
FPGA BASED SIMULATION ACCELERATION OF

ON-CHIP NETWORKS

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Khyamling

(155034 CS15FV05)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

December, 2020

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled FPGA based simulation accel-

eration of on-chip networks which is being submitted to the National Institute of

Technology Karnataka, Surathkal in partial fulfilment of the requirements for the

award of the Degree of Doctor of Philosophy in Department of Computer Science and

Engineering is a bonafide report of the research work carried out by me. The material

contained in this Research Thesis has not been submitted to any University or Institu-

tion for the award of any degree.

Khyamling, 155034CS15FV05

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: December 01, 2020

CERTIFICATE

This is to certify that the Research Thesis entitled FPGA based simulation accel-

eration of On-Chip Networks submitted by Khyamling (Register Number: 155034

CS15FV05) as the record of the research work carried out by him, is accepted as the

Research Thesis submission in partial fulfillment of the requirements for the award of

degree of Doctor of Philosophy.

Dr. Basavaraj Talawar

(Research Guide)

Dr. Alwyn Roshan Pais

(Chairman-DRPC)

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Basavaraj

Talawar, for his guidance, support and encouragement throughout my research work at

the Department of Computer Science and Engineering NITK, Surathkal. His guidance

and insightful comments helped me in all the time of research and writing of this thesis.

I express heartfelt thanks to my research progress assessment committee members

Dr. Manu Basavaraj, Associate Professor in Department of Computer Science & Engi-

neering, and Dr. A. V. Narasimhadhan, Assistant Professor in Electronics & Communi-

cation Engineering, for giving their valuable suggestions, inspiration and moral support

while evaluating our work time to time. Also, I would like to thank Dr.Alwyn Roshan

Pais Head of the Department of Computer Science & Engineering, NITK, Surathkal. I

am also grateful to all the faculty members and non-teaching staff of CSE Department

for their generous support throughout this work.

I would like to say thanks to my friends and colleagues Dr. Shashidhara, Dr.Girish

G.N, Mr. Madhu Biradar, Mr.Subodh Ingaleshwar, Mr.Shivananda Poojar Mr.Manoj

Patil, Dr.Praveen Tumkur.R, Dr.Anil Kadam, Mr. Nikhil, Dr.D.V.N. Sivakumar, Dr.Amit

Praseed, Dr.Manjunath Mulimani, Mr.Manjunatha, Mr.Ramteke Pravin Bhaskar, Dr.Sachin

Patil, Mr.Nutan Prasad and Mr.Vishal Rathod for their company and support during my

research course.

I would like to show my sincere thanks to all lab mates for their support and valuable

technical discussions. It would be my pleasure to extend my gratitude to Mr.Prabhu

Prasad B. M, Mr.Pramod Yelmewad, Mr.Anil Kumar, Dr. Bheemappa Halavar, Mr.

Kallinatha and Mrs.Sadhana Shetty for their massive supports during my research.

My family’s support has been enormous throughout my journey. Biggest thanks to

my father, mother, uncle, aunty, sisters, and brothers, and all my relatives for their

remarkable supports. Thank you all once again for constant support and blessings

throughout my journey. Thanks to my wife Mrs.Revati Patil for her patience, under-

standing, prayers and continuing support to complete this research work. Thank you

dear for always being with me in tough times. Now, it’s time to start new phase of my

life. Thank you all!!!

Khyamling

ABSTRACT

As the number of processing cores in the Systems-on-Chip(SoC) increases, the tra-

ditional bus based interconnect will be the major bottleneck to achieving the perfor-

mance required by modern applications. Further, bus based communication may not

provide the required bandwidth and latency to the systems with intensive parallel com-

munication. An efficient interconnection architecture is required to achieve high perfor-

mance and scalability in many-cores SoC. The Network-on-Chip(NoC) architecture has

emerged as the most promising interconnection architecture for the modern Chip Mul-

tiprocessor(CMP) and Multi/Many-Processor System-on-Chip(MPSoC) systems. The

components in these systems, the cores, accelerators, memory blocks, and peripherals

are interconnected using one or more NoCs composed of links and routers. The choice

of router parameters and NoC topologies can have a significant impact on the overall

performance of heterogeneous many-core systems.

The evaluation methodologies of NoCs for future computing systems with a large num-

ber of interconnected components rely heavily on analytical models and simulations.

The fast modeling of large scale NoCs have been done through analytical models with

significant inaccuracy. Fast and flexible NoC simulator frameworks are needed for mod-

eling the large scale NoC based heterogeneous many-core systems, which can deliver a

high level of accuracy.

Detailed software simulators used for design space exploration of NoCs, provide better

accuracy than analytical modelings. However, software simulators are slow when sim-

ulating large scale NoCs for interconnection of various components.

This thesis presents the optimization of software based NoC simulator and a Field pro-

grammable gate arrays(FPGA) based NoC simulation acceleration framework to ad-

dress the issue of simulation speed, accuracy, and flexibility. Initial work in the thesis

involves profiling of the Booksim2.0 software simulator, as it is used extensively for

the design and evaluation of NoC architectures. The Booksim2.0 is profiled with the

various NoC design parameters and memory configurations to analyze its performance.

The performance analysis of Booksim2.0 is based on cache misses, memory usage, and

hotspots. Profiling helped in applying focussed software optimization techniques on the

simulator. Further, Booksim2.0 was parallelized using OpenMP and SIMD constructs

to improve its overall performance.

Going beyond software optimization, an FPGA based NoC simulation acceleration

framework called YaNoC is proposed to explore the impact of microarchitectural pa-

rameters on the performance of the NoC. YaNoC supports for design space exploration

of custom topologies with custom routing algorithm along with standard minimal rout-

ing algorithm for conventional NoCs. The YaNoC is used to study NoC architectures

of a CMP using various traffic patterns, the results show that the YaNoC utilize fewer

FPGA resources and is faster than the other state-of-art FPGA based NoC simulation

acceleration platforms.

The next challenge was to optimize the resources consumed by YaNoC. The FPGA

fabric provides hard resources such as Block RAM(BRAM) and DSP48E1 units along

with specialized interconnect. Most of the state-of-art FPGA based simulators utilize

soft logic only for modeling the NoCs, leaving out the hard blocks to be unutilized. The

Input buffer and crossbar functionality of NoC routers embed onto the hard block of

Xilinx BRAM and DSP48E1 units thereby reducing the dependence on soft logic. A

pure configurable logic block implementation and a hard block based implementation

of the NoC router exhibit identical latency and performance behaviour. The utilization

of hard units for the design of NoCs results in high performance with low cost design

compared to state-of-art frameworks.

Next, the design of an FPGA based parameterized framework called P-NoC with con-

figurable Topology, Router and Traffic modules for performance evaluation and design

space exploration has been presented. The P-NoC enables the designer to choose from

a variety of architectural parameters like Input buffers, Virtual Channels, routing al-

gorithms, traffic patterns, topology for exploration of NoC design. The P-NoC also

supports a flexible communication model and traffic generation.

In the last piece of work, an FPGA based NoC using a low latency router with a look

ahead bypass(LBNoC) has been proposed. The LBNoC design targets the optimized

ii

area with improved network performance. The techniques such as a single-cycle router

bypass, adaptive routing module, parallel Virtual Channel (VC), and Switch allocation,

combined virtual cut through and wormhole switching, have been employed in the de-

signing optimized LBNoC router. The LBNoC architecture consumes fewer hardware

resources, reduction in average packet latency and gain in speedup than the state-of-art

NoC architectures.

Keywords: Network-on-chip(NoC), Field Programmable Gate Arrays(FPGAs), Sim-

ulation framework, Simulation Acceleration, Performance Analysis, DSP48E1, Block

RAM, Adaptive Routing.

iii

CONTENTS

List of Figures xi

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Problem Description . 4

1.2 Research Objectives . 4

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 7

2 Background and Review of Related work 9

2.1 Network-on-Chip: An Overview . 9

2.2 NoC Performance Parameters . 13

2.3 Field Programmable Gate Array . 14

2.4 Related Work . 16

3 Analysis of cache behaviour and software optimizations for faster on-chip
network simulations 23

3.1 Methodology . 24

3.2 Profiling and Software optimization techniques 26

3.3 Profiling, Performance Optimization Tools and Experimental method-

ology . 29

3.4 Results and Discussion . 31

3.5 Experimental results based on Optimization Strategies 38

3.6 Summary . 44

4 YaNoC - FPGA based simulation acceleration Framework 47

4.1 Introduction . 47

v

4.2 YaNoC - Design and Implementation 48

4.3 Design of Mesh and Diagonal Mesh (DMesh) topologies 55

4.4 The proposed Reliable Network on Chip router 63

4.5 Experimental Results . 64

4.6 YaNoC vs. State-Of-The-Art . 76

4.7 Summary . 78

5 Mapping the NoC Router Components on the DSP48E1 Hard blocks of the
FPGA 79

5.1 Introduction . 79

5.2 NoC Architecture . 81

5.3 DSP48E1 tile as the Crossbar Switch 82

5.4 Results and Discussion . 87

5.5 Summary . 98

6 P-NoC: Performance Evaluation of NoCs architecture using FPGA 99

6.1 P-NoC: FPGA-based parameterized framework 99

6.2 Design Cost and Performance Analysis 105

6.3 Results and Discussion . 108

6.4 summary . 119

7 Design of Low latency and Area efficient Router Architecture for NoC us-
ing FPGA 121

7.1 Introduction . 121

7.2 Related Work . 122

7.3 LBNoC-FPGA based Bypass NoC Framework 124

7.4 Results and Discussion . 135

7.5 Comparison with the State-of-the-Art NoC architectures 143

7.6 summary . 151

8 Conclusions and Future Works 153

Appendix 157

A.1 Shortest Path Routing Algorithm for DMesh topology 157

Bibliography 159

Publications 173

LIST OF FIGURES

1.1 Booksim2.0 Execution Time Of k-ary n-dimensional Mesh Networks(n=2,3

and 4) Parane et al. (2016). 3

2.1 An NoC router microarchitecture with M input/output ports, N-virtual

channels at each input port and M × M Crossbar switch (Enright and

Peh (2009)). 11

2.2 4×4 NoC Mesh topology, Each PEs connects to a local port of router

through NI, other ports of router connects to North, East, South and

West neighbours using links (Partha Pratim Pande et al. (2005)). 12

2.3 A generic architecture of Xilinx FPGA (Xilinx Inc (2019b)) 15

2.4 Architecture of the Configurable Logic Block(Xilinx Inc (2016)) 16

3.1 Booksim2.0 Execution Time Of k-ary n-dimensional Mesh Networks(n=2,3

and 4). 25

3.2 Average I1 MPKI of Booksim2.0 for Mesh topology.(MPKI is averaged

over topology sizes mentioned in Table 3.1 And L1 cache configura-

tions were varied as shown in Table 3.2) 32

3.3 Average D1 MPKI of Booksim2.0 for Mesh topology. (MPKI is aver-

aged over topology sizes mentioned in Table 3.1 And L1 cache config-

urations were varied as shown in Table 3.2) 34

3.4 Average LL MPKI of Booksim2.0 for Mesh topology. (MPKI is aver-

aged over topology sizes mentioned in Table 3.1 And LL cache config-

urations were varied as shown in Table 3.2) 35

3.5 CPI For Booksim2.0 Running Various Sizes Of Mesh Topology 38

3.6 Cache misses before and after optimization 39

vii

3.7 Speedup achieved before and after optimization 40

3.8 Simulation execution times before and after improvements 43

3.9 Speedups with Mesh topology of varying sizes 43

3.10 Average packet latency for Booksim2.0 and Optimized Booksim2.0 for

a 3× 3 Mesh topology . 44

4.1 Architecture of the proposed YaNoC FPGA based NoC simulation ac-

celeration framework . 49

4.2 (a)Flit types and (b)Packet structure used in experiments. (Time stamp

field is useful in calculating the latency of a packet) 50

4.3 Modified Router architecture supporting Congestion-aware Adaptive

routing . 51

4.4 5 Stage Router pipeline . 53

4.5 A High-level block diagram of YaNoC consisting of Host PC connected

to an FPGA Board. 54

4.6 Simulation framework flow . 55

4.7 Mesh and Diagonal Mesh topologies (Red and Green colors indicate the

routes calculated by XY and novel shortest path XY routing algorithms) 57

4.8 Interconnection of the Router 12 with other Routers in DMesh topology 58

4.9 A deadlock avoidance in the YaNoC using VCs 63

4.10 (a)Input buffer fault tolerance strategy, (b)Crossbar fault tolerance strat-

egy and (c) proposed Adaptive and Reliable router architecture 63

4.11 Load Delay graph of 6x6 Mesh and Torus Topologies under Random

Permutation Traffic patterns (a)Buffer Depth=8 flits and (b)Buffer Depth=16

flits . 69

4.12 Load Delay graph of 8x8 Mesh and Torus Topologies under Bit Com-

plement Traffic patterns (a)Buffer Depth=8flits and (b)Buffer Depth=16flits 70

4.13 (a) Load Delay graph of Fat Tree with Buffer Depth 8 and 16 flits Under

Random Permutation Traffic Pattern(b)Load-Delay graph for Mesh and

DMesh topologies under Uniform traffic 71

viii

4.14 Load Delay graph of Mesh Topology under (a)Uniform and (b)Transpose

traffic patterns . 72

4.15 proposed Adaptive and Reliable router architecture 74

5.1 NoC router with the proposed DSP48E1 based crossbar 81

5.2 Two DSP48E1 slices connected by dedicated cascade links form a sin-

gle DSP tile (Xilinx Inc (2018)) . 83

5.3 Illustration of mapping the input ports to the DSP48E1 based crossbar . 85

5.4 (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and

(f) - Saturation Throughput for the 6 × 6 Mesh and Torus topologies

under CLB and DSP48E1 based crossbar implementation under Nearest

Neighbor, Random Permutation, Hotspot, Tornado and Bit complement

traffic patterns employing the XY routing and LA routing 93

5.5 (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and

(f) - Saturation Throughput for the 8 × 8 Mesh and Torus topologies

with CLB and DSP48E1 based crossbar implementation under Nearest

Neighbor, Random Permutation, Hotspot, Tornado and Bit complement

traffic patterns employing the XY routing and LA routing 95

5.6 (a), (b) - Load vs Latency comparison of the Mesh topologies employ-

ing proposed DSP48E1 crossbar architecture and CONNECT, DART

topologies . 97

6.1 Layout of P-NoC: An FPGA based Parameterized framework for design

space exploration and performance analysis of NoCs for Chip Multipro-

cessor architecture . 100

6.2 (a)16-Node Mesh Topology(16-nodes and 16-routers), (b) parameter-

ized router architecture and (c) 16-Node ML-Mesh topology(16-nodes

and 4-routers) . 101

6.3 Architecture of the Parameterized VC based Input buffer employed in

designing the router(Virtual Channel, Input Buffer Depth, Width can be

configurable) . 102

6.4 Packet generator and receptor . 104

ix

6.5 The configurable Flit Structure. 32 and 64-bit flit have been used in this

work. We show the example of only 32-bit Flit Structure, each field

in Flit Structure can been configurable according the size of Topology,

Packets and Number of virtual channels 105

6.6 Clock frequency performance for Mesh and ML-Mesh topologies . . . 111

6.7 Critical path delay for Mesh and ML-Mesh topologies 112

6.8 Performance comparison of 16-Node ML-Mesh and Mesh NoC topolo-

gies under (a)Uniform Random, (b)Transpose, (c)Random Permutation,

(d)Bit Complement, (e)Nearest neighbor and (f)Bit Shuffle Traffic Pat-

terns. 113

6.9 Saturation Throughput comparison between 16-node Mesh, ML-Mesh

topologies with network configurations of 2 VCs and BD of 8 115

6.10 Saturation Throughput comparison between 16-node Mesh, ML-Mesh

topologies with network configurations of 4 VCs and BD of 8 115

6.11 Performance comparison of P-NoC and CONNECT topologies under

(a)Uniform Random, (b)Transpose. 118

7.1 The overall architecture of LBNoC-framework implemented on Xilinx

Zynq 7000 ZC702 SoC. The PS consists of two core ARM Cortex-A9

processors and the PL has Artix-7 FPGA 125

7.2 Two clock cycle Low latency router architecture implemented in LB-

NoC framework(The router is highly parameterized with combined VC

and Switch allocation stages) . 126

7.3 The architecture of Input buffer employed in designing low latency router127

7.4 Free VC availability check and count 128

7.5 Request filter logic . 129

7.6 Parallel Virtual Channel and Switch allocator 130

7.7 Pipeline stages of conventional and LBNoC router architecture 132

7.8 Proposed adaptive look-ahead routing module 134

7.9 Performance comparison of 4x4 and 5x5 NoCs topologies with various

configurations under a different type of traffic patterns. 141

x

7.10 Throughput comparison of 4x4 and 5x5 NoCs topologies with various

configurations under a different type of traffic patterns. 142

7.11 Average packet latency comparison between LBNoC, CONNECT (Pa-

pamichael and Hoe (2015)) and (ProNoCMonemi et al. (2017)) consid-

ering different types of traffic patterns 145

7.12 Throughput comparison of LBNoC, Pronoc and Connect NoC architecture146

7.13 Area, Frequency and Power utilization of various router architectures . . 148

7.14 Average packet latency comparison between LBNoC, SOTA(Group.

(2012)), Shared-buffer (Soteriou et al. (2009)) and PCA (Yan et al.

(2015)) considering different types of traffic patterns 149

7.15 Throughput comparison of LBNoC, SOTA, Shared-buffer and PCA NoC

architectures . 150

LIST OF TABLES

2.1 Comparison of the proposed and the other FPGA based NoC simulators 21

3.1 Experimental Setup Details . 30

3.2 Different L1 Instruction(I1), L1 Data (D1) and Last Level (LL) Cache

Configurations Used In Experiments 30

3.3 Effect on misses due to various I1 And D1 cache configurations 33

3.4 Effect on misses due to various Last Level (LL) cache configurations . . 36

3.5 Analysis Of Miss Rates Of Hotspot Methods In Booksim2.0 37

3.6 Unused functions in Booksim2.0 source code. 39

3.7 Replacing Post-Increment Operator By Pre-Increment Operator 41

3.8 Identifying the memory access pattern of Booksim2.0 source code . . . 42

4.1 Configurable Router Architectural Parameters 48

4.2 Experimental Setup Details . 65

4.3 Resource utilization of 6×6 (36 node)Mesh and Torus topologies under

various configurations of Flit Width(FW) and Buffer Depth (BD) 65

4.4 Resource utilization of 8×8 (64 node)Mesh and Torus topologies under

various configurations of Flit Width (FW) and Buffer Depth (BD) . . . 66

4.5 Resource utilization of 56 node Fat tree topology under various config-

urations of Flit Width (FW) and Buffer Depth (BD) 67

4.6 Resource utilization of a Single Router 68

4.7 LUT Utilization of 5 and 9 Port Router Components 68

4.8 Synthesis results of YaNoC on Artix-7 FPGA device (XC7A100T, speed-

3) . 69

xiii

4.9 Synthesis results of 36-Node Mesh based Topology on Artix-7 FPGA

device (XC7A100T, speed-3) . 72

4.10 Area utilization of 4×4 Mesh Topology on Artix-7 FPGA device (XC7A100T,

speed-3) . 74

4.11 SPF comparison of the proposed router with other faults tolerant router

designs. 76

4.12 Resource utilization of CONNECT and YaNoC on Artix-7 FPGA de-

vice (XC7A100T, speed-3) for 6× 6 Mesh and DMesh topologies . . . 77

4.13 Resource utilization of DART and YaNoC on Artix-7 FPGA device

(XC7A100T, speed-3) for 3× 3 Mesh topology 77

5.1 4:1 Multiplexer operating signals based on the grant signals from the Arbiter . 84

5.2 DSP48E1-I slice configuration based on the Arbiter Encoded Signal 84

5.3 DSP48E1-II slice configuration based on the Arbiter Encoded Signal 84

5.4 Experimental Setup Details . 86

5.5 Resource utilization of the DSP48E1 and CLB based Crossbar imple-

mentation ONLY on the Artix 7 (XC7A100T) board 87

5.6 Resource utilization of 6× 6 and 8× 8 Mesh topologies with CLB and

DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with XY

routing . 88

5.7 Resource utilization of 6× 6 and 8× 8 Mesh topologies with CLB and

DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with LA

routing . 89

5.8 Resource utilization of 6× 6 and 8× 8 Torus topologies with CLB and

DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with XY

routing . 90

5.9 Resource utilization of 6× 6 and 8× 8 Torus topologies with CLB and

DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with LA

routing . 92

xiv

5.10 FPGA synthesis results of the 6 × 6 Mesh topology considering the

proposed DSP48E1 crossbar implementation and CONNECT’s imple-

mentation on Artix 7 (XC7A100T) board 96

5.11 Hardware utilization results of the 3× 3 Mesh topology with proposed

DSP48E1 based crossbar and DART’s implementation on Artix 7 (XC7A100T)

FPGA . 97

6.1 Flit structure employed in the experiments. All the fields are config-

urable. 32-bit flit structure has been employed in this work for reference. 106

6.2 Experimental Setup Details . 109

6.3 Synthesis results of 16-node Mesh and ML-Mesh topologies with FW

32 bits, Virtual channels 2,4VCs and BD of 2 to 32 on Artix-7 FPGA

board . 110

6.4 Synthesis results of 16-node Mesh and ML-Mesh topologies with FW

64 bits, Virtual Channels 2,4VCs and BD of 2 to 32 on Artix-7 FPGA

board . 110

6.5 Average Hop count of Mesh and ML-Mesh topologies 116

6.6 Power analysis of Mesh and ML-Mesh topologies configurations with(FW

32 bits, VCs 2 to 4 and BD of 2 to 32) on Artix-7 FPGA board 117

6.7 Synthesis results of 16-node Mesh and ML-Mesh topologies on Artix-7

FPGA board . 117

7.1 The conventional allocator. V and P represent number of VCs per port

and number of ports . 128

7.2 The proposed parallel allocator. V and P denotes number of VCs per

port and number of ports . 131

7.3 Experimental Setup Details . 136

7.4 FPGA memory buffers using three implementation alternatives with

constant flit width of 32-bit. 137

7.5 FPGA memory buffers using three implementation alternatives with

constant buffer depth of 15 flits. 137

xv

7.6 Synthesis results of various configurations of Input buffer in LBNoC

router with 64-bit flit width . 137

7.7 Synthesis results of various configurations of Input buffer in LBNoC

router with 128-bit of flit width . 138

7.8 Synthesis results of merged FIFO buffers at each input port and Con-

ventional FIFO buffers . 138

7.9 Synthesis results of Queue of free VCs selection and Conventional VC

allocator implementation . 139

7.10 Synthesis results of Full and Decomposed Crossbar with IN/OUT ports 139

7.11 Synthesis results of Mesh topology of size 4× 4 and 5× 5 with various

configuration of input parameters . 139

7.12 Resource utilization and Maximum operating frequency of Different

NoC configurations considering 4× 4 Mesh topology 144

7.13 Resource utilization and Maximum operating frequency of Different

NoC configurations considering 4× 4 Mesh topology 148

xvi

LIST OF ABBREVIATIONS

Abbreviations Expansion

ASIC Application Specific Integrated Circuit

AMBA Advanced Microcontroller Bus Architecture

AXI Advanced eXtensible Interface

CMesh Concentrated Mesh

CMP Chip Multi-Processor

CMOS Complementary Metal Oxide Semiconductor

CPI Cycles per Instruction

DOR Dimension Order Routing

FF Flip Flop

FLIT FLow control digIT

FPGA Field Programmable Gate Array

IP Core Intellectual Property Core

LFSR Linear Feedback Shift Register

LUT Look Up Table

MPKI Misses per Kilo Instruction

MPSoC Multiprocessor System-on-Chip

NI Network Interface

LT Link Traversal

NoC Network-on-Chip

PE Processing Element

RC Route Computation

RR Round-Robin

RTL Register-transfer level

xvii

Abbreviations Expansion

SA Switch Allocation

SoC System-on-Chip

ST Switch Traversal

TDM Time Division Multiplexing

TG Traffic Generator

TR Traffic Receptor

VA Virtual-Channel Allocation

VC Virtual Channels

xviii

CHAPTER 1

INTRODUCTION

A Systems-on-Chip(SoC) is a tightly coupled system containing general purpose pro-

cessing units, graphics processing units, memory blocks, peripheral controllers, and

accelerators fabricated on a single die for better power and performance characteristics.

SoC components have to be interconnected efficiently to achieve the best possible power

and performance tradeoff. SoCs use dedicated point-to-point and traditional buses as

interconnection systems for interconnecting the various cores. However, a dedicated

point-to-point and traditional buses suffer from scalability, unpredictable delays, noise

issues, and efficient power consumption (Ho et al. (2001)).

The Network-on-Chip has become the de facto on-chip interconnection technique (Dally

and Towles (2001); Benini and De Micheli (2002)) for the modern many-cores SoCs.

A NoC is composed of routers and links to interconnect components on the chip. The

NoC yields to a modular design, which is easier to verify and fabricate. NoCs provide

high performance while servicing high bandwidth with better on-chip resource utiliza-

tion. Hence, NoCs are the favoured on-chip communication framework in many of

the state-of-art MPSoCs, CMP, heterogeneous systems and Domain specific hardware

accelerators (Akopyan et al. (2015); Sodani et al. (2016); Balkind et al. (2016); Bohnen-

stiehl et al. (2017); Chen et al. (2017); Luo et al. (2017); Ax et al. (2018); Joardar et al.

(2019); Jang et al. (2019)).

With the increase in the number of interconnected components, the performance of the

target application becomes highly dependent on the performance of NoC. There is a

1

1. Introduction

need to model and evaluate large size NoC designs quickly and accurately. NoC sim-

ulation frameworks explore the performance characteristics along with the effect on

the overall system. System architects will be able to understand the impact of various

design parameters before chip fabrication thereby reducing total cost. Academic and

Industrial NoC designers have traditionally used cycle-accurate software based simula-

tors((viz. Orion Kahng et al. (2012); Garnet Agarwal et al. (2009); SICOSYS Puente

et al. (2002); Noxim Catania et al. (2015); Booksim Jiang et al. (2013)) to explore the

microarchitectural design space of on-chip networks. Orion (Kahng et al. (2012)) pro-

vides a set of architectural power models for on-chip interconnection routers. On-chip

network area power consumption and can be estimated accurately in the early phases.

The details such as input buffers, routing logic, crossbar switch and allocators are im-

plemented in Garnet (Agarwal et al. (2009)). Noxim Catania et al. (2015), is another

NoC simulator which is implemented in SystemC. SICOSYS (Puente et al. (2002)) is a

general-purpose interconnection network simulator that allows to model a wide variety

of routers in a precise way. The parameters such as traffic pattern, applied load, message

length etc., can be provided as input for simulation. Booksim2.0 (Jiang et al. (2013)) is

a cycle-accurate simulator. It is flexible in terms of modeling network components.

Computer system simulators implemented in software provide an accurate and easy

prediction of power and performance characteristics and are relatively easy to modify.

However, systems have been continuously increasing in complexity and it is reflected

in the rapid growth in the performance of the computers. As a result, computer simula-

tion performance is declining compared to the next generation of the computer system

being simulated. For example, software simulators tend to become slower when the

number of cores has been increased. From Fig. 1.1, it can be observed that execution

time of BookSim2.0 (Jiang et al. (2013)) software based simulator varies as topology

size increases from 6 seconds to 10 days simulating 4×4 to 54×54 NoC architectures

of mesh topology on a Core i7-4770 CPU. By increasing the dimension from two to

three and four, the time taken will be even more. This situation is called as the simu-

lation wall (Angepat et al. (2014)). The fast modeling of large scale NoCs have been

done through analytical models (Li-Shiuan Peh and Dally (2001); Suboh et al. (2010);

2

Ogras et al. (2010)) in many cases but significant inaccuracy in the results. The fast

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

E
X

E
C

U
T

IO
N

 T
IM

E
 (

H
O

U
R

S
)

TOPOLOGY SIZE (nxn)

EXECUTION TIME VS TOPOLOGY SIZE MESH WITH UNIFORM TRAFFIC

EXECUTION TIME (HOURS) of n=2D
EXECUTION TIME (HOURS) of n=3D
EXECUTION TIME (HOURS) of n=4D

Figure 1.1: Booksim2.0 Execution Time Of k-ary n-dimensional Mesh Networks(n=2,3
and 4) Parane et al. (2016).

and precise simulators provide a platform for performing design space exploration of

various NoC architectures. Employing techniques such as thread-level parallelism with

these simulators to improve the simulation speed is difficult due to high synchronization

cost. Higher simulation speed can be achieved by sacrificing the simulation accuracy to

mitigate the complexity of synchronizations.

The main objective of this thesis work is to improve the performance of modern com-

puter systems by use of extensive hardware-level parallelism. A programmable, re-

configurable, hardware accelerator has the potential to provide an efficient alternative

for the improvement of system simulation performance. Field Programmable Gate Ar-

rays(FPGAs) contain an array of configurable logic blocks with programmable inter-

connects. The logic blocks can be configured to perform any arbitrary functions. The

logic block inputs and outputs are connected by employing the programmable intercon-

nection to form complex circuits(Ciletti (2011)). FPGAs have a short period of time to

market and offer reconfigurability as compared to application-specific circuits (ASICs)

in the design and evaluation of digital systems. Wolkotte (Wolkotte et al. (2007)) was an

FPGA based simulator allow performance/area trade-offs by virtualizing a single router

on an FPGA. In (Lotlikar et al. (2011)), an NoC emulation environment on FPGA called

AcENoCs has been proposed. Both of the software and hardware components of FP-

3

1. Introduction

GAs have been utilized by AcENoCs. A synthesizable NoC RTL generator on FPGA

called CONNECT in (Papamichael and Hoe (2015)). AdapNoC, a fast and flexible

FPGA-based NoC simulator in (Kamali and Hessabi (2016)). The router microarchi-

tectural parameters are reconfigurable in AdapNoC. All these FPGA based simulators

(Wolkotte et al. (2007); Lotlikar et al. (2011); Papamichael (2011); Papamichael and

Hoe (2015); Kamali and Hessabi (2016)) have been proposed to improve the perfor-

mance of the simulations. All the system events execute in parallel in an FPGA during

a system simulation. Component models from the software simulators are effectively

parallelized and executed on the FPGA to achieve a better simulation speed without

compromising accuracy.

1.1 PROBLEM DESCRIPTION

In systems with a large number of components, bus based communication will not be

efficient in terms of scalability, efficiency, and performance. The Network-on-Chip

(NoC) has become a tangible on-chip communication technique. There is a need to

model and evaluate large scale NoC designs fast and accurately in order to explore the

performance characteristics along with the effect on overall system. NoC researchers

have relied on cycle accurate power and performance software simulators to explore

the microarchitectural design space. The NoC parameters such as topology, routing

algorithm, flow control, and router microarchitecture, including buffer management and

allocation schemes can be analyzed using these simulators. The simulation of large NoC

architecture takes too much time. The slow speed of NoC simulators is a significant

bottleneck in the study and analysis of interconnection architecture for next generation

computing systems.

1.2 RESEARCH OBJECTIVES

The significant capabilities and the flexibility of FPGAs make them an ideal vehicle for

accelerating and addressing the challenges of NoC architecture simulation.

Following aspects have been identified as the research objectives:

1. Review and performance optimization of NoC architecture simulators.

4

1.2. Research Objectives

• Study and performance enhancement of software NoC simulator.

• Comparison and analysis of improved software simulator with existing hard-

ware based NoC simulator.

2. Implementation and optimization of scalable FPGA based accelerator for NoC

architecture simulator.

• The efficient mapping techniques are employing for effectively utilize the

dedicated FPGA resources.

• Design of NoC router to optimize area with an improved network perfor-

mance.

• FPGA based hardware/software codesign of NoC simulation.

5

1. Introduction

1.3 THESIS CONTRIBUTIONS

This thesis presents several key ideas to implement NoC architecture in FPGA platform.

The contributions of this thesis with a brief summary are as follows:

1. To speedup the simulations, it is necessary to investigate and optimize the hotspots

in the simulator source code. Among several software based simulators available,

Booksim2.0 (Jiang et al. (2013)) has been chosen for the experimentation as it is

being extensively used in the NoC community. We analyze and optimize the

cache and memory system behaviour of Booksim2.0 to accurately monitor input

dependent performance bottlenecks. We also employ the thread parallelization

and vectorization to improve the overall performance of Booksim2.0.

2. The parallelization of software based simulator has high synchronization over-

head, this reduces the speed of simulation, to overcome this we present an FPGA

based NoC simulation framework-YaNoC. It supports the creation of standard

and custom topologies, design of routing algorithms, generation of various syn-

thetic traffic patterns, and exploration of a full set microarchitectural parameters.

The efficient routing algorithm is required to reduce the congestion in the net-

work and proper usage of the communication bandwidth. Also, the reliable NoC

architecture require for tolerate the fault that causes the serious issues such as

deadlock, packet loss, increased packet latency, erroneous messages in the net-

works. All of which result in on-chip performance degradation. We present an

Adaptive and Reliable Network on Chip router architecture using FPGA to im-

prove the performance of NoC architecture.

3. To build the large NoC architecture on FPGA, various components of the FPGA

have to be utilized to their full extent to achieve the high performance. The Soft

logic (CLBs) of the FPGAs are used implicitly to implement the design. However,

the final mapping of the design on the FPGAs is in the control of backend tools.

This results in inefficient use of the high performance Hard blocks of FPGAs such

as DSP slices and BRAMs. The DSP slices of the modern Xilinx FPGAs offers

the feature of dynamic reconfiguration in which a single DSP slice can be used

6

1.4. Thesis Organization

for various computations in each clock cycle.

4. Next, an FPGA-based parameterized framework for analyzing the performance

of NoC architectures based on various design decision parameters has been pro-

posed. An investigation on the key trade-offs in the organization of the router,

including the design of the router virtual channel, input/output ports and evaluate

the overhead and performance of NoC architecture has been presented.

5. Finally, a low latency router with the look-ahead bypass(LBNoC), with reduced

area, latency and improved performance has been presented. Techniques such as

single cycle router bypass, parallel virtual channel and switch allocation, com-

bined virtual cut through and wormhole switching have been employed in the

design of the LBNoC router.

1.4 THESIS ORGANIZATION

The organization of the thesis is as follows:

Chapter 1: In this chapter, The research work objectives are listed. A glimpse of the

research contributions are also given.

Chapter 2: This chapter introduces some basic concepts about the on-chip network

and Field Programmable gate array(FPGA). A pertinent related work in which state-of-

art and recent development of software and FPGA based NoC simulator are introduced.

This culminates into motivation for the present research work.

Chapter 3: Presents the analysis of cache and memory system behavior of Booksim2.0

software based NoC simulator. Also, the optimization techniques are employed for en-

hancing the performance of Booksim2.0 have been presented.

Chapter 4:In this chapter, a modular and configurable NoC simulation acceleration

framework called YaNoC on FPGAs is presented. The novel adaptive and reliable router

architecture has been proposed which is capable of detecting the congestion and faults

in the NoC networks.

7

1. Introduction

Chapter 5: Discusses the efficient mapping techniques to effectively utilize FPGA

dedicated resources. The NoC router components such as crossbar and input buffer are

mapped on the DSP48E1 and BRAM dedicated blocks of FPGA.

Chapter 6: This chapter describes the performance evaluation of NoCs architecture

using P-NoC framework. The P-NoC framework consists of Topology, Router and

Traffic modules. These modules support the implementation of NoCs architecture for

design space exploration.

Chapter 7: In this chapter, an optimized, low cost, high performance NoC router mi-

croarchitecture is presented.

Chapter 8: Summarises the research work reported in the thesis.

8

CHAPTER 2

BACKGROUND AND REVIEW OF RELATED WORK

This chapter presents the fundamentals of NoCs with special focus on performance

parameters. A general description of FPGAs is also provided. Finally, an overview of

the existing software and FPGA based NoC simulators have been reviewed.

2.1 NETWORK-ON-CHIP: AN OVERVIEW

NoCs are the communication networks that connect multiprocessors on CMP and the

system components in SoCs. NoC architecture is composed of three main building

blocks, viz, links, routers, network adapter(NA) or network interface(NI) (Guerrier and

Greiner (2000); Dally and Towles (2001); Benini and De Micheli (2002); Dally and

Towles (2004)). Links are the communication fabric that physically connects nodes.

The router implements the communication protocol. The router of NoC plays the role

of a smart buffer in interconnection networks(Bjerregaard and Mahadevan (2006)). The

router receives packets from the shared link and forwards the packet to its locally con-

nected Processing elements(PEs) or to other shared links based on the node identifica-

tion information in the packet header. The logical connection between the nodes and

the network is through the network interface(NI). Usually a node has a unique policy or

protocol to interface with the network. The topology, the configuration of the router mi-

croarchitectural components, and routing algorithms affect the performance of an NoC

architecture.

All the major entities of an NoC are introduced below:

9

2. Background and Review of Related work

2.1.1 Data Packet

The packet is a group of network data, fixed and variable length packets available in the

network. Packets are usually divided into several flow control units(flits). A flit size is

same as the link width and is the largest amount of data. It is transferred in parallel by

allocating the small amount of resources.

2.1.2 Routing Algorithms

Typically, there are multiple possible paths in an NoC between every source and desti-

nation pair. The selection of the best path is done by deterministic, oblivious or adaptive

routing algorithms (Enright and Peh (2009)). The packet always uses the same path be-

tween source and destination nodes in the deterministic routing. The DoR XY and

source routing are common deterministic routing algorithm. Oblivious routing deter-

mine the path between each pair of nodes, without being aware of the traffic condition

in the network. Oblivious algorithms are easy to design and make deadlock free. In the

adaptive routing, if the local link or original path is congested, the routing algorithm

determines alternative paths.

2.1.3 Flow Control

The resource allocation and the resolution of conflicts can be done through flow control.

It determines how the packets are transmitted between two nodes/cores. Specifically,

flow control determines when the flits can be forwarded from one router to the next

router. Various kinds of flow control mechanisms are in use, viz., store-and-forward

packet switching (Dally and Towles (2004)), virtual cut-through (Kermani and Klein-

rock (1979)), and wormhole switching (Dally and Seitz (1986)). The Virtual Channels

(VCs) mechanism has been implemented in (Dally (1992)) to prevent the deadlock and

to achieve better performance.

2.1.4 Links

A link is a communication link, that is composed of a set of wires connecting two

routers in the network. The link, also called a channel, is a group of wires connecting

two entities. Typically, an NoC link has two physical channels making a full-duplex

10

2.1. Network-on-Chip: An Overview

connection between the routers.

2.1.5 Router Architecture

The NoC router is consists of a number of input/output ports, switching matrix connect-

ing the input to output port, and a local port to access the processing element connected

to this router. Fig. 2.1 depicts the microarchitecture of the router.

VC ALLOCATOR

SWITCH ALLOCATOR

MxM CROSSBAR SWITCH

ROUTE

COMPUTATION

VC-1

VC-2

VC-3

VC-N

VC-1

VC-2

VC-3

VC-N

INPUT-1

INPUT-M

OUTPUT-1

OUTPUT-M

Input

Buffer

Input

Buffer

Figure 2.1: An NoC router microarchitecture with M input/output ports, N-virtual chan-
nels at each input port and M × M Crossbar switch (Enright and Peh (2009)).

