable. A table-based

routing algorithm is employed to support the design of custom topologies. The input

buffer modules of NoC router are mapped on the FPGA BRAM hard blocks to utilize

resources efficiently.

6.1 INTRODUCTION

The NoC router stores the incoming flits in the buffers, and the route for the destination

is computed based on the routing algorithms. The wormhole switching mechanism is

employed to divide the large packets into smaller chunks of data called flits for efficient

buffer utilization. However, in the case of a single physical buffer per port, there can be a

chance of head-of-line(HoL) blocking, which degrades the performance of the NoC. To

overcome this issue, Virtual Channel (VC) buffers are introduced (Becker 2012) (Dally

1992). The express virtual channels are employed in the applications demanding high

85

6. Optimization of the NoC router for achieving low latency and area

throughput, which leads to complex router microarchitecture (Kumar et al. 2007).

The bufferless router is designed by removing the buffers at the input port. Remov-

ing the buffers saves the router area (Moscibroda and Mutlu 2009) (Hayenga et al.

2009). At high traffic loads, the performance of bufferless router degrades, the incom-

ing packets are dropped or deflected because of no buffer in the router design. This,

in turn increases the network contention and leads to higher power consumption than a

buffered router (Michelogiannakis et al. 2010).

The number of pipeline stages in an NoC router, and the number of hops along

the route affect the overall network latency significantly. In this work, we reduce

the pipeline stages in the NoC router by employing parallel VC and switch alloca-

tion schemes and router bypass techniques. The adaptive routing module is designed

to avoid network congestion by dynamically conforming with the adversarial traffic

conditions. It achieves high performance under high traffic load.

An FPGA based framework has been developed to demonstrate a prototype of the

parameterized low-latency router architecture employing the lookahead bypass tech-

nique called LBNoC is proposed in this chapter. Various NoC design space exploration

parameters such as buffer depth, number of VCs, flit width, traffic patterns and routing

algorithm can be tuned in the framework for regular and user-defined custom topolo-

gies.

6.2 RELATED WORK

In this section, we introduce the state-of-the-art techniques proposed for low latency

router architecture.

An efficient NoC router microarchitecture is proposed in Becker (2012). The non-

atomic VC reallocation method and full crossbar achitecture are employed in the router

micro-architecture. This results in the increased area overhead of the router. In the look-

ahead routing technique (Galles 1997), the route computation is done in advance in a

neighboring router, and this routing information is appended to the header flit. The next

router need not compute the route for the head flit and can send the flit for allocation unit

depending on the precomputed output port. Switch allocation with speculation (Peh and

86

6.2. Related Work

Dally 2001) is presented to eliminate the VC and switch allocation dependency. The

speculative allocation performs well under the low traffic condition. As we increase

the traffic load, there is an increase in unsuccessful speculation, which leads to the

inefficient use of the speculation technique. The technique of precomputing arbitration

is proposed by Mullins et al. (2004). Employing this technique, the critical path delay

is reduced for the separable input-first VC allocator. In the pipeline stages, the switch

allocation stage is removed from the critical path. When the traffic is high, removing the

switch allocation stage is not efficient as there can be an unused crossbar time slots for

the newly arrived flits. The design of FPGA based low latency router micro-architecture

is presented in Lu et al. (2011). Two clock cycle router architecture is designed by

combining the VC and switch allocation. The atomic VC allocation is employed in this

work. This results in higher average packet latency and lowers the saturation throughput

in the early stages of traffic injection. Becker (2012) proposes a combined VC and

switch allocation technique in which the queues of free VCs are employed to replace

the VC allocation for each destination port. As similar to the speculative approach,

this technique demands to have a higher priority for the non-header flit requests. There

can be a possibility where it may not be able to assign the Output VC (OVC) for a

header flit granted by the switch allocation. A prototyping platform called ProNoC for

many-core SoCs employing the low latency NoC is proposed in Monemi et al. (2017).

ProNoC supports the emulation of Torus and Mesh topologies. ProNoC employs the

full crossbar architecture to implement routers. This leads to a higher area overhead

and increased latency.

The express VCs (Kumar et al. 2007), dynamic allocation of VC called ViChar

(Nicopoulos et al. 2006), and flit reservation flow control (Peh and Dally 2000) are

proposed for achieving high throughput. These designs are more complex leading to

more area utilization and increased dynamic power. ViChar (Nicopoulos et al. 2006)

improves buffer utilization by designing a complex control circuit. The main problems

with ViChaR are the complexity, setup limitation, and longer pipeline for flit arrival/de-

parture. The router architecture with distributed shared-buffer is proposed in Ramanu-

jam et al. (2010) Ramanujam et al. (2011) and Soteriou et al. (2009). An output-buffered

87

6. Optimization of the NoC router for achieving low latency and area

router(OBR) has been emulated in these works. The proposed router architecture in Ra-

manujam et al. (2010), Ramanujam et al. (2011) and Soteriou et al. (2009) has a higher

zero load latency than a virtual channel router(VCR). This is due to the fact that a packet

must travel through input buffer, two crossbars, and shared queues at each router even at

lower traffic load. The design of complex router with two crossbars and the timestamp-

based flow control consumes 35% and 58% more area and power than a conventional

router architecture, respectively. The dynamic buffer management and flow control is

proposed in Becker et al. (2012). This implementation leads to an increase in hardware

cost, delay, and power. The predefined priority cooperation and centralized priority

management based round-robin arbiter are proposed in Yan et al. (2015) and Yan and

Sridhar (2018). These designs increase the allocation matching quality. Hence, the re-

quested input port gets the grant signal for packet transmission much more accurately.

These designs have area overhead and are difficult to maintain synchronization among

each arbiter.

6.3 LBNOC-FPGA BASED BYPASS NOC FRAMEWORK

LBNoC framework contains components on both the software and the hardware parti-

tions of the FPGA. The operations which are processed on the hardware side are con-

trolled by the processing unit of the software side. Also, the software side is responsible

for generating traffic and performing the statistics calculation. The hardware side in-

cludes the NoC router micro-architecture, programmable logic, memory and interfaces,

flow control, and the packet traversal. Fig. 6.1 shows the architecture of the LBNoC

framework in which the Xilinx Zynq 7000 ZC702 SoC is used for the implementation.

The software side of the framework is implemented on the Zynq 7000’s Processing

System (PS) containing dual-core ARM Cortex 9 soft processors. The hardware side is

implemented on the Artix 7 FPGA chip of Programmable Logic(PL). As seen in Fig.

6.1, a USB-UART driver is employed to establish communication between the host PC

and the FPGA. This guarantees the performance of dynamic traffic transmission. The

FIFOs are implemented between (i) the USB-UART interface and the DDR3 for trans-

ferring the trace files from the host to DDR3 of PS, (ii) the DDR3 and Programmable

Logic (PL) bridge for transferring the traces to the emulated NoC routers on the FPGA

88

6.3. LBNoC-FPGA based Bypass NoC Framework

Figure 6.1: The overall architecture of LBNoC-framework implemented on Xilinx
Zynq 7000 ZC702 SoC. The PS consists of two core ARM Cortex-A9 processors and
the PL has Artix-7 FPGA

and (iii) in between Traffic receptors(TRs) and Traffic generators(TGs) which are mod-

eled on one of the two available ARM Cortex 9 processors. The Memory interface is

connected to Processor1 for writing or reading the generated or the received packets.

6.3.1 Hardware components

The NoC architecture is implemented on the PL side of the Zynq 7000 SoC. The two-

stage pipeline router architecture is designed. The router micro-architectural parameters

such as flit width, buffer depth, virtual channel, ports, routing algorithm, link width, and

topology are configurable in the LBNoC framework.

89

6. Optimization of the NoC router for achieving low latency and area

Figure 6.2: Two clock cycle Low latency router architecture implemented in LBNoC
framework(The router is highly parameterized with combined VC and Switch allocation
stages)

6.3.1.1 NoC router

Fig. 6.2 shows the LBNoC router architecture. The two-stage pipelined router ar-

chitecture employing the lookahead bypass technique comprises an input buffer, route

computation unit, combined virtual and switch allocation unit, output module, and the

crossbar. The Traffic generator is connected to the injection port of the router, and

ejection port is connected to the Traffic receptor in the emulation platform.

6.3.1.2 Buffer implementation

In the conventional VC based router architecture, a separate buffer is designated for

each VC. Multiplexers and demultiplexers are used to write and read the data from

these dedicated buffers for each VCs. The multiplexer/demultiplexer implementation

consumes more number of FPGA resources (Monemi (2015)). When the number of

VCs are increased in the router input ports, there is a need for large width multiplexers

(Monemi et al. (2017)) that leads to significant area utilization. In LBNoC design,

large width multiplexers are replaced with a single, dual-port BRAM memory and two

multiplexers with narrow a width, as shown in Fig. 6.3. The multiplexers with narrow

width select the read and write pointers from the active virtual channel by combining

all the input VC buffers at each input port. The VC ID from the incoming header flit

90

6.3. LBNoC-FPGA based Bypass NoC Framework

and Write pointer from the controller are combined to form Addr1 for writing incoming

flit into the input buffer. For reading the flit from the input buffer, the Addr2 comprises

an associated grant signal and read pointer from the controller. The ports of dual-port

memory are used for writing the incoming flits and reading the outgoing flits for sending

them to the desired crossbar output port of the router.

Fig. 6.3 shows the implementation of input buffers based on the dual-port RAM.

The write and read pointers of the dual-port RAM are used to select the address for

reading and writing from the memory. This approach removes the multiplexer and

demultiplexer in the input buffers of the router and efficiently maps all input VC buffers

of an input to a single BRAM. This scheme efficiently utilizes FPGA BRAMs. We

have implemented configurable parameters for efficient mapping of the input buffer to

FPGA memory based on the flit width and buffer depth. FPGA supports two kinds of

memories, viz., soft logic that is LUT based memory (Distributed RAM(DRAM)), and

the Hard logic memory(BRAM). When the size of the input buffer is small, LBNoC

utilizes the DRAMs to map input buffers. In case of large input buffers, BRAMs are

used instead of DRAMs thus improving the performance of LBNoC.

