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Abstract

A cell is the basic unit of all organisms. In a cellular life cycle, various complex
metabolic activities are being carried out in different cell compartments. Protein plays
an important role in many complex metabolic activities. Proteins are generated in the
post-transcriptional modification activity of a cell. Initially, the generated proteins are in
the linear structure and it is called as protein primary structure. Within the cell, proteins
tend to move from one compartment (subcellular location) to other compartments, and
based on the environment (in which the primarily structured proteins reside), primary
structured proteins transform into secondary and tertiary structures. Tertiary structured
proteins interact with nearby structured proteins to form a quaternary structure. A pro-
tein performs its biological functions when it attains its respective tertiary structure.

Identification of a protein structure and its subcellular locations are challenging and
important tasks in the field of medical science. Various health issues are identified
and solved via novel drug discoveries and a prior and accurate knowledge of protein
structure and its subcellular location helps in developing a respective drug. In order
to identify protein structure and its subcellular locations, various biological methods
such as X-ray crystallography, nuclear magnetic resonance spectroscopy, cell fraction-
ation, fluorescence microscopy, and electron microscopy are used. The main advantage
of biological methods is that they are accurate in identifying protein structures and
its subcellular locations. The disadvantages of biological methods are that they are
time-consuming and very expensive. In this post-genomic era, high-volumes of protein
primary structures are decoded by various research communities and are added to pro-
tein data banks. Identification of protein structure and its subcellular locations using
biological methods are not a feasible option for high-volumes of proteins.

Over the decades, various computational methods have been proposed to identify
protein structure and its locations; however, the existing computational methods exhibit
limited accuracy and hence they are less effective. The main objective of this thesis
is to propose effective computational models that contribute to the prediction of pro-
tein structure and its subcellular locations. In this regard, four important and specific
problems of protein structure and its subcellular location have been solved and they are:
(i) multiple sequence alignment, (ii) protein secondary structural class prediction, (iii)
protein fold recognition, and (iv) protein subcellular localization prediction.

The importance of multiple sequence alignment is that a vital and consistent ho-
mologous pattern of proteins can be captured and these patterns will further help in
solving protein structure and its subcellular locations. The proposed alignment method
includes three main modules: a) an effective scoring system to score the quality of the
aligned sequences, b) a progressive-based alignment approach is adopted and modified
to align multiple sequences, and c) the aligned sequences are refined using the proposed



polynomial-time complexity-based single iterative optimization framework. The pro-
posed method has been assessed on publicly available benchmark datasets and recorded
17.7% improvement over the CLUSTAL X model on the BAliBASE dataset.

Identification of protein secondary structural class is one of the important tasks that
further help in the prediction of protein tertiary structure. Protein secondary structural
class prediction is a supervised problem that falls under the multi-class category. The
proposed protein secondary structural class prediction model contains a novel feature
modelling strategy that extracts global and local features followed by a novel ensemble
of classifiers to predict structural class. The proposed model has been assessed on both
publicly available benchmark datasets and derived latest high-volume datasets. The
performance of the proposed model recorded an improvement of 5.3% on the 25PDB
dataset over one of the best predictors from the literature.

A protein fold recognition is a categorization of various folds of a protein that ex-
hibits in tertiary structure. Protein fold recognition is a supervised problem that falls
under the multi-class category. The proposed fold recognition model contains a novel
and effective feature modelling approach that includes Convolutional and SkipXGram
bi-gram techniques to extract global and local features followed by an effective deep
learning framework for fold recognition. The proposed model has been assessed on
both publicly available benchmark datasets and derived latest high-volume datasets.
The performance of the proposed model recorded a relative improvement of 5% on the
DD dataset over one of the best predictors from the literature.

An effective protein sub-chloroplast localization prediction model is proposed to
solve one-level more microscopic problem of subcellular localization. Protein sub-
chloroplast localization is a supervised problem that falls under the multi-class and
multi-label category. The proposed protein sub-chloroplast localization prediction model
contains a novel feature extraction technique such as SkipXGram bi-gram followed by
a deep learning framework for multi-label classification. The proposed model has been
assessed on publicly available benchmark datasets and recorded an improvement of
(absolute) 30.39% on the Novel dataset over the best predictor from the literature.

Keywords: Progressive alignment; Look back ahead scoring strategy; Position-
residue specific dynamic gap penalty scoring strategy; Single iterative
optimization; Embedding; Skip-gram bi-gram; Evolutionary profiles;
Ensemble classifier; Deep learning; Binary Relevance; Genetic Algo-
rithm; Machine Learning
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Chapter 1

Introduction

A cell is the basic unit of life that can replicate by itself, and cells are called the “build-
ing blocks of life”. Cells are categorized into two types: Prokaryotic cell which does not
contain a nucleus, prokaryotes are single-celled organisms. A eukaryotic cell that con-
tains a nucleus, eukaryotes are either single-celled or multi-cellular organisms Maton
et al. (1997). In a eukaryotic cell, thread-like structures named chromosomes present
inside the nucleus of animal and plant cells. Every chromosome consists of deoxyri-
bonucleic acid (DNA) molecules, amino acid sequences (Proteins), and others.

Various metabolic activities are carried out by respective organelles that are in turn
regulated by proteins Alberts et al. (1994). Proteins are biological macromolecules
consisting of a combination of 20 unique amino acids in a sequence. Approximately
one billion amino acid molecules reside in different subcellular locations of a cell Chou
and Shen (2007).

Further, each organelle exhibits sub-compartments or sub-structures. E.g., the chloro-
plast location mainly consists of smaller substructures - thylakoid, envelope, stroma,
plastoglobule, nucleoid. Thylakoid can be further divided into its lumen, membrane,
and envelope into the inner and outer chloroplast membrane, including the intermem-
brane space. Each of these performs a specific function, e.g., the Thylakoid membrane
carries out light reactions of photosynthesis. Sub-chloroplast localization of proteins
provides insights into the roles of those proteins in the sophisticated photosynthesis
process. Identifying proteins in these sub-compartments is even more difficult as this
is one-level more microscopic in nature when compared to identifying proteins in com-
partments.

As shown in Figure 1.1, various cellular activities such as mutation, transcription,
translation, and metabolites are involved in a cell. A mutation is a permanent alteration
of one or more nucleotides in a gene sequence of a genome. Transcription is the pri-
mary step of gene expression, in which DNA segments called exomes are copied into
ribonucleic acid (RNA) by the enzyme RNA polymerase. In translation, RNA is fur-
ther translated to produce a specific amino acid chain/sequence or polypeptide. These
polypeptides internally get folded due to various factors to become compact globular
3-Dimensional (3D) protein which performs respective functions in a cell. Metabolites
regulate and perform chemical transformations within the cell.

All the above-mentioned activities play various, unique, and important roles in the
overall functioning of a cell. From the above Figure 1.1, protein formation/generation is



Figure 1.1. Cellular Activities from Genotype to Phenotype

one of the imperative aspects of the functioning life cycle of a cell. Hence, this research
work mainly concentrates on analyzing amino acid sequences to solve protein structure
and subcellular localization prediction problems.

Proteins are made up of a chain (linear) of amino acid molecules. Protein structure
has been categorized into four levels, such as Primary Structure, Secondary Structure,
Tertiary Structure, and Quaternary structure.
Primary structure: Primary structure of a protein refers to the linear sequence of
amino acid molecules. The primary structure is also known as a polypeptide chain as
the sequence of amino acid molecules are held together by peptide (covalent) bonds
Lodish et al. (2000a).
Secondary structure: Secondary structure refers to highly regular local sub-structures
on the actual polypeptide backbone chain. Two main types of secondary structure, i)
the α-helix (H) and ii) the β-strand or β-sheets (E), were termed by Linus Pauling
and co-workers in 1951 Pauling et al. (1951). These secondary structures are due to
hydrogen bonds between the available hydrogen and oxygen atoms via the backbone
peptide chain. Some subparts of the amino acid sequences do not contribute to any
regular structure, termed as a random coil (C) Lodish et al. (2000a).
Tertiary structure: Tertiary structure refers to the 3D structure of monomeric and
multimeric protein molecules. The α-helices and β-pleated-sheets are folded into a
compact globular structure. This folding is carried away due to ionic interactions (van
der walls Forces), hydrophobic, and hydrophilic interactions. However, the protein
structure is said to be stable only when the protein becomes compact because of tertiary
interactions Lodish et al. (2000a).
Quaternary structure: Quaternary structure is the 3D structure of multi subunits (two
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or more polypeptides) of protein and how the subunits fit together Lodish et al. (2000a).

Within a cell, proteins evolve from primary structure using various physico-chemical
activities such as covalent bonding, hydrogen bonding, and ionic interactions. During
this process. protein peptides move within a cell from one location to another loca-
tion. Understanding the structure of proteins as well as its locations in a cell or within a
cell organelle help in understanding their roles in the metabolic processes that are car-
ried. Proteins with identical structure exhibit similar biological functions Chothia and
Finkelstein (1990).

Many research works have been carried out to identify the protein structure and its
subcellular localization. Biological methods as X-ray crystallography, nuclear magnetic
resonance (NMR) spectroscopy is effective in identifying protein structure; whereas,
cell fractionation, fluorescence microscopy, and electron microscopy techniques are ac-
curate in protein subcellular localization prediction Chou and Shen (2007). The main
advantage of biological methods is that they are accurate in identifying protein struc-
tures and its subcellular locations. The disadvantages of biological methods are that
they are time-consuming and very expensive.

Protein data-banks such as Structural Classification of Proteins (SCOP), Class Ar-
chitecture Topology and Homologous superfamily (CATH), and UniPort (Swiss-Prot)
contains annotated protein information and they are publicly accessible. The SCOP
is one of the largest publicly available protein data-banks in which proteins have been
classified to determine the evolutionary relationship among proteins. The majority of
proteins and their domains are manually curated of known structure in a hierarchy ac-
cording to structural and evolutionary relationships.

Over the last two decades, the protein data in the protein data-banks have rapidly
increased. It is worth noting that a total 31,474 number of protein domains were
present in SCOP 1.55 version (released/updated before 2001-03-01) and, in SCOP 1.75
version (released/updated before 2009-02-23) the protein domains were increased to
110,800. As per the latest SCOP extended (SCOPe) 2.07 version (released/updated
prior to 2019-10-03), a total of 303,552 protein domains are present Fox et al. (2013).
From these statistics, we can say that the total number of protein domains in SCOP
is increased approximately by 3 times per decade. Moreover, In 1986, Swiss-Prot
Bairoch and Apweiler (2000) database had 3,939 protein sequences; whereas, now the
number has grown to 560,537 according to the latest release by UniProtKB/Swiss-Prot
UniProtKB/Swiss-Prot (2019). The number of protein entries is grown 142 times in the
last 33 years.
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The rapid increase of protein volumes is mainly due to the advancements in next-
generation sequencing techniques. Due to the enormous increase of proteins in the
protein data-banks, biological methods are not a feasible option to continue with as
they are cost-intensive as well as time-consuming techniques. Due to this, various com-
putational models were developed in the last couple of decades to identify the protein
structure and its subcellular localization. However, the existing methods are not accu-
rate. This study mainly concentrates on proposing effective computational models to
solve the protein structure and its subcellular localization prediction.

1.1 Research Motivation

A prior accurate knowledge of protein structure and its subcellular location helps not
only in finding answers to health issues but also helps in preventing many annotated is-
sues in the field of medical science. Biological wet-lab experiments are time-consuming,
challenging, and not cost-effective due to the need for high precision equipment. Bi-
ological experiments to identify protein structure and its subcellular localization for a
large number of proteins is not a feasible approach. Moreover, sub-chloroplast local-
ization increases the complexity of determining protein location as the location iden-
tification is one-level more microscopic in nature and the sub-compartments are much
smaller in size compared to compartments. Computational methods are necessary to
assist biologists in dealing with a large scale of proteins in a fast, efficient, easier, and
cost-effective way. However, existing computational methods are less accurate in pre-
dicting the protein structure and its subcellular localization (detail discussion will be
carried out in the next Chapter, i.e., Literature Survey, section 2). Therefore, this study
mainly focuses on proposing effective computational models to solve the protein struc-
ture and its subcellular localization prediction.

1.2 Research Challenges

Multiple Sequence Alignment (MSA): is an important tool in the identification of evo-
lutionary relations among the sequences and further contributes to the extraction of
effective features. Existing MSA tools either effective in alignment quality or effi-
cient with respect to time. An example of MSA is discussed in section 3.1. Aligning
multiple sequences is not a trivial task because as the number of protein sequences in-
creases, the alignment quality decrease, and also computational time increases. Over
the last decade, many Genetic Algorithm (GA) based optimization methods such as
GAPAM Naznin et al. (2012), RBT-GA Taheri and Zomaya (2009), SAGA Notredame
and Higgins (1996), and others are adopted to increase the alignment quality; however,
these methods run multiple iterations in refining the quality of the alignment; thus, the
resources such as cpu cycles, time and space are also increases for every alignment.
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Detail discussion on all the existing methods are carried out in the next Chapter, i.e.,
Literature Survey, at Section 2.1

Protein Secondary Structural Class Prediction: is an important and initial step in
the identification of protein structure. Mainly there are four structural classes and each
protein sequence can be categorized into any four of the classes. Existing methods are
not generalized methods as they either work for high-similarity sequence datasets or
low-similarity sequence datasets (detail discussion on existing methods are carried out
in the next Chapter, at Section 2.2). Extracting important patterns that work effectively
for all similarity datasets is the key to solve protein secondary strutural class prediction.

Protein Fold Recognition: is the next important step in the identification of protein
structure. Every secondary structural protein is folded into the various structure and
there are more than 30 different folds that can be possible. Existing methods are less
effective (accuracy below 85% Lyons et al. (2016, 2015)) in extracting quality feature
sets (detail discussion on existing methods are carried out in the next Chapter, at Section
2.3).

Protein Subcellular Localization Prediction: is one of the important prediction prob-
lems to identify the locality of a given protein. Every protein residing in a cell tends to
move from one subcellular location to the other. In this study, locations of chloroplast
proteins are identified and there are five different sub-chloroplast locations. Existing
computational predictors fail to extract effective feature sets as well as, less effective
in multi-label classification (detail discussion on existing methods are carried out in the
next Chapter, at Section 2.4). The best predictor from the literature exhibits an accuracy
of below 70% Wan et al. (2016b).

1.3 Major Contributions of the Thesis

The salient contributions of the research work are listed as follows:

• An effective progressive-based Multiple Protein Sequence Alignment (MPSA)
method has been proposed. The importance of multiple sequence alignment is
that a vital and consistent homologous pattern of proteins can be captured and
these patterns will further help in solving protein structure and its subcellular
locations. The proposed MPSA method involves the following:

– An effective scoring system that contains two novel scoring strategies named,
Look Back Ahead (LBA) and Position-Residue Specific Dynamic Gap Penalty
(PRSDGP) have been proposed to improve the alignment quality.

– An effective and novel optimization framework named Single Iterative Op-
timization (SIO) has been proposed to refine the alignment quality.
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• An enhanced Protein Secondary Structural Class (PSSC) prediction model has
been proposed which involves the following:

– An effective feature modeling to capture local and global amino acid inter-
actions. Local interactions are captured from primary and secondary struc-
tural sequences using two novel techniques such as Character Embeddings
(CE) and SkipXGram bi-gram (SXG-bg); Whereas, global interactions are
captured via frequency approach.

– Various conventional state-of-the-art classifiers are explored for the predic-
tion.

– An effective ensemble of classifiers is proposed to predict PSSC accurately.

• An enhanced Protein Fold Recognition (PFR) model for low similarity datasets
has been proposed which involves:

– An effective feature extraction approach that includes extracting local fea-
tures from evolutionary-based profiles using SkipXGram bi-gram (SXGbg)
technique and global features using convolutional operations.

– An effective deep learning architecture to predict PFR accurately.

• An effective multi-label Protein Sub-Chloroplast Localization (PSCL) prediction
model has been proposed which involves:

– An effective feature extraction approach that includes extracting local fea-
tures from evolutionary-based profiles using SkipXGram bi-gram (SXGbg)
technique.

– An effective multi-label deep learning architecture to predict PSCL accu-
rately.

1.4 Organization of the Thesis

Chapter 2 describes a detailed literature survey on MPSA methods, PSSC prediction
models, PFR models, and PSCL prediction models and followed by the problem state-
ment and research objectives.

Chapter 3 describes the proposed methodology of progressive-based MPSA in de-
tail. In this chapter, two effective scoring strategies are discussed followed by SIO
optimization framework to refine the alignment. Further, a total time complexity of the
proposed MPSA model is discussed along with the performance analysis.

Chapter 4 elaborates the proposed PSSC prediction model in detail. In this chapter
three feature extraction techniques followed by an effective ensemble of classifiers are
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discussed. Further, the performance analysis of the proposed model is assessed on
benchmark and derived dataset and evaluated against state-of-the-art models.

Chapter 5 discusses in detail the proposed PFR prediction model. In this chapter
two feature extraction techniques followed by an effective deep learning framework
are discussed. Further, the performance analysis of the proposed model is assessed on
benchmark and derived datasets and evaluated against state-of-the-art models.

Chapter 6 proposes two multi-label PSCL prediction models. In this chapter, a
preliminary study is discussed that includes PSSM-based bi-gram features followed by
a Binary Relevance framework containing SVM as a base classifier to predict the multi-
label locations of PSCL. Further, the SkipXGram bi-gram feature extraction technique
followed by a deep learning framework is discussed. The performance analysis of the
proposed model is assessed on benchmark datasets and evaluated against state-of-the-
art models.

Conclusions and possible future directions are highlighted in chapter 7.

1.5 Summary

This chapter highlights cells, followed by various metabolic activities that are carried-
out in cell survival. Various kinds of protein structures, protein subcellular localization,
and their importance have been highlighted. This chapter lists various biological tech-
niques to identify protein structure and its subcellular localization and followed by its
limitations due to the high volumes of proteins to be analyzed. The research motiva-
tion and the major contributions of the overall study are listed out in this chapter. The
chapter also highlights the organization of the thesis.

In the next chapter, some of the important existing work in the area of MSA, PSSC
prediction, PFR prediction, and PSCL prediction has been reviewed.
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Chapter 2

Literature Survey

An extensive literature survey was carried out in the field of protein structure and its
subcellular localization which includes areas like, multiple protein sequence alignment,
protein secondary structure class prediction, protein fold recognition, and subcellular
localization prediction.

2.1 Multiple Protein Sequence Alignment

Multiple Sequence Alignment (MSA) is one of the fundamental tools in molecular bi-
ology which aligns more than two biological sequences simultaneously. The alignment
of amino acid sequences is termed as Multiple Protein Sequence Alignment (MPSA).
Based on the similarities of the amino acid sequences, the core regions are identified
along with possible alterations over the years. Sequence alignment helps to identify
homology (existence of shared ancestry) and divergence patterns between new and ex-
isting sequences. These patterns in-turn helps in various biological activities such as
i) in the reconstruction of phylogenetic trees, ii) in predicting the secondary structural
class information, iii) in recognition of protein folds, iv) in the identification of protein
tertiary structures, and iv) also to predict subcellular localization of given amino acid
sequence Notredame (2002).

The various match, mismatch, and indel (”-”) events help in organizing related se-
quences that are possibly deviated via evolution. Aligning two sequences termed as
pair-wise alignment. The goal is to find similar or closely related regions in pair-wise
alignment Naznin et al. (2012). For short lengths and a smaller number of sequences,
possibly the alignment can be achieved manually. However, for the number of se-
quences more than 8 and above, efficient methods are essential for alignments Thomp-
son et al. (1994).

The existing MSA models are categorized mainly into three approaches: (i) classi-
cal approach, (ii) progressive approach, and (iii) iterative approach. Categorization of
various progressive and iterative-based state-of-the-art models as illustrated by Thomp-
son et al. (1999) and is further updated with the recent methods (highlighted in blue
color) is as shown in Figure 2.1.

(i) Classical Approach: adopts a dynamic programming approach to align a se-
quence pair by computing every probable option to obtain optimal alignment. Needle-
man and Wunsch (1970) proposed global alignment technique and Smith and Waterman
(1981) proposed local alignment technique. Both global and local pairwise alignment
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Figure 2.1. A categorization of state-of-the-art alignment models updated with recent models.

techniques are the standard examples of the classical approach.

The global alignment (Needleman-Wunsch) method aligns a sequence pair over
their entire length Needleman and Wunsch (1970), whereas, the local alignment (Smith-
Waterman) method identifies similar regions within a sub sequence to align core blocks
Smith and Waterman (1981).
Advantages: Classical approach aligns the biological sequences in an optimum way.
Time Complexity: The time complexity to align a sequence pair optimally using classi-
cal approach is O(L2), where L is the maximum length of the given sequence pair.
Limitations: As the number of sequences (n) increases, the time complexity to find the
optimal alignment becomes O(n.2n.Ln) Waterman et al. (1976). Moreover, optimiz-
ing MSA problem is considered as non-deterministic polynomial time (NP)-complete
problem Wang and Jiang (1994).

(ii) Progressive Approach: To overcome the limitation of the classical approach, the
authors, Feng and Doolittle (1987) introduced to progressive alignment approach. A
progressive-based model selects and aligns the best sequence pair based on similarity
or distance measure among the sequences. The next best pair is selected and aligned
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progressively until all the sequences are aligned.
A progressive model to obtain accurate alignment depends on two factors: (i) a scoring
system to find the optimal arrangement among the sequences based on a score; and (ii)
the order in which the sequence pair is selected for alignment. For the first factor, a
majority of the developed scoring systems are variants of the sum-of-pair (SP) scoring
function Wang and Jiang (1994). For the second factor, Neighbor-Joining (NJ) Saitou
and Nei (1987) and Unweighted Pair Group Method with Arithmetic mean (UPGMA)
Sneath and Sokal (1973) are widely accepted techniques.
Various progressive-based models have been developed such as: PIMA Smith and
Smmith (1992) aligns only the conserved blocks using local alignment approach. To
decide the order in which sequences are selected for alignment, it uses maximum link-
age (ML PIMA) or sequential branching (SB PIMA). Align-M Van Walle et al. (2004a)
aligns in three steps: first, it performs with high-scoring local alignment; next, one or
more pair-wise alignments performed by dynamic programming using mutation ma-
trix; and finally, only consistent alignment parts are considered for final alignment.
Both CLUSTAL X Thompson et al. (1997) and CLUSTAL W Thompson et al. (1994)
adopts NJ technique to build tree to solve MSA. CLUSTAL X Thompson et al. (1997)
provides a graphical interface for CLUSTAL W Thompson et al. (1994). Although
it has the sophisticated scoring system, it suffers from local optima trap Notredame
et al. (2000). MULTALIGN Barton and Sternberg (1987) and PILEUP Devereux et al.
(1984) follow global alignment approach, in which both solves MSA with the help of
guide tree which is constructed using UPGMA Sneath and Sokal (1973).
Advantages: Progressive models align the biological sequences in polynomial time.
Time Complexity: Time complexity to align sequences using progressive approach with
UPGMA Sneath and Sokal (1973) is O(n3+n.L2) Edgar (2004a). Where, n is the num-
ber of sequences and L is the maximum length of a sequence.
Limitations: Progressive-based alignment follows heuristic approach and tends to ex-
hibit – ‘once a gap, always a gap’ Feng and Doolittle (1987). This limitation is due to
the greediness of the progressive approach which leads to local optima.

(iii) Iterative Approach: To overcome the local optima limitation, many iterative-
based optimization models have been developed. The iterative approach adopts either
progressive or stochastic techniques, in which initial alignment is constructed and re-
aligned iteratively until the alignment converges to optimum alignment or runs for max-
imum iterations.
Various progressive-based iterative models have been developed such as MAFFT Katoh
and Standley (2013) incorporates fast Fourier transform technique to perform progres-
sive based (FFT-NS-2) alignment and iterative based (FFT-NS-i) alignment. MUS-
CLE Edgar (2004b) performs MSA in three stages - initially draft progressive, fol-
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lowed by improved progressive, and finally refinement. KAlign2 Lassmann et al.
(2008) is an improved version in which consistency check is avoided by using exter-
nal features. CLUSTAL Omega Sievers et al. (2011) uses external profile alignment
which is based on a hidden Markov model to solve MSA. T-Coffee Notredame et al.
(2000) falls under consistency-based iterative category in which it adopts both global
and local alignment techniques to align and refines the final alignment using a library.
SAGA Notredame and Higgins (1996), RBT-GA Taheri and Zomaya (2009), MSA-GA
Gondro and Kinghorn (2007), GAPAM Naznin et al. (2012) and MSAGMOGA Kaya
et al. (2014) are examples of genetic algorithm (GA) based iterative approach. SAGA
Notredame and Higgins (1996) optimizes the solution using 22 different operators re-
peatedly, due to which the method suffers from high order time complexity Shyu et al.
(2004). RBT-GA Taheri and Zomaya (2009) is a heuristic-based approach to align se-
quences using a dynamic programming table. In MSA-GA Taheri and Zomaya (2009),
the initial population is generated using Thompson et al. (1994) and pair-wise align-
ment. GAPAM Naznin et al. (2012) performs MSA using guide trees, where the initial
population is generated with two approaches: first, random guide trees; and second,
shuffling sequences among trees. MSAGMOGA Kaya et al. (2014) optimizes the three
objectives: similarity maximization, affine gap penalty minimization, and support max-
imization to improve overall alignment quality.
Advantages : The probability of an alignment suffering from local optima is very mini-
mal.
Time Complexity : Time complexity to construct initial alignment is O(n3+n.L2) with a
maximum number of iterations, denoted as K, to optimize. The overall time complex-
ity of the iterative approach is O(K.n3+K.n.L2).
Limitations : Iterative-based models might converge to optimal alignment with the
trade-off of higher time complexity.
Scoring System :

Along with the alignment approaches, the scoring system also plays a crucial role in
the alignment quality. Many efforts are made to improve the robustness of the scoring
system, of which Hierarchical Expected matching Probability (HEP) Nguyen and Pan
(2011) is one among the promising approaches.
Sum-of-pairs (SP) is also a promising approach, in which most models were adopted
due to its simplicity. CLUSTAL W Thompson et al. (1994), T-Coffee Notredame et al.
(2000) and MAFFT Katoh and Standley (2013) are models which make use of SP scor-
ing strategy with variations in substitution or mutation matrices like PAM Dayhoff
et al. (1978), BLOSUM Henikoff and Henikoff (1992) and GONNET Gonnet et al.
(1992). The scores of these mutation matrices are derived from various residue factors
such as physicochemical properties, frequency, entropy and mutation information Val-

12



dar (2001).
One of the most commonly used approaches to penalize indels is the Affine Gap Penalty
(AGP). In MUSCLE Edgar (2004b), gap penalty depends on two concepts, i.e., gap
open and gap extend, which are calculated based on an input value and a tune-able
parameter, ‘H’. In CLUSTAL W Thompson et al. (1994), besides position-specific
gap penalty, additional factors like sequence length, sequence similarity, and average
residue mismatch are considered to calculate the gap penalty. In MAFFT Katoh and
Standley (2013) and H4MSA Rubio-Largo et al. (2016), the gap penalty is a static
value provided as part of alignment input, and identifying the fixed value is not a trivial
task.

The overall important works of MSA are summarized in Table 2.1 and the categoriza-
tion of these works based on the alignment approach are shown in Figure 2.2.

Multiple Sequence Alignment

Classical 
Approach

Progressive
Approach

Iterative 
Approach

Local Alignment
Strategy

Global Alignment
Strategy

Needleman-
Wunsch(1970),

Waterman
et.al(1976)

Feng et al.(1987),
MULATALIGN(1987),

MULTAL(1988),
CLUSTAL(2011)

PIMA(1992),
MP_PIMA(1992),
SP_PIMA(1992)

MUSCLE(2004),
SAGA(1996),

RBT-GA(2009),
MSA-GA(2007),
GAPAM(2012)

Figure 2.2. Categorization of state-of-the-art MSA models based on the alignment approach.
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2.2 Protein Secondary Structural Class

Prior knowledge of protein secondary structural class (PSSC) information helps in dis-
covering its structure and functions Chou (2000).

In 1976, the authors, Levitt and Chothia (1976) proposed the concept of protein sec-
ondary structural classes based on the visual examination of polypeptide chain topolo-
gies, which are categorized into four structural classes from a dataset of 31 globular
proteins: all-α , all-β , α/β, and α+β. While the first two classes comprise secondary
structures dominated by α–helices and β–strands, respectively, the other two classes
consist of both α–helix and β–strand secondary structures with interspersed in α/β
class structures and segregated in α+β class structures. Structural Classification of Pro-
teins (SCOP) Andreeva et al. (2004) and Class Architecture Topology and Homologous
superfamily (CATH) Cuff et al. (2009) are two protein structure databases that provide
hierarchical structural classifications of proteins. The classification of proteins to re-
spective structural classes in the SCOP database is manually validated, while in the
CATH database it is validated via both automated as well as manual procedures.

New protein structures discovered by diverse scientific communities have been sub-
mitted to protein databases. According to the latest extended version of the SCOPe 2.07
database1, the proteins are mainly categorized into seven classes, namely, (1) All–α, (2)
All–β, (3) α/β, (4) α+β, (5) Multi-domain proteins, (6) Membrane and cell surface pro-
teins and (7) Small proteins. Over the years, it was observed that 90% of these protein
entries consistently belong only to the first four structural classes Murzin et al. (1995);
Andreeva et al. (2004), Andreeva et al. (2007); Fox et al. (2013). Therefore, this study
mainly concentrates on predicting the first four structural classes.

