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ABSTRACT

The most important characteristic of the software product is its quality. One such
important measure of the quality of the software is its reliability, which is the probability
of failure-free operation of a computer program in a specified environment for a specified
period of time. Estimating this software reliability enables the software developers to
decide whether or not the user requirements are met. It also enables the users of the
software to decide whether or not to accept the software. Thus, there is a strong need
for estimating the reliability of the software. Software reliability models, with certain
failure time distributions are used to estimate this reliability. Software reliability models
are classified based on many attributes. One such classification is based on the number
of failures. Depending on the number of failures, the software reliability models have
been classified into two categories: (i) finite failures category models, where the number
of failures is assumed to be finite and (ii) infinite failures category models, where the
number of failures is assumed to be infinite. Finite failures category models are further
classified into four classes, depending on the distribution of the failure times, namely,
(i) Exponential class models, (ii) Weibull class models, (iii) Gamma class models and
(iv) Pareto class models. Herein, the finite failures category models are considered and
the reliability are estimated for the above four classes of models using the methods of
Maximum Likelihood Estimation and Minimum Variance Unbiased Estimation. Further,
the bias if any, present in the Maximum Likelihood Estimators (MLEs) are found using
the Minimum Variance Unbiased Estimators (MVUEs). The MLEs are then improved
by removing the bias present in them, thus getting the Improved Estimators of reliability.
Several sample failure time data have been used to obtain these estimators, namely, MLE,
MVUE and the Improved Estimators. The three estimators are then compared through the
properties satisfied by these estimators. It is found that the Improved Estimator possesses
most of the desirable properties of good estimators for all finite failures category models,
which indicates that the Improved Estimator is most efficient and accurate as compared
to MLE and MVUE. Hence, it is concluded that the software reliability can be estimated
more accurately using the Improved Estimator, for any finite failures category software
reliability model.

Keywords : Bias, Blackwellization, Coefficient of variation, Estimation, Exponential
class models, Gamma class models, Improved Estimator, Method of Maximum
Likelihood Estimation, Method of Minimum Variance Unbiased Estimation, Pareto
class models, Software reliability, Software reliability models, Weibull class models.
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Chapter 1

INTRODUCTION

With the increasing role of software in every field, concern has grown over the quality
of the software products. Any failure in the software product may not only result in
economic damage, but also loss of life. Thus, software quality is a major concern of all
software developers. The most important quality characteristic of the software product
is its reliability. Software reliability is the probability of failure free operation of a
computer program in a specified environment for a specified period of time (Trivedi
(2012)). The failures are random in nature and their behavior with time are described by
software reliability models (Musa et al. (1991)). Over 225 models have been developed
since early 1970s. Models are classified based on many attributes. Two basic types of
software reliability models are prediction models and estimation models. Prediction
models are derived from actual historical data from real software projects. These models
predict reliability at some future time. Estimation models use failure data from testing to
forecast the failure rate or Mean Time Between Failures. Depending on the types of data,
models fall into two basic classes: (i) Failures per time period (ii) Time between failures.
Models are also classified based on failure history. The different categories here are:
Time between failures model, Fault count models, Failure rate models, Baysian models
etc. Musa and Okumoto classified models in terms of 5 different attributes. They are:
1. Time domain: Wall clock versus execution time
2. Category: The total number of failures experienced by time t.
3. Class (Finite failures category only): Functional form of failure intensity expressed in
terms of time.
4. Family (Infinite failures category models): Functional form of failure intensity
function expressed in terms of the expected number of failures experienced.
Based on the number of failures, the models are classified into two major categories:
(i) Finite failures category models, where the number of failures is assumed to be finite.
(ii) Infinite failures category models, where number of failures is assumed to be infinite.
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The scope of this research is limited to finite failures category models only.
There are four general ways of characterizing failure occurences in time:
1. Time of failure
2. Time interval between failures
3. Cumulative failures experienced up to a given time
4. Failures experienced in a time interval.
Depending on the distribution of the time of failure, finite failures category models are
further classified into the following four classes of models (Musa et al. (1991)):

Exponential class models: In this class of models, the failure time T is assumed to
follow exponential distribution with parameter Φ, the failure rate. Thus, the probability
density function of T is given by
f(t) = Φe−Φt, t > 0.

Weibull class models: This class consists of models with failure time distribution as
Weibull with shape parameter β and scale parameter Φ, the failure rate. Thus, if T
denotes the failure time, then, its probability density function is given by
f(t) = Φβtβ−1e−Φtβ , t > 0.

Gamma class models: The model of Yamada, Ohba and Osaki (Yamada et al. (1983))
assumes that the time to failure T follows gamma distribution with shape parameter 2
and scale parameter Φ, the failure rate. Thus, the probability density function of T is
given by
f(t) = Φ2te−Φt, t > 0.

Pareto class models: This class of models have Pareto failure time distribution with
shape parameter α and scale parameter β, which denotes the failure rate. Thus, if T
denotes the failure time, then its probability density function is given by

f(t) =
α

β

(
1 +

t

β

)−α−1

, t > 0.

This model is due to Littlewood (Littlewood (1981)).

Each of these classes of models are again classified into different types of models,
depending upon the distribution of the number of failures. Model classification scheme
for finite failures category models, proposed by Musa and Okumoto (Musa et al. (1991))
is shown in Table 1.0.1.
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Table 1.0.1 Musa model classification scheme - finite failures category models

Class Type
Poisson Binomial Others

Exponential

Musa (1975) Jelinski-Moranda (1972) Goel-Okumoto (1978)
Moranda (1975) Shooman (1972) Musa (1979)

Schneidewind (1975) Keiller-Littlewood (1983)
Goel-Okumoto (1979)

Weibull Wagoner (1973)
Schick-Wolverton (1973)

Gamma Yamada- Ohba- Osaki (1983)
Pareto Littlewood (1981)

Eventhough the models in the finite failures category are old, many of them are still in
use and research is still going on related to these models (some of them being Turk et al.
(2016), Ledoux (2002), Ledoux (2002), Xu and Yao (2016), Nagar and Thankachan
(2012), Lavanya et al. (2017), Turk and Alsolami (2016), Kantham and Rao (2009)).
Herein, since the focus is on estimating the software reliability, which needs distribution
of time of failures, models based on other time measures are not considered. Further, the
statistical techniques used herein, require only the distribution of failure times and hence
the focus is on finite failures category, wherein, the distributions of the times of failures
are specified.

1.1 ESTIMATION

The procedure of finding the value of the unknown parameter of the given distribution by
using statistical technique, is called estimation. The value of the parameter so obtained
is called the estimator. To obtain this estimator, a sample (X1, X2, . . . , Xn) of size n is
taken from the given distribution. Any function of this sample is called a statistic. A
particular value of the estimator, obtained using the sample observations is called the
estimate.

Terminologies and Definitions:

Conditional pdf: The conditional pdf of the random variable X given the random

variable Y , denoted by f(x|y) is defined as f(x|y) =
g(x, y)

h(y)
, where g(x, y) is the joint

pdf of the random variable (X, Y ) and h(y) is the marginal pdf of the random variable
Y . If the random variables X and Y are independent, then, the joint pdf of (X, Y ) is the
product of the marginal pdfs of X and Y . i.e. g(x, y) = f(x) · h(y).

Likelihood Function: Let (X1, X2, X3,. . .Xn) be a random sample of size n from a
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population with probability density function f(x; θ) (or f(x)), where θ is the parameter.
Then, the likelihood function of this sample, denoted by L or L(θ), is given by

L =
n∏
i=1

f(xi; θ) =
n∏
i=1

f(xi).

Expectation: Let X be a continuous random variable with pdf f(x). Then, the
expectation or the expected value of X or the mean of X , denoted by E(X) (or µ)

is defined as E(X) =

∞∫
−∞

xf(x)dx.

If q(x) is any function of this random variable X , then, its expected value is defined as

E(q(X)) =

∞∫
−∞

q(x)f(x)dx.

Variance: The variance of the random variable X , denoted by V (X) (or σ2) is
a measure of the dispersion among its values from the mean and is defined as
V (X) = E(X − E(X))2 = E(X)2 − (E(X))2. The positive square root of this
variance is called the standard deviation, denoted by σ.

Conditional Expectation: Conditional expectation of the random variable X given the

random variable Y , denoted by E(X|Y ) is defined as E(X|Y ) =

∞∫
−∞

xf(x|y)dx, where

f(x|y) is the conditional pdf of X given Y .

Reliability: Let the random variable T denote the time to failure of individual faults,
with pdf f(t). Then, the reliability function of the software, denoted by R(t), is the
probability of its failure free operation upto time t and is given by R(t) = P (T > t).

Properties of Estimators:

The estimators are expected to possess the following statistical properties (Gupta and
Kapoor (1996)):

(i) Unbiasedness: An estimator θ̇, based on a sample of size n from a distribution with
parameter θ, is said to be unbiased for θ, if E(θ̇) = θ. Otherwise, the estimator is said to
be biased and its bias is given by Bias = E(θ̇)− θ.

(ii) Consistency: An estimator θ̇, based on a sample of size n from a distribution with
parameter θ, is said to be consistent for θ, if θ̇ converges in probability to θ. i.e. if
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P (| θ̇ − θ |< ε) −→ 1 as n −→,∞ for every ε > 0.

(iii) Efficiency: If θ̇1 and θ̇2 are any two estimators of a parameter θ, with variances V1

and V2 respectively, then, the efficiency of θ̇2 relative to θ̇1 is defined as Eff(θ̇2) =
V1

V2

.

Also, θ̇2 is said to be more efficient than θ̇1, if Eff(θ̇2) > 1.

(iv) Sufficiency: An estimator θ̇ is said to be a sufficient estimator for the parameter θ,
if it contains all the information in the sample regarding that parameter. i.e. an estimator
θ̇ is sufficient for θ, if the conditional distribution of the sample, given θ̇, is independent
of θ.

Factorization theorem: An estimator T (x) based on a sample of size n is sufficient for
the parameter θ, iff the likelihood function L can be expressed in the form
L = gθ(T (x)) · h(x), where gθ(T (x)) depends on θ and x only through the value of
T (x) and h(x) is independent of θ.

Complete estimator: Let θ̇ be an estimator and let T be any function of θ̇. Then, θ̇
is said to be the complete estimator, if E(T ) = 0 implies T = 0. Or in other words,
an estimator θ̇ is complete, if and only if the only unbiased estimator of zero that is a
function of θ̇ is the statistic that is identically zero with probability one. More precisely,
an estimator θ̇ that is not complete will have at least one value of the parameter, such
that the function T of θ̇ is not almost surely zero for that value and yet its expected value
is zero for all values of the parameter. Or equivalently, θ̇ is a complete estimator, if any
unbiased estimator of zero based on θ̇ is identically zero.

Complete Sufficient Estimator: A sufficient estimator which is also complete is called
the complete sufficient estimator.

Methods of Estimation:
The performance of the software can be assessed by several measures such as - the failure
rate, the failure intensity function, the Mean Time To Failure (MTTF) etc. Software
reliability is one such measure. Estimation of software reliability provides a better
knowledge of the reliability of the software. Several methods of estimation exist. Two
such important methods of estimation are - the method of maximum likelihood estimation
and the method of minimum variance unbiased estimation. The estimators obtained
using the above two methods are respectively called Maximum Likelihood Estimator
(MLE) and Minimum Variance Unbiased Estimator (MVUE).

5



Method of Maximum Likelihood Estimation (Gupta and Kapoor (1996)): Let L
denote the likelihood function of the given sample of size n from a distribution with
pdf f(x, θ). Then, the MLE of the parameter θ is that value of the parameter, which
maximizes this likelihood function L. Thus, the Maximum Lilkelihood Estimator (MLE)

of θ, denoted by θ̂ is the solution of
∂(lnL)

∂θ
= 0 with

∂2(lnL)

∂θ2
< 0 .

Method of Minimum Variance Unbiased Estimation (Gupta and Kapoor (1996)):
If a statistic M based on a sample of size n is such that M
(i) is unbiased for the parameter θ and
(ii) has the smallest variance among the class of all unbiased estimators of θ,
then, M is called the Minimum Variance Unbiased Estimator (MVUE) of θ.
More precisely, M is MVUE of θ, if
(i) E(M) = θ and (ii) V (M) ≤ V (M ′) where V denotes the variance amd M ′ is any
other unbiased estimator of θ. Such an MVUE is always unique. This MVUE can be
found using a result stated below:
If T is a complete sufficient estimator of θ and if g(T ) is a function of T , which is
unbiased for θ, then g(T ) is MVUE of θ.
As an example, let (X1, X2, X3,. . .Xn) be a random sample of size n from the Poisson
distribution P (θ). Then, the likelihood function is

L =
n∏
i=1

f(xi, θ) =
e−nθθ

n∑
i=1

xi

n∏
i=1

xi!

Thus,
n∑
i=1

xi is complete sufficient for θ. Now, consider a function of this sufficient

statistic as X̄ =

n∑
i=1

xi

n
. Then, obviously, E(X̄) =

nθ

n
= θ. Thus, X̄ is unbiased for θ.

Hence from the stated result, X̄ is the MVUE of θ.
The MVUE can also be found by finding an unbiased estimator of the parameter and
then improving upon it by defining a function of the sufficient statistic. This procedure
is called Blackwellization and is explained below:

Blackwellization (Gupta and Kapoor (1996)): Let U be an unbiased estimator of the
parameter θ and let S be the complete sufficient estimator of θ. Then, The Minimum
Variance Unbiased Estimator (MVUE) of θ, denoted by θ̃ is defined as the conditional
expectation of U given S. i.e. θ̃ = E(U |S).

Theorem 1 (Gupta and Kapoor (1996)): If T is a complete sufficient statistic for
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the parameter θ and if h(x1, x2, . . . , xn) is any unbiased estimator of r(θ), then,
E(h(x1, x2, . . . , xn)|T ) is the MVUE of r(θ).

Invariance property of MLEs (Gupta and Kapoor (1996)): If θ̂ is the MLE of θ and
if W (θ) is a one to one function of θ, then, the MLE of W (θ), denoted by Ŵ (θ) is
obtained as W (θ̂).

Comparison of estimators: When there are several estimators, the most efficient among
them is chosen by comparing the properties satisfied by these estimators (unbiasedness,
consistency, sufficiency, efficiency). An estimator that satisfies maximum number of
these properties is declared as the best estimator. It has been established that MLEs
are always consistent and sufficient, while they need not be unbiased. MVUEs are
always unbiased and sufficient, while they need not be consistent ((Gupta and Kapoor
(1996))). However, the efficiency property can be checked by using some measures
of dispersion, like variance, coefficient of variation, quartile coefficient of dispersion
etc. The estimate with least value of this measure of dispersion is considered as the
efficient estimator. Further, since the current problem under study deals with finite
failures only, the consistency property, which is an asymptotic property, is not applicable
for comparing the estimators.

Coefficient of variation: When comparison between biased and unbiased estimators
are to be done, the variances are not considered for comparison; instead, the coefficient
of variation, which considers both the mean and the standard deviation, is considered
as a measure of dispersion among the estimators to be compared. The coefficient of
variation is defined as the ratio of the standard deviation to the mean. Thus, if σ and
µ denote the standard deviation and mean of an estimator say θ̂ respectively, then, the
coefficient of variation of θ̂, denoted by CV (θ̂) is given by CV (θ̂) =

σ

µ
.

Quartile coefficient of dispersion: Another measure of comparison between the
estimators is the quartile coefficient of dispersion. It is computed using the first (Q1) and
third (Q3) quartiles for each data set. The first quartile marks where 25 percent of the
data is below or to the left of it, while the third quartile is where 75 percent of the data
lies below this point. The quartile coefficient of dispersion, denoted by QD is computed

as QD =
Q3 −Q1

Q3 +Q1

.

The desirable properties satisfied by MLE and MVUE for the current research work are
provided in Table 1.1.1.
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Table 1.1.1 Properties satisfied by MLE and MVUE

Unbiased Sufficient Efficient
MLE Not always Yes *

MVUE Yes Yes *

(*) - To be checked by comparing the measure of dispersion.

1.2 RELIABILITY ESTIMATION

Software is an essential component of all computer systems. These systems depend on
the reliable operation of the software components. Reliability is a measure of how well
the software provides the services expected by the customer.

Software Reliability Engineering process consists of the following stages:
1. Defining reliability objective: Usually, the user wants the software to sustain till some
specified time, which is set as reliability objective. Using the reliability curve obtained
by estimation, it can be checked whether the objective as set by the user is achieved or
not.
2. Modeling expected system usage: It is necessary to model how users employ the
software. i.e., the environment, type of installation etc.
3. Prepare test cases: According to usage model, test cases are selected randomly.
4. Execute test, collect failure data: Once the test cases are selected, they are executed.
The failures are detected and the data pertaining to these failures, such as the time of
failure or time between failures are obtained.
5. Perform reliability certification and monitor reliability growth: Based on the failure
data, the reliability can be estimated.

Several questions that may arise during the testing of the software can be answered
by estimating the reliability of the software. Estimation of software reliability helps
the software developers and users to have an idea of its durability in the long run.
Reliability estimates help software developers to ensure that the user requirements are
met and also to decide when to release the software. On the other hand, the reliability
estimates help the users of the software in deciding whether or not to accept the software.
Thus, there is a strong need for estimating the reliability of the software. Herein, it is
intended to obtain the estimators of software reliability using the methods of maximum
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likelihood estimation and minimum variance unbiased estimation. Since MVUE are
always unbiased, while MLEs need not be, it is intended to obtain the bias present in
MLE, if any, by using the MVUE and to improve the MLE by removing this bias. Let
this estimator be called an Improved Estimator of the reliability. It is intended to compare
the three estimators, namely, the MLE, the MVUE and the Improved Estimator of the
reliability and choose the best among them. A few software failure time data are used for
this purpose. The properties as stated in Table 1.1.1 are considered for the comparison,
for all finite failures category models, using the wide range of software failure time
data sets. It has been found that the Improved Estimator satisfies maximum number of
these desirable properties, as compared to that of MLE and MVUE for all finite failures
category models. Thus, the Improved Estimator gives more accurate value of reliability
and hence is preferred over MLE and MVUE of reliability.