Figure 6.3: The architecture of Input buffer employed in designing low latency router

6.3.1.3 Routing algorithms

The incoming flits are sent to the route computation module to determine the output

port. The framework supports deterministic, table-based, and minimal adaptive routing

91

6. Optimization of the NoC router for achieving low latency and area

Table 6.1: The conventional allocator. V and P represent number of VCs per port and
number of ports

Allocation type
First stage allocator Second stage allocator

Number size of arbiter Number size of arbiter

Virtual channel allocator (PV) (V:1) (PV) ((P-1)V:1)
Switch allocator (P) (V:1) (P) ((P-1):1)

for regular and custom topologies. Table-based routing is implemented for designing

the custom topologies. The LUTs holding the output ports to all the destinations from a

node under considerations are maintained. The output port entries for the large networks

have large number entries in LUTs. DRAMs are used in LBNoC to store the routing

tables. A single DRAM is typically of a single-bit wide memory with 16-64 elements

constrained to a specific FPGA family. As the entries in the routing tables are maximum

of 3 bits wide, they are mapped very efficiently to DRAMs.

Figure 6.4: Free VC availability check and count

6.3.1.4 Parallel VC allocation and Switch allocation

The large circuit complexity and higher critical path delay of traditional allocator re-

sults in area overhead and performance reduction (Monemi et al. (2017)). The most

challenging task in the NoC router design is the implementation of the allocator mod-

ule as it lies in the critical path of the NoC router, and also influences the performance

and area overhead significantly. From Table 6.1, it can be seen that the VC allocation

consumes a large number of resources compared to the Switch allocation. Due to this

large consumption, the VC allocation is replaced with queues of free VCs selection for

each destination port, as shown in Fig. 6.4. As the queues of free VCs selection require

a single arbitration stage, it results in faster execution and less area overhead. The con-

92

6.3. LBNoC-FPGA based Bypass NoC Framework

ventional VC allocator stage requires the second arbitration stage to remove conflicts

of assigning one Output VC to several input VCs. Whereas, in the queues of free VCs

selection technique, the switch allocator removes conflicts of assigning one Output VC

to several input VCs.

Figure 6.5: Request filter logic

To implement the two-stage router pipeline architecture, the VC and switch allo-

cation stages of the conventional router are combined to form a single VSA stage. In

the VSA stage, the VC allocation and switch allocation are performed in a single clock

cycle (Lu et al. (2011)). The VC allocation fails when all the virtual channels of the

given output channel are busy for head flit, and there is a lack of free space in VCs for

body and tail flits. A novel filtering method is implemented to monitor all switch allo-

cation requests that are unable to transfer flits through the output channel. The newly

proposed request filter logic is shown in Fig. 6.5. The request for output channel is

filtered, when there are free VCs and free space in the VCs. These requests are sent to

the switch allocation logic.

The non-speculative parallel virtual channel and switch allocation approach is im-

plemented as shown in Fig. 6.6. For each input port, only one request is granted from

all the other requests that are sent to the first stage arbiter of size V:1. After encoding the

winner, the arbiter selects the output port among the rest of the requests(Virtual channel

or switch). The header flit requests both VC and SW allocator. The non-header flit re-

quests only switch allocator, as the header flit has already done the VC allocation. The

VC allocation done for the header flit is reserved for the entire duration of the packet.

93

6. Optimization of the NoC router for achieving low latency and area

Figure 6.6: Parallel virtual channel and switch allocator

However, the switch requests are allocated flit by flit basis. Each time the flit has to

request for the switch allocator. To differentiate header and non-header flit request sig-

nals, the VC and switch requests are designated with “1” and “0” bits, respectively. The

selected output port is sent to the second stage of the arbiter. The second stage arbiter

performs arbitration among requests of different input ports that request the same out-

put port. The second stage arbitration results are sent back to the respective inputs. The

request signal after winning both the first and second stage arbitration is only granted

the access. If the request is of switch type designated with “0”, then the allocation pro-

cess is completed. If the request is of VC type designated with “1”, then it continues for

the VC allocation, that is free VC selection. The arbitration of free VCs is done using

94

6.3. LBNoC-FPGA based Bypass NoC Framework

Table 6.2: The proposed parallel allocator. V and P denotes number of VCs per port
and number of ports

Parallel allocator
Type of allocator Virtual channel allocator+Switch allocator

Size of arbiter (V:1) ((P-1):1)
Number (2P) (P)

the V:1 arbiter at the output channel. An encoding of the winner of V:1 arbiter can be

done and latched as a new Virtual Channel Identifier (VCID). The input request for out-

put channel, which does not have free space in VC is eliminated by request monitoring

logic. The resultant is at most one grant signal, which can be made available at the

output channel. This always results in successful VC allocation. The free VC selection

is not performed on the critical path; therefore, it is performed parallelly with switch

allocation. Arbitration is needed in the scenario of two levels of allocators. The design

of parallel VC allocation and switch allocation results in the reduced circuit complex-

ity and critical path delay in NoC router architecture, as shown in Table 6.2. LBNoC

supports round-robin, weighted round-robin, and fixed priority arbitration schemes.

6.3.1.5 Crossbar

The decomposed crossbar architecture is implemented in the LBNoC router architec-

ture. Based on the route computed employing lookahead routing, the flits destined to

the local output are sent through the multiplexer instead of going through the switch

allocation and switch traversal. This results in the reduction of 2 clock cycles at the

destination nodes. Employing decomposed crossbar results in reduced area utilization.

As there is less contention as the connections are less, the probability of contention at

the output port is reduced.

6.3.1.6 Design of hybrid flow control

A hybrid flow allocation mechanism allows the improvement of network throughput.

To keep the flits of the same packet together in the network, a communication flow

is established employing the hybrid flow control. As the packet stays across a lesser

number of routers, less number of network resources such as VCs are required to hold

95

6. Optimization of the NoC router for achieving low latency and area

the packet at any given time. The hybrid flow control mechanism is implemented by

combining the virtual-cut through and wormhole flow switching based on priority rule.

The output port is allocated on flit by flit basis of different packets, but the priority being

given to the same packet flits requesting contiguous in switch allocation mechanism.

That is, both the first(local) and second(global) stage arbitration in switch allocation

favor flits of the same packet. The degradation of throughput can be avoided in the

network employing the hybrid flow only if the same packet flits contiguous requests

exist. The starvation does not happen in the hybrid flow due to the breakage of the

hybrid flow of the same packet flits. Once the switch allocation request to the tail flit of

the packet is granted, the resources are free to be allocated to flits of other packets. Thus,

across the network, the flows are created by keeping the same packet flits together, and

less number of resources can be occupied at any given time.

6.3.1.7 The Pipeline bypass

The output ports of the router which have little contention are often free at low network

loads. In such circumstances, the pipeline stages can be bypassed, and flit traversal

delay can be reduced to a single clock cycle. The switch traversal path of the crossbar

is set up earlier by configuring control signals based on an advance setup signal which

arrived one cycle ahead than the actual flit. The following three conditions are to be

fulfilled for pipeline bypassing: First, the buffer at the input port is empty, when the ad-

vance setup signal arrives. Second, there is no conflict for the output port with existing

flits. The advance setup signal requests for a conflict-free output port. Third, multi-

ple advance setup signal does not have output port conflicts. The flit follows normal

pipeline stages of Fig. 6.7 (b) when the above conditions are not satisfied. If the above

conditions are satisfied, the pipeline delay of the flit is just a single clock cycle.

6.3.1.8 Pipeline architecture

Fig.6.7 shows the conventional 5-stage pipeline, 2-stage pipeline, and 2-stage with by-

pass pipeline of the NoC router architecture. The conventional 5-stage pipeline router

comprises of buffer write(BW), route computation(RC), virtual allocation(VA), switch

allocation(SA), and switch traversal(ST) stages. In the 2-stage router pipeline architec-

96

6.3. LBNoC-FPGA based Bypass NoC Framework

Figure 6.7: Pipeline stages of conventional and LBNoC router architecture

ture, the pipeline structure of the router is optimized by employing lookahead routing

and combining the non-speculative Virtual channel and switch allocation stages. Also,

the buffer write, Lookahead Route Compute (LRC) and combined VSA allocation are

done in one clock cycle, and switch traversal(ST) is performed in the next clock cycle.

At low traffic loads, the flit passes through a single cycle in a 2-stage router with bypass

architecture. In this pipeline architecture, flits perform only Switch Traversal(ST) stage

by eliminating all other stages of router pipeline architecture by employing the bypass

technique.

6.3.1.9 Adaptive routing algorithm

Fig. 6.8 shows the block diagram of the proposed adaptive route computation module.

The adaptive route computation module consists next router address predictor, two-hop

neighbor status information, and adaptive routing algorithm for route computation. A

small area overhead can be observed due to the additional status information in trans-

mission links and register for storing the 2-bit status information. This area overhead is

negligible in FPGA due to the abundant availability of wires and FFs (Papamichael and

Hoe (2015)). The adaptive routing employs 2-bit values for indicating the congestion

97

6. Optimization of the NoC router for achieving low latency and area

Figure 6.8: Proposed adaptive look-ahead routing module

in the communication routers. 00, 01, 10, and 11 are used to indicate the empty(0%),

half full(50%), nearly full(75%), and full (100%) occupancy of the buffers of a router

respectively. Each router has to exchange these congestion status bits with its two-hop

neighboring routers to make the correct routing decisions. The adaptive routing algo-

rithm from Parane et al. (2018) with negligible area overhead of 1.66% compared to

XY routing algorithm is used in the proposed LBNoC architecture.

6.3.2 Software components in LBNoC

The Traffic generation, Source queue, and Traffic receptors are implemented on the

software side. These components are implemented on the embedded ARM Cortex 9

soft processors.

6.3.2.1 Traffic generation

The Traffic Generation (TG) modules are used to produce various synthetic traffic pat-

terns. Each router of the NoC topology is associated with TG module. The TG modules

are responsible for generating the packets and storing them in the source queue. Also,

the flit generation logic is incorporated in the TG module. The TG module is respon-

sible for generating traffic. The framework supports various types of synthetic traffic

patterns such as uniform random, bit complement, transpose, bit reverse, hotspot, and

tornado.

98

6.3. LBNoC-FPGA based Bypass NoC Framework

6.3.2.2 Source queue

The source queues are implemented to store the flits generated by the TG module prior

to injecting the packet in the network. The source queues operate in FIFO fashion. The

source queue takes care of the injection of the flits into the NoC topology based on the

emulation cycles.

6.3.2.3 Traffic receptor

The Traffic Receptor (TR) associated with each NoC router is responsible for validating

the destination. TR also decodes the information in the flit. The TR module calculates

the packet latency based on the time stamp stored in the head flit. Also, it monitors

the number of total packets received, the number of packets transmitted, and average

packet latency.