Identification of protein structural class is one of the important activities of protein
sequence analysis for mainly two reasons: (i) Prior knowledge of the structural class
information of protein sequences enhances the prediction accuracy of several activi-
ties of sequence analysis such as DNA-binding sites Kuznetsov et al. (2006), protein
secondary structure Rahal and Walz (2018), protein folds Aram and Charkari (2015);
Raicar et al. (2016); Ibrahim and Abadeh (2017, 2018), protein folding rates Gromiha
(2005), tertiary structure prediction Carlacci et al. (1991); all these activities have po-
tential applications in further analysis of protein functions and drug discovery Chou
et al. (2006). (ii) Newly discovered protein sequences from the various scientific com-
munities are consistently increasing due to the rapid advancement of sequencing tech-
nology. Hence, to annotate the structural class information for newly discovered pro-
tein sequences, there is an imminent need for automated, accurate, and generalized

1http://scop.berkeley.edu/statistics/ver=2.07
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structural class prediction models that works for all categories of sequence similarity
proteins.

Earlier investigations on the identification of PSSC were carried out by biological
experimental methods Provencher and Gloeckner (1981). However, these methods are
time-consuming and cost-intensive. To overcome the limitations of biological methods,
several computational methods have been proposed Klein and Delisi (1986); Liu et al.
(2010b); Yu et al. (2013); Dehzangi et al. (2013b); Kavianpour and Vasighi (2017).

From the last two decades, various computational efforts have been made to figure
out the protein secondary structure class prediction Klein and Delisi (1986); Liu et al.
(2010b); Yu et al. (2013); Dehzangi et al. (2013b); Kavianpour and Vasighi (2017).
The majority of these are machine learning methods, considering prediction secondary
structure as a classification problem with four classes. The PSSC prediction is catego-
rized under a multiclass classification problem, which involves two major activities: (i)
Feature modeling and (ii) Classification.

In feature modeling activity, the given sequences are transformed into fixed-length
feature vectors and relevant features are identified to predict the PSSC accurately. In
literature, state-of-the-art models extract features mainly from amino acid sequences,
structural sequences, and evolutionary information.

Sequence-based features are primarily extracted from information such as physic-
ochemical properties of protein residues Zhang et al. (2008); Rahal and Walz (2018);
Contreras-Torres (2018), amino acid composition (AAC) and their distribution Klein
and Delisi (1986), pseudo amino acid composition (PseAAC) Chen et al. (2006); Zhang
et al. (2008); Li et al. (2009); Sahu and Panda (2010), and averaged chemical shifts Zhu
et al. (2019). The advantage of sequence-based features is that they exhibit significant
discriminating information for high similarity datasets. In contrast, sequence-based
features fail to discriminate classes correctly for twilight zone (low similarity) datasets
Kurgan and Homaeian (2005); Kurgan and Chen (2007); Mizianty and Kurgan (2009).

Structure-based features are extracted from secondary structural sequences. The
secondary structural sequence can be generated by mapping every amino acid residue
from the protein sequence to one of the secondary structure elements such as α-Helix
(H), β-Sheet (E), or Coil (C) McGuffin et al. (2000). Liu et al. Liu and Jia (2010)
focused on designing features from structural sequences. Kong et al. Kong et al. (2014)
extracted features to characterize general contents and spatial arrangements of the sec-
ondary structural sequences. PSSC prediction methods Liu and Jia (2010); Kong et al.
(2014) using secondary structural sequences reported better prediction accuracy. How-
ever, these methods were not able to explore and extract highly discriminating features.
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Evolution-based features are extracted from sequence profiles such as position-
specific scoring matrix (PSSM) which are generated using PSI-BLASTAltschul et al.
(1997). To address PSSC prediction, various techniques are applied to evolutionary in-
formation; Zang et al. Zhang et al. (2012) extracted a large vector space and reduced
it using the principal component analysis approach. Xia et al. Xia et al. (2012) work
focus on transforming evolutionary features using the linear regression technique. Liu
et al. Liu et al. (2012) adopt auto-covariance transformation technique on PSSM. De-
hzangi et al. Dehzangi et al. (2013b) extracted features from both physicochemical
properties and evolutionary information using overlapped segmented distribution and
autocorrelation techniques. Zang et al. Zhang et al. (2014) extracted features based
on evolutionary differences. Ding et al. Ding et al. (2014) extracted long-range and
linear correlation features from evolutionary information. Qin et al. Qin et al. (2015)
generated a fixed-length feature vector by the linear predictive coding approach.

Other approaches in solving the PSSC problem include: Liu et al. Liu et al. (2010b)
addressed the PSSC problem using a distance measure instead of extracting discrimi-
nating features. Yu et al. Yu et al. (2013) parallelly extracted features from multiple
views and fused them to form a complex feature space. Kavianpour et al. Kavian-
pour and Vasighi (2017) transformed amino acid residues to binary codes based on the
hydrophobicity index and then generates cellular automata images to extract features
using image textural properties.

The latter activity of PSSC prediction i.e., for the classification, various state-of-the-
art classifiers such as Bayesian classifier Wang and Yuan (2000), Logistic Regression
Kurgan and Homaeian (2006); Kurgan and Chen (2007), Artificial Neural Network Cai
and Zhou (2000); Sahu and Panda (2010); Ningbo and Hua (2017), ensemble classifiers
Kedarisetti et al. (2006); Dehzangi et al. (2013b), and Support Vector Machine Kurgan
and Chen (2007); Zhang et al. (2012); Liu et al. (2012); Zhang et al. (2014); Ding et al.
(2014); Qin et al. (2015) have been developed for PSSC prediction.

In the literature, the supervised learning techniques such as SVM and other ensem-
ble classifiers have been widely adopted to solve the PSSC problem.

The overall important works of PSSC prediction are summarized in Table 2.2 and the
categorization of these works based on the feature sources are shown in Figure 2.3.

.
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Protein Secondary
Structural Class

Prediction

Features

Visual 
Inspection

Amino Acid
Composition

Evolutionary
Composition

Binary Code
Images

Levit et al. (1976) Zang et al. (2008),
Li et al. (2008)

Liu et al. (2012),
Dehzangi et al.

(2013),
Zang et al. (2008),

Kavinapour et al.
(2017)

Figure 2.3. Categorization of state-of-the-art PSSC models based on the feature source.
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2.3 Protein Fold Recognition

The protein fold recognition (PFR) is one step closer in identifying protein tertiary
structure. The PFR refers to an assignment of a query protein sequence to one of the
structural folds (from a limited number of folds) that exhibits a similar tertiary struc-
ture. Proteins with identical structure exhibit similar biological functions Chothia and
Finkelstein (1990).

Biological wet-lab methods such as nuclear magnetic resonance (NMR) and X-
ray crystallography are proven to be effective in the identification of protein tertiary
structure with a trade-off of higher expenses and time Berardi et al. (2011).

Moreover, with recent improvements in large-scale sequencing technologies, a mas-
sive number of protein sequences have been deposited in protein data banks. In 1986,
Swiss-Prot Bairoch and Apweiler (2000) database had 3,939 protein sequences; whereas,
now the number has grown to 560,537 according to the latest release by UniProtKB/Swiss-
Prot UniProtKB/Swiss-Prot (2019). The number of protein entries is grown 142 times
in the last 33 years. The experimental methods become an infeasible solution to handle
the massive growth of protein sequences; thus, effective computational approaches are
highly desirable.

Over the last two decades, numerous computational approaches have been devel-
oped by various research communities and among these approaches, machine learn-
ing models have been achieved promising results. In machine learning terminology,
the PFR falls under the category of supervised learning with a multiclass classifica-
tion problem. The performance of the PFR mainly depends on feature extraction and
classification techniques.

In literature, a wide range of features are utilized for PFR and these features are
broadly categorized into four groups, namely: (i) Sequence-based features Chothia
and Finkelstein (1990); Shen and Chou (2006); Lin et al. (2007); Ying et al. (2009);
Yang et al. (2011); Kavousi et al. (2011): where features are extracted from amino acid
and/or pseudo amino acid compositions, (ii) Physicochemical-based features Ding and
Dubchak (2001); Dehzangi and Phon-Amnuaisuk (2011); Sharma et al. (2013b); Aram
and Charkari (2015): where features are extracted from the physicochemical properties
of amino acids, (iii) Structural-based features Chen and Kurgan (2007); Shen and Chou
(2009); Chen et al. (2011); Paliwal et al. (2014a): where the features are extracted
on structural information of a protein sequence, and (iv) Evolutionary-based features
Kavousi et al. (2011); Chen and Kurgan (2007); Dong et al. (2009); Yang and Chen
(2011); Sharma et al. (2013a); Paliwal et al. (2014b); Lyons et al. (2015): where the
features are derived from evolutionary profiles.
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Ding and Dubchak Ding and Dubchak (2001) considered amino acid composition
as well as physicochemical attributes with structural information for feature extraction,
which achieved 56% accuracy in predicting protein fold. Earlier studies were mainly
focused on sequence-based, and physicochemical-based features, and the performance
of PFR was limited to below 70% accuracy for low similarity (i.e., < 40% similarity)
benchmark datasets. Later studies have explored structural-based and evolutionary-
based features to enhance the PFR accuracy above 70% for low similarity benchmark
datasets. Recent studies Lyons et al. (2016, 2015) using evolutionary-based hidden
Markov model (HMM) profile features further enhanced the PFR results and reported
just above 80% accuracy for low similarity benchmark datasets. It is worth noting that
the HMM profiles have been playing a key role in the performance enhancement of
various protein prediction challenges Kumar et al. (2020).

Most features are extracted by exploring various techniques such as, auto covariance
Dehzangi et al. (2013a, 2014); Ibrahim and Abadeh (2017), autocross-covariance Dong
et al. (2009); Yan et al. (2017), auto-correlation Shen and Chou (2006); Ibrahim and
Abadeh (2017), mono-gram Sharma et al. (2013a); Lyons et al. (2015), bi-gram Sharma
et al. (2013a); Lyons et al. (2015), tri-gram Paliwal et al. (2014b); Lyons et al. (2015),
pairwise frequency information Ghanty and Pal (2009), k-amino acid pairs Paliwal et al.
(2014a), distance between evolutionary profiles Lyons et al. (2014, 2016), and fusion
of different features Ding and Dubchak (2001); Shen et al. (2009); Ghanty and Pal
(2009); Yan et al. (2017); Ibrahim and Abadeh (2017). The best PFR accuracies that
are reported on benchmark datasets are using tri-gram features Lyons et al. (2015).

For classification, various machine learning techniques have been developed such
as linear discriminant analysis Ibrahim and Abadeh (2017, 2018), Bayesian classifier
Chinnasamy et al. (2005), support vector machine (SVM) Ding and Dubchak (2001);
Dong et al. (2009); Yang and Chen (2011); Sharma et al. (2013a); Paliwal et al. (2014a);
Lyons et al. (2014); Dehzangi et al. (2014); Lyons et al. (2015), k-nearest neighbor Shen
and Chou (2006), Artificial neural network Cai and Zhou (2000), Extreme learning ma-
chine Ibrahim and Abadeh (2017, 2018), hidden Markov model Bouchaffra and Tan
(2006); Deschavanne and Tufféry (2009), and ensemble of different classifiers Shen
and Chou (2006); Ghanty and Pal (2009); Dehzangi et al. (2010); Aram and Charkari
(2015). The SVM and ensemble of SVM with other classifiers have reported promising
results Dehzangi et al. (2010); Lyons et al. (2015).

In literature, various combinations of feature extraction and classification techniques
have been proposed to solve PFR effectively. However, the PFR results for low similar-
ity benchmark datasets are still below 85%.
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The overall important works of PFR are summarized in Table 2.3 and the categorization
of these works based on the feature sources are shown in Figure 2.4.

Protein Fold
Recognition

Features

Amino Acid
Composition

Evolutionary
Composition

Shen et al. (2006) Paliwal et al. (2014),
Kavousi et al. (2012)

Position Specific
Scoring Matrix

Hidden Markov 
Model matrix

Loyns et al. (2015)

Figure 2.4. Categorization of state-of-the-art PFR models based on the feature source.
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2.4 Protein Subcellular Localization

As per cellular anatomy, a cell (eukaryotic) is composed of different subcellular parts,
or organelles Chou and Shen (2007). Protein performs its functions when it is located
in appropriate compartments. Hence, it is very important to identify the subcellular
location for the given protein. Prior information of the subcellular location of a given
protein helps in i) understanding the protein function(s) ii) understanding about what
other proteins are situated in the same compartment which helps in predicting interac-
tions between proteins iii) finding biological process in which complex pathways are
regulated at cellular level iv) developing appropriate drug to avoid side effects Chou
and Shen (2008, 2010).

The chloroplast is one of the most classic organelles that are found in algae and
plant cells. The primary function of chloroplast organelle is to conduct photosynthesis
Melkikh et al. (2010). Besides, proteins in the chloroplast organelle play a vital role in
various metabolic activities such as, amino acid synthesis Kirk and Leech (1972), im-
mune response and lipid metabolism Wang and Benning (2012), pigment biosynthesis
Moore and Shephard (1978), and fatty acid synthesis Post-Beittenmiller et al. (1992).

As per UniProt data bank2, chloroplast organelle is mainly consisting of smaller
structures or compartments such as envelope, plastoglobule, stroma, thylakoid lumen,
thylakoid membrane. These compartments are at the sub-subcellular level and they ex-
hibit a specific role in the overall chloroplast metabolism. The envelope compartment is
made up of a double membrane. The plastoglobuli compartment acts as lipid reservoirs
for thylakoid membranes. The stroma compartment is the inner chloroplast membrane
excluding thylakoid space. The thylakoid lumen compartment is bounded by the thy-
lakoid membrane and the thylakoid membrane compartment is responsible for the light
reaction of photosynthesis.

Identification of proteins that are located in the sub-chloroplast compartments help
in further understanding their roles in the various chloroplast biological activities. As
per the Swiss-Prot database which is released in March 2007, only 20% of protein data
from this database has been annotated with subcellular location information Chou and
Shen (2007). Recent enhancements in large-scale sequencing technologies led to an
increase in the deposition of a massive number of protein sequences in protein data
banks. In 1986, Swiss-Prot Bairoch and Apweiler (2000) database had 3,939 protein
sequences; whereas, now the number has grown to 560,537 according to the latest re-
lease by UniProtKB/Swiss-Prot UniProtKB/Swiss-Prot (2019). The number of protein
entries is grown 142 times in the last 33 years. Biological-based experiments such

2https://www.uniprot.org/locations/?query=chloroplast&sort=.
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as cell fractionation, fluorescence microscopy, and electron microscopy are utilized to
predict PSCL. However, biological methods for a huge number of proteins to determine
their localizations at sub-organelle (i.e., sub-subcellular) level is cost-intensive, time-
consuming, and infeasible solution. Hence, there is a need to develop a fast, reliable,
effective, and generalized computational model to identify PSCL.

Over the past decades, continuous efforts have been channelized and successfully
developed various computational models to predict protein subcellular localization.
These models can broadly categorize into three such as, Sequence-based, Evolutionary-
based, and Knowledge-based approaches. Sequence-based approaches include: (i)
amino acid composition-based models Chou (2001); Zhou and Doctor (2003); Fan and
Li (2012); Dehzangi et al. (2015); Zhang and Duan (2018). The evolutionary-based
approach makes use of profile information to predict Wan et al. (2016b). Knowledge-
based approaches mainly rely on knowledge corpus such as PubMed data Brady and
Shatkay (2008); Fyshe et al. (2008) and Gene Ontology (GO) Chou et al. (2011); Xiao
et al. (2017); Cheng et al. (2018). The prediction of sub-chloroplast localization (i.e.,
sub-subcellular localization) is one-level more microscopic by nature compared to sub-
cellular localization and hence it possesses a greater challenge in the prediction of sub-
chloroplast localization compared to other subcellular localization problems.

Due to the higher difficulties in predicting PSCL, only a limited number of works
have been proposed to solve the PSCL prediction problem. Earlier predictors such as,
SubChlo Du et al. (2009), ChloroRF Tung et al. (2010), SubIdent Shi et al. (2011),
and BS-KNN Hu and Yan (2012) are developed to solve single-label PSCL predic-
tion problem. For a given query chloroplast protein, these single-label predictors as-
sume that the query protein belongs to any one compartment of chloroplast organelle
and hence they are able to identify only one sub-chloroplast location. However, a few
chloroplast proteins are found to co-locate in multiple compartments of chloroplast or-
ganelle. For example, glyceraldehyde phosphate dehydrogenase Ferro et al. (2003) is
found to be present in both stroma and envelope compartments of chloroplast organelle;
Ferredoxin-NADP reductase Hanke et al. (2005) exists in both thylakoid membrane and
stroma compartments of chloroplast organelle. Hence, the PSCL is considered to be a
multi-label prediction problem. As these single-label PSCL predictors became inef-
fective in identifying multiple locations of chloroplast proteins, recent past multi-label
predictors such as AL-KNN Lin et al. (2013), MultiP-SChlo Wang et al. (2015), are
EnTrans-Chlo Wan et al. (2016b) are proposed.

Both AL-KNN Lin et al. (2013) and MultiP-SChlo Wang et al. (2015) predictors
are sequence-based approaches and they adopt genetic algorithms to identify the rel-
evant patterns from the pseudo amino acid composition (PseAAC). In AL-KNN Lin
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et al. (2013), the identified patterns are utilized by a multi-label K-nearest neighbor
(KNN) classifier; whereas in MultiP-SChlo Wang et al. (2015), the identified patterns
are utilized by multi-label support vector machine (SVM) to solve PSCL prediction.
EnTrans-Chlo Wan et al. (2016b) predictor ensembles a relevant set of patterns from
PseAAC and evolutionary profiles and these patterns are utilized by adopting the trans-
ductive learning approach which is based on least squares and K-nearest neighbor.

All the multi-label works of PSCL prediction are summarized in Table 2.4 and the
categorization of these works based on the feature sources are shown in Figure 2.5.

Protein Sub-Chloroplast
Localization Prediction

Features

Amino Acid
Composition

Evolutionary
Composition

Al-KNN (2013),
MultiP-SChlo

(2015)
EmTrans-Chlo (2016)

Position Specific
Scoring Matrix

Figure 2.5. Categorization of state-of-the-art PSCL models based on the feature source.
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2.5 Research Gaps

Based on the extensive literature survey, the following key research issues and chal-
lenges have been identified for our proposed research work. The details are as follows:

• In the post-genome era, the rapid advancement of next-generation sequencing
(NGS) techniques and high-end machines such as Illumina Oyola et al. (2012)
generate a large number of nucleotide sequences in a given time Chowdhury and
Garai (2017). These nucleotide sequences can be converted to protein codons in
linear time with negligible error Lodish et al. (2000b), resulting in a large vol-
ume of protein data which are neither analyzed nor annotated Chowdhury and
Garai (2017). In contrast to the sequencing techniques, experimental methods
including sequence alignment to analyze these un-annotated sequences are time-
consuming Chowdhury and Garai (2017). Thus, the difference between the rate
at which raw sequences get stored in databases and the rate of their correspond-
ing analysis for annotation is increasing rapidly Chowdhury and Garai (2017).
Although, recent works on MSA concentrates on effective utilization of mem-
ory Khan et al. (2016), and exploring the parallelization aspects using external
hardware components for pairwise alignment Fei et al. (2018) and using GPUs
for MSA Blazewicz et al. (2013) to accelerate the MSA throughput. However,
the time complexity of the MSA model plays a crucial role in speeding up the
alignment, and these new developments in MSA can contribute significantly if
the MSA time complexity is improved, thereby reducing the rate difference of
storage and analysis of sequences. Hence, to address these challenges, we pro-
posed a computationally efficient (polynomial time) MPSA model by adopting a
progressive alignment approach, since both classic and iterative approaches ex-
hibit higher-order time complexity. Further, to overcome the limitations of the
progressive approach, we propose an SIO framework to improve the local optima
trap.

MSA is an important and primary step for many biological activities such as
protein secondary structure class prediction, identification of protein folds, and
protein subcellular location prediction, etc. The results from current methods
for MSA are not satisfactory. Moreover, the existing model adopts a static gap
penalty strategy in scoring alignment which leads to major shortcomings such as
(i) MSA program demands expert input for providing pre-defined penalty values,
(ii) penalty values are not consistent across various similarity datasets, and (iii)
negative impact on MSA accuracy. Further, the empirical way of finding gap
penalties for various sequence similarity datasets is not only tedious but also a
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time-consuming task. The authors of Kim and Kececioglu (2008) reported that
the accuracy of an alignment can be improved by a factor of up to 25% using an
effective scoring system. Also, it is evident from the reported works that there is
further scope to explore the gap penalty strategy to perform a biologically more
effective alignment.

• Secondary structure class prediction is one of the intermediate steps in the process
of identifying the protein tertiary structure. The previous studies have revealed
that the protein sequences, structural sequences, and evolutionary profile informa-
tion provide promising ways to improve the effectiveness of the PSSC prediction.
However, these studies lack in extracting generic features since they have mainly
focused on either high or low similarity datasets. Moreover, a very limited or
no study is been carried out to explore character embedding and skip-gram tech-
niques to extract an effective set of features. Hence, there is ample scope to extract
a generic set of features from both high and low sequence similarity datasets.

• Protein fold recognition is one step closer to predict the tertiary structure of a
protein from its amino acid sequence. In literature, the best existing method to
predict protein fold recognition has just crossed 80% accuracy. None of the exist-
ing methods explored convolutional with deep learning approaches to solve PFR.
The amino acid sequence gets folded to form stable protein due to ionic inter-
actions, hydrophobic bond(s), di-sulfide bond(s), and hydrogen bond(s). These
amino acid interaction patterns can be captured effectively using a deep neural
network.

• Evolutionary-based profile of a query protein exhibits rich evolutional informa-
tion and various prediction problems of proteins are successfully solved using
evolutionary-based approach Lyons et al. (2015); Kumar et al. (2020). A limited
number of predictors explored the evolutionary-based approach to solve the PSCL
problem and still there exists a scope of further exploration of evolutionary pro-
files in extracting discriminating patterns/features. To the best of our knowledge,
none of the PSCL predictors explored deep neural networks to solve the PSCL
prediction problem. Moreover, the prediction performances of all the state-of-
the-art PSCL predictors (including single-label and multi-label) are very limited.

2.6 Problem Statement

“ To develop an effective framework for Computational Analysis of Protein Structure
and its Subcellular Localization using Amino Acid Sequences ”
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2.7 Research Objectives

1. To design and develop an effective multiple sequence alignment technique for
annotating amino acid sequences.

2. To design and develop an effective technique for secondary structural class pre-
diction for amino acid sequences.

3. To design and develop an effective technique for protein fold recognition.

4. To design and develop an effective technique for protein subcellular localization
prediction for eukaryotic cells.

2.8 Summary

This chapter provided a review of existing state-of-the-art methods on MPSA, PSSC
prediction, PFR prediction, and PSCL prediction. The problem statement and research
objectives were framed based on the outcome of the literature review.

In the next chapter, the proposed progressive-based multiple protein sequence align-
ment will be discussed.
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Chapter 3

Multiple Protein Sequence Alignment

This chapter 1 proposes an effective progressive-based multiple protein sequence align-
ment method incorporated with a novel scoring system and single iterative optimization
framework.

3.1 General Problem Statement:

For a given set of n unaligned protein sequences S: {ps1, ps2, ..., psn} of variable
length L1, L2, ..., Ln respectively, unaligned protein sequences are defined over 20
amino acids’ alphabet set Σ={A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}.
MPSA for a given input sequence set S is defined as S ′: {ps′1, ps′2, ..., ps′n}, where the
length of all n aligned sequences are the same. S ′ is defined on the same alphabet set
with an additional symbol ‘–’ termed as a gap. An example of understanding MPSA
is shown in Table 3.1. A gap (–) is introduced at required positions, not only to make
all sequences with equal length but to ensure that the alignment is accurate. A gap is
termed as indel (insertion-deletion) i.e. from the Table 3.1, a residue M is either inserted
in ps′2 or deleted in ps′3. From ps′1 and ps′2 it can be observed that either a residue I is
substituted with a residue M or vice versa over the period. These alterations of one or
more residues such as indels or substitutions are considered as mutations.

3.2 Scoring System

The quality of MPSA is dependent on the scoring function, which aligns a given residue
to its appropriate position. Three possible cases arise when the scoring function encoun-
ters a residue pair: (i) a residue with the same residue; (ii) a residue with a different
residue; or (iii) a residue with a gap. For the first two cases, a heuristic-based scor-
ing strategy named Look Back Ahead (LBA) scoring strategy is proposed. For the last
case, Position-Residue Specific Dynamic Gap Penalty (PRSDGP) scoring strategy is
proposed to find overall gap penalty, i.e., Affine Gap Penalty (AGP).

1The work described in this Chapter has been published in: Sanjay Bankapur and Nagamma Patil,
”Efficient and Effective Multiple Protein Sequence Alignment Model Using Dynamic Progressive Ap-
proach with Novel Look Back Ahead Scoring System” in Proceedings of the 7th International Confer-
ence on Pattern Recognition and Machine Intelligence 2017 (PReMI ’17), ISI Kolkata, India, Dec-2017,
Springer.
Sanjay Bankapur and Nagamma Patil, ”Position-Residue Specific Dynamic Gap Penalty Scoring Strat-
egy for Multiple Sequence Alignment” in Proceedings of the 8th International Conference on Computa-
tional Systems-Biology and Bioinformatics (CSBio ’17), Nha Trang, Vietnam, Dec-2017, ACM.
Sanjay Bankapur and Nagamma Patil, ”ProgSIO-MSA: Progressive based Single Iterative Optimiza-
tion Framework for Multiple Sequence Alignment using an Effective Scoring System” in Journal of
Bioinformatics and Computational Biology, World Scientific. (May 2020).



Table 3.1. Example of MPSA
Input Unaligned Sequences Output Aligned Sequences

ps1: NIMGS (5) ps′1: NIMGS (5)
ps2: NMMGS (5) ps′2: NMMGS (5)
ps3: NFGS (4) ps′3: N– FGS (5)
ps4: NLGS (4) ps′4: N– LGS (5)
ps5: NHS (3) ps′5: N– – HS (5)

3.2.1 Look Back Ahead Scoring Strategy

Look Back Ahead (LBA) follows a heuristic approach, in which a given pair of residue
is scored based on three things: (i) match or mismatch score of current residue pair; (ii)
similarity score of all residue pair up to the previous residue; and (iii) status score of
the previous residue.

We adopted Sum-of-pairs (SP) scoring function to calculate a similarity score for
a given column from a sequence pair or from a profile pair, where a profile is a set of
aligned sequences. SP scoring function for the aligned sequences is shown in equation
3.1.

SP (S ′) =
L∑
l=1

n∑
i=1

n∑
j=i+1

m(ps′i,l, ps
′
j,l) (3.1)

where, S ′ is the aligned sequences, L is the length of the alignment, n is the total number
of sequences, m is a mutation matrix, ps′i,l and ps′j,l are the residue of lth column of ith

and jth sequence respectively.

To calculate the similarity score for a given column from a sequence or a profile pair
is as shown in equation 3.2.

ssi,j(U, V ) =

∑P
p=1

∑Q
q=1m(Up, Vq)

|U | ∗ |V |
(3.2)

where, ssi,j(U, V ) is similarity score for ith and jth column of sequence or profile, U
and V respectively. m is a mutation matrix, P , and Q are the number of sequences that
exists in profile U and V respectively.

Given a pair of unaligned sequences, say ps1 and ps2, of length L1 and L2 respec-
tively. Dynamic programming alignment approach generates a 2-dimensional dynamic
matrix of size (L1 + 1) * (L2 + 1), where the extra row and column for initial default
values and scores every cell in the matrix by exploring all possible cases to obtain an
optimally aligned sequence pair. Each cell in the matrix is scored using LBA scoring
strategy traversing left to right and top to bottom. The rightmost bottom cell provides a
maximum similarity score for the given unaligned pair.
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Let X be a matrix generated during dynamic programming. A score of ith residue
and jth residue from sequence ps1 and ps2 respectively, is given in equation 3.3.

Score(Xi,j) = max


(Score(Xi,j−1)− gappenalty)−D

(Score(Xi−1,j−1) + ssi,j(AAMi, AAMj))− E
(Score(Xi−1,j)− gappenalty)− F

(3.3)

where, Score(Xi,j−1), Score(Xi−1,j) and Score(Xi−1,j−1) are the scores of previ-
ous cells i.e. left, top and top-left-diagonal respectively. gappenalty value is cal-
culated using PRSDGP scoring strategy (which will be discussed in section 3.2.2),
ssi,j(AAMi, AAMj) is the value obtained from equation 3.2, AAM is Amino Acid
Molecule or residue, AAMi is the ith column residue from ps1 and AAMj is the jth

column residue from ps2. Here D, E and F are scores which are calculated on previous
residue status. Each previous cell can have any one status among diagonal-non-gap
(dng), left-gap (lg) and top-gap (tg), where, left-gap indicates a gap in sequence ps1,
top-gap indicates a gap in sequence ps2 and diagonal-non-gap indicates no gap in any
of the sequences. D, E and F are defined as follows:

D =

0 if Status(Xi,j−1) = lg

gapopenpenalty otherwise
(3.4)

E =

0 if Status(Xi−1,j−1) = dng

gapclosepenalty otherwise
(3.5)

F =

0 if Status(Xi−1,j) = tg

gapopenpenalty otherwise
(3.6)

where, gapopenpenalty are calculated using PRSDGP scoring strategy.
gappenalty: is a penalty when a gap occurs in either of the sequences at the current
position.
gapopenpenalty: is a penalty when a gap occurs in either of the sequences at the current
position and no gap at the previous position.
gapclosepenalty: is a penalty when there is no gap at the current position and there is a
gap at the previous position in either of the sequences.
In all our experiments, gappenalty, gapopenpenalty & gapclosepenalty values are in
the ratio of 1:4:1. Since gapopenpenalty inserts a gap in the alignment, it is penalized
with higher penalty value compared to gappenalty and gapclosepenalty. gappenalty is
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penalized irrespective of its position and gapclosepenalty is also penalized with less
penalty since there is strong match among the current residues. This heuristic ratio is
determined empirically since it provides better results across datasets.