Chapter two deals with literature review, outcome of literature review, scope for research,
research objectives, problem statement and methodology. Chapters three through six deal
with obtaining the MLE, the MVUE and the Improved Estimator of software reliability
for Exponential, Weibull, Gamma and Pareto class models respectively and comparing
these estimators using failure data sets and choosing the best estimator. The report
concludes with conclusion in chapter seven and scope for improvement thereby.
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Chapter 2

LITERATURE REVIEW

A lot of research has been carried out in the area of estimation of the parameters and
other measures of reliability for different software reliability models, in literature. Some
of such research work related to estimation of the parameters and other estimates of
reliability measures for different classes of finite failures models, considered in this
research work are provide below:

P. A. Keiller et. al (Keiller et al. (1983)) have proposed different ways of analyzing the
quality of software reliability predictions using software failure data sets. The work was
carried out on different models, including the Jelinski-Moranda model of exponential
class. But, the results of applying maximum likelihood estimation on this model showed
extremely poor prediction.
H. Joe and N. Reid (Joe and Reid (1985)) have formulated Jelinski-Moranda model and
Littlewood model in terms of failure times and obtained maximum likelihood estimators
of parameters of Jelinski-Moranda model. Also, an improved estimator for the initial
number of faults in the software was obtained.
Jun Hishitani et. al (Hishitani et al. (1990)) have adopted mean time between software
failures as a reliability assessment measure and proposed a method of software reliability
assessment by considering the mean time between failures for exponential and delayed
S-shaped software reliability growth models based on Non Homogeneous Poisson
Process (NHPP).
Bev Littlewood (Littlewood (1991)) mentions that there are quite stringent requirements
for the testing regime in which data is collected. Only if these requirements are satisfied,
then it is possible to obtain accurate reliability estimates.
Chris Dale (Dale (1991)) has explained actual and potential uses of statistical methods in
the assessment of software reliability. The work identifies reasons for software reliability
assessment and discusses the role of statistics.
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Raymond Jacoby and Yoshihiro Tohma (Jacoby and Tohma (1991)) have presented
the Hyper-Geometric Distribution Software Reliability Growth Model (HGDM) for
estimating of the number of software faults at the beginning of the test-and-debugging
phase. The method of least squares was used to estimate the parameters.
Hossain and Dahiya (Hossain and Dahiya (1993)) have obtained a necessary and
sufficient condition for the likelihood estimates of the parameters of Goel-Okumoto
(G-O) model to be finite, positive and unique. A modification of the G-O model was
suggested and the performance measures of the new model were discussed.
Mark and Anne (Yang and Chao (1995)) have obtained reliability estimation and
stopping rules for software testing, based on repeated appearances of bugs. The rules
worked well on Musa execution time models (which belong to the exponential class)
and Logarithmic Poisson models, which works well for small bugs, i.e, bugs with very
low occurence rates.
Singpurwalla and Soyer (Singpurwalla and Soyer (1996)) have described briefly, several
well known probability models for assessing the reliability of the software. Statistical
methods were used to estimate the parameters of the model.
Qureshi and Daniel (Quereshi and Jeske (1997)) have introduced the concept of proxy
failure times and showed how to simulate proxy failure times. Jelinski-Moranda model
was considered and a graphical diagnosis for testing goodness-of-fit was done to show
the improvement in it.
Balwant Singh et. al (Singh et al. (1997)) have estimated the software reliability using
inverse sampling and also showed how these estimates can be used to determine the
testing time and whether or not the software is acceptable.
In the thesis entitled “Accurate Software Reliability Estimation”, Jason Allen Denton
(Denton (1999)) has examined the impact of the parameter estimation technique on
model accuracy and showed that the maximum likelihood method provides better
estimates than the least squares method. The method is applicable to all types of
software reliability models.
Srinivasan et. al (Ramani et al. (2000)) have developed architecture-based approaches to
assess the reliability and performance of the systems. The work presented high-level
design of a Software Reliability Estimation and Prediction Tool (SREPT), to assist in
the evaluation of software reliability during all phases of software life-cycle.
Frank Padberg (Padberg (2001)) has presented a fast and exact algorithm to compute the
maximum likelihood estimates for the number of faults initially contained in software,
using hyper geometric software reliability model. The key idea leading to the algorithm
was to study the growth quotient of the likelihood function instead of the likelihood
function itself.
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Katerina and Trivedi (Goseva-Popstojanova and Trivedi (2001)) have developed
architecture based approach to reliability assessment of software systems. The work
also describes how it can be used to examine software behavior from beginning to
implementation stage. Different models, including the Shooman model were considered.
Frenkel et. al (Frenkel et al. (2003)) have considered a Non-Homogeneous Poisson
Process (NHPP) with intensity function λ(t) to estimate the parameters by the maximum
likelihood procedure and showed that there is one and the only one solution to the
maximum likelihood equation for the log-linear form of λ(t).
Hiroyuki et. al (Okamura et al. (2003)) have proposed an estimation method for the model
parameters of a software reliability model based on the EM (Expectation-Maximization)
principle. The method was applied to models like exponential, Rayleigh, Pareto etc.
Real time data were used to compare the method with other methods.
Guen et. al (Guen et al. (2004)) have developed a testing technique called statistical
usage testing (SUT) to estimate the reliability of the software. They have also presented
new approaches to estimate the reliability from Markov chains. The reliability estimation
has been implemented in a tool for SUT, called MaTeLo.
Kuo and Yang (Kuo and Yang (1995)) has used Baysian approach to obtain the estimate
the reliability of Jelinski-Moranda and Littlewood model. In addition, prediction of
future failure times and future reliabilities were also examined.
Hiroyuki Okamura et. al (Okamura et al. (2007)) have proposed a parameter estimation
method which combines the EM (Expectation-Maximization) algorithm and a heuristic
solution method, as an effective parameter estimation method for the generalized gamma
software reliability model.
In the research work carried out by Raj Kiran and Ravi (Kiran and Ravi (2008)), an
ensemble-based approach, viz, Back Propagation trained Neural Network (BPNN) is
proposed in predicting software reliability. Statistical techniques like multiple linear
regression were also used. Experiments were performed on software reliability data
obtained from literature.
Khalaf and Mustafa (Khalaf and Mustafa (2009)) in their work, explored a model that
can be used for software reliability prediction, using the fuzzy logic technique. Data sets
were used in predicting reliability.
RajPal and Kapil Sharma (Garg and Sharma (2010)) have presented a computational
methodology based on matrix operations for a computer based solution to the problem
of performance analysis of Software Reliability Models (SRMs). A set of seven
comparison criteria have been formulated to rank various non-homogeneous Poisson
process software reliability models proposed during the past 30 years to estimate
software reliability measures such as the number of remaining faults, software failure
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rate and software reliability.
Aasia Quyoum et. al (Quyoum et al. (2010)) have focused on using software engineering
principles in the software development and maintenance so that reliability of software
could be improved. They suggested that sufficient testing and proper maintenance could
improve software reliability to a great extent.
Krishna Mohan et. al (Mohan et al. (2010)) have used an effective sampling method
of testing to measure software reliability. They have used Black box testing to obtain
failure data and white box testing to quantify the reliability.
Sinda Rebello and Neeraj Kumar Goyal (Rebello and Goyal (2010)) have presented a
methodology for assessing the reliability and safety of a software based on extended
Failure Modes and Effects Analysis (FMEA) approach.
Sagelietti et. al (Sohnlein et al. (2010)) have assessed software reliability based on
evaluation of operational experience. The work also elaborates the possibility of
assessing software reliability at system level by the combination of component-specific
software reliability estimates.
Latha and Lilly (Shanmugam and Florence (2012)) have compared the parameter
estimation procedures of maximum likelihood estimation and least square estimation
method with other methods, viz, Expectation-Maximization principle, Genetic
Algorithm and Particle Swarm Optimization Algorithms. The parameter estimation
method based on Ant Colony Optimization algorithm was proposed to overcome the
drawbacks of all these methods.
Mandeep Kaur et. al (Kaur et al. (2013)) have discussed the role of reliability metrics in
improving the software reliability. Mean Time To Failure (MTTF) was considered as the
most commonly used reliability metric.
Chris Bambey et. al (Guure et al. (2013)) have proposed Baysian parameter and
reliability estimate of two parameter Weibull failure time distribution.
The work done by Gurpreet Kaur and Kailash Bahl (Kaur and Bahl (2014)) discusses
about software reliability, metrics and reliability improvement using Agile process.
In the thesis entitled "Reliability Estimation of Open Source Software based
Computational Systems", Shelbi Joseph (Joseph (2014)) presents a model for evaluating
the reliability of systems based on Open Source Software. The method involves in
identifying the failure data for hardware components, software components and building
a model based on it, to predict the reliability.
In their research paper, Gee Yong Park and Seung Cheol Jang (Park and Jang (2014))
have used two types of modeling schemes of software reliability growth models to
estimate and predict the number of software defects based on software failure data. The
Bayesian statistical inference is employed to estimate the model parameters.
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Taehyoun et. al (Kim et al. (2015)) have proposed an effective approach to estimate the
parameters of Software Reliability Growth Model (SRGM) using a Real-valued Genetic
Algorithm (RGA). The advantage of using this method over other methods like the
method of maximum likelihood estimation and the method of least squares is that, it is
free from constraints on the parameter estimation of SRGM. Two real-valued genetic
operators, heuristic crossover and non-uniform mutation, were applied to improve the
accuracy and performance of the parameter estimation of SRGM. Eight real world
datasets were considered for comparing the method with other methods.
Sanjay Kumar Chauhan et. al (Chauhan et al. (2016)) have used software which is a
collection of bits, to estimate software reliability in terms of time analysis. Performance
of the system was justified by analyzing bits and reliability was estimated in a better
way. Some statistical concepts were also used to examine this.
Parveen Sehgal and Meenal (Sehgal and Meenal (2016)) have used artificial intelligence
based techniques for estimating the reliability. The framework was based on the use of
artificial neural networks for estimating the software reliability based upon historical
data sets.
Subburaj Ramasamy and Indhurani Lakshmanan (Ramasamy and Lakshmanan (2017))
have used Machine Learning Approach for Software Reliability Growth Modeling
to describe software failure data. They have also compared the performance of the
proposed model with existing model using practical software failure data sets.

2.1 OUTCOME OF LITERATURE REVIEW

As the need for a reliable software grows, there is a need for having methods that
can give more accurate values of reliability. Keeping this in mind, many researchers
have come up with various ideas of measuring reliability. The assessment of reliability
measurements considers various techniques involving estimation of parameters as well
as estimating the reliability directly. Estimation of reliability is often done to ensure that
the requirements of the user are met. Reliability estimation tools have been obtained
by many researchers. Statistical techniques like Baysian approach have also been used.
It is also found that most of the other techniques involve either the method of MLE
or the method of least squares. Methods like statistical usage technique, fuzzy logic
technique, artificial intelligence techniques, neural network techniques etc have also been
used for different types of models. Confidence intervals have also been obtained for the
reliability of the given software. Many researchers have also developed different models
for estimating the software reliability. Many researchers have used different measures of
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reliability such as mean time to failure, time of next failure, mean time between failures,
failure rate, mean value function etc. Other methods like genetic algorithm, ant colony
method etc are restricted only for particular types of models and not for all finite failures
category models. Most of these deal with exponential, gamma and Weibull models. Also,
these methods do not yield the assessment of reliability and are practically not applicable
for all types of models. Thus, there is a strong need for estimating more accurate value
of reliability for any given software product.

2.2 SCOPE FOR RESEARCH

There is a need for reliable software because of many reasons. The software failure may
cause economic damage and even loss of life. As the need for reliable software grows,
there is a need to have methods that can give more accurate values of reliability. Software
developers are often concerned with the problem of when to release the software and
to decide whether or not the user requirements are met. On the other hand, the users of
the software are concerned with whether or not to accept the software. As solutions to
these problems, researchers have come up with the idea of assessing the reliability of the
software, which will help both the developers and the users of the software to answer the
above questions. There are various ways of assessing the performance of the software.
Some of such assessments are prediction and estimation of reliability, estimation of Mean
Time To Failure, failure rate, failure intensity function, mean value function etc. Lot of
work pertaining to assessment of these have been done in literature as detailed above.
Estimation of measures such as Mean Time To Failure, failure rate, failure intensity
function, mean value function etc have widely been used. Research is still going on, in
obtaining the best solution to the problems faced by developers and users of the software
in answering such questions. Another best alternative to solve this problem would be to
estimate the reliability of the software, using the minimum possible information available.
A better option in this case would be to go for some statistical methods of estimation,
which require minimum information of some probability distributions. One such piece
of information needed for estimating the reliability is the information regarding the
failure time distribution. Hence there is a scope for using the probability distribution of
failure times in estimating the reliability using statistical methods. The most commonly
used methods are the method of maximum likelihood estimation and the method of least
squares. It has been proved in literature, as mentioned above, that MLEs are preferred
over least square estimators. Reliability can also be estimated using the estimated values
of the parameters obtained using the method of MLE. However, such estimators need
some desirable properties of estimators, to be satisfied by them. It has been known that
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MLEs satisfy most of the properties of good estimators. But, most of the time, they
are biased and are not efficient. Method of Minimum Variance Unbiased Estimation
(MVUE), on the other hand always provides unbiased and sufficient estimators. Thus,
there is a scope for finding the reliability estimates using the methods of MLE and
MVUE and to improve the estimators. Since MVUE are always unbiased, the MVUEs
can be used in finding the bias, if any, present in MLE. The MLE is then improved by
removing its bias to obtain the Improved Estimator of reliability.

2.3 PROBLEM STATEMENT

The estimator of reliability is found using the methods of MLE and MVUE for all finite
failures category software reliability models. An Improved Estimator is obtained using
these two estimators and the best estimator is chosen from these three estimators, through
the properties satisfied by these estimators.

2.4 RESEARCH OBJECTIVES

The objectives of the present work are:
(i) To obtain the MLE and MVUE of R(t) for the following finite failures category
software reliability models:

(a) Exponential class models.
(b) Weibull class models.
(c) Gamma class models.
(d) Pareto class models.

(ii) To find the bias, if any, in MLEs, by using MVUE, based on given sample failure
data.
(iii) To remove this bias from MLE and obtain the Improved Estimator.
(iv) To compare the properties satisfied by the three estimators, viz, MLE, MVUE and
Improved Estimators of R(t) by using sample failure data and choose the best estimator
of reliability, based on the number of properties satisfied by them, for all finite failures
category software reliability models.

2.5 METHODOLOGY

(i) Find the expression for the reliability function R(t) for each of the finite failures
category software reliability models, using the probability density function of the failure
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time of that model.
(ii) Estimate the parameters and hence obtain MLE of reliability function R(t).
(iii) Obtain MVUE of reliability for each of the models, using the method of
Blackwellization.
(iv) Obtain the bias, if any, in MLE by using MVUE.
(v) Improve the MLE by reducing the bias and hence obtain the Improved Estimator of
reliability.
(vi) Use sample failure data and obtain the estimated values of MLE, MVUE and
Improved Estimator of R(t).
(vii) Decide on the best estimator based on the properties satisfied by them, for all finite
failures category software reliability models.
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Chapter 3

EXPONENTIAL CLASS MODELS

The software reliability models, which belong to the exponential class, have the failure
times (T ), which are assumed to have Exponential distribution with probability density
function (pdf), given by

f(t) = Φe−Φt, t > 0 (3.0.1)

where the parameter Φ denotes the failure rate.
Many models in literature belong to this class. Work on one such model viz, the
Jelinski- Moranda model, was done by P. A. Keiller et. al (Keiller et al. (1983)) about
predicting software reliability, which showed extremely poor results, by using the
method of maximum likelihood estimation. However, an effort in this area can be done
by applying this method of MLE in estimating the reliability. Further, the same method
was also used by H. Joe and N. Reid (Joe and Reid (1985)) to estimate the parameters of
Jelinski-Moranda model, which belings to the exponential class. But the estimate was
obtained by considering the time between failures distribution rather than failure time
distributions. As an alternative, failure time distributions can be used in estimating the
parameters and hence the reliability using the method of MLE.
Another exponential class model, viz., the Goel-Okumoto model was considered
by Hossain and Dahiya (Hossain and Dahiya (1993)) and the method of MLE was
considered in estimation of parameters, by using the distribution of time between failures.
Jason Allen Denton (Denton (1999)) obtained and proved that MLEs provide better
parameter estimates than least square estimates and are more accurate. The method was
applicable to all types of software reliability models. Thus, it is applicable for all the
four classes of models, considered in this research work.
However, these works focus on estimation of parameters, based on either time between
failures or number of failures and do not focus on the estimation of reliability. Estimation
of parameters may help in estimation of reliability, but limited to only MLEs, since
invariance property is applicable for MLEs only. Further, it has also been proved that
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MLEs provide better estimates than least squares.Thus, there is a strong need for looking
into other statistical techniques of estimation in reliability. A better option in this regard
would be to opt for minimum variance unbiased technique in estimation of reliability.
The following sections focus on this area:

If T has an exponential distribution with parameter Φ, it is then denoted as T ∼ E (Φ).
For this model, the reliability function at time t, denoted byR(t) (as explained in Chapter
1), is obtained as

R(t) = P (T > t) =

∞∫
t

f(t)dt =

∞∫
t

Φe−Φtdt = e−Φt (3.0.2)

Consider obtaining the estimates of this reliability using the methods of MLE and MVUE.

3.1 MLE OFR(t)

Since MLEs satisfy the invariance property, the MLE of R(t), denoted by R̂(t) is
obtained as

R̂(t) = e−Φ̂t (3.1.1)

where Φ̂ denotes the MLE of Φ.

To find the MLE of Φ: Let (T1, T2, . . . Tn) be a sample of size n from exponential
distribution with pdf as given in (3.0.1). Then, the likelihood function is given by

L =
n∏
i=1

f(ti) = Φne
−Φ

n∑
i=1

ti
(3.1.2)

Maximizing this likelihood function using the principle of differential calculus, the MLE

of Φ, denoted by Φ̂, is obtained as the solution of
∂ lnL

∂Φ
= 0, with

∂2 lnL

∂Φ2
< 0. This

gives
n

Φ
−

n∑
i=1

ti = 0, from which, the MLE of Φ is obtained as

Φ̂ =
n
n∑
i=1

ti

(3.1.3)
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Using (3.1.3) in (3.1.1), the MLE of R(t) is obtained as

R̂(t) = e

−
(

nt
n∑
i=1

ti

)
(3.1.4)

3.2 MVUE OFR(t)

To find the MVUE of R(t), it is intended to obtain the unbiased estimator of R(t) and
the complete sufficient estimator of the parameter Φ.