2.1.5.1 Router Pipeline

The number of pipeline stages affects the latency and throughput of the router. Follow-

ing are the pipeline stages of router architecture (Dally and Towles (2001, 2004); Partha

Pratim Pande et al. (2005)).

Buffer Write: The router input ports have Input Buffers to store the incoming flits from

the neighboring nodes, before transferring flit to the next nodes. To improve the per-

formance and for avoiding the contentions in the NoC router, the virtual channel(VC)

buffers are introduced. Each header flit contains a virtual channel identifier(VCID) to

write flit in corresponding virtual channel buffer.

Route computation: The Route computation logic computes the correct output port and

the set of candidate output VCs for the given incoming header flit according to the rout-

11

2. Background and Review of Related work

ing algorithm. This pipeline stage only needs to be performed for the header flit of each

packet.

Virtual Channel allocation: The header flit of each packet arbitrates for the available

output VCs corresponding to its output port. Similar to route computation, this pipeline

stage only needs to be performed for the header flit of each packet.

Switch allocation: Once a header flit of each packet has obtained an output port and

VC, it can proceeds to the switch allocation stage. Here, the header flits are arbitrated

for accessing the output port.

Switch traversal: After getting the grant from the switch allocator, proceeds to the this

stage, where the head flit traverses the crossbar.

Link traversal: Finally, the flit is travel to the next node in this stage.

2.1.6 Network Interface

A Network interface (NI) is the third building block of the NoC. The Processing Ele-

ments (PEs) and the NoC architecture are connected logically, employing the NI. Sep-

aration of computation and communication is done with the help of an NI.

Figure 2.2: 4×4 NoC Mesh topology, Each PEs connects to a local port of router
through NI, other ports of router connects to North, East, South and West neighbours
using links (Partha Pratim Pande et al. (2005)).

2.1.7 Topology

The topology of an on-chip network determines the physical layout and connections be-

tween nodes and links in the network. The nodes(PEs core and router) in the NoC can be

interconnected in various topologies such as Mesh-based, Tree-based, and user-specific

architectures(Bjerregaard and Mahadevan (2006); Partha Pratim Pande et al. (2005);

12

2.2. NoC Performance Parameters

Balfour and Dally (2006); Kim et al. (2007)). Fig. 2.2 depicts 4×4 2D Mesh NoC

topology, where the PEs generate and receive the packtes, the routers are responsible

for forwarding packets between the PEs and other neighbour routers using communica-

tion link.

2.2 NOC PERFORMANCE PARAMETERS

The performance of NoC architectures can be evaluated considering the standard set of

metrics (Partha Pratim Pande et al. (2005); Enright and Peh (2009)).

2.2.1 Average Packet Latency

The latency is defined as the cycle time required by the packet to travel from source

processing elements to the destination processing elements. The average packet latency

is given by equation 2.1

Avglat = 1/N
N∑
i=1

Li (2.1)

where N refers to the total number of flits accepted by all destination nodes and Li

refers to the latency of the ith flit received by its destination processing element.

2.2.2 Throughput

It is defined as the maximum traffic accepted by the network, that is, the maximum

amount of information delivered per time unit. For message passing systems, message

throughput can be defined as TP,(Equation 2.2) :

TP = (Total Messages completed * Message length)/(Number of PE blocks*Total Time)

(2.2)

Here, Total Messages completed means that the whole message has arrived at the des-

tination node; Message length is the total number of flits; Number of PE blocks is the

number of functional cores involved in communication; Total Time is the difference of

time between the first flit generated, and the last flit received.

2.2.3 Area

In the NoC architecture design, the presence of the input buffers, Switch allocator,

crossbar switch and the interfaces can result in the silicon area overhead. The area of

13

2. Background and Review of Related work

NoC architecture is given by equation 2.3 and 2.4

NoCArea = RoutersArea + LinksArea (2.3)

RouterArea = IBArea +RCLArea + CrossbarArea (2.4)

Where ‘IB=Input Buffer’ is Input Buffer of NoC router, ‘RCL=Router Control Logic’

such as routing logic, VC, and Switch allocation logic.

2.2.4 Power

The total power consumed by the NoC architecture can be breakdown into router, links,

input/output, and clock distribution power. The router power consumption includes

FIFO buffer, routing algorithm, allocator, and crossbar switch power.

The total power of NoC architecture is given by equation 2.5 and 2.6

PNoC = Prouter + Plink + PInterfaces + Pclk (2.5)

Prouter = PFIFO + Proutelogic + Pallocator + Pcrossbar (2.6)

2.3 FIELD PROGRAMMABLE GATE ARRAY

A brief overview of the FPGA architecture to highlight some key characteristics of

that make it well suited to accelerate NoC simulations are presented. An FPGA is

a massively parallel architecture that implements computation using a large number of

configurable logic blocks connected to each other through a programmable interconnect

fabric. An FPGA mainly contains:

• Configurable Logic blocks - which implement logic functions.

• Programmable Interconnects - which implement routing.

• Programmable Input/output(I/O) blocks - which connect with external compo-

nents.

• Embedded hard blocks - which used to implement the specific functions.

Fig. 2.3 shows the generic architecture of an FPGA. The CLBs are interconnected

through the programmable interconnect. The programmable I/O blocks are placed at

14

2.3. Field Programmable Gate Array

the borders of the grid to connect with external devices. The DSP blocks and the

Block RAMs constitute the embedded hard blocks. These hard blocks are placed in

the columnar configuration and are spread across the FPGA. Further, the DSP blocks

can be cascaded with one another through the dedicated interconnections.

Figure 2.3: A generic architecture of Xilinx FPGA (Xilinx Inc (2019b))

2.3.1 Configurable Logic Blocks(CLB)

Any logic functions can be implemented using CLBs. The 7 series FPGA from Xil-

inx provides advanced, high-performance programmable logic. In the Xilinx 7 series

FPGAs, each CLB contains a pair of slices which can work independently (Xilinx Inc

(2016)). The slice in CLB may be SLICEL and SLICEM, which can be configured as

logic and memory respectively. Each slice is made up of four Lookup Tables (LUTs),

eight flip-flops, multiplexers and the carry logic. Various functions can be generated by

combining LUTs through the multiplexers. Fig. 2.4 shows the structure of a CLB.

2.3.2 Programmable Interconnects

The programmable Interconnects provide the routing paths used to connect the inputs

and output of I/O blocks and CLBs into logic networks. The various components of the

FPGAs are connected through the use of programmable interconnects or routing fabric.

The routing resources comprise segments of wire and consists of the switch modules

15

2. Background and Review of Related work

Figure 2.4: Architecture of the Configurable Logic Block(Xilinx Inc (2016))

and connection modules, which contain programmable switches (Chang et al. (1996)).

2.3.3 Embedded hard block

The embedded hard block of FPGAs are seen to be more area, power efficient and pro-

vide higher performance. These hard blocks are used to design the logic functions,

which improves the performance and reduces the power consumption in comparison

with the same functions designed on the CLBs (Ronak and Fahmy (2016)). By em-

ploying the hard blocks in the design, a reduction in the usage of CLB resources can

be observed. The BRAMs (Xilinx Inc (2019a)) and DSP blocks (Xilinx Inc (2018)) are

discussed in detail in Chapter 5.

2.4 RELATED WORK

The design space exploration of NoCs in modern communication centric designs need

the fast simulator for exploration has resulted for the development of many architec-

tural simulators. The architectural simulators are classified into software simulators

and FPGA based emulators. This chapter provides an overview of state-of-art software

based simulators and FPGA based emulators.

2.4.1 Software based Simulators

The performance evaluation of NoC architecture can be performed at different abstrac-

tion levels. The most of software simulators are designed in a high level abstraction.

16

2.4. Related Work

The most important feature of software simulators is flexibility. They can be developed

and modified simply. The software simulators are need to estimate the NoC area, perfor-

mance and power consumption in the early stages of the design. These are the important

design decision parameters in designing NoCs. Many of the full-system simulators such

as Gem5 (Binkert et al. (2011)), Simplex(Hardavellas et al. (2004)) and MARSS (Patel

et al. (2011)) provide the flexibility to study the NoCs with many-core systems and other

components. The full system simulators are cycle-accurate. But, when there are a large

number of simulated cores, the time taken is excessive. ZSim (Sanchez and Kozyrakis

(2013)) is a parallelized full-system simulator that proposes a technique in which the

simulation is divided into several small intervals of many thousand cycles. During the

simulation of the processor cores parallelly, the resource contentions are ignored, and

the zero load latency has been employed for all types of memory accesses. By doing

so, ZSim achieves speed by sacrificing accuracy. Orion simulator (Kahng et al. (2012))

includes a set of the architectural area and power models for on-chip interconnection

routers. A classic five-stage pipelined router with virtual channel flow control has been

modeled in (Agarwal et al. (2009)). GARNET has been integrated with (Binkert et al.

(2011)) full system simulator. NoC microarchitectural details such as input buffers,

routing logic, allocators, and the crossbar switch are modeled. The workload traffic

running on Gem5 can be analyzed using GARNET.

Booksim2.0 (Jiang et al. (2013)) is a cycle-accurate simulator. It is flexible in terms

of modeling network components. A large set of network parameters that are config-

urable such as routing algorithm, topology, flow control, and router microarchitecture,

are implemented. Noxim (Catania et al. (2016)), is another NoC simulator which is

implemented in SystemC. Noxim is capable of simulating wireless NoCs. NOCulator

(CMU-SAFARI (2018)), Access Noxim (Access IC Lab (2018)) and VisualNoC (Wang

et al. (2016)) are other popular NoC simulators. A modular, open-source NoC simu-

lator based on OMNeT++ (Varga (1999)) has been presented in HNOCS (Ben-Itzhak

et al. (2012)). Heterogeneous NoCs with variable link capacities and the number of

VCs per unidirectional port are supported in HNOCS. Statistical measurements such

as latency in between source and destination, throughput and VC acquisition latencies

17

2. Background and Review of Related work

are provided by HNOCS. An NoC simulator calculating the accurate cycle timings with

wormhole switching has been proposed in (Ting-Shuo Hsu et al. (2015)). The flit prop-

agation model calculating the flit timings at I/O ports of FIFOs and switches play a

vital role in (Ting-Shuo Hsu et al. (2015)). The performance of computer simulation

is ever decreasing relative to the next generation of computers being simulated due to

the phenomenon of simulation wall (Angepat et al. (2014)). Hence, there is a need for

simulation techniques which can yield the results quickly.

2.4.2 FPGAs based NoC simulators

Due to their prominent features supporting highly parallel operations, reconfigurability

and programmability, FPGAs have become a vehicle for NoC simulation acceleration.

Employing the FPGA fine-grain parallelism, several works such as ProtoFlex (Chung

et al. (2009)), RAMP Gold (Tan et al. (2010)), RAMP White (Chiou et al. (2007)),

RAMP Red (Wee et al. (2007)) have shown that a remarkable improvement in the em-

ulation performance can be achieved.

In Lotlikar et al. (2011), an NoC emulation environment on FPGA called AcENoCs

has been proposed. Both of the software and hardware components of the FPGAs have

been utilized by AcENoCs. The Microblaze softcore processor hosts Traffic generators,

clock generation, and traffic sinks. The generation of the clock on software is flexible

but potentially slow. The hardware platform is the network-on-chip to be emulated.

AcENoCs supports the design of Mesh topology only.

Fast Interconnect Simulation Techniques (FIST) has been proposed in (Papamichael

et al. (2011)). The time consuming detailed NoC models of full system simulators can

be replaced by FIST as it incorporates a fast and simple packet latency estimator. The

ideas from execution-driven and analytical network modeling simulation models are

combined to build FIST. The latency estimation of a packet is done by determining the

routers traversed by the packet. Latencies depending on the load, are then added to give

the packet latency. Due to this approach, FIST is not appropriate for a thorough analysis

of networks.

An FPGA based NoC emulation supporting the direct implementation and virtual-

18

2.4. Related Work

ized implementation has been proposed in (Papamichael (2011)). The NoCs to be emu-

lated are directly implemented on the FPGA. A Time Division Multiplexing approach is

employed to support the virtualized implementation of NoCs. The traffic tables needed

for the simulation are stored in the off-chip DRAM. Thus, the overall system perfor-

mance can be confined by the latency and bandwidth of the DRAM access.

An FPGA-based NoC emulator has been proposed in DART (Wang et al. (2014)).

Global interconnect across all the nodes is provided. Any topology can be emulated

by DART, leaving out the resynthesis of design utilizing these global interconnects

and employing a software tool by configuring the routing tables properly. Most of

the FPGA resources are consumed by the global interconnect. DART minimizes the

expense of global interconnect by clustering many nodes into a partition and employing

a crossbar for the clusters instead of a full crossbar for all nodes. This leads to the

complex hardware, and the size of the routing tables becomes larger on increasing the

number of nodes. With a large number of nodes, the off-chip DRAM has to be used to

store the routing tables, which becomes unavoidable.

An NoC RTL generator called CONNECT has been proposed in (Papamichael and

Hoe (2015)). For any topology design, the route information of packets is stored in the

routing table. Packets are routed from source to destination using these tables. CON-

NECTs implementation of the NoC topology uses LUTs for designing input memory

buffers. This causes high resource usage when using wide buffer sizes.

An FPGA emulation platform called Ultra-Fast has been proposed in (Thiem Van

et al. (2015)). Ultra-Fast employs two methods enabling swift emulations of larger NoC

architectures on a single FPGA. The time of network being simulated is decoupled from

the time of traffic generation units to model the Synthetic workloads accurately. To

emulate the entire network utilizing more physical nodes, the TDM approach has been

employed. Authors have considered Mesh topology with the look-ahead XY routing

and the credit-based flow control.

AdapNoC, a fast and flexible FPGA based NoC simulator, has been proposed in

(Kamali and Hessabi (2016)). Various router microarchitectural parameters are config-

19

2. Background and Review of Related work

urable in AdapNoC. Transplantable Traffic Generators and Receptors running on the

software side are supported. To simulate larger topologies and reducing the simulation

time drastically, Dual clock virtualization methodology has been employed. AdapNoC

supports Adaptive Toggle Dimension Order Routing (ATDOR) as a known adaptive

routing algorithm. Only Mesh and Torus topologies are supported by AdapNoC. DuC-

NoC (Kamali et al. (2018)) is another version of AdapNoC. DuCNoC employs Xilinx

Zynq-7000 SoC. Two soft-core ARM processors are used to model the traffic generator

and traffic receptors. Employing an approach similar to DuCNoC, an FPGA based NoC

emulator has been proposed in (Drewes et al. (2017)). An NoC of size 8 × 8 can be

emulated in (Drewes et al. (2017)).

Bufferless customized unidirectional Torus topology with Deflective routing has

been implemented in Hoplite (Kapre and Gray (2015)). By incorporating bufferless

deflective routing, the hardware required by buffers can also be saved, reducing power

consumption. Crossbar’s cost is reduced considerably by doing so as the unidirectional

Torus topology accepts packets only from two neighboring ports and a local port, thus

reducing the crossbar complexity. Hoplite supports the design of unidirectional, buffer-

less, deflection-routed torus networks only. Hoplite DSP (Chethan and Kapre (2016))

extends the concepts of Hoplite to map the routers on the DSP48E1 blocks of the Xilinx

FPGA.

Table 2.1 provides a comparison of the state-of-the-art FPGA based NoC simulators

and the proposed work. As seen from Table 2.1, our work supports various standard

NoC topologies and also provides the provision for designing the custom topologies.

The table based routing algorithm has been implemented to design the custom topolo-

gies and the congestion-aware adaptive routing algorithm to achieve better performance.

Also, reliable NoC router architecture is designed and evaluated. Various hard blocks of

FPGA, such as DSP48E1 and the BRAMs, are used efficiently to map the NoC router

microarchitectural components.

20

2.4. Related Work

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

th
e

pr
op

os
ed

an
d

th
e

ot
he

rF
PG

A
ba

se
d

N
oC

si
m

ul
at

or
s

FP
G

A
ba

se
d

N
oC

To
po

lo
gy

R
ou

tin
g

R
ou

te
r

R
el

ia
bl

e
FP

G
A

H
W

/S
W

FP
G

A
co

m
po

ne
nt

s
Si

m
ul

at
io

n
m

ic
ro

-
R

ou
te

r
fo

rm
ap

pi
ng

fr
am

ew
or

k
ar

ch
ite

ct
ur

e
ro

ut
er

co
m

po
ne

nt
s

M
es

h
ba

se
d

Tr
ee

ba
se

d
C

ut
so

m
D

oR
Ta

bl
e

ba
se

d
A

da
pt

iv
e

N
o.

of
Po

rt
s

V
C

Pi
pe

lin
e

st
ag

es
C

L
B

D
SP

B
R

A
M

ba
se

d
ba

se
d

ba
se

d
Po

rt
s

st
ag

es

A
cE

N
oC

s
Y

es
N

o
N

o
Y

es
N

o
N

o
5

2
1

N
o

V
5

R
S2

32
Y

es
N

o
N

o
(L

ot
lik

ar
et

al
.(

20
11

))

Pa
pa

m
ic

ha
el

Y
es

N
o

N
o

Y
es

N
o

N
o

4/
8/

12
/1

6
2/

4/
8

1
N

o
V

5
U

A
R

T
Y

es
N

o
N

o
(P

ap
am

ic
ha

el
(2

01
1)

)

Z
ha

ng
Y

es
N

o
N

o
Y

es
N

o
N

o
5

2/
4

3+
N

o
V

6
-

Y
es

N
o

N
o

(Z
ha

ng
et

al
.(

20
13

))

D
A

R
T

Y
es

Y
es

N
o

Y
es

N
o

N
o

up
to

8
up

to
4

5
N

o
V

6
PC

Ie
Y

es
N

o
Y

es
(W

an
g

et
al

.(
20

14
))

U
ltr

aN
oC

Y
es

N
o

N
o

Y
es

N
o

N
o

5
1/

2
4/

5
N

o
V

7
-

Y
es

N
o

Y
es

(T
hi

em
V

an
et

al
.(

20
15

))

A
da

pN
oC

Y
es

N
o

N
o

Y
es

N
o

Y
es

5
up

to
4

4/
5

N
o

V
6

PC
Ie

Y
es

N
o

Y
es

(K
am

al
ia

nd
H

es
sa

bi
(2

01
6)

)

H
op

lit
e

D
SP

U
ni

di
re

ct
io

na
l

N
o

N
o

Y
es

N
o

N
o

3
B

uf
fe

rl
es

s
-

N
o

V
7

-
Y

es
Y

es
N

o
(K

ap
re

an
d

G
ra

y
(2

01
5)

)
To

ru
s

SR
N

oC
Y

es
Y

es
N

o
Y

es
N

o
Y

es
5

up
to

8
5

N
o

V
7

PC
Ie

Y
es

N
o

Y
es

(X
u

et
al

.(
20

19
))

T
hi

s
th

es
is

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

3/
5/

7/
8/

9
2/

4/
8/

16
2/

5
Y

es
A

rt
ix

7
U

SB
-U

A
R

T
Y

es
Y

es
ye

s
w

or
k

Z
yn

q
70

00

21

CHAPTER 3

ANALYSIS OF CACHE BEHAVIOUR AND
SOFTWARE OPTIMIZATIONS FOR FASTER

ON-CHIP NETWORK SIMULATIONS

The Network-on-Chip(NoCs) architecture based on the packet switched mechanism

emerge as the most promising interconnection architecture for the modern CMPs and

MPSoCs (Dally and Towles (2001)). The communication time can influence the total

turnaround time of the application significantly (Pande et al. (2005)). NoC researchers

have relied on cycle-accurate power and performance simulators (viz. Orion Kahng

et al. (2012) Kahng et al. (2015), Garnet Agarwal et al. (2009), Noxim Catania et al.

(2015) Catania et al. (2016), SICOSYS Puente et al. (2002), Booksim2.0 Jiang et al.

(2013)) to explore the microarchitectural design space of on-chip networks. Amongst

these, Booksim2.0 has emerged as one of the prominent NoC performance analysis

tools.

The execution performance of the applications running on computer systems de-

pends on the cache configuration and memory access. Modern architectures face an

ever-widening gap between the memory speed and the processor speed. Using a small

but fast memory such as a cache reduces the memory access delay when the requested

address is already stored in the cache. To enhance the execution performance of the ap-

plications running on a computer, it is necessary to understand the cache and memory

system behavior of applications. The main idea was to identifythe hurdles associated

with the slowness of the BookSim2.0’s execution speed. One of the major factors af-

23

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

fecting the speed of simulation would be the hardware configuration of the computer

system on which the BookSim2.0 is being executed. Most importantly, the memory

configurations of the system play a vital role in deciding the speed of execution. In this

chapter, we analyze cache and memory system behaviour of Booksim2.0 considering

various cache and memory configuration. We used Valgrind and Cachegrind tools for

analysis of cache and memory system behavior of Booksim2.0 running on the com-

puting system. These tools take the Booksim2.0 binary as input and output the cache

misses, memory access patterns. Based on the analysis, we identify the best cache

configuration for the Booksim2.0 application running on a computing system, which

improves the execution performance. The hotspots are identified where the simulation

spends most of its execution time. Further, thread parallelization and vectorization have

been employed to improve the overall performance of Booksim2.0.

3.1 METHODOLOGY

Booksim2.0 offers network parameters such as topology, routing algorithm, flow con-

trol, and router microarchitecture, including buffer management and allocation schemes

as input parameters for simulating NoC architectures. Simulating large NoC architec-

tures take days together to complete. Hence, there is a need for fast design space explo-

ration of NoC architectures which help designers to reduce the time and effort spent in

the development of a common on-chip framework. From Fig. 3.1, it can be observed

that the execution time of Booksim2.0 varies as topology size increases from 6 seconds

to 10 days simulating 4x4 and 54x54 NoC architectures of Mesh topology. By increas-

ing the dimension from 2 to 3 and 4, the time taken will be even more. The increase in

execution time could be because of cache behavior and the way memory is accessed. To

analyze the cache behavior and memory access patterns, we use profiling methodology.

Profiling refers to the ability to measure an application’s performance and diagnose

the potential problems. Profilers can identify the Hotspots where the program spends

most of its execution time and the memory access patterns. Profiling Booksim2.0 will

reveal the dependence of the cache and memory behavior on the input data. Valgrind

(Nethercote and Seward (2007)) is used to map the cache and memory usage patterns

24

3.1. Methodology

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

 420

 440

 460

 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

E
X

E
C

U
T

IO
N

 T
IM

E
 (

H
O

U
R

S
)

TOPOLOGY SIZE (nxn)

EXECUTION TIME VS TOPOLOGY SIZE MESH WITH UNIFORM TRAFFIC

EXECUTION TIME (HOURS) of n=2D
EXECUTION TIME (HOURS) of n=3D
EXECUTION TIME (HOURS) of n=4D

Figure 3.1: Booksim2.0 Execution Time Of k-ary n-dimensional Mesh Networks(n=2,3
and 4).

of Booksim2.0. Valgrind is a dynamic binary instrumentation framework for building

dynamic binary analysis tools. Cachegrind tool of the Valgrind framework has been em-

ployed for profiling Booksim2.0. considering various cache configurations. Cachegrind

simulates a system with independent first-level (L1) instruction and data caches(I1 and

D1), backed by a unified last-level cache(LL). The Callgrind, another tool of Valgrind

to record the call history of functions in Booksim2.0. KCachegrind, GUI based tool

which is used for identifying the Hotspots of Booksim2.0

Based on profiling, the best cache configuration in which the cache misses are min-

imum and memory access patterns of Booksim2.0 which will help improve the perfor-

mance are identified. Further, we use software optimization techniques such as removal

of unused functions, loop optimizations and pre-increment operator for non-primitive

data types to minimize the cache misses.

Booksim2.0 is a refactored version of Booksim’s source code. When we performed

the profiling to analyze the function callgraph of Booksim2.0, we observed that some

of the functions being unused. The unused functions identified using profiling are never

used in the execution of Mesh-based topologies of Booksim2.0. Unused functions and

25

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

variables affect performance since they occupy memory within a computer system.

Hence, we removed the unused functions to improve the performance of Booksim2.0.

Loops account for more cache misses relative to other components of a program

(Porterfield (1989)). These misses can be optimized by employing techniques such as

loop unrolling, loop tiling and loop rotation, etc.

Employing the pre-increment operator instead of post-increment operator in the

source code can improve the performance of an application. The pre-increment operator

does a single operation such as incrementing the value but, the post-increment opera-

tor does three operations: save the current value, increment the value and return the

old value. Performance of an application is not affected, using pre and post-increment

when the data type is primitive. For the non-primitive data types, using pre-increment

operation will improve the performance.

To reduce the execution time of Booksim2.0, optimization methodologies such as

vectorization and thread parallelization are employed. These techniques have been

employed to parallelize the portions of the Booksim2.0 source code. The most time-

consuming loops were identified employing the Intel Advisor tool. Memory access

patterns have an impact on improving the performance of an application.

3.2 PROFILING AND SOFTWARE OPTIMIZATION TECHNIQUES

The tools and principal works that have used profiling to study application behavior

and works that have optimized the application for performance are discussed below.

Optimizations based on program input, cache access behavior and memory reference

patterns are listed.

3.2.1 Profiling based on program input

Understanding the influence of input data on the overall performance of an application

is a crucial aspect of software development. Frameworks have been proposed to dy-

namically estimate the size of the input to derive cost functions (Coppa et al. (2014b),

Nistor and Ravindranath (2014)). Input-sensitive profiling (Coppa et al. (2014a)) dis-

covers workload-dependent performance bottlenecks. The growth rate of an applica-

26

3.2. Profiling and Software optimization techniques

tion is recorded as a function of input sizes to the routines of the application in the

aprof tool. Algorithmic profiler (Zaparanuks and Hauswirth (2012)) infers an empirical

cost function by automatically determining the “inputs” to a program, by measuring the

program’s “cost” for a given input. To achieve low overheads for deployment in data

centers, instant profiling (Mahlke et al. (2013)) interleaves native execution and instru-

mented execution according to configurable profiling duration and frequency parame-

ters. Causal profiling (Curtsinger and Berger (2015)) runs performance experiments to

calculate the impact of any potential optimization by virtually speeding up code dur-

ing program execution. Pipelined Profiling and Analysis on Multi-core Systems-PiPA

(Zhao et al. (2010)) aims to reduce the cost of user-defined analysis tools in instrumen-

tation by parallelizing dynamic program profiling in multi-core systems.

3.2.2 Profiling for cache performance

Prefetching and Profiling can help computing systems better mitigate performance losses

due to limited cache bandwidth. Cache profiling can improve a program’s performance

by focusing on programmer’s attention on problematic code sections and providing

insight into appropriate program transformations. Several proposals exist to use pro-

file based application-level knowledge to manage the contents of caches (Cherniack

et al. (2003)). The Cachetor (Nguyen and Xu (2013)) run-time profiling tool identifies

and reports operations generating invariant data values. Cachetor uses dynamic depen-

dence profiling and value profiling to expose caching opportunities to improve program

performance. Phase guided cache profiling (Sembrant et al. (2012)) has been used to

model the cache miss ratio as a function of the cache allocation over time. The Pharo

code profiler (Infante (2014)) addresses the problem of identifying memory savings op-

portunities by employing object caches in the context of the Smalltalk programming

language. Pharo identifies and monitors instance creations and the mutations of these

instances. Valgrind variants have been used to study the cache behavior of multimedia

applications to optimize performance (Asaduzzaman and Mahgoub (2006)). The CProf

cache profiling system (Lebeck and Wood (1994)) lets programmers identify hot spots

by providing cache performance information at the source-line and data-structure level.

27

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

3.2.3 Memory usage based profiling

Memory accesses have a major influence on the total application performance. Several

profiling frameworks have been proposed to analyze memory accesses in applications

and input dependent main memory growth patterns. The TODDLER framework (Nis-

tor et al. (2013)) implemented for Java reports loops whose computation has repeti-

tive and partially similar memory-access patterns across loop iterations. MemInsight

(Jensen et al. (2015)) implements tuned source-code instrumentation to provide time-

varying analysis of the memory behavior of JavaScript applications. JSWhiz (Pienaar

and Hundt (2013)) is a compiler extension for analyzing memory leaks in JavaScript

programs. LeakChaser (Xu et al. (2011)) is a specification-based technique that can

capture unnecessary references leading to memory leaks. Reference propagation (Yan

et al. (2012)) provides information specific to reference producers and their run-time

contexts to reveal inefficiencies in the code. Data-centric profiling for parallel programs

(Liu and Mellor-Crummey (2013)) has been used to measure memory access latency.

Hardware counters are used to attribute latency metrics to variables and instructions.

3.2.4 Techniques for minimizing cache misses

Code transformation techniques such as loop unrolling, loop fusion, loop distribution

have been employed in (Porterfield (1989)) to minimize the cache misses of applica-

tions. In (Kowarschik and Wei (2003)), Data access optimizations that change the order

of execution of the nested loops are used. These techniques will improve the temporal

locality of the cache reducing the cache misses. In (Song et al. (2003)), techniques such

as loop invariant code motion, loop unrolling and loop peeling have been demonstrated.

3.2.5 Performance improvement of applications

The performance of an application can be improved by using techniques such as vector-

ization and threading. (Larsen et al. (2005)) vectorizes operations in the important loops

of a program to improve overall resource utilization, allowing for software pipelines

with shorter initiation intervals. In (Nie et al. (2010)), two ways of exploiting the data

parallelism in Java using vectorization are introduced. In (Randall and Lewis (2002)),

OpenMP programming model has been employed to parallelize the Ant colony opti-

28

3.3. Profiling, Performance Optimization Tools and Experimental methodology

mization algorithm.

3.3 PROFILING, PERFORMANCE OPTIMIZATION TOOLS AND EXPERI-
MENTAL METHODOLOGY

Profiling has been employed for measuring the application performance, identifying

Hotspots and diagnosing potential problems. Valgrind (Nethercote and Seward (2007))

has been used for profiling Booksim2.0. Cachegrind, one of the tools of Valgrind suite

is used to simulate the behavior of a program with the cache hierarchy and branch

predictor of the system. Cachegrind simulates a system with independent first-level

(L1) instruction and data caches(I1 and D1), backed by a unified last-level cache(LL).

Callgrind - another tool of Valgrind suite has been employed to record call history of

the functions in Booksim2.0. KCachegrind - a GUI based tool is used for identifying

the Hotspots of Booksim2.0. Employing these tools, the best cache configuration in

which the cache misses are minimum is identified. Also, memory access patterns of

Booksim2.0 which helps in improving the performance are identified.

Cppcheck (Daniel Marjamäki (2011)) is used to detect the types of bugs that the

compilers normally do not detect such as unused functions. The techniques such as re-

versing loop iterations and replacing post-increment operator with pre-increment opera-

tor etc., have been adopted to reduce the cache misses. Further, vectorization and thread

parallelization techniques are applied to improve the performance of Booksim2.0. Intel

Advisor suite (Intel Corporation (2017)) has been employed to identify the top time-

consuming loops of Booksim2.0. Based on these analyses, we employ the OpenMP

programming model to parallelize the top time-consuming loops of Booksim2.0.

3.3.1 Experimental methodology

The cache design and Booksim2.0 configuration parameters considered for experiments

in this work are shown in Table 3.1. Cache simulation has been performed considering

the Cachegrind simulator. Various cache configurations shown in Table 3.2 are simu-

lated using Cachegrind tool of Valgrind suite to analyze the cache behavior and memory

usage of Booksim2.0 considering various topology sizes. Based on these analyses, the

best cache configuration with a minimum number of cache misses has been identi-

29

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

Table 3.1: Experimental Setup Details

System Configuration

Cache Hierarchy (I1+D1)L1 and LL
L1 Cache size 32KB and 64KB
Last Level (LL) Cache size 512KB 4MB and 8MB
L1, LL Cache Line size 32B and 64B
Write Policy Write Allocate
Page Replacement LRU
L1 Associativity 2,4 and 8-way
LL Associativity 4,8 and 16-way
Tools used Valgrind, Cachegrind, Kcachegrind,

Intel Advisor and Cppcheck

Network Configuration Input to Booksim2.0

Topology Type Mesh and Torus
Network size 4× 4, 6× 6,, 30× 30
Traffic Pattern Uniform random
Number of Virtual Channels 8
Virtual Buffer Size 8
Packet Size 20 flits
Sample Period 1000 cycles
Maximum Number of Samples 10
Latency Threshold 109

Injection Rate 0.005
Routing Algorithm Dimension Order Routing

Table 3.2: Different L1 Instruction(I1), L1 Data (D1) and Last Level (LL) Cache Con-
figurations Used In Experiments

L1 cache configuration LL cache configuration

Sl No. I1 and Associativity Block Sizes LL Associativity Block Sizes
D1 cache sizes cache sizes

1 32KB/32KB 2,4,8-Way 32B,64B 512KB 4,8,16-Way 32B,64B

2 64KB/64KB 2,4,8-Way 32B,64B 8MB 4,8,16-Way 32B,64B

fied. The optimization techniques such as reversing loop iterations, removal of unused

functions and replacing post-increment operator with pre-increment operator have been

adopted to reduce the cache misses.

Further, techniques such as vectorization and thread parallelization are employed to

30

3.4. Results and Discussion

speedup the simulation execution time of Booksim2.0.

3.4 RESULTS AND DISCUSSION

3.4.1 Identifying the best cache configuration

The performance of cache memory has been studied with various cache and topology

sizes. 12 different cache configurations have been employed for First level Instruction

cache (I1), First Level Data cache (D1) and Last Level Cache (LL) for analyzing the

effect of cache size, block size and associativity as shown in Table 3.2. Booksim2.0

simulations were run for 2D Mesh topology of sizes ranging from 4 × 4, 6 × 6, ... ,

30× 30.

Cache misses are classified as Compulsory, Capacity and Conflict misses. The cache

performance can be improved by reducing these misses. The compulsory misses can

be minimized by increasing the block size. But, this may lead to an increase in conflict

misses. The larger associative cache can be employed in order to minimize conflict

misses. As the cache size increases, the capacity misses will be minimized as larger

caches are available to store the program data. In Fig. 3.2 and 3.3, the values are

obtained by computing the average MPKIs of 14 different network sizes considering all

the cache configurations as shown in Table 3.2 .

In Fig. 3.2 and 3.3, each bar represents particular cache configuration. The values

were obtained by averaging the MPKI of 14 experiments of Mesh topology from 4× 4,

6× 6, ... , 30× 30 network size. All the other values were computed in similar way.

3.4.1.1 L1 instruction (I1) cache analysis

Effect of cache size on I1 cache misses: From Fig. 3.2, it can be seen that I1 cache

misses were reduced by 30.3% when the cache size is increased from 32KB to 64KB

for 2-way, 32B line I1 cache. Considering 64B cache line for the same configuration,

the cache misses were reduced by 22.47%.

As shown in Table 3.3, 2.73% to 45.24% reduction of misses were observed for all

other cache configurations when I1 cache size has been increased from 32KB to 64KB.

Effect of associativity on I1 cache misses: From Fig. 3.2 it can be seen that when

31

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

32KB 64KB 32KB 64KB

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> I1 CACHE SIZE <-----64B CACHE LINE------>

AVERAGE I1 MPKI OF BOOKSIM2.0-MESH TOPOLOGY

2way, L1 Instruction cache
4way, L1 Instruction cache
8way, L1 Instruction cache

6
.6

6

4
.6

4

3
.1

6

2
.4

52
.7

4
.1

9

1
.1

8

0
.0

7

1
.7

4

2
.3

5

0
.5

0
.1

3

Figure 3.2: Average I1 MPKI of Booksim2.0 for Mesh topology.(MPKI is averaged
over topology sizes mentioned in Table 3.1 And L1 cache configurations were varied as
shown in Table 3.2)

the cache configurations are changed from 2-way to 4-way considering 32KB I1 cache

with 32B line size, the misses were reduced by 59.45%. When the cache configurations

are changed from 2-way to 8-way, the misses reduced by 73.87%.

A reduction of 56.40% to 74.00% was observed by replacing 2-way I1 cache by

corresponding 8-way I1 cache as shown in Table 3.3. Conflict misses are reduced when

the associativity is increased from 2 to 4-way and 2 to 8-way, as more blocks in the set

can be accommodated.

Effect of cache line size on I1 cache misses: It can be seen from Fig. 3.2 that, for

2-way 32KB I1 cache, by increasing the cache line size from 32B to 64B, the misses

were reduced by 30.33%. This is due to good spatial locality of reference.

Reduction of misses from 32.7% to 91.8% was observed for all other cache config-

urations when I1 line size is increased from 32B to 64B as shown in Table 3.3.

Based on the above observations, maximum cache miss reduction of 98.94% can be

seen when moving from 2-way, 32KB I1 cache with 32B line to 4-way, 64KB I1 cache

32

3.4. Results and Discussion

with 64B line.

Table 3.3: Effect on misses due to various I1 And D1 cache configurations

Reduction in I1 Misses

Configurations Design Choices Reduction in Misses

32KB vs 64KB 2,4,8-way & 32B,64B 2.73% to 45.24%

2-way vs 8-way 32KB,64KB & 32B,64B 32.7% to 91.8%

32B vs 64B 2,4,8-way & 32KB,64KB 56.40% to 74.00%

Reduction in D1 Misses

Configurations Design Choices Reduction in Misses

32KB vs 64KB 2,4,8-way & 32B,64B 5.16% to 5.80%

2-way vs 8-way 32KB,64KB & 32B,64B 0.78% to 3.35%

32B vs 64B 2,4,8-way & 32KB,64KB 21.16% to 22.00%

3.4.1.2 L1 data (D1) cache analysis

Effect of cache size on D1 cache misses: Increase in the size of D1 cache in an incre-

mental manner yields an incremental increase of D1 cache performance. From Fig. 3.3,

for 2-way D1 cache with 32B line, when the configurations are changed from 32KB to

64KB cache, the misses were reduced by 4.18%. For 64B cache line, 7.78% reduction

in misses was observed when moving from 32KB to 64KB.

For all other cache configurations, 5.16% to 5.80% reduction of misses were ob-

served on increasing D1 cache size from 32KB to 64KB as shown in Table 3.3.

Effect of associativity on D1 cache misses: In Fig. 3.3, increasing the associativity

from 2-way to 4-way for 32KB D1 cache with 32B line, the misses were reduced by

2.12%. On changing the associativity from 2-way to 8-way, the misses were reduced

by 0.77%.

From Table 3.3, 0.78% to 3.35% reduction of misses were observed for all other

cache configurations on moving from lower to higher associativity level. The conflict

misses arising from blocks of main memory mapping to the same position in the cache

can be reduced by increasing the associativity from 2-way to 8-way.

33

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

 0

 20

 40

 60

32KB 64KB 32KB 64KB

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> D1 CACHE SIZE <-----64B CACHE LINE------>

AVERAGE D1 MPKI OF BOOKSIM2.0- MESH TOPOLOGY

2way, L1 Data cache
4way, L1 Data cache
8way, L1 Data cache

4
7
.8

1

4
5
.8

7

3
8

.2
6

3
5
.2

8

4
6

.7
6

4
4
.3

6

3
6

.6
8

3
4
.7

6

4
7
.4

4

4
4

.4
5

3
7
.0

2

3
5

.4
5

Figure 3.3: Average D1 MPKI of Booksim2.0 for Mesh topology. (MPKI is averaged
over topology sizes mentioned in Table 3.1 And L1 cache configurations were varied as
shown in Table 3.2)

Effect of cache line on D1 cache misses: From Fig. 3.3, the misses reduced by

19.97% on increasing the cache line from 32B to 64B for 2way, 32KB D1 cache.