Once Score(Xi,j) is calculated (from equation 3.3), Status(Xi,j) will be set to left-
gap or diagonal-non-gap or top-gap if Score(Xi,j) is equal to A or B or C respectively.

3.2.2 Position-Residue Specific Dynamic Gap Penalty Scoring Strategy

Numerous models adopt various heuristic scoring systems to score a match or a mis-
match residue pair. However, as per our knowledge, none of the models explored a
scoring strategy for penalizing gaps dynamically based on its position and residue infor-
mation. Thus, this is the first attempt to explore the Position-Residue Specific Dynamic
Gap Penalty (PRSDGP) scoring strategy in which it calculates gap penalty dynamically
based on a residue and its position information using a biologically effective mutation
matrix.

AGP (S ′) =


(gapopenpenalty ×#opening gap)

+

(gapextendpenalty ×#trailing gap)

(3.7)

Affine Gap Penalty (AGP) strategy to calculate the overall gap penalty of the align-
ment, and it is as shown in equation 3.7. Where, #opening gap is the total number of
opening gaps (a gap at the current position and non-gap at its previous position), #trail-
ing gap is the total number of trailing gaps (a gap at the current position as well as in
its previous position), gapopenpenalty is the penalty value which is calculated using
PRSDGP scoring strategy. In all our experiments, gapopenpenalty to gapextendpenalty
ratio is considered to be 10:1.

PRSDGP score for a given residue pair is defined as the average of mutation scores
of possible occurrences of both the residues and it is described as in equation 3.8, where,
m is a mutation matrix and AAM is a amino acid molecule.

PRSDGP (AAMi, AAMj) =


(m(AAMi,AAMi)

2
)

+

(
m(AAMj ,AAMj)

2
)

(3.8)

The PRSDGP score between two profiles (aligned sequences) for a given position is
calculated as an average of the sum of all pair-wise PRSDGP scores. As shown in Figure
3.1, four sequences are aligned in two profiles, A and B, in which PRSDGP score for
the second column of both the profiles, PRSDGP(A2, B2), is calculated using equations
shown in Figure 3.1 and 3.8 i.e. ((5.0) + (5.0) + (5.0) + (5.0))/4 = 5.0. Similarly, for
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the third column of profile A and the second column of the profile B, PRSDGP(A3,
B2), is calculated i.e. ((5.5) + (5.5) + (5.5) + (5.5))/4 = 5.5. To calculate the PRSDGP
scores, the BLOSUM62 mutation matrix is used. The objective is to minimize the gap
penalty; therefore, with these PRSDGP scores, we can say that aligning the second
column of profile B to the third column of profile A is more appropriate instead of the
second column of profile A. Moreover, the SP score for aligning the second column of
profile B to the second and third column of profile A respectively, are zeroes. Hence,
the PRSDGP score is a major deciding factor for alignment.

Figure 3.1. Calculation of PRSDGP scores for two aligned profiles.

3.3 Progressive Alignment Method using LBA and PRSDGP Scoring Strategies

A basic progressive alignment approach consists of three main steps: (i) calculation of
pair-wise similarity score matrix for all possible sequence pairs; (ii) generation of guide
tree from similarity score matrix; and (iii) alignment of sequences based on branching
order of the generated guide tree.

During progressively aligning multiple sequences, three possible cases arise: (i)
alignment of a sequence with another sequence (S-S); (ii) alignment of a sequence
with a profile (S-P) or a profile with a sequence (P-S); and (iii) alignment of a pro-
file with a profile (P-P), where, profile is a set of sequences which are already aligned.
The advantage of adopting local alignment for pairwise progressive alignment is that
the consistency in identifying the homologous core blocks and aligning is consider-
ably high when compared to global alignment, especially for low sequence similarity
datasets. The steps to generate intermediate aligned result from n unaligned amino acid
sequences using progressive alignment approach are shown in Algorithm 3.1 and the
workflow for the algorithm is depicted in Figure 3.2.

Time complexity Analysis: Given n unaligned protein sequences of variable length.
Let L be the maximum length from the given sequences. Time complexity to compute
pair-wise alignment for nC2 combinations is O(n2.L2) and to build guide tree using
UPGMA strategy Sneath and Sokal (1973) for n protein sequences is O(n2). Time
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Figure 3.2. Progressive alignment using LBA and PRSDGP scoring strategies.

Algorithm 3.1. : Progressive Alignment using Proposed LBA and PRSDGP Scoring
Strategies
Input: n unaligned protein sequences of variable length, where n ≥ 2.
Output: Aligned n protein sequences of fixed length, say L.

1: For all possible nC2 combinations, find a similarity score matrix by performing
pair-wise Local Alignment using the proposed scoring system.

2: Generate guide tree using UPGMA strategy from the similarity score matrix.
3: Local alignment of sequences with LBA and PRSDGP scoring strategies based on

branching order of generated guide tree.

complexity to align n sequences progressively using guide tree is O(n3 + n.L2). Hence,
the time complexity to obtain intermediate alignment result using progressive approach
is O(n2.L2) + O(n2) + O(n3 + n.L2) which is equal to O(n3 + n.L2).

3.4 Single Iterative Optimization Framework to improve Local Optima

Due to the greediness of the progressive approach, the intermediate result may tend to
suffer from local optima. To address this limitation, we proposed a Single Iterative Op-
timization (SIO) framework to identify and optimize the local optima regions using the
proposed scoring system.

A. Objective Functions
It has been observed from recent works on optimization of MSA that maximizing the
Sum-of-Pairs (SP) score and minimizing the Affine Gap Penalty (AGP) score, tend to
improve the quality of the alignment result Naznin et al. (2012), Zhu et al. (2016),
Rubio-Largo et al. (2016). Therefore, in this study, to identify and optimize the local
optima ranges, we considered SP and AGP as the objective functions. SP and AGP are
defined as shown in equations 3.1 and 3.7 respectively.
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B. To Identify Local Optima Ranges
Local Optima Range (LOR) is a column or set of consecutive columns of the alignment
for which the quality is poor, and it is identified using defined objective functions, i.e.,
SP and AGP. The proposed steps to identify a LOR are as follows:

1. Calculation of GSP and GAGP Scores: From the intermediate aligned result,
SP and AGP scores which are calculated using equations 3.1 and 3.7 respectively are
termed as Global SP (GSP) and Global AGP (GAGP) scores.

2. Normalization of GAGP: Normalize GAGP score with respect to GSP score by a
factor of α, i.e., α units of GAGP for one unit of GSP, as shown in equation 3.9.

GSP = α.GAGP (3.9)

3. Calculation of mean and standard deviation of GSP and GAGP scores: mean and
standard deviation of GSP score with reference to all columns are calculated from the
aligned result, named as mGSP and sdGSP respectively, and are defined in equations
3.10 and 3.11 respectively.

mGSP =
GSP

L
(3.10)

sdGSP =

√√√√ 1

L

L∑
i=1

(SPi −mGSP )2 (3.11)

As LOR is exhibited by either a column or set of columns and AGP score involves
row-wise calculation. Therefore, to calculate the mean and standard deviation of all
row-wise AGP scores (i.e., mGAGP and sdGAGP respectively), we make use of the
normalized value of GAGP regarding GSP, and it is as shown in equations 3.12 and
3.13.

mGAGP =
mGSP

α
(3.12)

sdGAGP =
sdGSP

α
(3.13)

4. Identification of Local Optima Range: Each column from the intermediate aligned
result possesses SP score and a column SP score is termed as Local SP (LSP). Similarly,
for each column, the AGP score is calculated and it is termed as Local AGP (LAGP).
On the obtained intermediate aligned result, a single iteration is performed to find local
optima columns by scanning column-wise from left to right. LOR is identified by the
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two steps: (i) if LSP score is lower than mGSP and LAGP score is higher (since penalty
scores should be minimized, a higher score indicates poor alignment quality and lower
scores indicates better alignment quality) than mGAGP, then the column is marked as a
candidate for LOR; and (ii) consecutive three or more columns are considered as can-
didates for LOR then they are added to the LOR list if the sdLSP is less than the sdGSP
and sdLAGP is greater than sdGAGP.

Let L be the length of intermediate alignment and length of an LOR be denoted as
rL, which ranges from φ to ψ, i.e. φ ≤ rL ≤ ψ. In this study, we considered φ ≥ 3 and
ψ ≤ L. There can be K number of LORs in the LOR list, where, K varies from 0 to
b(L
φ

- 1)c. By this, we can deduce that both K and rL are inversely proportional, i.e.,
as the length of a LOR increases, the number of LORs in the LOR list decreases. The
proposed algorithm to identify the LOR is shown in Algorithm 3.2 and the summarized
workflow is as shown in Figure 3.3.

Figure 3.3. Steps to identify local optima ranges.

Algorithm 3.2. : Proposed Algorithm to Identify Local Optima Ranges
Input: n aligned amino acid sequences.
Output: List of local optima ranges.

1: Calculate GSP and GAGP scores from the given aligned sequences.
2: Normalize GAGP score with respect to GSP score by a factor of α.
3: Calculate mean and standard deviation of GSP score with reference to all columns

– mGSP and sdGSP.
4: Calculate mean and standard deviation of GAGP score with reference to all columns

– mGAGP and sdGAGP (in terms of GSP and α).
5: for all columns of aligned sequences {c1, c2, c3, ..., cL}
6: each column ci, Calculate LSP and LAGP scores.
7: if (LSP ≥ mGSP && LAGP ≤ mGAGP) then

skip the column ci.
8: else
9: column ci is considered as a candidate for LOR.

10: end for
11: Standard deviation of LSP and LAGP for three consecutive or more candidate

columns of LOR be sdLSP and sdLAGP respectively. Selected LOR is added to
LOR list only if sdLSP < sdGSP and sdLAGP > sdGAGP .
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Time complexity analysis: Time complexity to identify a list of LORs is approxi-
mately O(n3), as complexity to calculate GSP score is O(n3) and the rest of the calcu-
lations are relatively minimal.

C. Applying Progressive Alignment Method using LBA and PRSDGP Scoring Strate-
gies for LORs
The identified list of LORs is optimized using the progressive approach with LBA and
PRSDGP scoring strategies and the performed steps are shown in the Algorithm 3.3.
The workflow of the algorithm is as shown in Figure 3.4.

Algorithm 3.3. : Optimization of LORs using Progressive Approach with LBA and
PRSDGP Scoring Strategies
Input: K number of LORs and intermediate aligned result.
Output: Final optimal aligned sequences.

1: From the K LORs, select a LOR.
2: All the columns from a LOR, calculate LSP and LAGP scores are calculated and

stored as oldLSP and oldLAGP respectively.
3: The LOR aligned data is pre-processed by removing gap symbol (–) to make un-

aligned sub-sequences.
4: Generate pair-wise combinations (nC2) for unaligned sub-sequences.
5: For each pair-wise combination, align using both Global and Local Alignment tech-

niques with LBA and PRSDGP scoring strategies and the higher similarity score
among Global and Local Alignment is considered.

6: Out of the better nC2 similarity scores, select the pair with the highest similarity
score as the best pair and merge them to make a single new profile.

7: Replace the merged pair with the new profile in the subsequence list, reducing the
total sub-sequences count by one.

8: Until the subsequence count is one, go back to step 4.
9: Calculate new LSP and new LAGP for the new alignment – newLSP and newLAGP

respectively.
10: If newLSP and newLGAP scores are better than oldLSP and oldLGAP scores re-

spectively, the final new profile is merged by replacing the LOR data, else, the final
new profile is ignored.

11: Repeat from step 1 until all LORs are optimized.

It can be observed from steps 5, 6, and 7 that the proposed SIO model is a dynamic
variant of progressive alignment approach in which the best-selected sequence pair is
replaced by its merged alignment to reduce the total number of sequences count by one
and further the next best sequence pair is selected and processed. To overcome the local
optima problem effectively, the best SP and AGP score alignment is chosen from the
output of local and global alignment. In the proposed model, PAM250 and BLOSUM62
mutation matrices are used for global and local alignment respectively.
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Figure 3.4. Workflow of single iterative optimization for local optima ranges.

Time complexity Analysis: Consider K number of LORs, each having length, rL.
The time complexity for execution of alignment using the dynamic variant of progres-
sive approach, i.e., steps 3 to 7, are O(n) times and each time progressive alignment
(both Local and Global) takes O(nC2 . r2L). Hence, for all LORs, it takes O(K . n − 1

. nC2 . r2L). Considering the fact that K and rL is inversely proportional, if rL is max-
imum, then K will be minimum (equal to constant) value. Therefore, the overall time
complexity of the SIO framework is approximately O(n . nC2 . r2L) i.e., O(n3 . r2L)
which is of polynomial time.

3.4.1 Total Time Complexity Analysis of the Proposed Model

The total time complexity of the proposed model involves three major activities: (i)
Obtaining intermediate aligned results using progressive alignment approach with LBA
and PRSDGP Scoring Strategies [O(n3 + n . L2)], (ii) Identifying the list of LORs
[O(n3)] and (iii) Optimizing all LORs by dynamic variant of progressive approach
[O(n3 . r2L)]. Since all the three activities are performed sequentially in which, the
value of rL is one-third of L in the worst case and for the best case rL value will be one,
hence, the total time complexity of the proposed ProgSIO-MSA (Progressive-based
Single Iteration Optimization - Multiple Sequence Alignment) model is O(n3 + n . L2),
which is of polynomial time. Therefore, we can say that the proposed ProgSIO-MSA
model is computationally efficient.

3.5 Results and Discussion

In this section, initially, we defined the evaluation metrics to assess the proposed ProgSIO-
MSA model, followed by the overall experimental setup, and finally, we showcase the
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results with the analysis.

3.5.1 Evaluation Metrics

We considered three most commonly used metrics to access the aligned results and
those are: (i) Sum-of-Pair (SP) Ortuno et al. (2012), Cutello et al. (2011), Rubio-Largo
et al. (2016), Zhu et al. (2016): defined in equation 3.1; (ii) Total Gap Penalty (TGP)
Kaya et al. (2014), Rubio-Largo et al. (2016), Zhu et al. (2016): defined in equation
3.7; and (iii) Conserved Column Score (CCS) Edgar (2004b), Rubio-Largo et al. (2016):
defined by the number of columns in which each column residues are identical.

Even though TGP depicts the biological evolution process, we infer that it is not
sufficient to conclude the measured alignment. This is mainly due to the two major fac-
tors: (i) Individual value for gapopen and gapextend is not universally the same Naznin
et al. (2012), Kaya et al. (2014), Rubio-Largo et al. (2016). (ii) The ratio between these
two values is still debatable Naznin et al. (2012), Kaya et al. (2014), Rubio-Largo et al.
(2016). Hence, we propose one more metric called Total Mutation Count Pair-wise
(TMCP) to evaluate the proposed model result and its respective reference alignment.
TMCP is defined as:

TMCP (S ′) =
n−1∑
i=1

n∑
j=i+1

MC(ps′i, ps
′
j) (3.14)

MC(ps′i, ps
′
j) is total number of mutations for a given aligned protein sequence pair

i.e., ps′i and ps′j . A column or set of consecutive columns are considered to be one
mutation, only if respective column residues are not identical.

Table 3.2. Example of mutation count for a sample sequence pair
ps′1 R A T K N F A G V K N
ps′1 - A T E - C A G V - -
MC 1 0 1 0 1

For example: From Table 3.2, ps′1 and ps′2 are two aligned protein sequences, MC

is mutation count for the given pair; hence, the total mutation count for the given pair
is 3. Lower the value of TMCP, the better is the alignment. There can be more than
one alignment with the same set of SP, AGP, CCS, and TMCP scores for a given set of
unaligned sequences. Therefore, Q-Score (Q) Thompson et al. (1999) and Total Col-
umn Score (TC) Thompson et al. (1999) are widely used evaluation metrics to assess
the quality of aligned results of proposed ProgSIO-MSA model with respect to aligned
reference set.

Q-Score: A score describes the similarity of the aligned result with respect to its ref-
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erence set. All the reference sets are manually aligned by the experts based on various
factors like amino acid composition, physicochemical properties, and many more. Q-
Score values range from 0 to 1, when Q-Score = 1 indicates the aligned result set is
exactly same as in the aligned reference set. Higher the Q-Score value, better is the
biological accuracy (quality) of the alignment model.

Consider an aligned result of n protein sequences of length L. All the aligned
residues from the ith column is denoted as Mi,1, Mi,2, ..., Mi,n. For every residue pair,
we define pijk such that pijk = 1 if the residues Mi,j and Mi,k are aligned to each other
with respect to the aligned reference set; else, pijk = 0. The Q-Score for ith column is
qi is defined as follows:

qi =
n∑
j=1

n∑
k=j+1

pijk (3.15)

Q-Score (Q) for the aligned result is defined as:

Q =

∑n
i=1 qi∑nr

i=1 qri
(3.16)

Where, nr is the number of columns from the aligned reference set and qri is the score
qi for the ith column in the aligned reference set.

Total Column Score (TC): Let Ci be the column score for the ith column, Ci = 1 if
all the residues in the ith column are aligned in the reference set, else, Ci = 0 and La be
the length of the alignment. The TC for the aligned result is defined as:

TC =

∑n
i=1Ci
La

(3.17)

From a given n sequences, even if one sequence from the aligned result is different
with respect to the reference set, then the TC score for the aligned result will be zero,
even though the rest (n−1) sequences are aligned the same with respect to the reference
set. From this scenario and the definitions of Q-Score and TC Score, we can infer that
TC = 0 if Q-Score = 0, but the converse need not be true. By this, we can say that
even misplacement of single AAM by the alignment method with respect to reference
alignment, the TC Score might drastically reduce (even to zero). TC Score does not
provide the actual quality information and hence, it is not a good metric to assess MSA
quality. In this study, we choose only the Q-Score metric as a quality metric to assess
the proposed ProgSIO-MSA model.
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3.5.2 Experiment Setup

A. Runtime Environment
The experiments are conducted in a workstation with Intel(R) Core(TM) i7 3.60GHz
octa-core 64-bit CPU running on Ubuntu 16.10 with 16GB RAM. The proposed ProgSIO-
MSA model is implemented in Java, Eclipse Platform 3.8.1.

B. Datasets
In this comparative study, the experimental analysis is conducted on two benchmark
datasets to assess the performance of our proposed ProgSIO-MSA model: BAliBASE
Bahr et al. (2001) and SABmark Van Walle et al. (2004b). The main characteristics of
both datasets are summarized below:

1) BAliBASE: This is one of the widely used reference datasets. BAliBASE 2.0 Bahr
et al. (2001) in which the reference alignments are categorized into multiple subgroups
based on the sequence characteristics. We considered the first five subgroups of ver-
sion 2.0 those are: (i) Ref.1: exhibits similar length for a small number of equidistant
sequences with no large insertions. (ii) Ref.2: both closely related sequences, i.e., (se-
quences identity > 25%) and orphan sequences which are less than 20% identity are
grouped in this category. (iii) Ref.3: equidistant divergent families (up to four families)
are aligned in each set and the sequence identity is lesser than 25% among the different
family sequences. (iv) Ref.4: sequences exhibit a large N/C terminal extension and (v)
Ref.5: exhibits large internal insertions and deletions.

2) SABmark: aligned reference set are categorized into two subgroups: (i) Super-
family: consisting of 315 sequence data files in which the sequence identity ranges
up to 50%. (ii) Twilight: consisting of 108 sequence data files in which it shares low
sequence identity, i.e., 0-20%.

3.5.3 Results and Analysis

The results of the proposed ProgSIO-MSA model are initially analyzed using SP, TGP,
CCS, TMCP scores. The alignment quality of the proposed ProgSIO-MSA model is an-
alyzed using the Q-Score metric on the progressive-based and stochastic-based state-of-
the-art models. Further, the scalability analysis of the proposed ProgSIO-MSA model
against CLUSTAL Omega is performed. Finally, the statistical significance analysis is
carried out for Q-Score results of BAliBASE.

A. Analysis of SP, TGP, CCS and TMCP scores:
To analyze the relationship between respective scores for test and reference sets, we per-
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formed the Pearson Correlation Coefficient Test Sedgwick (2012) for both BAliBASE
and SABmark datasets. The value of the correlation ranges from -1 to +1 indicating
the strength of the relationship among the samples, where, +1 indicates a positive cor-
relation, -1 indicates a negative correlation and a zero value indicates no relationship
among the samples.

Table 3.3. Pearson Correlation Coefficient Test on Aligned and Reference Scores
Dataset SP* TGP* CCS* TMCP*

BAliBASE 0.99940 0.95780 0.99800 0.99790
SABmark 0.99920 0.90742 0.93205 0.99242
* Scores are calculated up to five decimal point.

From Table 3.3, it is evident that, for all the four metrics, the respective scores for
the test set and reference set, have correlated positively with the value above 0.9, infer-
ring that the proposed scoring system is closely inclined with the reference sets.

B. Q-Score Analysis:
To assess the biological accuracy (quality) of the proposed ProgSIO-MSA model, we
calculated Q-Score on both BAliBASE and SABmark datasets using the q-score pro-
gram by Edgar. The proposed ProgSIO-MSA model being the progressive approach,
it has been evaluated against by comparing progressive models. Further, the proposed
ProgSIO-MSA model is also evaluated against progressive-based iterative models which
are the most popular and effective models till date.

i) Analysis of Progressive-based models:
The performance of the proposed ProgSIO-MSA model is assessed on the BAliBASE
dataset and compared with all the progressive models. The results are as shown in Table
3.4. The data files, progressive models, and their respective Q-Score results are referred
from Naznin et al. (2012). The blank cell (-) indicates the unavailability of the results.
Q-Score values marked bold signifies the best score among other models for the given
subset. The Q-Scores from Table 3.4 are average scores. Both Ref.2 and Ref.3 subsets
include all range of sequence similarities, i.e., from below 20% to above 25% and it
can be observed from Table 3.4 that the performance of the proposed ProgSIO-MSA
model on both subsets outperforms the other progressive based models by a factor of at
least 25.9% collectively. For the overall Q-Score, the proposed ProgSIO-MSA model
outperforms CLUSTAL X by a factor of 17.7% on the BAliBASE dataset.
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Table 3.4. Average Q-Score comparison of the Proposed ProgSIO-MSA Model against the
State-of-the-art Progressive Models on BAliBASE Dataset.

BAliBASE
Models Ref.1 Ref.2 Ref.3 Ref.4 Ref.5 Ref.2&3 Overall

ML PIMA - 0.371 0.372 - - 0.371 -
SB PIMA - 0.379 0.267 - - 0.342 -
PILEUP8 - 0.429 0.323 - - 0.394 -

MULTALIGN - 0.517 0.303 - - 0.447 -
CLUSTAL X 0.708 0.583 0.446 0.315 0.689 0.538 0.590

ProgSIO-MSA 0.752 0.855 0.676 0.433 0.735 0.797 0.767

Ref. 2 Ref. 3
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Figure 3.5. Average Q-Score comparison on BAliBASE dataset

It is evident from Figure 3.5a and 3.5b that the proposed ProgSIO-MSA model
outperformed the progressive models for BAliBASE dataset. To evaluate the perfor-
mance consistency of the proposed ProgSIO-MSA model, we have assessed the pro-
posed model on another benchmark dataset named SABmark dataset.

Table 3.5. Average Q-Score Comparison of the Proposed ProgSIO-MSA Model against Progressive
based Models on SABmark dataset.

Dataset→
Models ↓

SABmark
SuperFamily Twilight Overall

Align-m 0.445 0.172 0.375
CLUSTAL X 0.472 0.248 0.414
CLUSTAL O 0.478 0.257 0.421

ProgSIO-MSA 0.508 0.229 0.436

The performance of the proposed ProgSIO-MSA model is compared against the
popular and widely used state-of-the-art models of CLUSTAL such as CLUSTAL X
M.A. Larkin (2007) and CLUSTAL Omega Sievers et al. (2011). The latest versions
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of CLUSTALs are considered (CUSTAL Omega2 version 1.2.4, CLUSTAL X3 version
2.1). For the Align-M, we have referred to the Q-Score results from Edgar (2004b). The
average Q-Scores of SABmark datasets for all these state-of-the-art models is shown
in Table 3.5. Bold-faced values signify the best among other models for the given
subset. From Table 3.5, it can be observed that the proposed ProgSIO-MSA model
outperformed all the other models by a factor of at least 1.5%.

ii) Analysis of Stochastic-based models:
Over the last decade, stochastic-based iterative approaches are effectively explored to
optimize and improve the alignment quality with the trade-off of higher space and time
complexity. The proposed model being a progressive-based approach is further eval-
uated against selected popular genetic algorithm based MSA. A genetic algorithm is
one of the effective stochastic-based optimization techniques which simulates the natu-
ral evolution process to optimize MSA. Genetic algorithm based MSA models usually
follows three major steps: 1) Initial population: generates a set of random populations
(generally 40 and above) and each population represents an alignment for a given set of
sequences; 2) Selection & New Generation: the best pair of the population is selected to
breed a new generation. In MSA, to improve the objective function will be considered
as a fitness function for selection and genetic operators like Crossover and Mutation
utilizes the breed to obtain the next generation. The new generation will replace the
weakest population mimicking Charles Darwin’s principle “survival of the fittest”; 3)
Termination: a stopping criterion to terminate the generational process, which usu-
ally will be either based on solution convergence or for a fixed number of generation.
From this, it is evident that the genetic algorithm based alignment models consume
considerable space (for population, say P) and time (fitness evaluation for each gen-
eration, i.e., O(n3) for sum-of-pair calculations and over several generations, say G)
to optimize the MSA quality. The most popular genetic algorithm based MSA models
are Notredame and Higgins (1996), Gondro and Kinghorn (2007), Taheri and Zomaya
(2009) and Naznin et al. (2012).

The average Q-Score of the proposed ProgSIO-MSA model and other state-of-the-
art genetic algorithm based MSA models for the BAliBASE dataset is as shown in
Table 3.6. The data files, a genetic algorithm based MSA models, and their respective
Q-Score results are referred from Naznin et al. (2012). The blank cell (-) indicates the
unavailability of the results. Q-Score values marked bold signifies the best score among
other models for the given subset. From Table 3.6, it can be observed that the proposed

2http://www.clustal.org/omega/
3http://www.clustal.org/clustal2/
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Table 3.6. The Q-Score Performance Comparison of the Proposed ProgSIO-MSA Model against
Selected Genetic Algorithm based MSA Models on BAliBASE dataset.

BaliBASE
Models Ref.1 Ref.2 Ref.3 Ref.4 Ref.5 Overall

MSA-GA 0.655 - - 0.374 0.475 -
MSA-GA w/prealign 0.730 - - 0.334 0.675 -

SAGA - 0.586 0.506 - - -
RBT-GA - 0.777 0.472 - - -
GAPAM 0.779 0.851 0.662 0.208 0.843 0.767

ProgSIO-MSA 0.752 0.855 0.676 0.433 0.735 0.767

model outperforms genetic algorithm based MSA models except GAPAM Naznin et al.
(2012). The proposed ProgSIO-MSA model outperformed the GAPAM model on three
reference datasets (i.e., Ref.2, Ref.3, and Ref.4) of the BAliBASE dataset. The average
Q-Score of the proposed ProgSIO-MSA model performs equally good when compared
to the GAPAM model. In spite of running for multiple generations with higher align-
ment populations, GAPAM performs on par with the proposed model which runs for
only one iteration.

iii) Computational Analysis:
The computational efficiency of the proposed ProgSIO-MSA model is analyzed against
both progressive and stochastic-based iterative models. Initially, the computational ef-
ficiency analysis is carried out in terms of running time against the progressive-based
iterative model, and later, it is carried out in terms of time complexity for the stochastic-
based iterative model.

Table 3.7. Run Time Comparison of the Proposed ProgSIO-MSA Model against CLUSTAL Omega

Dataset
CLUSTAL Omega ProgSIO-MSA

in milli secs in milli secs

SABmark
Superfamily 104043 99000

Twilight 40020 18000
Overall 144063 117090

The proposed ProgSIO-MSA model being a progressive-based approach was com-
pared against the running times of progressive-based iterative model, i.e., CLUSTAL
Omega Sievers et al. (2011), since CLUSTAL Omega is one of the fast, scalable mod-
els which can align any number of sequences in a few hours Sievers et al. (2011). We
recorded both the models’ alignment running time on SABmark datasets and it is as
shown in Table 3.7. From Table 3.7, we can observe that the proposed ProgSIO-MSA
model took considerably less time to align all 423 files when compared to CUSTAL
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Omega.

We compared the proposed ProgSIO-MSA model’s time complexity against the best
stochastic-based iterative model, i.e., GAPAM Naznin et al. (2012). GAPAM Naznin
et al. (2012) being a genetic algorithm based iterative approach, constructs initial align-
ment population of size say ‘P ’ using a progressive approach. To construct initial align-
ment population takes O(P .n3+n.L2). These ‘P ’ populations are improved using var-
ious operations over the ‘G’ number of generations to obtain optimum alignment. In
each generation, based on fitness measure (i.e., the weighted sum of the pair which
takes O(n3)) of each alignment, a non-fit alignment is replaced by a fit alignment in the
population pool. Hence, the time complexity of GAPAM Naznin et al. (2012) would be
of O(G.P .n3+n.L2).