6.3.2.4 Global clock generation

The Global Clock Generation (GCG) module is responsible for maintaining the syn-

chronization between the software (ARM Cortex) and the FPGA side. GCG generates

a clock on the software side. The FPGA side is driven by the clock generated in the

software side.

6.3.3 Flit structure

Fig. 6.9 shows the 32-bit flit structure. The flit size can be configured to any size

varying from 32, 64, and 128 bits. A 2-bit ‘Type’ field is used to represent the type of

flit that is being traversed in the network such as Head, Body and Tail. The ‘VC Id’ field

depends on the number of configured VCs. The ‘LHR’ field specifies the output port

of the next-hop router computed using Look ahead routing. The ‘Class’ field specifies

the message class. Source and Destination fields are specified in ‘Source’ and ‘Dest’

fields. The ‘Timestamp’ field is used to specify flit creation time at the Source. The

Body flit contains the ‘Payload’ field to accommodate the actual data to be transferred.

The ‘Wr TimeStamp’ field of Tail flit marks the arrival time of a flit at its destination.

The latency is calculated by considering the ‘TimeStamp’ and ‘Wr TimeStamp’ fields.

99

6. Optimization of the NoC router for achieving low latency and area

TimestampDest_XDest_YClassLHRVC_IdType

014151819222324252728293031

(a) Head Flit

28293031 27 0

VC_IdType Payload

283031 27 0

VC_Id Wr_TimeStamp

(b) Body Flit

Type

1415

Payload

29

(c) Tail Flit

Figure 6.9: Flit structure employed in LBNoC Framework

6.4 RESULTS AND DISCUSSION

The microarchitectural components of the NoC architecture are implemented in Ver-

ilog. Synthesis results are extracted from Xilinx Vivado suite. Results include resource

usage on the Xilinx Zynq 7000 SoC (ZC 702 board). The hardware side is imple-

mented on the Artix 7 FPGA, and the software side is implemented on the ARM Cortex

9 soft processors. The software side accounts for traffic generators and traffic recep-

tors. The UART interface is employed for transceiving the traffic from the software to

the hardware side of the framework. Another USB-UART interface is employed for

communication between the host PC and the PL side of the Zynq SoC.

Table 6.3: Experimental setup details

Experimental setup details

Topology 4× 4 & 5× 5 Mesh topology
Buffer type FIFO buffer

Packet length 4 flits
Flit width 32, 64 and 128

Buffer depth 4, 8 and 16
Routing algorithm DoR Lookahead

Router Pipeline depth 2-stage and 2-stage with Bypass
Flow control Credit based
Arbiter type Round robin, Priority

Traffic pattern Uniform random, Bit complement, Transpose, Bit reverse, Tornado, Hotspot

The experimental setup employed in evaluating LBNoC is shown in Table 6.3. Var-

ious configurations of buffer depth, number of VCs, flit width, the number of I/O ports,

traffic patterns, and different topologies have been employed to evaluate the LBNoC

100

6.4. Results and Discussion

framework.

6.4.1 FPGA resource utilization

In the FPGA platform, memory can be mapped on the soft and hard memory blocks.

The soft memory block such as Register RAM, Distributed RAM (also called LUT

based RAM) and the hard memory block such as BRAM. Table 6.4 shows the buffer

implementation mapping on three alternative memory modules of the FPGA platform

with fixed 32-bit of Flit width and varying buffer depth from 5 to 55 flits. From Ta-

ble 6.4, it can be observed that mapping memory logic on the Register RAM consumes

more FPGA resources compared to the LUTRAM and BRAM resources. This increases

the circuit complexity and decreases the operating frequency. Comparing the three al-

ternative memory modules, BRAM based implementation is best suitable to map the

entire memory logic into the single BRAM block. This will reduce the circuit complex-

ity and increases the operating frequency. In Table 6.5, we fixed the buffer depth to 15

flits, and flit width is varied from 4 to 256-bit. It can be observed that the FPGA mem-

ory resource consumption increases with the increase in the number of bits. The results

show that BRAM is best suitable for explicit memory mapping, which consumes hardly

four BRAM blocks with a flit size of 256 bit compared to Register RAM and LUTRAM.

Table 6.4: FPGA memory buffers using three implementation alternatives with constant
flit width of 32-bit.

Flit Width 32-bit

Buffer depth 5 10 15 20 25 30 35 40 45 50 55

FIFO buffer
RegisterRAM 160 320 512 640 800 960 1120 1280 1440 1600 1760

LUTRAM 24 24 24 24 24 24 44 44 44 44 44
BRAM 1 1 1 1 1 1 1 1 1 1 1

Table 6.5: FPGA memory buffers using three implementation alternatives with constant
buffer depth of 15 flits.

Buffer depth 15

Flit width 4 8 16 32 64 128 150 180 200 210 256

FIFO buffer
RegisterRAM 64 128 256 512 1024 2048 2400 2880 3200 3360 4095

LUTRAM 8 8 16 24 48 88 100 120 136 140 176
BRAM 1 1 1 1 1 2 3 3 3 3 4

Tables 6.6 and 6.7 show the FPGA BRAM resource utilization for various config-

101

6. Optimization of the NoC router for achieving low latency and area

urations of NoC router input buffers targetting Zynq 7000 SoC. The results in Tables

6.6 and 6.7 are specific to the input buffer in a single LBNoC router. It can be seen that

the LBNoC framework is capable of design space exploration of the NoC architecture

by allowing the parametrized values for Input buffer configurations. Tables 6.6 and 6.7

infer that increasing the number of VCs, flit width, and buffer depth yields in higher uti-

lization of FPGA resources. Changes made to the buffer depth and flit width affect the

buffering requirement. This plays a major role in the performance of NoC architecture.

Table 6.6: Synthesis results of various configurations of Input buffer in LBNoC router
with 64-bit flit width

Flit width 64 bits

Number of VCs 4 8 16
Buffer depth 4 8 16 4 8 16 4 8 16

Input buffer

LUT 46 58 76 94 124 158 190 254 323
FFs 28 41 52 56 80 104 112 160 208

BRAM36 1 1 1 1 1 1 1 1 1

Table 6.7: Synthesis results of various configurations of Input buffer in LBNoC router
with 128-bit of flit width

Flit width 128 bits

Number of VCs 4 8 16
Buffer depth 4 8 16 4 8 16 4 8 16

Input buffer

LUT 46 58 76 94 124 158 192 254 323
FFs 28 41 52 56 80 104 112 160 208

BRAM36 2 2 2 2 2 2 2 2 2

In designing the low latency router architecture in LBNoC, we employ the merging

of all input VCs buffer at input ports. Table 6.8 shows the resource utilization of merged

buffer implementation and CONNECT’s (Papamichael and Hoe (2015)) conventional

buffer implementation. It can be seen from Table 6.8 that the merged implementation

consumes 28 % and 44 % fewer LUTs for 32 and 64-bit flit width. This implementation

will be mapped efficiently to a single Block RAM of FPGA. An increase in the number

of LUTs increases the critical path, thus reducing the operating frequency.

The queues of free selectors are considered for implementing the VC allocator in

low latency router architecture. Table 6.9 shows the resource utilization of queues of

102

6.4. Results and Discussion

free VCs selection module and the two-level VC allocator module. It can be seen that

the queues of free VCs selection consume 58.05 % fewer hardware compared to the

conventional VC allocator (Becker (2012)).

Table 6.8: Synthesis results of merged FIFO buffers at each input port and Conventional
FIFO buffers

Flit Width 32 bits 64 bits
Num. of VCs 4 4
Buf. Depth 8 8

Merged Input buffer

LUT 56 58
FF 40 40

DRAM - -
RAMB18 1 -
RAMB36 - 1

CONNECT buffer

LUT 78 104
FF 42 42

DRAM 24 48
RAMB18 - -
RAMB36 - -

The decomposed crossbar architecture is implemented to directly route the packet,

which is destined for the local input port based on the look-ahead routing. Table 6.10

shows the resource utilization of the Full crossbar (Monemi et al. (2017)) and the De-

composed crossbar. The Decomposed implementation consumes 10.64 % fewer LUTs

than the Full crossbar.

Table 6.9: Synthesis results of Queue of free VCs selection and Conventional VC allo-
cator implementation

VC 4
In/Out Port 5

Queue of free VCs
LUT 370
FF 155

VC allocator
(Becker 2012) LUT 882

FF 201

6.4.1.1 Topology implementation

The 4× 4 and 5× 5 prototypes have been implemented employing LBNoC to demon-

strate resource utilization. Table 6.11 shows the synthesis results for the designed

103

6. Optimization of the NoC router for achieving low latency and area

Table 6.10: Synthesis results of Full and Decomposed Crossbar with IN/OUT ports

Full Crossbar (Monemi et al. 2017) Decomposed Crossbar
6-IN and 6-OUT ports 6-IN and 5-OUT ports

LUT 141 126

Table 6.11: Synthesis results of Mesh topology of size 4 × 4 and 5 × 5 with various
configuration of input parameters

Topology 4x4 5x5 4x4 5x5
VC 2 2 4 4

Buffer depth 2 4 2 4 2 4 2 4

Flit Width 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64
LUT(%) 21 31 26 35 36 52 43 57 41 49 50 59 67 81 78 90
FF(%) 5 7 7 7 6 12 11 14 9 11 12 14 15 19 19 23

BRAM(%) 22 45 22 45 37 75 37 75 22 45 22 45 37 75 37 75
Power(mW) 374 529 422 607 550 821 634 942 633 837 704 917 964 1314 1078 1481

topologies. Increasing the flit width increases the FPGA resource utilization. Con-

sidering the 4 × 4 mesh topology, when the flit width is increased from 32 to 64 bits,

the LUT utilization increases from 26% to 35% for buffer depth 4 considering 2 VCs.

Similar behavior is observed for the 5 × 5 mesh topology. Flit width affects the buffer

requirement in the NoC router architecture. It can be seen that increasing the flit width

from 32 to 64-bit leads to higher utilization of BRAMs. When the 32-bit flits are uti-

lized, the 18Kb BRAMs of Xilinx FPGA are used. When the 64-bit flits are used, 36Kb

BRAMs are utilized. This is because the Xilinx 18Kb BRAM can be configured to

accommodate 512 flits each of 32-bit width. As we increase the flit width to 64-bit, the

18Kb BRAM are not be sufficient to map the required width. Hence, the 64-bit flits

occupy the 36Kb BRAMs by configuring 512 of flits each of 64-bits. As the topology

size increases, the FPGA resources also increase. The 5 × 5 mesh topology with 4

VCs and 64 bit flit width consumes 65.30 % and 40 % more LUTs and 36Kb BRAMs,

respectively than the 4× 4 mesh topology.