Unbiased Estimator of R(t): Define a function of the random variable T1 as (Sinha
and Kale (1980))

U(t1) =

1 if t1 > t

0 otherwise

Then, E[U(t1)] = 1.P (T1 > t) + 0.P (T1 ≤ t) = P (T1 > t) = R(t).
Hence, U(t1) is unbiased for R(t).

Complete Sufficient Estimator of Φ: Applying the factorization theorem (as explained
in Chapter 1) to the likelihood function given in (3.1.2), it can be seen that the likelihood

function depends on Φ and ti, only through the value of
n∑
i=1

ti. Thus,
n∑
i=1

ti is the

sufficient estimator of the parameter Φ.

Since each Ti ∼ E (Φ),
n∑
i=1

Ti ∼ G(n,Φ) (Section 1 of Appendix A). Further, by Result

3 of Appendix A, the estimator
n∑
i=1

ti is also the complete statistic of Φ and hence,
n∑
i=1

ti

is the complete sufficient estimator of Φ.
Further, U(t1) is an unbiased estimator of R(t) and R(t) is a function of Φ, as given in
(3.0.2). Hence, by Theorem 1 of Chapter 1, the MVUE of R(t) is obtained as

R̃(t) = E(U(t1)|
n∑
i=1

ti) =

∞∫
t

f(t1|
n∑
i=1

ti)dt1 (3.2.1)

where f(t1|
n∑
i=1

ti) denotes the conditional pdf of T1 given
n∑
i=1

Ti and is given by

f(t1|
n∑
i=1

ti) =

g(t1,
n∑
i=1

ti)

h(
n∑
i=1

ti)
, where g(t1,

n∑
i=1

ti) denotes the joint pdf of (T1 ,
n∑
i=1

Ti)
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and h(
n∑
i=1

ti) denotes the marginal pdf of
n∑
i=1

Ti.

Thus, the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

g(t1,
n∑
i=1

ti)

h(
n∑
i=1

ti)
dt1 (3.2.2)

Since each Ti ∼ E (Φ),
n∑
i=1

Ti ∼ G(n,Φ) (Section 1 of Appendix A). Hence, the pdf of

n∑
i=1

Ti is given by

h(
n∑
i=1

ti) =
Φn

Γ(n)
e
−Φ

n∑
i=1

ti
(
n∑
i=1

ti)
n−1 (3.2.3)

To find the pdf g(t1,
n∑
i=1

ti), split the sample (T1, T2, T3, . . . Tn) into two samples as - T1

of size one and (T2, T3, T4, . . . Tn) of size (n− 1).

Since T1 and
n∑
i=2

Ti are independent, the joint pdf of T1 and
n∑
i=2

Ti is obtained as

g(t1,
n∑
i=2

ti) = f(t1) · h(
n∑
i=2

ti) (3.2.4)

where f(t1) and h(
n∑
i=2

ti) denote the pdfs of T1 and
n∑
i=2

Ti respectively.

Since T1 ∼ E (Φ), the pdf of T1 is given by f(t1) = Φe−Φt1 .

Also,
n∑
i=2

Ti ∼ G(n− 1,Φ) and hence its pdf is given by

h(
n∑
i=2

ti) =
Φn−1

Γ(n− 1)
e
−Φ

n∑
i=2

ti
(
n∑
i=2

ti)
n−2.

Hence, from (3.2.4), the joint pdf of T1 and
n∑
i=2

Ti is obtained as

g(t1,
n∑
i=2

ti) = Φe−Φt1
Φn−1

Γ(n− 1)
e
−Φ

n∑
i=2

ti
(
n∑
i=2

ti)
n−2 =

e
−Φ[t1+

n∑
i=2

ti]
Φn

Γ(n− 1)
(
n∑
i=2

ti)
n−2.

Hence, g(t1,
n∑
i=2

ti) =
e
−Φ

n∑
i=1

ti
Φn

Γ(n− 1)
(
n∑
i=2

ti)
n−2.
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Considering the transformation
n∑
i=1

Ti = T1 +
n∑
i=2

Ti and noting that the absolute value

of the Jacobian of the inverse transformation is one (Appendix B), the joint pdf of (T1 ,
n∑
i=1

Ti) is obtained as

g(t1,
n∑
i=1

ti) =
e
−Φ

n∑
i=1

ti

Γ(n− 1)
Φn(

n∑
i=1

ti − t1)n−2 (3.2.5)

Substituting (3.2.3) and (3.2.5) in (3.2.2), the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

Φn

Γ(n−1)
e
−Φ

n∑
i=1

ti
(
n∑
i=1

ti − t1)n−2

Φn

Γ(n)
e
−Φ

n∑
i=1

ti
(
n∑
i=1

ti)n−1

dt1

This reduces to

R̃(t) =

∞∫
t

Γ(n)

Γ(n− 1)

( n∑
i=1

ti − t1
n∑
i=1

ti

)n−2
1
n∑
i=1

ti

dt1

i.e., R̃(t) =

∞∫
t

(n− 1)Γ(n− 1)

Γ(n− 1)

( n∑
i=1

ti − t1
n∑
i=1

ti

)n−2
1
n∑
i=1

ti

dt1

i.e., R̃(t) =

∞∫
t

(n− 1)
n∑
i=1

ti

(
1− t1

n∑
i=1

ti

)n−2

dt1

Noting that this integral converges if t1 <
n∑
i=1

ti, the MVUE of reliability is obtained as

R̃(t) =

n∑
i=1

ti∫
t

(n− 1)
n∑
i=1

ti

(
1− t1

n∑
i=1

ti

)n−2

dt1,
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The term inside the integral is the conditional pdf of t1 given that
n∑
i=1

ti has occurred, as

given in (3.2.1). Thus, for a given
n∑
i=1

ti, the integral depends only on t1. Hence, taking

n∑
i=1

ti = s, the integral reduces to

R̃(t) =

s∫
t

(n− 1)

s

(
1− t1

s

)n−2

dt1 =

(
−
(

1− t1
s

)n−1
)∣∣∣∣∣

s

t

=

(
0 + (1− t

s
)n−1

)

Replacing s by
n∑
i=1

ti, the MVUE of reliability is obtained as

R̃(t) =



(
1− t

n∑
i=1

ti

)n−1

if t <
n∑
i=1

ti

0 otherwise

(3.2.6)

Here, t is any time instance and
n∑
i=1

ti is the sum of such time instances. Hence, if we

have a sample failure data of n time instances, say (t1, t2, . . . , tn), then t (or ti) is a
member of the set (t1, t2, . . . , tn).

3.3 IMPROVED ESTIMATOR OFR(t)

The true reliability function of exponential models is given by

R(t) = e−Φt = 1− Φt+
(Φt)2

2!
− (Φt)3

3!
+ . . . (3.3.1)

R̂(t) and R̃(t) are unbiased for R(t), if (i) E(R̂(t)) = R(t) and (ii) E(R̃(t)) = R(t)

respectively.

To check whether R̂(t) is unbiased for R(t) or not, consider E(R̂(t)) = E
(
e

−{ nt
n∑
i=1

ti

})
.

Taking Y =
n∑
i=1

ti, we have, E(R̂(t)) = E
(
e−{

nt
Y
}
)

.

Since Y ∼ G(n,Φ) (Section 1 of Appendix A), it can be observed that,
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E
( 1

Y

)
=

∞∫
0

1

y

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−2dy

=
Φn

Γ(n)

Γ(n− 1)

Φn−1
(Result 4 of Appendix A)

=
ΦΓ(n− 1)

(n− 1)Γ(n− 1)
=

Φ

n− 1
.

Similarly, E
( 1

Y 2

)
=

∞∫
0

1

y2

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−3dy

=
Φn

Γ(n)

Γ(n− 2)

Φn−2
(Result 4 of Appendix A)

=
Φ2Γ(n− 2)

(n− 1)(n− 2)Γ(n− 2)
=

Φ2

(n− 1)(n− 2)
.

E
( 1

Y 3

)
=

∞∫
0

1

y3

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−4dy

=
Φn

Γ(n)

Γ(n− 3)

Φn−3
(Result 4 of Appendix A)

=
Φ3Γ(n− 3)

(n− 1)(n− 2)(n− 3)Γ(n− 3)

=
Φ3

(n− 1)(n− 2)(n− 3)
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and so on.

Thus, E(R̂(t)) = E
(

1− nt

1!Y
+

(nt)2

2!Y 2
− (nt)3

3!Y 3
+ . . .

)
= 1− nt

1!
E(

1

Y
) +

(nt)2

2!
E(

1

Y 2
)− (nt)3

3!
E(

1

Y 3
) + . . .

= 1− Φt

1!

n

(n− 1)
+

(Φt)2

2!

n2

(n− 1)(n− 2)

− (Φt)3

3!

n3

(n− 1)(n− 2)(n− 3)
+ . . .

6= R(t) (as given in 3.3.1)

Hence, R̂(t) is not unbiased for R(t).

To verify that R̃(t) is unbiased for R(t), consider E(R̃(t)) = E

(
1− t

n∑
i=1

ti

)n−1

.

Since Y =
n∑
i=1

ti, we have,

E(R̃(t)) = E

(
1− t

Y

)n−1

= E
(

1− (n− 1)t

Y
+

(n− 1)(n− 2)

2!

t2

Y 2

− (n− 1)(n− 2)(n− 3)

3!

t3

Y 3
+ . . .

)
= 1− (n− 1)tE(

1

Y
) +

(n− 1)(n− 2)t2

2!
E(

1

Y 2
)

− (n− 1)(n− 2)(n− 3)t3

3!
E(

1

Y 3
) + . . .

= 1− (n− 1)t
Φ

n− 1
+

(n− 1)(n− 2)t2

2!

Φ2

(n− 1)(n− 2)

− (n− 1)(n− 2)(n− 3)t3

3!

Φ3

(n− 1)(n− 2)(n− 3)
+ . . .

= 1− Φt+
(Φt)2

2!
− (Φt)3

3!
+ . . .

= R(t)

Thus, R̃(t) is unbiased for R(t).

Since R̂(t) is biased for R(t) and R̃(t) is unbiased for R(t), the bias in R̂(t) is obtained
as
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Bias(R̂(t)) = E(R̂(t))− e−Φt = E(R̂(t))− E(R̃(t)) (3.3.2)

Hence, Bias (R̂(t)) = − Φt

(n− 1)
+

(Φt)2

2!

(3n− 2)

(n− 1)(n− 2)

− (Φt)3

3!

(6n2 − 11n+ 6)

(n− 1)(n− 2)(n− 3)
+ . . .

(3.3.3)
Thus, the above bias in R̂(t) can be found for the given sample failure data, by using the
estimated values of R̂(t) and R̃(t).
Hence, if T = {t1, t2, . . . tn} is the given sample failure data set of size n, then the bias
is obtained by taking the difference in the means of R̂(t) and R̃(t) and is obtained as

Bias(R̂(t)) =

∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n
(3.3.4)

Removing this bias from R̂(t), the Improved Estimator of R(t) denoted by R̆(t), is

obtained as R̆(t) = R̂(t)− Bias(R̂(t)) = R̂(t)−

(∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n

)
.

i.e. R̆(t) = e

−
(

nt
n∑
i=1

ti

)
−

(∑
tεT

e

−
(

nt
n∑
i=1

ti

)
n

−

∑
tεT

(
1− t

n∑
i=1

ti

)n−1

n

)
(3.3.5)

In all the above calculations, t is any time instance. For a sample failure time data set T ,
as given above, t is a member of T .

3.4 COMPARISON OF ESTIMATES

The three estimators of reliability are to be compared by comparing the properties
satisfied by them. The Improved Estimator of R(t) is unbiased and sufficient, as it is
obtained from MLE of R(t), by removing the bias present in it. The only property
to be checked thus, is the efficiency property. Since MLE of R(t) is biased as shown
above, while MVUE of R(t) and Improved Estimator of R(t) are unbiased, coefficient
of variation is used as a measure of dispersion instead of the variance, as mentioned in
Section 1.1 of Chapter 1. The estimate with the least value of the coefficient of variation
is considered as the efficient estimator. The comparison is also done by considering the
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quartile coefficient of dispersion, as mentioned in Section 1.1 of Chapter 1. Even with
this measure, the estimate with the least value of the quartile coefficient of dispersion is
considered as the efficient estimator. For this purpose, the following case studies have
been considered and the three estimates have been found. The coefficients of variation
and the quartile coefficient of dispersion for these three estimates have also been obtained.
For all the case studies, CV(R̂(t)), CV(R̃(t)) and CV(R̆(t)) are respectively obtained
using

CV(R̂(t)) =
SR̂(t)

R̂(t)
(3.4.1)

CV(R̃(t)) =
SR̃(t)

R̃(t)
(3.4.2)

CV(R̆(t)) =
SR̆(t)

R̆(t)
(3.4.3)

Here, the sample variances S2
R̂(t)

, S2
R̃(t)

and S2
R̆(t)

are respectively obtained using

S2
R̂(t)

=
∑
tεT

(
R̂(t)− R̂(t)

)2

(n− 1)
(3.4.4)

S2
R̃(t)

=
∑
tεT

(
R̃(t)− R̃(t)

)2

(n− 1)
(3.4.5)

S2
R̆(t)

=
∑
tεT

(
R̆(t)− R̆(t)

)2

(n− 1)
(3.4.6)

Further, the sample means R̂(t), R̃(t), and R̆(t) are respectively obtained using

R̂(t) =

∑
tεT

R̂(t)

n
(3.4.7)

R̃(t) =

∑
tεT

R̃(t)

n
(3.4.8)

R̆(t) =

∑
tεT

R̆(t)

n
(3.4.9)
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The above equations are used in calculations pertaining to all the four classes of models.

The failure data are obtained using different methods in literature. Qureshi and
Daniel (Quereshi and Jeske (1997)) used proxy failure times, by simulating them.
Jelinski-Morand model of exponential class was considered and goodness of fit was
done. Herein, instead of such proxy failure data, some past bench mark data obtained
during testing have been used for comparison.

Case study 1: On-Line Data Entry IBM Software Package
The data reported by Ohba (Ohba (1984)) are recorded from testing an on-line data entry
software package developed at IBM. There are 15 failures, with failure times as indicated
in Table 3.4.1.

Table 3.4.1 On-Line Data Entry IBM Software Package

Failure Number 1 2 3 4 5 6 7 8 9 10
Failure Time 10 19 32 43 58 70 88 103 125 150

Failure Number 11 12 13 14 15
Failure Time 169 199 231 256 296

Table 3.4.2 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in
Table 3.4.2 in equations (3.4.4) to (3.4.9), we get,
R̂(t) = 0.456803 ; S2

R̂(t)
= 0.0756 ; R̃(t) = 0.465465; S2

R̃(t)
= 0.0775;

R̆(t) = 0.465463; S2
R̆(t)

= 0.0755.
Hence, using (3.3.2), the bias in R̂(t) is obtained as
Bias(R̂(t)) = E(R̂(t))−E(R̃(t)) = R̂(t)−R̃(t) = 0.456803−0.465465 = −0.00866.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.00866) = R̂(t) + 0.00866.
Thus, using equations (3.4.1) to (3.4.3), the coefficient of variation of the three estimators
are respectively obtained as,
CV(R̂(t))=0.6017, CV(R̃(t))=0.5981 and CV(R̆(t))=0.5905.
It is observed that the Improved Estimator R̆(t) has the least value of the coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.1990
and Q3=0.7055. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as

28



Table 3.4.2 R̂(t), R̃(t) and R̆(t) for Exponential Model (Case Study 1)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 10 0.92207 0.92688 0.93073 0.21648 0.21291 0.21648
2 19 0.85715 0.86536 0.86581 0.16028 0.15991 0.16028
3 32 0.77136 0.78316 0.78002 0.09894 0.10093 0.09894
4 43 0.70550 0.71933 0.71416 0.06185 0.06444 0.06185
5 58 0.62467 0.64006 0.63333 0.02818 0.03048 0.02818
6 70 0.56672 0.58256 0.57538 0.01208 0.01371 0.01208
7 88 0.48973 0.50525 0.49839 0.00108 0.00158 0.00108
8 103 0.43361 0.44823 0.44227 0.00053 0.00029 0.00053
9 125 0.36274 0.37532 0.37140 0.00884 0.00812 0.00884
10 150 0.29615 0.30590 0.30481 0.02580 0.02545 0.02580
11 169 0.25385 0.26134 0.26251 0.04119 0.04166 0.04119
12 199 0.19901 0.20307 0.20767 0.06645 0.06884 0.06645
13 231 0.15351 0.15437 0.16217 0.09198 0.09677 0.09198
14 256 0.12533 0.12413 0.13399 0.10987 0.11650 0.10987
15 296 0.09060 0.08695 0.09926 0.13410 0.14327 0.13410

QD(R̂(t))=0.5600. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2030 and Q3=0.7193. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.5598. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2077 and Q3=0.7142. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.5494.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 3.4.1.
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Figure 3.4.1 Curves of R̂(t), R̃(t) and R̆(t) for Exponential Model (Case Study 1)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for
most of the time instances.

Case study 2: Nuclear Power Agency
A nuclear power agency uses a computer-based monitoring system for its reactors. The
operating system for the computer is employed for this and other applications in an
estimated 5000 installations throughout the world. A total of 17 failures that occurred
with failure times are listed in Table 3.4.3 (Musa et al. (1991)).
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Table 3.4.3 Nuclear Power Agency

Failure number 1 2 3 4 5 6
Failure time 932 4035 4696 4893 6369 6524

Failure number 7 8 9 10 11 12
Failure time 7882 8170 9339 10400 10542 11036

Failure number 13 14 15 16 17
Failure time 11696 11905 12266 12954 14000

Table 3.4.4 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) respectively denote the squares of deviations of
R̂(t), R̃(t) and R̆(t) from their corresponding means.