Table 3.8. Time Complexity Comparison of the Proposed ProgSIO-MSA Model against Iterative Model

Models Approach Time Complexity
ProgSIO-MSA Progressive O(n3 + n . L2)
GAPAM Model Iterative O(G . P . n3 + n . L2)

The GAPAM time complexity and the proposed ProgSIO-MSA model time com-
plexity (from the section 3.4.1) is as shown in Table 3.8. From the Table 3.8, it is evident
that the proposed ProgSIO-MSA model is computationally efficient and outperforms by
a factor of [G.P ] when compared to the best genetic algorithm based stochastic model,
i.e., GAPAM Naznin et al. (2012).

C. Scalability Analysis:
From both the benchmark datasets, i.e., BAliBASE and SABmark, the maximum num-
ber of sequences in a given file is only 28 and 23 respectively. To analyze the scalability
of the proposed ProgSIO-MSA model we carried out numerous alignment experiments
by varying the number of input sequences and recorded the running time (in millisec-
onds) of the proposed model. For this experiment, we considered the HomFam bench-
mark dataset Sievers et al. (2013). The number of input sequences in a query file is
varied from 2 to 3000 and the respective running time of the proposed ProgSIO-MSA
model is benchmarked and tabulated as shown in Table 3.9. Further, for the same set
of input sequences running time of CLUSTAL Omega Sievers et al. (2011) is recorded
and tabulated in Table 3.9.

The alignment running time of the ProgSIO-MSA and CLUSTAL Omega Sievers
et al. (2011) are plotted in Figure 3.6. The X-axis indicates the number of sequences
in a query file and the Y-axis represents the running time in milliseconds. Both X-
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Table 3.9. Alignment Time(in milli secs) for ProgSIO-MSA and CLUSTAL Omega against the number
of sequences of HomFam Test sets.

No. of
Sequences

ProgSIO-MSA
in milli secs

CLUSTAL Omega
in milli secs

2 5 38
4 31 156
8 119 370
16 535 1122
25 1370 1883
50 5059 5826

100 21633 22281
200 64057 25127
250 98557 28096
500 423050 56392

1000 1778944 129608
2000 7156735 330917
3000 16104847 609076

axis and Y-axis values are on a logarithmic scale to avoid skewing towards the larger
values. From the Figure 3.6, it can be observed that the proposed ProgSIO-MSA model
is efficient in running time for up to 100 sequences; whereas, the CLUSTAL Omega
is efficient for more than 100 sequences in a query file. This is mainly due to the
following reasons: (i) the proposed ProgSIO-MSA model dynamically generates all
possible pair-wise alignment every time after the best pair profile gets merged in the
subsequence list (as explained in Steps 7 and 8 of Algorithm 3.3). By this dynamic
approach, the proposed model is able to align more accurately with the trade-off of
running time. (ii) the proposed model is implemented in single thread as there is less
scope in parallelizing the model, i.e., (as mentioned above) due to the dynamic nature of
the proposed model, it doesn’t possess prior information of best pair to align parallelly.
Thus, the proposed model is sequential and single-threaded; whereas the CLUSTAL
Omega is featured with a multi-thread approach.

By this, we state that as the number of input sequences increases the alignment run-
ning time of the proposed model increases logarithmically.

D. Statistical Significance Analysis:
To analyze the statistical difference between the Q-Scores of the proposed ProgSIO-
MSA model and each of the state-of-the-art models on the BAliBASE dataset, we per-
formed the Wilcoxon Signed-Rank Test Corder and Foreman (2009), as the Q-Scores
are not normally distributed. Let a null hypothesis indicate that there is no significant
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Figure 3.6. Scalability: Alignment time comparison of ProgSIO-MSA against CLUSTAL Omega for
various number of sequences from HomFam test sets. Both axes are in logarithmic scales

difference between the proposed ProgSIO-MSA model and each of the state-of-the-art
models for a significance level of 5% (i.e., 0.05). When p ≤ 0.05, the hypothesis test
for two sets of Q-Scores rejects this null hypothesis, which means that there is indeed
a statistically significant difference between the same. Otherwise, i.e., when p > 0.05,
the null hypothesis is retained and it indicates that there is no significant difference
between the two sets of Q-Scores. The results of the Wilcoxon Signed-Rank Test are
shown in Table 3.10 and the null hypothesis is rejected in all cases, except two. Hence,
the accuracy of the proposed ProgSIO-MSA model is significantly higher than that of
the progressive-based state-of-the-art models and is equally better with that of the one
iterative model, i.e., GAPAM. Further, it is inferred that the proposed model, being
a progressive approach to align multiple sequences with SIO, performs equally better
when compared to GAPAM (best iterative model) and outperforms other iterative mod-
els, which runs for multiple iterations to achieve the same.

3.6 Summary

In this chapter, a more accurate and computationally feasible (polynomial time) align-
ment model was proposed with an effective scoring system and a novel optimization
framework. The proposed scoring system incorporated two effective strategies, i.e.,
LBA and PRSDGP in which the LBA scoring strategy scores a current residue pair
based on previous position status information and the PRSDGP scoring strategy dy-
namically calculates the gap penalty value based on its position and residue informa-
tion using the mutation matrix. The proposed SIO framework identifies and optimizes
the aligned results using the proposed scoring strategies to overcome the local optima
limitation of the progressive approach. The proposed ProgSIO-MSA model being a
progressive approach was evaluated against both progressive and iterative-based mod-
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Table 3.10. Wilcoxon Signed-Rank Test between the Proposed ProgSIO-MSA Model and other
State-of-the-art Models on BAliBASE Dataset

Approach
Alignment

Method
p-value *

Null
Hypothesis

Decision

Significant
Difference

(if p <0.05)

Progressive

ML PIMA <0.00001 Reject Yes
SB PIMA <0.00001 Reject Yes
PILEUP8 <0.00001 Reject Yes

MULTALIGN <0.00001 Reject Yes
CLUSTAL W/X <0.00001 Reject Yes

Stochastic

RBT-GA <0.00001 Reject Yes
SAGA 0.00016 Reject Yes

MSA-GA 0.00236 Reject Yes
GAPAM 0.43540 Retain No

* p-values are calculated up to five decimal point.

els on two benchmark datasets, i.e., BAliBASE and SABmark. The experimental results
showed that the accuracy (quality) of the proposed ProgSIO-MSA model, when com-
pared with state-of-the-art progressive models, was increased by at least 27.2% and
23% for Ref.2 and Ref.3 datasets of BAliBASE respectively. The quality of the pro-
posed model outperformed state-of-the-art progressive-based iterative models for SAB-
mark datasets. The proposed ProgSIO-MSA model performance is equally good when
compared to the stochastic-based iterative model, i.e., GAPAM. Moreover, the com-
putational efficiency of the proposed ProgSIO-MSA model outperformed CLUSTAL
Omega in running time and outperformed GAPAM in time complexity by a factor of
[G . P ] (for G number of generations and P number of populations). Further, the Q-
Score differences between the proposed ProgSIO-MSA model and other state-of-the-art
models were analyzed using a non-parametric statistical test with a significance level of
5% on BAliBASE datasets. Wilcoxon Signed-Rank Test results concluded that the qual-
ity of the proposed ProgSIO-MSA model significantly outperformed progressive-based
state-of-the-art models and it is on par with the GAPAM. By experimental and statis-
tical analysis, we conclude that the proposed ProgSIO-MSA model is a more accurate
and computationally efficient model to perform multiple protein sequence alignment.
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Chapter 4

Protein Secondary Structural Class Prediction

In this chapter1, effective protein secondary structural class prediction models are pro-
posed and discussed in detail. Two studies are carried out in solving PSSC prediction
effectively. First, various sets of local features extracted from primary and secondary
structural sequences are analyzed using state-of-the-art classifiers. Next, an effective set
of global and local sets of features are extracted and these features are used to classify
protein secondary structural classes based on the proposed ensemble of classifiers.

4.1 Preamble

Identification of Protein Secondary Structural Class (PSSC) information is one of the
important activities in the analysis of protein structure and its functions. The Structural
Classification of Proteins - Extended (SCOPe) is one of the largest publicly available
protein databases in which proteins have been classified to determine the evolutionary
relationship among proteins. The majority of proteins and their domains are manu-
ally curated of known structure in a hierarchy according to structural and evolutionary
relationships. According to the latest extended version of the SCOPe 2.07 database2,
the proteins are majorly categorized into seven classes, namely, (1) All–α, (2) All–β,
(3) α/β, (4) α+β, (5) Multi-domain proteins, (6) Membrane and cell surface proteins
and (7) Small proteins. Over the years, it was observed that 90% of these protein en-
tries consistently belong only to the first four structural classes Murzin et al. (1995),
Andreeva et al. (2004), Andreeva et al. (2007). Therefore, this study concentrates on
predicting the first four structural classes, i.e., All–α, All–β, α/β, and α+β.

The PSSC prediction is a multi-class classification problem in which an amino
acid sequence is classified into any one of the four structural classes. This problem
is addressed using machine learning techniques in which protein sequences are initially
transformed into a fixed-size feature vector and later, the classifier model utilizes the
feature vector to train itself to predict PSSC.

1The work described in this Chapter has been published in: Sanjay Bankapur and Nagamma Patil,
”Protein Secondary Structural Class Prediction Using Effective Feature Modeling and Machine Learn-
ing Techniques” in IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE),
Taichung, Taiwan. Oct-2018, IEEE.
Prince Kumar, Sanjay Bankapur, and Nagamma Patil, ”An enhanced protein secondary structure pre-
diction using deep learning framework on hybrid profile based features” in Applied Soft Computing,
Elsevier, 86, p.105926, 2020
Sanjay Bankapur and Nagamma Patil, ”Enhanced Protein Structural Class Prediction using Effective
Feature Modeling and Ensemble of Classifiers” in IEEE/ACM Transactions on Computational Biology
and Bioinformatics, (In Press, 2020).

2http://scop.berkeley.edu/statistics/ver=2.07

http://scop.berkeley.edu/statistics/ver=2.07


4.2 Datasets

To assess the performance of the proposed model against state-of-the-art models, we
have considered five publicly available benchmark datasets.

Benchmark Datasets:
The first dataset consists of 277 protein sequences and the second dataset consists of
498 sequences which are constructed by Zhou Zhou (1998) and denoted as z277 and
z498 respectively. Both the datasets, despite possessing high similarity (about 80%),
are widely used to validate the prediction models. To analyze the performance im-
pact of the proposed model on low similarity datasets, we have considered three other
benchmark datasets. 25PDB Kedarisetti et al. (2006), 1189 Wang and Yuan (2000),
and FC699 Kurgan et al. (2008) datasets which contain 1673, 1092, and 858 protein
sequences respectively and exhibit less than 40% sequence similarity. All the protein
sequences from these five benchmark datasets are span across the four classes of protein
secondary structure such as All–α, All–β, α/β, and α+β. The data characteristics and
frequencies for each class are shown in Table 4.1.

Table 4.1. Data Characteristics of Five Benchmark Datasets

Dataset
Sequence
Similarity

Number of Protein Sequences
All–α All–β α/β α+β Total

z277 Zhou (1998) High 70 61 81 65 277
z498 Zhou (1998) High 107 126 136 129 498

25PDB Kedarisetti et al. (2006) Low (≤25%) 443 443 346 441 1673
1189 Wang and Yuan (2000) Low (≤40%) 223 294 334 241 1092
FC699 Kurgan et al. (2008) Low (≤40%) 130 269 377 82 858

4.2.1 Data Preparation

From a protein sequence, every amino acid residue can be predicted to one of the pos-
sible secondary structural elements such as Helix (H), Sheets (E), or Coil (C). By this,
a secondary structural sequence can be generated from a query protein sequence.

For example: consider a sample protein sequence, say S1 = GEYFTLQIRGR-
ERFEMFRELNEALELKDAQA and its corresponding structural sequence, say StrS1

is CCEEEEEECHHHHHHHHHHHHHHHCCCHHCC. The generated secondary struc-
tural sequence exhibit the same length as of protein sequence.

To generate a secondary structural sequence, many state-of-the-art models exist. In
this study, we adopt two methods PSI-BLAST based secondary structure PREDiction
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(PSIPRED) method McGuffin et al. (2000) and (ii) Hybrid model on evolutionary-based
profiles using Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN) Kumar et al. (2020).

PSIPRED: this method incorporates two sequential feed-forward neural networks
to predict the structural elements with the help of Position-Specific Iterative Basic Lo-
cal Alignment Search Tool (PSI-BLAST) profiles Jones (1999). PSI-BLAST Altschul
et al. (1997) is an alignment search tool to generate Position-Specific Scoring Matrix
(PSSM) profiles. PSI-BLAST takes a query protein sequence as input and compares it
to a protein database to shortlist similar protein sequences and then multiple sequence
alignment is performed on shortlisted sequences to generate PSSM profiles. For a query
protein sequence (say, S), the protein secondary structural sequence generated from
PSIPRED is denoted as StrSP .

Hybrid CNN+RNN: this method extracts features from two evolutionary profiles
such as Position-Specific Scoring Matrix (PSSM) and hidden Markov model (HMM)
profiles and secondary structural sequence is predicted using the combination of CNN
followed by RNN framework.

PSSM: The PSSM profiles are generated using PSI-BLAST Altschul et al. (1997)
tool by searching a protein sequence on National Center for Biotechnology Information
(NCBI’s) non-redundant (NR) database with 0.001 as a cut-off value over three itera-
tions. The generated PSSM profile contains a linear substitution probability matrix and
a log-odd matrix. Both the matrices contain 20 columns where each column indicates
an amino acid. In this study, the linear substitution probability matrix of the PSSM
is considered for the feature extraction as they exhibit rich information of amino acid
possible substitutions.

HMM: The HMM profiles are generated using HHblits Remmert et al. (2012) tool
in which a protein sequence was searched on the Uniprot20 database with 0.001 as a
cut-off value over four iterations. The generated HMM profile contains a matrix of 30
columns in which the first 20 columns indicate the position-specific probabilities of 20
amino acids. The next ten columns indicate the probabilities of three states such as
insertion, deletion, and match, which are defined in HHblits. The first 20 columns of
HMM profiles are considered for the feature extraction as they exhibit rich information
of amino acid possible position-specific probabilities.

For a query protein sequence (say, S), the protein secondary structural sequence
generated from Hybrid CNN+RNN is denoted as StrSH .
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4.3 PSSC Prediction using Local Features with State-of-the-art Classifiers

A preliminary study is carried out in order to identify the best performing feature sets
and classifiers.

4.3.1 Datasets

In this preliminary study, three benchmark datasets namely z277, 25PDB, and FC699
are considered. More details on these three datasets are available in section 4.2.

4.3.2 Feature Extraction

Quality features play a major role in predicting PSSC accurately. Two novel feature
extraction techniques namely SkipXGram bi-gram (SXGbg) and Character Embedding
(CE) are proposed to extract local amino acid interactions (local features).

4.3.2.1 SkipXGram bi-gram (SXGbg) Technique

Protein secondary structure is mainly due to the hydrogen bonds among two amino
acid molecules. Hence the proposed model concentrates and extracts bi-gram features.
Moreover, one turn of α-helix is observed to be exhibited on an average of 3.6 amino
acid residues Segrest et al. (1999), therefore to mimic the α-helix nature, the proposed
SXGbg technique extracts all possible bi-grams by skipping X-grams between the two
residues, where, X value varies from 0 to 5 in our experiment. By this, six sets of
bi-gram features are generated from protein sequences where each set consists of 400
features. Six more sets of bi-gram features are extracted from secondary structural
sequences in which each set consists of 9 features, as a secondary structural sequence
is represented using three elements - H (Helix), E (Sheets), and C (Coil). Let S be a
protein sequence, which is made up of amino acid residues, of length L i.e. r0, r1 ..
, rL−1 where r0 is the residue at first position and rL−1 is the residue at Lth position.
From the protein sequence S, the bi-gram features are extracted and added to the SXGbg
feature set and it is as shown in equation 4.1.

SXGbg(S) =
L−1∑
i=X

r(i−X).r(i+1) (4.1)

Where, X indicates the number of skipped grams and the values are varied from 0 to 5
to obtain six set of SXGbg features.

Procedure to generate SXGbg set of features is shown in Algorithm 4.1. The Algo-
rithm 4.1 takes n protein sequences (from a dataset) and a skip value, i.e.,X as inputs to
produce an output of size n x 400. Where n represents the number of protein sequences
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and 400 represents the feature vector (as there are 20 amino acids, 20 x 20 = 400) for
each protein sequence.

Algorithm 4.1. : Proposed Algorithm to Extract SkipXGram bi-gram Features
Input: List of n protein sequences of variable length and a SkipGram value, X
Output: SXGbg feature set with the occurrence count for all n protein sequences

1: for each protein sequence j do
2: L be a jth sequence length
3: for i=leave to L do
4: bg=char at [i-X] and [i+1] from the jth sequence
5: if (SXGbgj in [bg]) then
6: Increment the bg count by 1 in SXGbgj set
7: else
8: Add the bg to SXGbgj set with count=1
9: end for

10: end for

Table 4.2 lists all the six sets of features for varying X values which are extracted
from the proposed SkipXGram algorithm for a sample protein sequence say S= KLMTP-
TRS. For the S0Gbg feature set, seven features that are mentioned in Table 4.2 exhibit a
count value 1 as their frequency occurred only one time and the rest of the features (i.e.,
400-7=393) are set to value 0 as they didn’t appear in the sample sequence. Similarly,
S1Gbg to S5Gbg are calculated. If any multiple occurrences of a bi-gram feature then
its count is incremented respectively and it is shown in Step 6 of the proposed Algo-
rithm 4.1.

Table 4.2. Six Sets of Features from Proposed SXGbg Technique for a Sample Protein Sequence, S =
KLMTPTRS

X Value
Feature

Set Name
Features

0 S0Gbg {KL, LM, MT, TP, PT, TR, RS}
1 S1Gbg {KM, LT, MP, TT, PR, TS}
2 S2Gbg {KT, LP, MT, TR, PS}
3 S3Gbg {KP, LT, MR, TS}
4 S4Gbg {KT, LR, MS}
5 S5Gbg {KR, LS}

4.3.2.2 Character Embedding (CE) Technique

We adopted and modified the Word2Vec word embeddings technique Mikolov et al.
(2013) such that it generates character embeddings, where each character is a protein
residue. The embedding model represents each protein sequence into a vector of size
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400. As similar to the ability of the Word2Vec model to map words belonging to the
same domain in close proximity in the vector space, the character embedding model
works in such a way that the residues which share similar characteristics in protein
sequence are placed in close vicinity in the vector space. For a query protein sequence,
this technique is applied on both primary and secondary structural sequences to extract
a fixed feature vector of size 400 each.

4.3.3 Classification

The protein secondary structural class prediction is a multi-class classification prob-
lem. The quality features are extracted using the proposed feature extraction techniques
and from these extracted features, classification is performed using various machine
learning techniques. In this preliminary study, we have considered the most popular
state-of-the-art machine learning classification techniques such as logistic regression,
k nearest neighbor classifier, multi-layer perceptron, support vector machine, gradient
boosting machines, and random forest to classify the given protein sequences into its
respective secondary classes.

• Logistic Regression (LR): It is a logit model used to predict the log-odds probabil-
ity of a dependent variable or a prediction response based on linear combinations
of one or more independent variables or features. In this study, the multinomial
logistic regression method is implemented which uses L2 regularization to cal-
culate the loss and maximum likelihood estimation to predict the probability of
category membership on four possible secondary structural class outcomes.

• K-Nearest Neighbour (k-NN): k-NN is an instance-based machine learning tech-
nique in which all the available instances are stored, and for the new instance, the
distance measure is evaluated among the stored k nearest neighbor instances and
is assigned to the respective class using majority voting. k-NN classifier works
accurately only if the training instances are linearly separable with higher-margin
among the class labels. It was observed k = 4 performed the best in the Bench-
mark dataset.

• Multi-Layer Perceptron (MLP): MLP is one of the popular classifiers which is
based on a feed-forward artificial neural network. An MLP exhibits a minimum
of three layers of processing nodes, and except the input layer nodes, all the other
nodes utilize a nonlinear activation function. MLP uses a gradient descent (back-
propagation) approach to minimize the prediction error function of the intercon-
nected network with the help of the training dataset. In this study, we imple-
mented this method with three hidden layers consisting of 100 processing nodes
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at each layer and five output nodes at the output layer to predict sub-chloroplast
locations. For all the nodes at hidden layers and output layer, we adopted the tanh
activation function due to its effective adaptability towards nonlinear datasets.

• Support Vector Machine (SVM): SVM is a supervised machine learning model. It
is one of the widely used supervised learning models since it performs effectively
in tackling problems across various domains. SVM trains the model in such a way
that it finds the hyperplane that maximizes the margin among the given classes
using kernel function, thereby minimizing the prediction error. This method is
useful in solving pattern recognition problems. In this study, we implemented
the SVM method with Radial Basis Function (RBF) as the kernel, since RBF
outperforms both linear ad polynomial kernels due to its tolerance to input noise
with generalization ability.

• Gradient Boosting Machine (GBM): GBM is an ensemble classifier in which
multiple weak predictors are made to learn in a sequence to minimize the loss
function. The main aim of this method is to boost the prediction accuracy by en-
sembling weaker predictors in a sequence such that subsequent predictors learn
from the mistakes of previous predictors. In this study, we have implemented this
method in which regression decision trees are considered as weak predictors and
negative gradient multinomial deviance as the loss function.

• Random Forest (RF): It is one of the most effective ensemble classifiers in which
multiple decision trees are generated during the training phase, which are allowed
to split randomly from a seed point. These randomly generated decision trees are
collectively termed as ‘forest.’ Each decision tree, as the result of this model,
depicts the given dataset into a tree structure where the root node constitutes the
most discriminating feature/attribute, whereas the leaf node maps to the predic-
tion class label. It is evident that the higher the number of decision trees, the
better the prediction accuracy. Hence, this method is implemented with the num-
ber of decision trees equal to 360, which was identified empirically, and it was
observed that with further increase in the trees, there was no further improvement
in the prediction accuracy

4.3.4 Proposed Model

The proposed preliminary model to predict PSSC is as shown in Figure 4.1. In this
study, a better performing data preparation approach, better-performing feature sets,
and better classifier are shortlisted. The detailed experiment analysis is elaborated in
the next section 4.3.5
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Figure 4.1. The Proposed Model for the PSSC Prediction based on Local Features.

4.3.5 Results and Discussion

In this section, the performance analysis of CE and SXGbg features are analyzed in
detail. The best performing classifier is shortlisted using the using effective sets of
features. All the experiment in this study is carried out using ten-fold cross-validation.

4.3.5.1 Environment Setup and Performance Measure

The SXGbg feature extraction technique has been implemented in Java, Eclipse Plat-
form 3.8.1. The CE feature extraction technique has been implemented in Python. The
state-of-the-art classifiers are implemented in Python using Scikit-learn Pedregosa et al.
(2011).

The performance of the proposed model was evaluated using the Overall Accuracy
metric. Overall Accuracy is the proportion of true results (both true positives and true
negatives) among the total number of cases examined and it is shown in equation 4.2

OverallAccuracy =
TP + TN

TP + FP + TN + FN
(4.2)

Where TP, FP, TN, and FN are the total number of true positives, false positives, true
negatives, and false negatives respectively.

4.3.5.2 Performance Analysis on Character Embedding Features

In this analysis, the effectiveness of CE features from PSIPRED and Hybrid CNN+RNN
is carried out. To perform this analysis, two categorizations are made: (i) CE-PSIPRED
- in which two sets of CE-based features are extracted from protein sequence (S) and
secondary structural sequence (StrSP ) respectively. Each feature set is of size 400 and
the CE-PSIPRED feature vector constitutes to of size 800. (ii) CE-Hybrid CNN+RNN
- in which two sets of CE-based features are extracted from protein sequence (S) and
secondary structural sequence (StrSH) respectively. Each feature set is of size 400 and
the CE-Hybrid CNN+RNN feature vector constitutes to of size 800.

The effectiveness of these two CE-based feature categories is carried out using var-
ious state-of-the-art classifiers (that were discussed in section 4.3.3). The PSSC predic-
tion results of each of the classifiers are tabulated in Table 4.3.

Discussion: From the Table 4.3, it can be observed that the RF classifier outper-
formed other classifiers. Further, it is also observed that the structural class predic-
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Table 4.3. The Performance Comparison (in percentage) of Structural Class Prediction based on the CE
Features Extracted from the PSIPRED against Hybrid CNN+RNN

Classifiers
z277 25PDB FC699

CE-
PSIPRED

CE-Hybrid
CNN+BRNN

CE-
PSIPRED

CE-Hybrid
CNN+BRNN

CE-
PSIPRED

CE-Hybrid
CNN+BRNN

LR 65.7 73.3 72.1 72.4 83.5 82.9
k-NN 81.4 84.2 72.3 72.7 83.7 84.5
MLP 75.2 78.5 73.5 72.8 83.7 85.2
SVM 81.0 80.2 74.4 73.9 86.2 86.5
GBM 86.2 86.6 73.7 73.5 86.1 85.7

RF 86.8 87.4 74.8 73.9 87.7 86.1

tion accuracy of CE-Hybrid CNN+RNN features is higher than that of CE-PSIPRED
features for high similarity dataset i.e., z277. However, CE-PSIPRED features out-
performed CE-Hybrid CNN+RNN features for low similarity datasets, i.e., for 25PDB
and FC699. This is due to the fact that PSIPRED generates secondary structure using
the vast knowledge of higher protein domains from the Non-Redundant (NR) database;
whereas, Hybrid CNN+RNN generates secondary structural sequences using limited
knowledge of protein sequences from the CB6133 database. Hence, PSIPRED is effec-
tive in low-similarity datasets. Along with Random Forest (RF) classifier, two feature
sets of CE-PSIPRED namely CE-Seq (extracted from protein sequences) and CE-Str
(extracted from PSIPRED secondary structural sequences) are shortlisted for further
analysis.

4.3.5.3 Performance Analysis on SkipXGram bigram (SXGbg) Features

As discussed in the section 4.3.2.1, six sets of features (by varying X value from 0 to 5)
are extracted on protein sequences using the proposed SXGbg technique and each set
constituting 400 features. Using the same technique, six more sets (by varying X value
from 0 to 5) of features are extracted from PSIPRED-based secondary structural se-
quences also, in which each set constitutes to 9 features, since the structural sequence is
made up of three characters indicating the amino acid residue is either Helix (H), Sheet
(E) or Coil (C). Therefore, a total of twelve sets of features are extracted for a given
dataset using the SXGbg technique. Let SXGbg-Seq be the feature sets extracted from
protein sequences and SXGbg-Str be the feature sets extracted from PSIPRED-based
secondary structural sequences. These twelve sets of features are evaluated on one
high-similarity dataset (z277) and two low-similarity benchmark datasets (i.e. 25PDB
and FC699). The PSSC prediction performance of SXGbg features using Random For-
est (RF) classifier are shown in Table 4.4.

From Table 4.4, it is evident that the prediction accuracy improves for the structural
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Table 4.4. The Performance Comparison of PSSC Prediction using SXGbg Features and Random Forest
Classifier

Datasets z277 25PDB FC699
SXGbg

Features
Protein

Sequence
Structural
Sequence

Protein
Sequence

Structural
Sequence

Protein
Sequence

Structural
Sequence

S0Gbg 77.78 83.75 52.97 76.05 68.30 88.32
S1Gbg 76.34 83.74 53.49 75.34 68.53 88.55
S2Gbg 78.18 83.74 53.01 75.88 67.95 88.44
S3Gbg 79.87 85.14 53.67 77.19 68.76 89.72
S4Gbg 78.17 81.93 51.52 76.77 68.30 87.97
S5Gbg 78.24 81.94 50.87 77.10 67.12 88.67

sequence when compared to the protein sequence for all three datasets. From this, we
can conclude that the information present in structural sequences is much higher than
in protein sequences. Moreover, S3Gbg sets of features (i.e. S3Gbg-Seq & S3Gbg-
Str) which are extracted from protein sequence and structural sequence reported high
prediction accuracy consistently across all the three datasets when compared to other
sets of features. Hence, these two feature sets (i.e. S3Gbg-Seq & S3Gbg-Str) extracted
from the SXGbg technique are shortlisted and considered for further analysis.

4.3.5.4 Performance Analysis on the Proposed Feature Model using State-of-the-art Classifiers

From the above discussed sections 4.3.5.2 and 4.3.5.3, four effective feature sets are
shortlisted from CE and SXGbg techniques. All the four shortlisted sets of features
(a total of 1209 features) are further combined and evaluated using the state-of-the-art
classifiers. The performance comparison using various classifiers on both datasets is
as shown in Table 4.5. The combination of the proposed feature modeling with RF
classifier reported better prediction accuracy consistently for all the three datasets and
the same is evident from the Table 4.5 and hence, this combination (CE-Seq + CE-Str +
S4Gbg-Seq + S4Gbg-Str + RF) is considered as the proposed model of this preliminary
study.