6.4.2 Latency analysis

The packet latency analysis results under various synthetic traffic patterns are presented

in this section. We use six traffic patterns: Uniform Random, Hot-spot, Transpose, Bit

complement, Bit Reverse, and Tornado. Table 6.3 shows the basic experimental setup

104

6.4. Results and Discussion

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Uniform Random Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(a)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3
A

v
e

ra
g

e
 P

a
c

k
e

t
la

te
n

c
y

(I
n

 C
lo

c
k

 c
y

c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Transpose Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(b)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Reverse Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(c)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(d)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Tornado Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(e)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Hot spot Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(f)

Figure 6.10: Performance comparison of 4x4 and 5x5 NoCs topologies with various
configurations under a different type of traffic patterns.

105

6. Optimization of the NoC router for achieving low latency and area

of latency analysis. From Fig. 6.10, it can be seen that the single cycle router with

bypass path and adaptive routing performs better compared to the baseline Two clock

cycle router architecture for all the traffic patterns. From Fig. 6.10 (a), the 4×4 mesh

topology has a lower average packet latency compared to 5×5 mesh topology. This

is due to the lower diameter of the 4×4 mesh. The single-cycle Bypass path reduces

the average communication latency by 5.4%, 5.6%, 5.2%, 9.2%, 4.99% and 5.6% for

Uniform random, Transpose, Bit reverse, Bit complement, Tornado and Hot-spot traffic

patterns respectively for 4×4 mesh topology. The 5×5 mesh topology with a single

cycle Bypass path reduces the average packet latency by 6.78%, 7.93%, 9.5%, 10.3%,

6.45% and 7.93% for Uniform random, Transpose, Bit reverse, Bit complement, Tor-

nado and Hot-spot traffic patterns respectively. Employing both the single-cycle Bypass

path and the adaptive routing strategy, reduction in the average communication latency

by 6.31%, 6.53%, 6.12%, 10.42%, 6.01% and 6.7% for Uniform random, Transpose,

Bit reverse, Bit complement, Tornado and Hot-spot traffic patterns respectively have

been observed for 4×4 mesh topology. For the 5×5 mesh topology with single-cycle

Bypass path and the adaptive routing strategy, reduction in the average packet latency

by 7.84%, 8.85%, 10.7%, 11.63%, 7.5% and 8.79% for Uniform random, Transpose,

Bit reverse, Bit complement, Tornado, and Hot-spot respectively have been observed.

4×4 mesh topology employing the bypass path and adaptive routing strategy with 4

VCs performs better compared to all the other configurations under Uniform Random,

Transpose, Bit Reverse, and Hot-spot traffic patterns. From Fig. 6.10(d), it can be

observed that 4×4 with 2 VCs considering the bypass and baseline two clock cycle ar-

chitecture saturates early compared to all other configurations. Fig. 6.10(e) shows that

5×5 mesh with 2 VCs, Bypass path, and the adaptive routing strategy has lower average

packet latency compared to the baseline two clock cycle, but it saturates early. The 4×4

mesh topology with 4 VCs, and the Bypass path yields better performance compared to

all other configurations, as shown in Fig. 6.10(e).

6.4.3 Throughput analysis

Fig. 6.11 shows an increase in the saturation throughput as virtual channel increases

from 2 to 4. This is due to the large size buffers to hold more number of flits in the

106

6.4. Results and Discussion

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li

ts
/C

y
c

le
s

(%
)

)

Load(in Flits/Cycle/Node)

Network Throughput under Uniform Random Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(a)

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1 0.2 0.3 0.4 0.5 0.6
T

h
ro

u
g

h
p

u
t(

In
 F

li
ts

/C
ly

c
le

s
(%

)
)

Load(in Flits/Cycle/Node)

Network Throughput under Transpose Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(b)

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li

ts
/C

y
c

le
(%

))

Load(in Flits/Cycle/Node)

Network Throughput under Bit Reverse Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(c)

 25

 30

 35

 40

 45

 50

 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
in

 F
li

ts
/C

y
c

le
 (

%
))

Load(in Flits/Cycle/Node)

Network Throughput under Bit Complement Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(d)

 30

 35

 40

 45

 50

 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li

ts
/C

y
c

le
s

(%
)

)

Load(in Flits/Cycle/Node)

Network Throughput under Tornado Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass-enable

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass-enable

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass-enable

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass-enable

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(e)

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li

ts
/C

y
c

le
 (

%
)

)

Load(in Flits/Cycle/Node)

Network Throughput under Hot spot Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(f)

Figure 6.11: Throughput comparison of 4x4 and 5x5 NoCs topologies with various
configurations under a different type of traffic patterns.

107

6. Optimization of the NoC router for achieving low latency and area

network. The 4×4 mesh topology with 4 VC employing single cycle Bypass path and

adaptive has a higher saturation throughput compared to all the other configurations in

Fig. 6.11(a), (b),(c) and (f). From Fig. 6.11(d) it can be seen that 4×4 mesh topology

with 2 VC baseline architecture has lower saturation throughput compared to all other

configurations. The 5×5 mesh topology with 2 VC single cycle Bypass path has lower

saturation throughput compared to all other configurations, as shown in Fig. 6.11(e).

6.4.4 Power analysis

Table 6.11 shows power consumption for various configurations of 4×4 and 5×5 mesh

topologies. The dynamic power is estimated using Xilinx Xpower by supplying switch-

ing activity rates. We extract these switching activity rates from simulation data. It

can be observed that power consumption increases as and when there is an increase in

the size of the virtual channel, flit width, buffer depth, and size of the topology. For

example, from 374mW for a low configuration (4 × 4 mesh topology with VCs of 2,

buffer depth of 2 and Flit width of 32) to 1481mW for the highest configuration (5× 5

mesh topology with VCs of 4, buffer depth of 4 and Flit width of 64) as shown in Table

6.11. This is due to the large resource requirements and utilization required for larger

topology size. The larger topology is capable of processing more flits than a smaller

topology within the same time frame.

Table 6.12: Resource utilization and Maximum operating frequency of Different NoC
configurations considering 4× 4 mesh topology

Resource Max. Operating Power
Utilization (%) Frequency(MHz) (mW)

CONNECT 69 98 810
ProNoC 53 170 734
LBNoC 50 205 704

6.5 COMPARISON WITH THE STATE-OF-THE-ART NOC ARCHITECTURES

6.5.1 Comparison with FPGA state-of-the-art
6.5.1.1 Area, frequency and power:

Table 6.12 shows the resource utilization, and maximum operating frequency of differ-

ent NoC architectures. 4× 4 mesh topology implemented employing the LBNoC NoC

108

6.5. Comparison with the State-of-the-Art NoC architectures

architecture consumes 4.5% and 27.1% fewer hardware resources than the ProNoC and

CONNECT architectures with identical NoC configuration parameters. This is because

of the design optimizations such as merged input buffers, decomposed crossbar archi-

tecture, and employing queues of free VCs. This, in turn, results in a lower critical path

delay. Hence, LBNoC NoC architecture operates at a higher frequency of 205MHz

compared to CONNECT(100MHz) and ProNoC(172MHz) architectures. We observe

a 4.1% and 13.1% reduction in power consumption than ProNoC and CONNECT NoC

architecture, respectively. The lower power due to its fewer FPGA resource utilization.

6.5.1.2 Latency and throughput analysis:

To compare the performance of different NoC architectures, the experiments consider-

ing the same configuration parameters such as 32-bit flit width, 4 VCs per port, buffer

depth of 4 flits are conducted. Fig. 6.12 shows the load vs. delay graph for various

synthetic traffic patterns in 5× 5 mesh topology. The average latency increases with an

increase in the packet injection rate.

Fig. 6.12(a) shows the load vs delay graph of 5 × 5 mesh topology under Uniform

traffic pattern. The average packet latency of LBNoC architecture is 25% and 13% less

than the CONNECT and ProNoC architectures. From Fig. 6.12(b), it can be seen that

LBNoC architecture has 30% and 15% lesser average packet latency than CONNECT

and ProNoC architectures under the Transpose traffic pattern. Fig. 6.12(c),(d),(e) and

(f) shows the load vs. delay graph of 5 × 5 mesh topology under Tornado, Hot-spot,

Bit complement and Bit Reverse traffic patterns. LBNoC has less average packet la-

tency compared to CONNECT and ProNoC. It can be seen that the LBNoC architec-

ture has 36%, 16.7%, 35.3%, 30% lesser average packet latency than the CONNECT

architecture under Tornado, Hot spot, Bit complement, and Bit-reversal traffic patterns

respectively. Compared to ProNoC, LBNoC has 11.2%, 10.4%, 4.56%, and 6.3% lesser

average packet latency under Tornado, Hot spot, Bit complement and Bit reversal traffic

patterns respectively.

Fig. 6.13 shows the saturation throughput of the CONNECT, ProNoC, and LBNoC

architectures under Uniform, Transpose, Tornado, Hot-spot, Bit complement, and Bit

109

6. Optimization of the NoC router for achieving low latency and area

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Uniform Random Traffic

Connect
ProNoC
LBNoC

(a)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35
A

v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Transpose Traffic

Connect
ProNoC
LBNoC

(b)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Tornado Traffic

Connect
ProNoC
LBNoC

(c)

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Hot-spot Traffic

Connect
ProNoC
LBNoC

(d)

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Complement Traffic

Connect
ProNoC
LBNoC

(e)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Reverse Traffic

Connect
ProNoC
LBNoC

(f)

Figure 6.12: Average packet latency comparison between LBNoC, CONNECT (Pa-
pamichael and Hoe 2015) and ProNoC (Monemi et al. 2017) considering different
types of traffic patterns

110

6.5. Comparison with the State-of-the-Art NoC architectures

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Uniform Transpose Tornado HotSpot BitComplement BitReversal

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Traffic Pattern(s)

Saturation Throughput of 5x5 Mesh topology

CONNECT
ProNoC
LBNoC

Figure 6.13: Throughput comparison of LBNoC, ProNoC and CONNECT NoC archi-
tecture

reverse traffic patterns. It can be observed that the LBNoC architecture saturates at a

higher injection load compared to CONNECT and ProNoC architectures. Under the

Uniform traffic pattern, LBNoC achieves an improvement of 2.16× and 1.06× with

respect to CONNECT and ProNoC architectures. Similarly, under the Transpose traffic

pattern, LBNoC achieves an improvement of 2.6× and 1.16× with respect to CON-

NECT and ProNoC architectures. LBNoC has higher saturation throughput of 0.95×,

1.5×, 1.13× and 1.08× under Tornado, Hot spot, Bit complement and Bit reversal traf-

fic patterns, respectively compared to CONNECT. LBNoC has 0.05×, 0.08×, 0.07×,

and 0.13× higher saturation throughput under Tornado, Hot spot, Bit complement and

Bit reversal traffic patterns, respectively compared to ProNoC architecture.