Table 3.4.4 R̂(t), R̃(t) and R̆(t) for Exponential Model (Case study 2)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 932 0.89824 0.90364 0.90774 0.24666 0.24260 0.24666
2 4035 0.62837 0.64186 0.63787 0.05143 0.05325 0.05143
3 4696 0.58232 0.59619 0.59182 0.03266 0.03426 0.03266
4 4893 0.56926 0.58318 0.57876 0.02811 0.02961 0.02811
5 6369 0.48029 0.49383 0.48979 0.00619 0.00684 0.00619
6 6524 0.47179 0.48523 0.48129 0.00492 0.00549 0.00492
7 7882 0.40350 0.41568 0.41300 0.00000 0.00002 0.00000
8 8170 0.39033 0.40218 0.39983 0.00012 0.00007 0.00012
9 9339 0.34117 0.35150 0.35067 0.00364 0.00354 0.00364
10 10400 0.30194 0.31075 0.31144 0.00992 0.01006 0.00992
11 10542 0.29704 0.30565 0.30654 0.01092 0.01111 0.01092
12 11036 0.28062 0.28850 0.29012 0.01463 0.01502 0.01463
13 11696 0.26008 0.26698 0.26958 0.02002 0.02076 0.02002
14 11905 0.25390 0.26049 0.26340 0.02181 0.02267 0.02181
15 12266 0.24356 0.24962 0.25306 0.02497 0.02606 0.02497
16 12954 0.22501 0.23008 0.23451 0.03117 0.03276 0.03117
17 14000 0.19948 0.20310 0.20898 0.04084 0.04325 0.04084

Using the values of Table 3.4.4 in equations (3.4.4) to (3.4.9), we get,
R̂(t) = 0.401586 ; S2

R̂(t)
= 0.0343; R̃(t) = 0.411091 ; S2

R̃(t)
= 0.0348;

R̆(t) = 0.411087 ; S2
R̆(t)

= 0.0343.
Also, using (3.3.2), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.401586− 0.411091 = −0.0095.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.0095) = R̂(t) + 0.0095.
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Thus, using equations (3.4.1) to (3.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.4609, CV(R̃(t))=0.4538 and CV(R̆(t))=0.4503.
It can be observed that the Improved Estimator R̆(t) has the least value of the coefficient
of variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2570
and Q3=0.5248. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.3425. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2637 and Q3=0.5385. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.3426. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2665 and Q3=0.5343. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.3344.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 3.4.2.
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Figure 3.4.2 Curves of R̂(t), R̃(t) and R̆(t) for Exponential Model (Case study 2)
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From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 3: Failure data set of Lyu
The failure time data for 10 failures obtained by Lyu (Lyu (2004)) are given in Table
3.4.5.

Table 3.4.5 Failure data set of Lyu

Failure number 1 2 3 4 5 6 7 8 9 10
Failure time 7 18 26 36 51 73 93 118 146 181

Table 3.4.6 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively.

Table 3.4.6 R̂(t), R̃(t) and R̆(t) for Exponential Model (Case study 3)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 7 0.91189 0.91999 0.92359 0.06800 0.06327 0.20022
2 18 0.78886 0.80572 0.79919 0.01897 0.01884 0.10436
3 26 0.70995 0.73073 0.71953 0.0034 0.00387 0.05924
4 36 0.62231 0.64575 0.63120 0.0008 0.00051 0.02404
5 51 0.51071 0.53471 0.51897 0.01971 0.01788 0.00183
6 73 0.38220 0.40247 0.39015 0.07231 0.07074 0.00739
7 93 0.29367 0.30838 0.30172 0.12776 0.12965 0.03041
8 118 0.21125 0.21854 0.21973 0.1934 0.20241 0.06574
9 146 0.14608 0.14620 0.15519 0.25505 0.27274 0.10300
10 181 0.09211 0.08613 0.10204 0.31247 0.33910 0.13994

Using the data obtained in Table 3.4.6 in equations (3.4.4) to (3.4.9), we get,
R̂(t) = 0.463317 ; S2

R̂(t)
= 0.0818; R̃(t) = 0.476136 ; S2

R̃(t)
= 0.0853;
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R̆(t) = 0.476137 ; S2
R̆(t)

= 0.0818.
Using (3.3.2), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.463317− 0.476136 = −0.01282.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.01282) = R̂(t) + 0.01282.

Thus, using equations (3.4.1) to (3.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.6173, CV(R̃(t))=0.6134 and CV(R̆(t))=0.6007.
It can be observed that the Improved Estimator R̆(t) has less value of coefficient of
variation than those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.21125
and Q3=0.70995. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.5414. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.21854 and Q3=0.73073. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.5400. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.21973 and Q3=0.71953. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.5321.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 3.4.3.
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Figure 3.4.3 Curves of R̂(t), R̃(t) and R̆(t) for Exponential Model (Case study 3)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Table 3.4.7 shows the consolidated values of the coefficients of variation (CV) of R̂(t),
R̃(t) and R̆(t) for all the three case studies.

Table 3.4.7 Exponential Models (Consolidated1)

Case study CV(R̂(t)) CV(R̃(t)) CV(R̆(t))
1 0.6017 0.5981 0.5905
2 0.4609 0.4538 0.4503
3 0.6173 0.6134 0.6007
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Table 3.4.8 shows the consolidated values of the quartile coefficient of dispersions (QD)
of R̂(t), R̃(t) and R̆(t) for all the three case studies.

Table 3.4.8 Exponential Models (Consolidated2)

Case study QD(R̂(t)) QD(R̃(t)) QD(R̆(t))
1 0.5600 0.5598 0.5494
2 0.3425 0.3426 0.3344
3 0.5414 0.5400 0.5321

From Tables 3.4.7 and 3.4.8, it is observed that, the Improved Estimator (R̆(t)) has the
least values of the coefficient of variation and quartile coefficient of dispersion than those
of MLE (R̂(t)) and MVUE (R̃(t)) in all the three case studies, which means that R̆(t) is
more efficient than R̂(t) and R̃(t).
However, to choose the best estimator among the three estimates, the desirable properties
of good estimators as mentioned in Section 1.1 of Chapter 1 are to be considered.
Unbiasedness of R̆(t): It has been shown above that R̂(t) is biased for R(t), while R̃(t)

is unbiased for R(t). Since the Improved Estimators are obtained from MLEs just by
removing the bias present in the MLEs, they satisfy the unbiasedness property. Thus,
R̆(t) is unbiased for R(t).
Sufficiency of R̆(t): Improved Estimator is a function of MLE, which is sufficient. Since
any function of sufficient estimator is also sufficient, Improved Estimator is sufficient.
Now, to compare the biased estimator R̂(t) with unbiased estimators R̃(t) and R̆(t),
the coefficient of variation and the quartile coefficient of dispersion are considered
as measures of dispersion to check the efficiency property. The sample results of
comparison of coefficients of variation and the quartile coefficients of dispersion for
the three estimators indicate that Improved Estimator has least values of coefficient of
variation and the quartile coefficient of dispersion as compared to those of MLE and
MVUE of R(t), which indicates that the Improved estimators are efficient compared to
MLE and MVUE.
Thus, by referring to Table 1.1.1 of Chapter 1, Table 3.4.9 provides the statistical
properties satisfied by MLE, MVUE and the Improved Estimator of reliability for
exponential class models.
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Table 3.4.9 Exponential class models- Properties satisfied by estimators of reliability

Unbiased Sufficient Efficient
MLE No Yes No

MVUE Yes Yes No
Improved Estimator Yes Yes Yes

It can be seen from Table 3.4.9 that the Improved Estimator satisfies maximum number
of properties of estimators as compared to MLE and MVUE of R(t). Hence, it can be
inferred that the estimate of reliability obtained using the Improved Estimator, is more
efficient than those estimated using the methods of MLE and MVUE.
Hence, it is concluded that R̆(t) gives more accurate value of reliability than R̂(t) and
R̃(t), for exponential class software reliability models.
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Chapter 4

WEIBULL CLASS MODELS

In this class of models, the failure times (T ) are assumed to have Weibull distribution
with probability density function, given by

f(t) = Φβtβ−1e−Φtβ , t > 0 (4.0.1)

where β denotes the shape parameter and the scale parameter Φ denotes the failure rate.
Among works on estimation of parameters and reliability, the one by Chris Bambey
et. al (Guure et al. (2013)) focussed on Baysian parameter estimation technique. The
estimation technique was applied to two parameter Weibull failure time distribution.
However, its superiority over other methods has not been carried out. With the use of
computer algorithms and developments of computer based techniques, the estimation of
software reliability has attracted the attention of computer scientists too. In this direction,
Parveen Sehgal and Meenal (Sehgal and Meenal (2016)) used artificial intelligence
techniques in estimating the reliability. The software reliability was estimated based
on historical data sets. Eventhough no specific model was considered, it was intended
to apply the method for all types and classes of software reliability models and so also
the Weibull model. Algorithms like genetic algorithms were also used by Taehyoun et.
al (Kim et al. (2015)) to estimate the reliability of any model and so also the Weibull
model. However, it is not very feasible to compare these algorithms with other methods
because of the complexity involved in obtaining their time complexity. Hence, the role of
statistics still plays a major part of estimation procedures, as they also enable to compare
various techniques using statistical testing procedures. Thus, it is intended to apply
the methods of MLE and MVUE in the reliability estimation procedure of this class of
models.
If T has Weibull distribution with parameters Φ and β, it is denoted as T ∼ W (Φ, β).
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The reliability function at time t, denoted byR(t), is obtained as

R(t) = P (T > t) =

∞∫
t

f(t)dt =

∞∫
t

Φβtβ−1e−Φtβdt = e−Φtβ (4.0.2)

Schick and Wolverton obtained a Weibull model, where the value of the shape parameter
β is found to be 2 (Schick and Wolverton (1973)). Thus, β is assumed to be 2 here.

4.1 MLE OFR(t)

Since MLEs satisfy the invariance property (as explained in Chapter 1), the MLE of
R(t), denoted by R̂(t) is obtained as

R̂(t) = e−Φ̂tβ (4.1.1)

where Φ̂ is the MLE of Φ.

To find the MLE of Φ: Let (T1, T2, . . . Tn) be a sample of size n from Weibull
distribution as given in (4.0.1). Then, the likelihood function of this sample is given by

L =
n∏
i=1

f(ti) = Φnβne
−Φ

n∑
i=1

tβi
n∏
i=1

tβ−1
i (4.1.2)

Maximizing L using the concept of differential calculus, the MLE of Φ, denoted by Φ̂,

is obtained as the solution of
∂ lnL

∂Φ
= 0, with

∂2 lnL

∂Φ2
< 0. This gives

n

Φ
−

n∑
i=1

tβi = 0,

from which, the MLE of Φ is obtained as

Φ̂ =
n
n∑
i=1

tβi

(4.1.3)

Using (4.1.3) in (4.1.1), the MLE of R(t) is obtained as

R̂(t) = e

−
(

ntβ

n∑
i=1

t
β
i

)
(4.1.4)
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4.2 MVUE OFR(t)

To find the MVUE of R(t), it is intended to obtain the unbiased estimator of R(t) and
the complete sufficient estimator of the parameter Φ.

Unbiased Estimator ofR(t): Define a function of the random variable T1 as

U(t1) =

1 if t1 > t

0 otherwise

Then, E[U(t1)] = 1.P (T1 > t) + 0.P (T1 ≤ t) = P (T1 > t) = R(t).
Therefore, U(t1) is unbiased for R(t).

Complete Sufficient Estimator of Φ: Applying the factorization theorem (as explained
in Chapter 1) to the likelihood function given in (4.1.2), it can be seen that the likelihood

function depends on Φ and ti, only through the value of
n∑
i=1

tβi . Thus,
n∑
i=1

tβi is the

sufficient estimator of the parameter Φ.
Since each Ti ∼ W (Φ, β, ), each T βi ∼ E (Φ) (Section 2 of Appendix A). Hence,
n∑
i=1

T βi ∼ G(n,Φ) (Section 1 of Appendix A). Further, by Result 3 of Appendix A, this

estimator
n∑
i=1

tβi is also the complete statistic of Φ and hence,
n∑
i=1

tβi is the complete

sufficient estimator of Φ.
Further, U(t1) is an unbiased estimator of R(t) and R(t) is a function of Φ, as given in
(4.0.2). Hence, by Theorem 1 of Chapter 1, the MVUE of R(t) is obtained as

R̃(t) = E(U(t1)|
n∑
i=1

tβi ) =

∞∫
t

f(t1|
n∑
i=1

tβi )dt1 (4.2.1)

where f(t1|
n∑
i=1

tβi ) denotes the conditional pdf of T1 given
n∑
i=1

T βi and is given by

f(t1|
n∑
i=1

tβi ) =

g(t1,
n∑
i=1

tβi )

h(
n∑
i=1

tβi )
, where g(t1,

n∑
i=1

tβi ) denotes the joint pdf of T1 and
n∑
i=1

T βi

and h(
n∑
i=1

tβi ) denotes the marginal pdf of
n∑
i=1

T βi .
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Hence, the MVUE of R(t) is given by

R̃(t) =

∞∫
t

g(t1,
n∑
i=1

tβi )

h(
n∑
i=1

tβi )
dt1 (4.2.2)

Since each Ti ∼ W (Φ, β, ), each T βi ∼ E (Φ) (Section 2 of Appendix A). Hence,
n∑
i=1

T βi ∼ G(n,Φ) (Section 1 of Appendix A).

Therefore, the pdf of this random variable is given by

h(
n∑
i=1

tβi ) =
Φn

Γ(n)
e
−Φ

n∑
i=1

tβi
(
n∑
i=1

tβi )n−1 (4.2.3)

To find the probability function g(t1,
n∑
i=1

tβi ), split the sample (T1, T2, T3, . . . Tn) into

two samples as T1 of size one and (T2, T3, T4, . . . Tn) of size (n− 1).

Since T1 and
n∑
i=2

T βi are independent, the joint pdf of T1 and
n∑
i=2

T βi is obtained as

g(t1,
n∑
i=2

tβi ) = f(t1) · h(
n∑
i=2

tβi ),

where f(t1) and h(
n∑
i=2

tβi ) denote the pdfs of T1 and
n∑
i=2

T βi respectively.

Since T1 ∼ W (Φ, β), the pdf of T1 is given by f(t1) = Φβtβ−1
1 e−Φtβ1 .

Also,
n∑
i=2

T βi ∼ G(n− 1,Φ) and hence its pdf is given by

h(
n∑
i=2

tβi ) =
Φn−1

Γ(n− 1)
e
−Φ

n∑
i=2

tβi
(
n∑
i=2

tβi )n−2.

Hence, the joint pdf of T1 and
n∑
i=2

Ti is obtained as

g(t1,
n∑
i=2

tβi ) = f(t1) · h(
n∑
i=2

tβi ) = Φβtβ−1
1 e−Φtβ1

Φn−1

Γ(n− 1)
e
−Φ

n∑
i=2

tβi
(
n∑
i=2

tβi )n−2,

which simplifies to g(t1,
n∑
i=2

tβi ) =
Φne

−Φ
n∑
i=1

tβi

Γ(n− 1)

( n∑
i=2

tβi

)n−2

βtβ−1
1 .

Considering the transformation
n∑
i=1

T βi = T β1 +
n∑
i=2

T βi and noting that the modulus
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of the Jacobian of the inverse transformation is one(Appendix B), the joint probability

density function of T1 and
n∑
i=1

T βi is obtained as

g(t1,
n∑
i=1

tβi ) =
Φne

−Φ
n∑
i=1

tβi

Γ(n− 1)

(
n∑
i=1

tβi − t
β
1

)n−2

βtβ−1
1 (4.2.4)

Substituting (4.2.3) and (4.2.4) in (4.2.2), the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

Φn

Γ(n−1)
e
−Φ

n∑
i=1

tβi
(
n∑
i=1

tβi − t
β
1 )n−2

Φn

Γ(n)
e
−Φ

n∑
i=1

tβi
(
n∑
i=1

tβi )n−1

βtβ−1
1 dt1

This reduces to

R̃(t) =

∞∫
t

Γ(n)

Γ(n− 1)

1

(
n∑
i=1

tβi )n−1

( n∑
i=1

tβi − t
β
1

)n−2

βtβ−1
1 dt1,

i.e., R̃(t) =

∞∫
t

(n− 1)

(
n∑
i=1

tβi )n−1

( n∑
i=1

tβi − t
β
1

)n−2

βtβ−1
1 dt1,

i.e., R̃(t) =

∞∫
t

β(n− 1)tβ−1
1

n∑
i=1

tβi

( n∑
i=1

tβi − t
β
1

n∑
i=1

tβi

)n−2

dt1

i.e., R̃(t) =

∞∫
t

β(n− 1)
n∑
i=1

tβi

(
1− tβ1

n∑
i=1

tβi

)n−2

tβ−1
1 dt1

This integral converges if tβ1 <
n∑
i=1

tβi . i.e., if t1 <
( n∑

i=1

tβi

) 1
β

.

Thus, the MVUE of reliability is obtained as

R̃(t) =

( n∑
i=1

tβi

) 1
β∫

t

β(n− 1)
n∑
i=1

tβi

(
1− tβ1

n∑
i=1

tβi

)n−2

tβ−1
1 dt1
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The term inside the integral is the conditional pdf of t1 given that
n∑
i=1

tβi has occurred, as

given in (4.2.1). Thus, for a given
n∑
i=1

tβi , the integral depends only on tβ1 . Hence, taking

n∑
i=1

tβi = p, the integral becomes

R̃(t) =

p
1
β∫

t

β(n− 1)

p

(
1− tβ1

p

)n−2

tβ−1
1 dt1 =

(
−
(

1− tβ1
p

)n−1
)∣∣∣∣∣

p
1
β

t

i.e., R̃(t) =

(
0 + (1− tβ

p
)n−1

)
=

(
1− tβ

p

)n−1

Replacing p by
n∑
i=1

tβi , MVUE of reliability is obtained as

R̃(t) =



(
1− tβ

n∑
i=1

tβi

)n−1

if t <
n∑
i=1

tβi

0 otherwise

(4.2.5)

4.3 IMPROVED ESTIMATOR OFR(t)

The true reliability function is given by

R(t) = e−Φtβ = 1− Φtβ +
(Φtβ)2

2!
− (Φtβ)3

3!
+ . . . (4.3.1)

R̂(t) and R̃(t) are unbiased for R(t), if (i) E(R̂(t)) = R(t) and (ii) E(R̃(t)) = R(t)

respectively.