4.3.5.5 Performance Analysis of the Proposed Model against State-of-the-art Models

In this preliminary study, the proposed model consists of effective feature sets (four
sets of features) and RF as the classifier. The performance of the proposed model is
evaluated against state-of-the-art models on three benchmark datasets and the respec-
tive results are shown in the Tables 4.6, 4.7, and 4.8.
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Table 4.5. The PSSC Prediction Evaluation (in %) of State-of-the-art Classifiers’ using the Proposed
Feature Modeling on the Three Benchmark Datasets

Classifier
z277 25PDB FC699

CE-SXG Features CE-SXG Features CE-SXG Features
LR 85.73 76.14 86.94

k-NN 86.73 74.24 87.99
MLP 85.41 76.81 89.86
SVM 87.04 77.11 90.21
GBM 86.47 77.59 90.09

RF 87.78 79.79 91.61

Table 4.6. The Performance Comparison (in percentage) of the Proposed Model against State-of-the-art
Methods for z277 Dataset

Models All–α All–β α/β α+β
Overall

Accuracy
IGA-SVM Li et al. (2008) 84.30 85.50 92.60 70.70 84.50

CWT-PCA-SVM Li et al. (2009) 85.70 90.20 87.70 80.10 85.90
Information Theoretical Zheng et al. (2010) 87.10 80.30 93.80 67.70 83.00

NN-CDM Liu et al. (2010b) 80.00 86.40 91.60 81.80 85.20
LZ-BMKL Mao et al. (2013) 92.90 85.30 92.60 69.20 85.60

Dehzangi et al. Dehzangi et al. (2013b) 90.00 93.40 80.00 96.30 90.30
PMCI-RFE Yuan et al. (2018) - - - - 84.43
Proposed Model (this study) 91.29 92.09 93.30 84.77 87.78

From the Tables 4.7 and 4.8, it is evident that the performance of the proposed model
outperforms other state-of-the-art models by a factor of 3% to 23% and 4% to 6% on
25PDB and FC699 datasets respectively. From Table 4.6, it can be observed that the
proposed model on the z277 dataset was effective when compared to other models ex-
cept Dehzangi et al. (2013b) model. This is due to the fact that Dehzangi et al. (2013b)
model was ensembled with different classifiers to solve PSSC prediction.

The overall outcome of this preliminary study is listed below:

• Features from protein secondary structural sequences are more effective than pro-
tein sequences.

• The prediction performance of CE-PSIPRED based features is higher when com-
pared to CE-Hybrid CNN+RNN features.

• S3Gbg feature set outperformed in comparison to other SXGbg features for all
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Table 4.7. The Performance Comparison (in percentage) of the Proposed Model against State-of-the-art
Methods for 25PDB Dataset

Models All–α All–β α/β α+β
Overall

Accuracy
Stacking Ensemble Kedarisetti et al. (2006) - - - - 59.90

LLSC-PRED Kurgan and Chen (2007) 75.20 67.50 62.10 44.00 62.20
AAD-CGR Yang et al. (2009) 64.30 65.00 65.00 61.70 64.00

AADP-PSSM Liu and Jia (2010) 83.30 78.10 76.30 54.40 72.90
AAC-PSSM-AC Liu et al. (2012) 85.20 81.30 73.70 55.20 73.90

Ensemble Model Dehzangi et al. (2013b) 86.10 80.80 80.60 60.10 76.70
Proposed Model (this study) 92.70 78.90 71.90 74.50 79.79

Table 4.8. The Performance Comparison (in percentage) of the Proposed Model against State-of-the-art
Methods for FC699 Dataset

Models All–α All–β α/β α+β
Overall

Accuracy
SCPRED Kurgan et al. (2008) - - - - 87.50
CBF-PSSE Dai et al. (2013) 84.62 91.45 93.90 34.50 86.01
PBF-PSSE Dai et al. (2013) 88.46 81.41 88.86 80.49 85.66
Proposed Model (this study) 96.40 92.50 95.10 65.10 91.61

the three benchmark datasets.

• Combination of CE and S3Gbg features from protein sequences and secondary
structural sequence enhanced overall prediction performance.

• RF classifier consistently outperformed other state-of-the-art classifiers.

• The proposed PSSC prediction model outperformed other state-of-the-art PSSC
prediction models for low-similarity datasets.

• The proposed PSSC prediction model was less effective by a margin of 2.5% than
Dehzangi et al. (2013b) model on a high-similarity dataset.

The performance of the proposed model of this preliminary study is further im-
proved by enhancing feature modeling and with the ensemble of classifiers. This will
be discussed in the next section 4.4 in detail.
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4.4 PSSC Prediction using Local and Global Features with Ensemble of Classi-
fiers

The previously discussed PSSC prediction model is further enhanced and analyzed in
this section.

4.4.1 Datasets

In this enhanced study, the proposed model is evaluated on benchmark datasets as well
as on the derived latest dataset.

A. Benchmark Datasets:

The proposed model is evaluated on five publicly available benchmark datasets that
had been discussed in the previous section 4.2.

B. Latest Low-similarity High-volume Dataset: To validate the performance con-
sistency and robustness of the proposed model, we have derived a dataset consisting of
a high-volume of newly discovered protein sequences based on two aspects, such as
(1) protein sequences that are extracted from the latest extended version of SCOP i.e.
SCOPe 2.07 database Fox et al. (2013), and (2) all the protein sequences that exhibit
≤25% sequence similarity. Henceforth, this dataset will be referred to as SCOPe 2.07.
The data characteristics and number of protein sequences for each structural class are
shown in Table 4.9.

Table 4.9. Data Characteristics of Latest Large-Scale Low-similarity Dataset

Dataset
SCOPe
Version

Sequence
Similarity

Number of Protein Sequences
All–α All–β α/β α+β Total

SCOPe 2.07
2.07-Stable

(March 2018)
Low
≤25%

1760 1791 2174 2181 7906

4.4.2 Data Preparations

In this study, only PSIPRED McGuffin et al. (2000) method is adopted to generate
protein secondary structural sequences from protein sequences. For all the datasets, we
prepared the structural sequence for every input protein sequence.

4.4.3 Feature Modeling

Feature modeling is an important step to extract features by transforming raw protein
sequences into feature vectors of a fixed-size which exhibit discriminating information
in predicting the PSSC accurately. In this study, we propose an enhanced feature mod-
eling approach to extract the global and local discriminating features from the amino
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acid sequences and generated structural sequences. The local-based features are ex-
tracted using two proposed techniques as Character Embedding (CE) and SkipXGram
bi-gram (SXGbg). The global-based features are extracted using General Statistical
(GS) technique.

4.4.3.1 Character Embedding (CE) Technique

Character Embedding technique follows an unsupervised learning approach to train
and generate the vector space. Word embedding is a word vectorization technique that
transforms a word into a contiguous vector such that similar words are mapped in the
vicinity in the vector space and the generated vectors are dense, real-values with limited
lower dimensions.

In our earlier investigation (section 4.3.5.2) to predict the protein structural classes
using the Word2Vec skip-gram architecture reported a satisfactory result. In this study,
we considered three popular word embedding models such as Word2Vec Mikolov et al.
(2013), GloVe Pennington et al. (2014), and fastText Joulin et al. (2016) and modified
these models such that they return character embeddings, where each character is a
residue of a protein sequence.

Word2Vec Mikolov et al. (2013) and fastText Joulin et al. (2016) are predictive
models where each model exhibits two architectures, namely, Contiguous Bag-Of-
Words (CBOW) and Skip-Gram (SG). The training phase of CBOW architecture pre-
dicts the current word from a window of context words. In contrast, SG architecture
predicts the window of context words from a current word. GloVe (Global Vectors)
Pennington et al. (2014) is a statistical count-based model in which the model learns
its vectors by training on non-zero entries in a word-word co-occurrence matrix. Both
Word2Vec and GloVe models train the network by treating each word from the corpus
as an atomic entity, whereas, fastText model trains by treating each word as a set of
characters.

To extract embedding-based feature sets, we have explored a total of five embedding
architectures, such as Word2Vec Contiguous Bag-Of-Words (W2V-CBOW), Word2Vec
Skip-Gram (W2V-SG), GloVe, fastText Contiguous Bag-Of-Words (fastText-CBOW),
and fastText Skip-Gram (fastText-SG).

Two sets of features are extracted using the character embedding approach from a
query protein sequence and its respective secondary structural sequence — each feature
set consisting of 400 features.

The secondary structural sequence is further processed to generate a structural se-
quence code by removing the Coil elements (i.e., C, as coil doesn’t contribute in the pre-
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diction of structural class) and by replacing the contiguous repetition of the same struc-
tural element with the combination of a total number of occurrences and its structural
element. For example, the structural sequence, say StrS1 = CCEEEEEECHHHHHH-
HHHHHHHHHCCCHHCC after removing Coil elements will be EEEEEEHHHHH-
HHHHHHHHHHHH and processed to generate structural sequence code, StrSCode1
= 6:E–17:H, where the contiguous repetition of segment E (i.e., EEEEEE) is replaced
by its number of occurrences and the structural element (i.e., 6: E), and similar activ-
ity is performed for rest of the sequence. From the resulting structural sequence code
(StrSCode) information, one more set of 400 features is extracted using the word em-
bedding approach. The contiguous frequency and its structural element separated by a
colon constitute a word, i.e., 6:E and 17:H are the two words of StrSCode1. Using the
embedding technique, a total of three sets, each consisting of 400 features is extracted,
making it a 1200 feature vector. The 1200 embedding-based feature vector represents an
effective spatial arrangement of amino acid sequences, secondary structural sequences,
and structural sequence codes.

4.4.3.2 SkipXGram bi-gram (SXGbg) Technique

The most common types of protein secondary structures are the α-helices (H) and the
β-sheets (E). Both these structures are formed due to the hydrogen bond between two
residues. Moreover, there are 3.6 residues per turn in an α-helix structure. To mimic
these biological characteristics, we have extracted various skipped bi-gram feature sets
by adopting SkipXGram Technique (SXG). Using the SXG technique, we have ex-
tracted six sets of skipped bi-gram features from protein sequence as well as secondary
structural sequence, and each set consisting of 400 feature size.

4.4.3.3 General Statistical (GS) based Feature

Along with the features extracted using E and SXGbg techniques, a set of 9 general sta-
tistical (GS) based features are generated to cover the global information of a structural
sequence and those are:

• fH(StrSH,E,C): The frequency of an element H from a structural sequence with
respect to the length of StrSH,E,C .

• fE(StrSH,E,C): The frequency of an element E from a structural sequence with
respect to the length of StrSH,E,C .

• fC(StrSH,E,C): The frequency of an element C from a structural sequence with
respect to the length of StrSH,E,C .

• MaxH(StrSH,E,C): Ratio contributing to the maximum number of consecutive
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H elements in a structural sequence.

• MaxE(StrSH,E,C): Ratio contributing to the maximum number of consecutive
E elements in a structural sequence.

• MaxC(StrSH,E,C): Ratio contributing to the maximum number of consecutive
C elements in a structural sequence.

• fH(StrSH,E): The frequency of an element H from a structural sequence without
the C elements with respect to the length of StrSH,E .

• fE(StrSH,E): The frequency of an element E from a structural sequence without
the C elements with respect to the length of StrSH,E .

• Length(StrSCodeH,E): The total length of a structural sequence code.

Let StrSH,E,C=CCEEEEEECHHHHHHHHHHHHHHHCCCHHCC be a sample
secondary structural sequence. The total number of H, E, C elements are 17, 6, 8
respectively. The length of the StrSH,E,C is 31. Maximum continuous occurrences of
H, E, C elements are 15, 6, 3 respectively. After removing the C elements from the
secondary structural sequence, i.e., StrSH,E=EEEEEEHHHHHHHHHHHHHHHHH.
The length of the StrSH,E is 23. The structural sequence code of StrSH,E will be 6:E-
17:H and its length is 8. The above mentioned 9 feature values are as follows:
fH(StrSH,E,C) = 17/31, fE(StrSH,E,C) = 6/31, fC(StrSH,E,C) = 8/31,MaxH(StrSH,E,C)

= 15/31, MaxE(StrSH,E,C) = 6/31, MaxC(StrSH,E,C) = 3/21, fH(StrSH,E) = 17/23,
fE(StrSH,E) = 6/23, and Length(StrSCodeH,E) = 8.

4.4.4 Classification

The prediction of PSSC is a multiclass classification problem. The relevant sets of
features are extracted using the proposed enhanced feature modeling approach, and the
extracted feature vectors are fed to a classification model as an input, to predict the
PSSC. The majority of the existing works on the PSSC problem were carried out using
a SVM classifier and have reported satisfactory prediction accuracy Ding et al. (2014);
Qin et al. (2015).

In the literature, an ensemble of different classifiers are explored to address various
challenges of protein sequence analysis Dehzangi et al. (2009, 2010) and the recent
work Dehzangi et al. (2013b) has shown that the ensemble of classifiers is effective in
addressing the PSSC problem. An ensemble of different classifiers facilitates prediction
by combining the opinions of all classifiers via majority or probability-based voting.
By this, the limitations of a classifier can be overcome with the strength of the other
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classifiers. Therefore, we explored various state-of-the-art classifier methods on all
the benchmark datasets and proposed a generalized prediction model. The proposed
generalized model works for all the categories of sequence similarity datasets (i.e. high
to low), by an ensemble of three classifiers in parallel such as SVM, RF (bagging), and
GBM (boosting) to work as single classification model.

Based on the preliminary investigation of various state-of-the-art classifiers, an en-
semble of classifiers is proposed. The predicted output of the proposed ensemble clas-
sifier is based on the highest probability-based voting, i.e., each classifier outputs four
probability values (for four classes) for a given protein sequence. Output probabilities
of each class across the three classifiers are averaged and the query protein sequence is
classified to the highest average probability class.

In this study, we implemented the SVM classifier with the penalty parameter C=4.0
and the Radial Basis Function (RBF) as the kernel function, since RBF relatively out-
performs linear, polynomial, and sigmoid kernels due to its tolerance to input noise
with generalizability. In the RF classifier, it is well known that the higher the num-
ber of decision trees, the lower the risk of the model being subjected to over-fitting,
and the better the prediction accuracy. Hence, an RF classifier is implemented with
the number of decision trees equal to 350, a value that is identified empirically. In our
experiments, it was observed that any further increase in the number of trees, did not
improve the prediction accuracy. We implemented the GBM classifier by choosing re-
gression trees as weak predictors and negative gradient multinomial deviance as the loss
function. Higher the number of weak predictors (boosting stages), gradient boosting is
fairly robust to over-fitting. Therefore, the number of boosting stages is set to 350. It is
worth noting that in all our experiments, the hyperparameters of the proposed ensemble
classifier are constant, and then the prediction accuracies are recorded across all the
datasets.

4.4.5 Proposed Model

The proposed ensemble classifier is trained on the sets of features that are extracted
and shortlisted using the proposed feature modeling for PSSC prediction. In this study,
a combination of the proposed feature modeling and the proposed ensemble classifier
constitute the proposed model. The overall framework of the proposed model is as
shown in Figure 4.2.

4.4.6 Results and Discussion

The performances of Embedding and SkipXGram based features are analyzed sepa-
rately. The results of the best performing sets of features with the proposed ensemble
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Figure 4.2. Framework of the proposed model constituting local and global features with ensemble of
classifiers.

of classifiers on five benchmark datasets, i.e., z277, z498, 25PDB, 1189, and FC699
are analyzed. The overall prediction performances of the proposed model on bench-
mark datasets are compared with the state-of-the-art methods. Further, the prediction
performance of the proposed model is validated on the large-scale updated dataset, i.e.,
SCOPe 2.07 which consists of a high volume of newly discovered protein sequences
exhibiting ≤25% sequence similarity.

Most of the published works on the PSSC problem are validated using the Jackknife
approach Liu et al. (2012); Ding et al. (2014); Zhang et al. (2014). It was observed that
the cross-validation evaluation approach produces results similar to Jackknife Efron
and Gong (1983) and recent work on PSSC Zhang et al. (2014) showed that the overall
prediction accuracy using 10-fold cross-validation on most of the datasets is slightly
lesser when compared to Jackknife. Therefore, in this study, we have recorded all the
performance measures using a 10-fold cross-validation approach. Detailed discussion
on the performance analysis of various feature sets are as follows:
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4.4.6.1 Experimental Setup and Performance Measures

The SXG and GS feature extraction techniques are implemented in Java, Eclipse Plat-
form 3.8.1. The embedding approaches, such as the Word2Vec, GloVe, and fastText are
implemented in Python. The proposed ensemble classifier is implemented in Python
using Scikit-learn Pedregosa et al. (2011).

The performance of the proposed model was evaluated and benchmarked using four
standard metrics such as Sensitivity (Sens), Specificity (Spec), Matthews correlation
coefficient (MCC), and Overall Accuracy as given in equations 4.3, 4.4, 4.5, and 4.6
respectively. Sensitivity and specificity measure the proportion of actual positives and
actual negatives that are correctly identified; Overall Accuracy is the proportion of true
results (both true positives and true negatives) among the total number of cases exam-
ined. These three metrics are measured in percentage. MCC takes into account of true
positives, false positives, true negatives, and false negatives and is generally regarded
as a balanced measure which can be used even if the classes are of varying sizes. The
MCC value ranges from -1 to 1, where 0 indicates random correlation, the higher neg-
ative value (i.e., -1) indicates poor prediction quality, and a higher positive value (i.e.,
+1) indicates better prediction quality. These evaluation metrics are mathematically
defined as follows:

Sens =
TP

TP + FN
(4.3)

Spec =
TN

FP + TN
(4.4)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.5)

OverallAccuracy =
TP + TN

TP + FP + TN + FN
(4.6)

Where TP, FP, TN, and TN are the total number of true positives, false positives, true
negatives, and false negatives respectively.

4.4.6.2 Performance Analysis of Embedding based Feature Sets

To effectively extract embedding-based features, we explored a total of five embedding
architectures, such as W2V-CBOW, W2V-SG, GloVe, fastText-CBOW, and fastText-
SG. From each architecture, three sets of features are extracted in which each set con-
sists of 400 features. These three sets of features are extracted from protein sequences,
structural sequences, and structural sequence codes which constitute 1200 features in
total.
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Table 4.10. The Performance Comparison (in percentage) of various Embedding Architectures on the
Benchmark Datasets

Dataset
Character Embedding Architectures

W2V-
CBOW

W2V-
SG

GloVe
fastText-
CBOW

fastText-
SG

z277 86.00 87.80 86.00 91.10 88.54
z498 96.70 96.76 95.95 96.55 94.54

25PDB 75.50 74.64 72.84 75.58 72.73
1189 77.01 76.62 76.17 76.61 72.87

FC699 88.90 89.03 86.52 89.05 89.04
SCOPe 2.07 74.30 74.52 73.90 74.58 73.57

z277 z498 25PDB 1189 FC699 SCOPe_2.07
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Figure 4.3. The Performance Variations of Embedding Architectures on Benchmark Datasets.

The overall performance comparisons of all the five embedding architectures across
six benchmark datasets are tabulated in Table 4.10. The results are obtained using a
10-fold cross-validation approach.

We can observe from Table 4.10 that both the Word2Vec and fastText embedding
approaches reported better prediction accuracy when compared to the GloVe embedding
approach. This is mainly due to the fact that both the architectures are neural-network
based which able to train the model effectively and extract comparatively highly dis-
criminating sets of features than GloVe architecture.

From the predictive-based embedding models, we observe that the CBOW archi-
tecture can extract better sets of features for low similarity datasets when compared to
its respective SG architectures. The CBOW architecture, trains the embedding model
by predicting the current word from a window of context words, thus minimizing the
training error. For high sequence similarity datasets, both CBOW and SG architectures
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can extract highly discriminating features equally.

Further, it is worth noting that the performance of the fastText-CBOW architecture
outperformed other embedding architectures for most of the benchmark datasets. This
is mainly because the fastText treats every input word (in the case of structural sequence
code) as a set of characters and it is able to train the model effectively. Therefore, we
have considered and shortlisted only fastText-CBOW sets of features (1200) for further
analysis. The performance variations of all the five embedding architectures across six
datasets are shown in Figure 4.3.

4.4.6.3 Performance Analysis of SkipXGram based Feature Sets

Six sets of features were extracted (for X: 0 to 5) on amino acid sequences using the
SkipXGram technique. All these feature sets are evaluated individually with the pro-
posed ensemble of classifiers. The overall prediction accuracy obtained using 10-fold
cross-validation on all the five datasets are shown in Figure 4.4 where the x-axis rep-
resents different values of X (0 to 5), and the y-axis indicates the average prediction
accuracy. From Figure 4.4, it can be observed that the three skipped bi-gram feature
set (i.e., X=3 or S3G) reported the highest overall prediction accuracy for all the five
datasets.
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Figure 4.4. Overall Accuracy Variations on Feature Sets extracted from the Amino Acid Sequences for
different Skip-gram (i.e., X) values.

A similar analysis was carried out for the other six sets of features that are extracted
from secondary structural sequences using the SkipXGram technique. From Figure 4.5,
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Figure 4.5. Overall Accuracy Variations on Feature Sets extracted from the Secondary Structural Se-
quences for different Skip-gram (i.e., X) values.

it is observed that the S3G feature set (i.e., X=3) reports the highest overall prediction
accuracy when compared to other feature sets. Therefore, we can say that the three
skipped bi-gram feature set (i.e. S3G feature set) exhibits highly discriminating features
when compared to other skip-gram bi-gram features for the selected five benchmark
datasets.

From the Figures 4.4 and 4.5, the following observations are made: (i) the structural
class prediction accuracy is high for the high similarity datasets when compared to low
similarity datasets. This is mainly due to the fact that high similarity datasets exhibit
more discriminating information than low similarity datasets. Further, it is worth noting
that the proposed skip-gram bi-gram technique is able to extract discriminating features
for the FC699 dataset (which is of low similarity) and thus able to achieve higher pre-
diction accuracy when compared to the other two low similarity datasets. (ii) the feature
sets extracted from secondary structural sequences reported higher prediction accuracy
across all the benchmark datasets when compared to feature sets from amino acid se-
quences. Hence, we can say that the secondary structural sequences possess highly
discriminating information of structural class when compared to amino acid sequences
across all the benchmark datasets.

4.4.6.4 Performance Analysis of the Proposed Feature Extraction Techniques

Along with the nine GS-based feature set, five more feature sets were extracted and
shortlisted using the proposed feature extraction techniques. Out of these five sets,
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three are from fastText-CBOW character embedding (CE) architecture consisting of
1200 features, and the other two sets of features are from the SXG technique (for X=3)
consisting of 409 features. We categorized these six feature sets into two groups as E
(containing three feature sets) and SXG-GS (containing three feature sets). For both E
and SXG-GS, the overall prediction accuracy using 10-fold cross-validation on all the
five datasets are recorded and shown in Table 4.11. From Table 4.11 it is observed that
the SXG-GS features consistently reported higher prediction accuracy when compared
to E features for low sequence similarity datasets. However, E features consistently
reported better prediction accuracy than SXG-GS features for high sequence similarity
datasets. Since the E technique has the ability to determine similar residues that are
in close vicinity in the spatial arrangements of protein sequences, it tends to perform
better for high sequence similarity datasets.

Further, the combined set of features (i.e., E-SXG-GS), consisting of 1618 features,
reported the highest overall prediction accuracy for all five datasets when compared to
individual feature sets. Thus, in this study, the proposed feature modeling combines all
six sets (E-SXG-GS) of highly discriminating features.

Table 4.11. The Impact Analysis of the Proposed Feature Extraction Techniques on Benchmark
Datasets using Ensemble of Classifiers

Feature Extraction
Techniques

Overall Accuracy (%)
z277 z498 25PDB 1189 FC699

SXG-GS 90.20 92.67 78.85 77.19 91.84
CE 91.10 96.55 75.58 76.61 89.05

CE-SXG-GS 93.55 97.58 81.82 81.12 93.93

4.4.6.5 Performance Analysis of the Proposed Model with State-of-the-art Models

The proposed model effectively combines the proposed feature modeling and an ensem-
ble of three classifiers. The detailed results that are obtained by 10-fold cross-validation
on all the datasets are shown in Table 4.12.

The proposed model reported above 93% prediction accuracy for both high simi-
larity datasets, as well as for the FC699 dataset which is a low similarity dataset. For
25PDB and 1189 datasets, the overall prediction accuracy of the proposed model is
consistently reported above 81%.

The performance of the proposed model is compared with more than 20 different
state-of-the-art models across the five benchmark datasets. It is to be noted that none of
the state-of-the-art models have benchmarked their performances on all the five datasets
and neither they have made their implementations available to the community. Hence,
the performance of the proposed model is compared with these models’ results from
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Table 4.12. The Various Performance Metrics Result of the Proposed Model on Benchmark Datasets
using 10-Fold Cross Validation

Dataset Class Sens (%) Spec (%) MCC Overall
Accuracy

z277

All–α 94.29 94.29 0.9225

93.55
All–β 95.09 95.08 0.9361
α/β 96.30 95.12 0.9381
α+β 87.70 89.06 0.8479

z498

All–α 96.27 98.10 0.9640

97.58
All–β 98.42 99.20 0.9840
α/β 99.26 96.43 0.9700
α+β 96.13 96.88 0.9530

25PDB

All–α 91.43 88.62 0.8556

81.82
All–β 82.40 89.24 0.8009
α/β 78.62 79.53 0.7291
α+β 74.15 70.32 0.6145

1189

All–α 88.78 86.08 0.8345

81.12
All–β 87.41 92.77 0.8576
α/β 82.33 81.12 0.7258
α+β 64.70 63.41 0.5336

FC699

All–α 98.46 97.00 0.9727

93.93
All–β 94.80 96.59 0.9364
α/β 95.76 94.01 0.9069
α+β 75.61 79.49 0.7517

their respective papers.

The proposed model reported an overall accuracy of 93.55% and 97.58% for high
similarity datasets, i.e., z277 and z498 respectively. From Table 4.13 and Table 4.14,
it can be observed that the proposed model outperformed all the state-of-the-art mod-
els by a maximum margin of around 10% on z277 and around 4% on z498 datasets.
The second-best performance for these datasets was reported by Kavianpour et al. Ka-
vianpour and Vasighi (2017) in 2017, where they converted amino acid sequences into
binary codes to build cellular automata images. Further, the texture-based features were
extracted using the Haralick approach Haralick et al. (1973) to predict PSSC. It is worth
noting that the activities involved in Kavianpour et al. Kavianpour and Vasighi (2017)
to extract features from sequences via automata images is not only computationally
expensive but also it is more suitable for high similarity datasets only. The proposed
model outperforms the Kavianpour et al. Kavianpour and Vasighi (2017) method for
both the datasets. Thus, the proposed feature modeling is efficient and effective in the
prediction of the PSSC.

For low similarity datasets, the proposed model reported promising results with an
overall accuracy of 81.82%, 81.12% and 93.93% for 25PDB, 1189, and FC699 datasets
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Table 4.13. The Performance Comparison (in percentage) of the Proposed Model against
State-of-the-art Methods for z277 Dataset

Models All–α All–β α/β α+β
Overall

Accuracy
IGA-SVM Li et al. (2008) 84.30 85.50 92.60 70.70 84.50

IB1 Chen et al. (2008) 89.70 88.10 92.20 80.00 87.70
CWT-PCA-SVM Li et al. (2009) 85.70 90.20 87.70 80.10 85.90

Information Theoretical
Zheng et al. (2010)

87.10 80.30 93.80 67.70 83.00

NN-CDM Liu et al. (2010b) 80.00 86.40 91.60 81.80 85.20
AAC-PSSM-AC Liu et al. (2012) 88.60 95.10 97.50 81.50 91.00

LZ-BMKL Mao et al. (2013) 92.90 85.30 92.60 69.20 85.60
COMSPA Yu et al. (2013) 86.10 87.30 91.30 82.30 87.00

Dehzangi et al.
Dehzangi et al. (2013b)

90.00 93.40 80.00 96.30 90.30

PSSM-LPC Qin et al. (2015) 91.40 90.10 92.50 78.40 88.40
Kavianpour et al.

Kavianpour and Vasighi (2017)
92.07 93.35 93.47 90.46 92.34

PMCI-RFE Yuan et al. (2018) - - - - 84.43
Proposed Model (this study) 94.29 95.09 96.30 87.77 93.50

respectively and it is shown in Table 4.15 - 4.17.

The proposed model outperformed all the state-of-the-art models by a minimum
margin of around 3% and the maximum margin of around 22% for the 25PDB dataset
as shown in Table 4.15. The best model from the literature, i.e., LCC-PSSM Ding et al.
(2014) reported an overall accuracy of 79% where 3600 features were extracted us-
ing the linear correlation coefficient approach on PSI-BLAST profiles and 278 features
were selected to predict the PSSC problem. It is worth noting that the proposed model
extracts a 50% lesser number of features than the LCC-PSSM Ding et al. (2014) and
outperforms the LCC-PSSM Ding et al. (2014) model by a factor of around 3%. More-
over, the proposed model’s accuracy in predicting the α+β class has been improved by
more than 10% compared to the LCC-PSSM.

For 1189 dataset, the proposed model outperforms all the state-of-the-art models
except the LCC-PSSM Ding et al. (2014) as shown in Table 4.16. However, the pro-
posed model’s accuracy in predicting the α+β class has been improved by more than
6% compared to the LCC-PSSM Ding et al. (2014). It is worth noting that many efforts
have been carried out to improve the prediction accuracy for α+β class prediction and
it remains a challenge for the low sequence similarity datasets.
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Table 4.14. The Performance Comparison (in percentage) of the Proposed Model against
State-of-the-art Methods for z498 Dataset

Models All–α All–β α/β α+β Overall
Accuracy

IGA-SVM Li et al. (2008) 96.30 93.60 97.80 89.20 94.20
IB1 Chen et al. (2008) 94.95 95.83 97.81 94.16 95.74

CWT-PCA-SVM Li et al. (2009) 94.40 96.80 97.00 92.30 95.20
NN-CDM Liu et al. (2010b) 96.30 93.70 95.60 89.90 93.80

Information Theoretical
Zheng et al. (2010) 95.30 93.70 97.80 88.30 93.80

AAC-PSSM-AC Liu et al. (2012) 94.40 96.80 97.80 93.80 95.80
LZ-BMKL Mao et al. (2013) 96.30 94.40 96.30 93.80 95.20

COMSPA Yu et al. (2013) 95.20 97.60 98.50 90.50 95.40
Dehzangi et al.

Dehzangi et al. (2013b) 95.30 97.60 96.10 97.80 96.80

PSSM-LPC Qin et al. (2015) 99.10 96.80 97.80 93.80 96.70
Kavianpour et al.