Reduction of misses from 21.16% to 22.00% was observed for other cache configu-

rations on increasing cache line from 32B to 64B as shown in Table 3.3. Increasing the

cache line, more data can be fetched from LL cache into D1 cache. This reduces the

compulsory misses.

Based on the above observations, maximum cache miss reduction of 27.29% can be

seen when moving from 2way, 32KB D1 cache with 32B line to 4way, 64KB D1 cache

with 64B line.

Comparing I1 and D1 cache analysis, the reduction observed in I1 cache is much

more than D1 cache as I1 caches exhibit better spatial locality of reference.

Based on the above analysis of I1 and D1 caches, medium associative, higher cache

size with larger cache line performs better than all other cache configurations. Our

experiments show that 4-way, (64KB+64KB) L1 cache with 64B line L1 configuration

34

3.4. Results and Discussion

is appropriate for running the Booksim2.0 simulations.

3.4.1.3 Last level (LL) cache analysis

The last level cache size of 512KB, 4MB and 8MB were used to identify the appropriate

LL cache configuration. 512KB and 8MB LL cache size have been considered for last

level cache analysis as the changes in cache misses can be observed more clearly.

In Fig. 3.4, the values are obtained by computing the average MPKIs of 14 different

network sizes considering all the cache configurations as shown in Table 3.2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

4 8 16 4 8 16

A
V

E
R

A
G

E
 M

IS
S

E
S

 P
E

R
 K

IL
O

 I
N

S
T

R
U

C
T

IO
N

S

<------32B CACHE LINE-----> ASSOCIATIVITY <-----64B CACHE LINE------>

AVERAGE LL MPKI OF BOOKSIM2.0-MESH TOPOLOGY

512KB LL CACHE

8MB LL CACHE

1
.2

1

1
.1

8

1
.0

2

1
.2

1
.1

6

0
.8

8

1
.1

6

1
.1

5

0
.8

6

1
.1

2

1
.1

4

0
.3

Figure 3.4: Average LL MPKI of Booksim2.0 for Mesh topology. (MPKI is averaged
over topology sizes mentioned in Table 3.1 And LL cache configurations were varied
as shown in Table 3.2)

Effect of cache size on LL cache misses: From Fig. 3.4, for 4-way LL cache with

32B line, on moving from 512KB to 8MB cache, the misses were reduced by 4.13%.

Similarly, for 64B cache line, 6.67% reduction in misses was observed. As shown in

Table 3.4, 2.54% to 65.90% reduction of misses were observed for all the other cache

configurations when moving from 512KB to 8MB of LL cache size.

Effect of associativity on LL cache misses: From Fig. 3.4, increasing the associa-

tivity from 4-way to 8-way for 512KB LL cache with 32B line, the misses reduced by

35

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

Table 3.4: Effect on misses due to various Last Level (LL) cache configurations

Reduction in LL Misses

Configurations Design Choices Reduction in Misses

512KB vs 8MB 4,8,16-way & 32B, 64B 2.54% to 65.90%

4-way vs 16-way 512KB, 8MB & 32B, 64B 0.86% to 73.21%

32B vs 64B 4,8,16-way & 512KB, 8MB 0.87% to 65.11%

2.48%. On moving from 4-way to 16-way, the misses were reduced by 15.7%. Reduc-

tion of misses from 0.86% to 73.21% was observed for all the other cache configurations

on moving from 4 to 8-way and 4 to 16-way respectively as shown in Table 3.4. The

conflict misses arising from blocks of main memory mapping to the same position in

the cache can be reduced when moving from 4-way to 16-way.

Effect of cache line on LL cache misses: In Fig. 3.4, the misses were reduced

by 0.83% by increasing the cache line from 32B to 64B for 4-way, 512KB LL cache.

As seen from Table 3.4, the reduction of misses from 0.87% to 65.11% was observed

for other cache configurations. Increasing the cache line from 32B to 64B, more data

can be fetched from the main memory to LL cache and the possibility of finding the

required data will be high. This reduces the compulsory misses.

Based on the above analysis of LL cache, higher associative, higher cache size with

larger cache line performs better than all other cache configurations. In our experiments,

16-way, 8MB LL cache with 64B line LL cache configuration is appropriate for running

the Booksim2.0 simulations.

By all these observations, it can be inferred that 4-way, (64KB+64KB) L1 cache

with 64B cache line and 16-way 8MB LL cache with 64B line is the optimal cache

configuration for running Booksim2.0.

3.4.2 Hotspot and CPI analysis

The instruction references, L1(I1+D1) and LL cache misses for all the methods of

Booksim2.0 were extracted by employing Kcachegrind tool. The methods shown in

Table 3.5 are identified as hotspots, as most of the execution time is spent in them.

36

3.4. Results and Discussion

Table 3.5: Analysis Of Miss Rates Of Hotspot Methods In Booksim2.0

24×24 Mesh topology

Method Name I Refs (32KB+32KB) (64KB+64KB) Reduction
L1 Miss L1 Miss of Misses

Simulate(BookSimConfig) 14.5 2.12 1.85 12.73%

TrafficManager::Run() 14.1 2.07 1.72 16.91%

TrafficManager::Step() 14.1 2.07 1.72 16.91%

TrafficManager::SingleSim() 14.1 2.07 1.72 16.91%

Network::Evaluate() 6.32 0.71 0.64 9.86%

Router::Evaluate() 5.81 0.53 0.48 9.44%

IQRouter::InternalStep() 5.21 0.49 0.41 16.33%

Network::WriteOutput() 3.42 0.38 0.37 2.63%

Network::ReadInputs() 3.91 0.32 0.29 9.37%

SparseAllocate::Clear() 3.12 0.26 0.21 19.23%

The reduction of misses from 2.1% to 24.22% was observed on moving from 32KB+32KB

L1 cache to 64KB+64KB L1 cache configuration for all the other hotspot methods of

Booksim2.0 for topology size varied from 4× 4 to 30× 30.

CPI is one of the critical parameters to measure the performance of Booksim2.0 with

worst and best cache configurations. From Fig. 3.5, it can be seen that for the worst

cache configuration i.e., 2-way, 32KB+32KB L1 cache, 4-way 512KB LL cache with

32B line, CPI is 5.68 for 14x14 Mesh Topology. Employing the best cache configuration

i.e., 4-way, 64KB+64KB L1 cache, 16-way 8MB LL cache with 64B line size, the CPI

reduces to 1.39. Speedup of 4.1× is observed when the best cache configuration is

used. For the smaller Mesh topology sizes, the cache misses will be lower as there will

be less traffic generated. Hence, the speedup for the topology sizes 4 × 4 and 6 × 6

is in the range of 1.32× to 1.67×. As the topology size increases, the higher cache

configuration yields the better performance. Hence, it can be observed from Fig. 3.5

that the speedup achieved for the higher topology sizes will be in the range of 2.66×

to 4.04×. From these experiments, it is evident that increasing cache configuration

improves the performance of Booksim2.0 simulations.

37

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

 0

 1

 2

 3

 4

 5

 6

 7

4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
Y

C
L
E

S
 P

E
R

 I
N

S
T

R
U

C
T

IO
N

TOPOLOGY SIZE(nxn)

CPI OF BOOKSIM2.0 SIMULATOR WITH DIFFERENT CACHE CONFIGURATION-MESH TOPOLOGY

2way,32KB+32KB L1,4way,512KB LL,32B Cache Line
4way,64KB+64KB L1,16way,8MB LL,64B Cache Line

Speedup

1
.8

3

2
.4

4

3
.8

6

5
.2

9 5
.6

4

5
.6

8

5
.6

3

5
.5

7

5
.4

8

5
.3

7

5
.2

4

5
.1

2

4
.9

7

4
.8

1

1
.3

9

1
.4

6

1
.4

5

1
.4

2

1
.4

1
.3

9

1
.3

8

1
.3

8

1
.5

1

2
.0

1

2
.7

3 3
.0

9

3
.1

5

3
.1

3

1
.3

2 1
.6

7

2
.6

6

3
.7

3 4
.0

3

4
.0

9

4
.0

8

4
.0

4

3
.6

3

2
.6

7

1
.9

2

1
.6

6

1
.5

8

1
.5

4

Figure 3.5: CPI For Booksim2.0 Running Various Sizes Of Mesh Topology

3.5 EXPERIMENTAL RESULTS BASED ON OPTIMIZATION STRATEGIES

In this section, the techniques which are used to optimize the cache misses have been

explained. The best cache configuration for Booksim2.0 has been identified using Val-

grind profiling tool. Further, the cache misses have been minimized and the perfor-

mance of Booksim2.0 has been improved by considering 4-way, (64KB+64KB) L1

cache and 16-way, 8MB LL cache with 64B block size cache configuration.

3.5.1 Minimizing the cache misses and Performance analysis

The performance of Booksim2.0 has been improved by employing various optimiza-

tion techniques such as the removal of unused functions, loop optimization, and pre-

increment operator.

3.5.1.1 Removal of unused functions

Table 3.6 shows the list of unused functions in various source files of Booksim2.0.

These unused functions were removed from the source code. As shown in Fig.

3.6, the cache misses for 30 × 30 sized mesh network was 49.23M for the execution

that contains the unused function. On removing the unused functions, the misses were

38

3.5. Experimental results based on Optimization Strategies

Table 3.6: Unused functions in Booksim2.0 source code.

File Name Line Number Unused Function Name

outputset.cpp 46 Add()

module.cpp 80 Debug()

network.cpp 260, 283 DumpChannelMap(), DumpNodeMap()

iq router.cpp 2308 GetBufferOccupancyForClass()

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

4 6 8 10 12 14 16 18 20 22 24 26 28 30

C
A

C
H

E
 M

IS
S

E
S

 I
N

 M
IL

L
IO

N

TOPOLOGY SIZE(nxn)

CACHE MISSES REMOVING UNUSED FUNCTIONS OF BOOKSIM2.0

Misses-Before removal of unused functions
Misses-After removal of unused functions

0
.9

5

1
.9

6

3
.3

9 5
.8

3

7
.4

7 1
0
.2

5 1
3
.4

1 1
6
.8

6 2
0
.9

6 2
5
.5

5

3
0

.7
1

3
6
.3

5

4
2
.3

5

4
9
.2

3

0
.5

9

1 1
.5

7

2
.1

5

3
.2

1

4
.3

2

5
.5

9

6
.9

6

8
.6

1

1
0
.4

4

1
2
.5

1

1
2
.5

1 1
7
.1

7

1
9
.9

3

Figure 3.6: Cache misses before and after optimization

reduced to 19.93M (48.83% reduction of misses was observed). Speedup of 1.18x was

observed as shown in Fig. 3.7. By employing this optimization technique, 18.52%

average reduction of misses was observed for all other Mesh topology. Speedup of

1.01× to 1.43×was observed for all the other network sizes of Mesh topology as shown

in Fig. 3.7.

3.5.1.2 Loop optimization

The technique of loop reversal has been employed to reduce the misses. A reduction in

misses of 5.34% has been observed by applying this technique for the loops. From Fig.

3.7 it can be observed that, the maximum speedup of 2.47x was observed for 30 × 30

39

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
P

E
E

D
U

P

TOPOLOGY SIZE(nxn)

SPEEDUP ACHIEVED BY EMPLOYING OPTIMIZATIONS

Speedup achieved by loop optimization technique
Speedup achieved by removal of unused functions

1
.6

1

1
.9

6 2
.1

5
9

2
.7

1

2
.3

2

2
.3

3

2
.3

9

2
.4

2

2
.4

3

2
.4

4

2
.4

5

2
.4

6

2
.4

6

2
.4

7

1
.0

2

1
.0

1 1
.1 1
.1

8 1
.3

2

1
.3

2

1
.4

3

1
.3

9

1
.3

9

1
.4

1

1
.3

2

1
.2

8

1
.2

3

1
.1

8

Figure 3.7: Speedup achieved before and after optimization

network topology. From 1.61x to 2.71x speedup has been observed for all the other

topology sizes.

The below code snippet shows the technique that was employed:

Before:

for (int subnet = 0; subnet < subnets; ++subnet) {

for (int n = 0; n < nodes; ++n) {

After:

for (int subnet = subnets; subnet−− ;) {

for (int n = nodes; n−−;) {

3.5.1.3 Pre-Increment operator

Cppcheck (Daniel Marjamäki (2011)), a static analysis tool has been used to identify

the post-increment operators in the C++ source code of Booksim2.0.

$ cppcheck −−enable=performance /booksim/src/

Above command detects the post-increment operators in the source code of Book-

sim2.0. It can be seen that, the output of Cppcheck contains names of methods in

the classes of source code and line number of post-increment operator.

Output:

/booksim2-master/src/trafficmanager.cpp:1403]: (performance)

40

3.5. Experimental results based on Optimization Strategies

Table 3.7: Replacing Post-Increment Operator By Pre-Increment Operator

File Name Line Number Function Name Improvement

allocator.cpp 406, 418 SparseAllocator::PrintRequests 2.2 %

islip.cpp 78,102,134,167 iSLIP Sparse::Allocate() 3.2 %

selalloc.cpp
86,115,153,183 SelAlloc::Allocate() 3.4 %
233,244 SelAlloc::PrintRequests() 3.6 %

prio arb.cpp
57 PriorityArbiter::AddRequest() 3.8 %
92,119,141 PriorityArbiter::RemoveRequest() 3.8 %
119,141 PriorityArbiter::Arbitrate() 3.7 %

config utils.cpp
267,278,285 Configuration::WriteFil() 3.6 %
302,311,318 Configuration::WriteMatlabFile() 3.9 %

anynet.cpp

93,100,105,111,120 AnyNet:: ComputeSize() 3.3 %
143,158,181,186 AnyNet:: BuildNet() 3.9 %
272,282,297,315 AnyNet::buildRoutingTable() 3.4 %
489 AnyNet::readFile() 3.1 %

outputset.cpp 72 OutputSet::Add 3.2 %

trafficmanager.cpp
1404,1415 TrafficManager:: DisplayRemaining 3.5 %
1484,1590 TrafficManager:: SingleSim() 3.9 %

Prefer prefix ++/- - operators for non-primitive types.

Table 3.7, shows the different locations of the code which are using post-increment op-

erators. These operators are replaced by pre-increment operator in 8 source files, 42

lines of Booksim2.0. As seen from the “Improvement” column of the table, the cache

misses are reduced from 2.2% to 3.9%.

3.5.2 Improving the performance of Booksim2.0

Intel vectorization tool has been employed to identify the stride access patterns of Book-

sim2.0. 17% of memory instructions were unit stride, 34% of memory instructions were

fixed non-unit stride and 49% of memory instructions were variable stride after anno-

tating Singlesim method of TrafficManager class of Booksim2.0. Based on these ob-

servations, the performance of Booksim2.0 has been improved by changing unaligned

memory accesses to aligned memory access. The compiler directive as shown below

is inserted in the source files of Booksim2.0 to change unaligned to aligned memory

access based on memory access pattern analysis as shown in Table 3.8.

41

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

#pragma omp simd aligned()

Table 3.8: Identifying the memory access pattern of Booksim2.0 source code

Memory Access Pattern Source Nested Function Name Line Number

Constant stride
trafficmanager.cpp RetireFlit

672
680

stl map.h construct 1521

Uniform stride

credit.cpp New 52
network.cpp WriteCredit 229
new allocator.h construct 104
stats.cpp AddSample 107

trafficmanager.cpp
step

1267
1268

RetireFlit 649

Variable stride

credit.cpp Reset 47, 48,49
credit.cpp New 58
network.cpp WriteCredit 229
new allocator.h construct 104
stats.cpp AddSample 114

trafficmanager.cpp

step
1252
1253

RetireFlit

655, 660, 673
678, 679, 681
686, 692, 696
711, 731, 736, 752

Further, OpenMP programming model and SIMD constructs have been employed to

parallelize and vectorize the most time-consuming portions of Booksim2.0. Execution

times of sequential code with parallel code have been compared considering different

network topology size of Booksim2.0 with Mesh topology as shown in Fig. 3.8. The

speedup of 2.93x as shown in Fig. 3.9 has been achieved by parallelizing the sequential

code of Booksim2.0 using OpenMP constructs considering 30 × 30 network size of

Mesh topology. 1.07× to 3.0× speedup was observed for all the other sizes of Mesh

topology.

Also, the SIMD construct was used with the OpenMP programming model to achieve

fine-grain parallelization. By using SIMD with OpenMP model, the performance im-

provement of 3.97x was observed for 4×4 Mesh topology. And, speedup from 2.64x to

3.69x was observed for all the other sizes of Mesh topology. The overall traffic statis-

42

3.5. Experimental results based on Optimization Strategies

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 4 8 12 16 20 24 28 32

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

TOPOLOGY SIZE(nxn)

PEFORMANCE IMPROVEMENT OF BOOKSIM2.0 USING OPENMP, OPENMP+SIMD

Normal Execution of Booksim2.0
OpenMP based execution of Booksim2.0

OpenMP+SIMD based execution of Booksim2.0

Figure 3.8: Simulation execution times before and after improvements

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 6 8 10 12 14 16 18 20 22 24 26 28 30

S
p
e
e
d
u
p

TOPOLOGY SIZE(nxn)

SPEEDUP OF BOOKSIM2.0 USING OPENMP AND OPENMP+SIMD

Speedup achieved by using OpenMP programming
Speedup achieved by using OpenMP+SIMD programming

1
.0

7 1
.2

5

1
.6

5

2
.1

3

2
.2

5

2
.2

3

2
.3 2

.4 2
.5

4

2
.5

5

2
.5

4

2
.2

4

2
.9

3

3
.9

7

3
.3

7

3
.0

1

3
.3 3
.4

3

3
.2

3
.6

9

2
.9

9

2
.9

7

2
.8

8 3
.0

4

3

2
.6

4

3
.4

3

Figure 3.9: Speedups with Mesh topology of varying sizes

tics of Booksim2.0 observed in both the executions matched each other. The pragma

constructs used to parallelize and vectorize the code are shown below:

#pragma omp parallel for

#pragma omp parallel simd for

From Fig. 3.8 and 3.9, it can be inferred that parallelization and vectorization reduce

the execution time of 30 × 30 Mesh topology from 60 to 14 minutes and 12 minutes,

respectively.

43

3. Analysis of cache behaviour and software optimizations for faster on-chip network
simulations

Figure 3.10: Average packet latency for Booksim2.0 and Optimized Booksim2.0 for a
3× 3 Mesh topology

To verify the correctness of optimized Booksim2.0 against Booksim2.0. We simu-

late a 3×3 Mesh topology and compare the measured average packet latency reported by

optimized and unoptimized Booksim2.0. Fig.3.10, shows the performance comparision

of optimized Booksim2.0 and Booksim2.0 simulators. Overall, the simulations using

Booksim2.0 and the optimized Booksim2.0 exhibits nearly identical performance.

3.6 SUMMARY

In this chapter, the profiling and software optimization strategies that can improve the

performance of Booksim2.0 NoC simulator are discussed. The use of profiling to mea-

sure the performance, identify Hotspots and diagnose potential problems of Booksim2.0

simulators. The cache design and Booksim2.0 configuration parameters considered for

the experiments. The Cachegrid tool of valgrind use to analyse the cache behaviour and

memory usage of Booksim2.0 considering different topology size by configuring the

cache design parameters. Hotspot methods of Booksim2.0 simulator, where most of the

execution time is spent, are identified employing the KCachegrind tool. The software

optimization techniques employed to reduce the cache misses. Vectorization and paral-

lelization are employed to improve the performance of the Booksim2.0 simulator. By

using the Intel advisor tool, the top time-consuming loops in Booksim2.0 source code

have been identified. The OpenMP programming model has been used to parallelize

44

3.6. Summary

the time consuming loops in the simulator.

The acceleration via FPGAs motivates researchers to implement FPGA based NoC

simulators to provide better speedup and accuracy compared to the software simulators

(Angepat et al. (2014)). An FPGA based NoC simulation acceleration framework is

proposed in the subsequent chapters. The framework is capable of design space explo-

ration of standard and custom NoC topologies considering a full set of microarchitec-

tural parameters.

45

CHAPTER 4

YANOC - FPGA BASED SIMULATION
ACCELERATION FRAMEWORK

The FPGA based NoC performance evaluation frameworks are important for early de-

sign simulation of the NoC architecture. Indeed, the FPGAs are quite good at exploit-

ing parallelism and potential to run fast. An FPGA based NoC simulation acceleration

framework has been proposed in this chapter. The framework support the design space

exploration of standard and custom NoC topologies considering a full set of microarchi-

tectural parameters. For conventional NoCs, the standard minimal routing algorithms

are supported. For designing the custom topologies, the table-based routing has been

implemented. A custom topology called Diagonal Mesh has been evaluated employ-

ing the table-based and novel shortest path routing algorithms. A congestion-aware

adaptive routing has been proposed to route the packets along the minimally congested

path.

4.1 INTRODUCTION

Highly reconfigurable Lookup tables (LUTs) act as the building blocks of FPGAs. Any

arbitrary function can be realized by employing the LUTs. FPGAs allow the events to

be executed in parallel. Features mentioned above helped the researchers to employ FP-

GAs for simulation acceleration by parallelizing various functionalities of a simulator.

To expedite the speed of simulation compared to the software simulators, an FPGA

based NoC simulation framework called YaNoC has been presented in this chapter.

47

4. YaNoC - FPGA based simulation acceleration Framework

Table 4.1: Configurable Router Architectural Parameters

Router Parameter Range of values

Topology Mesh based, Ring based, Tree based, Custom

Flit buffer depth Variable

Flit width Variable

Ports 2 to 16

Routing Algorithms Standard minimal routing, Table based
Congestion-aware adaptive routing,

Nearest neighbor

Arbitration schemes Round Robin and Priority based

Traffic patterns Uniform random, Bit complement,
Transpose, Random permutation

The YaNoC supports the design space exploration of standard NoC topologies such as

Mesh, Torus, Ring, and Tree-based topologies along with the Custom topologies. Also,

YaNoC supports the creation of standard and custom routing algorithms, generation of

synthetic traffic patterns, and exploration of a full set of microarchitectural parameters.

4.2 YANOC - DESIGN AND IMPLEMENTATION

Fig. 4.1 shows the architecture of YaNoC simulation acceleration engine. YaNoC has

been designed to be highly parameterizable, modular, easily adaptable to new NoC

architectures as per the design requirements. The list of configuration parameters to

YaNoC is shown in Table 4.1. The configuration parameters and their corresponding

hardware modules are detailed in this section.

4.2.1 YaNoC Configuration Parameters

To provide the maximum flexibility, YaNoC parameterizes all the components of the

NoC. If the design with flit width 32 bits and flit buffer depth to be 8 flits has to be eval-

uated, these parameters have to be specified in the configuration file. The Verilog code

corresponding to this configuration will be generated by the Automated Verilog HDL

Generator. When there is a need to evaluate 64-bit flit width and buffer depth to be of 4

flits, the older configuration file can be modified according to the new requirement. Au-

48

4.2. YaNoC - Design and Implementation

Arbiter

Routing

 Input Buffer

Switch Allocator

 Verilog RTL code
 Generator

Flit Width
Buffer Depth

XY Routing
Table Based
Shortest Path
Nearest Neighbour

Round Robin
Fixed Priority

Flit Width
Buffer Depth

Topology Size
Topology Type
Traffic Pattern
Arbitration Type
Routing Type
Flit Width
Buffer Depth
Number of VCs

Mesh-based
Tree-based
Ring -based
Custom

Uniform Random
Bit Complement
Random Permutation
Transpose

Crossbar Switch

 Input
Ports Output

Ports

 Configuration parametersFunctional Module

 Output Buffer

 Synthesizable
 Verilog RTL code

Figure 4.1: Architecture of the proposed YaNoC FPGA based NoC simulation acceler-
ation framework

tomated Verilog HDL Generator generates the code for considering this configuration.

Similar to the flit size and flit buffer depth, if there is a need to evaluate the conventional

XY and Table based routing algorithm for Mesh topology, the parameters for routing

algorithms can be modified accordingly.

4.2.2 Router Architecture

The router module consists of microarchitectural components such as I/O buffers, Route

compute logic, Arbitration unit, Crossbar unit, and Traffic generator (Source/Sink).

49

4. YaNoC - FPGA based simulation acceleration Framework

Figure 4.2: (a)Flit types and (b)Packet structure used in experiments. (Time stamp field
is useful in calculating the latency of a packet)

4.2.2.1 Flit Buffer

The incoming flits will be stored in buffers implemented employing the FIFO mech-

anism. The buffer depth is parameterized to provide the flexibility to explore various

kinds of flit width.

4.2.2.2 Flit Structure

Flits of variable widths are supported by YaNoC. The structure of the head, body and

tail flits have been shown in Fig. 4.2(a). Size of each flit is of 32-bit. The fields for flit

type, destination address, timestamp and packet id are incorporated in the header flit.

Body flit embodies the fields for flit type and payload. In order to calculate the latency

of the network, the tail flit comprises of the timestamp similar to head flit. Fig. 4.2(b)

shows the packet format employed in the experiments. The packet of length 128-bit

length comprises of a head flit, two body flits, and a tail flit.

4.2.2.3 Input, Output Ports

It is advantageous to have the reconfigurable ports while building various topologies.

The ring topology has 3 ports in which two of them are used to communicate in between

the neighboring cores and a remaining port is used to connect to the local processing

50

4.2. YaNoC - Design and Implementation

Figure 4.3: Modified Router architecture supporting Congestion-aware Adaptive rout-
ing

element of that core. Similarly, Mesh and DMesh topology have 5 and 9 ports for

communication. The provision for variable ports has been provided to explore various

custom topologies.

4.2.2.4 Routing Algorithms

The standard minimal routing algorithms (Dimension Order - XY) for conventional

NoCs are supported. Table based routing has been implemented to support the creation

of custom topologies. The output ports to all the destinations in the network are stored

in the Look Up Tables (LUTs). The entries in routing LUTs will be large for large

networks. Distributed RAMs (DRAM) of FPGA have been employed in the proposed

architecture to implement the routing tables. A single DRAM will be typical of single-

bit wide memory with 16-64 elements constrained to a specific FPGA family. As the

entries in routing tables are maximum of 3 bits wide, they are mapped very efficiently to

DRAMs. A custom topology called Diagonal Mesh (DMesh) has been evaluated using

table based and a novel shortest path version of the XY routing algorithm.

The standard and table based routing algorithms do not consider congestion state of

the network under analysis for route computation. A congestion-aware adaptive routing

has been proposed to consider the traffic condition in the network. The congestion-

aware adaptive routing algorithm has negligible FPGA area overhead compared to the

conventional XY routing.

Fig. 4.3 shows the modified router architecture supporting the congestion-aware

51

4. YaNoC - FPGA based simulation acceleration Framework

adaptive routing algorithm. The modified router architecture includes the logic for

neighboring router congestion information and adaptive route computation. Working

of the proposed adaptive routing algorithm has been detailed in Section section 4.3.4.

4.2.2.5 Arbitration Schemes

To ensure the fairness in the allocation of resources, Round Robin and Priority based

arbitration schemes have been implemented.

4.2.3 Router Datapath

Adjacent routers communicate with each other through input and output port interfaces

depending on the configuration of the router. The port interfaces are bi-directional and

can be used to connect other routers or to form network endpoints. The router microar-

chitecture is organized as a five-stage pipeline as shown in Fig. 4.4.

Buffer Write: In each clock cycle, flits enter the router through an input port and are

stored in the flit buffers.

Route Computation: Routing logic monitors the incoming flits tagged with the desti-

nation address in order to forward the flits to a proper output port leading to the desti-

nation.

Switch Allocation: Once the route computation is completed by the routing logic, the

flits will head for arbitration unit where they have to compete with the other flits to tra-

verse through a particular outport port. The arbiter allocates a grant signal to incoming

request based on round robin mechanism or priority of the flits.

Switch Traversal: After getting the grant from the arbiter, the head flit traverses to the

crossbar unit. The crossbar unit maps the incoming head flit to the output port which

was computed in route compute unit.

Link Traversal: Later, head flit traverses through the output port to next router in the

network. The body and tail flits follow the route created by the header flit. It is made

sure that the grant signal provided by arbiter is held until all the flits of the packet that

is, body and tail flits are traversed from input port to output port.

52

4.2. YaNoC - Design and Implementation

Figure 4.4: 5 Stage Router pipeline

4.2.4 Traffic Generator

The Traffic Generator (TG) module takes care of the generation of various synthetic

traffic patterns. Linear Feedback Shift Register (LFSR) mechanism has been employed

to introduce randomness in the traffic being generated. The TG module is incorporated

in each router. The LFSR modules generate the traffic according to the traffic pattern

and the specified injection rate.

To calculate the latency of the network, source generating the packet inserts 14-bit

timestamp to head and tail flits. The traffic sink is responsible for ejecting the flits and

calculating the latency of the network.

4.2.5 Software Tools Supporting YaNoC
4.2.5.1 Automated Verilog HDL Generator

A Hardware Description Language (HDL) generator has been developed in python to

generate the synthesizable Verilog code of a specified configuration. The automated

Verilog HDL Generator generates the synthesizable Verilog HDL code based on the

specified configuration parameters such as type and size of topology, link width, flit

buffer depth, buffer width, routing algorithm and arbiter type.

4.2.5.2 Routing Table Generator

Along with the support for generation of Synthesizable Verilog HDL, YaNoC also in-

cludes the software tools developed in Python to automatically generate routing tables

for Mesh, Torus, Fat tree, and DMesh topologies. The routing table for each node

containing the entries of the shortest path to every other node in the topology will be

populated upon executing these scripts. For example, Routing tables of XY routing for

Mesh-based, Shortest path routing for Ring based topologies, Nearest Ancestor First

for Tree-based topologies will be populated depending on the selected configuration.

53

4. YaNoC - FPGA based simulation acceleration Framework

Figure 4.5: A High-level block diagram of YaNoC consisting of Host PC connected to
an FPGA Board.

4.2.5.3 YaNoC Portal

Also, YaNoC consists of a JTAG connection between the host PC and the FPGA board.

A portal has been developed for interaction with the Simulation engine located on

FPGA and the host PC. Simulation results from the FPGA can be accessed by using

the portal as shown in Fig. 4.5.

4.2.6 Design Phase

To ensure the functional correctness of the NoC synthesized by YaNoC, we split the

software cycle into the correctness and implementation phase. In the correctness phase,

the design to be simulated on FPGA was thoroughly analyzed considering clock by

clock transitions. The flit traversal through each pipeline stage (Fig. 4.4) was analyzed

for the functional correctness. In the implementation phase, the HDL for required NoC

design was generated with the help of Automated Verilog HDL Generator, and it was

programmed on the FPGA using Xilinx Vivado suite.

The proposed platform consists of a host PC, JTAG cable connecting the host PC

and FPGA board and Xilinx Artix 7 FPGA (XC7A100T). The NoC simulation engine

is hosted on Artix7 FPGA board (Fig. 4.5). The following steps describe the flow of

YaNoC framework shown in Fig. 4.6.

1. The configuration file is updated by the user to reflect the correct parameters of

the NoC to be simulated.

2. Synthesizable Verilog HDL is generated by the YaNoC’s automated HDL gener-

54

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

NoC architecture specification

Topology size
Topology type
Buffer depth
Buffer size
Arbitration type
Routing type

Automated
 Verilog HDL Generator

NoC HDL
 Hardware

 Library using
python

NoC architecture design
decision parameters

Synthesize & Configure
FPGA

FPGA Tool
(Xilinx ISE/Vivado)

Simulate NoC Architecture
Target

Scheduled
Application

Binary

 Verilog code

Experimental data profiling

Experimental
results such as
 Latency, Area,
Execution time

.bit
 file

FPGA execution
Raw data

Results

Figure 4.6: Simulation framework flow

ator. The bitstream (.bit)file is obtained by Xilinx ISE/Vivado design suites.

3. The .bit file is programmed on the FPGA through the JTAG cable. UART is used

for transferring data from the FPGA to the PC.

4. The NoC to be simulated is programmed on the FPGA. The latency results of the

simulation are extracted from the portal developed for interaction with the FPGA

through the UART communication.

5. The hardware resource consumption is obtained from the design summary of Xil-

inx ISE/Vivado.

4.3 DESIGN OF MESH AND DIAGONAL MESH (DMESH) TOPOLOGIES

YaNoC is capable of simulating standard and custom topologies. We simulate the two-

dimensional (2D) mesh-based topologies, which are a popular choice for NoCs in tile-

based architecture as they perfectly match the 2D silicon surface. The custom topology

55

4. YaNoC - FPGA based simulation acceleration Framework

called DMesh is designed by adding diagonal links to the Mesh topology, because of the

emergence of X link architecture routing in chip manufacturing (Igarashi et al. (2002)).

The custom topology design is possible because of the table based routing approach.

Along with the support for Table based routing approach, the route computation tem-

plate can be modified as per the user logic to route the packets in the network.

4.3.1 Design of DMesh topology in YaNoC

To design an application specific custom topology, interconnection in between nodes

and routing tables along with the other router microarchitectural parameters have to

be specified in the configuration file. This file is given as the input to the Automated

Verilog HDL Generator to generate the Synthesizable Verilog HDL code.

4.3.2 Design of Routing algorithm for DMesh topology in YaNoC

Table based routing can be used to store routing information in case of custom topolo-

gies whose route compute modules are complex to design. Along with the Table based

routing approach, we demonstrate the flexibility of YaNoC in designing a user-specific

routing algorithm for DMesh topology.

The novel routing algorithm for routing the packets in the shortest path has been

designed. The logic for calculating the shortest path can be implemented in the route

compute template. Changes made to the route compute logic can be seen in the code

snippet shown in appendix A.1. The route compute template has to be instantiated

in the router module in order to route the packets. Fig. 4.7(a) and 4.7(b) show the

6 × 6 Mesh and DMesh topologies. The arrows in red of Fig. 4.7(a) indicate the route

followed by the conventional XY routing algorithm. In this case, it takes 10 hops to

reach the destination “55” from the source “00”. Employing the proposed novel routing

algorithm, the shortest path between a source and destination pairs has been achieved

in the DMesh topology. The arrows in Green in Fig. 4.7(b) represent the route followed

by the flits employing the proposed routing algorithm. It can be seen that it takes only 5

hops from “00” node to “55” node through the diagonal nodes (“11”, “22” and so on).

56

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

(a) 6x6 Mesh topology. (b) 6x6 Diagonal Mesh topology.

Figure 4.7: Mesh and Diagonal Mesh topologies (Red and Green colors indicate the
routes calculated by XY and novel shortest path XY routing algorithms)

4.3.2.1 Routing Tables

A routing table will be stored in each router. The routing table contains the route to all

the other routers in the network. Below lines specify the routing table for a Router with

ID “0” in a 2× 2 Mesh topology.

#Router ID Dest Out Port

0 0 //Local

1 1 //East

2 4 //South

3 1 //East

Above mentioned syntax is used to design the Diagonal Mesh topology. The ar-

chitecture of the Diagonal Mesh (DMesh) is shown in Fig. 4.7(b). Each router in the

DMesh topology consists of 9-ports for communicating with neighboring nodes. The

nodes are interconnected via links from these ports. Fig. 4.8 shows the interconnection

of the Router “12” with all its neighbors in the DMesh topology.

Below lines enumerate the “Network Topology” entries for the Router with ID “12”.

Router Link From Router Link To

57

4. YaNoC - FPGA based simulation acceleration Framework

Figure 4.8: Interconnection of the Router 12 with other Routers in DMesh topology

#(port num:src node) (port num:neighbor node)

1 : R12 2 : R13

2 : R12 1 : R11

3 : R12 4 : R02

4 : R12 3 : R22

5 : R12 8 : R03

6 : R12 7 : R01

7 : R12 6 : R23

8 : R12 5 : R21

4.3.3 Diagonal Mesh Topology Configuration

YaNoC generates the synthesizable Verilog code considering the entries in a configura-

tion file. YaNoC supports up to 16 router ports. These ports can be used to interconnect

the router modules to form a custom topology. The nodes have to be interconnected in a

specific manner to form a topology. In YaNoC, the interconnection between source and

destination nodes along with the port numbers are enumerated to specify the network

58

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

topology. Below code snippet shows the interconnection of two nodes 0 and 1:

#Router Link From Router Link To

#(port num:src node) (port num:neighbor node)

1:R0 2:R1

#Local Conn Port (Port number for connecting the Processing

Element)

#(port num:node)

0 : R0

0 : R1

The routing table of a node consists of output ports for all the other nodes in the

network. Considering 6 × 6 DMesh topology, the routing table for each Router con-

sists of 36 entries. Each row in the routing table consists of Router ID along with its

output port from the current Router. Along with the above detailed modifications in the

configuration file, the parameters shown in Table 4.2 are used.

Once all these entries are configured, the Verilog generator of YaNoC will gener-

ate the synthesizable Verilog code which can be imported in Xilinx ISE/Vivado design

suite. The bitstream file generated following the Synthesis, Translation and Place and

Route processes can be programmed on the FPGA board to simulate the DMesh topol-

ogy.

4.3.4 The proposed Congestion-aware adaptive Routing algorithm

Employing the proposed adaptive routing algorithm, packets will be routed along the

communication path which is minimally congested. In a given 2D Mesh topology, if the

current and destination addresses are same ((xc=xd) and (yc=yd)), the flit has reached

its destination and will be forwarded via the local port to the processing element. When

the current and destination nodes are different ((xc!=xd) and (yc!=yd)) the flit will be

forwarded to the neighboring nodes through E/W/N/S directions from the current node

based on congestion in the network.

59

4. YaNoC - FPGA based simulation acceleration Framework

Congestion weights for each direction are calculated employing the weight calcula-

tion technique. First priority is given to the West port if (xdiff<0) where xdiff is (xd-xc).

In order to avoid the deadlock condition, second priority will be given to South port and

the third priority will be shared among the East and the North ports. Similarly, when

(xdiff>0), first priority is given to the East port. For the deadlock avoidance, the second

priority will be given to North port and the third priority will be shared among the West

and the South ports. The conditions discussed above are shown in the Equations 4.1

and 4.2.

P [E/W/N/S] = {3/1/3/2} (4.1)

P [E/W/N/S] = {1/3/2/3} (4.2)

The algorithm for calculating the priorities of all the ports of a router is shown in

Algorithm 4.1.

Once the priorities of the ports have been calculated, weights corresponding to the

buffer occupancy of the router is computed.

Algorithm 4.1: Priority calculation for directions
Input : Coordinates of current node (xc,yc), destination node (xd,yd)
Output: Priority Matrix of all the ports P[E/W/N/S]

1 Begin
2 xdiff=xd-xc;
3 ydiff=yd-yc;
4 if xdiff < 0 then
5 return P [E/W/N/S] = {3/1/3/2};
6 else if xdiff > 0&&ydiff < 0 then
7 return P [E/W/N/S] = {1/2/2/3};
8 else if xdiff > 0&&ydiff > 0 then
9 return P [E/W/N/S] = {2/3/3/1};

10 else if xdiff > 0 then
11 return P [E/W/N/S] = {1/3/2/3};
12 else if ydiff > 0 then
13 return P [E/W/N/S] = {2/2/3/1};
14 else if ydiff < 0 then
15 return P [E/W/N/S] = {2/2/1/3};
16 End

We employ 2-bit values for indicating the congestion in the communicating routers.