6.5.2 Comparison with ASIC targetted state-of-the-art NoC architectures
6.5.2.1 Area, frequency and power:

Fig. 6.14 shows the FPGA resource utilization, frequency, and power results of the

proposed and state-of-the-art ASIC NoC router designs.

Despite the design flow of FPGA and the design flow of ASIC have much in com-

mon in their RTL-based design and synthesis environments, they actually vary in mak-

ing design decisions which affect performance and cost optimizations. When synthe-

111

6. Optimization of the NoC router for achieving low latency and area

Figure 6.14: Area, Frequency and Power utilization of various router architectures

sized on an FPGA, a compactly optimized router on an ASIC may occupy more FPGA

resources because of the various relative cost trading between wires, memory, and logic

of the FPGA. It can be observed that the proposed NoC router architecture occupies

41.98%, 44.30%, and 46.49% fewer FPGA resource than state-of-art ASIC NoC router

architectures such as publicly available RTL of router based on VCs (Stanford Con-

current VLSI Architecture Group. (2014)), which we will refer to as SOTA, Priority

cooperation based round robin-arbiter (Yan et al. (2015)) which we refer to as PCA and

shared buffer Becker et al. (2012) respectively. The reduction of power consumption

up to 10.5%, 5.3%, and 15.84% can be observed in the proposed router with respect to

SOTA, PCA, and shared buffer NoC router architectures. The proposed NoC architec-

ture operates at a higher frequency than the state-of-the-art NoC router architectures.

Table 6.13 shows the resource utilization, maximum operating frequency and power

consumption of different NoC architectures. 4 × 4 mesh topology implemented em-

ploying the LBNoC NoC architecture consumes 15.25%, 19.35%, and 27.53% fewer

hardware resources than the SOTA, Priority and shared buffer architectures with identi-

cal NoC configuration parameters. This is because of the design optimizations such as

merged input buffers, decomposed crossbar architecture, and employing the queues of

112

6.5. Comparison with the State-of-the-Art NoC architectures

free VCs in the proposed NoC router architecture. This in turn, results in a lower critical

path delay. Hence, LBNoC NoC architecture operates at a higher frequency of 205MHz

compared to SOTA(101.72MHz), PCA(106.5MHz), and Shared buffer(98.5MHz) ar-

chitectures. Reduction in power consumption by 6.1%, 3.82% and 20.45% have been

observed with respect to SOTA, PCA, and Shared-buffer NoC architectures. The lower

power is observed due to the less FPGA resource utilization of LBNoC NoC architec-

ture.

Table 6.13: Resource utilization and Maximum operating frequency of Different NoC
configurations considering 4× 4 mesh topology

Resource Max. Operating Power
Utilization (%) Frequency(MHz) (mW)

SOTA 59 101.72 750
PCA 62 106.5 732

Shared buffer 69 98.5 885
LBNoC 50 205 704

6.5.2.2 Latency and throughput analysis:

The network performance of LBNoC is compared with publicly available state-of-the-

art RTL of VC-based router Stanford Concurrent VLSI Architecture Group. (2014)

and Yan et al. (2015) NoC architectures. The results for Shared buffer architecture

(Soteriou et al. 2009) are obtained by modifying SOTA (Stanford Concurrent VLSI

Architecture Group. 2014) RTL code. And, the results for PCA are obtained from Yan

et al. (2015). Fig. 6.15 shows the average latency comparison between LBNoC, SOTA,

and PCA under various traffic patterns. 5 × 5 mesh topology has been considered for

the experiments. An increase in the average latency can be observed with the increase

in the packet injection rate. Fig. 6.15 (a) shows the load vs. latency behavior of the

5 × 5 mesh topology considering various traffic patterns. It can be observed that the

LBNoC architecture outperforms all the other NoC architectures consistently offering

lower packet latency considering all the traffic patterns.

In Fig. 6.15, considering the 5× 5 mesh topology with LBNoC router architecture,

a reduction in average latency by 10.5%, 8.1%, 1.67%, 13.68%, 9.5%, and 4.5% under

the Uniform Random, Transpose, Tornado, Neighbor, Bit-complement, and Bit-reverse

113

6. Optimization of the NoC router for achieving low latency and area

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Uniform Random Traffic

SOTA
Shared-buffer

PCA
LBNoC

(a)

 50

 100

 150

 200

 0 5 10 15 20 25 30

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Transpose Traffic

SOTA
Shared-buffer

PCA
LBNoC

(b)

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Tornado Traffic

SOTA
Shared-buffer

PCA
LBNoC

(c)

 50

 100

 150

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Neighbor Traffic

SOTA
Shared-buffer

PCA
LBNoC

(d)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Complement Traffic

SOTA
Shared-buffer

PCA
LBNoC

(e)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Reverse Traffic

SOTA
Shared-buffer

PCA
LBNoC

(f)

Figure 6.15: Average packet latency comparison between LBNoC, SOTA(Stanford
Concurrent VLSI Architecture Group. 2014), Shared-buffer (Soteriou et al. 2009)
and PCA (Yan et al. 2015) considering different types of traffic patterns

traffic patterns compared to SOTA NoC architecture. Similarly, considering the 5 × 5

mesh topology LBNoC router architecture, a reduction in average latency by 30.02%,

18.01%, 32.8%, 26.3%, 28.75%, and 31.5% are observed with respect to Shared buffer

114

6.6. Summary

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Uniform Transpose Tornado neighbor BitComplement BitReversal

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Traffic Pattern(s)

Saturation Throughput of 5x5 Mesh topology

SOTA
Shared-buffer

PCA
LBNoC

Figure 6.16: Throughput comparison of LBNoC, SOTA, Shared-buffer and PCA NoC
architectures

NoC architecture under the afore-mentioned traffic patterns. And, a reduction of 6.25%,

5.5%, 1.4%, 8.2%, 5%, and 3.07% have been observed with respect to PCA.

Fig. 6.16 shows the saturation throughputs of 5× 5 mesh topology under the traffic

patterns mentioned before considering the LBNoC, Shared-buffer, and PCA NoC archi-

tectures. The 5× 5 mesh topology under LBNoC router architecture is capable of sus-

taining more load compared to the other NoC architectures under Uniform, Transpose,

Neighbor, Bit-complement, and Bit-reversal traffic patterns. Under Tornado traffic pat-

tern, Shared buffer, and PCA architectures achieve similar saturation throughput as that

of LBNoC architecture.

6.6 SUMMARY

In this chapter, LBNoC: an FPGA based NoC architecture is designed to reduce the area

cost, latency, and improve the performance. The NoC router architecture is designed

by considering the single-cycle bypass router and employing the techniques of com-

bined flow control, parallel VC, and switch allocation. The single-cycle bypass router

architecture accelerates the packets traversing long distances. The combined flow con-

trol improves the network performance by keeping the flits of the same packet together

along the path. To reduce the area overhead, and to improve the network performance,

115

6. Optimization of the NoC router for achieving low latency and area

parallel VC and switch allocator are designed along with a merged input buffer and a

decomposed crossbar. An FPGA based fully parameterized framework is developed

to evaluate the proposed NoC architecture. The LBNoC architecture consumes fewer

hardware resources and achieves lesser average packet latency than CONNECT and

ProNoC architectures Speedup of 1.15× and 1.18× are observed for LBNoC archi-

tecture with respect to ProNoC and CONNECT NoC architectures. A comparison of

LBNoC architecture with the ASIC implementations of the NoC architectures such as

SOTA, Shared-buffer NoC router, and PCA router is made. It is found that the LB-

NoC architecture achieves low latency, higher throughput, and consumes lesser power

compared to the ASIC counterparts.

116

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

The contributions of this thesis are: Profiling of BookSim 2.0 simulator to analyze and

improve the performance. An FPGA-based NoC simulation acceleration framework for

design space exploration, the efficient techniques of mapping the NoC router compo-

nents on the FPGA’s hard blocks. And, the design of lightweight router architecture for

NoCs using FPGAs to achieve high performance.

The initial part of the thesis deals with analyzing the performance of the BookSim

2.0 software simulator by employing profiling. Various software mechanisms have been

employed to improve the performance of BookSim 2.0 NoC simulator. The speedup of

2.93× has been achieved by parallelizing the sequential code of BookSim 2.0 using

OpenMP constructs considering 30 × 30 Mesh topology. The parallelization and vec-

torization techniques reduced the execution time of 30 × 30 Mesh topology from 60

minutes (normal BookSim 2.0 execution time) to 14 minutes and 12 minutes.

An FPGA based NoC simulation acceleration framework called YaNoC has been

proposed. YaNoC supports the design space exploration of various standard and cus-

tom NoC topologies. The router micro-architectural parameters are highly configurable.

A custom topology called Diagonal Mesh (DMesh) has been designed and evaluated

considering a novel shortest path, and the Table based routing algorithms. YaNoC con-

sumes 9.29% fewer resources and is 2.5× faster than the CONNECT framework. Also,

YaNoC consumes 17.59% fewer resources and 25× faster than the DART simulator.

117

7. Conclusions and future work

The speedup of 2548× compared to the BookSim 2.0 software simulator was observed

using YaNoC.

YaNoC utilizes only the soft blocks (CLBs) for mapping the NoC on the FPGA. The

hard-blocks such as DSP48E1 and BRAM slices can be used to map the functionality

of NoC router components. The unused hard blocks of the FPGA, such as BRAM

and DSP48E1 blocks, have been employed to map the functionality of NoC routers

buffer and crossbar components. A reduction of soft logic has been observed employing

the proposed technique. The topologies implemented considering the proposed router

architecture consume 43.47%, 41.66% fewer LUTs, and FFs, respectively, compared

to the topologies implemented with CLBs. A control unit called buf empty checker

has been included in the circuit to reduce the latency of the network. The 6 × 6 Mesh

topology with proposed router architecture consumes 10.88% fewer LUT resources than

the CONNECT implementation. The 3 × 3 Mesh topology with the proposed router

architecture consumes 73.38% and 66.55% fewer LUTs and FFs, respectively than the

DARTs implementation. The average latency of the proposed work is 24.8% and 19.1%

lesser than the CONNECT and DART frameworks.