Kavianpour and Vasighi (2017) 96.58 98.49 97.67 96.5 97.31

PMCI-RFE Yuan et al. (2018) - - - - 93.84
Proposed Model (this study) 96.27 98.42 99.26 96.13 97.58

Table 4.15. The Performance Comparison (in percentage) of the Proposed Model against
State-of-the-art Methods for 25PDB Dataset

Models All–α All–β α/β α+β Overall
Accuracy

Specific Tri-Peptides
Costantini and Facchiano (2009) 60.60 60.70 67.90 44.30 58.60

AAD-CGR Yang et al. (2009) 64.30 65.00 65.00 61.70 64.00
CWT-PCA-SVM Li et al. (2009) 76.50 67.30 66.80 45.80 64.00
AADP-PSSM Liu et al. (2010a) 83.30 78.10 76.30 54.40 72.90

AATP Zhang et al. (2012) 81.90 74.70 75.10 55.80 71.70
AAC-PSSM-AC Liu et al. (2012) 85.30 81.70 73.70 55.30 74.10

Xia et al. Xia et al. (2012) 92.60 72.50 71.70 71.00 77.20
Dehzangi et al.

(2013) Dehzangi et al. (2013b) 86.10 80.80 60.10 80.60 76.70

MEDP Zhang et al. (2014) 87.81 78.33 76.01 57.37 74.84
EEDP Zhang et al. (2014) 88.04 78.56 78.03 57.14 75.31

LCC-PSSM Ding et al. (2014) 91.70 80.80 79.80 64.00 79.00
PSSM-LPC Qin et al. (2015) 87.40 81.70 75.10 57.60 75.50

MBMGAC-PSSM Liang et al. (2015) 86.70 81.50 79.50 61.70 77.20
Proposed Model (this study) 91.43 82.40 78.62 74.15 81.82

For the FC699 dataset, the performance of the proposed model outperforms the
state-of-the-art models by a minimum factor of around 2% and a maximum of around
10% as shown in Table 4.17. The best performing model from the literature on the
FC699 dataset was reported by Kong et al. Kong et al. (2014) in 2014. It can be
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Table 4.16. The Performance Comparison (in percentage) of the Proposed Model against
State-of-the-art Methods for 1189 Dataset

Models All–α All–β α/β α+β Overall
Accuracy

IB1 Chen et al. (2008) 65.30 67.73 79.93 40.68 64.65
Specific Tri-Peptides

Costantini and Facchiano (2009) - - - - 59.90

AAD-CGR Yang et al. (2009) 62.30 67.70 66.50 63.10 65.20
AADP-PSSM Liu et al. (2010a) 69.10 83.70 85.60 35.70 70.70

AATP Zhang et al. (2012) 72.70 85.40 82.90 42.70 72.60
AAC-PSSM-AC Liu et al. (2012) 80.70 86.40 81.40 45.20 74.60

COMSPA Yu et al. (2013) 73.25 77.26 76.34 54.91 72.53
Dehzangi et al.

Dehzangi et al. (2013b) 80.20 83.60 44.60 85.40 75.82

EEDP Zhang et al. (2014) 84.75 81.97 82.04 47.72 75.00
MEDP Zhang et al. (2014) 85.20 84.01 84.43 45.23 75.80

LCC-PSSM Ding et al. (2014) 89.20 88.80 85.60 58.50 81.20
PSSM-LPC Qin et al. (2015) 82.10 86.30 82.60 43.70 74.90

MBMGAC-PSSM
Liang et al. (2015) 79.80 850 84.70 50.60 76.30

PMCI-RFE Yuan et al. (2018) - - - - 62.37
Proposed Model (this study) 88.79 87.41 82.34 64.73 81.12

Table 4.17. The Performance Comparison (in percentage) of the Proposed Model against
State-of-the-art Methods for FC699 Dataset

Models All–α All–β α/β α+β Overall
Accuracy

SCPRED Kurgan et al. (2008) - - - - 87.50
Kong et al. Kong et al. (2014) 96.20 90.70 96.30 69.50 92.00
PMCI-RFE Yuan et al. (2018) - - - - 82.58
SVM-RFE Yuan et al. (2018) - - - - 83.06
Proposed Model (this study) 98.46 94.80 95.76 75.61 93.93

observed that the proposed feature modeling is effective by a factor of 6% in predicting
the α+β class when compared to Kong et al. Kong et al. (2014).

The accuracy improvement in predicting the α+β class for low similarity datasets
is mainly due to the discriminating features which are extracted using SkipXGram and
fastText embedding techniques. Thus, we can state that the proposed model is effective
in predicting PSSC for both low and high similarity datasets and achieves promising
results.

4.4.6.6 Performance Analysis of the Proposed Model on Large-Scale Updated Dataset

In the previous subsection, the performance of the proposed model was evaluated on
the benchmark datasets which consisted of fewer volume sequences and did not include
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newly discovered sequences. To evaluate the robustness of the proposed model, we have
carried out experiments on the SCOPe 2.07 dataset. The characteristics of this dataset
are available under Latest Low-Similarity High-volume Dataset in section 4.4.1.B.

Table 4.18. The Various Performance Metrics Result of the Proposed Model on Large-Scale Updated
Dataset using 10-Fold Cross-Validation

Dataset Class Sens
(%)

Spec
(%)

MCC Overall
Accuracy (%)

SCOPe 2.07
(Similarity
≤ 25%)

All–α 92.44 91.97 0.8941

81.11All–β 80.07 88.25 0.7892
α/β 82.47 79.83 0.7287
α+β 71.48 68.80 0.5810

The prediction results of the proposed model on SCOPe 2.07 dataset using 10-
fold cross-validation is tabulated in Table 4.18. The SCOPe 2.07 dataset consists of
a high volume of protein sequences (i.e., 7906) and exhibits a low sequence similar-
ity of ≤25%. The overall accuracy of the proposed model on the SCOPe 2.07 dataset
reported 81.11%, and the results are consistent with the results of the 25PDB dataset
which is also of ≤25% similarity. By this, we can say that the proposed model perfor-
mance is consistent and robust even for the large-scale updated dataset.

4.4.6.7 Statistical Significance Analysis

To analyze the statistical significance of the proposed model, we performed paired t-
test on the overall prediction accuracy among the proposed model and state-of-the-art
models. Since no state-of-the-art models were evaluated on all the five benchmark
datasets, we have considered six state-of-the-art models (AAC-PSSM-AC Liu et al.
(2012), Dehzangi et al. Dehzangi et al. (2013b), PSSM-LPC Qin et al. (2015), PMCI-
RFE Yuan et al. (2018), CWT-PCA-SVM Li et al. (2009) and COMSPA Yu et al.
(2013)) which have reported overall prediction accuracy on a minimum of any three
benchmark datasets out of five.

The results of paired t-test among the proposed and each of these six state-of-the-art
models with a significance level of 5% (i.e. 0.05) are shown in Table 4.19.

From the above-mentioned t-test results, the null hypothesis of all the six cases are
rejected. Hence, the overall prediction accuracy of the proposed model is statistically
significant than that of the state-of-the-art models.

4.5 Summary

The protein secondary structural class prediction plays an important role in analyzing
and identifying protein folds, protein tertiary structures, and protein functions. To ad-
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Table 4.19. The paired t-test among the Proposed Model and State-of-the-art Models
from the Literature

Models p-value Null Hypothesis
Decision

Is the Difference
Significant ?

AAC-PSSM-AC <0.00001 Reject Yes
Dehzangi et al. <0.00001 Reject Yes

PSSM-LPC <0.00001 Reject Yes
PMCI-RFE <0.00001 Reject Yes

CWT-PCA-SVM <0.00001 Reject Yes
COMSPA <0.00001 Reject Yes

dress the PSSC prediction problem, we have proposed a generic approach that predicts
the PSSC effectively for both high and low similarity datasets. The proposed model
consists of an enhanced feature modeling with the ensemble of three classifiers. The
proposed feature modeling consists of three feature extraction techniques such as Char-
acter Embedding (CE), SkipXGram (SXGbg), and General Statistical (GS) based fea-
ture extraction technique. As a part of feature modeling, various sets of features were
extracted using the proposed feature extraction techniques, and finally, six effective sets
of features, constituting a total of 1618 features, were shortlisted. The prediction per-
formance of these extracted sets of features was analyzed in detail using an ensemble of
three classifiers (i.e., SVM, RF, and GBM). Shortlisted SXGbg features were effective
for low-similarity datasets and shortlisted E features were effective for high-similarity
datasets. Global GS features enhanced the overall prediction performance. The pro-
posed model reported 93.55% and 97.58% overall accuracy for high similarity datasets
namely, z277 and z498 respectively. For low sequence similarity datasets, the proposed
model attained 81.82%, 81.12%, and 93.93% on 25PDB, 1189, and FC699 datasets
respectively. The performance of the proposed model reported the highest overall accu-
racy across various benchmark datasets and outperformed all the state-of-the-art models
for both low and high similarity datasets. Further, the assessment of the proposed model
on the large-scale updated dataset, i.e., SCOPe 2.07 showed that the performance of
the proposed model is consistent and robust even for the updated high-volume dataset.
From statistical paired t-test results, it has been observed that the overall accuracy of
the proposed model significantly outperformed state-of-the-art models. Hence, we con-
clude that the proposed model is effective and robust in solving the PSSC problem.

In the next chapter, we propose an effective protein fold recognition model. Every
structural class of protein is further categorized into various folds based on the tertiary
structure of a protein.
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Chapter 5

Protein Fold Recognition

In this chapter 1, effective feature extraction and classification model is proposed to
address protein fold recognition effectively. Protein folds are the sub-categories under
the protein structural class. i.e., every structural class of protein is further categorized
into different folds based on the tertiary structure of a protein.

5.1 Datasets

Identification of protein folds for low-similarity datasets is one of the difficult and chal-
lenging tasks. Therefore, in this study, we consider only low similarity datasets.

5.1.1 Benchmark Datasets

Three popular and publicly available benchmark datasets namely, DD, EDD, and TG
are considered for the performance evaluation of the proposed model.

The first benchmark dataset DD was constructed by the authors’ Ding and Dubchak
Ding and Dubchak (2001) from SCOP 1.63 version. The DD Ding and Dubchak (2001)
dataset consists of 311 protein sequences as a training set that exhibits less than 40%
similarity and 383 protein sequences as a test set exhibiting less than 35% similarity.
The protein sequences from both sets belong to 27 different folds. The recent studies
Paliwal et al. (2014a); Lyons et al. (2016, 2014) on protein fold recognition conducted
performance analysis using a 10-fold cross-validation approach on the DD dataset by
combining both train and test sets (constituting of total 694 protein sequences).

The second benchmark dataset is an extended version of the DD dataset (EDD)
derived from SCOP 1.75 version Andreeva et al. (2004). This dataset contains the same
27 folds as the DD dataset with higher volumes of protein sequences constituting a total
of 3418 and exhibiting less than 40% similarity.

The authors Taguchi and Gromiha (2007) derived the TG dataset from SCOP 1.73
version. The protein sequences belong to 30 different folds and they exhibit less than
25% similarity. This dataset consists of 1612 protein sequences.

1The work described in this Chapter has been published in: Sanjay Bankapur and Nagamma Patil,
”An Enhanced Protein Fold Recognition for Low Similarity Datasets using Convolutional and Skip-
Gram Features with Deep Neural Network” in IEEE Transactions on Nano Bioscience, vol. 20, no. 1,
pp. 42-49, Jan. 2021.



5.1.2 Latest High-volume Low-similarity Datasets

The Structural Classification of Proteins (SCOP) is one of the primary sources of pro-
tein sequences with structural annotations. The proposed framework is trained and
developed on a high volume of protein sequences that are derived from the latest ex-
tended version of SCOPe Fox et al. (2013) i.e., SCOPe 2.072. Two main aspects used
for sequence extractions from the SCOPe 2.07 database are (i) protein sequences that
exhibit less than 25% sequence similarities, and (ii) protein sequences that are part of
All-α, All-β, α/β, and α+β structural classes only. By this, a total of 7906 protein
sequences belonging to 1003 different folds are shortlisted, and 442 out of 1003 folds
are having only one protein sequence. In this study, the proposed model is trained and
tested using a 10-fold cross-validation approach; therefore, further, we filtered and con-
sidered those protein sequences in which every protein fold must exhibit at least ten
protein sequences. Using these criteria, the final count of the protein sequences reduced
to 6044 with 167 unique folds, and going forward this dataset will be referred to as
25 SCOPe2.07 F167.

The proposed model is also evaluated and benchmarked on one more derived dataset
of SCOPe 2.07. This dataset is constructed by combining all the benchmark protein
folds of DD, EDD, and TG datasets and consists of 3262 protein sequences that are
belonging to 36 different folds. All the protein sequences of this dataset exhibit less than
25% similarity, and going forward this dataset will be referred to as 25 SCOPe2.07 F36.
The fold names and the number of protein sequences in each fold are listed in Table 5.1.

The overall characteristics of all the datasets that are used in this study are tabulated
in Table 5.2.

5.1.3 Data Preparations

As the protein folds are the sub-categories of protein structural class, features of protein
sequences and structural sequences are not effective. Moreover, this study only consid-
ers low-similarity datasets, evolutionary-based profiles are generated in order to extract
distinct relationship-patterns of protein sequences.

Two evolutionary-based profiles such as position-specific scoring matrix (PSSM)
and hidden Markov model (HMM) are generated for all the datasets. More details are
discussed and available at section 4.2.1

2https://scop.berkeley.edu/astral/subsets/ver=2.07
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Table 5.1. The Information of all the Folds and the Frequency of the Protein Sequences
in each Fold for the derived 25 SCOPe2.07 F36 Dataset

Number Class Fold Frequency
1

α

Globin-like 26
2 Cytochrome C 26
3 DNA/RNA binding 3-helical bundle 277
4 Four helical up and down bundle 59
5 Four helical cytokines 30
6 EF hand-like fold 43
7 SAM domain-like 58
8 alpha-alpha super helix 136
9

β

Immunoglobulin-like beta-sandwich 297
10 Diphtheria toxin/transcription factors/cytochrome f 43
11 Cupredoxin-like 34
12 Galactose-binding domain-like 47
13 Viral protein domain 5
14 Concanavalin A-like lectins/glucanases 51
15 SH3-like barrel 101
16 OB-fold 137
17 beta-Trefoil 37
18 Trypsin-like serine proteases 19
19 Lipocalins 24
20 Double-stranded beta-helix 86
21 Nucleoplasmin-like/VP 50
22

α/β

TIM beta/alpha-barrel 247
23 NAD(P)-binding Rossmann-fold domains 126
24 FAD/NAD(P)-binding domain 47
25 Flavodoxin-like 106
26 Adenine nucleotide alpha hydrolase-like 49
27 P-loop containing nucleoside triphosphate hydrolases 186
28 Thioredoxin fold 98
29 Ribonuclease H-like motif 124
30 Phosphorylase/hydrolase-like 41
31 S-adenosyl-L-methionine-dependent methyltransferases 88
32 alpha/beta-Hydrolases 75
33 Periplasmic binding protein-like I 42
34

α+β
beta-Grasp (ubiquitin-like) 93

35 Cystatin-like 79
36 Ferredoxin-like 275

Table 5.2. The Summary of Datasets that are used for Protein Fold Recognition

Dataset Similarity Source-Version Folds Sequences
DD <40% SCOP-1.63 27 694

EDD <40% SCOP-1.75 27 3418
TG <25% SCOP-1.73 30 1612

25 SCOPe2.07 F167 <25% SCOPe-2.07 167 6044
25 SCOPe2.07 F36 <25% SCOPe-2.07 36 3262
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5.2 Proposed Methodology:

5.2.1 Feature Extraction:

From the previous chapter outcome, SXGbg features were effective for low-similarity
datasets and Embedding features were effective for high-similarity datasets. As this
study mainly concentrates on low-similarity datasets, the SXGbg technique is short-
listed and the Embedding technique is ignored.

A global and a local set of features are extracted from evolutionary-based profiles to
address protein fold recognition (PFR) effectively. A global set of features are extracted
using the proposed convolutional feature extraction technique; whereas, a local set of
features are extracted using the proposed SkipXGram bi-gram (SXGbg) technique.

5.2.1.1 Convolutional (Conv) Features

The convolutional feature extraction technique consists of a 2-dimensional (2D) con-
volutional layer followed by 2D max-pooling layer. For every query sequence, the
generated evolutionary-based profile (PSSM or HMM) is of size L ∗ 20. L is the length
of the query sequence, and 20 indicates the substitution probabilities of 20 amino acid
residues. Since query protein sequence length L varies in a dataset, the original profile
size is further transformed to a fixed size of 200 * 20 by trimming in case of L > 200

or padding with zeros in case of L < 200. Going forward the transformed evolutionary
profile is referred to as TrP.

In the convolutional layer, the convolutional operation (�) is performed on TrP
by applying 2D-convolutional kernel filter CKF ε Rckf1×ckf2 with hyperbolic tan-
gent (tanh) as the activation function to obtain 2D convolutional feature map (cfm)
as shown in equation 5.1.

cfmi,j = tanh (CKF � TrPi:i+ckf1−1, j:j+ckf2−1 + bias) (5.1)

From equation 5.1, one cfm is generated by one CKF ; Similarly, a set of cfm
can be generated by applying n number of CKF in a convolutional layer as shown in
equation 5.2

cfm n =
{
cfm1, cfm2, cfm3, ..., cfmn

}
(5.2)

For each cfmp (1 ≤ p ≤ n), 2D max-pooling operation mp is performed with the
window size w1 × w2 to obtain max-pool feature maps (mpfm) as shown in equation
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5.3

mpfmi,j = mp
(
cfmp

i:i+w1−1, j:j+w2−1
)

(5.3)

On applying 2D max-pooling operations to all convolutional feature maps (cfm n)
we obtain n number of max-pool feature maps (denoted as mpfm n) and it is as shown
in equation 5.4

mpfm n =
{
mpfm1, mpfm2, mpfm3, ..., mpfmn

}
(5.4)

The combination of convolutional and max-pooling operations on evolutionary pro-
files can identify the most predominant features of a given protein sequence. The gen-
erated feature map mpfm n is flattened to obtain the Conv feature vector. In this
study, the Conv feature vector is of size 112 (more information on Conv feature size is
available at section 5.2.3.1).

5.2.1.2 SkipXGram bi-gram (SXGbg) Features

The protein folds are mainly due to the various kinds of interactions among the amino
acid residues in close proximity. Bigram technique is a well-known effective approach
to extract the local interactions of neighboring amino acids Sharma et al. (2013a); Lyons
et al. (2015). The bigram technique can extract features from the conserved regions of
the protein sequences. The protein sequences are made up of 20 different amino acids.
Hence, the dimension of bigram features is 400 (i.e., 20× 20).

In the previous section 4.3.2.1, the skip-gram technique successfully explored on
linear sequences to extract various sets of local interactions of amino acids, and it was
proven to be an effective approach for protein structural class prediction. In this study,
we adopted the linear-based skip-gram technique and modified it to extract SXGbg
feature sets from 2-dimensional data, i.e., evolutionary-based profiles. To the best of
our knowledge, this is the first work to explore the skip-gram technique to recognize
the protein folds.

Various levels of amino acid local interactions are captured by skipping a gram
(amino acid residue) or a set of consecutive grams. The skip value is denoted by X and
six sets of SXGbg features are extracted by varying X values from 0 to 5 (i.e., S0Gbg
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to S5Gbg) and is represented in equation 5.5.

SXGbg(i, j) =
L−X−1∑

l=1, Xε{0−5}

P(l, i) × P(l+X+1, j) (5.5)

where, 1 ≤ i, j ≥ 20, P is a profile of a dimension L× 20 and L is a length of the
query sequence. From six sets, a total of 2400 local interaction features are extracted
where each set consists of 400 feature vectors.

5.2.2 Deep Neural Network:

The Conv and SXGbg features that are extracted from the proposed feature extraction
techniques are fed into a deep neural network. The proposed deep neural network con-
sists of two fully connected hidden layers, followed by an output layer to predict the
protein folds. A total of 2512 feature vectors are fed into the first hidden layer consist-
ing of 512 neurons. The output of the first hidden layer is fed into the second hidden
layer, which consists of 128 neurons.

Both hidden layers adopt the hyperbolic tangent function (tanh) as an activation
function. The tanh is a smoother zero-centered function whose range lies between -1
to +1, and the equation 5.6 represents the tanh function. The main advantage of tanh
function is that it produces zero-centered output, thereby the back-propagation process
achieves better training performance for multi-layer neural networks Karlik and Olgac
(2011).

tanh(x) =

(
expx − exp−x

expx + exp−x

)
(5.6)

The output layer contains F number of neurons, where F is the total number of
unique folds in a given dataset. The PFR being a multi-class classification problem,
softmax activation function is well suited for PFR. The output of the softmax function
Goodfellow et al. (2016) is computed by equation 5.7, and the output values are in the
range of 0 to 1. The summation of all the softmax output probabilities is equal to 1 and
assigns the target fold based on the output with the highest probability.

softmax (xi) =
exi∑F
j=1 e

xj
(5.7)

In all our experiments, the training error of the proposed deep neural network is cal-
culated using a stochastic gradient descent algorithm Kingma and Ba (2014), and the
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Figure 5.1. The Proposed Framework consisting of Convolutional and Skip-Gram Feature Extraction
techniques with Fully Connected Deep Neural Network for PFR.

error is backpropagated to update the neural network weights. The main aim of training
the proposed model is to learn the important discriminating patterns by minimizing the
cross-entropy loss and the loss is calculated using the equation 5.8, where F is the num-
ber of unique folds, log is the natural logarithmic function, γ is the L2 regularization
hyper-parameter, yi is the actual fold label for the ith protein sequence, and pi is the
predicted fold label for the same protein sequence. The loss function parameters are
optimized using the equation 5.9, where ψ is the parameter rate and β is the learning
rate.

L (ψ) = −
F∑
i=1

yi (log (pi)) + γ‖ψ‖2 (5.8)

ψ ← ψ + β
∂L (ψ)

∂ψ
(5.9)

5.2.3 The Proposed Model:

Figure 5.1 illustrates the overall framework of the proposed model, which includes two
feature extraction techniques namely Convolutional and SkipXGram bi-gram followed
by a fully connected deep neural network. In the proposed model, initially, evolutionary
profiles such as PSSM and HMM are generated using PSI-BLAST and HHBlits tools,
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respectively. Then, sets of features are extracted from the profiles using the proposed
feature extraction (Convolutional and SkipXGram bi-gram) techniques, as described
in the sections 5.2.1.1 and 5.2.1.2. These extracted features are fed into the proposed
fully connected deep neural network, as described in section 5.2.2, for protein fold
recognition.

5.2.3.1 Parameter Optimization:

The hyper-parameters of the proposed model are optimally tuned for one of the de-
rived datasets, i.e., 25 SCOPe2.07 F167 and the tuned hyper-parameter values are kept
constant in the evaluation of other datasets.

The original size of the generated profile is transformed from size L× 20 to 200×
20 such that convolutional operation can be performed across protein sequences. In
the convolutional layer: the number of convolutional kernel filters (CKF ) is varied
from 1 to 128, and the optimum results are obtained for four kernels. The size of
each filter is varied from 1 × 1 to 15 × 15, and the best results are obtained on filter
size 5 × 5. The various values for strides are explored and the optimum results are
obtained for five strides with same padding. Similarly, in max-pooling layer: the best
obtained max-pooling window size is 3 × 3 with same padding and 3 strides. By this,
a total of 112 feature vector is extracted from convolutional and max-pooling layers
as shown in Figure 5.1. The number of hidden layers is varied from 1 to 10 and the
best results are reported for two hidden layers. The number of neurons in hidden layers
are explored with various sizes from 4098 to 68, and the best-obtained values are 512
and 128 forming first and second hidden layers, respectively. The best combination
of the parameter values as mentioned above is identified using grid-search, and these
parameter values are kept constant across all the experiments.

5.3 Results and Discussions

In this section, first, we will highlight the experimental setup followed by the perfor-
mance analysis of the proposed model. The performance analysis is carried out in two
stages: Initially, an ablation study of various sets of features extracted on the two de-
rived datasets. Later, the proposed framework is evaluated on three benchmark datasets
and compared against the best models from the literature.

5.3.1 Experimental Setup

All the experiments were carried out on an Ubuntu-based server having 128 GB RAM,
56 cores of Intel Xeon processors, 3TB hard drive, and two NVIDIA Tesla M40 GPUs.
The proposed SXG-bg feature extraction technique is implemented in Python 3, and the
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proposed Convolutional feature extraction technique with fully connected layers is im-
plemented using Keras (provided by Tensorflow) Abadi et al. (2016). The performance
of the proposed model is evaluated on all the datasets using an accuracy metric. Accu-
racy is the ratio of correctly recognized folds of protein sequences (both true positives
and true negatives) to the total number of protein sequences, and it is as shown in the
equation 5.10.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.10)

Where, TP, TN, FP, and FN are the total number of true positives, true negatives,
false positives, and false negatives, respectively. In this study, all the experiments are
carried out using a 10-fold cross-validation approach.

5.3.2 An ablation study of feature sets on the derived datasets of SCOPe 2.07

In this section, two-levels of impact analysis are carried out on the feature sets that
are extracted from the derived datasets. First, an analysis on evolutionary-based pro-
files (PSSM vs HMM) is presented and followed by the importance of global and
local feature sets. Features are extracted from two evolutionary-based profiles such
as PSSM and HMM, from the two derived datasets, i.e., 25 SCOPe2.07 F167 and
25 SCOPe2.07 F36. The detailed information of these datasets is available in section
5.1.2. A total of seven sets of features are extracted in which one is a global feature set
(Conv) extracted using the proposed Convolutional approach and the rest six sets are lo-
cal feature sets (i.e., S0Gbg to S5Gbg) extracted using the proposed SXGbg technique.
The extracted feature set is fed into the proposed deep neural network to classify the
query sequence to its respective folds and the obtained PFR accuracy on the extracted
feature sets is tabulated in Table 5.3.

From the Table 5.3, the first seven rows represent the respective individual PFR
accuracy of seven extracted feature sets followed by the combined set of all the local
features (i.e., S0Gbg to S5Gbg, and it is referred to as SXGbg feature set consisting of
2400 feature vector) and the last row represents the combination of all the global and
local feature sets (referred as Conv+SXGbg features set).

PSSM vs HMM: From the Table 5.3, it can be observed that HMM-based features
boosted more than 20% of PFR accuracy when compared to PSSM-based features for
the 25 SCOPe2.07 167 dataset. Similarly, for the 25 SCOPe2.07 36 dataset, HMM-
based features recorded 15% more PFR accuracy when compared to PSSM-based fea-
tures. The improvement is mainly due to the fact that HHBlits alignment tool Remmert
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et al. (2012) generates HMM profiles effectively by identifying and aligning remote
homology blocks accurately for low similarity datasets when compared to PSI-BLAST
Altschul et al. (1997). Moreover, HHBlits being a profile-profile alignment tool, suc-
cessfully captures rich evolutional information of low similarity query sequences that
helps to recognize its fold accurately.

Global and Local Features: From the Table 5.3, it can be observed that the individ-
ual local feature set (S0Gbg or S1Gbg or ... or S5Gbg) is less effective in PFR when
compared to the combination of all the local feature sets (SXGbg). There is a min-
imum of 9.4% and 6.8% absolute improvement over individual local sets for PSSM
and HMM-based SXGbg feature sets respectively on the 25 SCOPe2.07 167 dataset.
Similarly, for the 25 SCOPe2.07 36 dataset, the PFR accuracy of all the combined lo-
cal feature sets (SXGbg) improved by at least (absolute) 11.2% and 4.5% on PSSM
and HMM-based features respectively. The PFR accuracy improvement in the SXGbg
feature set is mainly because a various local amino acid interaction is effectively cap-
tured in each local set and every local feature set is complimentary to rest of the local
feature sets. Further, it is worth observing that the combination of global and local
feature sets (Conv+SXG) are even more effective in predicting the protein folds and
recorded a minimum improvement of (absolute) 2.4% and 1.2% on 25 SCOPe2.07 167
and 25 SCOPe2.07 36 datasets respectively when compared to either global or local
feature set. Both global and local feature sets are compliment to each other in the en-
hancement of PFR performance.

Table 5.3. The Performance (in percentage) of Various Feature Sets On Derived Datasets

Features Features
Size

25 SCOPe2.07 167 25 SCOPe2.07 36
PSSM HMM PSSM HMM

Conv 112 21.9 42.1 35.5 58.7
S0Gbg 400 41.2 74.1 59.2 85.2
S1Gbg 400 41.0 74.1 59.9 85.1
S2Gbg 400 40.0 73.2 58.7 83.3
S3Gbg 400 39.6 73.4 55.6 85.7
S4Gbg 400 37.7 71.6 54.5 83.1
S5Gbg 400 36.9 70.7 53.5 84.3
SXGbg 2400 50.6 80.9 71.1 90.2

Conv+SXGbg 2512 53.0 83.3 76.3 91.4

The HMM-based Conv and SXGbg features reported the best performance, i.e.,
83.3% for the 25 SCOPe2.07 F167 dataset and 91.4% on the 25 SCOPe2.07 F36 dataset.
Thus, all the further experiments are carried out with the combination of Conv and
SXGbg feature sets that are extracted only from HMM profiles, and fold recognition
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Figure 5.2. The correlation of train and test accuracy of the proposed model for different epochs

is performed using the proposed deep neural network. Henceforth the proposed frame-
work will be referred to as Conv-SXGbg-DeepFold.