60

4.3. Design of Mesh and Diagonal Mesh (DMesh) topologies

The values 00, 01, 10 and 11 represent the empty(0%), half full(50%), nearly full(75%)

and full (100%) occupancy of the buffers of a router. A router has to exchange these

congestion status bits with its neighboring routers in order to make the correct routing

decision. The information of all the ports of a router except the local port needs to

be exchanged. Once the weight values Wempty, Whalf full, Wnearly full and Wfull are

calculated, W[i], the total weight for each port i ε {E,W,N,S} is calculated by using the

Equation 4.3. The values 2, 3, 5 and 10 are assigned for Wempty, Whalf full, Wnearly full

and Wfull for fair calculation of the weight matrix. The port with minimal weight value

will be chosen as the final output port. The adaptive routing algorithm is shown in

Algorithm 4.2.

W [i] = P [i] +Wempty +Whalffull +Wnearlyfull +Wfull (4.3)

The current status information of the (i+1)th router is taken into consideration at the

ith router in order to achieve the adaptiveness in the NoC router architecture. “Neighbor-

ing Router Congestion Status” monitors the congestion status of all neighboring router’s

ports. The “Adaptive Route Computation” unit calculates the priority for the ports in all

direction as discussed above.

4.3.4.1 Deadlock and livelock avoidance

To ensure deadlock freedom, several assumptions have been defined for deadlock avoid-

ance. A node can not send a packet to itself, a packet is ejected when it reached to the

destination node, the source and destination nodes are in a connected region. The vir-

tual channels(VCs) are employed in the YaNoC router architecture to avoid deadlock.

The incoming packets are temporarily stored in virtual channels buffer while the output

port is busy serving other packets. The VC implementation is one solution of deadlock

avoidance. In NoC router architecture, the FIFO buffer is generally used for imple-

menting the Virtual channels. The NoC system in Fig.4.9 is used to demonstrate how

the VCs can be employed to avoid deadlock in the YaNoC framework. The NoC ar-

chitecture has four nodes, there are four packets (p1-p4) destined for nodes 3, 4, 1, and

2, respectively. The packets are first forwarded through the X-axis path and then turn

to Y-axis, for example, the path of packet p2 is 2-1-4. The different colors are used

61

4. YaNoC - FPGA based simulation acceleration Framework

Algorithm 4.2: Adaptive routing algorithm for Mesh based topologies
Input : Coordinates of current node (xc,yc), destination node (xd,yd) and the

number of ports {E,W,N,S}
Output: Selected output port

1 Begin
2 W[E/W/N/S]=0;
3 for i = E to S do
4 Calculate P[i] using Algorithm 4.1.
5 if empty == 00 then
6 return Wempty[i] = 2;
7 return Whalf full/nearly full/full[i] = 0;
8 else if half full == 01 then
9 return Whalf full[i] = 3;

10 return Wempty/nearly full/full[i] = 0;
11 else if nearlyfull == 10 then
12 return Wnearly full[i] = 5;
13 return Wempty/half full/full[i] = 0;
14 else if full == 11 then
15 return Wfull[i] = 10;
16 return Wempty/halffull/nearlyfull[i] = 0;
17 W[i]= P[i]+Wempty[i]+Whalf full[i]+Wnearly full[i]
18 +Wfull[i]
19 end
20 min=W[E];
21 for i = W to S do
22 if W [i] < min then
23 min=W[i];
24 output channel=i;
25 end
26 End

to mark the paths for all the packets. It can be seen that for the NoC architecture, the

adaptive routing is deadlock free as the channel dependence graph is acyclic.

The livelock avoidance includes three scenarios- first, the adaptive routing is livelock-

free as the packets will eventually reach the destination node although it will experience

a longer path delay. Second, the adaptive routes packets along the edge, then turn di-

rection at the region corner and finally arrive at the destination node. Third, in the other

serious scenarios, a re-routing constraint mechanism (Wang et al. (2014)) can be em-

ployed. It constraints the no of re-routing performed and discards packets if re-routing

exceeds a threshold number.

62

4.4. The proposed Reliable Network on Chip router

Figure 4.9: A deadlock avoidance in the YaNoC using VCs

4.4 THE PROPOSED RELIABLE NETWORK ON CHIP ROUTER

The 2-stage conventional router architecture has different pipeline stages, which have

distinct and very specific role. A reliable router architecture has been designed to ad-

dress multiple permanent faults in NoC system. Each pipeline stages of 2-stage con-

ventional router are modified for fault detection and tolerance mechanism. We assume

that faults can be detected by using one of the many existing fault detection mecha-

nisms (Prodromou et al. (2012)). The difference between (Wang et al. (2014)) is that,

we introduced novel fault tolerance mechanism for Input buffer and crossbar pipeline

stages. The RC, VA and SA fault tolerance and detection mechanism employed from

(Wang et al. (2014)). Fig. 4.10(c), shows that design of reliable fault tolerance router

architecture.

(a)
(b)

(c)

Figure 4.10: (a)Input buffer fault tolerance strategy, (b)Crossbar fault tolerance strategy
and (c) proposed Adaptive and Reliable router architecture

63

4. YaNoC - FPGA based simulation acceleration Framework

4.4.1 Sideband Register buffer for input buffer(IB) faults

The input buffer is used to store the incoming flits from downstream routers. Improve

the performance and avoid Head of line blocking in NoC system by introducing the

virtual channel buffer. Each flit contains Virtual channel identifier, to store flit in corre-

sponding virtual channel buffer. The faulty virtual channel leads to an error in incoming

flits. We introduce a mechanism called sideband Register buffer. This is a simple circuit

and less area overhead, but in (Wang et al. (2014)) has no fault tolerance mechanism for

IB. The sideband buffer as shown in Fig. 4.10(a), used for storing incoming flit, when

the corresponding virtual channel(VC) is faulty. The side buffer treats as new VC for

that flit.

4.4.2 Crossbar fault strategy

The (Wang et al. (2014)) crossbar fault tolerate only for DoR XY routing algorithm.

Modify the crossbar architecture to support both the DoR XY and Adaptive routing

algorithm in the proposed method. From Fig. 4.10(b), it can be seen that each output

port has a multiplexer that a flit from any input port needs to traverse through to reach

the aforementioned output port. To provide fault tolerance to the generic crossbar ar-

chitecture, we propose to have alternative paths to reach a specific output port of the

crossbar by using smaller size multiplexers. Here, along with crossbar, the additional

fault circuitry is composed of seven multiplexers(six 3:1 and one 2:1 multiplexer). Even

when entire crossbar is faulty, the proposed strategy can work normally as compared to

(Poluri and Louri (2014)). It has better performance than the Vicis router (Fick et al.

(2009)).

4.5 EXPERIMENTAL RESULTS

Synthesis results of the simulation are extracted from the Design Summary of Xilinx

Vivado. Results include resource usage for Xilinx Artix-7 FPGA (XC7A100T part,

CSG324 package, speed grade -3). The NoCs were tested with injection rates of 0.01

to 0.5 using Uniform random, Transpose, Bit complement, and Random permutation

traffic patterns. Table 4.2 shows the experimental setup details used in this paper. The

proposed YaNoC framework is capable of simulating the Mesh, Torus, and Fat tree

64

4.5. Experimental Results

Table 4.2: Experimental Setup Details

Experimental Setup

Topology 6× 6 and 8× 8 Mesh, Torus,
56 node Fat tree and 6× 6 Diagonal Mesh

Buffer type FIFO buffer

Buffer Depth 4, 8, 16, 32, 64

Arbiter type Round-robin
Routing Algorithm XY (Dimension-order),

Novel shortest path XY routing,
Table based, Congestion-aware Adaptive

Router pipeline depth 5-stage

Flow control Wormhole

Flit Width 16, 32 bit

Packet length 4 and 8 flits

Traffic pattern Uniform random, Random
Permutation, Bit complement,
Transpose

topologies. Along with these topologies, the user specific custom topologies can be

designed as explained in the Section section 4.3.1.

4.5.1 FPGA Synthesis results of Mesh based and Fat tree topologies

Tables 4.3, 4.4 and 4.5 show the synthesis results of Mesh, Torus, and Fat Tree topolo-

gies respectively. The Verilog HDL code for all these topologies is generated by our

Automated Verilog HDL Generator. The synthesis results of these NoC configurations

Table 4.3: Resource utilization of 6 × 6 (36 node)Mesh and Torus topologies under
various configurations of Flit Width(FW) and Buffer Depth (BD)

FW 16bits 32bits
BD 4 8 16 32 64 4 8 16 32 64

6x6
LUT(%) 32.33 33.85 34.03 35.13 37.97 34.45 35.65 37.17 38.30 41.17

Mesh
DRAM(%) 7.58 7.58 7.58 7.58 11.37 11.37 11.37 11.37 11.37 18.95

FF(%) 12.62 13.05 13.47 13.90 14.32 15.00 15.14 15.88 16.30 16.73

6x6
LUT 40.15 41.28 42.13 43.84 47.24 53.72 54.85 55.70 57.41 63.09

Torus
DRAM(%) 11.37 11.37 11.37 11.37 22.74 22.74 22.74 22.74 22.74 41.68

FF(%) 15.54 15.97 16.40 16.82 17.25 23.51 23.93 24.36 24.79 25.21

65

4. YaNoC - FPGA based simulation acceleration Framework

Table 4.4: Resource utilization of 8 × 8 (64 node)Mesh and Torus topologies under
various configurations of Flit Width (FW) and Buffer Depth (BD)

FW 16bits 32bits
BD 4 8 16 32 64 4 8 16

8x8
LUT(%) 62.15 63.67 65.05 67.37 69.58 67.84 69.33 70.93

Mesh
DRAM(%) 20.21 20.21 20.21 20.21 26.95 26.95 26.95 26.95

FF(%) 25.57 26.33 27.07 27.84 28.04 29.26 30.02 30.77

8x8
LUT 71.32 73.34 74.85 77.88 83.94 95.68 97.83 99.40

Torus
DRAM(%) 26.95 26.95 26.95 26.95 40.42 40.42 40.42 40.42

FF(%) 27.57 28.33 29.09 29.84 30.60 41.66 42.42 43.18

have been obtained by employing the Xilinx Vivado 2016. The Xilinx Artix 7 FPGA

(Device XC7A100T, Package-CSG324, speed grade-3) has been targeted in our exper-

iments. In order to optimize the FPGA resource usage, the router microarchitectural

parameters have been fine tuned. The synthesis results presented in the tables include

the percentage of LUTs, DRAMs, and FFs consumed for a particular NoC configura-

tion.

In Table 4.3, Flit Width (FW) is varied from 16 to 32 bits, and Buffer Depth (BD)

has been varied between 4 to 64. Increase in the FPGA resources has been observed

when we increase FW and BD parameters. The LUT and FF usage will be increased

from 32.23% to 34.45% and 12.62% to 15.00% considering for the BD of 4 and FW

of 16, and 32 bits respectively. Similar behavior can be observed for all the other

configurations. The DRAM usage remains unchanged for the BD parameters till 32.

When we increase the BD beyond 32, increase in the DRAM usage has been observed.

The same behavior has been observed for both 6 × 6 Mesh and Torus topologies. The

proposed design is optimized such that the DRAMs are capable of supporting the BD

until 32 without any change in their usage. But, when we increase the BD beyond 32,

the more number of DRAMs are needed to support the configuration.

Comparing the 6×6 Mesh and Torus topologies in Table 4.3, it can be observed that

the Torus topology consumes more FPGA resources than the Mesh topology. Consid-

ering the BD of 4 and FW of 16, the 6× 6 Mesh topology consumes 32.33% LUTs and

12.62% of FFs. Whereas the 6×6 Torus topology consumes 40.15% LUTs and 15.54%

66

4.5. Experimental Results

Table 4.5: Resource utilization of 56 node Fat tree topology under various configura-
tions of Flit Width (FW) and Buffer Depth (BD)

FW 16bits 32bits
BD 4 8 16 32 64 4 8 16 32 64

56N
LUT(%) 41.21 42.62 43.68 45.80 50.04 56.96 58.37 59.07 60.13 67.20

Fat tree
DRAM(%) 14.15 14.15 14.15 14.15 28.29 28.29 28.29 28.29 28.89 51.87

FF(%) 16.06 16.59 17.12 17.65 18.18 26.06 26.59 27.12 27.65 28.18

FFs. Similar behavior is observed for all the other configurations of BD and FW. The

configuration of the boundary routers and the more number of links present in the Torus

topology results in the increase of FPGA resources compared to Mesh topology.

Table 4.4 shows the synthesis results of 8 × 8 Mesh and Torus topologies by con-

sidering the BD of 4 to 64 and FW of 16 to 32 bits. When we increase the BD and

FW parameters, increase in the FPGA resources has been observed. The behavior of

DRAM resource consumption is similar to that of 6 × 6 Mesh and Torus topologies.

Inferences similar to that of 6×6 Mesh and Torus topologies can be drawn with respect

to 8 × 8 Mesh and Torus topologies. Considering the FW of 32 bits and the BD of 32

and 64, the 8× 8 Mesh and Torus topologies exceeded the FPGA resources. Hence, the

result for the same configurations has not been shown in the Table 4.4.

Table 4.5 shows the synthesis results for the 56 node Fat tree topology. Increasing

the BD and FW parameters yield the increase in FPGA resource utilization. The LUT

and FF usage will be increased from 41.21% to 56.96% and 16.06% to 26.06% consid-

ering for the BD of 4 and FW of 16 and 32 bits respectively. Comparing the 56 node Fat

tree and 6×6 Mesh and Torus topologies, the 56 node Fat tree consumes more hardware

resources. This is because of the more number of nodes in the Fat tree compared to the

6× 6 Mesh and Torus topologies.

4.5.2 FPGA synthesis results of Custom Topology

Table 4.6 shows the area utilization of 5-port and 9-port routers. 9-port consumes 2×

resources than that of the 5-port router as a complex control logic is required to imple-

ment a 9-port router.

Table 4.7 shows the resource utilization breakdown of YaNoC router components on

67

4. YaNoC - FPGA based simulation acceleration Framework

Table 4.6: Resource utilization of a Single Router

Resource utilization of Router

5-port 9-port
LUT 775 2647
FF 550 1098
DRAM 120 216

Table 4.7: LUT Utilization of 5 and 9 Port Router Components

5-port Router 9-port Router

Input buffer 240 522
Router logic 26 127

Arbiter 184 808
Crossbar 301 1093
Allocator 23 95

the Xilinx Artix7 XC7A100T device. Due to the more number of ports in the DMesh

topology, its components consume 2× the resources of Mesh topology.

The Table 4.8 shows the results considering XY and the novel shortest path version

of the XY routing algorithms for Mesh and DMesh topologies respectively. It can be

seen that the resource consumption of DMesh topology is more compared to the normal

Mesh as there are more number of ports which in turn leads to more number of router

microarchitectural components. Hence, the DMesh topology consumes 2.3× resources

than the Mesh topology.

Our framework is also capable of supporting table based routing algorithm for cus-

tom topologies. Table 4.8 shows the synthesis results of Mesh and DMesh topologies

considering the table based routing. The table based routing consumes 12% and 20%

fewer LUTs compared to XY and novel shortest path version of the XY routing algo-

rithms for Mesh and DMesh topologies respectively. This is because the route compute

logic in these algorithms has been replaced by the routing tables. The routing tables

store route to all the other nodes in the topology. As the entries in routing tables are

maximum of 3 bits wide, they are mapped very efficiently to the LUTs.

68

4.5. Experimental Results

Table 4.8: Synthesis results of YaNoC on Artix-7 FPGA device (XC7A100T, speed-3)

Flit width=32-bits Flit buffer width=8

XY Novel shortest path XY Table Based
Mesh DMesh Mesh DMesh

%LUTs 35.65 87.55 27.70 67.76
%DRAMs 11.37 20.46 11.12 20.02
%Flip Flops 15.14 20.62 13.08 19.89

 100

 200

 300

 400

 500

 0 0.05 0.1 0.15 0.2 0.25

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 8BD
Torus 6x6 8BD

(a) 6x6 Topology with Buffer Depth(BD) 8

 100

 200

 300

 400

 500

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 16BD
Torus 6x6 16BD

(b) 6x6 Topology with Buffer Depth(BD) 16

Figure 4.11: Load Delay graph of 6x6 Mesh and Torus Topologies under Random Per-
mutation Traffic patterns (a)Buffer Depth=8 flits and (b)Buffer Depth=16 flits

4.5.3 Latency Analysis

Average packet latency comparison of Mesh, Torus, Fat tree and Dmesh topologies is

described in this section.

Fig. 4.11 shows the average packet latency of 6×6 Mesh and Torus topologies under

random permutation traffic pattern. From Fig. 4.11(a), the Mesh topology has lower

average packet latency at lower injection rates compared to the Torus topology. An

increase in latency is observed with increasing the injection rate. Mesh topology is the

first to saturate at about 10% of the traffic load. The Torus topology saturates at 22% of

the traffic load. Under Random permutation traffic pattern, the Torus topology showed

a fairly good performance compared to Mesh topology. From Fig. 4.11(b), the 5%(i.e.,

from 10% to 15%) increase in saturation throughput of Mesh topology is observed. This

is due to the effect of increasing the size of the BD. Mesh and Torus topologies saturated

69

4. YaNoC - FPGA based simulation acceleration Framework

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Bit Complement Traffic Pattern

Mesh 8x8 8BD
Torus 8x8 8BD

(a) 8x8 Topology with BD=8 flits

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Bit Complement Traffic Pattern

Mesh 8x8 16BD
Torus 8x8 16BD

(b) 8x8 Topology with BD=16 flits

Figure 4.12: Load Delay graph of 8x8 Mesh and Torus Topologies under Bit Comple-
ment Traffic patterns (a)Buffer Depth=8flits and (b)Buffer Depth=16flits

at 15% and 24% respectively. The packet latency decreases significantly across all loads

as we move from BD of 8 to 16 flits.

Fig. 4.12 shows the network performance of the 8 × 8 Mesh and Torus topologies

under Bit complement traffic. From Fig. 4.12(a) we observed that the Mesh topol-

ogy saturates at lower traffic loads compared to Torus topology. The Torus topology

saturates at 28% of the traffic load. As we increase the BD from 8 to 16, the satura-

tion throughput of Mesh and Torus topologies increase by 25% and 12% respectively

as shown in Fig. 4.12(b). The average packet latency reduction of 3.5% is observed

increasing the BD from 8 to 16.

Network performance of Fat tree topology under Random permutation traffic is

shown in Fig. 4.13 (a). We observed that the 56-node Fat tree with BD of 16 has

higher saturation throughput compared to BD of 8. The larger BD accommodates more

packets resulting in reduction of the packet contention in the network. The 56-node Fat

tree with BD of 8 and 16 saturate at 40% and 45% of the traffic load respectively. The

average packet latency reduction of 20.5% is observed when the BD is increased from

8 to 16.

Fig. 4.13 (b) plots the behavior of average network packet latency vs. injection rate

under Uniform random traffic pattern. It can be seen that the Mesh topology saturates

at the injection rate of 45%. DMesh topology sustains the traffic load till injection rate

70

4.5. Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0.1 0.2 0.3 0.4 0.5 0.6

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Random Permutation Traffic Pattern

Fat tree 56-node 8BD
Fat tree 56-node 16BD

(a) Fat Tree Topology with Buffer
Depth(BD) 8 and 16

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance under Uniform Random Traffic Pattern

36 node DMesh
36 node Mesh

(b) Mesh and DMesh topologies

Figure 4.13: (a) Load Delay graph of Fat Tree with Buffer Depth 8 and 16 flits Under
Random Permutation Traffic Pattern(b)Load-Delay graph for Mesh and DMesh topolo-
gies under Uniform traffic

of 55%. This is because of the higher Bisection bandwidth and connectivity of DMesh

topology. The maximum hops for a packet to traverse from one end to its diagonally

opposite end in Mesh and DMesh topology can be calculated using the equations 4.4,

4.5, 4.6 and 4.7 where M and N are the number of nodes along X and Y axes. When

M and N equal, from Equations 4.5 and 4.6 it can be seen that DMesh takes 50% of the

number of hops take in Mesh topology. Hence, the latency in DMesh is less than the

latency in conventional XY routing in Mesh. As there are diagonal links between nodes

in DMesh topology, our algorithm chooses the shortest path leading to the destination.

Hmax(Mesh) = (M +N)− 2 (4.4)

Hmax(Mesh) = 2(N − 1) ifM = N (4.5)

Hmax(DMesh) = (N − 1) ifN > M (4.6)

Hmax(DMesh) = (M − 1) ifM > N (4.7)

On an average, DMesh topology offers 50% lesser latency than the Mesh topology.

71

4. YaNoC - FPGA based simulation acceleration Framework

Table 4.9: Synthesis results of 36-Node Mesh based Topology on Artix-7 FPGA device
(XC7A100T, speed-3)

6x6 Mesh based topology
(Flit Width=32-bit, Buffer Depth=8)

H/W XY Proposed
utilization in % routing Adaptive routing
LUTs 35.65 37.31
DRAM 11.37 11.37
FFs 15.14 15.12

 0

 10

 20

 30

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance of Mesh topology under Uniform Random Traffic Pattern

XY Routing
Proposed Adaptive Routing

(a) Uniform traffic

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
r
a
g

e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in flits/Cycle)

Network Performance of Mesh topology under Transpose Traffic Pattern

XY Routing
Proposed Adaptive Routing

(b) Transpose traffic

Figure 4.14: Load Delay graph of Mesh Topology under (a)Uniform and (b)Transpose
traffic patterns

4.5.4 Analysis of Mesh Topology with Congestion-aware Adaptive Routing Algo-
rithm

6×6 Mesh topology was evaluated considering the conventional XY and the proposed

Congestion-aware adaptive routing algorithms. Hardware synthesis and latency analy-

sis results are detailed below.

4.5.4.1 Area resource utilization

Table 4.9 shows the detailed synthesis results of XY and proposed adaptive routing

algorithms for Mesh based topologies. It can be seen that both the algorithms consume

the same amount of DRAMs and FFs. Adaptive routing algorithm consumes 1.66%

more LUTs than the XY routing algorithm to store the 2-bit congestion information of

the neighboring routers and the routing logic.

72

4.5. Experimental Results

4.5.4.2 Network latency analysis

The conventional XY and proposed adaptive routing algorithms were evaluated con-

sidering Uniform and Transpose traffic patterns. In Uniform traffic pattern, each node

sends a fixed size packet consisting of 8 flits to random nodes with Bernoulli distribu-

tion. From Fig. 4.14 (a) it can be seen that both the XY and proposed routing algorithms

exhibit similar behavior for all the injection rates.

In Transpose traffic pattern, a node (i,j) sends packets only to node (n-i,n-j) where

“n” is the network dimension. In this scenario, the XY routing saturates early compared

to the proposed adaptive routing algorithm. From Fig. 4.14 (b), it can be seen that

at the higher injection rates, the proposed adaptive routing algorithm for Mesh based

topologies outperforms XY routing by reducing average packet latency by 55%.

4.5.5 Analysis of Mesh Topology with proposed reliable NoC router

The 4×4 Mesh topology was evaluated considering the conventional and reliable router

to analyse hardware resource utilization and the performance.

4.5.5.1 Area resource utilization

We implemented all pipeline stages of both the conventional and proposed router using

Verilog HDL coding to study the impact. Synthesis results have been extracted from

Xilinx Vivado 2016.2. Results include resource usage on the Xilinx Aritex 7 FPGA

board(XC7A100T chip). Table 4.10 shows the detailed synthesis results of the con-

ventional and proposed router for 4×4 Mesh topology. Based on the synthesis results,

proposed router increases the area utilization by 24.34% with respect to the conven-

tional router. The fault detection mechanism proposed in (Prodromou et al. (2012)), is

chosen for faults detect. The area utilization increases 27.12% by incorporating fault

detection mechanism into the proposed router.

4.5.5.2 Network latency analysis

We implemented 4×4 Mesh topology in Artix 7 FPGA, to study the effect of latency

on proposed and conventional router architecture. We used uniform random synthetic

traffic for NoC performance analysis. Analyze the fault tolerance of NoC architecture

73

4. YaNoC - FPGA based simulation acceleration Framework

Table 4.10: Area utilization of 4×4 Mesh Topology on Artix-7 FPGA device
(XC7A100T, speed-3)

4x4 Mesh based topology

H/W Conventional Proposed
utilization in % router Adaptive and Reliable router

LUTs 41 52.12

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Offered Traffic Load (in flits/cycle)

NoC Performance under Uniform Random Traffic

Conventional Router NoC
Fault Router NoC

Proposed(Adaptive and Fault) Router NoC

Figure 4.15: proposed Adaptive and Reliable router architecture

by injecting different faults into router pipeline stages of the 4×4 NoC. The additional

circuitry is used to complete the execution of the pipeline stage, due to the faults in the

pipeline stages. From Fig. 4.15, we observed that the average latency of the fault NoC

has increased by 2.71% compared to the fault free NoC. The adaptive routing with fault

tolerance reduced the 0.69% and increases by 2.0% average latency compared to fault

NoC and fault-free NoC respectively as shown in Fig. 4.15.

4.5.5.3 Reliability Analysis

In this section, we study the reliability improvement of the proposed router in com-

parison to BulletProof (Constantinides et al. (2006), VicisFick et al. (2009), RoCoKim

et al. (2006), PoluriPoluri and Louri (2014) and Wang Wang et al. (2014)) using Silicon

Protection Factor(SPF). SPF is defined as the ratio of mean number of faults required to

74

4.5. Experimental Results

cause a failure and the area overhead incurred due to the correction circuitry (Constan-

tinides et al. (2006)). The input buffer(IB) unit: The faulty virtual channel is a input

buffer virtual channel, which stores the input flits. It can introduce errors in the stored

flits because of faulty, later flits turn to be invalid flits in the input buffer. The proposed

router has 5-input port. Each port has 4 virtual channels. If all virtual channels are

non-faulty, the router can operate well. The proposed strategy can tolerate 20 faults

at most with 4 faulty virtual channels in each input port. A minimum of 5 faults can

cause the failure of 4 VCs and one sideband register of input port are faulty. The RC

unit: A maximum of 5 faults can tolerate router in this strategy. The functionality of

one RC component per input port is affected by each fault. It requires that downstream

router RC unit to be non-faulty. A minimum of 1 fault can cause failure the adjacent

router has faulty RC. The VA unit: If each input arbiter becomes faulty, this unit can

tolerate a maximum of 20 faults. A minimum of 2 faults can result in failure if the input

VC arbiter and its default winner path both have faults. The SA unit: This unit can

tolerate at most 10 faults, with all the arbiters in one switch allocator being faulty. The

minimum of 2 faults can cause the failure of the SA. The crossbar unit: The faulty in

the crossbar is defined as a faulty multiplexer. The crossbar unit can tolerate 5 faults at

most. The minimum of 2 faults can cause failure with one additional bypass and one

faulty multiplexer

The minimum number of faults to cause failure in individual stages of the pipeline

router is calculated as

min(5(IB), 1(RC), 2(V A), 2(SA), 2(XB)) (4.8)

The maximum number of faults tolerated by the router pipeline is calculated as the sum

of the maximum faults tolerated by each individual stage, which results in.

20(IB), 5(RC), 20(V A), 10(SA), 5(XB) = 60faults. (4.9)

An additional fault would result in failure. So the maximum number of faults to

cause failure is 60. The mean number of faults to cause failure is (2+60)/2 . Area

overhead is 27.12%. SPF of proposed Adaptive and Reliable router is 31/1.2712=24.4.

Compare the proposed router with other faults tolerant router as shown in Table. 4.11.

Other designs, the SPF value obtained from related work (Constantinides et al. (2006),

75

4. YaNoC - FPGA based simulation acceleration Framework

Fick et al. (2009), Kim et al. (2006), Poluri and Louri (2014) and Wang et al. (2014)).

The proposed router achieves high reliability than the other fault tolerant designs based

on SPF values.

Table 4.11: SPF comparison of the proposed router with other faults tolerant router
designs.

Architecture Area
Fault to
cause failure SPF

BulletProof 52% 3.15 2.07

Vicis 42% 9.3 6.55

RoCo NA 5.5 <5.5

Poluri 31% 15 11.4

Wang 30% 28.5 21.9

Proposed 27.12% 31.5 23.95

4.5.6 Speedup

The simulation time of Booksim2.0 simulator was measured on a computer with Core

i7 4770 CPU and 8GB memory. The speedup is calculated as the ratio of simulation

time in clock cycles of Booksim2.0 to the simulation time of YaNoC. The simulation

for a 6 × 6 network was run on both Booksim2.0 and YaNoC. A speedup of 2548× is

observed over Booksim2.0 simulator.

4.6 YANOC VS. STATE-OF-THE-ART

4.6.1 YaNoC and CONNECT

The Verilog HDL code of 6×6 Mesh and custom DMesh topologies are generated from

CONNECT and YaNoC frameworks for comparing the hardware resource utilization.

Considering XY routing algorithm, it can be observed from the Table 4.12 that

YaNoC’s implementation of 6 × 6 Mesh topology consumes fewer resources (35.65%

LUTs) than CONNECT’s Mesh topology (44.94% LUTs). Similar behavior is observed

for the Table based routing algorithm. YaNoC’s Table based routing ensures that always

a shortest path is chosen between the communicating routers.

76

4.6. YaNoC vs. State-Of-The-Art

Table 4.12: Resource utilization of CONNECT and YaNoC on Artix-7 FPGA device
(XC7A100T, speed-3) for 6× 6 Mesh and DMesh topologies

XY Routing (% Utilization) Table based (% Utilization)

CONNECT YaNoC CONNECT YaNoC

Mesh
LUT 44.94 35.65 43.71 27.70

DRAM 27.54 11.37 26.39 11.12
FFs 6.71 15.14 5.91 13.08

DMesh
LUT Exceed 87.55 Exceed 67.76

DRAM Exceed 20.46 Exceed 20.02
FF Exceed 20.62 Exceed 19.89

Table 4.13: Resource utilization of DART and YaNoC on Artix-7 FPGA device
(XC7A100T, speed-3) for 3× 3 Mesh topology

DART YaNoC

%LUTs 30 12.41
%DRAMs 21.74 5.68

%FFs 19.28 5.40

Also, for custom DMesh topology, the synthesis will not succeed as there will be

a resource crunch while employing CONNECT’s implementation. The Input Output

Blocks (IOBs) will be exceeding the limit of Artix7 FPGA board. Whereas, synthesis

of YaNoC’s HDL code succeeds and the corresponding resource utilization is shown

in the table. The same behavior is observed for both the XY and table based routing

algorithms.

Speedup of 500-1000× and 2548× has been observed in CONNECT and YaNoC

respectively with respect to Booksim. YaNoC is 2.55× faster than CONNECT NoC

generator.

4.6.2 YaNoC and DART

3×3 network with XY routing algorithm of both DART Wang et al. (2014) and YaNoC

are compared in Table 4.13. It can be observed that the % LUT consumption is 12.41

and 30 for YaNoC and DART implementations respectively. Large topologies can

be analyzed by using YaNoC’s implementation on a small FPGA board like Artix7.

77

4. YaNoC - FPGA based simulation acceleration Framework

Whereas the DART implementation consumes more FPGA resources and hence it re-

quires high end FPGA boards for the analysis.

DART simulation achieves over 100× speedup relative to Booksim. YaNoC is 25×

times faster than DART.

4.7 SUMMARY

This paper presents YaNoC - a Network-on-Chip simulation acceleration framework

using FPGAs. YaNoC supports the performance evaluation of various standard and cus-

tom NoC topologies. The router microarchitectural parameters are highly configurable.

The conventional routing algorithms such as XY, Nearest neighbor are supported for

mesh-based and Fat tree topologies. To support the design space exploration of custom

topologies, YaNoC supports the Table based routing algorithms. The Flit Width and

Buffer Depth parameters are varied to identify their effect on the performance of the

network and the topologies. An increase in LUTs and FFs resource has been observed

varying the FW and BD in all the topologies. YaNoC consumes fewer hardware re-

sources than the state-of-the-art CONNECT and DART frameworks. And, YaNoC is

2.55x and 25x faster than CONNECT and DART frameworks, respectively.

78

CHAPTER 5

MAPPING THE NOC ROUTER COMPONENTS ON
THE DSP48E1 HARD BLOCKS OF THE FPGA

The FPGA based NoC simulation framework - YaNoC proposed in the previous chap-

ter and the other state-of-the-art works utilize soft logic only for modeling the NoCs

on the FPGAs, leaving out the hard blocks unutilized. The functionality of the NoC

router’s crossbar switch has been embedded in the wide multiplexers of the DSP48E1

slices in this Chapter. Employing the proposed techniques of mapping the NoC router

components on the FPGA hard blocks, an FPGA based NoC simulation framework has

been proposed in this chapter. A substantial decrease in the Configurable Logic Blocks

(CLBs) utilization of NoC topologies on the FPGA has been observed by embedding

the functionality of crossbar on the hard blocks of the FPGA.

5.1 INTRODUCTION

Modern FPGAs embed the ASIC-like hard blocks to perform the common functions

more efficiently. The embedded hard blocks include Block RAMs (Xilinx Inc (2019a)),

Embedded processors, DSP blocks (Xilinx Inc (2018)). These hard blocks, in addition

to their functionality, can also be used to serve the other purpose. The BRAMs form

dual-port memory blocks having independent write or read ports. Several Kilobits of

data can be stored in BRAMs. The BRAMs can serve as an efficient on-chip memory

as they can be configured as single or dual port memories with various port widths. The

cascading support in latest FPGAs allow the BRAMs to be used as memory block with

79

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

large capacity. Also, the BRAMs can be employed as FIFOs, register files.

The primary goal of having DSP slices on the FPGAs is to efficiently perform

the signal processing operations such as multiply and multiply-accumulate. The latest

DSPs on the FPGAs support arithmetic operations, shift operations, logical operations

and pattern matching operations. Multiple DSPs can be interconnected to perform the

operations which are wider than the supported port widths. The DSP slices embedded

in latest Xilinx 7 series FPGAs have an operating frequency of 740 MHz(Xilinx Inc

(2018)).

All these features open up the opportunities for employing DSP blocks for the appli-

cations other than signal processing. The features of the five port NoC router crossbar

switch have been embedded in a DSP tile consisting of two DSP48E1 slices. An FPGA

based NoC simulation acceleration framework is proposed in this chapter. The pro-

posed framework is capable of utilizing both the Soft blocks (CLBs made up of LUTs

and FFs) and the Hard blocks (DSP48E1 slices) of the Xilinx FPGAs. These charac-

teristics allow us to make more efficient use of the FPGA resources by mapping NoC

topologies on both the soft and hard blocks.

Most of the state-of-the-art FPGA based NoC simulators utilize CLB components(LUTs

and FFs) only for modeling the NoCs. The other components of the FPGA such as the

DSP slices and BRAM blocks which form the hard blocks can be utilized to map the

NoC router component functionality. This results in reduced area resource utilization of

the soft logic substantially. The Multiplexer implementation on the FPGAs consumes

more soft logic (CLBs) resulting in increased power and critical path delay. As an alter-

native approach of modeling the crossbar component of NoC routers by employing the

CLBs, the Multiplexers present in the DSP48E1 slices can be used efficiently to config-

ure them as the crossbar component of an NoC router. As the DSP48E1 slices operate

at a higher frequency, mapping the crossbar functionality yields the higher operating

frequency of the whole circuit with the reduced power consumption. The modern FP-

GAs have a large number of DSP slices, due to which the higher frequency of operation

and an increase in execution speed and lower power consumption can be achieved.

An FPGA-based NoC simulation acceleration framework is presented in this chapter.

80

5.2. NoC Architecture

The framework is capable of utilizing both the soft blocks (CLBs made up of LUTs and

FFs) and the hard blocks (DSP48E1 slices) of the Xilinx FPGAs. These characteristics

allow us to make more efficient use of the FPGA resources by mapping NoC topologies

on both the soft and hard blocks. The crossbar switch consumes 54% of the overall NoC

router area (Kundu (2006)). This resource consumption can be reduced significantly by

mapping the functionality of the crossbar to the hard blocks of the FPGA.

The contributions in this chapter are:

• A parameterized FPGA based NoC simulation acceleration framework employing

the crossbar switch functionality of the NoC router efficiently on the DSP48E1

slices of the FPGA.

• Efficient utilization of DSP48 slices by employing the Time multiplexing technique

at the inputs.

5.2 NOC ARCHITECTURE

Route Computation

Switch Allocator/Arbiter

DSP48E1 Crossbar

Flit In

Flit In

Flit In

Flit In

Flit Out

Flit Out

Flit Out

Flit Out

Flit Out

Flit In

DSP48E1-II

A:B

C

A:B

C DSP48E1-I

P

P

East Input

North Input

West Input

South Input

Local Input

Encoded Grant Signals

from the Arbiter

Figure 5.1: NoC router with the proposed DSP48E1 based crossbar

The framework is capable of embedding the functionality of the five port NoC

router’s crossbar switch by employing two DSP48E1 slices of a DSP tile. The pro-

posed NoC router architecture is shown in Fig. 5.1.

81

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

5.3 DSP48E1 TILE AS THE CROSSBAR SWITCH

5.3.1 Xilinx DSP48E1 primitives

Fig. 5.2 shows the Xilinx DSP tile architecture. Two DSP48E1 slices are connected by

the dedicated cascade links in each DSP tile (Xilinx Inc (2018)). A pre-adder, a multi-

plier and an ALU are included in each DSP48E1 slice. A 25-bit two-input adder/sub-

tractor is included in the pre-adder. The output of pre-adder along with the asymmetric

18-bit and 25-bit inputs are provided as the input to the multiplier. The multiplier out-

put together with the other 48-bit inputs form the ALU unit’s input. With Xilinx DSP

blocks, the data flow and the arithmetic operations can be dynamically reconfigured

during runtime. Using this method, more complex data flow expressions can be imple-

mented on the same DSP slice by employing the technique of time multiplexing. The

dynamic operation of the DSP slice is accomplished by altering the OPMODE control

signal of the multiplexer to select the right inputs and by modifying the ALUMODE

signal per cycle to change the arithmetic/logic function.

5.3.2 Crossbar functionality on the DSP48E1 Multiplexers

ALU unit and the X, Y and Z multiplexers along with the control signals namely ALU-

MODE, INMODE and OPMODE account for configuring the DSP48E1 slices as the

NoC router crossbar. By altering the OPMODE control signals according to the user

needs, the multiplexers are controlled on a cycle basis. Likewise, the ALUMODE sig-

nals can be modified to configure the ALU unit to perform the logical or arithmetic

operations. In the proposed work, the ALU unit is configured to perform the (X+Y+Z)

operation through the ALUMODE control signal.

For mapping the functionality of the crossbar, a DSP tile containing two DSP48E1

slices is used. The cascaded links (PCOUT and PCIN) are used to interconnect 2

DSP48E1 slices present in a DSP tile. To achieve a similar behavior as the CLB based

crossbar, the DSP48E1 slice inputs are provided with the correct router inputs at the

right time.

The WEST and SOUTH output ports have been configured on the DSP48E1-I slice’s

P output port. And, the EAST and NORTH outputs are configured on the DSP48E1-II

82

5.3. DSP48E1 tile as the Crossbar Switch

Figure 5.2: Two DSP48E1 slices connected by dedicated cascade links form a single
DSP tile (Xilinx Inc (2018))

slice’s P output port as shown in Fig. 5.3. Configuring the LOCAL output port to any

of these DSP48E1 slices results in increased latency as the packets have to wait until

the output port at the Crossbar is not allocated to any other ports. By employing the

4:1 Multiplexer, a new data path is introduced for bypassing the packets to sink at the

LOCAL output port depending on the Arbiter grant signals.