An optimized FPGA-based NoC router architecture called LBNoC has been pro-

posed to improve network performance and reduce resource utilization. The NoC router

architecture has been designed by considering the single-cycle bypass router and em-

ploying the techniques of combined flow control, parallel VC, and Switch Allocation.

The single-cycle bypass router architecture accelerates the packets traversing long dis-

tances. The combined flow control improves the network performance by keeping the

flits of the same packet together along the path. To reduce the area overhead and im-

prove the network performance, parallel VC and Switch Allocator have been designed

along with a merged input buffer and a decomposed crossbar. The LBNoC architecture

is compared with state-of-the-art CONNECT and ProNoC NoC architectures. The 4×4

Mesh topology implemented employing the LBNoC architecture consumes 4.5% and

27.1% fewer hardware resources than the ProNoC and CONNECT architectures. The

average packet latency of the LBNoC NoC architecture is 30% and 15% lesser than

the CONNECT and ProNoC architectures. Speedup of 1.15× and 1.18× have been ob-

118

7.2. Future work

served for LBNoC architecture concerning ProNoC and CONNECT NoC architectures.

7.2 FUTURE WORK

The proposed FPGA based NoC simulation platform concentrates on the design space

exploration of 2-dimensional (2D) NoC architectures. As technology advances, the 3-

dimensional (3D) NoC architectures play an important role in achieving better through-

put and reducing the power, area, and latency compared to 2D NoCs. There is a need

for designing, optimizing and evaluating novel routing algorithms, arbitration schemes

and crossbar architectures for the next generation 3D NoC architectures. Future efforts

can be directed towards the development of an FPGA based NoC simulator capable of

design space exploration of 3D NoC architectures.

119

BIBLIOGRAPHY

Access IC Lab (2018). “Access Noxim”. http://access.ee.ntu.edu.tw/

noxim/index.html.

Agarwal, N., Krishna, T., Peh, L.-S. and Jha, N. (2009). “GARNET: A detailed on-chip

network model inside a full-system simulator.” In Performance Analysis of Systems

and Software, 2009. ISPASS 2009. IEEE International Symposium on, 33–42.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam,

N., Nakamura, Y., Datta, P., Nam, G., Taba, B., Beakes, M., Brezzo, B., Kuang, J. B.,

Manohar, R., Risk, W. P., Jackson, B. and Modha, D. S. (2015). “TrueNorth: Design

and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip.”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

34(10), 1537–1557.

Angepat, H., Chiou, D., Chung, E. S. and Hoe, J. C. (2014). “FPGA-Accelerated Sim-

ulation of Computer Systems.” Synthesis Lectures on Computer Architecture, 9(2),

1–80.

Asaduzzaman, A. and Mahgoub, I. (2006). “Cache modeling and optimization for

portable devices running mpeg-4 video decoder.” Multimedia Tools and Applications,

28(2), 239–256.

Ax, J., Sievers, G., Daberkow, J., Flasskamp, M., Vohrmann, M., Jungeblut, T., Kelly,

W., Porrmann, M. and Rckert, U. (2018). “CoreVA-MPSoC: A Many-Core Archi-

tecture with Tightly Coupled Shared and Local Data Memories.” IEEE Transactions

on Parallel and Distributed Systems, 29(5), 1030–1043.

121

BIBLIOGRAPHY

Balkind, J., McKeown, M., Fu, Y., Nguyen, T., Zhou, Y., Lavrov, A., Shahrad, M.,

Fuchs, A., Payne, S., Liang, X., Matl, M. and Wentzlaff, D. (2016). “OpenPiton: An

Open Source Manycore Research Framework.” SIGPLAN Not., 51(4), 217232.

Becker, D. U. (2012). Efficient microarchitecture for Network-on-Chip routers. PhD

dissertation, Stanford University.

Becker, D. U., Jiang, N., Michelogiannakis, G. and Dally, W. J. (2012). “Adaptive

Backpressure: Efficient buffer management for on-chip networks.” In 30th Interna-

tional IEEE Conference on Computer Design, ICCD 2012, Montreal, QC, Canada,

September 30 - Oct. 3, 2012, 419–426.

Ben-Itzhak, Y., Zahavi, E., Cidon, I. and Kolodny, A. (2012). “HNOCS: Modular

open-source simulator for Heterogeneous NoCs.” In 2012 International Conference

on Embedded Computer Systems (SAMOS), 51–57.

Benini, L. and De Micheli, G. (2002). “Networks on chips: a new SoC paradigm.”

Computer, 35(1), 70–78.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness,

J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,

N., Hill, M. D. and Wood, D. A. (2011). “The Gem5 Simulator.” SIGARCH Comput.

Archit. News, 39(2), 1–7.

Bjerregaard, T. and Mahadevan, S. (2006). “A Survey of Research and Practices of

Network-on-Chip.” ACM Comput. Surv., 38(1), 1es.

Bohnenstiehl, B., Stillmaker, A., Pimentel, J. J., Andreas, T., Liu, B., Tran, A. T.,

Adeagbo, E. and Baas, B. M. (2017). “KiloCore: A 32-nm 1000-Processor Compu-

tational Array.” IEEE Journal of Solid-State Circuits, 52(4), 891–902.

Catania, V., Mineo, A., Monteleone, S., Palesi, M. and Patti, D. (2015). “Noxim: An

open, extensible and cycle-accurate network on chip simulator.” In 26th IEEE Inter-

national Conference on Application-specific Systems, Architectures and Processors,

ASAP 2015, Toronto, ON, Canada, July 27-29, 2015, 162–163.

122

BIBLIOGRAPHY

Catania, V., Mineo, A., Monteleone, S., Palesi, M. and Patti, D. (2016). “Cycle-

Accurate Network on Chip Simulation with Noxim.” ACM Trans. Model. Comput.

Simul., 27(1), 4:1–4:25.

Chen, Y., Krishna, T., Emer, J. S. and Sze, V. (2017). “Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks.” IEEE Journal

of Solid-State Circuits, 52(1), 127–138.

Cherniack, M., Galvez, E. F., Franklin, M. J. and Zdonik, S. (2003). “Profile-driven

cache management.” In Proceedings 19th International Conference on Data Engi-

neering (Cat. No.03CH37405), 645–656.

Chethan, K. H. B. and Kapre, N. (2016). “Hoplite-DSP: Harnessing the Xilinx DSP48

multiplexers to efficiently support NoCs on FPGAs.” In 2016 26th International Con-

ference on Field Programmable Logic and Applications (FPL), 1–10.

Chiou, D., Sunwoo, D., Kim, J., Patil, N. A., Reinhart, W., Johnson, D. E., Keefe,

J. and Angepat, H. (2007). “FPGA-Accelerated Simulation Technologies (FAST):

Fast, Full-System, Cycle-Accurate Simulators.” In Proceedings of the 40th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 40, IEEE Com-

puter Society, USA, 249261.

Chung, E. S., Papamichael, M. K., Nurvitadhi, E., Hoe, J. C., Mai, K. and Falsafi,

B. (2009). “ProtoFlex: Towards Scalable, Full-System Multiprocessor Simulations

Using FPGAs.” ACM Trans. Reconfigurable Technol. Syst., 2(2).

CMU-SAFARI (2018). “NOCulator”. http://access.ee.ntu.edu.tw/

noxim/index.html.

Coppa, E., Demetrescu, C. and Finocchi, I. (2014a). “Input-Sensitive Profiling.” IEEE

Trans. Software Eng., 40(12), 1185–1205.

Coppa, E., Demetrescu, C., Finocchi, I. and Marotta, R. (2014b). “Estimating the

Empirical Cost Function of Routines with Dynamic Workloads.” In Proceedings of

Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, ACM, New York, NY, USA, 230:230–230:239.

123

BIBLIOGRAPHY

Curtsinger, C. and Berger, E. D. (2015). “Coz: Finding Code That Counts with Causal

Profiling.” In Proceedings of the 25th Symposium on Operating Systems Principles,

SOSP ’15, ACM, New York, NY, USA, 184–197.

Dally, W. J. (1992). “Virtual-Channel Flow Control.” IEEE Trans. Parallel Distrib.

Syst., 3(2), 194–205.

Dally, W. J., Intel, B. F., Chips, A. N. and Plesiochronous, M. (1986). “The Torus

Routing Chip.” Distributed Computing, 187–196.

Dally, W. J. and Towles, B. (2001). “Route packets, not wires: on-chip interconnection

networks.” In Proceedings of the 38th Design Automation Conference (IEEE Cat.

No.01CH37232), 684–689.

Dally, W. J. and Towles, B. P. (2004). Principles and Practices of Interconnection

Networks, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Daniel Marjamki (2011). “Cppcheck, A tool for static C/C++ code analysis”. http:

//cppcheck.sourceforge.net/.

Drewes, T., Joseph, J. M. and Pionteck, T. (2017). “An FPGA-based prototyping frame-

work for Networks-on-Chip.” In 2017 International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 1–7.

Galles, M. (1997). “Spider: a high-speed network interconnect.” IEEE Micro, 17(1),

34–39.

Glass, C. J. and Ni, L. M. (1992). “The Turn Model for Adaptive Routing.” In [1992]

Proceedings the 19th Annual International Symposium on Computer Architecture,

278–287.

Guerrier, P. and Greiner, A. (2000). “A generic architecture for on-chip packet-switched

interconnections.” In Proceedings Design, Automation and Test in Europe Confer-

ence and Exhibition 2000 (Cat. No. PR00537), 250–256.

124

BIBLIOGRAPHY

Hayenga, M., Jerger, N. D. E. and Lipasti, M. H. (2009). “SCARAB: a single cycle

adaptive routing and bufferless network.” In 42st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-42 2009), December 12-16, 2009, New

York, New York, USA, 244–254.

Infante, A. (2014). “Identifying Caching Opportunities, Effortlessly.” In Companion

Proceedings of the 36th International Conference on Software Engineering, ICSE

Companion 2014, ACM, New York, NY, USA, 730–732.

Intel Corporation (2017). “Intel Advisor XE”. https://software.intel.com/

en-us/intel-advisor-xe.

Jensen, S. H., Sridharan, M., Sen, K. and Chandra, S. (2015). “MemInsight: Platform-

independent Memory Debugging for JavaScript.” In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, ACM, New

York, NY, USA, 345–356.

Jerger, N. D. E. and Peh, L.-S. (2009). “On-chip networks.” In On-Chip Networks.