All the experiments of the proposed Conv-SXGbg-DeepFold model are trained for
200 epochs with early stopping condition. The correlation of the train and test accuracy
of the proposed Conv-SXGbg-DeepFold model for different epochs on 25 SCOPe2.07 F167
and 25 SCOPe2.07 F36 datasets are shown in Figure 5.2. From 5.2a and 5.2b, it is
observed that the training accuracy increases as the epochs increase and the training ac-
curacy attains a maximum value 1, indicating that the model is trained nearly to 100%
accuracy exhibiting low bias. Further, it is also observed that as the training accuracy
increases, the testing accuracy also increases, implying the convergence of the proposed
model. Both the training and testing accuracies are stabilized over 200 and 100 epochs
for 25 SCOPe2.07 F167 and 25 SCOPe2.07 F36 datasets respectively.

5.3.3 Comparison with state-of-the-art models:

To demonstrate the effectiveness of the proposed Conv-SXGbg-DeepFold, the fold
recognition results on three low similarity benchmark datasets are compared with the
state-of-the-art models. PFR results of the state-of-the-art models and the proposed
Conv-SXGbg-DeepFold model are tabulated in Table 5.4. The experiments are carried
out using 10-fold cross-validations. The state-of-the-art models’ results on all bench-
mark datasets are taken from their published work and (-) indicates the unavailability of
the result.

The proposed model reported PFR accuracy of 85.9%, 95.8%, and 88.8% on DD,
EDD, and TG datasets, respectively. The proposed Conv-SXGbg-DeepFold is the first
model to achieve PFR accuracies over 85% on DD, 95% on EDD, and 88% on TG
datasets.
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Table 5.4. The Performance Comparison (in percentage) of the Proposed Conv-SXGbg-DeepFold
Model against the State-of-the-art Models on DD, EDD and TG benchmark datasets.

Models References DD EDD TG
AAC Ding and Dubchak (2001) 45.1 40.9 32.0

AAC+HXPZV Ding and Dubchak (2001) 47.2 40.9 36.3
Taguchi & Gromiha Taguchi and Gromiha (2007) 51.0 46.9 36.2

PF1 Ghanty and Pal (2009) 50.6 50.8 38.8
PF2 Ghanty and Pal (2009) 48.2 49.9 38.8
PF Ghanty and Pal (2009) 53.4 55.6 43.1

ACCFold Dong et al. (2009) 70.1 87.6 -
TAXFOLD Yang and Chen (2011) 71.5 86.9 -
CONS-AAC Sharma et al. (2013a) 59.2 61.9 44.0
Mono-gram Sharma et al. (2013a) 69.6 76.9 58.8

Bi-gram Sharma et al. (2013a) 74.1 84.5 68.1
Alignment method Lyons et al. (2014) 74.7 90.2 74.0

k-AAP Paliwal et al. (2014a) 76.1 90.6 77.0
Paliwal et al. Paliwal et al. (2014b) - 86.2 72.5

PSSM-SPINE-S Dehzangi et al. (2014) 88.2 73.8
Saini et al. Saini et al. (2015) 76.7 89.9 74.5

HMM-Bigram Lyons et al. (2015) 79.4 92.6 83.1
HMM-Trigram Lyons et al. (2015) 81.8 93.8 86.0

PHMM-DP Lyons et al. (2016) 82.7 92.9 85.6
MF-SRC Yan et al. (2017) 78.6 86.2 79.8

OVAOVO-DKELM Ibrahim and Abadeh (2018) 62.7 - 75.8
Conv-SXGbg-DeepFold This Study 85.9 95.8 88.8

From Table 5.4, it can be observed that the proposed model outperforms all the
state-of-the-art models in protein fold recognition across all three benchmark datasets.
The proposed model’s fold recognition results are improved by a minimum of 5% on
DD, 2% on EDD, and 3% on TG datasets when compared to the next-best model, i.e.,
HMM-Trigram Lyons et al. (2015). It is worth mentioning that the HMM-Trigram
model Lyons et al. (2015) utilizes 8000 features; whereas, the proposed model utilized
relatively 68% fewer features (i.e., a total of 2512 features only) when compared to
HMM-Trigram Lyons et al. (2015) model.

Discussion: The trigram feature extraction technique is one of the effective ap-
proach to solve the protein fold recognition Paliwal et al. (2014b); Lyons et al. (2015).
Even though the size of the trigram features (i.e., 8000) is large when compared to
SXGbg features (i.e., 2400), the trigram technique falls short in extracting discriminat-
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ing features. This is because by nature trigram features exhibit redundant information
due to higher overlapping of amino acid interactions. It is well known that as the number
of features increases the training and testing time of the model also increases. Whereas,
the proposed feature extraction approach can extract and capture various levels of local
amino acid interactions as well as global amino acid interactions effectively. Hence, we
can say that the proposed feature extraction techniques are effective in extracting highly
discriminating information and efficient in training the model.

5.3.4 Statistical Significance Analysis:

The proposed Conv-SXGbg-DeepFold model outperformed all the state-of-the-art mod-
els by a minimum margin of 4%, 2%, and 3% on DD, EDD, and TG datasets, respec-
tively. To demonstrate the significance in the performance improvement of the proposed
model, a statistical paired t-test is carried out on the protein fold recognition accura-
cies among the proposed Conv-SXGbg-DeepFold model with the two next-best models
from literature such as PHMM-DP Lyons et al. (2016) and HMM-Trigram Lyons et al.
(2015).

A null hypothesis H0 on a significance level of 5% (i.e., 0.05) is defined as there
is no significant difference among the performances of the proposed Conv-SXGbg-
DeepFold and the two next-best models from the literature. TheH0 is rejected when p <
0.05 indicating there is a statistically significant difference in the results. Otherwise, the
H0 is retained as there is no significant difference in the results. The statistical paired
t-test results are shown in Table 5.5.

Table 5.5. The paired t-test among the Conv-SXGbg-DeepFold and two next-best models from the liter-
ature

Model Dataset p-value H0

Decision
Is the Difference

Significant?

PHMM-DP
Lyons et al. (2016)

DD 0.00230 Reject Yes
EDD 0.00001 Reject Yes
TG 0.00145 Reject Yes

HMM-Trigram
Lyons et al. (2015)

DD 0.00043 Reject Yes
EDD 0.00010 Reject Yes
TG 0.00338 Reject Yes

From Table 5.5, we can see that the proposed Conv-SXGbg-DeepFold model re-
jected the null hypothesis on both state-of-the-art models across all three datasets.
Hence, we claim that the proposed Conv-SXGbg-DeepFold model is effective in solv-
ing the protein fold recognition across various low similarity datasets.

95



5.4 Summary

Protein fold recognition is one of the important steps in discovering the protein tertiary
structure and its functions. The protein fold recognition of low similarity sequences is
still considered to be a challenging task in computational biology. Numerous models
have been published over a decade to solve this problem effectively. However, most of
the models reported the fold recognition accuracy below 80% on benchmark datasets
and a limited number of models are above 80% accuracy. In this study, a combination
of Convolutional (Conv) features and SkipXGram bi-gram (SXGbg) features have been
extracted from the proposed feature extraction techniques, and fold recognition has been
performed using the proposed deep neural network. The performance of the proposed
Conv-SXGbg-DeepFold model has been benchmarked on two derived datasets from the
latest extended version of SCOPe 2.07 such that the derived datasets contain a high vol-
ume of protein sequences with a low similarity of less than 25% and belonging to more
than 35 different folds. The proposed model reported 91.4% fold accuracy on one of the
derived datasets that belong to 36 different benchmark folds. The performance of the
proposed model has been evaluated against the state-of-the-art models on three bench-
mark datasets, and the results of the proposed model outperformed all the state-of-the-
art models. The proposed model reported 85.9%, 95.8%, and 88.8% on DD, EDD, and
TG benchmark datasets respectively. The performance of the proposed model improved
by 5% to 23%, 2% to 19%, and 3% to 30% on DD, EDD, and TG datasets, respectively
when compared to the best models from the literature. A statistical significance test
was performed on the improved results by conducting paired t-test with a significance
level of 5%, and the results of the statistical test showed that the improvement of the
protein fold recognition accuracies of the proposed model was significant. From all the
conducted experiments, we conclude that the proposed Conv-SXGbg-DeepFold model
is effective in solving the protein fold recognition problem.

In the next chapter, effective multi-label protein sub-chloroplast localization predic-
tion models are discussed.
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Chapter 6

Protein Subcellular Localization Prediction

A chloroplast is one of the most classic organelles in algae and plant cells. Identifying
the locations of chloroplast proteins in the chloroplast organelle is an important as well
as a challenging task in deciphering their functions. Protein Sub-Chloroplast Localiza-
tion (PSCL) prediction is a level-more microscopic problem of subcellular localization
and it is considered as a multi-label problem. In this chapter, two novel models are
proposed to solve a multi-label PSCL prediction problem. First model 1, utilizes Binary
Relevance (BR) approach to solve multi-label PSCL prediction and the second model
2, solves multi-label PSCL using a deep learning framework.

6.1 Datasets

In this study, two publicly available datasets, such as Benchmark and Novel have been
considered to evaluate the proposed model.

The Benchmark dataset was derived from the May-2013 release of the UniProtKB/Swiss-
Prot database by the authors Wang et al. (2015). It contains a total of 578 protein
sequences exhibiting < 40% similarity among the sequences. These sequences are
distributed among five sub-locations of chloroplast organelle such as Envelope, Lumen
(Thylakoid-lumen), Membrane (Thylakoid-membrane), Plastoglobule, and Stroma. Out
of 578 sequences, 556 sequences belong to one sub-chloroplast location, 21 sequences
belong to two sub-chloroplast locations, and one sequence belongs to three sub-chloroplast
locations. Thus, Benchmark is a multi-label dataset, i.e., there are 22 sequences in
which each sequence belongs to more than one sub-chloroplast location.

The protein sequences that were added to the Swiss-Prot database from June-2013
to Nov-2015 are considered as the source to derive the Novel dataset by Wan et al.
Wan et al. (2016a). The novel dataset consists of 122 protein sequences that were
distributed among four sub-locations of chloroplast organelle such as, Envelope, Lu-
men (Thylakoid-lumen), Membrane (Thylakoid-membrane), and Stroma. Out of 122
sequences, 113 and nine sequences belong to one and two sub-chloroplast locations
respectively. Thus, Novel is also a multi-label dataset.

1The work described in this Chapter has been submitted for possible publication as Abhilash
Venkatesh, Shrinivas V. Shanbhag, Sanjay Bankapur, and Nagamma Patil, ”Multi-Label Protein Sub-
Chloroplast Localisation Prediction using Binary Relevance Framework and Machine Learning Tech-
niques”. International Journal of Data Mining and Bioinformatics, Inderscience. (Communicated)

2The work described in this Chapter has been published in: Sanjay Bankapur and Nagamma Patil,
”An Effective Multi-Label Protein Sub-Chloroplast Localization Prediction by Skipped-grams of Evolu-
tionary Profiles using Deep Neural Network” in IEEE/ACM Transactions on Computational Biology and
Bioinformatics, (In Press, 2020).



The data characteristics and sequence frequencies for each sub-chloroplast locations
are shown in Table 6.1.

Table 6.1. Data Characteristics of Multi-Label Sub-Chloroplast Datasets

Dataset Locations
(Labels)

Sequence Frequencies

Overall One
Label

Two
Label

Three
Label

Benchmark Wang et al. (2015) 5 578 556 21 1
Novel Wan et al. (2016a) 4 122 113 9 0

6.2 Data Preparations

In this study, from a query protein sequence, protein secondary structural sequence is
generated using the PSIPRED tool and two evolutionary-based profiles such as PSSM
and HMM are generated. More details about PSIPRED, PSSM, and HMM are dis-
cussed and available at section 4.2.1

For both the multi-label datasets, secondary structural sequences, and two evolutionary-
based profiles were generated.

6.3 Protein Sub-Chloroplast Localization Prediction using Binary Relevance

In this section, we propose a novel multi-label prediction model using an effective fea-
ture modeling with BR framework to classify multi-label sub-chloroplast proteins to its
respective localization.

6.3.1 Feature Modeling

Mainly two types of feature extraction studies have been carried out, i.e., the evolu-
tionary profile-based features which include PSSM and HMM, and the other being
embedding-based features via Word2Vec on both amino acid and secondary structural
sequences.

6.3.1.1 Evolutionary Profile-based Features

As mentioned in section 6.2, two evolutionary profiles are generated -i) PSSM of size
L×42 containing two sub-matrices of size L×20 i.e., PSSM-lo and PSSM-ls ii) HMM
profile of size L × 30 of which sub-matrix L × 20 are used for further study, where
L is the length of the protein sequence. Following n-gram extraction techniques are
performed on these evolutionary profile matrices (EPM ) to extract features :

1. Mono-gram: Mono-gram features Taguchi and Gromiha (2007) are extracted
from 20 column profile alignment matrix by normalizing the column wise sum of
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the probability values and it is as shown in the below equation.

Mono-gram(AAj) =
L−1∑
i=0

EPMi,j (6.1)

where i denotes the ith amino acid in the sequence, L denotes the length of amino
acid sequence, j denotes the amino acid column in evolutionary profile matrix
(EPM ) of amino acid sequence and AAj denotes the mono-gram feature. As
0 ≤ j < 20, the matrix yields vector feature size of 20.

2. Bi-gram: Bi-gram features have been found to be successful in protein-related
predictions Sharma et al. (2013a); Zaman et al. (2017). Bi-gram features are
extracted from normalized evolutionary-based profiles and are generated using
the following equation:

Bi -gram(AAj, AAk) = sumL−1
i=0 EPMi,j EPMi+1,k (6.2)

where j and k denote the amino acid column pairs for which the bi-gram is calcu-
lated and (AAj ,AAk) denotes the bigram feature. As, 0 ≤ j, k < 20 , the number
of (AAj ,AAk) features generated from each matrix is 400.

6.3.1.2 Character Embedding Features

CE-based features are extracted from protein sequences and secondary structural se-
quences. More details were discussed in section 4.3.2.2. Using this technique, two
sets of feature vectors (each of size 400) are extracted from protein sequence and struc-
tural sequence respectively. Going forward we denote CE-based features as Word2Vec
features of size 800.

6.3.2 Feature Selection

From the above feature extraction approaches, a well-blended feature set of 1200 fea-
tures (400 PSSM-lo bi-gram + 800 Word2Vec) are shortlisted (as mentioned in section
6.3.1). To find the appropriate features which are high in discriminating sub-chloroplast
locations, we performed feature selection on 1200 features. Feature selection is per-
formed label-wise, i.e., the best features for each label are selected. As a result, the
features might differ between each label. Genetic Algorithm (GA) is one of the robust
methods for feature selection in subcellular localization study Wang et al. (2015); Lin
et al. (2013).

Before performing label specific feature selection, data transformation of the multi-
label dataset is carried out. Data-feature dataset D is replicated into data-feature set Di
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for i = 1 to k, (where k is the number of labels) such that feature set of each protein
sequence Sj having the label Li is labelled as 1 else labelled as 0 (Label i vs. rest) as
shown in Figure 6.1. GA is applied to eachDi to optimize for label Li with maximizing
the accuracy of a binary classifier as the fitness function. After application of GA, each
data-feature set Di yields label specific feature dataset D′

i containing a feature subset of
D and not necessarily fe(D′

i) = fe(D
′
j) holds where fe(X) denotes features of dataset

X , 1 ≤ i, j ≤ k and i 6= j.

6.3.3 Multi-label Classification

In this work, the Binary Relevance (BR) approach is adopted to address the multi-label
protein sub-chloroplast localization (PSCL) prediction problem. Finding an optimal k
value in the adaptive approach, such as ML-KNN is a challenging task. Moreover, as
the number of multiple location proteins is limited, the label power set approach is not
a suitable option.

6.3.3.1 Classifiers

To find the optimum base classifier for the BR framework, we have considered seven
state-of-the-art classifiers such as Naive Bayes (NB), Logistic Regression (LR), Gra-
dient Boosting Machine (GBM), Multi-Layer Perceptron (MLP), Support Vector Ma-
chine (SVM), K-Nearest Neighbour (k-NN), and Random Forest (RF) are considered.
The details of the NB classifier are provided below and the details of the other six clas-
sifiers were discussed in section 4.3.3.

Naive Bayes (NB): The Bayesian probabilistic classifier is based on the assumption
that each feature makes an independent and equal contribution to the outcome. Naive
Bayes finds the posterior probability of each class given a data point by calculating the
prior probability of the class and the likelihood of data points belonging to that class.
Gaussian naive Bayes classification is a case of naive Bayes method with an assumption
of having a Gaussian distribution on attribute values given the class label.

From these classifiers, a quantitative analysis is carried out to shortlist the best per-
forming base classifier for the BR framework.

6.3.4 Proposed model

From literature, models such as LIFT Zhang and Wu (2014), MultiP-SChlo Wang et al.
(2015), and EnTrans-Chlo Wan et al. (2016b) showed that the choice of feature extrac-
tion, feature selection/reduction approaches and classification technique for multi-label
will significantly affect the performance of multi-label protein localization prediction.
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Therefore, in this study we proposed two variations of BR model. First, with GA-based
feature selection on BR framework consisting SVM as base classifier and will be de-
noted as GA-BiSVM. The other is without any feature selection and will be denoted as
BiSVM.

BiSVM: BiSVM model is Binary Relevance (BR) with SVM as base classifier. From

Algorithm 6.1. : Proposed BiSVM algorithm to predict multi-label sub-chloroplast
location
Input: Protein sequence (S) dataset as input
Output: Protein sequences with one or more sub-chloroplast location information as
output.

1: PSSM profiles are generated and bi-gram features are extracted for each protein
sequence. The extracted features of all protein sequences S are collectively named
as data-feature set D.

2: For multi-label prediction, the generated data-feature set D is transformed as fol-
lows :

3: for each protein sequence Sj in data-feature set D do
4: for each label Li in label-set L1, L2, ..., Lk (where k is the number of unique

labels) do
5: if Sj has label Li then
6: Replicate the feature set of Sj with label as 1 in data-feature set Di.
7: else
8: Replicate the feature set of Sj with label as 0 in data-feature set Di.
9: end if

10: end for
11: end for

Training phase:
12: for each label Li in label-set L1, L2, ..., Lk do
13: Train the binary SVM classifier Ci on dataset Di

14: end for
Testing phase:

15: for each protein sequence Sj from test set do
16: Features set Sj is fed into all binary SVM classifiers Ci to obtain output ai ,

where ai is 0 or 1.
17: The outputs of all classifiers Ci are combined to obtain a vector

Vj = [a1, a2, ...., ak].
18: end for

section 6.3.5.4, it is found that the performance of SVM is better among the various
state-of-the-art classifiers. Therefore, SVM is chosen as the base classifier of BR. In
BR, multiple single-label data transformation techniques is used to deal with multi-label
classification. Therefore, each protein sequence (Sj) in data-feature set D is replicated
as shown in the steps 2-11 of Algorithm 6.1 to obtain k number of transformed data-
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feature sets Di. BR consists of k (no. of labels) binary classifiers where each classifier
Ci (where 1 ≤ i ≤ k) classifies each protein sequence S in data-feature sets Di in-
dependently to whether or not (1 or 0) it belongs to label Li. The outcome of all the
classifiers Ci are combined to obtain the multi-label prediction output in the form of
vector Vi, where Vi = [a1, a2, ...., ak], aj is binary classification (aj is 1 or 0) of classi-
fierCi. The classification and the output generation steps are highlighted in the Training
and Testing phase of Algorithm 6.1.

GA-BiSVM: Label specific features using Genetic Algorithm (GA) successfully en-

Feature Selection 
(GA)

Feature Selection 
(GA)

Feature Selection 
(GA)

Feature Selection 
(GA)

Feature Selection 
(GA)

Feature extraction

Label 2 vs RestLabel 1 vs Rest Label 4 vs Rest Label 5 vs Rest

Binary classifier 
(SVM)

Binary classifier 
(SVM)

Binary classifier 
(SVM)

Binary classifier 
(SVM)

Binary classifier 
(SVM)

Label 1 output(0/1) Label 2 output(0/1) Label 4 output(0/1) Label 5 output(0/1)

Label 3 vs Rest

Label 3 output(0/1)

Multi-label output vector

Multi-label dataset

Figure 6.1. Two-stage GA-BiSVM Classification Model for PSCL Prediction

hanced the prediction accuracy of multi-label subcellular localization problem Lin et al.
(2013); Wang et al. (2015). In this regard, we adopted GA to select and analyse the la-
bel specific feature sets. GA-BiSVM is a two-stage classification model, and it is, as
shown in Figure 6.1. At the first stage, GA based feature selection is performed on
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all the transformed data-feature sets Di to obtain label specific feature datasets D′
i, as

mentioned in section 2.3. In the second stage, a BR is adopted to perform multi-label
classification using label specific feature dataset D′

i. The detailed architecture of the
proposed approach is shown in Figure 6.1.

6.3.5 Results and Discussion

6.3.5.1 Experiment Setup

The Mono-gram, Bi-gram, and Word2Vec feature extraction techniques are implemented
in Python 3 and the proposed multi-label BR framework is also implemented in Python
3. All the experiments of the proposed model are carried out on an Ubuntu-based server
having 128 GB RAM, 56 cores of Intel Xeon processors, two NVIDIA Tesla M40
GPUs, and a 3TB hard drive.

6.3.5.2 Evaluation Metrics

To measure the performance of multi-label PSCL classification requires more sophis-
ticated metrics than single-label classification. In this study, six popular metrics such
as Overall Actual Accuracy (OAA), Accuracy (Acc), Precision, Recall, F1-score (F1),
and Grand Mean are considered and they are defined as follows:

Let AL(Pi) and PL(Pi) be an actual label set and the predicted label set for the
ith protein sequence from a given dataset respectively. These metrics are defined as
follows:

OAA =
1

N

N∑
i=1

∆[AL(Pi), PL(Pi)] (6.3)

where,

∆[AL(Pi), PL(Pi)] =

{
1, ifAL(Pi) = PL(Pi)

0, otherwise

Accuracy =
1

N

N∑
i=1


∣∣∣AL(Pi) ∩ PL(Pi)

∣∣∣∣∣∣AL(Pi) ∪ PL(Pi)
∣∣∣
 (6.4)

Precision =
1

N

N∑
i=1


∣∣∣AL(Pi) ∩ PL(Pi)

∣∣∣∣∣∣PL(Pi)
∣∣∣

 (6.5)
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Recall =
1

N

N∑
i=1


∣∣∣AL(Pi) ∩ PL(Pi)

∣∣∣∣∣∣AL(Pi)
∣∣∣

 (6.6)

F1 =
1

N

N∑
i=1

 2
∣∣∣AL(Pi) ∩ PL(Pi)

∣∣∣∣∣∣AL(Pi)
∣∣∣+
∣∣∣PL(Pi)

∣∣∣
 (6.7)

GrandMean =
(OAA+ Acc+ Precision+Recall + F1)

5
(6.8)

where, |.| indicates the number of elements count in a set, intersection represents the
intersection of sets, and union represents the union of sets. For all metrics, the higher
the values, the better the prediction performance.

6.3.5.3 Cross Validation

In order to perform a fair evaluation comparison of the performance of the proposed
model against state-of-the-art models, we followed the same cross-validation approach
as the state-of-the-art models in this study.

All the experiments on the Benchmark datasets are carried out using a leave-one-
out cross-validation approach. The generalizability of the proposed model is further
verified using an independent test set approach, in which the proposed model is trained
on the Benchmark dataset and tested on the Novel dataset. All the experiments on the
Novel dataset follow an independent test set cross-validation approach.

6.3.5.4 Ablation study of various feature sets with state-of-art classifiers

As discussed in section 6.3.1, two types of features are extracted - evolutionary profile-
based and embedded-based features, and these features are quantitatively analyzed in
this study. Initially, a single-label classification on various feature sets is conducted
on the Benchmark dataset. A single-label data is derived from multi-labeled data by
transforming each data point ‘x’, which has k labels to k data points with its unique
labels. As discussed in section 6.1, the Benchmark dataset exhibits 556 single-label
data points, 21 two-label data points are transformed into 42 single-label data points,
and one three-label data point is transformed into three data points. Thus, transformed
single-label data for Benchmark contains 601 data points.

A. Evolutionary Profile Features:

Evolutionary profiles - PSSM (size=L×42) and HMM (L×30) matrix are extracted
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from a protein sequence, as mentioned in section 2.1.1. Mono-gram (size=20) features
and bi-gram (400) features are extracted from the PSSM-lo (L × 20) and PSSM-ls
(L × 20) matrix and the HMM matrix (L × 20). Corresponding features of PSSM and
HMM profiles are combined and are referred to as PSSM + HMM mono-gram (40) and
bi-gram (800) features.

Table 6.2. The Performance (Accuracy in percentage) Analysis of Evolutionary Feature sets using
various State-of-art Classifiers.

Feature Set (Size)
Classifiers

NB SVM LR GBM MLP k-NN RF
PSSM-lo mono-gram (20) 26.10 66.44 60.93 57.03 65.41 59.07 61.34
PSSM-ls mono-gram (20) 24.80 51.70 58.70 60.90 63.70 61.30 67.50
PSSM-lo bi-gram (400) 29.09 72.21 70.41 62.59 64.25 62.76 65.60
PSSM-ls bi-gram (400) 34.59 68.70 67.15 61.92 66.30 62.36 68.88
HMM mono-gram (20) 22.90 50.20 60.00 60.20 63.20 59.70 66.50
HMM bi-gram (400) 27.80 66.70 64.05 62.37 63.30 61.80 66.80

PSSM-lo + HMM mono-gram (40) 21.91 69.88 62.07 60.53 63.91 59.92 66.84
PSSM-lo + HMM bi-gram (800) 32.04 69.89 68.90 65.20 61.49 59.42 69.68

The performance of various sets of evolutionary-based profiles of mono-gram and
bi-gram techniques with seven state-of-the-art classifiers are tabulated in Table 6.2. To
identify the best performing features and base classifier, the results are recorded on the
transformed single-labeled Benchmark dataset. The bold value indicates the best results
obtained by a classifier for the given feature set. From Table 6.2, it is observed that the
PSSM profile features are more effective compared to features from HMM profiles.
Moreover, bi-gram features on PSSM-lo exhibit higher information when compared to
bi-gram features on the PSSM-ls matrix and even better than the combined PSSM +
HMM profile features. Both SVM and RF perform equally well on the Benchmark
dataset. However, SVM performs consistently better and outperforms RF on the best-
performing feature sets, i.e., bi-gram features of PSSM-lo.

B. Embedded Features:

As discussed in section 6.3.1.2, Word2Vec technique is adopted and modified to
extract the character embedding features of size 800 in which 400 features are from the
amino acid sequence (referred to as ‘Seq’ in Table 6.3) and the rest 400 features from
the secondary structural sequence (referred to as ‘Str’ in Table 6.3). These combined
features of size 800 are referred to as ‘Combined’ in Table 6.3. Further, various window
size (ws) of Word2Vec are explored (i.e., ws from one to four), and the obtained results
are tabulated in Table 6.3.
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The performance of various sets of embedding-based features from protein sequence
and structural sequence with seven state-of-the-art classifiers are tabulated in Table 6.3.
In order to identify the best performing features and base classifier, the results are cap-
tured on the transformed single-labeled Benchmark dataset. The bold value indicates
the best results obtained for a given window size

From Table 6.3, it is evident that the combined embedded features outperform either
of ‘Seq’ or ‘Str’ features in all the window sizes (ws). Specifically, combined features
of ws=4 have the highest information than others. Also, SVM performs the best among
all state-of-the-art classifiers in classifying the sub-chloroplast location.

Table 6.3. The Performance (Accuracy in percentage) Analysis of Embedding Feature sets using various
State-of-art Classifiers.

Approach On (Size) NB SVM LR GBM MLP k-NN RF

W2V
ws†=1

Seq (400) 35.46 53.71 52.54 52.79 46.41 48.69 51.07
Str (400) 37.28 48.70 42.17 46.83 47.40 43.25 41.07

Combined (800) 41.64 57.72 54.03 52.05 48.80 52.38 55.59

W2V
ws†=2

Seq (400) 36.81 55.41 52.87 52.73 47.03 46.46 51.40
Str (400) 36.61 48.38 42.17 46.68 48.75 43.27 41.41

Combined (800) 42.30 59.07 52.30 55.36 49.98 54.92 57.55

W2V
ws†=3

Seq (400) 34.51 55.23 52.70 53.17 46.75 51.54 52.71
Str (400) 37.75 48.54 42.17 46.52 46.28 42.61 41.39

Combined (800) 39.44 57.38 52.69 55.18 49.74 54.24 53.89

W2V
ws†=4

Seq (400) 35.80 57.77 52.53 54.55 51.74 50.26 55.20
Str (400) 36.74 47.40 42.17 46.00 48.56 42.11 41.58

Combined (800) 40.94 60.73 53.82 56.43 50.34 56.76 57.22
† window size

The outcome of this ablation study is that among various feature sets and state-of-
the-art classifiers that are explored, bi-gram features on PSSM-lo is the best feature set,
and SVM is the best classifier. Hence, for further comparative analysis, the PSSM-lo
feature set and SVM combination are chosen for the multi-label BR framework.

6.3.5.5 Multi-label classification: GA-BiSVM vs. BiSVM

From the previous section 6.3.5.4 outcome, it is observed that PSSM-lo bi-gram features
exhibit higher discriminating information of sub-chloroplast locations for the single-
label Benchmark dataset, and these features are utilized and classified effectively by
the SVM classifier. Therefore, the PSSM-lo bi-gram (400) and SVM are shortlisted for
multi-label study.
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For multi-label prediction, two models - BiSVM and GA-BiSVM are proposed (as
discussed in section 6.3.4). Both models are evaluated using the Leave-one-out cross-
validation (LOOCV) statistical approach on the multi-label Benchmark dataset (to find
the effect of label-specific feature selection using GA on multi-label classification). The
prediction results are tabulated in Table 6.4.