The arbiter’s encoded grant signals play an important role in choosing the OPMODE

control signals of the DSP48E1 slice’s X, Y and Z multiplexers. One-hot encoded

signals are 10000, 01000, 00100, 00010, 00001 and respectively for South, West, Nort,

East and Local input ports. Tables 5.2 and 5.3 indicate the DSP48E1-I and DSP48E1-

II arbiter signals respectively. Table 5.1 shows the 4:1 Multiplexer operating signals

based on the Arbiter grant signals. The framework supports round-robin, weighted

round-robin and fixed priority arbitration schemes. In this work, the round-robin arbiter

83

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

Table 5.1: 4:1 Multiplexer operating signals based on the grant signals from the Arbiter

Output port Input port Arbiter encoded signal

Local

East 00010
North 00100
West 01000
South 10000

Table 5.2: DSP48E1-I slice configuration based on the Arbiter Encoded Signal

Output Input Arbiter DSP48E1-I OPMODE
port port Encoded signal input signal

West

Local 00001 C 0001100
East 00010 A:B 0000011

North 00100 C 0001100
South 10000 A:B 0000011

South

Local 00001 A:B 0000011
East 00010 C 0001100

North 00100 A:B 0000011
West 01000 C 0001100

Table 5.3: DSP48E1-II slice configuration based on the Arbiter Encoded Signal

Output Input Arbiter DSP48E1-II OPMODE
port port Encoded signal input signal

East

Local 00001 A:B 0000011
North 00100 C 0001100
West 01000 A:B 0000011
South 10000 C 0001100

North

Local 00001 C 0001100
East 00010 A:B 0000011
West 01000 C 0001100
South 10000 A:B 0000011

84

5.3. DSP48E1 tile as the Crossbar Switch

is employed to select the output ports fairly when various input ports contend for a one

output port. The 5-bit one-hot encoded signal is allocated to each input port that wins

the arbitration. The crossbar maps the input to the respective output port which wins the

arbitration stage based on these signals. An approach similar to this is used in this work:

depending on these one-hot encoded signals from the arbiter, the router input ports are

mapped to DSP48E1 slice inputs. The one-hot encoded signals from the arbiter are used

to configure the OPMODE control signals.

In our routing logic, the turn models (Glass and Ni (1992)) are employed to over-

come the turns leading to the network’s deadlock condition. An assumption where the

input port i sending the data to an output port j where i 6= j has been made. The as-

sumption made helps to avoid the critical path delay and the deadlock circumstances in

the crossbar.

(a) (b)

Figure 5.3: Illustration of mapping the input ports to the DSP48E1 based crossbar

The right inputs are configured at the right DSP48E1 slice depending on the Time

multiplexing technique. Fig. 5.3 illustrates the embedding of NoC router crossbar

functionality on the DSP48E1 slice. During the first clock cycle(Fig. 5.3(a)), if the flits

85

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

from the router’s WEST and NORTH inputs are granted with the NORTH and SOUTH

output ports, the arbiter grant signals are supervised to configure the input of the router

to the DSP crossbar input. The inputs from WEST and NORTH ports are configured on

the C and A: B inputs of the DSP48E1-II and DSP48E1-I slices as seen in Fig. 5.3(a)

based on the arbiter grant signal, i.e. 01000 and 00100. Based on the arbiter grant

signals, the OPMODEDSP2 and OPMODEDSP1 signals are configured to 0000011

and 0001100 to choose the WEST and NORTH inputs from the Y and X multiplexers

of DSP48E1-II and DSP48E1-I slices to map the inputs to the NORTH and SOUTH

output ports respectively. Also, when the LOCAL output port has been granted for the

EAST input, the 4:1 Multiplexer configures the flits from EAST input to the LOCAL

output port bypassing the DSP tile.

The flits from LOCAL and SOUTH inputs are mapped to the EAST and WEST

output ports during the second clock cycle with the arbiter grant signals 00001 and

10000. LOCAL and SOUTH inputs are mapped to A:B and C inputs of DSP48E1-II

and DSP48E1-I slices with the configuration of OPMODEDSP2 and OPMODEDSP1

signals to 0000011 and 0001100 as shown in Fig. 5.3 (b).

Table 5.4: Experimental Setup Details

Experimental Setup

Topology 8× 8 and 6× 6 Mesh-based
Arbiter type Fixed priority and Round-robin
Flow control Wormhole switching

Crossbar mapping DSP48E1 and CLB based crossbar
Routing Algorithm Lookahead and Dimension-order (XY)

Router pipeline depth 5-stage
Buffer type FIFO buffer

Buffer depth 4,8
Traffic pattern Random Permutation, Hotspot, Nearest Neighbor,

Tornado, Bit-complement
Packet length 4-flits

Flit size 16,32
FPGA Board Xilinx Artix 7 (XC7A100T)

86

5.4. Results and Discussion

Table 5.5: Resource utilization of the DSP48E1 and CLB based Crossbar implementa-
tion ONLY on the Artix 7 (XC7A100T) board

Proposed DSP Crossbar
CLB Crossbar

No. of FFs 148 243
No. of Slices Occupied 79 171

No. of LUTs 163 258
No. of DSP48E1 slices 2 0

5.4 RESULTS AND DISCUSSION

The Xilinx Artix 7 FPGA board (XC7A100 T chip) is employed for experiment. Ver-

ilog HDL has been used to implement the microarchitectural components of the NoC

architectures. The findings of the synthesis results were extracted from Xilinx Vivado .

Table 5.4 provides information on the experimental setup.

5.4.1 FPGA Utilization Results
5.4.1.1 Router implementation

The resource utilization of the Router architecture employing the CLB and DSP slices is

shown in Table 5.5. The synthesis results for the topologies based on the CLB crossbar

are obtained from YaNoC (Khyamling et al. (2019)). 171 slices are occupied by the

CLB crossbar whereas 79 slices are occupied by the DSP48E1 crossbar. 258 and 163

LUTs, 243 and 148 FFs are occupied by the CLB and the DSP48E1 crossbars.A DSP

tile containing 2 DSP48E1 slices along with a 4:1 multiplexer are used for mapping the

crossbar switch with 5-ports. The DSP crossbar based NoC router occupies 53% fewer

slices, 39% fewer LUTs and 36% fewer FFs compared to the CLB crossbar based NoC

router. A DSP48E1 tile’s height is the same as five CLB’s (Xilinx Inc (2018)). Each

CLB contains 8 LUTs and 16 FFs. Rounding to 40 LUTs and 80 FFs per DSP48E1 tile.

The crossbar mapping on DSP will not constitute any loss in the silicon area for the

applications which leave the DSP resources unused. We use the idle DSP48E1 slices to

simulate the larger topologies on FPGAs.

87

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

5.4.1.2 Topology implementation

The hardware resource utilization of 6×6, 8×8 Mesh and Torus topologies considering

the CLB and DSP based crossbar implementation can be seen in Tables 5.6, 5.7, 5.8 and

5.9. The XY and Look ahead routing algorithms have been employed for comparing

the performance. The framework is capable of design space exploration of the NoC

architectures by allowing the parameterized values of Input Buffer depth (BD) and Flit

width (FW) parameters. The ‘Configuration’ column shows the configuration of Flit

width and Buffer depth parameters. The ‘CLB Crossbar’ column shows the FPGA

resource consumption in ‘%’ of the resource used considering the CLB implementation

of the crossbar, and the ‘DSP Crossbar’ column shows the FPGA resource consumption

in ‘%’ of the resource being used considering the DSP implementation of the crossbar.

It can be observed from both the tables that the CLB based implementation of the

Topologies consume more LUTs and FFs than the DSP based implementation. This

is because of the efficient mapping of the NoC Router’s Crossbar component on the

DSP48E1 blocks.

Table 5.6: Resource utilization of 6 × 6 and 8 × 8 Mesh topologies with CLB and
DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with XY routing

Area Resource Utilization Under XY Routing

Configuration CLB Crossbar DSP Crossbar

Flit Buffer Mesh LUT FF Occupied LUT FF Occupied DSP
width depth Topology % % Slices% % % Slices% %

16
4

6x6 31 12 45 20 7 36 36
8x8 64 24 87 36 12 50 53

8
6x6 32 13 46 21 8 38 36
8x8 65 25 88 37 13 51 53

32
4

6x6 45 18 60 22 9 40 36
8x8 70 28 89 38 14 48 53

8
6x6 46 19 60 24 10 43 36
8x8 72 29 91 40 16 52 53

From Table 5.6, it can be observed that the increase in the Buffer depth or the Flit

width parameters has an effect on the hardware usage of the NoC. 6× 6 Mesh topology

consumes 31% LUTs and 12% FFs, occupying 45% slices considering the FW of 16

88

5.4. Results and Discussion

bits and BD of 4 flits under the CLB crossbar implementation. The 8×8 Mesh topology

consumes 64% LUTs, 24% FFs and occupying 87% slices under the same configura-

tion. Increasing the BD to accommodate 8 flits with the same FW (i.e. 16 bits), an

increase in the hardware resource consumption is observed. Likewise, when the FW is

increased to 32 bits, 6×6 and 8×8 Mesh topologies consume 45% and 70% LUTs and

18% and 28% FFs, occupying 60% and 89% slices considering the BD of 4.

Considering the DSP48E1 crossbar implementation, fewer FPGA resources are con-

sumed compared to the CLB crossbar implementation. The reduction in the resources

is due to the effective mapping of crossbar on the DSP48E1 slice of the FPGA. It can

be observed from Table 5.6 that, the 6 × 6 Mesh topology under DSP crossbar imple-

mentation consumes 20% LUTs, 7% FFs and 36% slices for the FW of 16 bits and BD

of 4 flits. Similarly, 8× 8 Mesh topology consumes 36% LUTs and 12% FFs with 50%

slices occupied for the FW of 16 bits and BD of 4 flits. On average, the DSP crossbar

implementation consumes 43%, 44% and 33% fewer LUTs, FFs and Occupied slices

respectively compared to the CLB crossbar implementation.

Table 5.7: Resource utilization of 6 × 6 and 8 × 8 Mesh topologies with CLB and
DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with LA routing

Area Resource Utilization Lookahead Routing

Configuration CLB Crossbar DSP Crossbar

Flit Buffer Mesh LUT FF Occupied LUT FF Occupied DSP
width depth Topology % % Slices% % % Slices% %

16
4

6x6 36 14 49 20 7 36 36
8x8 65 25 86 44 14 58 53

8
6x6 37 15 51 25 9 46 36
8x8 66 27 87 45 15 59 53

32
4

6x6 51 20 66 26 10 49 36
8x8 71 29 88 46 17 63 53

8
6x6 52 20 64 27 11 50 36
8x8 74 32 91 47 18 62 53

Table 5.7 shows the FPGA resource utilization of 6× 6 and 8× 8 Mesh topologies

under the Look ahead (LA) routing algorithm. The LA routing implementation con-

sumes more Hardware resources than the XY routing logic as it contains the hardware

89

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

Table 5.8: Resource utilization of 6 × 6 and 8 × 8 Torus topologies with CLB and
DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with XY routing

Area Resource Utilization XY Routing

Configuration CLB Crossbar DSP Crossbar

Flit Buffer Torus LUT FF Occupied LUT FF Occupied DSP
width depth Topology % % Slices% % % Slices% %

16
4

6x6 33 13 48 20 7 37 36
8x8 66 25 88 43 14 57 53

8
6x6 34 14 49 22 9 39 36
8x8 67 26 89 44 15 58 53

32
4

6x6 49 19 64 23 10 41 36
8x8 Exceed - - 45 17 60 53

8
6x6 50 20 65 25 12 46 36
8x8 Exceed - - 46 18 61 53

to compute the route of a given flit in the next router. The 6× 6 and 8× 8 Mesh topolo-

gies under CLB crossbar implementation consume 36% and 65% LUTs, 14% and 25%

FFs, occupying 49% and 86% slices for the FW of 16 bits and BD of 4 flits. Increasing

the BD configuration to accommodate 8 flits with the same FW (i.e. 16 bits), increase

in the hardware resource consumption has been observed. Similarly, the DSP cross-

bar implementation consumes 20% and 45% LUTs, 20% and 45% FFs, occupying 7%

and 14% slices. On average, the DSP crossbar implementation consumes 37%, 44%

and 20% fewer LUTs, FFs and slices compared to the CLB crossbar implementation.

Similar behavior can be observed for the BDs of 8 flits with FW of 16 and 32.

Tables 5.8 and 5.9 show the synthesis results of the 6×6 and 8×8 Torus topologies

under the XY and Look ahead routing respectively. From Table 5.6, 5.7, 5.8 and 5.9 it

can be observed that the Torus topology consumes more hardware resources than the

Mesh topology due to the presence of wrap around links. For example, from the Tables

5.6 and 5.8, considering the FW of 16 bits and BD of 4 flits under the CLB crossbar

implementation, the 8 × 8 Mesh and Torus topologies consume 65% and 67% LUTs,

25% and 26% FFs, 88% 89% of the Slices respectively.

From Table 5.8 it can be observed that the 6×6 and 8×8 Torus topologies consume

33% and 66% LUTs, 13% and 25% FFs, 48% and 88% slices considering the FW of

90

5.4. Results and Discussion

16 bits and BD of 4 flits respectively under the CLB crossbar implementation. When

the FW is increased to 32, the 8× 8 Torus topology resource usage exceeds the number

of LUTs present in the Xilinx Artix 7 FPGA. Same has been indicated by ‘Exceed’

in Table 5.8. This is because of the wrap around links present in the Torus topology.

On the other hand, considering the DSP crossbar implementation of the 6 × 6, 8 ×

8 Torus topologies consume fewer resources than the CLB crossbar implementation.

With the DSP crossbar implementation, the mapping of 8× 8 Torus topology succeeds

effectively on the Xilinx Artix 7 FPGA. Considering the FW of 32 bits and BD of 8

flits, the DSP48E1 crossbar based 8 × 8 Torus topology consumes 46% LUTs, 18%

FFs, occupying 61% slices and 53% DSP slices.

Table 5.9 shows the FPGA resource utilization of 6 × 6, 8 × 8 Torus topologies

employing the LA routing algorithm. The LA routing implementation consumes more

FPGA resources than the XY routing implementation due to the complexity of LA

routing logic needed to compute the route. From Table 5.9 it can be observed that

the 6 × 6 and 8 × 8 Torus topologies consume 38% and 68% LUTs, 15% and 26%

FFs, 53% and 89% Slices considering the FW of 16 bits and BD of 4 flits respectively

under the CLB crossbar implementation. When the FW is increased to 32, the 8 ×

8 Torus topology resource usage exceeds the number of LUTs present in the Xilinx

Artix 7 FPGA. The same has been indicated by ‘Exceed’ in Table 5.9. Contrarily, with

DSP48E1 crossbar implementation, the 6 × 6 and 8 × 8 Torus topologies consume

fewer resources than the CLB crossbar implementation and the mapping of 8× 8 Torus

topology succeeds effectively on the Xilinx Artix 7 FPGA. Considering the FW of 32

bits and BD of 8 flits, the DSP48E1 crossbar based 8×8 Torus topology consumes 49%

LUTs, 19% FFs, occupying 74% slices and 53% DSP slices.

5.4.2 Latency and Saturation Throughput Analysis

The latency performance of CLB and DSP48E1 based crossbar implementation of 6×6

and 8 × 8 Mesh and Torus topologies is analyzed injecting various synthetic traffic

patterns. Following are the synthetic traffic patterns employed in the experiments:

(i)Nearest Neighbor(NN), (ii)Random Permutation(RP), (iii)Hotspot(HS), (iv)Tornado(TO)

91

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

Table 5.9: Resource utilization of 6 × 6 and 8 × 8 Torus topologies with CLB and
DSP48E1 crossbar mapping on Artix 7(XC7A100T) FPGA with LA routing

Area Resource Utilization Under Lookahead Routing

Configuration CLB Crossbar DSP Crossbar
Flit Buffer Torus LUT FF Occupied LUT FF Occupied DSP

width depth Topology % % Slices% % % Slices% %

16
4

6x6 38 15 53 25 8 45 36
8x8 68 26 89 45 14 60 53

8
6x6 39 17 54 26 9 48 36
8x8 70 28 90 46 15 61 53

32
4

6x6 55 21 70 27 10 51 36
8x8 Exceed - - 48 17 65 53

8
6x6 56 23 69 28 11 53 36
8x8 Exceed - - 49 19 74 53

and (v)Bit-complement(BC).

The latency behavior of the 6× 6 and 8× 8 Mesh and Torus topologies under DSP

and the CLB based crossbar implementations considering the above-mentioned traffic

patterns is shown in Fig. 5.4 and 5.5. The average packet latency and injection load are

denoted in clock cycles and flits per clock cycle per node.

It can be seen from Fig. 5.4 that the DSP48E1 crossbar based implementation

performs similar to the CLB crossbar implementation of the 6 × 6 Mesh and Torus

topologies with minimum error. Under the NN traffic (Fig. 5.4(a)) considering the XY

routing algorithm, the Mesh topology reaches saturation at 0.22 injection rate. An im-

provement of 36% (0.22 to 0.30)in saturation throughput has been observed employing

the LA routing algorithm. This behavior is because the congestion observed using the

LA routing algorithm is lower than the congestion observed using the XY routing algo-

rithm. Torus topology is capable of accepting more traffic as it has the higher bisection

bandwidth than the Mesh topology. The 6 × 6 Torus topology saturates at an injection

rate of 0.48 under the XY routing algorithm. Employing the LA routing algorithm, an

improvement of 25% (from 0.48 to 0.60) has been observed.

With the RP traffic (Fig. 5.4(b)), the 6× 6 the Mesh topology reaches saturation at

0.12 injection rate employing the XY routing algorithm. Considering the LA routing

92

5.4. Results and Discussion

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Nearest Neighbor Traffic Pattern

Mesh 6x6 CLB-XY
Mesh 6x6 DSP-XY
Torus 6x6 CLB-XY
Torus 6x6 DSP-XY
Mesh 6x6 CLB-LA
Mesh 6x6 DSP-LA
Torus 6x6 CLB-LA
Torus 6x6 DSP-LA

(a)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Random Permutation Traffic Pattern

Mesh 6x6 CLB-XY
Mesh 6x6 DSP-XY
Torus 6x6 CLB-XY
Torus 6x6 DSP-XY
Mesh 6x6 CLB-LA
Mesh 6x6 DSP-LA
Torus 6x6 CLB-LA
Torus 6x6 DSP-LA

(b)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Hotspot Traffic Pattern

Mesh 6x6 CLB-XY
Mesh 6x6 DSP-XY
Torus 6x6 CLB-XY
Torus 6x6 DSP-XY
Mesh 6x6 CLB-LA
Mesh 6x6 DSP-LA
Torus 6x6 CLB-LA
Torus 6x6 DSP-LA

(c)

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Tornado Traffic Pattern

Mesh 6x6 CLB-XY
Mesh 6x6 DSP-XY
Torus 6x6 CLB-XY
Torus 6x6 DSP-XY
Mesh 6x6 CLB-LA
Mesh 6x6 DSP-LA
Torus 6x6 CLB-LA
Torus 6x6 DSP-LA

(d)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 6x6 CLB-XY
Mesh 6x6 DSP-XY
Torus 6x6 CLB-XY
Torus 6x6 DSP-XY
Mesh 6x6 CLB-LA
Mesh 6x6 DSP-LA
Torus 6x6 CLB-LA
Torus 6x6 DSP-LA

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

NearestNeighbor RandomPermutation Hotspot Tornado

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t

Traffic Pattern(s)

Saturation Throughput of 6x6 Mesh and Torus topologies

6x6 Mesh with CLB/DSP Crossbar-XY
6x6 Mesh with CLB/DSP Crossbar-LA
6x6 Torus with CLB/DSP Crossbar-XY
6x6 Torus with CLB/DSP Crossbar-LA

(f)

Figure 5.4: (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and (f) - Sat-
uration Throughput for the 6× 6 Mesh and Torus topologies under CLB and DSP48E1
based crossbar implementation under Nearest Neighbor, Random Permutation, Hotspot,
Tornado and Bit complement traffic patterns employing the XY routing and LA routing

algorithm, an improvement of 33% (from 0.12 to 0.16) has been observed. An im-

provement in saturation throughput of 30% (from 0.20 to 0.26) while employing the

LA routing instead of XY routing has been observed with the 6 × 6 Torus topology.

Similar behavior has been observed employing the HS traffic.

93

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

Considering the TO traffic (Fig. 5.4(d)), the Torus topology saturates earlier than the

Mesh topology. This behavior is observed as the TO traffic stresses the Torus topology

compared to the Mesh topology. Considering the XY routing algorithm, the 6 × 6

Torus topology saturates at the injection rate of 0.22. With the LA routing algorithm, an

improvement of 36% has been observed (from 0.22 to 0.30). The 6× 6 Mesh topology

reaches saturation at 0.4 injection rate. Employing the LA routing, the 6 × 6 Mesh

topology reaches saturation at 0.5 injection rate. An improvement of 25% (from 0.4 to

0.5) has been observed employing the LA routing algorithm.

Under the BC traffic pattern, the 6 × 6 Mesh topology saturates earlier than the

Torus topology. The 6× 6 Mesh topology saturates at an injection rate of 0.07 and 0.09

considering the XY and LA routing algorithms. An improvement of 28% (from 0.07

to 0.09) has been observed employing the LA routing algorithm. Similarly, the 6 × 6

Torus topology saturates at the injection rates of 0.28 and 0.37 considering the XY and

LA routing algorithms. An improvement of 32% (from 0.28 to 0.37) has been observed

employing the LA routing algorithm.

Fig. 5.5 (a) - (e) show the behavior of 8 × 8 Mesh and Torus topologies under the

traffic patterns mentioned in Table. 4.2. Improvement in the saturation throughput of

the 8× 8 Mesh and Torus topologies has been observed in case of all the traffic patterns

employing the LA routing over the XY routing. Improvement of 19% (from 0.25 to

0.3), 44% (from 0.09 to 0.13), 16% (from 0.12 to 0.14), 19% (from 0.2 to 0.24) and

28% (from 0.07 to 0.09) has been observed with respect to the 8 × 8 Mesh topology

under the NN, RP, HS, TO and BC traffic patterns employing the LA routing. Similarly,

improvement of 25% (from 0.4 to 0.5), 22% (from 0.18 to 0.22), 11% (from 0.18 to

0.20), 11% (from 0.34 to 0.38) and 28% (from 0.28 to 0.36) have been observed with

respect to the 8 × 8 Torus topology under the NN, RP, HS, TO and BC traffic patterns

employing the LA routing.

Fig. 5.4(f) and 5.5(f) show the saturation throughputs of 6 × 6, 8 × 8 Mesh and

Torus topologies under the afore-mentioned traffic patterns considering the XY and LA

routing algorithms. The topologies perform better under the LA routing algorithm due

to the pre-computation of the preferred output port. It can be observed that the Torus

94

5.4. Results and Discussion

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Nearest Neighbor Traffic Pattern

Mesh 8x8 CLB-XY
Mesh 8x8 DSP-XY
Torus 8x8 CLB-XY
Torus 8x8 DSP-XY
Mesh 8x8 CLB-LA
Mesh 8x8 DSP-LA
Torus 8x8 CLB-LA
Torus 8x8 DSP-LA

(a)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Random Permutation Traffic Pattern

Mesh 8x8 CLB-XY
Mesh 8x8 DSP-XY
Torus 8x8 CLB-XY
Torus 8x8 DSP-XY
Mesh 8x8 CLB-LA
Mesh 8x8 DSP-LA
Torus 8x8 CLB-LA
Torus 8x8 DSP-LA

(b)

 50

 100

 150

 200

 0 0.1 0.2 0.3

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Hotspot Traffic Pattern

Mesh 8x8 CLB-XY
Mesh 8x8 DSP-XY
Torus 8x8 CLB-XY
Torus 8x8 DSP-XY
Mesh 8x8 CLB-LA
Mesh 8x8 DSP-LA
Torus 8x8 CLB-LA
Torus 8x8 DSP-LA

(c)

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Tornado Traffic Pattern

Mesh 8x8 CLB-XY
Mesh 8x8 DSP-XY
Torus 8x8 CLB-XY
Torus 8x8 DSP-XY
Mesh 8x8 CLB-LA
Mesh 8x8 DSP-LA
Torus 8x8 CLB-LA
Torus 8x8 DSP-LA

(d)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 C

lo
c
k
 c

y
c
le

s
)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 8x8 CLB-XY
Mesh 8x8 DSP-XY
Torus 8x8 CLB-XY
Torus 8x8 DSP-XY
Mesh 8x8 CLB-LA
Mesh 8x8 DSP-LA
Torus 8x8 CLB-LA
Torus 8x8 DSP-LA

(e)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

BitComplement NearestNeighbor Hotspot Tornado RandomPermutation

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t

Traffic Pattern(s)

Saturation Throughput of 8x8 Mesh and Torus topologies

8x8 Mesh with CLB/DSP Crossbar-XY
8x8 Mesh with CLB/DSP Crossbar-LA
8x8 Torus with CLB/DSP Crossbar-XY
8x8 Torus with CLB/DSP Crossbar-LA

(f)

Figure 5.5: (a), (b), (c), (d), (e) - Load injected vs Observed Latency curves and (f) -
Saturation Throughput for the 8×8 Mesh and Torus topologies with CLB and DSP48E1
based crossbar implementation under Nearest Neighbor, Random Permutation, Hotspot,
Tornado and Bit complement traffic patterns employing the XY routing and LA routing

topology has the capability of sustaining the higher injection rates compared to the

Mesh topology because of the higher bisection bandwidth.

95

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

5.4.3 Comparison with the CONNECT (Papamichael and Hoe (2015)) and DART
(Wang et al. (2014))

A comparison of the proposed work is made with state-of-the-art CONNECT frame-

work (Papamichael and Hoe (2015)). HDL code for 6 × 6 Mesh topology has been

obtained from the CONNECT tool with the same configurations as shown in Table 4.2.

The resource utilization results of the 6× 6 Mesh topology designed with the proposed

DSP48E1 crossbar architecture and the CONNECT NoC generation are shown in Table

5.10. 23% fewer slices, 41% fewer LUT are consumed by the 6×6 Mesh topology with

proposed DSP48E1 based crossbar compared to the 6×6 Mesh topology obtained from

CONNECT NoC framework. The operating frequencies of the 6×6 Mesh topology un-

der the proposed work and the CONNECT implementation are 442MHz and 146MHz

respectively. The CONNECT architecture employs a single stage router pipeline due to

which it consumes fewer FFs compared to the proposed work employing the five stage

pipeline. 6 × 6 Mesh topology with the proposed DSP48E1 crossbar implementation

consumes 44% less power compared to the CONNECT architecture.

Table 5.10: FPGA synthesis results of the 6 × 6 Mesh topology considering the pro-
posed DSP48E1 crossbar implementation and CONNECT’s implementation on Artix 7
(XC7A100T) board

6× 6 Mesh
CONNECT (Papamichael and Hoe (2015)) with Proposed DSP

6× 6 Mesh Crossbar

Number (%) Number (%)
FFs 3127 2 8797 7

LUTs 22158 34 12873 20
Slices Occupied 7608 47 5779 36

DSP48E1s 0 0 72 30
Clock(ns) 6.85 - 2.26 -

Power(mW) 412 - 229 -

3 × 3 Mesh topology considering XY routing algorithm of both the DART (Wang

et al. (2014)) and the proposed DSP48E1 based crossbar are compared in Table 5.11.

DART consumes 9% FFs, 30% LUTs and occupies 40% slices. The 3×3 Mesh topology

with the proposed DSP48E1 based crossbar consumes 1% FFs, 4% LUTs, 8% slices

and 7% DSP48E1 slices available on the FPGA. Employing the proposed DSP48E1

96

5.4. Results and Discussion

Table 5.11: Hardware utilization results of the 3 × 3 Mesh topology with proposed
DSP48E1 based crossbar and DART’s implementation on Artix 7 (XC7A100T) FPGA

3× 3 Mesh
DART (Wang et al. (2014)) with Proposed DSP

3× 3 Mesh Crossbar

Number (%) Number (%)
FFs 12034 9 2173 1

LUTs 19210 30 3159 4
Slices Occupied 6596 40 1420 8

DSP48E1s 0 0 18 7
Clock(ns) 5.82 - 1.9 -

Power(mW) 234 - 59 -

based crossbar architecture in the 3 × 3 Mesh topology, a reduction of 88%, 86% and

80% are observed with respect to FFs, LUTs and the occupied slices. The 3 × 3 Mesh

topology with the proposed DSP48E1 based crossbar consumes 74% less power than

the DART’s implementation. Also, the operating frequency of DART and the proposed

implementation were found to be 171MHz and 526MHz respectively.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(n

s
)

Load(in million flits/sec)

Network Performance under Uniform Random Traffic Pattern

Mesh 6x6 CONNECT
Mesh 6x6 DSP

Mesh 3x3 DART
Mesh 3x3 DSP

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(n

s
)

Load(in million flits/sec)

Network Performance under Transpose Traffic Pattern

Mesh 6x6 CONNECT
Mesh 6x6 DSP

Mesh 3x3 DART
Mesh 3x5 DSP

(b)

Figure 5.6: (a), (b) - Load vs Latency comparison of the Mesh topologies employing
proposed DSP48E1 crossbar architecture and CONNECT, DART topologies

The latency performance comparison of the proposed DSP48E1 crossbar based

Mesh topology with CONNECT and DART Mesh topologies is illustrated in Fig. 5.6

(a) and (b) considering the Uniform random and Transpose traffic patterns. As the in-

jection rate increases, the Mesh topology employing the proposed crossbar offers lower

latency than the CONNECT and DART Mesh topologies. The Mesh topology em-

97

5. Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA

ploying the proposed DSP48E1 based crossbar has the capability of accepting twice

the injection rate compared to the CONNECT and DART architectures. CONNECT

and DART Mesh NoC topologies saturate much earlier compared to the Mesh topology

employing the proposed DSP48E1 based crossbar architecture.

5.5 SUMMARY

The unused hard blocks of the FPGA, such as DSP48E1 blocks are employed to map

the functionality of NoC router’s Crossbar components. A reduction of soft logic has

been observed employing the proposed technique. The proposed framework performs

favorably compared to the other state-of-the-art FPGA based NoC simulation platforms.

Further, optimizations to the router architecture can be made to reduce the area and

power consumed and providing a better throughput. The flexible communication and

traffic generation model has been proposed in the next chapter.

98

CHAPTER 6

P-NOC: PERFORMANCE EVALUATION OF NOCS
ARCHITECTURE USING FPGA

In this chapter, P-NoC: an FPGA-based parameterized framework for analyzing the

performance of NoC architectures based on various design decision parameters is pre-

sented. The Mesh and a Multi-Local port Mesh(ML-Mesh) topologies have been con-

sidered for the study. Experiments show that the flit width(FW), Buffer Depth(BD),

virtual channels(VCs) parameters have a significant impact on the FPGA resources.

Along with various router microarchitectural configurations, the hop count analysis has

been performed to understand the effect of hop count on the latency and throughput of

the NoC under consideration.

6.1 P-NOC: FPGA-BASED PARAMETERIZED FRAMEWORK

The P-NoC:FPGA-based parameterized framework for designing and evaluating the

performance of NoC architectures as shown in Fig. 6.1. P-NoC is implemented with

highly parameterized, modular and it provides easy of reconciling new Network-on-

Chip architecture. P-NoC consists of Topology, Router and Traffic modules. The topol-

ogy module supports the implementation of standard and customized NoC networks.

The router module is highly parameterized with Buffer depth(BD), Flit width(FW), Vir-

tual Channel(VC), routing logic, Channel width and I/O ports being configurable. The

traffic module consists of a traffic receptor and a generator. The generation of packets

and injection into the NoC is done by the traffic generator. The framework supports

99

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

the generation of various types of synthetic patterns such as Uniform random, Bit com-

plement, Bit shuffle, Transpose, Random Permutations and Nearest Neighbour. The

traffic receptor ejects the packet from NoC architecture and collects the Area, Latency,

Throughput, Hop count, Average Hop count and Power results. The NoC architecture

is generated combining all these modules based on the configuration of parameters.

Figure 6.1: Layout of P-NoC: An FPGA based Parameterized framework for design
space exploration and performance analysis of NoCs for Chip Multiprocessor architec-
ture

6.1.1 Topology Module

This module generates various NoC topologies based on the given input parameters.

Mesh and Multi-local port Mesh(ML-Mesh) topologies have been considered for the

experiments in this work.

6.1.1.1 The Mesh based NoC Architectures

Fig. 6.2(a), illustrates the 16-Node Mesh topology for on-chip communication. From

the Fig. 6.2(a), it can be seen that each processing element(PE) is connected to a router.

The bi-directional links are used for interconnecting the routers. The two dimensional

mesh topology is the primary choice for tiled architectures due to ease of implementa-

tion, routing and it’s closely matches with the physical layout of the die.

6.1.1.2 The Multi-local Port Mesh(ML-Mesh) NoC architecture

Fig. 6.2(c) shows the 16-node ML-Mesh topology with four local ports. Nodes are

interconnected using cluster-based design. This improves the performance of NoC ar-

chitecture by reducing the distance between two communicating elements as the nature

100

6.1. P-NoC: FPGA-based parameterized framework

Figure 6.2: (a)16-Node Mesh Topology(16-nodes and 16-routers), (b) parameterized
router architecture and (c) 16-Node ML-Mesh topology(16-nodes and 4-routers)

of traffic is localized. In the ML- Mesh topology, each router consumes more area, but

the overall chip size is reduced. This allows a larger number of input buffers in the

routers reducing the maximum effective distance across the network. The multi-local

port NoC architecture provides a more compact physical layout and reduces the wires

allowing wider channel widths. In this NoC architecture, less number of routers permit

a lower hop count without increasing wiring complexity. From Fig. 6.2(c), it can be

seen that the router can have four local ports connected to the neighboring processing

elements(PEs). Therefore, the hop count and communication latency of neighboring

PEs are reduced by exchanging data through a single router.

Six hops are needed for the communication between first and last corner nodes in

the 16-node Mesh topology as seen in Fig. 6.2(a). Considering the ML-Mesh topology,

the hop distance has been reduced to two hops as seen in the Fig. 6.2(c). The parameter-

ized router architecture used for communication fabric in Chip Multiprocessors(CMPs)

design is shown in Fig. 6.2(b).

6.1.2 NoC Router Microarchitecture

The NoC router performs the forwarding of packets from the source PEs to the desti-

nation PEs. The router comprises of Input Buffers, a Route computation unit, Virtual

allocation(VC), Switch allocation(SA) and Switch travels(Crossbar) as shown in Fig.

6.2(b).

101

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

6.1.2.1 Input Buffers

The router input ports have Input Buffers to store the incoming flits from the neighbor-

ing nodes, before transferring flit to the next nodes. Fig. 6.3 shows the implementation

of the Input Buffer at each input port. The Input Buffer has two status signals:full and

empty to control the flit transfer between routers. The Input Buffer can be re-configured

considering the Flit width and Buffer depth parameters with various sizes. This identi-

fies the impact of performance and silicon area of NoC architecture for specific appli-

cations.

Figure 6.3: Architecture of the Parameterized VC based Input buffer employed in de-
signing the router(Virtual Channel, Input Buffer Depth, Width can be configurable)

6.1.2.2 Route Computation Unit

The Route computation unit computes the correct output port for the given incoming

packets. For every source and destination pair, there exist multiple paths. The selec-

tion of best path is done by the routing algorithm in NoCs. The routing algorithm

impacts the latency and throughput experienced by the traffic. Various routing algo-

rithms are implemented to balance the load in the NoC networks. In this work, we

implement oblivious routing algorithms such as dimension ordered routing(DoR) and

adaptive routing algorithm to route the packets in the networks.

102

6.1. P-NoC: FPGA-based parameterized framework

6.1.2.3 Virtual channel(VC) and Switch Allocator

The Virtual channel(VC) allocator performs a quality matching between input VCs re-

quested to the output VC resources which is subjected to the constraint that, at any given

time slot, many input VCs request to any of the output VCs of the same output port.

The VC allocator is required to generate the best match for given input VCs. Otherwise,

the generation of best matchings later can affect the average waiting time of head flits

before being assigned to an Output VC. This will prevent flit movement of the same

packet and thereby increasing average buffer utilization. After successful allocation of

VCs, the Switch Allocator is required to arbitrate individual flits for accessing physical

channels. We implemented round robin arbitration for the fair sharing of each resources

in the NoC architecture.

6.1.2.4 Crossbar

All input and output ports are interconnected by a crossbar block. After a grant signal

from the VC and Switch Allocation block, the head flit traverses to the crossbar unit.

The crossbar unit maps the incoming head flit to the output port which was computed

in route compute unit.

6.1.3 Traffic Pattern Module

We implemented Traffic pattern modules for the NoCs performance analysis using a

traffic generator. This module consists of a Traffic generator and receptor.

6.1.3.1 Traffic Generation

The Traffic Generation (TG) modules are used to generate the various traffic patterns.

Each router of the NoC topology are associated with traffic generation module. The

TG modules are responsible for generating the packets and storing them in the source

queue. Also, the flit generation logic has been incorporated in the TG module. The

synthetic traffics such as Uniform, Bit complement, Bit shuffle, Transpose, Random

Permutations and localized(Nearest Neighbour) traffic are generated by TG Module.

103

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

Figure 6.4: Packet generator and receptor

6.1.3.2 FIFO Queue

The FIFO queues are implemented to store the flits generated by the TG module prior to

the injecting the packet in the network. The source queues operate in the FIFO fashion.

The FIFO queue takes care of the injection of the flits into the NoC topology based on

the emulation cycles. The flits are read in the FIFO fashion from the non-empty queues

and transmitted to the respective router through local input port after data validation.

6.1.3.3 Traffic Receptor

The Traffic Receptor (TR) associated with each router is responsible for validating the

destination and decodes the information in the flit. The TR module calculates the packet

latency based upon the time stamp stored in head flit. Also, it monitors the total packet

received, total packets transmitted, average total latency.

Fig. 6.4, shows the router with the Source and Sink processing element. The Source

Processing element is responsible for Traffic generation. The randomness traffic has

been generated by employing Linear Feedback Shift Register(LFSR) mechanism and to

add the TimeStamp module in the traffic being generated. The Sink processing element

accepts flits from the router and it has a Traffic Receptor module to keep a record of the

number and time of incoming flits. The Traffic receptor module performs the latency,

throughput analysis.

6.1.4 Flit Format

The channel width matches the width of a flit by dividing packet into Head, Body and

Tail flits. Fig. 6.5 shows the structure of 32-bit flit. The flit size can be configured to

any flit size varying from 32 and 64 bits. The 2-bit ‘Type’ field is used to represent the

104

6.2. Design Cost and Performance Analysis

TimestampDest_XDest_YClassLHRVC_IdType

014151819222324252728293031

(a) Head Flit

28293031 27 0

VC_IdType Payload

283031 27 0

VC_Id Wr_TimeStamp

(b) Body Flit

Type

1415

Payload

29

(c) Tail Flit

Figure 6.5: The configurable Flit Structure. 32 and 64-bit flit have been used in this
work. We show the example of only 32-bit Flit Structure, each field in Flit Structure
can been configurable according the size of Topology, Packets and Number of virtual
channels

type of the flit that is being traversed in the network such as Head, Body and Tail. The

‘VC Id’ field depends on the number of configured VCs. The ‘LHR’ field specifies the

output port of the router computed using the look-ahead routing algorithm. The ‘Class’

field specifies the message class. Destination Y and X address fields are specified in

‘Dest Y’ and ‘Dest X’ fields. The ‘TimeStamp’ field has been used to specify flit cre-

ation time at the Source. The Body flit contains ‘Payload’ field to accommodate the

actual data to be transferred. The ‘Wr TimeStamp’ field of Tail flit marks the arrival

time of a flit at its destination. The latency is calculated by considering the ‘TimeS-

tamp’ and time at each Tail flit received by the destination node. Table 6.1 shows the

detail of each fields in the flit structure.