To check whether R̂(t) is unbiased or not, consider E(R̂(t)) = E
(
e

−{ ntβ

n∑
i=1

t
β
i

})
.

Taking Y =
n∑
i=1

tβi , we have, E(R̂(t)) = E
(
e−{

ntβ

Y
}
)

.

Since the above random variable Y is the sum of n independent exponential random
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variates, we have Y ∼ G(n,Φ). (Section 1 of Appendix A). Further, we have,

E
( 1

Y

)
=

∞∫
0

1

y

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−2dy

=
Φn

Γ(n)

Γ(n− 1)

Φn−1
(Result 4 of Appendix A)

=
ΦΓ(n− 1)

(n− 1)Γ(n− 1)
=

Φ

n− 1
.

Similarly, E
( 1

Y 2

)
=

∞∫
0

1

y2

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−3dy

=
Φn

Γ(n)

Γ(n− 2)

Φn−2
(Result 4 of Appendix A)

=
Φ2Γ(n− 2)

(n− 1)(n− 2)Γ(n− 2)
=

Φ2

(n− 1)(n− 2)
.

E
( 1

Y 3

)
=

∞∫
0

1

y3

Φn

Γ(n)
e−yΦyn−1dy

=
Φn

Γ(n)

∞∫
0

e−Φyyn−4dy

=
Φn

Γ(n)

Γ(n− 3)

Φn−3
(Result 4 of Appendix A)

=
Φ3Γ(n− 3)

(n− 1)(n− 2)(n− 3)Γ(n− 3)

=
Φ3

(n− 1)(n− 2)(n− 3)
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and so on.

So, E(R̂(t)) = E
(

1− ntβ

Y
+

(ntβ)2

2!Y 2
− (ntβ)3

3!Y 3
+ . . .

)
= 1− Φtβ

1!

n

(n− 1)
+

(Φtβ)2

2!

n2

(n− 1)(n− 2)

− (Φtβ)3

3!

n3

(n− 1)(n− 2)(n− 3)
+ . . .

6= R(t)

Hence, R̂(t) is not unbiased for R(t).

To verify that R̃(t) is unbiased, consider E(R̃(t)) = E

(
1− tβ

n∑
i=1

tβi

)n−1

.

But, Y =
n∑
i=1

tβi and hence,

E(R̃(t)) = E
(

1− tβ

Y

)n−1

= E
(

1− (n− 1)tβ

Y
+

(n− 1)(n− 2)

2!

(tβ)2

Y 2

− (n− 1)(n− 2)(n− 3)

3!

(tβ)3

Y 3
+ . . .

)
= 1− Φtβ +

(Φtβ)2

2!
− (Φtβ)3

3!
+ . . .

= R(t)

Thus, R̃(t) is unbiased for R(t).

Since R̂(t) is biased for R(t) while R̃(t) is unbiased for R(t), the bias of R̂(t) is given
by

Bias (R̂(t)) = E(R̂(t))− e−Φtβ = E(R̂(t))− E(R̃(t)) and hence is obtained as

Bias(R̂(t)) = − Φtβ

(n− 1)
+

(Φtβ)2

2!

(3n− 2)

(n− 1)(n− 2)
−(Φtβ)3

3!

(6n2 − 11n+ 6)

(n− 1)(n− 2)(n− 3)
+. . .

(4.3.2)

Thus, the above bias can be found for the given sample failure data, by using the
estimated values of R̂(t) and R̃(t).
Hence, if T = {t1, t2, . . . tn} is the given sample failure data set of size n, then the bias
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is obtained by taking the difference in the means of R̂(t) and R̃(t) and is obtained as

Bias(R̂(t)) =

∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n
(4.3.3)

Removing this bias from R̂(t), the Improved Estimator of R(t) denoted by R̆(t), is

obtained as R̆(t) = R̂(t)− Bias(R̂(t)) = R̂(t)−

(∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n

)
.

i.e.R̆(t) = e

−
(

ntβ

n∑
i=1

t
β
i

)
−

(∑
tεT

e

−
(

ntβ

n∑
i=1

t
β
i

)
n

−

∑
tεT

(
1− tβ

n∑
i=1

tβi

)n−1

n

)
(4.3.4)

In all the above calculations, t is any time instance. For a sample failure time data set T ,
as given above, t is a member of T .

4.4 COMPARISON OF ESTIMATES

The three estimators of reliability are to be compared by comparing the properties
satisfied by them. The Improved Estimator of R(t) is unbiased and sufficient, as it is
obtained from MLE of R(t), by removing the bias present in it. The only property
to be checked thus, is the efficiency property. Since MLE of R(t) is biased as shown
above, while MVUE of R(t) and Improved Estimator of R(t) are unbiased, coefficient
of variation is used as a measure of dispersion instead of the variance, as mentioned in
Section 1.1 of Chapter 1. The estimate with the least value of the coefficient of variation
is considered as the efficient estimator. The comparison is also done by considering the
quartile coefficient of dispersion, as mentioned in Section 1.1 of Chapter 1. Even with
this measure, the estimate with the least value of the quartile coefficient of dispersion is
considered as the efficient estimator. For this purpose, the following case studies have
been considered and the three estimates have been found. The coefficients of variation
and the quartile coefficient of dispersion for these three estimates have also been obtained.
For all the case studies, CV(R̂(t)), CV(R̃(t)) and CV(R̆(t)) are respectively obtained
using

CV(R̂(t)) =
SR̂(t)

R̂(t)
(4.4.1)

CV(R̃(t)) =
SR̃(t)

R̃(t)
(4.4.2)
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CV(R̆(t)) =
SR̆(t)

R̆(t)
(4.4.3)

Here, the sample variances S2
R̂(t)

, S2
R̃(t)

and S2
R̆(t)

are respectively obtained using

S2
R̂(t)

=
∑
tεT

(
R̂(t)− R̂(t)

)2

(n− 1)
(4.4.4)

S2
R̃(t)

=
∑
tεT

(
R̃(t)− R̃(t)

)2

(n− 1)
(4.4.5)

S2
R̆(t)

=
∑
tεT

(
R̆(t)− R̆(t)

)2

(n− 1)
(4.4.6)

Further, the sample means R̂(t), R̃(t), and R̆(t) are respectively obtained using

R̂(t) =

∑
tεT

R̂(t)

n
(4.4.7)

R̃(t) =

∑
tεT

R̃(t)

n
(4.4.8)

R̆(t) =

∑
tεT

R̆(t)

n
(4.4.9)

As mentioned in literature above, some computer methodologies have also been used
in generating failure data, such as the one by Subburaj Ramasamy and Indhurani
Lakshmanan (Ramasamy and Lakshmanan (2017)) used machine learning approach,
which also compared the method with practical failure data set. Herein, few practical
data sets have been used.

Case study 1: On-Line Data Entry IBM Software Package
The data reported by Ohba (Ohba (1984)) are recorded from testing an on-line data entry
software package developed at IBM. There are 15 failures, with failure times as indicated
in Table 4.4.1.
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Table 4.4.1 On-Line Data Entry IBM Software Package

Failure Number 1 2 3 4 5 6 7 8 9 10
Failure Time 10 19 32 43 58 70 88 103 125 150

Failure Number 11 12 13 14 15
Failure Time 169 199 231 256 296

Table 4.4.2 denotes the MLE, MVUE and the Improved Estimator of reliability functions
for Weibull class models. In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of
deviations of R̂(t), R̃(t) and R̆(t) from their corresponding means respectively. Using

Table 4.4.2 R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 1)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 10 0.99563 0.99592 1.00112 0.1906 0.1861 0.19057
2 19 0.98432 0.98535 0.98981 0.1808 0.1771 0.18083
3 32 0.95617 0.95897 0.96166 0.1577 0.1555 0.15768
4 43 0.92226 0.92706 0.92775 0.1319 0.1314 0.1319
5 58 0.86310 0.87102 0.86859 0.0924 0.0939 0.09242
6 70 0.80699 0.81743 0.81248 0.0615 0.0639 0.06146
7 88 0.7125 0.72619 0.71803 0.0235 0.0261 0.02355
8 103 0.62858 0.64391 0.63407 0.0048 0.0063 0.00483
9 125 0.50469 0.52036 0.51018 0.003 0.002 0.00296

10 150 0.37355 0.38651 0.37904 0.0344 0.0317 0.03442
11 169 0.28652 0.29579 0.29201 0.0743 0.0722 0.07429
12 199 0.17673 0.17926 0.18222 0.1462 0.1485 0.14619
13 231 0.09678 0.09355 0.10227 0.2137 0.2219 0.21373
14 256 0.05680 0.05125 0.06229 0.2523 0.2635 0.25229
15 296 0.02161 0.01603 0.02710 0.2889 0.3009 0.28888

the values obtained in Table 4.4.2 in equations (4.4.4) to (4.4.9), we get,
R̂(t) = 0.559090 ; S2

R̂(t)
= 0.13257 ; R̃(t) = 0.564578; S2

R̃(t)
= 0.13435;

R̆(t) = 0.564578; S2
R̆(t)

= 0.1326.
Hence, using (4.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.559090− 0.564578 = −0.005488.

Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.005488) = R̂(t) + 0.005488.

Thus, using equations (4.4.1) to (4.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.6512, CV(R̃(t))=0.6492 and CV(R̆(t))=0.6449.
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It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.1767
and Q3=0.9223. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.6784. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.1793 and Q3=0.9271. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.6759. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.1822 and Q3=0.9277. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.6717.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 4.4.1.
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Figure 4.4.1 Curves of R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 1)
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From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 2: Nuclear Power Agency
A nuclear power agency uses a computer-based monitoring system for its reactors. The
operating system for the computer is employed for this and other applications in an
estimated 5000 installations throughout the world. A total of 17 failures have occurred
with failure times as listed in Table 4.4.3 (Musa et al. (1991)).

Table 4.4.3 Nuclear Power Agency

Failure number 1 2 3 4 5 6
Failure time 932 4035 4696 4893 6369 6524

Failure number 7 8 9 10 11 12
Failure time 7882 8170 9339 10400 10542 11036

Failure number 13 14 15 16 17
Failure time 11696 11905 12266 12954 14000

Table 4.4.4 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in
Table 4.4.4 in equations (4.4.4) to (4.4.9), we get,
R̂(t) = 0.44805 ; S2

R̂(t)
= 0.0752 ; R̃(t) = 0.45551; S2

R̃(t)
= 0.0764;

R̆(t) = 0.45551; S2
R̆(t)

= 0.0752.
Hence, using (4.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.44805− 0.45551 = −0.0075.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.0075) = R̂(t) + 0.0075.

Thus, using equations (4.4.1) to (4.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.6120, CV(R̃(t))=0.6066 and CV(R̆(t))=0.6019.
It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
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Table 4.4.4 R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 2)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 932 0.9902 0.9908 0.9976 0.2939 0.2865 0.2939
2 4035 0.8311 0.8394 0.8386 0.1467 0.1474 0.1467
3 4696 0.7784 0.7885 0.7858 0.1091 0.1109 0.1091
4 4893 0.7618 0.7725 0.7693 0.0985 0.1005 0.0985
5 6369 0.6307 0.6442 0.6382 0.0334 0.0356 0.0334
6 6524 0.6166 0.6302 0.624 0.0284 0.0305 0.0284
7 7882 0.4937 0.5074 0.5011 0.0021 0.0027 0.0021
8 8170 0.4684 0.4818 0.4759 0.0004 0.0007 0.0004
9 9339 0.3712 0.3825 0.3787 0.0059 0.0053 0.0059

10 10400 0.2926 0.301 0.3001 0.0242 0.0239 0.0242
11 10542 0.2829 0.2909 0.2904 0.0273 0.0271 0.0273
12 11036 0.2506 0.2571 0.2581 0.039 0.0394 0.039
13 11696 0.2113 0.2157 0.2188 0.056 0.0575 0.056
14 11905 0.1998 0.2035 0.2073 0.0616 0.0635 0.0616
15 12266 0.181 0.1835 0.1884 0.0713 0.074 0.0713
16 12954 0.1486 0.1491 0.1561 0.0897 0.0939 0.0897
17 14000 0.1079 0.1058 0.1153 0.1157 0.1223 0.1157

Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2056
and Q3=0.6963. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.5440. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2096 and Q3=0.7084. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.5434. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2131 and Q3=0.7038. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.5352.
The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 4.4.2.
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Figure 4.4.2 Curves of R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 2)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 3: Failure data set of Lyu
The failure time data for 10 failures obtained by Lyu (Lyu (2004)) are given in Table
4.4.5.

Table 4.4.5 Failure data set of Lyu

Failure number 1 2 3 4 5 6 7 8 9 10
Failure time 7 18 26 36 51 73 93 118 146 181
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Table 4.4.6 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in

Table 4.4.6 R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 3)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 7 0.9944 0.9949 1.00 0.17942 0.17342 0.17942
2 18 0.9634 0.9669 0.9711 0.15415 0.15089 0.15415
3 26 0.9252 0.9321 0.9329 0.12559 0.12506 0.12559
4 36 0.8615 0.8735 0.8692 0.0845 0.08705 0.0845
5 51 0.7414 0.7608 0.7491 0.0291 0.03322 0.0291
6 73 0.5417 0.5659 0.5494 0.00085 0.00016 0.00085
7 93 0.3697 0.3894 0.3774 0.04043 0.03577 0.04043
8 118 0.2015 0.2078 0.2092 0.13636 0.13742 0.13636
9 146 0.0861 0.0795 0.0938 0.23493 0.24901 0.23493

10 181 0.0231 0.0142 0.0308 0.3 0.31849 0.3

Table 4.4.6 in equations (4.4.4) to (4.4.9), we get,
R̂(t) = 0.570797 ; S2

R̂(t)
= 0.1428 ; R̃(t) = 0.578506; S2

R̃(t)
= 0.1456;

R̆(t) = 0.578497; S2
R̆(t)

= 0.1428.
Hence, using (4.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.570797− 0.578506 = −0.0077.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.0077) = R̂(t) + 0.0077.

Thus, using equations (4.4.1) to (4.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.6620, CV(R̃(t))=0.6596 and CV(R̆(t))=0.6532.
It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2015
and Q3=0.9252. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.6423. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2078 and Q3=0.9321. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.6354. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2092 and Q3=0.9329. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.6337.

53



The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 4.4.3.
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Figure 4.4.3 Curves of R̂(t), R̃(t) and R̆(t) for Weibull Model (Case study 3)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Table 4.4.7 shows the consolidated values of the coefficient of variation (CV) of R̂(t),
R̃(t) and R̆(t) for all the three case studies.

Table 4.4.8 shows the consolidated values of the quartile coefficient of dispersion (QD)
of R̂(t), R̃(t) and R̆(t) for all the three case studies. From Tables 4.4.7 and 4.4.8, it is
observed that, the Improved Estimator (R̆(t)) has the least values of the coefficient of
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Table 4.4.7 Weibull Models (Consolidated1)

Case study CV(R̂(t)) CV(R̃(t)) CV(R̆(t))
1 0.6512 0.6492 0.6449
2 0.6120 0.6066 0.6019
3 0.6620 0.6596 0.6532

Table 4.4.8 Weibull Models (Consolidated2)

Case study QD(R̂(t)) QD(R̃(t)) QD(R̆(t))
1 0.6784 0.6759 0.6717
2 0.5440 0.5434 0.5352
3 0.6423 0.6354 0.6337

variation and quartile coefficient of dispersion than those of MLE (R̂(t)) and MVUE
(R̃(t)) in all the three case studies, which means that R̆(t) is more efficient than R̂(t)

and R̃(t).
However, to choose the best estimator among the three estimates, the desirable properties
of good estimators as mentioned in Section 1.1 of Chapter 1 are to be considered.
Unbiasedness of R̆(t): It has been shown above that R̂(t) is biased for R(t), while R̃(t)

is unbiased for R(t). Since the Improved Estimators are obtained from MLEs just by
removing the bias present in the MLEs, they satisfy the unbiasedness property. Thus,
R̆(t) is unbiased for R(t).
Sufficiency of R̆(t): Improved Estimator is a function of MLE, which is sufficient. Since
any function of sufficient estimator is also sufficient, Improved Estimator is sufficient.
Now, to compare the biased estimator R̂(t) with unbiased estimators R̃(t) and R̆(t),
the coefficient of variation and the quartile coefficient of dispersion are considered
as measures of dispersion to check the efficiency property. The sample results of
comparison of coefficients of variation and the quartile coefficients of dispersion for
the three estimators indicate that Improved Estimator has least values of coefficient of
variation and the quartile coefficient of dispersion as compared to those of MLE and
MVUE of R(t), which indicates that the Improved estimators are efficient compared to
MLE and MVUE.
Thus, by referring to Table 1.1.1 of Chapter 1, Table 4.4.9 provides the statistical
properties satisfied by MLE, MVUE and the Improved Estimator of reliability for
Weibull class models.

It can be seen from Table 4.4.9 that the Improved Estimator satisfies maximum number
of properties of estimators as compared to MLE and MVUE of R(t). Hence, it can be
inferred that the estimate of reliability obtained using the Improved Estimator, is more
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Table 4.4.9 Weibull class models- Properties satisfied by estimators of reliability

Unbiased Sufficient Efficient
MLE No Yes No

MVUE Yes Yes No
Improved Estimator Yes Yes Yes

efficient than those estimated using the methods of MLE and MVUE.
Thus, it can be concluded that R̆(t) gives more accurate value of reliability than R̂(t)

and R̃(t), for Weibull class software reliability models.
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Chapter 5

GAMMA CLASS MODELS

Gamma class models are the software reliability models, wherein the failure times
(T ) are assumed to have Gamma distribution with probability density function, given by

f(t) = Φ2te−Φt, t > 0 (5.0.1)

where Φ is the failure rate. This model is due to Yamada, Ohba and Osaki (Yamada et al.
(1983)).
Some of the work related to estimation of reliability from literature are provided below:
The use of inverse sampling in estimating the reliability for any model and so also
Gamma model was proposed by Balwant Singh et. al (Singh et al. (1997)). The intention
was to determine the testing time and also to decide whether or not to accept the software.
A combined parameter estimation procedure using Expectation maximization algorithm
and heuristic solution method was developed for Gamma class models by Hiroyuki
Okamura et. al (Okamura et al. (2007)). However, the method has not been used in
estimation of reliability. Moreover, by considering the failure time distribution, many
statistical procedures of estimation can be used in estimating the reliability and for
comparing them statistically.