Jiang, N., Becker, D., Michelogiannakis, G., Balfour, J., Towles, B., Shaw, D., Kim,

J. and Dally, W. (2013). “A detailed and flexible cycle-accurate Network-on-Chip

simulator.” In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE

International Symposium on, 86–96.

Kahng, A. B., Li, B., Peh, L.-S. and Samadi, K. (2012). “ORION 2.0: A Power-Area

Simulator for Interconnection Networks.” IEEE Trans. Very Large Scale Integr. Syst.,

20(1), 191196.

Kahng, A. B., Lin, B. and Nath, S. (2015). “ORION3.0: A Comprehensive NoC Router

Estimation Tool.” IEEE Embedded Systems Letters, 7(2), 41–45.

Kamali, H. M., Azar, K. Z. and Hessabi, S. (2018). “DuCNoC: A High-

Throughput FPGA-Based NoC Simulator Using Dual-Clock Lightweight Router

Micro-Architecture.” IEEE Transactions on Computers, 67(2), 208–221.

125

BIBLIOGRAPHY

Kamali, H. M. and Hessabi, S. (2016). “AdapNoC: A fast and flexible FPGA-based

NoC simulator.” In 2016 26th International Conference on Field Programmable

Logic and Applications (FPL), 1–8.

Kapre, N. and Gray, J. (2015). “Hoplite: Building austere overlay NoCs for FPGAs.” In

2015 25th International Conference on Field Programmable Logic and Applications

(FPL), 1–8.

Kermani, P. and Kleinrock, L. (1979). “Virtual cut-through: A new computer commu-

nication switching technique.” Computer Networks (1976), 3(4), 267 – 286.

Kowarschik, M. and Wei, C. (2003). “An Overview of Cache Optimization Techniques

and Cache-Aware Numerical Algorithms.” 213–232.

Kumar, A., Peh, L.-S., Kundu, P. and Jha, N. K. (2007). “Express Virtual Channels:

Towards the Ideal Interconnection Fabric.” SIGARCH Comput. Archit. News, 35(2),

150–161.

Larsen, S., Rabbah, R. and Amarasinghe, S. (2005). “Exploiting vector parallelism in

software pipelined loops.” In 38th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’05), 11 pp.–129.

Lebeck, A. R. and Wood, D. A. (1994). “Cache profiling and the SPEC benchmarks: a

case study.” Computer, 27(10), 15–26.

Li-Shiuan Peh and Dally, W. J. (2001). “A delay model for router microarchitectures.”

IEEE Micro, 21(1), 26–34.

Liu, X. and Mellor-Crummey, J. (2013). “A Data-centric Profiler for Parallel Pro-

grams.” In Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, SC ’13, ACM, New York, NY, USA, 28:1–

28:12.

Lotlikar, S., Pai, V. and Gratz, P. V. (2011). “AcENoCs: A Configurable HW/SW Plat-

form for FPGA Accelerated NoC Emulation.” In 2011 24th Internatioal Conference

on VLSI Design, 147–152.

126

BIBLIOGRAPHY

Lu, Y., McCanny, J. and Sezer, S. (2011). “Exploring Virtual-Channel architecture

in FPGA based Networks-on-Chip.” In 2011 IEEE International SOC Conference,

302–307.

Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., Xu, Z., Temam, O. and Chen, Y.

“dadiannao: A neural network supercomputer.” IEEE Transactions on Computers.

Mahlke, S., Moseley, T., Hank, R., Bruening, D. and Cho, H. K. (2013). “Instant

Profiling: Instrumentation Sampling for Profiling Datacenter Applications.” In Pro-

ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), CGO ’13, IEEE Computer Society, Washington, DC, USA,

1–10.

Michelogiannakis, G., Sánchez, D., Dally, W. J. and Kozyrakis, C. (2010). “Evaluating

Bufferless Flow Control for On-chip Networks.” In NOCS 2010, Fourth ACM/IEEE

International Symposium on Networks-on-Chip, Grenoble, France, May 3-6, 2010,

9–16.

Monemi, A. (2015). “Low Latency Network-on-Chip Router Microarchitecture Using

Request Masking Technique.” Int. J. Reconfig. Comput., 2015(2), 1–7.

Monemi, A., Tang, J. W., Palesi, M. and Marsono, M. N. (2017). “ProNoC: A low la-

tency network-on-chip based many-core system-on-chip prototyping platform.” Mi-

croprocessors and Microsystems, 54, 60 – 74.

Moscibroda, T. and Mutlu, O. (2009). “A case for bufferless routing in on-chip net-

works.” In 36th International Symposium on Computer Architecture (ISCA 2009),

June 20-24, 2009, Austin, TX, USA, 196–207.

Mullins, R., West, A. and Moore, S. (2004). “Low-latency virtual-channel routers for

on-chip networks.” SIGARCH Comput. Archit. News, 32(2), 188–.

Nethercote, N. and Seward, J. (2007). “Valgrind: A Framework for Heavyweight Dy-

namic Binary Instrumentation.” In Proceedings of the 28th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’07, ACM, New

York, NY, USA, 89–100.

127

BIBLIOGRAPHY

Nguyen, K. and Xu, G. (2013). “Cachetor: Detecting Cacheable Data to Remove

Bloat.” In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, ESEC/FSE 2013, ACM, New York, NY, USA, 268–278.

Nicopoulos, C., Park, D., Kim, J., Vijaykrishnan, N., Yousif, M. S. and Das, C. R.

(2006). “ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip

Routers.” In 39th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-39 2006), 9-13 December 2006, Orlando, Florida, USA, 333–346.

Nie, J., Cheng, B., Li, S., Wang, L. and Li, X. F. (2010). “Vectorization for Java.”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 6289 LNCS, 3–17.

Nistor, A. and Ravindranath, L. (2014). “SunCat: Helping Developers Understand and

Predict Performance Problems in Smartphone Applications.” In Proceedings of the

2014 International Symposium on Software Testing and Analysis, ISSTA 2014, ACM,

New York, NY, USA, 282–292.

Nistor, A., Song, L., Marinov, D. and Lu, S. (2013). “Toddler: Detecting Performance

Problems via Similar Memory-access Patterns.” In Proceedings of the 2013 Interna-

tional Conference on Software Engineering, ICSE ’13, IEEE Press, Piscataway, NJ,

USA, 562–571.

Ogras, U. Y., Bogdan, P. and Marculescu, R. (2010). “An Analytical Approach for

Network-on-Chip Performance Analysis.” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 29(12), 2001–2013.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A. and Saleh, R. (2005). “Performance

Evaluation and Design Trade-Offs for Network-on-Chip Interconnect Architectures.”

IEEE Transactions on Computers, 54(8), 1025–1040.

Papamichael, M. K. (2011). “Fast scalable FPGA-based Network-on-Chip simula-

tion models.” In Ninth ACM/IEEE International Conference on Formal Methods and

Models for Codesign (MEMPCODE2011), 77–82.

128

BIBLIOGRAPHY

Papamichael, M. K. and Hoe, J. C. (2015). “The CONNECT Network-on-Chip Gener-

ator.” Computer, 48(12), 72–79.

Papamichael, M. K., Hoe, J. C. and Mutlu, O. (2011). “FIST: A fast, lightweight,

FPGA-friendly packet latency estimator for NoC modeling in full-system simula-

tions.” In Proceedings of the Fifth ACM/IEEE International Symposium, 137–144.

Parane, K., Prasad, P. B. M. and Talawar, B. (2018). “FPGA based NoC Simula-

tion Acceleration Framework Supporting Adaptive Routing.” In 2018 IEEE Inter-

national Conference on Electronics, Computing and Communication Technologies

(CONECCT).

Patel, A., Afram, F., Chen, S. and Ghose, K. (2011). “MARSS: A full system simu-

lator for multicore x86 CPUs.” In 2011 48th ACM/EDAC/IEEE Design Automation

Conference (DAC), 1050–1055.

Peh, L. and Dally, W. J. (2000). “Flit-reservation flow control.” In Proceedings of

the Sixth International Symposium on High-Performance Computer Architecture,

Toulouse, France, January 8-12, 2000, 73–84.

Peh, L. S. and Dally, W. J. (2001). “A delay model and speculative architecture for

pipelined routers.” In HPCA 2011, 255–266.

Pienaar, J. A. and Hundt, R. (2013). “JSWhiz: Static Analysis for JavaScript Memory

Leaks.” In Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), CGO ’13, IEEE Computer Society, Washing-

ton, DC, USA, 1–11.

Porterfield, A. K. (1989). Software Methods for Improvement of Cache Performance on

Supercomputer Applications. PhD thesis, Rice University.

Prabhu Prasad B M, Parane, K. and Talawar, B. (2018). “YaNoC: Yet Another Network-

on-Chip Simulation Acceleration Engine Using FPGAs.” In 2018 31st International

Conference on VLSI Design and 2018 17th International Conference on Embedded

Systems (VLSID), 67–72.

129

BIBLIOGRAPHY

Prasad, P. B. M., Parane, K. and Talawar, B. (2019). “Analysis of cache behaviour and

software optimizations for faster on-chip network simulations.” Int. J. Syst. Assur.

Eng. Manag., 10(4), 696–712.

Puente, V., Gregorio, J. and Beivide, R. (2002). “SICOSYS: an integrated framework

for studying interconnection network performance in multiprocessor systems.” In

Parallel, Distributed and Network-based Processing, 2002. Proceedings. 10th Eu-

romicro Workshop on, 15–22.

Ramanujam, R. S., Soteriou, V., Lin, B. and Peh, L. (2010). “Design of a

High-Throughput Distributed Shared-Buffer NoC Router.” In NOCS 2010, Fourth

ACM/IEEE International Symposium on Networks-on-Chip, Grenoble, France, May

3-6, 2010, 69–78.

Ramanujam, R. S., Soteriou, V., Lin, B. and Peh, L. (2011). “Extending the Effective

Throughput of NoCs With Distributed Shared-Buffer Routers.” IEEE Trans. on CAD

of Integrated Circuits and Systems, 30(4), 548–561.

Randall, M. and Lewis, A. (2002). “A Parallel Implementation of Ant Colony Opti-

mization.” Journal of Parallel and Distributed Computing, 62(9), 1421–1432.

Ronak, B. and Fahmy, S. A. (2016). “Mapping for Maximum Performance on FPGA

DSP Blocks.” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 35(4), 573–585.

Sanchez, D. and Kozyrakis, C. (2013). “ZSim: Fast and Accurate Microarchitectural

Simulation of Thousand-core Systems.” SIGARCH Comput. Archit. News, 41(3),

475–486.