6.2 DESIGN COST AND PERFORMANCE ANALYSIS

To compare and contrast different NoC architectures, standard set of metrics have been

considered (Partha Pratim Pande et al. (2005)). The wormhole switching is employed

for the data transmission where the packet is divided into flits of a small length of

flow control units. The Head flits of a packet hold the routing and control information

based on that path can be established. This path is follow the Body and Tail flits. The

comparative analysis focuses on well-established benchmarks of latency, throughput,

silicon area and Power.

105

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

Table 6.1: Flit structure employed in the experiments. All the fields are configurable.
32-bit flit structure has been employed in this work for reference.

Flit Structure(32-bit)

Field Size
Type 2-bit(00-Body, 10-Head, 01-Tail)

VC ID Virtual Channel Identifier(2-bit, if VC=2, 01 for VC1 and 10 for VC2)
LHR Lookahead Routing(3-bit for 5-port)
Class Message Class(2-bit)

Dest Y Destination Y Coordinate address(2-bit for 16-node topology)
Dest X Destination X Coordinate address(2-bit for 16-node topology)

TimeStamp Time(19-bit)
Payload Actual Data(28-bit)

Wr TimeStamp Tail flit is created(19-bit)

6.2.1 Hop count

The Hop count is defined as the number of routers the packet would traverse from the

source processing element to the destination processing element. The Hop count is

calculated assuming dimension-ordered(DoR) routing for Mesh, ML-Mesh topologies.

For Mesh topology, if the address coordinates of source and destination routers are

Sx, Sy, Dx, Dy, respectively, then Diffx and Diffy are the x and y directions hops

respectively are obtained as follow.

Diffx = |Dx − Sx| (6.1)

Diffy = |Dy − Sy| (6.2)

The Hop count can be calculated as:

Hopcount = Diffx +Diffy; (6.3)

6.2.2 Link utilization

In the NoC architecture, two neighboring nodes are interconnected using communica-

tion links. In general, the number of bidirectional links in Mesh based NoC is given as

follows:

Links =M1(M2 − 1) +M2(M1 − 1) + PE (6.4)

106

6.2. Design Cost and Performance Analysis

whereMi represents the number of routers in the ith dimension and PE is the number of

processing elements. For instance, in an 4x4 2D Mesh based NoC, this yield 40 links.

In 16-node ML-Mesh topology, this yield 20 links.

6.2.3 Average Hop count

The network throughput depends on the number of links and the average number of

hops of the NoC. In the Mesh based NoC, the average number of hops is given by

AveragehopMesh =
M1M2(M1 +M2)−M1M2

2(M1M2 − 1)
(6.5)

Where Mi is the number of routers in the ith dimension.

In the ML-Mesh based NoC, the average number of hops is given by

AveragehopML−Mesh =

(
Dx

Mx

+
Dy

My

)

3
(6.6)

where Dx and Dy are the number of routers x and y dimensions. Mx and My are the

number of processing elements in x and y dimensions.

6.2.4 Average Packet Latency

The latency is defined as the cycle time required by the packet to travel from source

processing elements to the destination processing elements. The average packet latency

is given by:

Avglat = 1/N
N∑
i=1

Li (6.7)

where N refers to the total number of flits accepted by the all destination nodes and Li

refers to the latency of the ith flit received by its destination processing element.

6.2.5 Throughput

It is defined as the maximum traffic accepted by the network, that is, the maximum

amount of information delivered per time unit. For message passing systems, message

throughput can be defined as TP:

TP = (Total Messages completed * Message length)/(Number of PE blocks*Total Time)

(6.8)

107

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

Here, Total Messages completed means that the whole message has arrived at the des-

tination node; Message length is the total number of flits; Number of PE blocks is the

number of functional cores involved in communication; Total Time is the difference of

time between the first flit generated, and the last flit received.

6.2.6 Area

In the NoC architecture design, the presence of the input buffers, Switch allocator,

crossbar switch and the interfaces can result in the silicon area overhead.The area of

NoC architecture is given by:

NoCArea = RoutersArea + LinksArea (6.9)

RouterArea = IBArea +RCLArea + CrossbarArea (6.10)

Where ‘IB=Input Buffer’ is Input Buffer of NoC router, ‘RCL=Router Control Logic’

such as routing logic, VC and Switch allocation logic.

6.2.7 Power

The total power consumed by the NoC architecture can be breakdown into router, links,

input/output and clock distribution power. The router power consumption includes

FIFO buffer, routing algorithm, allocator and crossbar switch power.

The total power of NoC architecture is as follow

PNoC = Prouter + Plink + PInterfaces + Pclk (6.11)

Prouter = PFIFO + Proutelogic + Pallocator + Pcrossbar (6.12)

6.3 RESULTS AND DISCUSSION

All the modules in P-NoC such as Topology, Router microarchitecture and Traffic have

been implemented in Verilog. We customize the P-NoC for the Mesh and ML-Mesh

NoC topologies as shown in Fig. 6.2. The performance of 16-node Mesh and ML-

Mesh NoC topologies analyze using various configurations of the input buffer, virtual

channel and standard synthetic traffic patterns. The experimental setup employed in

108

6.3. Results and Discussion

evaluating the NoC architecture is shown in Table 6.2.

Table 6.2: Experimental Setup Details

Experimental Setup Details

Topology 16-Node Mesh & ML-Mesh Topology
Buffer type FIFO Buffer

Virtual Channel(VC) 2 & 4
Arbiter type Round robin

Router Pipeline depth 3-stage
Flit size 32,64

Buffer depth 4, 8, 16 and 32
Packet length 4 flits
Flow control Credit based

Routing algorithm Dimensional order routing(DOR)
Synthetic traffic patterns Uniform, Random Permutations, Bit complement,

Transpose, Bit shuffle and Nearest Neighbor

6.3.1 FPGA Utilization Results

The NoC area utilization includes the area of the routers and links(wires). The router

area includes the area of the input FIFO buffer, route compute logic, allocator and

the crossbar. To evaluate the NoC architecture cost, we consider the FPGA logic re-

sources such as LUT(Look Up Table) and FF(Flip-flop) as the cost metrics. To imple-

ment any logical function in FPGA, LUT and FFs have been used as the preliminary

resources. The Table.6.3 and 6.4 shows the FPGA resource utilization results of the

16-node Mesh and ML-Mesh topologies. Here, we tuned the parameters such as Flit

width(FW), Buffer Dept(BD) and Virtual channel to obtain FPGA area utilization. Flit

Width (FW) of 32 bits, Virtual channel of 2 and Buffer Depth (BD) has been varied

between 4 to 32 in these experiments. Table. 6.3, record the usage of FPGA resources

by the Mesh and ML-Mesh topologies. An increase in the LUT utilization of 15%,

17.4%, 7.4% and 3.44% are observed when BD is increased from 2 to 4, 4 to 8, 8 to

16, 16 to 32 respectively for the 16-node Mesh topology. An increment in FF usage by

40% has been observed when we increased BD from 2 to 32 for 16-node Mesh topol-

ogy. Similar behavior can be observed for 16-node ML-Mesh topology. An increase

in the number of VCs in NoC architecture, we observed an increase in the FPGA area

109

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

utilization. When increasing the VCs from 2 to 4 with the FW 32-bits and BD of 2, we

observed that the LUT and FF utilization increased by 75%, 60% and 60%, 10% for the

Mesh and Mesh and ML-Mesh topologies respectively. The 16-node ML-Mesh topol-

ogy utilizes lesser FPGA resources for identical configuration than that of the 16-node

Mesh. This is because of sharing of the channels, router resources and reduced network

diameter in 16-node ML-Mesh topology. Increasing FW from 32 to 64-bits results in

an increase of FPGA resources from 20% to 26% for Mesh and from 5% to 6% for ML-

Mesh topology with BD and VC of 2. This is due to the wider width channel required

for flit transmission. The flit width also influences the FPGA area utilization in NoC

architecture.

Table 6.3: Synthesis results of 16-node Mesh and ML-Mesh topologies with FW 32
bits, Virtual channels 2,4VCs and BD of 2 to 32 on Artix-7 FPGA board

Flit Width(FW) 32-bits

Virtual Channels(VCs) 2 4
Buffer Depth(BD) 2 4 8 16 32 2 4 8 16 32

16-Node Mesh
LUT(%) 20 23 27 29 30 35 41 51 57 60
FF(%) 5 6 6.3 6.6 7 8 10 10.5 11 12

16-Node ML-Mesh
LUT(%) 5 6 7 8 10 8 10 12 14 16
FF(%) 1 1.2 1.3 1.4 1.6 1 2 2.3 2.5 3

Table 6.4: Synthesis results of 16-node Mesh and ML-Mesh topologies with FW 64
bits, Virtual Channels 2,4VCs and BD of 2 to 32 on Artix-7 FPGA board

Flit Width(FW) 64-bits

Virtual Channels(VCs) 2 4
Buffer Depth(BD) 2 4 8 16 32 2 4 8 16 32

16-Node Mesh
LUT(%) 26 29 33 35 38 41 47 57 63 66
FF(%) 6 7 8 9 10 9 11 12 13 14

16-Node ML-Mesh
LUT(%) 6 7 8 10 11 10 11 13 15 17
FF(%) 1 1.3 1.6 2 2.3 2 2.3 2.5 3 3.5

6.3.2 Clock Frequency Analysis

In this section, we compare the clock frequency of the Mesh and ML-Mesh Topologies

as shown in Fig. 6.6. The FW is fixed to 32-bit, 4 VCs have been employed and the BD

110

6.3. Results and Discussion

 140

 150

 160

 170

 180

 190

2 4 8 16 32

C
lo

c
k

 f
re

q
u

e
n

c
y

(I
n

 M
H

z
)

Buffer Depth(BD)

Network Clock frequency Performance with FW=32bits and VC=4

16-node Mesh Topology
16-node ML-Mesh Topology

Figure 6.6: Clock frequency performance for Mesh and ML-Mesh topologies

has been varied from 2 to 32. The maximum clock frequency of Mesh is higher than

ML-Mesh topology for this configuration due to the size of the router. The Mesh topol-

ogy has a 5-port router compared to 8-port router of ML-Mesh topology. This influence

in Mesh topology has lesser transistor switching and routing delay compared to ML-

Mesh topology. Varying the BD from 16 to 32, the operating frequency reduces slightly

from 169.99MHz to 168.65MHz and from 168.75 to 159.720 for Mesh and ML-Mesh

topologies. This reduction in frequency is due to the higher Buffer Depth value which

makes the use of extra memory and the routing and logical resource consumption in-

creases along the critical path. Similar behavior is observed for all other configurations

of FW, BD, and VC.

6.3.3 Critical Path Delay Analysis

Two NoC architecture are compared using critical path delay, the Xilinx timing analyzer

tool is used for the timing analysis. From Fig. 6.7, it can be seen that the critical path

delay of ML-Mesh topology is more than the Mesh topology due to the large routing

and logic delay. From our findings, the total critical path delays up to 75% are from

routing and the remaining 25% is due to the logic. In the Fig. 6.7 where the FW is

32-bits, the number of VCs being 4 and increasing the BD parameters from 2 to 32,

111

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

 5.25

 5.5

 5.75

 6

 6.25

2 4 8 16 32

C
ri

ti
c

a
l

p
a

th
 D

e
la

y
 i

n
 (

n
s

)

Buffer Depth(BD)

Critical Path Delay different NoC configuration(with FW=32bits and VC=4)

16-node Mesh Topology
16-node ML-Mesh Topology

Figure 6.7: Critical path delay for Mesh and ML-Mesh topologies

a slight increase in the critical path delay has been observed. The Mesh topology has

lesser critical path delay compared to ML-Mesh topology. This is due to the Mesh

topology structure looks more similar to the perfect square grid that matches nearly

with the real on-chip core structure compared to ML-Mesh topology. This agrees with

the findings by (Genko et al. (2005)).

6.3.4 Latency Analysis

In Fig. 6.8, the latency variation with injection load under Uniform random and Trans-

pose traffic patterns can be observed. The packet latency is directly affected by the

injection load. The ML-Mesh topology has lower average packet latency compared to

Mesh topology, this is due to the reduction of average hop count between two com-

municating nodes in ML-Mesh topology. Lower the average packet latency, faster the

response time for the application running on the source processing element. Under Uni-

form traffic pattern, ML-Mesh topology saturates earlier than the Mesh topology, due to

less path diversity and higher congestion in ML-Mesh topology. Similar behavior can

be observed in the Transpose traffic pattern.

From Fig. 6.8(c) and (d), it can be seen that the Mesh topology performs better

compared to the ML-Mesh topology in terms of latency under Random Permutation

112

6.3. Results and Discussion

and Bit complement traffic patterns. From Fig. 6.8(c) and (d), it can be seen that the

saturation throughput of Mesh and ML-Mesh topology increases when the number of

VCs is varied from 2 to 4. To reduce the packet contention in the NoC architecture,

more VCs are needed.

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Uniform Random Traffic Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(a)

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Transpose Traffic Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(b)

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Random Permutation Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(c)

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(d)

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Nearest neighbour Traffic Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(e)

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Shuffle Pattern

16-Node ML-Mesh VC-2
16-Node ML-Mesh VC-4

16-Node Mesh VC-2
16-Node Mesh VC-4

(f)

Figure 6.8: Performance comparison of 16-Node ML-Mesh and Mesh NoC topolo-
gies under (a)Uniform Random, (b)Transpose, (c)Random Permutation, (d)Bit Com-
plement, (e)Nearest neighbor and (f)Bit Shuffle Traffic Patterns.

113

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

Fig. 6.8(e) shows the performance of Mesh and ML-Mesh topologies under the

Nearest neighbor traffic pattern. The average packet latency increases as the injection

rate increases. This is due to more number of packets injected into the network. The

ML-Mesh topology has lower average packet latency compared to the Mesh topology

due to more intracluster traffic than on-chip traffic. Under the Nearest neighbor traffic,

the communicating nodes are just two hops away. In the ML-Mesh topology, an ap-

plication running on the source processing elements has a faster response time. From

Fig.8(f), it can be seen that the ML-Mesh topology with 4 VC consumes 55% fewer

FPGA resources than Mesh topology with 2 VC. The ML-Mesh topology has lower

average packet latency and higher saturation throughput than Mesh topology under Bit

shuffle traffic pattern.

It can be seen from Fig. 6.8 that the ML-Mesh topology has lower average packet

latency than Mesh topology. The Mesh and ML-Mesh topologies saturate at the higher

injection rates as the VC is varied from 2 to 4 as shown in Fig. 6.8.

6.3.5 Throughput Analysis

From Fig. 6.9 it can be seen that under the uniform traffic, the ML-Mesh topology pro-

vides a lower saturation throughput than Mesh topology. This is due to the fact that the

Mesh topology has more number of communication links between two pair of nodes.

We observed that Mesh and ML-Mesh topologies saturate at 36% and 20% of traffic

loads respectively. Under Transpose, Bit complements, Bit Shuffle and Random per-

mutations traffic patterns, the Mesh topology saturate at 16%, 24%, 25%, and 24% of

traffic loads respectively. ML-Mesh topology saturates at the injection rates of 10%,

10%, 20%, and 14% with respect to the Transpose, Bit complements, Bit Shuffle and

Random permutations traffic patterns. Under the neighbor traffic pattern, the Mesh and

ML-Mesh topologies saturate at 55% and 22% of traffic loads respectively. Under the

neighbor traffic the ML-Mesh topology performs better compared to Uniform random

traffic. The Mesh and ML-Mesh topologies have 0.53× and 0.1× improvement in per-

formance under neighbor traffic compared to uniform random traffic. Fig. 6.10 shows

the network performance of the topologies under all six traffic patterns considering 4

114

6.3. Results and Discussion

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

UniformRandom Transpose BitComplement BitShuffle RandomPermutation NearestNeighbor

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Traffic Pattern(s)

Saturation Throughput of NoC Topologies(VC=2,BD=8)

16-Node ML-Mesh Topology
16-Node Mesh Topology

Figure 6.9: Saturation Throughput comparison between 16-node Mesh, ML-Mesh
topologies with network configurations of 2 VCs and BD of 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

UniformRandom Transpose BitComplement BitShuffle RandomPermutation NearestNeighbor

S
a

tu
ra

ti
o

n
 T

h
ro

u
g

h
p

u
t

Traffic Pattern(s)

Saturation Throughput of NoC Topologies(VC=4, BD=8)

16-Node ML-Mesh Topology
16-Node Mesh Topology

Figure 6.10: Saturation Throughput comparison between 16-node Mesh, ML-Mesh
topologies with network configurations of 4 VCs and BD of 8

virtual channels. Under all the six traffic patterns, both the Mesh and ML-Mesh topolo-

gies have the higher sustainable capacity as the number of VCs are varied from 2 to 4.

Under the uniform random traffic, saturation throughput of Mesh and ML-Mesh topolo-

gies are 60% and 34% of traffic load respectively. The Mesh and ML-Mesh topologies

have 0.67× and 0.7× improvements as the VCs are varied from 2 to 4. Similar behavior

115

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

Table 6.5: Average Hop count of Mesh and ML-Mesh topologies

Number of Nodes 16

Topology Average Hop count
Mesh 2.7

ML-Mesh 0.333

can be observed for all the other traffic patterns. In Fig. 6.9 and 6.10, as the VCs are

varied from 2 to 4, the increase in saturation throughput is observed for both the topolo-

gies. This is due to the effect of VC parameter as more VCs are needed for efficient

routing of packets in the network.

6.3.6 Average Hop Count Analysis

For the ML-Mesh, the per hop router latency increases, but the overall latency of the

NoC system decreases due to the reduction of average hop count. The hop count de-

creases due to multiple local ports in the ML-Mesh architecture. The hop count is

calculated from Eq. 6.5 and 6.6 for Mesh and ML-Mesh topologies, as shown in Ta-

ble 6.5. On an average, a flit in Mesh topology traverses 87% more hops than a flit

in ML-Mesh topology. The ML-Mesh topology routers have higher connectivity with

the increased number of ports in the router. All these features account for the through-

put improvement in intracluster traffic load. As shown in Fig. 6.10, under the Nearest

neighbor traffic, an improvement in the throughput of ML-Mesh topology has been ob-

served compared to Uniform random traffic. This is due to the reduction in average

hop count in ML-Mesh topology. But, the ML-Mesh topology saturates earlier than the

Mesh topology due to the contention in the single router connected multiple processing

elements.

6.3.7 Power Analysis

The total power consumption of the NoC architecture includes the power consumed

by the router, links, interface and other components. Table 6.6 shows the power con-

sumption of the ML-Mesh topology with different configurations of BD and VCs. We

observed that the power consumption of NoC architecture increases as we increase

116

6.3. Results and Discussion

Table 6.6: Power analysis of Mesh and ML-Mesh topologies configurations with(FW
32 bits, VCs 2 to 4 and BD of 2 to 32) on Artix-7 FPGA board

Flit Width(FW) 32-bits

Virtual Channels(VC) 2 4
Buffer Depth(BD) 2 4 8 16 32 2 4 8 16 32
16-Node Mesh Power(mW) 227 244 251 473 525 396 430 673 699 779
Mesh
16-Node Power(mW) 126 132 134 146 171 161 166 193 203 235
ML-Mesh
Power Ratio Reduction(%) 44.49 45.9 46.6 69 67.4 59.3 61.4 71.3 70.9 69.8

the buffer depth from 2 to 32. This is due to the large size buffers at the input ports.

When the number of VCs are varied from 2 to 4, increase in the power consumption

of the NoC architecture has been observed as the more number of VCs consume large

hardware resources. Similar behavior is observed in Mesh topology with various NoC

configurations. We compare the power consumption of Mesh and ML-Mesh topologies

as shown in Table 6.6. From Table 6.6, we noticed that the Mesh topology consumes

44.5% more power than the ML-Mesh topology. It can be concluded that the ML-Mesh

topology is best suitable for designing the power efficient MPSoCs.

6.3.8 Comparison with the state-of-the-art CONNECT(Papamichael and Hoe (2015))

Table 6.7: Synthesis results of 16-node Mesh and ML-Mesh topologies on Artix-7
FPGA board

Topology
P-NoC
Mesh

CONNECT
Mesh

P-NoC
ML-Mesh

CONNECT
ML-Mesh

Flit width 32 64 32 64 32 64 32 64
Virtual Channel 2 2 2 2 2 2 2 2
Buffer Depth 4 4 4 4 4 4 4 4
Resource Utilization % % % % % % % %
Number of Slice LUTs 23 29 25 32 5 7 5 8

The proposed work has been compared with the state-of-the-art CONNECT NoC

generator tool (Papamichael and Hoe (2015)). The 16-node ML-Mesh and Mesh topolo-

gies HDL code were generated from the CONNECT online NoC generation tool by con-

figuring the router microarchitecture components. The CONNECT design implements

117

6. P-NoC: Performance Evaluation of NoCs architecture using FPGA

all the input memory buffers on soft logic elements. This causes high resource utiliza-

tion and increases the critical path delay of the CONNECT design, which reduces the

performance of the architecture. The P-NoC framework maps and routes NoC architec-

ture efficiently on the FPGA to consume fewer resources. This reduces the critical path

delay improving the performance of P-NoC compared to CONNECT. Table 6.7 shows

the area utilization results for the CONNECT and P-NoC topologies by considering

of 16-node ML-Mesh and Mesh. The proposed P-NoC architecture consumes 9.3%

and 13.33% fewer FPGA LUT resources compared to the CONNECT architecture of

Mesh and ML-Mesh by configuring router microarchitecture of VC 2, BD 4 and FW

of 64-bit. For all configuration of 16-node ML-Mesh and Mesh topologies of P-NoC

architecture consumes fewer hardware resource than CONNECT architecture, this is

due to the efficient mapping of NoC topology on FPGA resources.

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.1 0.2 0.3 0.4 0.5

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Uniform Random Traffic Pattern

P-NoC 16-Node ML-Mesh VC-2
CONNECT 16-Node ML-Mesh VC-2

P-NoC 16-Node Mesh VC-2
CONNECT 16-Node Mesh VC-2

(a)

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Transpose Traffic Pattern

P-NoC 16-Node ML-Mesh VC-2
CONNECT 16-Node ML-Mesh VC-2

P-NoC 16-Node Mesh VC-2
CONNECT 16-Node Mesh VC-2

(b)

Figure 6.11: Performance comparison of P-NoC and CONNECT topologies under
(a)Uniform Random, (b)Transpose.

The network performance comparison of the ML-Mesh and Mesh topologies of P-

NOC and CONNECT are illustrated in the Fig. 6.11 (a) and (b) considering the Uniform

random and Transpose traffic pattern. The ML-Mesh has lower average packet latency

than Mesh topology, this is due to the cluster based communications in ML-Mesh. The

P-NoC’s ML-Mesh and Mesh has 54.2% and 30% higher saturation throughput than

CONNECT’s ML-Mesh and Mesh topologies under uniform traffic pattern. For trans-

pose traffic, P-NoC has 22.2% and 28.57% higher saturation throughput than CON-

NECT for the ML-Mesh and Mesh topologies respectively.

118

6.4. summary

6.4 SUMMARY

P-NoC: an FPGA-based paratermized framework for design space exploration of NoC

architecture is presented in this chapter. The performance analysis and design trade-off

of two NoC architectures namely Mesh and ML-Mesh topologies using FPGA. P-NoC

contains a fully parameterized Topology, Router and Traffic generation and Receptor

modules. The experimental results show that the Virtual channel(VCs), Flit width(FW)

and Buffer depth(BD) parameters contribute to higher FPGA resource utilization and

influence the performance of NoC architectures. The FW, BD and VCs have significant

impact on FPGA resource utilization.

119

CHAPTER 7

DESIGN OF LOW LATENCY AND AREA
EFFICIENT ROUTER ARCHITECTURE FOR NOC

USING FPGA

An FPGA based NoC using a low latency router with a look-ahead bypass (LBNoC) is

designed in this Chapter. The proposed design targets the optimized area with improved

network performance. The techniques such as single cycle router bypass, adaptive rout-

ing module, parallel virtual channel and switch allocation, combined virtual cut through

and wormhole switching are employed in the design of the LBNoC router. The LBNoC

router is parameterizable with the network topology, traffic patterns, routing algorithms,

buffer depth, buffer width, number of VCs, I/O ports being configurable. A table-based

routing algorithm is employed to support the design of custom topologies. The input

buffer modules of NoC router are mapped on the FPGA BRAM hard blocks to utilize

resources efficiently.

7.1 INTRODUCTION

The NoC router stores the incoming flits in the buffers and the route for the destination

is computed based on the routing algorithms. The wormhole switching mechanism is

employed to divide the large packets into smaller chunks of data called flits for efficient

buffer utilization. However, in the case of a single physical buffer per port, there can be

a chance of head-of-line(HoL) blocking which degrades the performance of the NoC.

In order to overcome this issue, Virtual Channel (VC) buffers have been introduced

121

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

(Becker (2012),Dally (1992)). The express virtual channels have been employed in the

applications demanding high throughput which leads to complex router microarchitec-

ture (Kumar et al. (2007)).

The bufferless router has been designed by removing the buffers at the input port.

Removing the buffers saves the router area (Moscibroda and Mutlu (2009),Hayenga

et al. (2009)). At high traffic loads, performance of bufferless router degrades, the

incoming packets are dropped or deflected because of no buffer in the router design.

This in turn increases the network contention and leads to higher power consumption

than a buffered router (Michelogiannakis et al. (2010)).

The number of pipeline stages in an NoC router and the number of hops along

the route affects the overall network latency significantly. In this work, we reduce

the pipeline stages in the NoC router by employing parallel VC and switch allocation

schemes and router bypass techniques. The adaptive routing module has been designed

to avoid network congestion by dynamically conforming with the adversarial traffic

conditions. It achieves high performance under high traffic load.

An FPGA based framework has been developed to demonstrate a prototype of the

parameterized low-latency router architecture employing the lookahead bypass tech-

nique called LBNoC has been proposed in this work. Various NoC design space explo-

ration parameters such as buffer depth, number of VCs, flit width, traffic patterns and

routing algorithm can be tuned in the framework for regular and user-defined custom

topologies.

7.2 RELATED WORK

In this section, we introduce the state-of-the-art techniques proposed for low latency

router architecture.

The efficient NoC router microarchitecture has been proposed in (Becker (2012)).

The nonatomic VC reallocation method employed in router architecture. The full cross-

bar architecture has been employed in the router microarchitecture. This results in the

increased area overhead of the router. In the a look-ahead routing technique (Galles

(1997)), the route computation is done advance in a neighboring router and this routing

122

7.2. Related Work

information will be appended to the header flit. The next router need not compute the

route for the head flit and can send the flit for allocation unit depending precomputed

output port. The switch allocation with speculation (Peh and Dally (2001)) has been

presented to eliminate the VC and switch allocation dependency. The speculative al-

location performs well under the low traffic condition. As we increase the traffic load,

there will be an increase in unsuccessful speculation which leads to the inefficient use

of the speculation technique. The technique of precomputing arbitration has been pro-

posed by Mullins et al. (Mullins et al. (2004)). Employing this technique, the critical

path delay has been reduced for the separable input-first VC allocator. In the pipeline

stages, the switch allocation stage has been removed from the critical path. When the

traffic is high, removing the switch allocation stage is not efficient as there can be an

unused crossbar time slots for the newly arrived flits. The design of FPGA based low

latency router microarchitecture has been presented in (Lu et al. (2011)). The two clock

cycle router architecture is designed by combining the VC and switch allocation. The

atomic VC allocation has been employed in this work. This results in higher average

packet latency and lowers the saturation throughput in the early stages of traffic in-

jection. (Becker (2012)) proposes a combined VC and switch allocation technique in

which the queues of free VCs are employed to replace the VC allocation for each desti-

nation port. As similar to the speculative approach, this technique demands to have the

higher priority for the non-header flit requests. There can be a possibility where it may

not be able to assign the OVC for a header flit granted by the switch allocation. A pro-

totyping platform for many-core SoCs employing the low latency network-on-chip has

been proposed in (Monemi et al. (2017)). ProNoC is supports emulation of Torus and

Mesh topologies. ProNoC employs the full crossbar architecture to implement routers.

This will lead to a higher area overhead and increased latency.

The express VCs (Kumar et al. (2007)), dynamic allocation of VC (Nicopoulos

et al. (2006)) and flit reservation flow control (Peh and Dally (2000)) have been pro-

posed for high throughput. These designs are more complex which leads to more

area utilization and increased dynamic power. (Nicopoulos et al. (2006)) improves

the buffer utilization by designing a complex control circuit. The main problems with

123

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

ViChaR are the complexity, setup limitation and longer pipeline for flit arrival/depar-

ture. The router architecture with distributed shared-buffer has been proposed in (Ra-

manujam et al. (2010),Ramanujam et al. (2011),Soteriou et al. (2009)). An output-

buffered router(OBR) has been emulated in these works. The proposed router archi-

tecture in (Ramanujam et al. (2010),Ramanujam et al. (2011),Soteriou et al. (2009))

has higher zero load latency than a virtual channel router(VCR). This is due the fact

that a packet must travel through input buffer, two crossbars and shared queues at each

router even at lower traffic load. The design of complex router with two crossbars and

the timestamp-based flow control consumes 35% and 58% more area and power than

a conventional router architecture respectively. The dynamic buffer management and

flow control has been proposed in (Becker et al. (2012)). This implementation leads to

an increase in the hardware cost, delay and power. In (Yan et al. (2015), Yan and Srid-

har (2018)), predefined priority cooperation and centralized priority management based

round-robin arbiter has been proposed. These design increase the allocation matching

quality. Hence, the requested input port gets the grant signal for packet transmission

much more accurately. These designs have area overhead and are difficult to maintain

synchronization among each arbiter.

7.3 LBNOC-FPGA BASED BYPASS NOC FRAMEWORK

LBNoC framework contains components on both the software and the hardware par-

titions of the FPGA. The operations that are being processed on the hardware side

are controlled by the processing unit of the software side. Also, the software side is

responsible for generating traffic and performing the statistics calculating. The hard-

ware side includes the NoC router microarchitecture, programmable logic, memory

and interfaces, flow control and the packet traversal. Fig. 7.1 shows the architecture

of the LBNoC framework in which the Xilinx Zynq 7000 ZC702 SoC has been used

for the implementation. The software side of the framework is implemented on the

Zynq 7000’s Processing System (PS) containing dual core ARM Cortex 9 soft proces-

sors. The hardware side is implemented on the Artix 7 FPGA chip of Programmable

Logic(PL). As seen in Fig. 7.1, USB-UART driver has been employed to establish the

communication between the host PC and the FPGA. This guarantees the performance

124

7.3. LBNoC-FPGA based Bypass NoC Framework

Figure 7.1: The overall architecture of LBNoC-framework implemented on Xilinx
Zynq 7000 ZC702 SoC. The PS consists of two core ARM Cortex-A9 processors and
the PL has Artix-7 FPGA

of dynamic traffic transmission. The FIFOs are implemented between (i) the USB-

UART interface and the DDR3 for transferring the trace files from the host to DDR3 of

PS, (ii) the DDR3 and Programmable Logic (PL) bridge for transferring the traces to

the emulated NoC routers on the FPGA and (iii) in between Traffic receptors(TRs) and

Traffic generators(TGs) which are modeled on one of the two available ARM Cortex 9

processors. The Memory interface is connected to Processor1 for writing or reading the

generated or the received packets.

7.3.1 Hardware Components

The Network-on-chip(NoC) architecture has been implemented on the PL side of the

Zynq 7000 SoC. The two stage pipeline router architecture has been designed. The

router microarchitectural parameters such as flit width, buffer depth, virtual channel,

125

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

ports, routing algorithm, link width and topology are configurable in the LBNoC frame-

work.

Figure 7.2: Two clock cycle Low latency router architecture implemented in LBNoC
framework(The router is highly parameterized with combined VC and Switch allocation
stages)

7.3.1.1 NoC Router

Fig. 7.2 shows the LBNoC router architecture. The two-stage pipelined router archi-

tecture employing the lookahead bypass technique comprises of an input buffer, route

computation unit, combined virtual and switch allocation unit, output module and the

crossbar. The Traffic generator is connected to the injection port of the router and ejec-

tion port is connected to the Traffic receptor in the emulation platform.

7.3.1.2 Buffer Implementation

In the conventional VC based router architecture, a separate buffer is designated for

each VC. Multiplexers and demultiplexers are used to write and read the data from

these dedicated buffers for each VCs. The multiplexer/demultiplexer implementation

consumes more number of FPGA resources (Monemi (2015)). When the number of

VCs are increased in the router input ports, there will be a need for large width multi-

plexers (Monemi et al. (2017)) that leads to large area utilization. In LBNoC design,

large width multiplexers are replaced with a single, dual port Block RAM(BRAM)

126

7.3. LBNoC-FPGA based Bypass NoC Framework

memory and two multiplexers with narrow width as shown in Fig. 7.3. The multiplex-

ers with narrow width select the read and write pointers from the active virtual channel

by combining all the input VC buffers at each input port. The VC ID from the incoming

header flit and Write pointer from the controller are combined to form Addr1 for writing

incoming flit into the input buffer. For reading the flit from the input buffer, the Addr2

comprises an associated grant signal and read pointer from the controller. The ports of

dual port memory are used for writing the incoming flits and reading the outgoing flits

for sending them to the desired crossbar output port of the router.

Figure 7.3: The architecture of Input buffer employed in designing low latency router

Fig. 7.3 shows the implementation of input buffers based on the dual port RAM.

The write and read pointers of the dual port RAM are used to select the address for

reading and writing from the Memory. This approach removes the multiplexer and

demultiplexer in the input buffers of the router and efficiently maps all input VC buffers

of an input to a single BRAM. This scheme efficiently utilizes FPGA BRAMs. We

have implemented configurable parameters for efficient mapping of the input buffer to

FPGA memory based on the flit width and buffer depth. FPGA supports two kinds

of memories, viz., soft logic that is LUT based memory (Distributed RAM(DRAM))

and the Hard logic memory(Block RAM(BRAM)). When the size of the input buffer is

small, LBNoC utilizes the DRAMs to map input buffers. In case of large input buffers,

the BRAMs are used instead of the DRAMs thus improving the performance of the

LBNoC.

127

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Table 7.1: The conventional allocator. V and P represent number of VCs per port and
number of ports

Allocation Type
First stage allocator Second stage allocator

Number size of arbiter Number size of arbiter

Virtual channel allocator (PV) (V:1) (PV) ((P-1)V:1)
Switch allocator (P) (V:1) (P) ((P-1):1)

7.3.1.3 Routing Algorithms

The incoming flits will be sent to the route computation module to determine the output

port. The framework supports deterministic, table based and minimal adaptive rout-

ing for regular and custom topologies. Table based routing has been implemented for

implementing custom topologies. The LUTs holding the output ports to all the desti-

nations from a node under considerations are maintained. The output port entries for

the large networks have large number entries in LUTs. DRAMs have been used in the

LBNoC work to store the routing tables. A single DRAM will be typical of single-bit

wide memory with 16-64 elements constrained to a specific FPGA family. As the en-

tries in the routing tables are maximum of 3 bits wide, they are mapped very efficiently

to DRAMs.

Figure 7.4: Free VC availability check and count

7.3.1.4 Parallel VC Allocation and Switch Allocation

The large circuit complexity and higher critical path delay of traditional allocator re-

sults in area overhead and performance reduction (Monemi et al. (2017)). The most

challenging task in the NoC router design is the implementation of the allocator mod-

ule as it lies in the critical path of the NoC router, also influence the performance and

area overhead significantly. From Table 7.1, it can be seen that the VC allocation con-

sumes a large number of resources compared to the Switch allocation. Due to this large

128

7.3. LBNoC-FPGA based Bypass NoC Framework

consumption, the VC allocation is replaced with queues of free VCs selection for each

destination port as shown in Fig. 7.4. As the queues of free VCs selection require a

single arbitration stage, it results in faster execution and less area overhead. The con-

ventional VC allocator stage requires the second arbitration stage to remove conflicts

of assigning one Output VC to several input VCs. Whereas, in the queues of free VCs

selection technique, the switch allocator removes conflicts of assigning one Output VC

to several input VCs.

Figure 7.5: Request filter logic

In order to implement the two-stage router pipeline architecture, the VC and switch

allocation stages of the conventional router are combined to form a single VSA stage.

In VSA stage, the VC allocation and switch allocation are performed in a single clock

cycle (Lu et al. (2011)). The VC allocation fails when all the virtual channels of the

given output channel are busy for head flit and there is a lack of free space in VCs

for body and tail flits. A novel filtering method is implemented to monitor all switch

allocation requests that are unable to transfer flits through the output channel. The

newly proposed request filter logic is shown in Fig. 7.5. The request for output channel

is filtered, where there are free VCs and free space in the VCs. These requests are sent

to the Switch Allocation logic.

The non-speculative parallel virtual channel and switch allocation approach has

been implemented as shown in Fig.7.6. For each input port, only one request is granted

from all the other requests that are sent to the first stage arbiter of size V:1. After en-

coding the winner, the arbiter selects the output port among rest of the requests(Virtual

129

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Figure 7.6: Parallel Virtual Channel and Switch allocator

channel or switch). The header flit requests both VC and SW allocator. The non-header

flit requests only switch allocator, as the VC allocation has already been done by the

header flit. The VC allocation done for the header flit is reserved for the entire dura-

tion of the packet. But, the switch requests are allocated flit by flit basis. Each time

the flit has to request for the switch allocator. To differentiate header and non-header

flit request signal, the VC and switch requests are designated with “1” and “0” bits re-

spectively. The selected output port will be sent to the second stage of the arbiter. The

second stage arbiter performs arbitration among requests of different input ports that

request the same output port. The second stage arbitration results are sent back to the

respective inputs. The request signal after winning both the first and second stage arbi-

130

7.3. LBNoC-FPGA based Bypass NoC Framework

tration is only granted the access. If the request is of switch type designated with “0”,

then the allocation process is completed. If the request is of VC type designated with

“1”, then it continues for the VC allocation, that is free VC selection. The arbitration of

free VCs is done using the V:1 arbiter at the output channel. An encoding of the winner

of V:1 arbiter can be done and latched as a new Virtual Channel Identifier(VCID). The

input request for output channel which does not have free space in VC and free VC has

been eliminated by the request monitoring logic. The resultant will be at most one grant

can be made available at the output channel, always successful result is returned by VC

allocation. The free VC selection is not performed on the critical path, therefore it is

performed parallel with switch allocation. Arbitration is needed in the scenario of two

levels of allocators. The design of parallel VC allocation and Switch Allocation results

in the reduced circuit complexity and critical path delay in NoC router architecture as

shown in Table.7.2. The LBNoC supports round-robin, weighted round-robin and fixed

priority arbitration schemes.