If T has an Gamma distribution with parameters 2 and Φ, it is then denoted as T ∼
G(2,Φ). The reliability at time t, denoted byR(t), is obtained as

R(t) = P (T > t) =

∞∫
t

f(t)dt =

∞∫
t

Φ2te−Φtdt = e−Φt(tΦ + 1) (5.0.2)

In the following sections, the estimates of this reliability are obtained using the methods
of MLE and MVUE.
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5.1 MLE OFR(t)

Using the invariance property satisfied by the MLEs, the MLE of R(t), denoted by R̂(t)

is obtained as
R̂(t) = e−Φ̂t(tΦ̂ + 1) (5.1.1)

where Φ̂ is the MLE of Φ.

To find the MLE of Φ: Let (T1, T2, . . . Tn) be a sample of size n from Gamma
distribution as given in (5.0.1). Then, the likelihood function of this sample is given by

L =
n∏
i=1

f(ti) = Φ2ne
−Φ

n∑
i=1

ti
n∏
i=1

ti (5.1.2)

Using the principle of calculus, maximizing this likelihood function, the MLE of Φ,

denoted by Φ̂, is obtained as the solution of
∂ lnL

∂Φ
= 0, with

∂2 lnL

∂Φ2
< 0.

This gives
2n

Φ
−

n∑
i=1

ti = 0, from which, the MLE of Φ is obtained as

Φ̂ =
2n
n∑
i=1

ti

(5.1.3)

Using (5.1.3) in (5.1.1), the MLE of R(t) is obtained as

R̂(t) = e

− 2nt
n∑
i=1

ti

(
2nt
n∑
i=1

ti

+ 1

)
(5.1.4)

5.2 MVUE OFR(t)

To find the MVUE of R(t), consider a function of the random variable T1, given by

U(t1) =

1 if t1 > t

0 otherwise

Then, E[U(t1)] = 1.P (T1 > t) + 0.P (T1 ≤ t) = P (T1 > t) = R(t).
Thus, U(t1) is unbiased for R(t).

Complete Sufficient Estimator of Φ: Applying the factorization theorem (as explained
in Chapter 1) to the likelihood function given in (5.1.2), it can be seen that the likelihood
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function depends on Φ and ti, only through the value of
n∑
i=1

ti. Thus,
n∑
i=1

ti is the

sufficient estimator of the parameter Φ.

Also, since each Ti ∼ G(2,Φ),
n∑
i=1

Ti ∼ G(2n,Φ) (Section 3 of Appendix A). Further,

by Result 3 of Appendix A, the estimator
n∑
i=1

ti is also the complete statistic and hence,

n∑
i=1

ti is the complete sufficient estimator of Φ.

Further, U(t1) is an unbiased estimator of R(t) and R(t) is a function of Φ, as given in
(5.0.2). Hence, by Theorem 1 of Chapter 1, the MVUE of R(t) is obtained as

R̃(t) = E(U(t1)|
n∑
i=1

ti) =

∞∫
t

f(t1|
n∑
i=1

ti)dt1

where f(t1|
n∑
i=1

ti) denotes the conditional pdf of T1 given
n∑
i=1

Ti and is given by

f(t1|
n∑
i=1

ti) =

g(t1,
n∑
i=1

ti)

h(
n∑
i=1

ti)
, where g(t1,

n∑
i=1

ti) denotes the joint pdf of T1 and
n∑
i=1

Ti.

h(
n∑
i=1

ti) denotes the marginal pdf of
n∑
i=1

Ti.

Hence, the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

g(t1,
n∑
i=1

ti)

h(
n∑
i=1

ti)
dt1 (5.2.1)

Since each Ti ∼ G(2,Φ),
n∑
i=1

Ti ∼ G(2n,Φ) (Section 3 of Appendix A). Hence, the pdf

of
n∑
i=1

Ti is obtained as

h(
n∑
i=1

ti) =
Φ2n

Γ(2n)
e
−Φ

n∑
i=1

ti
(
n∑
i=1

ti)
2n−1 (5.2.2)
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To find the pdf g(t1,
n∑
i=1

ti), split the sample (T1, T2, T3, . . . Tn) into two samples as T1

of size one and (T2, T3, T4, . . . Tn) of size (n− 1).

Since T1 and
n∑
i=2

Ti are independent, the joint pdf of T1 and
n∑
i=2

Ti is obtained as

g(t1,
n∑
i=2

ti) = f(t1) · h(
n∑
i=2

ti),

where f(t1) and h(
n∑
i=2

ti) denote the pdfs of T1 and
n∑
i=2

Ti respectively.

Since T1 ∼ G(2,Φ), the pdf of T1 is given by f(t1) = Φ2t1e
−Φt1 .

Also,
n∑
i=2

Ti ∼ G
(
2(n − 1),Φ

)
= G(2n − 2,Φ) and hence its pdf is obtained as

h(
n∑
i=2

ti) =
Φ2n−2

Γ(2n− 2)
(
n∑
i=2

ti)
2n−3e

−Φ
n∑
i=2

ti
.

Hence, the joint pdf of T1 and
n∑
i=2

Ti is obtained as

g(t1,
n∑
i=2

ti) = f(t1) · h(
n∑
i=2

ti) = Φ2t1e
−Φt1

Φ2n−2

Γ(2n− 2)
(
n∑
i=2

ti)
2n−3e

−Φ
n∑
i=2

ti
,

which simplifies to g(t1,
n∑
i=2

ti) =
e
−Φ

n∑
i=1

ti
Φ2n

Γ(2n− 2)
t1(

n∑
i=2

ti)
2n−3.

Considering the transformation
n∑
i=1

Ti = T1 +
n∑
i=2

Ti and noting that the modulus of

the Jacobian of the inverse transformation is one (Appendix B), the joint pdf of T1 and
n∑
i=1

Ti is obtained as

g(t1,
n∑
i=1

ti) =
e
−Φ

n∑
i=1

ti
Φ2n

Γ(2n− 2)
t1(

n∑
i=1

ti − t1)2n−3 (5.2.3)
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Substituting (5.2.2) and (5.2.3) in (5.2.1), the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

e
−Φ

n∑
i=1

ti
Φ2n

Γ(2n−2)
t1(

n∑
i=1

ti − t1)2n−3

e
−Φ

n∑
i=1

ti
Φ2n

Γ(2n)
(
n∑
i=1

ti)2n−1

dt1

i.e., R̃(t) =

∞∫
t

Γ(2n)t1
Γ(2n− 2)

(
n∑
i=1

ti − t1)2n−3

(
n∑
i=1

ti)2n−1

dt1

i.e., R̃(t) =

∞∫
t

(2n− 1)(2n− 2)t1

(
n∑
i=1

ti)2

(
n∑
i=1

ti − t1)2n−3

(
n∑
i=1

ti)2n−3

dt1

This simplifies to

R̃(t) =

∞∫
t

(2n− 1)(2n− 2)

(
1− t1

n∑
i=1

ti

)2n−3
t1

(
n∑
i=1

ti)2

dt1

Noting that this integral converges if t1 <
n∑
i=1

ti, the MVUE of reliability is obtained as

R̃(t) =

n∑
i=1

ti∫
t

(2n− 1)(2n− 2)

(
1− t1

n∑
i=1

ti

)2n−3
t1

(
n∑
i=1

ti)2

dt1

The term inside the definite integral is the conditional pdf f(t1|
n∑
i=1

ti), which is the

conditional pdf or t1 given that
n∑
i=1

ti has occurred. i.e., this conditional pdf is evaluated

under
n∑
i=1

ti. Thus, for a given
n∑
i=1

ti, the integral depends only on t1.
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Hence, taking
n∑
i=1

ti = s, the integral becomes

R̃(t) =

s∫
t

(2n− 1)(2n− 2)

(
1− t1

s

)2n−3
t1
s2
dt1

i.e. , R̃(t) =
(2n− 1)(2n− 2)

s2

s∫
t

t1

(
1− t1

s

)2n−3

dt1

Integrating by parts, by taking t1 as the first function and

(
1− t1

s

)2n−3

as the second

function,

R̃(t) =
(2n− 1)(2n− 2)

s2

(
t1(−s)

(2n− 2)

(
1− t1

s

)2n−2

∣∣∣∣∣
s

t

+

s∫
t

s

(2n− 2)
(1− t1

s
)2n−2dt1

)
.

The subsequent steps of simplification are provided below:

R̃(t) =
(2n− 1)(2n− 2)

s2

(
ts

(2n− 2)

(
1− t

s

)2n−2

− s

(2n− 2)

(s(1− t1
s

)2n−1

(2n− 1)

)∣∣∣∣∣
s

t

)
=

(2n− 1)(2n− 2)

s2

(
ts

(2n− 2)

(
1− t

s

)2n−2

+
s2

(2n− 1)(2n− 2)

(
1− t

s

)2n−1
)

=
(2n− 1)t

s

(
1− t

s

)2n−2

+
(

1− t

s

)2n−1

=
(

1− t

s

)2n−2
(

(2n− 1)t

s
+
(

1− t

s

))
=
(

1− t

s

)2n−2
(

2nt

s
− t

s
+ 1− t

s

)

=
(

1− t

s

)2n−2
(

2nt

s
− 2t

s
+ 1

)
=
(

1− t

s

)2n−2
(

(2n− 2)t

s
+ 1

)

Replacing s by
n∑
i=1

ti again, the MVUE of reliability is obtained as

R̃(t) =



(
1− t

n∑
i=1

ti

)2n−2(
(2n− 2)t

n∑
i=1

ti

+ 1

)
if t <

n∑
i=1

ti

0 otherwise

(5.2.4)
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5.3 IMPROVED ESTIMATOR OFR(t)

The reliability function at time t for Gamma class models is given by

R(t) = e−Φt(Φt+ 1) = 1− (Φt)2

2
+

(Φt)3

3
− . . . (5.3.1)

R̂(t) and R̃(t) are unbiased for R(t), if (i) E(R̂(t)) = R(t) and (ii) E(R̃(t)) = R(t)

respectively.

To check whether R̂(t) is unbiased or not, considerE(R̂(t)) = E

(
e

− 2nt
n∑
i=1

ti
( 2nt

n∑
i=1

ti

+1
))

.

Taking Y =
n∑
i=1

ti, we have, E(R̂(t)) = E

(
e−{

2nt
Y
}
(2nt

Y
+ 1
))

.

Also, since Y ∼ G(2n,Φ), (Section 3 of Appendix A), it can be observed that,

E
( 1

Y

)
=

∞∫
0

1

y

Φ2n

Γ(2n)
e−yΦy2n−1dy

=
Φ2n

Γ(2n)

∞∫
0

e−Φyy2n−2dy

=
Φ2n

Γ(2n)

Γ(2n− 1)

Φ2n−1
(Result 4 of Appendix A)

=
ΦΓ(2n− 1)

(2n− 1)Γ(2n− 1)
=

Φ

2n− 1
.

Similarly, E
( 1

Y 2

)
=

∞∫
0

1

y2

Φ2n

Γ(2n)
e−yΦy2n−1dy

=
Φ2n

Γ(2n)

∞∫
0

e−Φyy2n−3dy

=
Φ2n

Γ(2n)

Γ(2n− 2)

Φ2n−2
(Result 4 of Appendix A)

=
Φ2Γ(2n− 2)

(2n− 1)(2n− 2)Γ(2n− 2)
=

Φ2

(2n− 1)(2n− 2)
.
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E
( 1

Y 3

)
=

∞∫
0

1

y3

Φ2n

Γ(2n)
e−yΦy2n−1dy

=
Φ2n

Γ(2n)

∞∫
0

e−Φyy2n−4dy

=
Φ2n

Γ(2n)

Γ(2n− 3)

Φ2n−3
(Result 4 of Appendix A)

=
Φ3Γ(2n− 3)

(2n− 1)(2n− 2)(2n− 3)Γ(2n− 3)

=
Φ3

(2n− 1)(2n− 2)(2n− 3)

and so on.

Hence, E(R̂(t)) = E

((
1− 2nt

Y
+

(2nt)2

2!Y 2
− (2nt)3

3!Y 3
+ . . .

)(2nt

Y
+ 1
))

= 1− (Φt)2

2

(2n)2

(2n− 1)(2n− 2)

+
(Φt)3

3

(2n)3

(2n− 1)(2n− 2)(2n− 3)
− . . .

6= R(t)

Hence, R̂(t) is not unbiased for R(t).

Now, to verify that R̃(t) is unbiased, consider

E(R̃(t)) = E

((
1− t

n∑
i=1

ti

)2n−2(
(2n− 2)t

n∑
i=1

ti

+ 1

))

= E

((
1− t

Y

)2n−2(
(2n− 2)t

Y
+ 1

))
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where Y =
n∑
i=1

ti.

So, E(R̃(t)) = E

(
1− (2n− 1)(2n− 2)

2
(
t

Y
)2

+
(2n− 1)(2n− 2)(2n− 3)

3
(
t

Y
)3 − . . .

)

= 1− (Φt)2

2
+

(Φt)3

3
− . . .

= R(t)

Hence, R̃(t) is unbiased for R(t).

Since R̂(t) is biased for R(t) and R̃(t) is unbiased for R(t), the bias of R̂(t) is given by

Bias(R̂(t)) = E(R̂(t))−R(t) = E(R̂(t))− E(R̃(t)) and hence is obtained as

Bias(R̂(t)) = −(Φt)2

2

( (2n)2

(2n− 1)(2n− 2)
− 1
)

+
(Φt)3

3

( (2n)3

(2n− 1)(2n− 2)(2n− 3)
− 1
)
− . . .
(5.3.2)

This bias can be found for the given sample failure data, by using the estimated values of
R̂(t) and R̃(t).
Hence, if T = {t1, t2, . . . tn} is the given sample failure data of size n, then the estimated
bias is obtained by taking the difference in the means of R̂(t) and R̃(t) and is given by

Bias(R̂(t)) =

∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n
(5.3.3)

Removing this bias from R̂(t), the Improved Estimator of R(t) denoted by R̆(t), is

obtained as R̆(t) = R̂(t)− Bias(R̂(t)) = R̂(t)−

(∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n

)
.
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i.e., R̆(t) = e

−
(

2nt
n∑
i=1

ti

)(
2nt
n∑
i=1

ti

+ 1

)
−

(∑
tεT

e

−
(

2nt
n∑
i=1

ti

)(
2nt
n∑
i=1

ti

+ 1
)

n

−

∑
tεT

(
1− t

n∑
i=1

ti

)2n−2(
(2n−2)t
n∑
i=1

ti

+ 1
)

n

)
(5.3.4)

In all the above calculations, t is any time instance. For a sample failure time data set

T , as given above, t is a member of T .

5.4 COMPARISON OF ESTIMATES

The three estimators of reliability are to be compared by comparing the properties
satisfied by them. The Improved Estimator of R(t) is unbiased and sufficient, as it is
obtained from MLE of R(t), by removing the bias present in it. The only property
to be checked thus, is the efficiency property. Since MLE of R(t) is biased as shown
above, while MVUE of R(t) and Improved Estimator of R(t) are unbiased, coefficient
of variation is used as a measure of dispersion instead of the variance, as mentioned in
Section 1.1 of Chapter 1. The estimate with the least value of the coefficient of variation
is considered as the efficient estimator. The comparison is also done by considering the
quartile coefficient of dispersion, as mentioned in Section 1.1 of Chapter 1. Even with
this measure, the estimate with the least value of the quartile coefficient of dispersion is
considered as the efficient estimator. For this purpose, the following case studies have
been considered and the three estimates have been found. The coefficients of variation
and the quartile coefficient of dispersion for these three estimates have also been obtained.
For all the case studies, CV(R̂(t)), CV(R̃(t)) and CV(R̆(t)) are respectively obtained
using

CV(R̂(t)) =
SR̂(t)

R̂(t)
(5.4.1)

CV(R̃(t)) =
SR̃(t)

R̃(t)
(5.4.2)
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CV(R̆(t)) =
SR̆(t)

R̆(t)
(5.4.3)

Here, the sample variances S2
R̂(t)

, S2
R̃(t)

and S2
R̆(t)

are respectively obtained using

S2
R̂(t)

=
∑
tεT

(
R̂(t)− R̂(t)

)2

(n− 1)
(5.4.4)

S2
R̃(t)

=
∑
tεT

(
R̃(t)− R̃(t)

)2

(n− 1)
(5.4.5)

S2
R̆(t)

=
∑
tεT

(
R̆(t)− R̆(t)

)2

(n− 1)
(5.4.6)

Further, the sample means R̂(t), R̃(t), and R̆(t) are respectively obtained using

R̂(t) =

∑
tεT

R̂(t)

n
(5.4.7)

R̃(t) =

∑
tεT

R̃(t)

n
(5.4.8)

R̆(t) =

∑
tεT

R̆(t)

n
(5.4.9)

Case study 1: On-Line Data Entry IBM Software Package
The data reported by Ohba (Ohba (1984)) are recorded from testing an on-line data entry
software package developed at IBM. There are 15 failures, with failure times as indicated
in Table 5.4.1.

Table 5.4.1 On-Line Data Entry IBM Software Package

Failure Number 1 2 3 4 5 6 7 8 9 10
Failure Time 10 19 32 43 58 70 88 103 125 150

Failure Number 11 12 13 14 15
Failure Time 169 199 231 256 296
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Table 5.4.2 denotes the MLE, MVUE and the Improved Estimator of reliability functions
for Gamma class models. In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of
deviations of R̂(t), R̃(t) and R̆(t) from their corresponding means respectively.