Sembrant, A., Black-Schaffer, D. and Hagersten, E. (2012). “Phase Guided Profiling

for Fast Cache Modeling.” In Proceedings of the Tenth International Symposium on

Code Generation and Optimization, CGO ’12, ACM, New York, NY, USA, 175–185.

Sodani, A., Gramunt, R., Corbal, J., Kim, H., Vinod, K., Chinthamani, S., Hutsell, S.,

Agarwal, R. and Liu, Y. (2016). “Knights Landing: Second-Generation Intel Xeon

Phi Product.” IEEE Micro, 36(2), 34–46.

130

BIBLIOGRAPHY

Song, L., Kavi, K. and Cytron, R. (2003). Software and Compilers for Embedded

Systems: 7th International Workshop, SCOPES 2003, Vienna, Austria, September 24-

26, 2003. Proceedings, chapter An Unfolding-Based Loop Optimization Technique,

117–132. Springer Berlin Heidelberg, Berlin, Heidelberg.

Soteriou, V., Ramanujam, R. S., Lin, B. and Peh, L. (2009). “A High-Throughput

Distributed Shared-Buffer NoC Router.” Computer Architecture Letters, 8(1), 21–24.

Stanford Concurrent VLSI Architecture Group. (2014). “Open Source Network-

on-Chip Router RTL”. https://github.com/anan-cn/Open-Source-

Network-on-Chip-Router-RTL.

Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H., Patterson, D. and Asanovic, K.

(2010). “RAMP gold: An FPGA-based architecture simulator for multiprocessors.”

In Design Automation Conference, 463–468.

Thiem Van Chu, Sato, S. and Kise, K. (2015). “Ultra-fast NoC emulation on a single

FPGA.” In 2015 25th International Conference on Field Programmable Logic and

Applications (FPL), 1–8.

Ting-Shuo Hsu, Jun-Lin Chiu, Chao-Kai Yu and Jing-Jia Liou (2015). “A fast and

accurate network-on-chip timing simulator with a flit propagation model.” In The

20th Asia and South Pacific Design Automation Conference, 797–802.

Varga, A. (1999). “Using the OMNeT++ Discrete Event Simulation System in Educa-

tion.” IEEE Trans. on Educ., 42(4), 11 pp.–.

Wang, D., Lo, C., Vasiljevic, J., Enright Jerger, N. and Gregory Steffan, J. (2014).

“DART: A Programmable Architecture for NoC Simulation on FPGAs.” IEEE Trans-

actions on Computers, 63(3), 664–678.

Wang, J., Huang, Y., Ebrahimi, M., Huang, L., Li, Q., Jantsch, A. and Li, G. (2016).

“VisualNoC: A Visualization and Evaluation Environment for Simulation and Map-

ping.” In Proceedings of the Third ACM International Workshop on Many-Core Em-

bedded Systems, MES 16, Association for Computing Machinery, New York, NY,

USA, 1825.

131

BIBLIOGRAPHY

Wee, S., Casper, J., Njoroge, N., Tesylar, Y., Ge, D., Kozyrakis, C. and Olukotun,

K. (2007). “A Practical FPGA-Based Framework for Novel CMP Research.” In

Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Pro-

grammable Gate Arrays, FPGA 07, Association for Computing Machinery, New

York, NY, USA, 116125.

Wolkotte, P. T., Holzenspies, P. K. F. and Smit, G. J. M. (2007). “Fast, Accurate and

Detailed NoC Simulations.” In First International Symposium on Networks-on-Chip

(NOCS’07), 323–332.

Xilinx Inc (2016). “7 Series FPGAs Configurable Logic Block”. https:

//www.xilinx.com/support/documentation/user_guides/

ug474_7Series_CLB.pdf.

Xilinx Inc (2018). “7 Series DSP48E1 Slice User Guide”. https:

//www.xilinx.com/support/documentation/user_guides/

ug479_7Series_DSP48E1.pdf.

Xilinx Inc (2019). “7 Series FPGAs Memory Resources”. https:

//www.xilinx.com/support/documentation/user_guides/

ug473_7Series_Memory_Resources.pdf.

Xu, C., Liu, Y. and Yang, Y. (2019). “SRNoC: An Ultra-fast Configurable FPGA-

based NoC Simulator Using Switch-Router Architecture.” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 1–1.

Xu, G., Bond, M. D., Qin, F. and Rountev, A. (2011). “LeakChaser: Helping Program-

mers Narrow Down Causes of Memory Leaks.” SIGPLAN Not., 46(6), 270–282.

Yan, D., Xu, G. and Rountev, A. (2012). “Uncovering Performance Problems in Java

Applications with Reference Propagation Profiling.” In Proceedings of the 34th In-

ternational Conference on Software Engineering, ICSE ’12, IEEE Press, Piscataway,

NJ, USA, 134–144.

132

Yan, P., Jiang, S. and Sridhar, R. (2015). “A high throughput router with a novel switch

allocator for network on chip.” In 28th IEEE International System-on-Chip Confer-

ence, SOCC 2015, Beijing, China, September 8-11, 2015, 160–163.

Yan, P. and Sridhar, R. (2018). “Centralized Priority Management Allocation for

Network-on-Chip Router.” In 31st IEEE International System-on-Chip Conference,

SOCC 2018, Arlington, VA, USA, September 4-7, 2018, 290–295.

Zaparanuks, D. and Hauswirth, M. (2012). “Algorithmic Profiling.” In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’12, ACM, New York, NY, USA, 67–76.

Zhang, Y., Qu, P., Qian, Z., Wang, H. and Zheng, W. (2013). “Software/hardware

hybrid network-on-chip simulation on fpga.” In Hsu, C.-H., Li, X., Shi, X. and Zheng,

R., editors, Network and Parallel Computing, Springer Berlin Heidelberg, Berlin,

Heidelberg, 167–178.

Zhao, Q., Cutcutache, I. and Wong, W.-F. (2008). “Pipa: Pipelined Profiling and Anal-

ysis on Multi-core Systems.” In Proceedings of the 6th Annual IEEE/ACM Inter-

national Symposium on Code Generation and Optimization, CGO ’08, ACM, New

York, NY, USA, 185–194.

PUBLICATIONS BASED ON THE RESEARCH
WORK

Journal Publications

1. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, FPGA friendly

NoC simulation acceleration framework employing the Hard Blocks , Computing,

Springer, (Accepted).

2. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, An efficient

FPGA based Network-on-Chip simulation framework utilizing the Hard blocks,

Circuits, Systems, and Signal Processing , Springer, 2020, https://doi.org/10.1007/

s00034-020-01411-z

3. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, P-NoC: Per-

formance Evaluation and Design Space Exploration of NoCs for chip multipro-

cessor architecture using FPGA, Wireless Personal Communications, Springer,

2020, https://doi.org/10.1007/s11277-020-07529-2

4. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, LBNoC-Design

of low-latency router architecture with Lookahead Bypass for Network-on-Chip

using FPGA, ACM Transactions on Design Automation of Electronic Systems

(TODAES), ACM, 2020, 25(1), https://doi.org/10.1145/3365994

5. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, Analysis of

cache behaviour and software optimizations for faster on-chip network simula-

tions, International Journal of System Assurance Engineering and Management,

Springer, 2019, 10(4), 696712, https://doi:10.1007/ s13198-019-00799-5

135

BIBLIOGRAPHY

6. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, YaNoC: Yet

Another Network-on-Chip Simulation Acceleration Engine Supporting Congestion-

Aware Adaptive Routing Using FPGAs, Journal of Ciruits Systems and Comput-

ers, World Scientific, 2019, 28:12, https://doi:0.1142/S0218126619502025

Conference Publications

1. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, High-Performance

NoC Simulation Acceleration Framework Employing the Xilinx DSP48E1 Blocks,

in 2019 International Symposium on VLSI Design, Automation and Test (VLSI-

DAT). Hsinchu, Taiwan:IEEE, April 2019.

2. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, Design of

an Adaptive and Reliable Network on Chip Router Architecture Using FPGA,

in 2019 International Symposium on VLSI Design, Automation and Test (VLSI-

DAT). Hsinchu, Taiwan:IEEE, April 2019.

3. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, High-Performance

NoCs Employing the DSP48E1 Blocks of the Xilinx FPGAs, in 20th Interna-

tional Symposium on Quality Electronic Design, ISQED. Santa Clara, CA, USA,

USA:IEEE, March 2019.

4. G S Sangeetha, Vignesh Radhakrishnan, Prabhu Prasad B M, Khyamling Parane,

and Basavaraj Talawar, Trace-Driven Simulation and Design Space Exploration

of Network-on-Chip Topologies on FPGA, in 2018 8th International Symposium

on Embedded Computing and System Design (ISED). Cochin, India:IEEE, Dec

2018.

5. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, FPGA based

NoC Simulation Acceleration Framework Supporting Adaptive Routing, in 2018

IEEE International Conference on Electronics, Computing and Communication

Technologies (CONECCT). Bangalore, India:IEEE, Oct 2018.

6. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, YaNoC: Yet

Another Network-on-Chip Simulation Acceleration Engine Using FPGAs, in VLSI

136

BIBLIOGRAPHY

Design and 2018 17th International Conference on Embedded Systems (VLSID),

2018 31st International Conference on. Pune, India:IEEE, Jan 2018.

7. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, Cache analysis

and software optimizations for faster on-chip network simulations, in 2016 11th

International Conference on Industrial and Information Systems (ICIIS). IIT

Roorkee, India:IEEE, Dec 2016.

137

BIO-DATA

Name: Prabhu Prasad B M

Date of Birth: 15/05/1990

email-id: prabhuprasad1990@gmail.com

Contact No: +91 90088 62681

Present Address: Prabhu Prasad B M, Research Scholar, De-

partment of Computer Science and Engineer-

ing, National Institute of Technology Kar-

nataka, Surathkal, Mangalore - 575 025

Permanent Address: D.No: 613, Basava Prabhu, 1st main, 2nd

cross, DCM township, Davanagere - 577 003

Educational Qualifications: B.E in Computer Science and Engineering -

U.B.D.T College of Engineering, Davanagere

M.Tech in Computer Science and Engineer-

ing - Siddaganga Institute of Technology,

Tumkur

Work Experience: MTS - Quality Engineer Developer,

Sep 2013 to April 2015,

VMware Software India Pvt. Ltd., Bangalore

MTS - Intern,

Aug 2012 to Sep 2013,

VMware Software India Pvt. Ltd., Bangalore

139