Table 7.2: The proposed parallel allocator. V and P denotes number of VCs per port
and number of ports

Parallel allocator

Type of allocator Virtual channel allocator+Switch allocator
Size of arbiter (V:1) ((P-1):1)

Number (2P) (P)

7.3.1.5 Crossbar

The decomposed crossbar architecture has been implemented in the LBNoC router ar-

chitecture. Based on the route computed employing lookahead routing, the flits destined

to the local output are sent through the multiplexer instead of going through the switch

allocation and switch traversal. This results in the reduction of 2 clock cycles at the des-

tination nodes. Employing the decomposed crossbar results in reduced area utilization.

As there is less contention as the connections are less, the probability of contention at

the output port has been reduced.

131

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

7.3.1.6 Design of hybrid flow control

A hybrid flow allocation mechanism allows the improvement of network throughput.

To keep the flits of the same packet together in the network, a communication flow

has been established employing the hybrid flow control. As the packet stays across a

lesser number of routers, less number of network resources such as Virtual channels are

required to hold the packet at any given time. The hybrid flow control mechanism is im-

plemented by combining the virtual-cut through and wormhole flow switching based on

priority rule. The output port is allocated on flit by flit basis of different packets, but the

priority being given to the same packet flits requesting contiguous in switch allocation

mechanism. That is, both the first(local) and second(global) stage arbitration in switch

allocation favor flits of the same packet. The degradation of throughput can be avoided

in the network employing the hybrid flow only if the same packet flits contiguous re-

quests exist. The starvation does not happen in the hybrid flow due to the breakage of

the hybrid flow of the same packet flits. Once the switch allocation request to the tail flit

of the packet is granted, the resources are free to be allocated to flits of other packets.

Thus, across the network, the flows are created by keeping the same packet flits together

and less number of resources can be occupied at any given time.

Figure 7.7: Pipeline stages of conventional and LBNoC router architecture

132

7.3. LBNoC-FPGA based Bypass NoC Framework

7.3.1.7 The Pipeline Bypass

The output ports of the router which have little contention are often free at low network

loads. In such circumstances, the pipeline stages can be bypassed and flit traversal delay

can be reduced to a single clock cycle. The switch traversal path of the crossbar is set

up earlier by configuring control signals based on an advance setup signal which arrived

one cycle ahead than the actual flit. The following three conditions are to be fulfilled for

pipeline bypassing: First, the buffer at the input port is empty, when the advance setup

signal arrives. Second, there is no conflict for the output port with existing flits. The

advance setup signal requests for a conflict free output port. Third, multiple advance

setup signal does not have output port conflicts. The flit follows normal pipeline stages

of Fig. 7.7 (b) when the above conditions are not satisfied. If the above conditions are

satisfied, the pipeline delay of the flit is just the single clock cycle.

7.3.1.8 Pipeline Architecture

Fig.7.7 shows the conventional 5-stage pipeline, 2-stage pipeline and 2-stage with by-

pass pipeline of the NoC router architecture. The conventional 5-stage pipeline router

comprises of buffer write(BW), route computation(RC), virtual allocation(VA), switch

allocation(SA), and switch traversal(ST) stages. In the 2-stage router pipeline architec-

ture, the pipeline structure of the router is optimized by employing lookahead routing

and combining the Nonspeculative Virtual channel and switch allocation stages. Also,

the Buffer write, Lookahead Route compute(NRC) and combined VSA allocation are

done in one clock cycle and switch traversal(ST) is performed in the next clock cycle.

At low traffic loads, the flit passes through a single cycle in a 2-stage router with bypass

architecture. In this pipeline architecture, flits perform only Switch Traversal(ST) stage

by eliminating all other stages of router pipeline architecture by employing the bypass

technique.

7.3.1.9 Adaptive Routing Algorithm

Fig. 7.8 shows the block diagram of the proposed adaptive route computation module.

The adaptive route computation module consists next router address predictor, two hop

neighbor status information and adaptive routing algorithm for route computation. A

133

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Figure 7.8: Proposed adaptive look-ahead routing module

small area overhead can be observed due to the additional status information in trans-

mission links and register for storing the 2-bit status information. This area overhead is

negligible in FPGA due to the abundant availability of wires and flipflops (Papamichael

and Hoe (2015)). The adaptive routing employs 2-bit values for indicating the conges-

tion in the communication routers. 00, 01, 10 and 11 are used to indicate the empty(0%),

half full(50%), nearly full(75%) and full (100%) occupancy of the buffers of a router

respectively. Each router has to exchange these congestion status bits with its two hop

neighboring routers in order to make the correct routing decisions. The adaptive routing

algorithm (Parane et al. (2018)) with negligible area overhead compared to XY routing

algorithm of 1.66% is used in the proposed LBNoC architecture.

7.3.2 Software Components in the LBNoC

The Traffic generation, Source queue and Traffic receptors have been implemented on

the software side. These components have been implemented on the embedded ARM

Cortex 9 soft processors.

7.3.2.1 Traffic Generation

The Traffic Generation (TG) modules are used to produce various synthetic traffic pat-

terns. Each router of the NoC topology is associated with TG module. The TG modules

are responsible for generating the packets and storing them in the source queue. Also,

the flit generation logic has been incorporated in the TG module. The TG module is

responsible for generating the traffic. Various types of synthetic traffic patterns such

as uniform random, bit complement, transpose, bit reverse, hotspot and tornado are

supported by the framework.

134

7.4. Results and Discussion

7.3.2.2 Source Queue

The source queues are implemented to store the flits generated by the TG module prior

to the injecting the packet in the network. The source queues operate in the FIFO

fashion. The source queue takes care of the injection of the flits into the NoC topology

based on the emulation cycles.

7.3.2.3 Traffic Receptor

The Traffic Receptor (TR) associated with each NoC router is responsible for validating

the destination. TR also decodes the information in the flit. The TR module calculates

the packet latency based on the time stamp stored in head flit. Also, it monitors the

number of total packets received, number of packets transmitted, average packet latency.

7.3.2.4 Global Clock Generation

The Global Clock Generation (GCG) module is responsible to maintain the synchro-

nization between the software (ARM Cortex) and the FPGA side. GCG generates a

clock on the software side. The FPGA side is driven by the clock generated in the

software side.

7.4 RESULTS AND DISCUSSION

The microarchitectural components of the NoC architecture have been implemented in

Verilog. Synthesis results have been extracted from Xilinx Vivado 2016.2. Results in-

clude resource usage on the Xilinx Zynq 7000 SoC (ZC 702 board). The hardware side

has been implemented on the Artix 7 FPGA and the software side has been implemented

on the ARM Cortex 9 soft processors. The software side accounts for the traffic gener-

ators and traffic receptors. The UART interface has been employed for transceiving the

traffic from the software to the hardware side of the framework. Another USB-UART

interface has been employed for communication between the host PC and the PL side

of the Zynq SoC.

The experimental setup employed in evaluating the LBNoC work is shown in Table

7.3. Various configurations of Buffer depth, Number of VCs, Flit width, Number of

I/O ports, traffic patterns and different topologies have been employed to evaluate the

135

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Table 7.3: Experimental Setup Details

Experimental Setup Details

Topology 4× 4 & 5× 5 Mesh Topology
Buffer type FIFO Buffer

Packet length 4 flits
Flit width 32, 64 and 128

Buffer depth 4, 8 and 16
Routing algorithm DoR Lookahead

Router Pipeline depth 2-stage and 2-stage with Bypass
Flow control Credit based
Arbiter type Round robin, Priority

Traffic pattern Uniform random, Bit complement, Transpose, Bit reverse, Tornado, Hotspot

LBNoC framework.

7.4.1 FPGA Resource Utilization

In the FPGA platform, memory can be mapped on the soft and hard memory blocks.

The soft memory block such as Register RAM, Distributed RAM(also called LUT based

RAM) and the hard memory block such as Block RAM(BRAM). Table 7.4 shows the

buffer implementation mapping on three alternative memory modules of the FPGA plat-

form with fixed 32-bit of Flit width and varying Buffer depth from 5 to 55 flits. From

Table 7.4, we observed that mapping memory logic on the Register RAM consumes

more FPGA resource compared to the LUTRAM and BRAM resources. This increases

the circuit complexity and decreases the operating frequency. Comparing the three al-

ternative memory modules, BRAM based implementation is best suitable to map the

entire memory logic into the single BRAM block. This will reduce the circuit com-

plexity and increases the operating frequency. In Table 7.5, we fixed the Buffer depth

to 15 flits and flit width has been varied from 4 to 256-bit. It can be observed that

the FPGA memory resource consumption increases with the increase in the number of

bits. The results show that BRAM is best suitable for explicit memory mapping which

consumes hardly four BRAM block with flit size of 256 bit compared to Register RAM

and LUTRAM.

Tables 7.6 and 7.7 show the FPGA BRAM resource utilization for various configu-

rations of NoC router input buffers targetting Zynq 7000 SoC. The results in the Tables

136

7.4. Results and Discussion

Table 7.4: FPGA memory buffers using three implementation alternatives with constant
flit width of 32-bit.

Flit Width 32-bit

Buffer Depth 5 10 15 20 25 30 35 40 45 50 55

FIFO Buffer
RegisterRAM 160 320 512 640 800 960 1120 1280 1440 1600 1760

LUTRAM 24 24 24 24 24 24 44 44 44 44 44
BRAM 1 1 1 1 1 1 1 1 1 1 1

Table 7.5: FPGA memory buffers using three implementation alternatives with constant
buffer depth of 15 flits.

Buffer Depth 15

Flit Width 4 8 16 32 64 128 150 180 200 210 256

FIFO Buffer
RegisterRAM 64 128 256 512 1024 2048 2400 2880 3200 3360 4095

LUTRAM 8 8 16 24 48 88 100 120 136 140 176
BRAM 1 1 1 1 1 2 3 3 3 3 4

7.6 and 7.7 are specific to the input buffer in a single LBNoC router. It can be seen

that, the LBNoC framework is capable of design space exploration of the NoC archi-

tecture by allowing the parametrized values for Input buffer configurations. Tables 7.6

and 7.7 infer that, increasing the number of VCs, flit width and buffer depth yields in

higher utilization of FPGA resources. Changes made to the buffer depth and flit width

affect the buffering requirement. This will play a major role in the performance of NoC

architecture.

Table 7.6: Synthesis results of various configurations of Input buffer in LBNoC router
with 64-bit flit width

Flit Width 64 bits

Number of VCs 4 8 16
Buffer Depth 4 8 16 4 8 16 4 8 16

Input Buffer

LUT 46 58 76 94 124 158 190 254 323
FFs 28 41 52 56 80 104 112 160 208

BRAM36 1 1 1 1 1 1 1 1 1

In designing the low latency router architecture in LBNoC, we employed merging

of all input VCs buffer at input ports. Table 7.8 shows the resource utilization of merged

buffer implementation and CONNECT’s (Papamichael and Hoe (2015)) conventional

buffer implementation. It can be seen from Table 7.8 that the merged implementation

137

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Table 7.7: Synthesis results of various configurations of Input buffer in LBNoC router
with 128-bit of flit width

Flit Width 128 bits

Number of VCs 4 8 16
Buffer Depth 4 8 16 4 8 16 4 8 16

Input Buffer

LUT 46 58 76 94 124 158 192 254 323
FFs 28 41 52 56 80 104 112 160 208

BRAM36 2 2 2 2 2 2 2 2 2

consumes 28 % and 44 % fewer LUTs for 32 and 64 bit flit width. This implementation

will be mapped efficiently to a single Block RAM of FPGA. Increase in the number of

LUTs increases the critical path thus reducing the operating frequency.

Table 7.8: Synthesis results of merged FIFO buffers at each input port and Conventional
FIFO buffers

Flit Width 32 bits 64 bits

Num. of VCs 4 4
Buf. Depth 8 8

Merged Input buffer

LUT 56 58
FF 40 40

DRAM - -
RAMB18 1 -
RAMB36 - 1

CONNECT buffer

LUT 78 104
FF 42 42

DRAM 24 48
RAMB18 - -
RAMB36 - -

The queues of free selector have been considered for implementing the VC allocator

in low latency router architecture. Table 7.9 shows the resource utilization of queues

of free VCs selection module and the two level VC allocator module. It can be seen

that the queues of free VCs selection consume 58.05 % fewer hardware compared to

the conventional VC allocator (Becker (2012)).

The decomposed crossbar architecture has been implemented to directly route the

packet which is destined for the local input port based on the look-ahead routing. Table

7.10 shows the resource utilization of Full crossbar (Monemi et al. (2017)) and the De-

composed crossbar. The Decomposed implementation consumes 10.64 % fewer LUTs

138

7.4. Results and Discussion

Table 7.9: Synthesis results of Queue of free VCs selection and Conventional VC allo-
cator implementation

VC 4

In/Out Port 5

Queue of free VCs
LUT 370
FF 155

VC allocator
(Becker (2012)) LUT 882

FF 201

than the Full crossbar.

Table 7.10: Synthesis results of Full and Decomposed Crossbar with IN/OUT ports

Full Crossbar (Monemi et al. (2017)) Decomposed Crossbar
6-IN and 6-OUT ports 6-IN and 5-OUT ports

LUT 141 126

7.4.1.1 Topology Implementation

The 4× 4 and 5× 5 prototypes have been implemented on LBNoC to demonstrate the

resource utilization.

Table 7.11: Synthesis results of Mesh topology of size 4 × 4 and 5 × 5 with various
configuration of input parameters

Topology 4x4 5x5 4x4 5x5

VC 2 2 4 4
Buffer Depth 2 4 2 4 2 4 2 4

Flit Width 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64
LUT(%) 21 31 26 35 36 52 43 57 41 49 50 59 67 81 78 90
FF(%) 5 7 7 7 6 12 11 14 9 11 12 14 15 19 19 23

BRAM(%) 22 45 22 45 37 75 37 75 22 45 22 45 37 75 37 75
Power(mW) 374 529 422 607 550 821 634 942 633 837 704 917 964 1314 1078 1481

Table 7.11 shows the synthesis results for the designed topologies. Increasing the

flit width increases the FPGA resource utilization. Considering the 4×4 Mesh topology,

when the flit width is increased from 32 to 64 bits, the LUT utilization will be increased

from 26% to 35% for buffer depth 4 and 2 VCs. Similar behaviour is observed for

the 5 × 5 Mesh topology. Flit width affects the buffer requirement in the NoC router

architecture. It can be seen that, increasing the flit width from 32 to 64 bit leads to

139

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

higher utilization of BRAMs. When the 32 bit flits are utilized, the 18Kb BRAMs of

Xilinx FPGA is used. When the 64-bit flits are used, 36Kb BRAMs are utilized. This

is because, the Xilinx 18Kb BRAM can be configured to accommodate the 512 flits of

each of 32 bit width. As we increase the flit width to 64 bit, the 18Kb BRAM will not

be sufficient to map the required width. Hence, the 64-bit flits will occupy the 36Kb

BRAMs by configuring 512 of flits each of 64 bits. As the topology size increases, the

FPGA resources also increase. The 5 × 5 with 4 VCs and 64 bit flit width consumes

65.30 % and 40 % more LUTs and 36Kb BRAMs respectively than the 4 × 4 Mesh

topology.

7.4.2 Latency Analysis

The packet latency analysis results under various synthetic traffic patterns are presented

in this section. We use six traffic patterns: Uniform Random, Hot-spot, Transpose, Bit

complement, Bit Reverse and Tornado. Table 7.3 shows the basic experimental setup of

latency analysis. From Fig. 7.9, it can be seen that the single cycle router with bypass

path and adaptive routing performs better compared to the baseline Two clock cycle

router architecture for all the traffic patterns. From Fig. 7.9(a), the 4×4 Mesh topology

has a lower average packet latency compared to 5×5 Mesh topology. This is due to

the lower diameter of the 4×4 Mesh. The single cycle Bypass path reduces the aver-

age communication latency by 5.4%, 5.6%, 5.2%, 9.2%, 4.99% and 5.6% for Uniform

random, Transpose, Bit reverse, Bit complement, Tornado and Hot-spot traffic patterns

respectively for 4×4 Mesh topology. The 5×5 Mesh topology with a single cycle By-

pass path reduces the average packet latency by 6.78%, 7.93%, 9.5%, 10.3%, 6.45%

and 7.93% for Uniform random, Transpose, Bit reverse, Bit complement, Tornado and

Hot-spot traffic patterns respectively. Employing both the single cycle Bypass path and

the adaptive routing strategy, reduction in the average communication latency by 6.31%,

6.53%, 6.12%, 10.42%, 6.01% and 6.7% for Uniform random, Transpose, Bit reverse,

Bit complement, Tornado and Hot-spot traffic patterns respectively have been observed

for 4×4 Mesh topology. For the 5×5 Mesh topology with single cycle Bypass path

and the adaptive routing strategy, reduction in the average packet latency by 7.84%,

8.85%, 10.7%, 11.63%, 7.5% and 8.79% for Uniform random, Transpose, Bit reverse,

140

7.4. Results and Discussion

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Uniform Random Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(a)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Transpose Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(b)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Reverse Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(c)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Bit Complement Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(d)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Tornado Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(e)

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4

A
v

e
ra

g
e

 P
a

c
k

e
t

la
te

n
c

y
(I

n
 C

lo
c

k
 c

y
c

le
s

)

Load(in Flits/Cycle/Node)

Network Performance under Hot spot Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(f)

Figure 7.9: Performance comparison of 4x4 and 5x5 NoCs topologies with various
configurations under a different type of traffic patterns.

Bit complement, Tornado and Hot-spot respectively have been observed. 4×4 Mesh

topology employing the bypass path and adaptive routing strategy with 4 VCs performs

better compared to all the other configurations under Uniform Random, Transpose, Bit

Reverse and Hot-spot traffic patterns. From Fig. 7.9(d), it can be observed that 4×4

with 2 VCs considering the bypass and baseline two clock cycle architecture saturates

141

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li
ts

/C
y
c
le

s
(%

)
)

Load(in Flits/Cycle/Node)

Network Throughput under Uniform Random Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(a)

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.1 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li
ts

/C
ly

c
le

s
(%

)
)

Load(in Flits/Cycle/Node)

Network Throughput under Transpose Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(b)

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li
ts

/C
y
c
le

(%
))

Load(in Flits/Cycle/Node)

Network Throughput under Bit Reverse Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(c)

 25

 30

 35

 40

 45

 50

 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
in

 F
li
ts

/C
y
c
le

 (
%

))

Load(in Flits/Cycle/Node)

Network Throughput under Bit Complement Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(d)

 30

 35

 40

 45

 50

 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li
ts

/C
y
c
le

s
(%

)
)

Load(in Flits/Cycle/Node)

Network Throughput under Tornado Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass-enable

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass-enable

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass-enable

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass-enable

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(e)

 20

 25

 30

 35

 40

 45

 50

 0.2 0.3 0.4 0.5 0.6

T
h

ro
u

g
h

p
u

t(
In

 F
li
ts

/C
y
c
le

 (
%

)
)

Load(in Flits/Cycle/Node)

Network Throughput under Hot spot Traffic Pattern

Mesh 4x4 VC-2
Mesh 4x4 VC-2-Bypass

Mesh 4x4 VC-4
Mesh 4x4 VC-4-Bypass

Mesh 5x5 VC-2
Mesh 5x5 VC-2-Bypass

Mesh 5x5 VC-4
Mesh 5x5 VC-4-Bypass

Mesh 4x4 VC-2-Adaptive
Mesh 4x4 VC-4-Adaptive
Mesh 5x5 VC-2-Adaptive
Mesh 5x5 VC-4-Adaptive

(f)

Figure 7.10: Throughput comparison of 4x4 and 5x5 NoCs topologies with various
configurations under a different type of traffic patterns.

early compared to all other configurations. Fig. 7.9(e) shows that 5×5 Mesh with 2

VCs, Bypass path and the adaptive routing strategy has lower average packet latency

compared to the baseline two clock cycle but it saturates early. The 4×4 Mesh topol-

142

7.5. Comparison with the State-of-the-Art NoC architectures

ogy with 4 VCs and the Bypass path yields better performance compared to all other

configuration as shown in Fig. 7.9(e).

7.4.3 Throughput Analysis

Fig. 7.10 shows an increase in the saturation throughput as virtual channel increases

from 2 to 4. This is due to the large size buffers to hold the more number of flit in the

network. The 4×4 mesh topology with 4 VC employing single cycle Bypass path and

adaptive has a higher saturation throughput compared to all the other configurations in

Fig.7.10(a), (b),(c) and (f). From Fig. 7.10(d) it can be seen that 4×4 Mesh topology

with 2 VC baseline architecture has lower saturation throughput compared to all other

configuration. The 5×5 Mesh topology with 2 VC single cycle Bypass path has lower

saturation throughput compared to all other configuration as shown in Fig.7.10(e).

7.4.4 Power Analysis

Table 7.11 shows power consumption for various configurations of 4×4 and 5×5 Mesh

topologies. The dynamic power is estimated using Xilinx Xpower by supplying switch-

ing activity rates. We extract these switching activity rates from simulation data. It can

be observed that, power consumption increases as and when there is an increase in the

size of virtual channel, flit width, buffer depth and size of the topology. For example,

from 374mW for a low configuration (4×4 Mesh topology with VCs of 2, Buffer Depth

of 2 and Flit width of 32) to 1481mW for a highest configuration (5× 5 Mesh topology

with VCs of 4, Buffer Depth of 4 and Flit width of 64) as shown in Table 7.11. This is

due to the large resource requirements and utilization required for larger topology size.

The larger topology is capable of processing more flits than a smaller topology within

the same time frame.

7.5 COMPARISON WITH THE STATE-OF-THE-ART NOC ARCHITECTURES

7.5.1 Comparison with FPGA state-of-the-art
7.5.1.1 Area, Frequency and Power

Table 7.12 shows the resource utilization and maximum operating frequency of different

NoC architectures. 4 × 4 Mesh topology implemented employing the LBNoC NoC

143

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

Table 7.12: Resource utilization and Maximum operating frequency of Different NoC
configurations considering 4× 4 Mesh topology

Resource Max. Operating Power
Utilization (%) Frequency(MHz) (mW)

CONNECT 69 98 810
ProNoC 53 170 734
LBNoC 50 205 704

architecture consumes 4.5% and 27.1% fewer hardware resources than the ProNoC

and CONNECT architectures with identical NoC configuration parameters. This is

because of the design optimizations such as merged input buffers, decomposed crossbar

architecture and employing queues of free VCs. This in turn results in a lower critical

path delay. Hence, LBNoC NoC architecture operates at higher frequency of 205MHz

compared to CONNECT(100MHz) and ProNoC(172MHz) architectures. We observe

a 4.1% and 13.1% reduction in power consumption than ProNoC and CONNECT NoC

architecture respectively. The lower power due to its less FPGA resource utilization.

7.5.1.2 Latency and Throughput Analysis

To compare the performance of different NoC architectures, the experiments consider-

ing the same configuration parameters such as 32-bit flit width, 4 VCs per port, buffer

depth of 4 flits have been conducted. Fig. 7.11 shows the load vs delay graph for var-

ious synthetic traffic patterns in 5 × 5 Mesh topology. The average latency increases

with an increase in the packet injection rate.

Fig. 7.11(a) shows the load vs delay graph of 5× 5 Mesh topology under Uniform

traffic pattern. The average packet latency of LBNoC architecture is 25% and 13%

less than the CONNECT and ProNoC architectures. From Fig. 7.11(b), it can be seen

that LBNoC architecture has 30% and 15% lesser average packet latency than CON-

NECT and ProNoC architectures under Transpose traffic pattern. Fig. 7.11(c),(d),(e)

and (f) shows the load vs delay graph of 5× 5 Mesh topology under Tornado, Hot-spot,

Bit complement and Bit Reverse traffic patterns. The LBNoC has less average packet

latency compared to CONNECT and ProNoC. It can be seen that the LBNoC architec-

144

7.5. Comparison with the State-of-the-Art NoC architectures

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Uniform Random Traffic

Connect
ProNoC
LBNoC

(a)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Transpose Traffic

Connect
ProNoC
LBNoC

(b)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Tornado Traffic

Connect
ProNoC
LBNoC

(c)

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Hot-spot Traffic

Connect
ProNoC
LBNoC

(d)

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Complement Traffic

Connect
ProNoC
LBNoC

(e)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Reverse Traffic

Connect
ProNoC
LBNoC

(f)

Figure 7.11: Average packet latency comparison between LBNoC, CONNECT (Pa-
pamichael and Hoe (2015)) and (ProNoCMonemi et al. (2017)) considering different
types of traffic patterns

ture has 36%, 16.7%, 35.3%, 30% lesser average packet latency than the CONNECT

architecture under Tornado, Hot spot, Bit complement and Bit-reversal traffic patterns

respectively. Compared to ProNoC, LBNoC has 11.2%, 10.4%, 4.56% and 6.3% lesser

145

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

average packet latency under Tornado, Hot spot, Bit complement and Bit reversal traffic

patterns respectively.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Uniform Transpose Tornado HotSpot BitComplement BitReversal

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t

Traffic Pattern(s)

Saturation Throughput of 5x5 Mesh topology

CONNECT
ProNoC
LBNoC

Figure 7.12: Throughput comparison of LBNoC, Pronoc and Connect NoC architecture

Fig. 7.12 shows the saturation throughput of the CONNECT, ProNoC and LB-

NoC architectures under Uniform, Transpose, Tornado, Hot-spot, Bit complement and

Bit reverse traffic patterns. It can be observed that, the LBNoC architecture saturates

at a higher injection load compared to CONNECT and ProNoC architectures. Un-

der the Uniform traffic pattern, LBNoC achieves an improvement of 2.16x and 1.06x

with respect to CONNECT and ProNoC architectures. Similarly, under the Transpose

traffic pattern, LBNoC achieves an improvement of 2.6x and 1.16x with respect to

CONNECT and ProNoC architectures. LBNoC has higher saturation throughput of

0.95x,1.5x,1.13x and 1.08x under Tornado, Hot spot, Bit complement and Bit reversal

traffic patterns respectively compared to CONNECT. LBNoC has 0.05x, 0.08x, 0.07x

and 0.13x higher saturation throughput under Tornado, Hot spot, Bit complement and

Bit reversal traffic patterns respectively compared to ProNoC architecture.

146

7.5. Comparison with the State-of-the-Art NoC architectures

7.5.2 Comparison with ASIC targetted state-of-the-art NoC architectures
7.5.2.1 Area, Frequency and Power

Fig. 7.13 shows the FPGA resource utilization, frequency and power results of the

proposed and state-of-the-art ASIC NoC router designs.

Despite the design flow of FPGA and the design flow of ASIC have much in com-

mon in their RTL-based design and synthesis environments, they actually vary in mak-

ing design decisions which affect performance and cost optimizations. When synthe-

sized on an FPGA, a compactly optimized router on an ASIC may occupy more FPGA

resources because of the various relative cost trading between wires, memory, and logic

of the FPGA. It can be observed that the proposed NoC router architecture occupies

41.98%, 44.30% and 46.49% fewer FPGA resource than state-of-art ASIC NoC router

architectures such as publicly available RTL of router based on VCs (Group. (2012)),

which we will refer to as SOTA, Priority cooperation based round robin arbiter (Yan

et al. (2015)) which we refer to as PCA and shared buffer (Becker et al. (2012)) re-

spectively. The reduction of power consumption upto 10.5%, 5.3% and 15.84% can

be observed in proposed router with respect to SOTA, Priority and shared buffer NoC

router architectures. The proposed NoC architecture operates at higher frequency than

the state-of-the-art NoC router architectures.

Table 7.13 shows the resource utilization, maximum operating frequency and power

consumption of different NoC architectures. 4 × 4 Mesh topology implemented em-

ploying the LBNoC NoC architecture consumes 15.25%, 19.35% and 27.53% fewer

hardware resources than the SOTA, Priority and shared buffer architectures with identi-

cal NoC configuration parameters. This is because of the design optimizations such as

merged input buffers, decomposed crossbar architecture and employing the queues of

free VCs in the proposed NoC router architecture. This in turn results in a lower critical

path delay. Hence, LBNoC NoC architecture operates at higher frequency of 205MHz

compared to SOTA(101.72MHz), Priority(106.5MHz) and Shared buffer(98.5MHz) ar-

chitectures. Reduction in power consumption by 6.1%, 3.82% and 20.45% have been

observed with respect to SOTA, PCA and Shared-buffer NoC architectures. The lower

power is observed due to the less FPGA resource utilization of LBNoC NoC architec-

147

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

ture.

Figure 7.13: Area, Frequency and Power utilization of various router architectures

Table 7.13: Resource utilization and Maximum operating frequency of Different NoC
configurations considering 4× 4 Mesh topology

Resource Max. Operating Power
Utilization (%) Frequency(MHz) (mW)

SOTA 59 101.72 750
PCA 62 106.5 732

Shared buffer 69 98.5 885
LBNoC 50 205 704

7.5.2.2 Latency and Throughput Analysis

The network performance of LBNoC is compared with publicly available state-of-the-

art RTL of VC-based router (Group. (2012), Yan et al. (2015)) NoC architectures. The

results for Shared buffer architecture (Soteriou et al. (2009)) have been obtained by

modifying SOTA (Group. (2012)) RTL code. And, the results for PCA have been ob-

tained from (Yan et al. (2015)). Fig. 7.14 shows the average latency comparison be-

tween LBNoC, SOTA and PCA under various traffic patterns. 5 × 5 Mesh topology

has been considered for the experiments. An increase in the average latency can be

148

7.5. Comparison with the State-of-the-Art NoC architectures

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Uniform Random Traffic

SOTA
Shared-buffer

PCA
LBNoC

(a)

 50

 100

 150

 200

 0 5 10 15 20 25 30

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Transpose Traffic

SOTA
Shared-buffer

PCA
LBNoC

(b)

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Tornado Traffic

SOTA
Shared-buffer

PCA
LBNoC

(c)

 50

 100

 150

 0 5 10 15 20 25 30 35 40 45 50 55

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Neighbor Traffic

SOTA
Shared-buffer

PCA
LBNoC

(d)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Complement Traffic

SOTA
Shared-buffer

PCA
LBNoC

(e)

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

A
v
e
ra

g
e
 P

a
c
k
e
t

la
te

n
c
y
(I

n
 n

s
)

Load per router (in million flits/sec)

Load-Delay graph for 5x5 Mesh Topology under Bit Reverse Traffic

SOTA
Shared-buffer

PCA
LBNoC

(f)

Figure 7.14: Average packet latency comparison between LBNoC, SOTA(Group.
(2012)), Shared-buffer (Soteriou et al. (2009)) and PCA (Yan et al. (2015)) considering
different types of traffic patterns

observed with the increase in the packet injection rate. Fig. 7.14(a) shows the load vs

latency behavior of the 5 × 5 Mesh topology considering It can be observed that the

LBNoC architecture outperforms all the other NoC architectures consistently offering

149

7. Design of Low latency and Area efficient Router Architecture for NoC using FPGA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Uniform Transpose Tornado neighbor BitComplement BitReversal

S
a
tu

ra
ti

o
n

 T
h

ro
u

g
h

p
u

t

Traffic Pattern(s)

Saturation Throughput of 5x5 Mesh topology

SOTA
Shared-buffer

PCA
LBNoC

Figure 7.15: Throughput comparison of LBNoC, SOTA, Shared-buffer and PCA NoC
architectures

lower packet latency considering all the traffic patterns.

In Fig. 7.14, considering the 5× 5 Mesh topology with LBNoC router architecture,

a reduction in average latency by 10.5%, 8.1%, 1.67%, 13.68%, 9.5% and 4.5% under

the Uniform Random, Transpose, Tornado, Neighbor, Bit-complement and Bit-reverse

traffic patterns compared to SOTA NoC architecture. Similarly, considering the 5 × 5

Mesh topology LBNoC router architecture, a reduction in average latency by 30.02%,

18.01%, 32.8%, 26.3%, 28.75% and 31.5% have been observed with respect to Shared

buffer NoC architecture under the afore-mentioned traffic patterns. And, a reduction of

6.25%, 5.5%, 1.4%, 8.2%, 5% and 3.07% have been observed with respect to PCA.

Fig. 7.15 shows the saturation throughputs of 5× 5 Mesh topology under the afore-

mentioned traffic patterns considering the LBNoC, Shared-buffer and PCA NoC ar-

chitectures. The 5 × 5 Mesh topology under LBNoC router architecture is capable of

sustaining more load compared to the other NoC architectures under Uniform, Trans-

pose, Neighbor, Bit-complement and Bit-reversal traffic patterns. Under Tornado traffic

pattern, Shared buffer and PCA architectures achieve similar saturation throughput as

that of LBNoC architecture.

150

7.6. summary

7.6 SUMMARY

In this chapter, LBNoC: an FPGA based NoC architecture is designed to reduce the area

cost, latency, and improve the performance. The NoC router architecture is designed

by considering the single-cycle bypass router and employing the techniques of com-

bined flow control, parallel VC, and switch allocation. The single-cycle bypass router

architecture accelerates the packets traversing long distances. The combined flow con-

trol improves the network performance by keeping the flits of the same packet together

along the path. To reduce the area overhead, and to improve the network performance,

parallel VC and switch allocator are designed along with a merged input buffer and a

decomposed crossbar. An FPGA based fully parameterized framework is developed

to evaluate the proposed NoC architecture. The LBNoC architecture consumes fewer

hardware resources and achieves lesser average packet latency than CONNECT and

ProNoC architectures Speedup of 1.15× and 1.18× are observed for LBNoC architecture

with respect to ProNoC and CONNECT NoC architectures. A comparison of LBNoC

architecture with the ASIC implementations of the NoC architectures such as SOTA,

Shared-buffer NoC router, and PCA router is made. It is found that the LBNoC archi-

tecture achieves low latency, higher throughput, and consumes lesser power compared

to the ASIC counterparts.

151

CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

The contributions of this thesis are: The optimization and profiling of Booksim2.0 sim-

ulator to analyze and improve the performance. An FPGA based NoC simulation accel-

eration framework for design space exploration, the efficient techniques of mapping the

NoC router components on the FPGA’s hard blocks. An FPGA-based parameterized

framework with flexible communication and traffic generation model for NoC architec-

tures evaluation. And, design of lightweight router architecture for NoCs using FPGAs

to achieve high performance.

The thesis initial work involves profiling and software optimization of the Book-

sim2.0 simulator to analyze the performance. Various software mechanisms have been

employed to improve the performance of Booksim2.0 NoC simulator. The OpenMP

programming models have been used for parallelizing the sequential code of Book-

sim2.0. This results 2.93× speedup over sequential code by simulating the 30×30 Mesh

topology on Booksim2.0. The parallelization and vectorization reduced the simulation

time of 30×30 Mesh topology from 60 minutes (normal Booksim2.0 simulation time)

to 14 minutes and 12 minutes. The average simulation time reduced by 67.31× for all

network sizes of Mesh topology in Booksim2.0 employing the software optimizations.

An FPGA based NoC simulation acceleration framework called YaNoC has been

proposed to speed up the NoC simulations. YaNoC supports the design space explo-

ration of various standard and custom NoC topologies. The router microarchitectural

parameters are highly configurable. A custom topology called Diagonal Mesh (DMesh)

153

8. Conclusions and Future Works

has been designed and evaluated considering a novel shortest path, and the Table based

routing algorithms. A congestion-aware adaptive routing has been proposed to route

the packets along the minimally congested path. A reliable router architecture has been

designed for NoC systems. Employing the congestion-aware adaptive routing, network

latency is reduced by a factor of 55× and negligible area overhead compared to the

XY routing algorithm. The reliable router adds extra area cost for the design of fault

correction architecture to provide low latency and better fault tolerance. YaNoC con-

sumes 9.29% fewer resources and is 2.5× faster than the CONNECT framework. Also,

YaNoC consumes 17.59% fewer resources and 25× faster than the DART simulator.

The speedup of 2548× compared to the Booksim2.0 software simulator has been ob-

served using YaNoC.

Only the CLB components(LUTs and FFs) of the FPGA are utilized for mapping the

NoC architecture in the YaNoC. The unused DSP tiles of the Xilinx FPGAs are used for

mapping the NoC router’s functionality. The wide multiplexers of the Xilinx DSP48E1

slices have been used to support the crossbar functionality of the 5-port, buffered NoC

router. A reduction of soft logic has been observed employing the proposed technique.

By employing the proposed DSP48E1 based crossbar architecture, the topology sizes

which exceed the CLB resources of an FPGA can be implemented successfully on the

same FPGA without any extra cost of the CLB resources. The implementation of the

topologies with DSP crossbar consumes 43%, 44%, and 33% fewer LUTs, FFs, and

occupied slices, respectively, compared to the topologies with CLB crossbar imple-

mentation. The 6×6 Torus topology saturates at an injection rate of 0.48 under the XY

routing algorithm. Employing the Look-ahead routing algorithm, an improvement of

25% has been observed compared to XY routing. The 6×6 Mesh topology with pro-

posed router architecture consumes 23% fewer slices, 41% fewer LUT resources than

the CONNECT implementation. The 3×3 Mesh topology with the proposed router ar-

chitecture consumes 88%, 86%, and 80% fewer FFs, LUTs, and the occupied slices

respectively than the DARTs implementation.

An FPGA based parameterized framework called P-NoC for analyzing the perfor-

mance of NoC architectures based on various design decision parameters has been pro-

154

posed. P-NoC contains a fully parameterized Topology, Router, and Traffic generation

and Receptor modules. The experimental results show that the Virtual channel(VCs),

Flit width(FW) and Buffer depth(BD) parameters contribute to higher FPGA resource

utilization and influence the performance of NoC architectures. The Mesh and Multi-

Local port(ML) Mesh topologies have been considered for the experiments. As the BD

is varied from 4 to 8 with a fixed FW of 32-bits and 2 VCs, the FPGA area utiliza-

tion increased by 17.4% and 16.67% for Mesh and ML-Mesh topologies respectively.

The Mesh and ML-Mesh topologies have 0.53× and 0.1× higher saturation through-

put under Nearest neighbor traffic compared to uniform random traffic. The ML-Mesh

topology yields 75% lesser utilization of FPGA resources compared to the Mesh. The

ML-Mesh topology shows an improvement of 33.2% in network latency under localized

traffic patterns.

An optimized FPGA-based NoC router architecture called LBNoC has been pro-

posed to improve network performance and reduce resource utilization. The NoC router

architecture has been designed by considering the single-cycle bypass router and em-

ploying the techniques of combined flow control, parallel VC, and Switch Allocation.

The single-cycle bypass router architecture accelerates the packets traversing long dis-

tances. The combined flow control improves the network performance by keeping the

flits of the same packet together along the path. To reduce the area overhead and im-

prove the network performance, parallel VC and Switch Allocator have been designed

along with a merged input buffer and a decomposed crossbar. The LBNoC architec-

ture is compared with state-of-the-art CONNECT and ProNoC NoC architectures. The

4×4 Mesh topology implemented employing the LBNoC architecture consumes 4.5%

and 27.1% fewer hardware resources than ProNoC and CONNECT architectures. The

average packet latency of the LBNoC NoC architecture is 30% and 15% lesser than

the CONNECT and ProNoC architectures. Speedup of 1.15× and 1.18× have been ob-

served for LBNoC architecture concerning ProNoC and CONNECT NoC architectures.

155

8. Conclusions and Future Works

The 3-Dimensional (3D) NoC architectures have been emerging as an area, power-

efficient, high-performance communication framework for next-generation computing

systems compared to 2-Dimensional (2D) NoC. The presented FPGA based NoC simu-

lation framework supports for design space exploration of 2D NoC architectures. Future

efforts can be directed towards the development of a fast and flexible FPGA based NoC

simulator, which supports for design space exploration of 3D NoC architectures. The

design and evaluation of novel routing algorithms and optimization of router architec-

ture for 3D NoC to achieve higher performance along with the reduction of the area and

network latency.