Table 6.4. The Performance Comparison (in percentage) of GA-BiSVM and BiSVM on multi-label
Benchmark Dataset using LOOCV

Evaluation Measure GA-BiSVM BiSVM
OAA 64.19 66.67
ACC 67.76 68.97

Precision 68.60 69.64
Recall 70.73 70.73

F1 score 69.00 69.78
Grand Mean 68.06 69.15

The proposed BiSVM model performed consistently better than the proposed GA-
BiSVM model by 1 to 1.5% in all measures. This is due to of two main reasons: Firstly,
the dataset was highly imbalanced, i.e., data objects of some labels are very less, when
compared to other labels. In the Benchmark dataset, Lumen label and plastoglobule
constitute only 5% each from the total dataset, resulting in more negative classes in the
label-specific model. Thus, these label-specific features are highly biased for negative
class prediction. Secondly, all the 400 PSSM features are important and relevant, and
any further reduction of features degrades the multi-label prediction accuracy.

6.3.5.6 Comparison of the proposed model with existing State-of-art-predictors on Benchmark
dataset

The proposed BiSVM model performance on the Benchmark dataset is compared with
three state-of-the-art-predictors, i.e., AL-KNN Lin et al. (2013), MultiP-SChlo Wang
et al. (2015), and EnTrans-Chlo Wan et al. (2016b). All the results of evaluation mea-
sures obtained from respective models using LOOCV are tabulated in Table 6.5.

AL-KNN and MultiP-SChlo utilize Pseudo amino acid composition features (PseAAC),
whereas EnTrans-Chlo adopts an ensemble of PseAAC and PSSM based features. MultiP-
SChlo performs multi-label classification using GA selected features and Binary Rel-
evance with SVM as the base classifier. Both AL-KNN and EnTrans-Chlo adopt the
adaptive approach. AL-KNN utilizes ML-KNN, whereas EnTrans-Chlo takes a trans-
ductive approach with the least-squares as an error function and k-NN algorithm.

The proposed BiSVM model performs significantly better than MultiP-SChlo in all
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Table 6.5. The Performance Comparison (in percentage) of the Proposed BiSVM Model with
state-of-art predictors on Benchmark dataset using LOOCV

Evaluation Measure AL-KNN MultiP-SChlo EnTrans-Chlo BiSVM
OAA 43.77 55.52 60.03 66.67
ACC 45.21 63.26 66.00 68.97

Precision 46.63 64.10 67.30 69.64
Recall 45.30 71.06 71.06 70.73

F1 Score 45.95 67.38 68.04 69.78
Grand Mean 45.37 64.26 66.49 69.15

performance metrics except for the recall, even as the proposed BiSVM and the MultP-
SChlo model utilizes a similar classification approach. The main difference in perfor-
mance is due to the extraction of discriminating features by the proposed approach,
i.e., PSSM-lo bi-gram features exhibit higher information compared to the PseAAC.
The BiSVM achieves significantly better performance in the Overall Actual Accuracy
(OAA) metric, i.e., 11% higher than MultiP-SChlo. The BiSVM performs better than
EnTrans-Chlo by 6% in OAA and other performance metrics by 2% except for recall.
The transductive model is unable to take advantage of the test data points in training
the model using LOOCV (as there is only one test case). Thus, BiSVM operating on
similar evolutionary features, i.e., PSSM features, performs better than EnTrans-Chlo.

Validation on Unknown dataset: Novel Dataset:

We observe that the performance of the proposed model has been effective on the
Benchmark dataset when compared to other state-of-the-art models. To validate the
generalization of the proposed model, a comparative study is carried out on an un-
known dataset, i.e., Novel dataset. The Novel dataset is a derived dataset (as mentioned
in section 6.1). It contains the same labels as the Benchmark dataset except for the
plastoglobule label.

Table 6.6. The Performance Comparison (in percentage) of the Proposed BiSVM Model with
state-of-art predictors on Unknown Test Set, i.e., Novel dataset

Evaluation measure MultiP-SChlo EnTrans-Chlo BiSVM
OAA 27.05 36.07 47.54
ACC 32.79 46.31 54.37

Precision 35.25 48.50 56.15
Recall 36.07 54.92 59.43

F1 score 34.70 49.86 56.69
Grand Mean 33.17 47.13 54.83
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Table 6.6 compares the performance of BiSVM with the other two existing state-of-
the-art models. All the three models mentioned in Table 6.6 are trained on the Bench-
mark dataset and tested on the Novel dataset. BiSVM outperforms the other two state-
of-the-art predictors in classifying the unknown dataset. BiSVM performs 20-23% and
7% better than MultiP-SChlo and EnTrans-Chlo predictor, respectively, across the per-
formance metrics.

6.3.5.7 Statistical Analysis

The proposed BiSVM model outperformed all the state-of-the-art models on OAA by
a minimum margin of 6.64% to the maximum margin of 22.90% on the Benchmark
dataset. To demonstrate the improvement significance of the results, we have performed
a statistical paired t-test on the PSCL OAA metric among the proposed BiSVM with
the other three models from literature such as AL-KNN Lin et al. (2013), MultiP-SChlo
Wang et al. (2015), and EnTrans-Chlo Wan et al. (2016b).

Let a null hypothesis indicate that there is no significant difference between the pro-
posed BiSVM with the other three models with a significance level of 5% (i.e., 0.05).
When p < 0.05, the null hypothesis is rejected, and it indicates that there is indeed a
statistically significant difference in the results. Otherwise, i.e., when p > 0.05, the
null hypothesis is retained, and it indicates that there is no significant difference in the
results. The results of the paired t-test are shown in Table 6.7.

Table 6.7. The Paired t-test among the Proposed BiSVM and other three State-of-the-art Models on
Benchmark dataset

Methods p-value
Null Hypothesis

Decision
Significant
Difference

AL-KNN Lin et al. (2013) <0.00001 Reject Yes
MultiP-SChlo Wang et al. (2015) 0.000184 Reject Yes
EnTrans-Chlo Wan et al. (2016b) 0.000956 Reject Yes

From Table 6.7, we observe that the proposed BiSVM model rejected the null hy-
pothesis against all the state-of-the-art models on the Benchmark dataset. Hence, we
claim that the proposed BiSVM model is effective in solving the multi-label PSCL
problem.

The main outcome of the proposed BiSVM model are as follows:

• Character embedding features were not as effective when compared to evolutionary-
based features.
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• Bigram feature extraction technique was effective when compared to mono-gram
feature extraction technique as the bi-gram technique was able to find more dis-
criminating patterns over mono-gram technique.

• PSSM-based features were effective when compared to HMM-based features.

• GA feature selection on a combined superset of all features was proved to be
ineffective when compared to only PSSM features.

The performance of the proposed model of this preliminary study is further im-
proved by enhancing feature modeling and with the deep learning framework. This will
be discussed in the next section 6.4 in detail.

6.4 Protein Sub-Chloroplast Localization Prediction using Deep Neural Network

Based on the previous investigation on multi-label PSCL prediction, i.e., the BiSVM
model reported satisfactory performance. However, the effectiveness of the PSSM bi-
gram features BR framework on both datasets was limited. There is a scope to explore
the SXG feature extraction technique to improve the performance. Moreover, the BR
framework is sensitive to the class imbalance problem. Therefore, to address the class
imbalance limitation, a deep learning framework has been proposed.

6.4.1 Feature Extraction

A quality set of features play an important role in solving the PSCL prediction problem.
In this study, we propose an effective evolutionary-based feature extraction technique
named SkipXGram bi-gram (SXGbg).

6.4.1.1 SkipXGram bi-gram (SXGbg) Technique

The local interactions of amino acid residues in a protein sequence play an important
role in identifying its locations. A bigram is one of the well-known and effective tech-
niques to extract the local interactions of amino acid residues in close proximity Sharma
et al. (2013a); Lyons et al. (2015). The bigram technique extracts 400 feature vectors
from a protein sequence as the protein sequences are made up of 20 different amino
acids (i.e., 20× 20).

In the previous chapter 5.2.1.2 SXGbg feature extraction technique was success-
fully explored and analyzed on fold prediction. Since it was proven to be an effective
approach, in this study, to extract important and various levels of local interactions, we
have adopted the SXGbg to extract feature sets from evolutionary-based profiles. To
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the best of our knowledge, this is the first work to explore a profile-based skip-gram
technique to predict the protein sub-chloroplast location.

Seven levels of amino acid local interactions are captured from an evolutionary
profile using equation 6.9 by skipping zero to six consecutive grams (residues). The
skip level is denoted as X and the values vary from zero to six.

SXGbg(i, j) =
L−X−1∑

l=1, Xε{0−6}

EP(l, i) × EP(l+X+1, j) (6.9)

where, 1 ≤ i, j ≥ 20, EP is an evolutionary-based profile of a dimension L × 20 and
L is a length of a query sequence. A seven sets of features are extracted of which each
set of size 400.

6.4.2 Multi-label Classification

6.4.2.1 Deep Neural Network

The features that are extracted from evolutionary profiles using the proposed SXGbg
technique are fed into the proposed fully connected deep feed-forward neural network
and it is shown in Figure 6.2. The proposed deep neural network consists of three fully
connected hidden layers, followed by an output layer and a concatenate layer to predict
the multi-label protein sub-chloroplast locations. In this study, two evolutionary-based
profiles are explored, i.e., HMM and PSSM. Seven sets of features are extracted from
each evolutionary-based profile. A total of 14 sets of features (each set consisting of
400 features) are analyzed individually and the best performing feature set is shortlisted.
The detailed analysis is available in section 6.4.3.

Hidden Layers: The extracted features (of size 400) from SXGbg are fed into the
first hidden layer consisting of 400 neurons. The output of the first hidden layer is fed
into the second hidden layer, which consists of 100 neurons. The output of the second
hidden layer is fed into the third hidden layer, which consists of 25 neurons. All the
neurons of three hidden layers are activated by a sigmoid function using the equation
6.10. The sigmoid function gradually transforms a wide range of input values to real
numbers in an interval of 0 to 1. The main advantage of the sigmoid function is that it
is simple and achieves better training performance for multi-layer neural networks via
back-propagation as the output range is between 0 to 1 Karlik and Olgac (2011).

sigmoid(x) =

(
1

1 + e−x

)
(6.10)
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Figure 6.2. The Proposed Framework for PSCL consisting of Feature Extraction
with Fully Connected Deep Neural Network.
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Output Layer: The output layer consists of n neurons, where n is the distinct num-
ber of sub-chloroplast locations and all the neurons are activated by softmax function.
The output of the last hidden layer is fed into the output layer to predict the location
probabilities for a given query protein sequence. The output of the softmax function
Goodfellow et al. (2016) is computed by equation 6.11, and the output values of the
output layer are in the range of 0 to 1.

softmax (xi) =
exi∑n
j=1 e

xj
(6.11)

Concatenate Layer: The label probabilities of the output layer are rounded-off (i.e.,
value≤ 0.5 is treated as 0 and the value> 0.5 is treated as 1) and concatenated to obtain
the final multi-label prediction of a query sequence.

6.4.2.2 Hyper-parameter Optimization

A stochastic gradient descent algorithm Kingma and Ba (2014) algorithm is adopted
to calculate the training error of the proposed deep neural network and the weights are
updated via backpropagation. The primary goal of the training model is to minimize
the cross-entropy loss function, as shown in equation 6.12, where Loc is the number of
sub-locations of chloroplast proteins, log is the natural logarithmic function, yi is the
actual locations for the ith protein sequence, pi is the predicted locations for the same
protein sequence, and γ is the L2 regularization hyper-parameter. On the other hand,
the optimization of all the parameters is performed according to equation 6.13, where φ
is the parameter rate and β is the learning rate.

L (φ) = −
Loc∑
i=1

yi (log (pi)) + γ‖φ‖2 (6.12)

φ← φ+ β
∂L (φ)

∂φ
(6.13)

The number of hidden layers is varied from 1 to 10 and the best results are reported
for three hidden layers. The number of neurons in hidden layers are explored with
various sizes from 1024 to 8, and the best-obtained values are 400, 100, and 25 neurons
for the first, second, and third hidden layer, respectively. The best combination of
parameter values as mentioned above are identified using grid-search, and these values
are kept constant on all the experiments that are discussed in the next section.
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6.4.3 Results and Discussion

The performance of the proposed model is discussed in three stages: Initially, an abla-
tion study is performed on various sets of extracted features from evolutionary profiles
on both datasets. Next, the best performing feature set is shortlisted and compared with
the state-of-the-art models. Finally, the significance of performance improvement is
verified by conducting a statistically significant test.

6.4.3.1 Experiment Setup

The proposed SXGbg feature extraction technique is implemented in Python 3 and the
proposed multi-label deep neural network is implemented with the support of Keras
libraries (provided by Tensorflow) Abadi et al. (2016). All the experiments of the pro-
posed model are carried out on an Ubuntu-based server having 128 GB RAM, 56 cores
of Intel Xeon processors, two NVIDIA Tesla M40 GPUs, and a 3TB hard drive.

6.4.3.2 Evaluation Metrics

We have followed the same evaluation metrics that were discussed in section 6.3.5.2.

6.4.3.3 Cross Validation

In this study, we have followed the same cross-validation approach for both the datasets
that were discussed in the section 6.3.5.3

6.4.3.4 An Ablation Study on Evolutionary Profiles-based Features

Seven sets of skipped gram features are extracted from each evolutionary-based pro-
file by varying the skip value (i.e., X from 0 to 6) using the proposed SXGbg tech-
nique. A total of 14 SXGbg feature sets are extracted for a given dataset in which
seven sets are from HMM profiles and the other seven are from PSSM profiles. The
protein sub-chloroplast prediction performances of each skipped gram feature set for
the Benchmark dataset is tabulated in Table 6.8. A similar study is performed on the
Novel dataset and the results are tabulated in Table 6.9. A bold value in Table 6.8 and
6.9 represent the best result obtained for the respective SXG feature set.

For the Benchmark dataset, two important things are observed from the Table 6.8
and those are: (i) the S5Xbg feature set reported higher performance for all the eval-
uation metrics irrespective of evolutionary profiles and the same can be observed in
Figure 6.3. The multi-label prediction accuracy, i.e., OAA of S5Gbg outperformed
other skipped gram feature sets by a minimum margin of 1% on HMM and 2.5% on
PSSM profile; (ii) the SXGbg feature sets of PSSM profile reported higher prediction
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performance on all the evaluation metrics when compared to SXGbg feature sets of
HMM profile.
Table 6.8. The Performance (in percentage) of the Proposed Model on Various SXGbg Feature

Sets Extracted from Evolutionary Profile of Benchmark Dataset.

Evolutionary
Profile

Evaluation
Metrics

Skipped-gram Feature Sets’ Results (in %)
S0G S1G S2G S3G S4G S5G S6G

HMM

OAA 67.12 69.37 69.20 69.03 67.47 70.41 68.16
Accuracy 87.75 88.13 87.88 87.68 87.26 88.02 87.68
Precision 84.27 85.83 84.70 85.29 83.75 86.15 85.37

Recall 87.75 88.13 87.88 87.68 87.26 88.02 87.68
F1 85.72 86.73 86.00 86.25 85.21 86.85 86.28

Grand Mean 82.52 83.64 83.13 83.19 82.19 83.89 83.03

PSSM

OAA 69.20 70.24 67.64 69.03 67.99 72.83 69.03
Accuracy 88.02 88.40 87.13 88.06 87.40 88.99 87.57
Precision 86..22 85.57 85.38 86.21 85.49 86.90 85.75

Recall 88.02 88.40 87.12 88.06 87.40 88.99 87.57
F1 86.91 86.72 86.01 86.89 86.24 87.70 86.43

Grand Mean 83.67 83.87 82.66 83.65 82.90 85.08 83.27
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Figure 6.3. The Performance Prediction of Various Skipped Gram Features on Benchmark Dataset

Also, similar observations as above hold good for the Novel dataset and the same is
evident from Table 6.9 and Figure 6.4. Further, it is worth noting that the prediction per-
formance of the S5Gbg feature set reported higher OAA prediction performance across
other feature sets. The prediction performance of the S5Gbg PSSM feature set outper-
formed in all evaluation metrics when compared to HMM by a margin of 4% to 8%.

Discussion: From the Figure 6.5, it is evident that the OAA and Grad Mean evalu-
ation metrics of the S5Gbg feature set reported higher prediction performance across
other SXGbg feature sets. This is due to the fact that five skipped grams of bigrams
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Table 6.9. The Performance (in percentage) of the Proposed Model on Various Skipped-gram
Feature Sets Extracted from Evolutionary Profile of Novel Dataset.

Evolutionary
Profile

Evaluation
Metrics

Skipped-gram Feature Sets’ Results (in %)
S0G S1G S2G S3G S4G S5G S6G

HMM

OAA 55.37 51.24 48.76 51.24 42.14 54.54 52.89
Accuracy 77.89 76.03 76.03 76.44 72.52 76.65 77.89
Precision 76.42 74.79 73.98 75.00 70.31 75.56 76.3

Recall 77.89 76.03 76.03 76.44 72.52 76.65 77.89
F1 76.57 74.91 74.41 75.19 70.81 75.61 76.54

Grand Mean 72.83 70.60 69.84 70.86 65.66 71.80 72.30

PSSM

OAA 55.37 59.50 52.89 49.58 47.93 62.81 54.54
Accuracy 77.89 79.75 76.24 74.79 76.24 82.02 77.27
Precision 76.62 79.09 74.44 73.24 74.82 80.18 75.82

Recall 77.89 79.75 76.23 74.79 76.24 82.02 77.27
F1 76.72 79.00 74.94 73.49 75.03 80.60 76.01

Grand Mean 72.90 75.42 70.95 69.18 70.05 77.53 72.18
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(b) Features from PSSM Profile

Figure 6.4. The Performance Prediction of Various Skipped Gram Features on Novel Dataset

carry rich evolutionary information of a possible protein structure that is mainly due to
various local interactions; thus, able to capture higher location patterns.

From the Figure 6.6, it is evident that the S5Gbg feature set of the PSSM profile
outperforms the S5Gbg feature set of HMM profile across both the datasets. This is
due to the fact that PSSM profiles are known to extract high homologous evolutionary
information when compared to HMM profiles. Thus, only S5Gbg features of PSSM (of
size 400) are considered for the rest of the experiment analysis.

6.4.3.5 Comparison with state-of-the-art models

To demonstrate the effectiveness of the proposed model, the performance of all the
evaluation metrics are compared with the state-of-the-art models. The PSCL predic-
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Figure 6.5. The Performance Comparison of Evolutionary Profiles across Various Skipped Gram
Features
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Figure 6.6. The Performance Comparison of S5Gbg features of Evolutionary Profiles across Various
Evaluation Metrics

tion performance of the state-of-the-art models and the proposed model on Benchmark
and Novel datasets are tabulated in Table 6.10. The performance comparison of the
proposed model with state-of-the-art models is shown in Figure 6.7.

The experiments from all the state-of-the-art models including this study on the
Benchmark dataset are carried out using leave-one-out cross-validation. Whereas the
experiments from all the state-of-the-art models including this study on the Novel dataset
are carried-out using independent test cross-validation, i.e., the model is trained on a
Benchmark dataset and tested on the Novel dataset. The state-of-the-art models’ results
on both the datasets are taken from their published work and (-) indicates the unavail-
ability of the result.

The multi-label accuracy (i.e., OAA metric) of the proposed model recorded 72.83%
and 62.81% on Benchmark and Novel dataset respectively. The overall (Grand Mean
metric) prediction performance of the proposed model recorded 85.08% and 77.52% on
Benchmark and Novel dataset respectively.

From Table 6.10, it is evident that the proposed model outperformed all the multi-
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Table 6.10. The Performance Comparison (in percentage) of the Proposed Model against the
State-of-the-art Models on Benchmark and Novel Datasets.

Dataset
Evaluation

Metrics
AL-

KNN
MultiP-
SChlo

EnTrans-
Chlo

BiSVM
This

Study

Benchmark

OAA 43.77 55.52 60.03 66.67 72.83
Accuracy 45.21 63.26 66.00 68.97 88.99
Precision 46.63 64.10 67.30 69.94 86.90

Recall 45.30 71.06 71.06 70.73 88.99
F1 45.95 67.38 68.04 69.78 87.70

Grand Mean 45.37 64.26 66.49 69.15 85.08

Novel

OAA - 27.05 36.07 47.54 62.81
Accuracy - 32.79 46.31 54.37 82.02
Precision - 35.25 48.50 56.15 80.18

Recall - 36.07 54.92 59.43 82.02
F1 - 34.7 49.86 56.69 80.60

Grand Mean - 33.17 47.13 54.83 77.52
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Figure 6.7. The Performance Comparison (in percentage) of the Proposed Model against the
State-of-the-art models

label state-of-the-art models across both the datasets. The Grand Mean performance
of the proposed model has been enhanced absolutely by a minimum margin of 15.93%
and 22.69% on Benchmark and Novel datasets respectively when compared to the next
best model i.e., BiSVM (as discussed in section 6.3).

Discussion: From Table 6.10, it can be observed that state-of-the-art models such
as, MultiP-SChlo Wang et al. (2015), EnTrans-Chlo Wan et al. (2016b) and BiSVM
reported a Grand Mean of 64.26%, 66.49%, and 69.15% respectively on Benchmark
dataset; whereas, the Grand Mean performance reduced to 33.17%, 47.13%, and 54.83%
respectively on Novel dataset.

It is worth noting that the Grand Mean performance of state-of-the-art models such
as MultiP-SChlo Wang et al. (2015), EnTrans-Chlo Wan et al. (2016b) and BiSVM
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reduced relatively by 48.2%, 29.1%, and 20.70% respectively on Novel dataset when
compared to their performances on the Benchmark dataset. However, the proposed
model recorded a Grand Mean of 85.08% and 77.52% on Benchmark and Novel dataset
respectively and the proposed model’s Grand Mean performance on Novel dataset is
reduced relatively by only 8.8% when compared to its performance on Benchmark
dataset. Hence, it is acceptable to claim that the proposed model is not only effective
but also it is a more generalized model in predicting protein sub-chloroplast localization
when compared to other state-of-the-art models.

6.4.3.6 Statistical Significance Analysis

To demonstrate the significant improvement in the Overall Actual Accuracy (OAA) of
the proposed model, we have carried out a statistical paired t-test on the OAA among the
proposed model with the other state-of-the-art models from the literature. The signifi-
cance test for AL-KNN Lin et al. (2013) is performed only with respect to Benchmark
dataset results due to unavailability of results on Novel dataset.

Let a null hypothesis indicate that there is no significant difference between the
proposed model and the other state-of-the-art models with a significance level of 5%
(i.e., 0.05). When p < 0.05, the null hypothesis is rejected, and it indicates that there is
indeed a statistically significant difference in the results. Otherwise, i.e., when p > 0.05,
the null hypothesis is retained, and it indicates that there is no significant difference in
the results. The results of the paired t-test are shown in Table 6.11.

Table 6.11. The Statistical Paired t-test between the Proposed Model and the State-ofthe-art Model on
Overall Actual Accuracy

Model Dataset p-value
Hypothesis
Decision

Significant
Difference

AL-KNN Lin et al. (2013) Benchmark <.00001 Reject Yes
MultiP-SChlo

Wang et al. (2015)
Benchmark <.00001 Reject Yes

Novel <.00001 Reject Yes
EnTrans-Chlo

Wan et al. (2016b)
Benchmark <.00001 Reject Yes

Novel <.00001 Reject Yes

BiSVM
Benchmark <.00001 Reject Yes

Novel <.00001 Reject Yes

From Table 6.11, it is observed that the proposed model rejected the null hypothesis
on all the state-of-the-art models across both the datasets. Hence, we claim that the pro-
posed model is effective in solving the protein sub-chloroplast localization prediction.
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6.5 Summary

Identification of proteins that are located in the sub-chloroplast compartments help in
further understanding their roles in the various chloroplast biological activities. The
PSCL prediction is a multi-label problem. This chapter elaborated two proposed models
for the multi-label PSCL prediction problem. In the first model (i.e., BiSVM), PSSM-
based bi-gram features proved to be effective with the BR framework to solve PSCL.
In the next model, the limitations of BiSVM are solved by SXGbg features with multi-
label deep learning architecture. The later model outperformed (in Grand Mean metric)
all the state-of-the-art models by a minimum margin of an absolute 15.93% and 22.69%
on Benchmark and Novel datasets respectively. Statistical significance test on the per-
formance improvement shows that the prediction of the proposed model is effective in
the identification of the PSCL.

The next chapter concludes our thesis with a summary of the work done and presents
some suggestions for future work in this area.
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Chapter 7

Conclusion and Future Work

The main objective of this thesis was to propose effective computational models that
help in the identification of protein structure and its subcellular localization. This thesis
achieved all the main objectives by proposing effective models for multiple sequence
alignment, protein secondary structural class prediction, protein fold recognition, and
protein subcellular localization prediction.

7.1 Conclusion

An effective and computationally feasible (polynomial time) alignment model was pro-
posed with a novel scoring system and optimization framework. The proposed scoring
system incorporated two effective strategies, i.e., LBA and PRSDGP in which the LBA
scoring strategy calculates the score of a current residue pair based on the previous po-
sition status information, and the PRSDGP scoring strategy dynamically calculates the
gap penalty value based on its position and residue information using the mutation ma-
trix. The proposed SIO framework identifies and optimizes the aligned results using the
proposed scoring strategies to overcome the local optima limitation of the progressive
approach. The proposed ProgSIO-MSA model being a progressive approach was eval-
uated against both progressive and iterative-based models on benchmark datasets. The
experimental results showed that the accuracy (quality) of the proposed ProgSIO-MSA
model, when compared with the CLUSTAL X model (best state-of-the-art progressive
model), was increased by 17.7% on the BAliBASE dataset. The proposed ProgSIO-
MSA model performance was equally good when compared to the best stochastic-based
iterative model, i.e., GAPAM. Moreover, the computational efficiency of the proposed
ProgSIO-MSA model outperformed the CLUSTAL model in running time and outper-
formed GAPAM in time complexity by a factor of [G . P ] (forG number of generations
and P number of populations). It was also observed that the performance improvement
of the proposed model was statistically significant.

An effective and generic computational model was proposed to predict the PSSC
effectively for both high and low similarity datasets. The proposed model consists of an
enhanced feature modeling with an ensemble of three classifiers. The proposed feature
modeling consists of three feature extraction techniques such as Character Embedding
(CE), SkipXGram (SXGbg), and General Statistical (GS) based feature extraction tech-
nique. The proposed model reported 93.55% and 97.58% overall accuracy for high
similarity datasets namely, z277 and z498 respectively. For low sequence similarity
datasets, the proposed model attained 81.82%, 81.12%, and 93.93% on 25PDB, 1189,



and FC699 datasets respectively. The performance of the proposed model reported
the highest overall accuracy across various benchmark datasets and outperformed all
the state-of-the-art models for both low and high similarity datasets. Further, the as-
sessment of the proposed model on the updated high-volume dataset, i.e., SCOPe 2.07
showed that the performance of the proposed model is consistent and robust even for
the large-scale updated dataset. It was also observed that the performance improvement
of the proposed model was statistically significant.

An effective computational model was designed and developed to solve protein fold
recognition. The proposed model consists of a novel combination of feature extrac-
tion techniques such as Convolutional (Conv) and SkipXGram bi-gram (SXGbg) and
the fold recognition was performed using the proposed deep learning architecture. The
performance of the proposed model was assessed on three benchmarks and the latest
derived high-volume datasets. The proposed model reported 85.9%, 95.8%, and 88.8%
on DD, EDD, and TG benchmark datasets respectively. The performance of the pro-
posed model improved by 5% to 23%, 2% to 19%, and 3% to 30% on DD, EDD, and
TG datasets, respectively when compared to the best models from the literature. The
performance of the proposed model recorded 91.4% on one of the derived high-volume
datasets. It was also observed that the performance improvement of the proposed model
was statistically significant.

An effective computational model was designed and developed to solve multi-label
protein sub-chloroplast localization prediction. The proposed model consists of a novel
and effective SXGbg feature extraction technique and the multi-label location predic-
tion was performed using the proposed deep learning architecture. The performance
of the proposed model was assessed on two benchmark datasets. The proposed model
outperformed (in Grand Mean metric) all the state-of-the-art models by a minimum
margin of an absolute 15.93% and 22.69% on Benchmark and Novel datasets respec-
tively. It was also observed that the performance improvement of the proposed model
was statistically significant.

7.2 Future Work

The work discussed in this thesis has inspired a couple of promising directions for future
research and they are outlined below:

• In this research work, we adopted PSSM and HMM evolutionary-based profiles
for predicting PFR and PSCL problems. The proposed ProgSIO-MSA alignment
model can be further extended to search the closely related amino acid sequences
from the NR database and a novel evolutionary-based profile can be generated
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using the proposed ProgSIO-MSA alignment model.

• To analyze and validate the effectiveness of novel evolutionary-based profiles
on the proposed models of PSSC prediction problem, PFR problem, and PSCL
prediction problem.

• To explore feature selection and optimization techniques to solve the prediction
of PSSC and PFR problems. In PSSC prediction, the proposed model utilizes a
feature vector of size 1618 and in PFR, a proposed model utilizes a feature vector
of 2512. In both the proposed models, there is a scope to apply feature selection
techniques such that the reduction of feature vector size without compromising
the effectiveness of the models.

• The proposed novel feature extraction techniques such as SXGbg, CE, and con-
volutional operations followed by deep learning architectures can be explored on
further challenges of protein sequence analysis such as protein tertiary prediction,
protein function prediction, and protein-protein interaction prediction.
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