Table 5.4.2 R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 1)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 10 0.98818 0.98922 0.99272 0.23347 0.2301 0.23347
2 19 0.96121 0.96432 0.96574 0.20813 0.20683 0.20813
3 32 0.90392 0.91056 0.90846 0.15914 0.16083 0.15914
4 43 0.845 0.85438 0.84954 0.11561 0.11892 0.11561
5 58 0.75743 0.7695 0.76197 0.06372 0.06759 0.06372
6 70 0.68596 0.69914 0.6905 0.03275 0.03595 0.03275
7 88 0.58227 0.59549 0.58681 0.00597 0.00739 0.00597
8 103 0.50225 0.51429 0.50679 7.5E-06 2.3E-05 7.5E-06
9 125 0.39845 0.40752 0.40298 0.01135 0.01041 0.01135
10 150 0.30117 0.30615 0.3057 0.04155 0.04137 0.04155
11 169 0.24114 0.2431 0.24567 0.06962 0.07099 0.06962
12 199 0.16749 0.16552 0.17202 0.11391 0.11835 0.11391
13 231 0.11189 0.1072 0.11643 0.15453 0.16187 0.15453
14 256 0.08095 0.07515 0.08549 0.17981 0.18869 0.17981
15 296 0.04763 0.04145 0.05217 0.20918 0.2191 0.20918

Using the values obtained in Table 5.4.2 in equations (5.4.4) to (5.4.9), we get,
R̂(t) = 0.505 ; S2

R̂(t)
= 0.1142 ; R̃(t) = 0.50953; S2

R̃(t)
= 0.117;

R̆(t) = 0.50953; S2
R̆(t)

= 0.1142.

Hence, using (5.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.505− 0.50953 = −0.00454.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.00454) = R̂(t) + 0.00454.

Thus, using equations (5.4.1) to (5.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.6692, CV(R̃(t))=0.6714 and CV(R̆(t))=0.6632.

It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.1675
and Q3=0.8450. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
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QD(R̂(t))=0.6691. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.16552 and Q3=0.85438. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.6754. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.17202 and Q3=0.84954. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.6632.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 5.4.1.
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Figure 5.4.1 Curves of R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 1)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
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of the time instances.

Case study 2: Nuclear Power Agency
A nuclear power agency uses a computer-based monitoring system for its reactors. The
operating system for the computer is employed for this and other applications in an
estimated 5000 installations throughout the world. A total of 17 failures have occurred
with failure times as listed in Table 5.4.3 (Musa et al. (1991)).

Table 5.4.3 Nuclear Power Agency

Failure number 1 2 3 4 5 6
Failure time 932 4035 4696 4893 6369 6524

Failure number 7 8 9 10 11 12
Failure time 7882 8170 9339 10400 10542 11036

Failure number 13 14 15 16 17
Failure time 11696 11905 12266 12954 14000

Table 5.4.4 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in
Table 5.4.4 in equations (5.4.4) to (5.4.9), we get,
R̂(t) = 0.441504 ; S2

R̂(t)
= 0.05485 ; R̃(t) = 0.447354; S2

R̃(t)
= 0.05615;

R̆(t) = 0.0.447354; S2
R̆(t)

= 0.05485.

Hence, using (5.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.441504− 0.447354 = −0.00585.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.00585) = R̂(t) + 0.00585.

Using equations (5.4.1) to (5.4.3), the coefficient of variation of the three estimators, are
respectively obtained as
CV(R̂(t))=0.5305, CV(R̃(t))=0.5296 and CV(R̆(t))=0.5235.
It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2455
and Q3=0.6291. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.4386. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2475 and Q3=0.6407. Hence, the quartile coefficient of dispersion of R̃(t) is
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Table 5.4.4 R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 2)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 932 0.98001 0.98152 0.98586 0.28999 0.28533 0.28999
2 4035 0.76177 0.77232 0.76762 0.10257 0.1056 0.10257
3 4696 0.70583 0.71724 0.71168 0.06987 0.07284 0.06987
4 4893 0.68922 0.70079 0.69507 0.06136 0.06423 0.06136
5 6369 0.56902 0.58053 0.57487 0.01626 0.01773 0.01626
6 6524 0.55702 0.5684 0.56287 0.01334 0.01465 0.01334
7 7882 0.45834 0.46798 0.46419 0.00028 0.00043 0.00028
8 8170 0.43903 0.44818 0.44488 0.00000 0.0000 0.0000
9 9339 0.36675 0.37367 0.3726 0.00559 0.00543 0.00559
10 10400 0.30952 0.31426 0.31537 0.01742 0.01772 0.01742
11 10542 0.30245 0.30689 0.3083 0.01934 0.01973 0.01934
12 11036 0.27889 0.28232 0.28474 0.02644 0.02723 0.02644
13 11696 0.24984 0.25199 0.25569 0.03673 0.03817 0.03673
14 11905 0.24121 0.24296 0.24706 0.04012 0.04178 0.04012
15 12266 0.2269 0.22798 0.23275 0.04606 0.04812 0.04606
16 12954 0.20167 0.20158 0.20752 0.05752 0.06041 0.05752
17 14000 0.16809 0.16642 0.17394 0.07476 0.07892 0.07476

obtained as QD(R̃(t))=0.4427. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2514 and Q3=0.6350. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.4327.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 5.4.2.
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Figure 5.4.2 Curves of R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 2)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 3: Failure data set of Lyu
The failure time data for 10 failures obtained by Lyu (Lyu (2004)) are given in Table
5.4.5.

Table 5.4.5 Failure data set of Lyu

Failure number 1 2 3 4 5 6 7 8 9 10
Failure time 7 18 26 36 51 73 93 118 146 181
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Table 5.4.6 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in

Table 5.4.6 R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 3)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 7 0.9846 0.9866 0.9911 0.22602 0.22367 0.22185
2 18 0.9156 0.9246 0.9221 0.16521 0.16891 0.16165
3 26 0.8462 0.8603 0.8527 0.1136 0.12015 0.11064
4 36 0.75 0.7685 0.7565 0.05801 0.06497 0.05591
5 51 0.6051 0.6254 0.6116 0.0092 0.0125 0.00838
6 73 0.4199 0.4349 0.4264 0.00796 0.0062 0.00877
7 93 0.2907 0.2975 0.2973 0.0477 0.04672 0.04965
8 118 0.1777 0.1753 0.1842 0.10984 0.11449 0.11279
9 146 0.0993 0.091 0.1058 0.16797 0.17861 0.17161

10 181 0.0464 0.0368 0.053 0.21409 0.22736 0.2182

Table 4.4.6 in equations (5.4.4) to (5.4.9), we get,
R̂(t) = 0.51356 ; S2

R̂(t)
= 0.12444 ; R̃(t) = 0.52008; S2

R̃(t)
= 0.12928;

R̆(t) = 0.52008; S2
R̆(t)

= 0.12438.
Hence, using (5.3.3), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.51356− 0.52008 = −0.00653.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.00653) = R̂(t) + 0.00653.

Hence, using equations (5.4.1) to (5.4.3), the coefficient of variation of the three
estimators, are respectively obtained as
CV(R̂(t))=0.6868, CV(R̃(t))=0.6914 and CV(R̆(t))=0.6781.
It can be observed that the Improved Estimator R̆(t) has the least value of coefficient of
variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.1777
and Q3=0.8462. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.6529. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.1753 and Q3=0.8603. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.6615. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.1842 and Q3=0.8527. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.6447.
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It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 5.4.3.
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Figure 5.4.3 Curves of R̂(t), R̃(t) and R̆(t) for Gamma Model (Case study 3)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Table 5.4.7 shows the consolidated values of the coefficient of variation (CV) of R̆(t),
R̂(t) and R̃(t), for all the three case studies. Table 5.4.8 shows the consolidated values
of the coefficient of variation (CV) of R̆(t), R̂(t) and R̃(t), for all the three case studies.
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Table 5.4.7 Gamma Models (Consolidated1)

Case study CV(R̂(t)) CV(R̃(t)) CV(R̆(t))
1 0.6692 0.6714 0.6632
2 0.5305 0.5296 0.5235
3 0.6868 0.6914 0.6781

From Tables 5.4.7 and 5.4.8, it is observed that, the Improved Estimator (R̆(t)) has the

Table 5.4.8 Gamma Models (Consolidated2)

Case study QD(R̂(t)) QD(R̃(t)) QD(R̆(t))
1 0.6691 0.6754 0.6632
2 0.4386 0.4427 0.4327
3 0.6529 0.6615 0.6447

least values of the coefficient of variation and quartile coefficient of dispersion than those
of MLE (R̂(t)) and MVUE (R̃(t)) in all the three case studies, which means that R̆(t) is
more efficient than R̂(t) and R̃(t).
However, to choose the best estimator among the three estimates, the desirable properties
of good estimators as mentioned in Section 1.1 of Chapter 1 are to be considered.
Unbiasedness of R̆(t): It has been shown above that R̂(t) is biased for R(t), while R̃(t)

is unbiased for R(t). Since the Improved Estimators are obtained from MLEs just by
removing the bias present in the MLEs, they satisfy the unbiasedness property. Thus,
R̆(t) is unbiased for R(t).
Sufficiency of R̆(t): Improved Estimator is a function of MLE, which is sufficient. Since
any function of sufficient estimator is also sufficient, Improved Estimator is sufficient.
Now, to compare the biased estimator R̂(t) with unbiased estimators R̃(t) and R̆(t),
the coefficient of variation and the quartile coefficient of dispersion are considered
as measures of dispersion to check the efficiency property. The sample results of
comparison of coefficients of variation and the quartile coefficients of dispersion for
the three estimators indicate that Improved Estimator has least values of coefficient of
variation and the quartile coefficient of dispersion as compared to those of MLE and
MVUE of R(t), which indicates that the Improved estimators are efficient compared to
MLE and MVUE.
Thus, by referring to Table 1.1.1 of Chapter 1, Table 5.4.9 provides the statistical
properties satisfied by MLE, MVUE and the Improved Estimator of reliability for
Gamma class models.
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Table 5.4.9 Gamma class models- Properties satisfied by estimators of reliability

Unbiased Sufficient Efficient
MLE No Yes No

MVUE Yes Yes No
Improved Estimator Yes Yes Yes

It can be seen from Table 5.4.9 that the Improved Estimator satisfies maximum number
of properties of estimators as compared to MLE and MVUE of R(t). Hence, it can be
inferred that the estimate of reliability obtained using the Improved Estimator, is more
efficient than those estimated using the methods of MLE and MVUE.
Hence, it is concluded that R̆(t) gives more accurate value of reliability than R̂(t) and
R̃(t), for Gamma class software reliability models.
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Chapter 6

PARETO CLASS MODELS

In this class of models, the failure times (T ) are assumed to have Pareto distribution
with probability density function, given by

f(t) =
α

β

(
1 +

t

β

)−α−1

=
αβα

(t+ β)α+1
, t > β (6.0.1)

where α denotes the shape parameter and β, the scale parameter.
Eventhough not much work has been done in estimating the reliability of the software
for this model, estimation of failure intensity function has been done by Kuo and Yang
(Kuo and Yang (1995)). Baysian approach was used to estimate the software reliability.
Some statistical tools, such as statistical usage testing have also been used in estimating
the reliability of the software (Guen et al. (2004)). These are not specific to any model,
but can be used for all class and types of model, including the Pareto model. Expectation
maximization principle was used by Hiroyuki et. al (Okamura et al. (2003)) to estimate
the parameters of Pareto model.

The random variable T , having the pdf as given in (6.0.1) is written as T ∼ P (α, β).
The reliability function at time t, denoted byR(t), is obtained as

R(t) = P (T > t) =

∞∫
t

f(t)dt =

∞∫
t

α

β

(
1 +

t

β

)−α−1

dt (6.0.2)

With suitable substitution and simplification, the above expression reduces to,

R(t) =
(

1 +
t

β

)−α
(6.0.3)
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It is intended to obtain the estimates of this reliability using the methods of MLE and
MVUE.

6.1 MLE OFR(t)

Since MLEs satisfy the invariance property, the MLE of R(t), denoted by R̂(t) is
obtained as

R̂(t) =

(
1 +

t

β̂

)−α̂
(6.1.1)

where α̂ and β̂ are the MLEs of α and β (if β is unknown) respectively.

To find the MLE ofα: Let (T1, T2, . . . Tn) be a sample of size n from Pareto distribution
as given in (6.0.1). Then, the likelihood function of this sample is given by

L =
n∏
i=1

f(ti) = αnβnα
n∏
i=1

1

(ti + β)α+1
(6.1.2)

Maximizing this likelihood function using the concept of differential calculus, the MLE

of α, denoted by α̂, is obtained as the solution of
∂ lnL

∂α
= 0 with

∂2 lnL

∂α2
< 0.

Now,
∂ lnL

∂α
= 0 gives

n

α
+ n ln β −

n∑
i=1

ln(ti + β) = 0, from which, the MLE of α is

obtained as
α̂ =

n
n∑
i=1

(
ln(1 + ti

β̂
)
) (6.1.3)

To find the MLE of β: If the value of β is unknown, the MLE of β is the value of β
that maximizes the likelihood function. It can be observed from the likelihood function
as obtained in (6.1.2) that L is maximum, if β is maximum. Since β < t, the maximum
value that β can take in the sample considered (T1, T2, . . . Tn), is T1. Hence, the MLE of
β is obtained as

β̂ = t1 (6.1.4)

Using (6.1.3) and (6.1.4) in (6.1.1), the MLE of R(t), denoted by R̂(t), is obtained as

R̂(t) =

(
1 +

t

t1

)−( n
n∑
i=1

(
ln(1+

ti
t1

)

))
(6.1.5)

78



6.2 MVUE OFR(t)

To find the MVUE of R(t), define a function of the random variable T1 as

U(t1) =

1 if t1 > t

0 otherwise

Then, E[U(t1)] = 1.P (T1 > t) + 0.P (T1 ≤ t) = P (T1 > t) = R(t).
Therefore, U(t1) is unbiased for R(t).

Complete Sufficient Estimator of (α, β): Taking log on both sides of (6.1.2), the log

likelihood function is given by lnL = nlnα + nαlnβ − (α + 1)
n∑
i=1

ln((ti + β)).

This can be written as lnL = nlnα + α
n∑
i=1

lnβ − (α + 1)
n∑
i=1

ln(ti + β).

i.e., lnL = nlnα + α
n∑
i=1

lnβ − α
n∑
i=1

ln(ti + β)−
n∑
i=1

ln(ti + β).

i.e., lnL = nlnα− α
( n∑

i=1

ln(ti + β)−
n∑
i=1

lnβ
)
−

n∑
i=1

ln(ti + β).

i.e., lnL = nlnα−
n∑
i=1

ln(ti + β)− α
n∑
i=1

ln
(
ti + β

β

)
.

i.e., lnL = nlnα−
n∑
i=1

ln(ti + β)− α
n∑
i=1

ln
(

1 +
ti
β

)
.

Now, applying the factorization theorem (as explained in Chapter 1), it can be seen that
the log likelihood function (and hence L) depends on α, β and ti, only through the value

of
n∑
i=1

ln
(

1 +
ti
β

)
. Thus, the sufficient estimator of (α, β) is

n∑
i=1

ln
(

1 +
ti
β

)
.

Since each Ti ∼ P (α, β), ln(1 +
ti
β

) ∼ E (α) (Section 4 of Appendix A) and hence
n∑
i=1

ln
(

1 +
ti
β

)
∼ G(n, α) (Section 1 of Appendix A). Further, by Result 3 of Appendix

A, the estimator
n∑
i=1

ln
(

1+
ti
β

)
is also the complete statistic and hence it is the complete

sufficient estimator of (α, β).
Also, U(t1) is an unbiased estimator of R(t) and R(t) is a function of α and β, as given
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in (6.0.3). Hence, by Theorem 1 of Chapter 1, the MVUE of R(t) is obtained as

R̃(t) = E(U(t1)|X) =

∞∫
t

f(t1|x)dt1

where f(t1|x) denotes the conditional pdf of T1 given X and is given by

f(t1|x) =
g(t1, x)

h(x)
,

where g(t1, x) denotes the joint pdf of T1 and X and h(x) denotes the marginal pdf of
X .
Hence, the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

g(t1, x)

h(x)
dt1 (6.2.1)

Since each Ti ∼ P (α, β), ln(1 +
ti
β

) ∼ E (α) and hence X ∼ G(n, α) (Appendix A).

Hence, the pdf of X is given by

h(x) =
1

Γ(n)
αne−αxxn−1, x > 0 (6.2.2)

To find the pdf g(t1, x), split the sample (T1, T2, T3, . . . Tn) into two samples as T1 of
size one and (T2, T3, T4, . . . Tn) of size (n− 1).

Since T1 and
n∑
i=2

(
ln(1+

ti
β

)
)

are independent, the joint pdf of T1 and
n∑
i=2

(
ln(1+

ti
β

)
)

is obtained as

g

(
t1,

n∑
i=2

(
ln(1 +

ti
β

)
))

= f(t1) · h
( n∑

i=2

(
ln(1 +

ti
β

)
))

,

where f(t1) and h
( n∑

i=2

(
ln(1 +

ti
β

)
))

denote the pdfs of T1 and
n∑
i=2

(
ln(1 +

Ti
β

)
)

respectively.

Since T1 ∼ P (α, β), the pdf of T1 is given by f(t1) =
αβα

(t1 + β)α+1
.

Also, since X =
n∑
i=1

(
ln(1 +

ti
β

)
)
∼ G(n, α), we have,

Y =
n∑
i=2

(
ln(1 +

ti
β

)
)
∼ G(n− 1, α).

Hence, pdf of Y is given by h(y) =
1

Γ(n− 1)
αn−1e−αyyn−2.

Since T1 and Y are independent, the joint pdf of T1 and Y is obtained as
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g(t1, y) = f(t1) · h(y) =
αβα

(t1 + β)α+1

1

Γ(n− 1)
αn−1e−αyyn−2.

Considering the transformation Y = X − ln
(

1 +
t1
β

)
and noting that modulus of the

Jacobian of the inverse transformation is one (Appendix B), the joint pdf of T1 and X is
obtained as

g(t1, x) =
αβα

(t1 + β)α+1

αn−1

Γ(n− 1)
e−αyyn−2 (6.2.3)

Substituting (6.2.2) and (6.2.3) in (6.2.1), the MVUE of R(t) is obtained as

R̃(t) =

∞∫
t

αβα

(t1+β)α+1
αn−1

Γ(n−1)
e−αyyn−2

1
Γ(n)

αne−αxxn−1
dt1

i.e.,R̃(t) =

∞∫
t

Γ(n)

Γ(n− 1)

αnβα

αn(t1 + β)α+1

e−αy

e−αx
yn−2

xn−1
dt1

i.e., R̃(t) =

∞∫
t

(n− 1)Γ(n− 1)

Γ(n− 1)

βα

(t1 + β)α+1

e−αy

e−αx
yn−2

xn−1
dt1

which reduces to

R̃(t) =

∞∫
t

(n− 1)

(t1 + β)α+1
βαe−αy+αx y

n−2

xn−1
dt1.