156

Appendix A

A.1 SHORTEST PATH ROUTING ALGORITHM FOR DMESH TOPOLOGY

The novel routing algorithm for DMesh topology as shown in below code snippet. The

shortest path between a source and destination pairs has been achieved in the DMesh

topology make use of novel routing algorithm. The detail description is given in the

section 4.3

Code Snippet of Shortest Path Routing Algorithm for DMesh topology

module compute(Li,port num next);

/* Lo, Eo, No, Wo, So, NEo, SEo, NWo and SWo are the output

ports correspoding to Local, East, North, West, South, NorthEast,

SouthEast, NorthWest and SouthWest directions respectively.

*/

/* Assign 1, 2, 3, 4, 5, 6, 7, 8 and 9 to Local, East, North,

West, South, NorthEast, SouthEast, NorthWest and SouthWest

ports respectively. */

assign Lo = 4’b0001;//LOCAL OUT

assign Eo = 4’b0010;//EAST OUT

assign No = 4’b0011;//NORTH OUT

assign Wo = 4’b0100;//WEST OUT

assign So = 4’b0101;//SOUTH OUT

assign NEo = 4’b0110;//NORTH EAST OUT

assign SEo = 4’b0111;//SOUTH EAST OUT

assign NWo = 4’b1000;//NORTH WEST OUT

assign SWo = 4’b1001;//SOUTH WEST OUT

157

8. Conclusions and Future Works

/* (xc,yc) and (xd,yd) are the current node and destination

node x and y co-ordinates respectively. The route computation

is done by considering these values. */

assign xc = r1[2:0];

assign yc = r1[7:5];

assign xd = Li[2:0];

assign yd = Li[7:5];

/* Following if-else conditions are checked to find out the

shortest path computation from a current node to the destination

node. */

always@(*)begin

// Condition for NorthEast Output port. If true, NEo will

be the output port.

if (xc[2:0]<xd[2:0]&&yc[2:0]>yd[2:0])

begin

port num next = NEo;

end

//Condition for SouthEast Output port. If true, SEo will

be the output port.

else if(xc[2:0]<xd[2:0]&&yc[2:0]<yd[2:0])

begin

port num next = SEo;

end

// Conditions for rest of the ports can be included as

shown above.

end

endmodule

158

Bibliography

Access IC Lab (2018). “Access Noxim.” http://access.ee.ntu.edu.tw/

noxim/index.html.).

Agarwal, N., Krishna, T., Peh, L.-S. and Jha, N. (2009). “GARNET: A detailed on-chip

network model inside a full-system simulator.” In Performance Analysis of Systems

and Software, 2009. ISPASS 2009. IEEE International Symposium on, 33–42.

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P., Imam,

N., Nakamura, Y., Datta, P., Nam, G., Taba, B., Beakes, M., Brezzo, B., Kuang, J. B.,

Manohar, R., Risk, W. P., Jackson, B. and Modha, D. S. (2015). “Truenorth: Design

and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip.” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(10),

1537–1557.

Angepat, H., Chiou, D., Chung, E. S. and Hoe, J. C. (2014). “Fpga-accelerated sim-

ulation of computer systems.” Synthesis Lectures on Computer Architecture, 9(2),

1–80.

Asaduzzaman, A. and Mahgoub, I. (2006). “Cache modeling and optimization for

portable devices running MPEG-4 video decoder.” Multim. Tools Appl., 28(1-2),

239–256.

Ax, J., Sievers, G., Daberkow, J., Flasskamp, M., Vohrmann, M., Jungeblut, T., Kelly,

W., Porrmann, M. and Rückert, U. (2018). “Coreva-mpsoc: A many-core architecture

with tightly coupled shared and local data memories.” IEEE Transactions on Parallel

and Distributed Systems, 29(5), 1030–1043.

Balfour, J. D. and Dally, W. J. (2006). “Design tradeoffs for tiled CMP on-chip net-

works.” In Egan, G. K. and Muraoka, Y., editors, Proceedings of the 20th Annual

159

http://access.ee.ntu.edu.tw/noxim/index.html.
http://access.ee.ntu.edu.tw/noxim/index.html.

BIBLIOGRAPHY

International Conference on Supercomputing, ICS 2006, Cairns, Queensland, Aus-

tralia, June 28 - July 01, 2006, ACM, 187–198.

Balkind, J., McKeown, M., Fu, Y., Nguyen, T., Zhou, Y., Lavrov, A., Shahrad, M.,

Fuchs, A., Payne, S., Liang, X., Matl, M. and Wentzlaff, D. (2016). “Openpiton:

An open source manycore research framework.” In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 217–232.

Becker, D. U. (2012). Efficient microarchitecture for Network-on-Chip routers. PhD

dissertation, Stanford University.

Becker, D. U., Jiang, N., Michelogiannakis, G. and Dally, W. J. (2012). “Adaptive

backpressure: Efficient buffer management for on-chip networks.” In 30th Interna-

tional IEEE Conference on Computer Design, ICCD 2012, Montreal, QC, Canada,

September 30 - Oct. 3, 2012, 419–426.

Ben-Itzhak, Y., Zahavi, E., Cidon, I. and Kolodny, A. (2012). “Hnocs: Modular open-

source simulator for heterogeneous nocs.” In 2012 International Conference on Em-

bedded Computer Systems (SAMOS), 51–57.

Benini, L. and De Micheli, G. (2002). “Networks on chips: a new soc paradigm.”

Computer, 35(1), 70–78.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness,

J., Hower, D. R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M., Vaish,

N., Hill, M. D. and Wood, D. A. (2011). “The gem5 simulator.” SIGARCH Comput.

Archit. News, 39(2), 1–7.

Bjerregaard, T. and Mahadevan, S. (2006). “A survey of research and practices of

network-on-chip.” ACM Comput. Surv., 38(1), 1.

Bohnenstiehl, B., Stillmaker, A., Pimentel, J. J., Andreas, T., Liu, B., Tran, A. T.,

Adeagbo, E. and Baas, B. M. (2017). “Kilocore: A 32-nm 1000-processor computa-

tional array.” IEEE Journal of Solid-State Circuits, 52(4), 891–902.

160

BIBLIOGRAPHY

Catania, V., Mineo, A., Monteleone, S., Palesi, M. and Patti, D. (2015). “Noxim: An

open, extensible and cycle-accurate network on chip simulator.” In 26th IEEE Inter-

national Conference on Application-specific Systems, Architectures and Processors,

ASAP 2015, Toronto, ON, Canada, July 27-29, 2015, 162–163.

Catania, V., Mineo, A., Monteleone, S., Palesi, M. and Patti, D. (2016). “Cycle-accurate

network on chip simulation with noxim.” ACM Trans. Model. Comput. Simul., 27(1),

4:1–4:25.

Chang, Y., Wong, D. F. and Wong, C. K. (1996). “Universal switch modules for FPGA

design.” ACM Trans. Design Autom. Electr. Syst., 1(1), 80–101.

Chen, Y., Krishna, T., Emer, J. S. and Sze, V. (2017). “Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks.” IEEE Journal of

Solid-State Circuits, 52(1), 127–138.

Cherniack, M., Galvez, E. F., Franklin, M. J. and Zdonik, S. (2003). “Profile-driven

cache management.” In Proceedings 19th International Conference on Data Engi-

neering (Cat. No.03CH37405), 645–656.

Chethan, K. H. B. and Kapre, N. (2016). “Hoplite-dsp: Harnessing the xilinx dsp48

multiplexers to efficiently support nocs on fpgas.” In 2016 26th International Con-

ference on Field Programmable Logic and Applications (FPL), 1–10.

Chiou, D., Sunwoo, D., Kim, J., Patil, N. A., Reinhart, W., Johnson, D. E., Keefe, J.

and Angepat, H. (2007). “Fpga-accelerated simulation technologies (fast): Fast, full-

system, cycle-accurate simulators.” In 40th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO 2007), 249–261.

Chung, E. S., Papamichael, M., Nurvitadhi, E., Hoe, J. C., Mai, K. and Falsafi, B.

(2009). “Protoflex: Towards scalable, full-system multiprocessor simulations using

fpgas.” ACM Trans. Reconfigurable Technol. Syst., 2(2), 15:1–15:32.

Ciletti, M. D. (2011). chapter Advanced Digital Design with the Verilog HDL, 117–

132. Prentice Hall, 2nd Edition, USA., Prentice Hall, First edition, USA.

161

BIBLIOGRAPHY

CMU-SAFARI (2018). “NOCulator.” http://access.ee.ntu.edu.tw/

noxim/index.html).

Constantinides, K., Plaza, S., Blome, J. A., Zhang, B., Bertacco, V., Mahlke, S. A.,

Austin, T. M. and Orshansky, M. (2006). “Bulletproof: a defect-tolerant CMP switch

architecture.” In 12th HPCA, 5–16.

Coppa, E., Demetrescu, C. and Finocchi, I. (2014a). “Input-Sensitive Profiling.” IEEE

Trans. Software Eng., 40(12), 1185–1205.

Coppa, E., Demetrescu, C., Finocchi, I. and Marotta, R. (2014b). “Estimating the empir-

ical cost function of routines with dynamic workloads.” In Kaeli, D. R. and Moseley,

T., editors, 12th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2014, Orlando, FL, USA, February 15-19, 2014, ACM, 230.

Curtsinger, C. and Berger, E. D. (2015). “Coz: Finding Code That Counts with Causal

Profiling.” In Proceedings of the 25th Symposium on Operating Systems Principles,

SOSP ’15, ACM, New York, NY, USA, 184–197.

Dally, W. J. (1992). “Virtual-channel flow control.” IEEE Trans. Parallel Distrib. Syst.,

3(2), 194–205.

Dally, W. J. and Seitz, C. L. (1986). “The torus routing chip.” Distributed Comput.,

1(4), 187–196.

Dally, W. J. and Towles, B. (2001). “Route packets, not wires: on-chip interconnection

networks.” In Proceedings of the 38th Design Automation Conference (IEEE Cat.

No.01CH37232), 684–689.

Dally, W. J. and Towles, B. P. (2004). Principles and Practices of Interconnection

Networks, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Daniel Marjamäki (2011). “”Cppcheck, A tool for static C/C++ code analysis”.”).

Drewes, T., Joseph, J. M. and Pionteck, T. (2017). “An fpga-based prototyping frame-

work for networks-on-chip.” In 2017 International Conference on ReConFigurable

Computing and FPGAs (ReConFig), 1–7.

162

http://access.ee.ntu.edu.tw/noxim/index.html
http://access.ee.ntu.edu.tw/noxim/index.html

BIBLIOGRAPHY

Enright, N. and Peh, L. (2009). On-Chip Networks.

Fick, D., DeOrio, A., Hu, J., Bertacco, V., Blaauw, D. T. and Sylvester, D. (2009).

“Vicis: a reliable network for unreliable silicon.” In Proceedings of the 46th DAC,

812–817.

Galles, M. (1997). “Spider: a high-speed network interconnect.” IEEE Micro, 17(1),

34–39.

Genko, N., Atienza, D., De Micheli, G., Mendias, J. M., Hermida, R. and Catthoor, F.

(2005). “A complete network-on-chip emulation framework.” In Design, Automation

and Test in Europe, 246–251 Vol. 1.

Glass, C. J. and Ni, L. M. (1992). “The turn model for adaptive routing.” In [1992]

Proceedings the 19th Annual International Symposium on Computer Architecture,

278–287.

Group., S. C. V. A. (2012). Open Source Network-on-Chip Router RTL. [on-

line]. available:https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/resources/route, (Ac-

cessed: October 2014).

Guerrier, P. and Greiner, A. (2000). “A generic architecture for on-chip packet-switched

interco840047nnections.” In Proceedings Design, Automation and Test in Europe

Conference and Exhibition 2000 (Cat. No. PR00537), 250–256.

Hardavellas, N., Somogyi, S., Wenisch, T. F., Wunderlich, R. E., Chen, S., Kim, J.,

Falsafi, B., Hoe, J. C. and Nowatzyk, A. (2004). “Simflex: a fast, accurate, flexible

full-system simulation framework for performance evaluation of server architecture.”

SIGMETRICS Perform. Evaluation Rev., 31(4), 31–34.

Hayenga, M., Jerger, N. D. E. and Lipasti, M. H. (2009). “SCARAB: a single cycle

adaptive routing and bufferless network.” In 42st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-42 2009), December 12-16, 2009, New

York, New York, USA, 244–254.

163

BIBLIOGRAPHY

Ho, R., Mai, K. W. and Horowitz, M. A. (2001). “The future of wires.” Proceedings of

the IEEE, 89(4), 490–504.

Igarashi, M., Mitsuhashi, T., Le, A., Kazi, S., Yang-Trung Lin, Fujimura, A. and Teig, S.

(2002). “A diagonal-interconnect architecture and its application to risc core design.”

In 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Pa-

pers (Cat. No.02CH37315), volume 1, 210–460 vol.1.

Infante, A. (2014). “Identifying caching opportunities, effortlessly.” In Jalote, P.,

Briand, L. C. and van der Hoek, A., editors, 36th International Conference on Soft-

ware Engineering, ICSE ’14, Companion Proceedings, Hyderabad, India, May 31 -

June 07, 2014, ACM, 730–732.

Intel Corporation (2017). “Intel Advisor XE.”).

Jang, H., Han, K., Lee, S., Lee, J. and Lee, W. (2019). “Mmnoc: Embedding memory

management units into network-on-chip for lightweight embedded systems.” IEEE

Access, 7, 80011–80019.

Jensen, S. H., Sridharan, M., Sen, K. and Chandra, S. (2015). “Meminsight: platform-

independent memory debugging for javascript.” In Nitto, E. D., Harman, M. and

Heymans, P., editors, Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4,

2015, ACM, 345–356.

Jiang, N., Becker, D., Michelogiannakis, G., Balfour, J., Towles, B., Shaw, D., Kim,

J. and Dally, W. (2013). “A detailed and flexible cycle-accurate network-on-chip

simulator.” In Performance Analysis of Systems and Software (ISPASS), 2013 IEEE

International Symposium on, 86–96.

Joardar, B. K., Kim, R. G., Doppa, J. R., Pande, P. P., Marculescu, D. and Marculescu,

R. (2019). “Learning-based application-agnostic 3d noc design for heterogeneous

manycore systems.” IEEE Transactions on Computers, 68(6), 852–866.

164

BIBLIOGRAPHY

Kahng, A. B., Li, B., Peh, L. and Samadi, K. (2012). “Orion 2.0: A power-area simula-

tor for interconnection networks.” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 20(1), 191–196.

Kahng, A. B., Lin, B. and Nath, S. (2015). “Orion3.0: A comprehensive noc router

estimation tool.” IEEE Embedded Systems Letters, 7(2), 41–45.

Kamali, H. M., Azar, K. Z. and Hessabi, S. (2018). “Ducnoc: A high-throughput fpga-

based noc simulator using dual-clock lightweight router micro-architecture.” IEEE

Trans. Computers, 67(2), 208–221.

Kamali, H. M. and Hessabi, S. (2016). “Adapnoc: A fast and flexible fpga-based noc

simulator.” In 2016 26th International Conference on Field Programmable Logic and

Applications (FPL), 1–8.

Kapre, N. and Gray, J. (2015). “Hoplite: Building austere overlay nocs for fpgas.” In

2015 25th International Conference on Field Programmable Logic and Applications

(FPL), 1–8.

Kermani, P. and Kleinrock, L. (1979). “Virtual cut-through: A new computer commu-

nication switching technique.” Comput. Networks, 3, 267–286.

Khyamling, P., Prasad, P. B. M. and Talawar, B. (2019). “Yanoc: Yet another network-

on-chip simulation acceleration engine supporting congestion-aware adaptive rout-

ing using fpgas.” Journal of Circuits, Systems, and Computers, 28(12), 1950202:1–

1950202:31.

Kim, J., Balfour, J. D. and Dally, W. J. (2007). “Flattened butterfly topology for on-chip

networks.” IEEE Comput. Archit. Lett., 6(2), 37–40.

Kim, J., Nicopoulos, C., Park, D., Narayanan, V., Yousif, M. S. and Das, C. R. (2006).

“A gracefully degrading and energy-efficient modular router architecture for on-chip

networks.” In 33rd ISCA, 4–15.

Kowarschik, M. and Wei, C. (2003). “An overview of cache optimization techniques

and cache-aware numerical algorithms.” 213–232.

165

BIBLIOGRAPHY

Kumar, A., Peh, L.-S., Kundu, P. and Jha, N. K. (2007). “Express Virtual Channels:

Towards the Ideal Interconnection Fabric.” SIGARCH Comput. Archit. News, 35(2),

150–161.

Kundu, P. (2006). “On-die interconnects for next generation CMPs.” 2006 Workshop

on On- and Off-Chip Interconnection Networks for Multicore Systems.

Larsen, S., Rabbah, R. and Amarasinghe, S. (2005). “Exploiting vector parallelism in

software pipelined loops.” In 38th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’05), 11 pp.–129.

Lebeck, A. R. and Wood, D. A. (1994). “Cache profiling and the spec benchmarks: a

case study.” Computer, 27(10), 15–26.

Li-Shiuan Peh and Dally, W. J. (2001). “A delay model for router microarchitectures.”

IEEE Micro, 21(1), 26–34.

Liu, X. and Mellor-Crummey, J. (2013). “A data-centric profiler for parallel programs.”

In SC ’13: Proceedings of the International Conference on High Performance Com-

puting, Networking, Storage and Analysis, 1–12.

Lotlikar, S., Pai, V. and Gratz, P. V. (2011). “Acenocs: A configurable hw/sw platform

for fpga accelerated noc emulation.” In 2011 24th Internatioal Conference on VLSI

Design, 147–152.

Lu, Y., McCanny, J. and Sezer, S. (2011). “Exploring virtual-channel architecture in

fpga based networks-on-chip.” In 2011 IEEE International SOC Conference, 302–

307.

Luo, T., Liu, S., Li, L., Wang, Y., Zhang, S., Chen, T., Xu, Z., Temam, O. and Chen,

Y. (2017). “Dadiannao: A neural network supercomputer.” IEEE Transactions on

Computers, 66(1), 73–88.

Mahlke, S., Moseley, T., Hank, R., Bruening, D. and Cho, H. K. (2013). “Instant

Profiling: Instrumentation Sampling for Profiling Datacenter Applications.” In Pro-

ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and

166

BIBLIOGRAPHY

Optimization (CGO), CGO ’13, IEEE Computer Society, Washington, DC, USA,

1–10.

Michelogiannakis, G., Sánchez, D., Dally, W. J. and Kozyrakis, C. (2010). “Evaluating

bufferless flow control for on-chip networks.” In NOCS 2010, Fourth ACM/IEEE

International Symposium on Networks-on-Chip, Grenoble, France, May 3-6, 2010,

9–16.

Monemi, A. (2015). “Low Latency Network-on-Chip Router Microarchitecture Using

Request Masking Technique.” Int. J. Reconfig. Comput., 2015(2), 1–7.

Monemi, A., Tang, J. W., Palesi, M. and Marsono, M. N. (2017). “ProNoC: A low la-

tency network-on-chip based many-core system-on-chip prototyping platform.” Mi-

croprocessors and Microsystems, 54, 60 – 74.

Moscibroda, T. and Mutlu, O. (2009). “A case for bufferless routing in on-chip net-

works.” In 36th International Symposium on Computer Architecture (ISCA 2009),

June 20-24, 2009, Austin, TX, USA, 196–207.

Mullins, R., West, A. and Moore, S. (2004). “Low-latency virtual-channel routers for

on-chip networks.” SIGARCH Comput. Archit. News, 32(2), 188–.

Nethercote, N. and Seward, J. (2007). “Valgrind: A Framework for Heavyweight Dy-

namic Binary Instrumentation.” In Proceedings of the 28th ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation, PLDI ’07, ACM, New

York, NY, USA, 89–100.

Nguyen, K. and Xu, G. H. (2013). “Cachetor: detecting cacheable data to remove

bloat.” In Meyer, B., Baresi, L. and Mezini, M., editors, Joint Meeting of the Euro-

pean Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Fed-

eration, August 18-26, 2013, ACM, 268–278.

Nicopoulos, C., Park, D., Kim, J., Vijaykrishnan, N., Yousif, M. S. and Das, C. R.

(2006). “Vichar: A dynamic virtual channel regulator for network-on-chip routers.”

167

BIBLIOGRAPHY

In 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-

39 2006), 9-13 December 2006, Orlando, Florida, USA, 333–346.

Nie, J., Cheng, B., Li, S., Wang, L. and Li, X. F. (2010). “Vectorization for Java.”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 6289 LNCS, 3–17.

Nistor, A. and Ravindranath, L. (2014). “Suncat: helping developers understand and

predict performance problems in smartphone applications.” In Pasareanu, C. S. and

Marinov, D., editors, International Symposium on Software Testing and Analysis,

ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014, ACM, 282–292.

Nistor, A., Song, L., Marinov, D. and Lu, S. (2013). “Toddler: Detecting performance

problems via similar memory-access patterns.” In 2013 35th International Confer-

ence on Software Engineering (ICSE), 562–571.

Ogras, U. Y., Bogdan, P. and Marculescu, R. (2010). “An analytical approach for

network-on-chip performance analysis.” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 29(12), 2001–2013.

Pande, P. P., Grecu, C., Jones, M., Ivanov, A. and Saleh, R. (2005). “Performance

Evaluation and Design Trade-Offs for Network-on-Chip Interconnect Architectures.”

IEEE Transactions on Computers, 54(8), 1025–1040.

Papamichael, M. K. (2011). “Fast scalable fpga-based network-on-chip simulation

models.” In Ninth ACM/IEEE International Conference on Formal Methods and

Models for Codesign (MEMPCODE2011), 77–82.

Papamichael, M. K. and Hoe, J. C. (2015). “The connect network-on-chip generator.”

Computer, 48(12), 72–79.

Papamichael, M. K., Hoe, J. C. and Mutlu, O. (2011). “Fist: A fast, lightweight, fpga-

friendly packet latency estimator for noc modeling in full-system simulations.” In

Proceedings of the Fifth ACM/IEEE International Symposium, 137–144.

168

BIBLIOGRAPHY

Parane, K., Prasad, B. M. P. and Talawar, B. (2016). “Cache analysis and software

optimizations for faster on-chip network simulations.” In 2016 11th International

Conference on Industrial and Information Systems (ICIIS), 83–88.

Parane, K., Prasad, P. B. M. and Talawar, B. (2018). “Fpga based noc simulation accel-

eration framework supporting adaptive routing.” In 2018 IEEE International Confer-

ence on Electronics, Computing and Communication Technologies (CONECCT).

Partha Pratim Pande, Grecu, C., Jones, M., Ivanov, A. and Saleh, R. (2005). “Perfor-

mance evaluation and design trade-offs for network-on-chip interconnect architec-

tures.” IEEE Transactions on Computers, 54(8), 1025–1040.

Patel, A., Afram, F., Chen, S. and Ghose, K. (2011). “MARSS: a full system simulator

for multicore x86 cpus.” In Stok, L., Dutt, N. D. and Hassoun, S., editors, Proceed-

ings of the 48th Design Automation Conference, DAC 2011, San Diego, California,

USA, June 5-10, 2011, ACM, 1050–1055.

Peh, L. and Dally, W. J. (2000). “Flit-reservation flow control.” In Proceedings of

the Sixth International Symposium on High-Performance Computer Architecture,

Toulouse, France, January 8-12, 2000, 73–84.

Peh, L. S. and Dally, W. J. (2001). “A delay model and speculative architecture for

pipelined routers.” In HPCA 2011, 255–266.

Pienaar, J. A. and Hundt, R. (2013). “Jswhiz: Static analysis for javascript memory

leaks.” In Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), 1–11.

Poluri, P. and Louri, A. (2014). “An improved router design for reliable on-chip net-

works.” In 28th IPDPS, 283–292.

Porterfield, A. K. (1989). Software Methods for Improvement of Cache Performance on

Supercomputer Applications. PhD thesis, Rice University.

169

BIBLIOGRAPHY

Prodromou, A., Panteli, A., Nicopoulos, C. and Sazeides, Y. (2012). “Nocalert: An

on-line and real-time fault detection mechanism for network-on-chip architectures.”

In 45th MICRO, 60–71.

Puente, V., Gregorio, J. and Beivide, R. (2002). “SICOSYS: an integrated framework

for studying interconnection network performance in multiprocessor systems.” In

Parallel, Distributed and Network-based Processing, 2002. Proceedings. 10th Eu-

romicro Workshop on, 15–22.

Ramanujam, R. S., Soteriou, V., Lin, B. and Peh, L. (2010). “Design of a high-

throughput distributed shared-buffer noc router.” In NOCS 2010, Fourth ACM/IEEE

International Symposium on Networks-on-Chip, Grenoble, France, May 3-6, 2010,

69–78.

Ramanujam, R. S., Soteriou, V., Lin, B. and Peh, L. (2011). “Extending the effective

throughput of nocs with distributed shared-buffer routers.” IEEE Trans. on CAD of

Integrated Circuits and Systems, 30(4), 548–561.

Randall, M. and Lewis, A. (2002). “A Parallel Implementation of Ant Colony Opti-

mization.” Journal of Parallel and Distributed Computing, 62(9), 1421–1432.

Ronak, B. and Fahmy, S. A. (2016). “Mapping for maximum performance on fpga dsp

blocks.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 35(4), 573–585.

Sanchez, D. and Kozyrakis, C. (2013). “Zsim: Fast and accurate microarchitectural

simulation of thousand-core systems.” SIGARCH Comput. Archit. News, 41(3), 475–

486.

Sembrant, A., Black-Schaffer, D. and Hagersten, E. (2012). “Phase guided profiling

for fast cache modeling.” In Eidt, C., Holler, A. M., Srinivasan, U. and Amarasinghe,

S. P., editors, 10th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO 2012, San Jose, CA, USA, March 31 - April 04, 2012, ACM,

175–185.

170

BIBLIOGRAPHY

Sodani, A., Gramunt, R., Corbal, J., Kim, H., Vinod, K., Chinthamani, S., Hutsell, S.,

Agarwal, R. and Liu, Y. (2016). “Knights landing: Second-generation intel xeon phi

product.” IEEE Micro, 36(2), 34–46.

Song, L., Kavi, K. and Cytron, R. (2003). Software and Compilers for Embedded

Systems: 7th International Workshop, SCOPES 2003, Vienna, Austria, September 24-

26, 2003. Proceedings, chapter An Unfolding-Based Loop Optimization Technique,

117–132. Springer Berlin Heidelberg, Berlin, Heidelberg.

Soteriou, V., Ramanujam, R. S., Lin, B. and Peh, L. (2009). “A high-throughput dis-

tributed shared-buffer noc router.” Computer Architecture Letters, 8(1), 21–24.

Suboh, S., Bakhouya, M., Gaber, J. and El-Ghazawi, T. (2010). “Analytical modeling

and evaluation of network-on-chip architectures.” In 2010 International Conference

on High Performance Computing Simulation, 615–622.

Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H., Patterson, D. and Asanovic´,

K. (2010). “Ramp gold: An fpga-based architecture simulator for multiprocessors.”

In Design Automation Conference, 463–468.

Thiem Van, Sato, S. and Kise, K. (2015). “Ultra-fast noc emulation on a single fpga.” In

2015 25th International Conference on Field Programmable Logic and Applications

(FPL), 1–8.

Ting-Shuo Hsu, Jun-Lin Chiu, Chao-Kai Yu and Jing-Jia Liou (2015). “A fast and

accurate network-on-chip timing simulator with a flit propagation model.” In The

20th Asia and South Pacific Design Automation Conference, 797–802.

Varga, A. (1999). “Using the omnet++ discrete event simulation system in education.”

IEEE Trans. on Educ., 42(4), 11 pp.–.

Wang, D., Lo, C., Vasiljevic, J., Enright Jerger, N. and Gregory Steffan, J. (2014). “Dart:

A programmable architecture for noc simulation on fpgas.” IEEE Transactions on

Computers, 63(3), 664–678.

171

BIBLIOGRAPHY

Wee, S., Casper, J., Njoroge, N., Teslyar, Y., Ge, D., Kozyrakis, C. and Olukotun, K.

(2007). “A practical fpga-based framework for novel CMP research.” In DeHon, A.

and Hutton, M., editors, Proceedings of the ACM/SIGDA 15th International Sympo-

sium on Field Programmable Gate Arrays, FPGA 2007, Monterey, California, USA,

February 18-20, 2007, ACM, 116–125.

Wolkotte, P. T., Holzenspies, P. K. F. and Smit, G. J. M. (2007). “Fast, accurate and

detailed noc simulations.” In First International Symposium on Networks-on-Chip

(NOCS’07), 323–332.

Xilinx Inc (2016). “7 Series FPGAs Configurable Logic Block.” https:

//www.xilinx.com/support/documentation/user_guides/

ug474_7Series_CLB.pdf).

Xilinx Inc (2018). “7 Series DSP48E1 Slice User Guide.” https://www.xilinx.

com/support/documentation/user_guides/ug479_7Series_

DSP48E1.pdf).

Xilinx Inc (2019a). “7 Series FPGAs Memory Resources.” https:

//www.xilinx.com/support/documentation/user_guides/

ug473_7Series_Memory_Resources.pdfa).

Xilinx Inc (2019b). “Introduction to FPGA Design.” https://www.xilinx.

com/support/documentation/sw_manuals/ug998-vivado-intro-

fpga-design-hls.pdfb).

Xu, C., Liu, Y. and Yang, Y. (2019). “Srnoc: An ultra-fast configurable fpga-based noc

simulator using switch-router architecture.” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 1–1.

Xu, G. H., Bond, M. D., Qin, F. and Rountev, A. (2011). “Leakchaser: helping pro-

grammers narrow down causes of memory leaks.” In Hall, M. W. and Padua, D. A.,

editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011,

ACM, 270–282.

172

https: //www.xilinx.com/support/documentation/user_guides/ ug474_7Series_CLB.pdf
https: //www.xilinx.com/support/documentation/user_guides/ ug474_7Series_CLB.pdf
https: //www.xilinx.com/support/documentation/user_guides/ ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf

BIBLIOGRAPHY

Yan, D., Xu, G. H. and Rountev, A. (2012). “Uncovering performance problems in java

applications with reference propagation profiling.” In Glinz, M., Murphy, G. C. and

Pezzè, M., editors, 34th International Conference on Software Engineering, ICSE

2012, June 2-9, 2012, Zurich, Switzerland, IEEE Computer Society, 134–144.

Yan, P., Jiang, S. and Sridhar, R. (2015). “A high throughput router with a novel switch

allocator for network on chip.” In 28th IEEE International System-on-Chip Confer-

ence, SOCC 2015, Beijing, China, September 8-11, 2015, 160–163.

Yan, P. and Sridhar, R. (2018). “Centralized priority management allocation for

network-on-chip router.” In 31st IEEE International System-on-Chip Conference,

SOCC 2018, Arlington, VA, USA, September 4-7, 2018, 290–295.

Zaparanuks, D. and Hauswirth, M. (2012). “Algorithmic profiling.” In Proceedings of

the 33rd ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’12, ACM, New York, NY, USA, 67–76.

Zhang, Y., Qu, P., Qian, Z., Wang, H. and Zheng, W. (2013). “Software/hardware

hybrid network-on-chip simulation on FPGA.” In Hsu, C., Li, X., Shi, X. and Zheng,

R., editors, Network and Parallel Computing - 10th IFIP International Conference,

NPC 2013, Guiyang, China, September 19-21, 2013. Proceedings, volume 8147 of

Lecture Notes in Computer Science, Springer, 167–178.

Zhao, Q., Cutcutache, I. and Wong, W. (2010). “Pipa: Pipelined profiling and analysis

on multicore systems.” TACO, 7(3), 13:1–13:29.

173

Publications based on the research work

Journal Publications

1. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, P-NoC: Per-

formance Evaluation and Design Space Exploration of NoCs for chip multipro-

cessor architecture using FPGA, Wireless Personal Communications, Springer,

2020, https://doi.org/10.1007/s11277-020-07529-2

2. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, An efficient

FPGA based Network-on-Chip simulation framework utilizing the Hard blocks,

Circuits, Systems, and Signal Processing, Springer, 2020, https://doi.org/10.1007/s00034-

020-01411-z

3. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, LBNoC-Design

of low-latency router architecture with Lookahead Bypass for Network-on-Chip

using FPGA, ACM Transactions on Design Automation of Electronic Systems(TODAES),

ACM, 2020, 25(1), https://doi.org/10.1145/3365994

4. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, Analysis of

cache behaviour and software optimizations for faster on-chip network simula-

tions, International Journal of System Assurance Engineering and Management,

Springer, 2019, 10(4), 696712, https://doi:10.1007/ s13198-019-00799-5

5. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, YaNoC: Yet An-

other Network-on-Chip Simulation Acceleration Engine Supporting Congestion-

Aware Adaptive Routing Using FPGAs, Journal of Ciruits Systems and Comput-

ers, World Scientific, 2019, 28:12, https://doi:0.1142/S0218126619502025

6. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, FPGA friendly

NoC simulation acceleration framework employing the Hard Blocks, Computing

Journal, Springer, (Revision submitted).

175

https://link.springer.com/article/10.1007/s11277-020-07529-2
https://link.springer.com/article/10.1007/s11277-020-07529-2
https://link.springer.com/article/10.1007/s11277-020-07529-2
https://link.springer.com/article/10.1007/s00034-020-01411-z
https://link.springer.com/article/10.1007/s00034-020-01411-z
https://dl.acm.org/doi/abs/10.1145/3365994
https://dl.acm.org/doi/abs/10.1145/3365994
https://dl.acm.org/doi/abs/10.1145/3365994
https://link.springer.com/article/10.1007%2Fs13198-019-00799-5
https://link.springer.com/article/10.1007%2Fs13198-019-00799-5
https://link.springer.com/article/10.1007%2Fs13198-019-00799-5
https://www.worldscientific.com/doi/abs/10.1142/S0218126619502025
https://www.worldscientific.com/doi/abs/10.1142/S0218126619502025
https://www.worldscientific.com/doi/abs/10.1142/S0218126619502025

BIBLIOGRAPHY

Conference Publications

1. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, Design of an

Adaptive and Reliable Network on Chip Router Architecture Using FPGA, in

2019 International Symposium on VLSI Design, Automation and Test (VLSI-

DAT), Hsinchu, Taiwan:IEEE, April 2019.

2. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, High-Performance

NoC Simulation Acceleration Framework Employing the Xilinx DSP48E1 Blocks,

in 2019 International Symposium on VLSI Design, Automation and Test (VLSI-

DAT), Hsinchu, Taiwan:IEEE, April 2019.

3. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, High-Performance

NoCs Employing the DSP48E1 Blocks of the Xilinx FPGAs, in 20th Interna-

tional Symposium on Quality Electronic Design, ISQED, Santa Clara, CA, USA,

USA:IEEE, March 2019.

4. G S Sangeetha, Vignesh Radhakrishnan, Prabhu Prasad B M, Khyamling Parane,

and Basavaraj Talawar, Trace-Driven Simulation and Design Space Exploration

of Network-on-Chip Topologies on FPGA, in 2018 8th International Symposium

on Embedded Computing and System Design (ISED), Cochin, India:IEEE, Dec

2018.

5. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, FPGA based

NoC Simulation Acceleration Framework Supporting Adaptive Routing, in 2018

IEEE International Conference on Electronics, Computing and Communication

Technologies (CONECCT), Bangalore, India:IEEE, Oct 2018.

176

https://ieeexplore.ieee.org/document/8741845
https://ieeexplore.ieee.org/document/8741845
https://ieeexplore.ieee.org/document/8741764
https://ieeexplore.ieee.org/document/8741764
https://ieeexplore.ieee.org/document/8697444
https://ieeexplore.ieee.org/document/8697444
https://ieeexplore.ieee.org/document/8703884
https://ieeexplore.ieee.org/document/8703884
https://ieeexplore.ieee.org/document/8482386
https://ieeexplore.ieee.org/document/8482386

BIBLIOGRAPHY

6. Prabhu Prasad B M, Khyamling Parane, and Basavaraj Talawar, YaNoC: Yet An-

other Network-on-Chip Simulation Acceleration Engine Using FPGAs, in VLSI

Design and 2018 17th International Conference on Embedded Systems, 31st In-

ternational Conference on VLSI Design (VLSID), Pune, India:IEEE, Jan 2018.

7. Khyamling Parane, Prabhu Prasad B M, and Basavaraj Talawar, Cache analysis

and software optimizations for faster on-chip network simulations, in 2016 11th

International Conference on Industrial and Information Systems (ICIIS), Roor-

kee, India:IEEE, Dec 2016.

177

https://ieeexplore.ieee.org/document/8326902
https://ieeexplore.ieee.org/document/8326902
https://ieeexplore.ieee.org/document/8262912
https://ieeexplore.ieee.org/document/8262912

Bio-Data

Name: Khyamling

Date of Birth: 01/06/1987

Email Id: pkhyamling@gmail.com

Contact No: +91-9482723110

Present Address: Khyamling, Research Scholar, Department of

Computer Science and Engineering, National

Institute of Technology Karnataka, Surathkal,

Mangalore - 575 025

Permanent Address: Khyamling s/o Abrutappa parane, At Post:

Hattarga(s), Tq: Basavakalyan, Dist: Bidar,

Karnataka-585 419

Educational Qualifications: B.Tech in Computer Science and Engineering

from Visvesvaraya Technological University,

Belgaum, Karnataka, India

M.Tech in Computer Network Engineering

from Visvesvaraya Technological University,

Belgaum, Karnataka, India

Previous Work experience: Assistant Professor in BKEC Basavakalyan,

Karnataka from Aug, 2009 to Sep, 2010

Assistant Professor in RIT Sangli, Maharash-

tra from June, 2012 to June, 2015

179

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Description
	Research Objectives
	Thesis Contributions
	Thesis Organization

	Background and Review of Related work
	Network-on-Chip: An Overview
	NoC Performance Parameters
	Field Programmable Gate Array
	Related Work

	Analysis of cache behaviour and software optimizations for faster on-chip network simulations
	Methodology
	Profiling and Software optimization techniques
	Profiling, Performance Optimization Tools and Experimental methodology
	Results and Discussion
	Experimental results based on Optimization Strategies
	Summary

	YaNoC - FPGA based simulation acceleration Framework
	Introduction
	YaNoC - Design and Implementation
	Design of Mesh and Diagonal Mesh (DMesh) topologies
	The proposed Reliable Network on Chip router
	Experimental Results
	YaNoC vs. State-Of-The-Art
	Summary

	Mapping the NoC Router Components on the DSP48E1 Hard blocks of the FPGA
	Introduction
	NoC Architecture
	DSP48E1 tile as the Crossbar Switch
	Results and Discussion
	Summary

	P-NoC: Performance Evaluation of NoCs architecture using FPGA
	P-NoC: FPGA-based parameterized framework
	 Design Cost and Performance Analysis
	Results and Discussion
	summary

	Design of Low latency and Area efficient Router Architecture for NoC using FPGA
	Introduction
	Related Work
	LBNoC-FPGA based Bypass NoC Framework
	Results and Discussion
	Comparison with the State-of-the-Art NoC architectures
	summary

	Conclusions and Future Works
	Appendix
	Shortest Path Routing Algorithm for DMesh topology

	Bibliography
	Publications