On replacing y by
(
x − ln(1 +

t1
β

)
)
, so that x − y = ln(1 +

t1
β

), the above equation

reduces to

R̃(t) =

∞∫
t

(n− 1)

(t1 + β)α+1
βαeα ln(1+

t1
β

)
(x− ln(1 + t1

β
))n−2

xn−1
dt1,

i.e., R̃(t) =

∞∫
t

(n− 1)

(t1 + β)α+1
βα(eln(1+

t1
β

))α
(x− ln(1 + t1

β
))n−2

xn−2

1

x
dt1

i.e., R̃(t) =

∞∫
t

(n− 1)

(t1 + β)α+1
βα
(

1 +
t1
β

)α(
1−

ln(1 + t1
β

)

x

)n−2
1

x
dt1

i.e., R̃(t) =

∞∫
t

(n− 1)

(t1 + β)α+1
βα

(t1 + β)α

βα

(
1−

ln(1 + t1
β

)

x

)n−2
1

x
dt1,
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which can be written as

R̃(t) =

∞∫
t

(n− 1)

(t1 + β)

(
1−

ln(1 + t1
β

)

x

)n−2
1

x
dt1

On replacing x by
n∑
i=1

ln
(

1 +
ti
β

)
, the above integral becomes

R̃(t) =

∞∫
t

(n− 1)

β

1

(1 + t1
β

)

1
n∑
i=1

ln
(

1 + ti
β

)(1−
ln(1 + t1

β
)

n∑
i=1

ln
(

1 + ti
β

))n−2

dt1

The above integral converges if ln
(

1 +
t1
β

)
<

n∑
i=1

ln
(

1 +
ti
β

)
.

i.e., if
(

1 +
t1
β

)
< e

n∑
i=1

ln

(
1+

ti
β

)
=⇒ t1

β
< e

n∑
i=1

ln

(
1+

ti
β

)
− 1.

Hence, t1 < β

(
e

n∑
i=1

ln

(
1+

ti
β

)
− 1

)
.

This is the upper limit of the above integral and hence, R̃(t) is obtained as

R̃(t) =
(n− 1)

β
n∑
i=1

ln
(

1 + ti
β

)
β

(
e

n∑
i=1

ln

(
1+

ti
β

)
−1

)
∫
t

1(
1 + t1

β

)(1−
ln(1 + t1

β
)

n∑
i=1

ln
(

1 + ti
β

))(n−2)

dt1

i.e.,R̃(t) = −

(
1−

ln(1 + t1
β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)∣∣∣∣∣
β

(
e

n∑
i=1

ln

(
1+

ti
β

)
−1

)
t

i.e.,R̃(t) = −

(
1−

ln

(
1 +

β

(
e

n∑
i=1

ln

(
1+

ti
β

)
−1

)
β

)
n∑
i=1

ln
(

1 + ti
β

) )(n−1)

+

(
1−

ln

(
1 + t

β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)
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Further steps of simplification are provided below:

R̃(t) = −

(
1−

ln

(
e

n∑
i=1

ln

(
1+

ti
β

))
n∑
i=1

ln
(

1 + ti
β

) )(n−1)

+

(
1−

ln

(
1 + t

β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)

= −

(
1−

n∑
i=1

ln
(

1 + ti
β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)

+

(
1−

ln

(
1 + t

β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)

= −(1− 1) +

(
1−

ln

(
1 + t

β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)

=

(
1−

ln

(
1 + t

β

)
n∑
i=1

ln
(

1 + ti
β

))(n−1)

Hence, the expression for MVUE of R(t) is obtained as,

R̃(t) =



(
1−

ln(1 + t
β
)

n∑
i=1

ln(1 + ti
β

)

)n−1

where ln(1 +
t

β
) <

n∑
i=1

ln
(

1 +
ti
β

)
0 otherwise

(6.2.4)

6.3 IMPROVED ESTIMATOR OFR(t)

The reliability function for Pareto class models is given by

R(t) =
(

1 +
t

β

)−α
= 1− αt

β
+

(−α)(−α− 1)

2!

( t
β

)2
+

(−α)(−α− 1)(−α− 2)

3!

( t
β

)3
+ . . .

(6.3.1)

R̂(t) and R̃(t) are unbiased for R(t), if (i) E(R̂(t)) = R(t) and (ii) E(R̃(t)) = R(t)

respectively.

To check whether R̂(t) is unbiased or not, consider
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E(R̂(t)) = E

((
1 +

t

β

)− n
n∑
i=1

ln(1+
ti
β

)

)
, where β is taken as its estimated value t1.

Taking X =
n∑
i=1

ln(1 +
ti
β

), we have,

E(R̂(t)) = E

((
1 +

t

β

)− n
X

)
= E

(
1− n

X

t

β
+

(− n
X

)(− n
X
− 1)

2!
(
t

β
)2 + . . .

)
.

Since X ∼ G(n, α), (Section 1 of Appendix A), it can be observed that,

E
( 1

X

)
=

∞∫
0

1

x

αn

Γ(n)
e−xαxn−1dx

=
αn

Γ(n)

∞∫
0

e−αxxn−2dx

=
αn

Γ(n)

Γ(n− 1)

αn−1
(Result 4 of Appendix A)

=
αΓ(n− 1)

(n− 1)Γ(n− 1)
=

α

n− 1
.

Similarly, E
( 1

X2

)
=

∞∫
0

1

x2

αn

Γ(n)
e−xαxn−1dx

=
αn

Γ(n)

∞∫
0

e−αxxn−3dx

=
αn

Γ(n)

Γ(n− 2)

αn−2
(Result 4 of Appendix A)

=
α2Γ(n− 2)

(n− 1)(n− 2)Γ(n− 2)
=

α2

(n− 1)(n− 2)
.

E
( 1

X3

)
=

∞∫
0

1

x3

αn

Γ(n)
e−xαxn−1dx

=
αn

Γ(n)

∞∫
0

e−αxxn−4dx

=
αn

Γ(n)

Γ(n− 3)

αn−3
(Result 4 of Appendix A)

=
α3Γ(n− 3)

(n− 1)(n− 2)(n− 3)Γ(n− 3)

=
α3

(n− 1)(n− 2)(n− 3)
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and so on.
Thus E(R̂(t)) = 1−

( t
β

) nα

(n− 1)
+
( t
β

)2n2α2 + n2α− 2nα

(n− 1)(n− 2)
+ . . . 6= R(t).

Hence, R̂(t) is not unbiased for R(t).

To verify that R̃(t) is unbiased for R(t), consider

E(R̃(t)) = E

(
1−

ln(1 + t
β
)

n∑
i=1

ln(1 + ti
β

)

)n−1

= E

(
1−

ln(1 + t
β
)

X

)n−1

.

i.e. E(R̃(t)) =E

(
1− (n− 1)

ln(1 + t
β
)

X
+

(n− 1)(n− 2)

2!

ln(1 + t
β
)2

X2

− (n− 1)(n− 2)(n− 3)

3!

ln(1 + t
β
)3

X3
+ . . .

)

Thus, E(R̃(t)) = 1− α
( t
β

)
+

(−α)(−α− 1)

2!

( t
β

)2

+
(−α)(−α− 1)(−α− 2)

3!

( t
β

)3

+ . . .

= R(t)

Hence, R̃(t) is unbiased for R(t).

Since R̂(t) is biased for R(t) and R̃(t) is unbiased for R(t), the bias of R̂(t) is given by

Bias(R̂(t)) = E(R̂(t))−R(t) = E(R̂(t))− E(R̃(t))

= −
(Φt2

2

)( (2n)2

(2n− 1)(2n− 2)
− 1
)

+
(Φt3

3

)( (2n)3

(2n− 1)(2n− 2)(2n− 3)
− 1
)

+ . . .

The bias can hence be found for the given sample failure data, by using the estimated
values of R̂(t) and R̃(t).
Hence, if T = {t1, t2, . . . tn} is the given sample failure data set of size n, then the bias
is obtained by taking the difference in the means of R̂(t) and R̃(t) and is obtained as

Bias(R̂(t)) =

∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n
(6.3.2)
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Removing this bias from R̂(t), the Improved Estimator of R(t), denoted by R̆(t) is
obtained as

R̆(t) = R̂(t)− Bias(R̂(t)) = R̂(t)−

(∑
tεT

R̂(t)

n
−

∑
tεT

R̃(t)

n

)
(6.3.3)

In all the above calculations, t is any time instance. For a sample failure time data set T ,
as given above, t is a member of T .

6.4 COMPARISON OF ESTIMATES

The three estimators of reliability are to be compared by comparing the properties
satisfied by them. The Improved Estimator of R(t) is unbiased and sufficient, as it is
obtained from MLE of R(t), by removing the bias present in it. The only property
to be checked thus, is the efficiency property. Since MLE of R(t) is biased as shown
above, while MVUE of R(t) and Improved Estimator of R(t) are unbiased, coefficient
of variation is used as a measure of dispersion instead of the variance, as mentioned in
Section 1.1 of Chapter 1. The estimate with the least value of the coefficient of variation
is considered as the efficient estimator. The comparison is also done by considering the
quartile coefficient of dispersion, as mentioned in Section 1.1 of Chapter 1. Even with
this measure, the estimate with the least value of the quartile coefficient of dispersion is
considered as the efficient estimator. For this purpose, the following case studies have
been considered and the three estimates have been found. The coefficients of variation
and quartile coefficient of dispersion for these three estimates have also been obtained.
For all the case studies, CV(R̂(t)), CV(R̃(t)) and CV(R̆(t)) are respectively obtained
using

CV(R̂(t)) =
SR̂(t)

R̂(t)
(6.4.1)

CV(R̃(t)) =
SR̃(t)

R̃(t)
(6.4.2)

CV(R̆(t)) =
SR̆(t)

R̆(t)
(6.4.3)

Here, the sample variances S2
R̂(t)

, S2
R̃(t)

and S2
R̆(t)

are respectively obtained using

S2
R̂(t)

=
∑
tεT

(
R̂(t)− R̂(t)

)2

(n− 1)
(6.4.4)
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S2
R̃(t)

=
∑
tεT

(
R̃(t)− R̃(t)

)2

(n− 1)
(6.4.5)

S2
R̆(t)

=
∑
tεT

(
R̆(t)− R̆(t)

)2

(n− 1)
(6.4.6)

Further, the sample means R̂(t), R̃(t), and R̆(t) are respectively obtained using

R̂(t) =

∑
tεT

R̂(t)

n
(6.4.7)

R̃(t) =

∑
tεT

R̃(t)

n
(6.4.8)

R̆(t) =

∑
tεT

R̆(t)

n
(6.4.9)

Case study 1: On-Line Data Entry IBM Software Package
The data reported by Ohba (Ohba (1984)) are recorded from testing an on-line data entry
software package developed at IBM. There are 15 failures, with failure times as indicated
in Table 6.4.1.

Table 6.4.1 On-Line Data Entry IBM Software Package

Failure Number 1 2 3 4 5 6 7 8 9 10
Failure Time 10 19 32 43 58 70 88 103 125 150

Failure Number 11 12 13 14 15
Failure Time 169 199 231 256 296

For this case study, β is estimated as β̂ = t1 = 10.
Table 6.4.2 denotes the MLE, MVUE and the Improved Estimator of reliability functions
for Pareto class models. In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of
deviations of R̂(t), R̃(t) and R̆(t) from their corresponding means respectively. Using
the values obtained in Table 6.4.2 in equations (6.4.4) to (6.4.9), we get,
R̂(t) = 0.391703 ; S2

R̂(t)
= 0.0231 ; R̃(t) = 0.403189; S2

R̃(t)
= 0.0237;

R̆(t) = 0.403189; S2
R̆(t)

= 0.0229.
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Table 6.4.2 R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 1)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 10 0.7414 0.7542 0.75289 0.12229 0.12321 0.12229
2 19 0.63153 0.64682 0.64301 0.05752 0.05936 0.05752
3 32 0.53822 0.55407 0.5497 0.02147 0.02276 0.02147
4 43 0.4868 0.50229 0.49828 0.00904 0.00982 0.00904
5 58 0.43714 0.45183 0.44863 0.00206 0.00237 0.00206
6 70 0.40753 0.42151 0.41901 0.00025 0.00034 0.00025
7 88 0.37334 0.38629 0.38483 0.00034 0.00029 0.00034
8 103 0.35108 0.36323 0.36257 0.00165 0.0016 0.00165
9 125 0.32513 0.33623 0.33662 0.00443 0.00448 0.00443
10 150 0.30214 0.31218 0.31363 0.00802 0.00828 0.00802
11 169 0.28785 0.29719 0.29934 0.01078 0.01124 0.01078
12 199 0.26923 0.27759 0.28072 0.015 0.01578 0.015
13 231 0.25317 0.26063 0.26466 0.01919 0.02032 0.01919
14 256 0.24261 0.24945 0.2541 0.02223 0.02364 0.02223
15 296 0.22837 0.23434 0.23986 0.02668 0.02851 0.02668

Hence, using (6.3.2), the bias in R̂(t) is obtained as
Bias(R(t)) = 0.391703− 0.403189 = −0.01148.
Thus, the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.01148) = R̂(t) + 0.01148.
Also, using equations (6.4.1) to (6.4.3), the coefficient of variation of the three estimators,
are respectively obtained as
CV(R̂(t))=0.3880, CV(R̃(t))=0.3818 and CV(R̆(t))=0.3755.
It can be observed that the Improved Estimator R̆(t) has the least value of the coefficient
of variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2692
and Q3=0.4868. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.2878. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2776 and Q3=0.5023. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.2881. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2807 and Q3=0.4983. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.2793.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 6.4.1.
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Figure 6.4.1 Curves of R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 1)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 2: Nuclear Power Agency
A nuclear power agency uses a computer-based monitoring system for its reactors. The
operating system for the computer is employed for this and other applications in an
estimated 5000 installations throughout the world. A total of 17 failures have occurred
with failure times as listed in Table 6.4.3 (Musa et al. (1991)).
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Table 6.4.3 Nuclear Power Agency

Failure number 1 2 3 4 5 6
Failure time 932 4035 4696 4893 6369 6524

Failure number 7 8 9 10 11 12
Failure time 7882 8170 9339 10400 10542 11036

Failure number 13 14 15 16 17
Failure time 11696 11905 12266 12954 14000

For this case study, β is estimated as β̂ = t1 = 932.
Table 6.4.4 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively. Using the values obtained in

Table 6.4.4 R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 2)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 932 0.73324 0.74473 0.74384 0.12572 0.12633 0.12572
2 4035 0.47283 0.48629 0.48343 0.00887 0.00941 0.00887
3 4696 0.44711 0.46019 0.45771 0.00468 0.00503 0.00468
4 4893 0.44028 0.45324 0.45088 0.0038 0.00409 0.0038
5 6369 0.39794 0.40998 0.40854 0.00037 0.00043 0.00037
6 6524 0.39422 0.40617 0.40482 0.00024 0.00028 0.00024
7 7882 0.36577 0.37691 0.37637 0.00017 0.00015 0.00017
8 8170 0.36054 0.37152 0.37114 0.00033 0.00032 0.00033
9 9339 0.34156 0.3519 0.35216 0.00138 0.0014 0.00138
10 10400 0.32685 0.33666 0.33745 0.00269 0.00277 0.00269
11 10542 0.32504 0.33478 0.33564 0.00288 0.00297 0.00288
12 11036 0.31896 0.32847 0.32956 0.00357 0.0037 0.00357
13 11696 0.31139 0.32059 0.32199 0.00453 0.00472 0.00453
14 11905 0.30911 0.31822 0.31971 0.00484 0.00505 0.00484
15 12266 0.30529 0.31425 0.31589 0.00538 0.00563 0.00538
16 12954 0.29843 0.30709 0.30903 0.00644 0.00676 0.00644
17 14000 0.28888 0.29713 0.29948 0.00806 0.00849 0.00806

Table 6.4.4 in equations (6.4.4) to (6.4.9), we get,
R̂(t) = 0.37867 ; S2

R̂(t)
= 0.0116 ; R̃(t) = 0.38930; S2

R̃(t)
= 0.0117;

R̆(t) = 0.38927; S2
R̆(t)

= 0.0115.

Hence, using (6.3.2), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.37867− 0.38930 = −0.01063.
Removing this bias from R̂(t), the Improved Estimator is obtained as
R̆(t) = R̂(t)− (−0.01063) = R̂(t) + 0.01063.
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Using equations (6.4.1) to (6.4.3), the coefficient of variation of the three estimators, are
respectively obtained as
CV(R̂(t))=0.2844, CV(R̃(t))=0.2778 and CV(R̆(t))=0.2754.
It can be observed that the Improved Estimator R̆(t) has the least value of the coefficient
of variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.3103
and Q3=0.4191. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.1492. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.3194 and Q3=0.4316. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.1494. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.3209 and Q3=0.4297. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.1450.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Figure 6.4.2.
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Figure 6.4.2 Curves of R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 2)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Case study 3: Failure data set of Lyu
The failure time data for 10 failures obtained by Lyu (Lyu (2004)) are given in Table
6.4.5.

Table 6.4.5 Failure data set of Lyu

Failure number 1 2 3 4 5 6 7 8 9 10
Failure time 7 18 26 36 51 73 93 118 146 181
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For this case study, β is estimated as β̂ = t1 = 7.
Table 6.4.6 denotes the values of MLE, MVUE and the Improved Estimator of reliability.
In this table, SDR̂(t), SDR̃(t) and SDR̆(t) denote the squares of deviations of R̂(t), R̃(t)

and R̆(t) from their corresponding means respectively.
Using the values obtained in Table 6.4.6 in equations (6.4.4) to (6.4.9), we get,

Table 6.4.6 R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 3)

Failure Failure
R̂(t) R̃(t) R̆(t) SDR̂(t) SDR̃(t) SDR̆(t)Number Time(t)

1 7 0.72763 0.74765 0.74498 0.1111 0.11288 0.1111
2 18 0.55769 0.58186 0.57505 0.02669 0.02897 0.02669
3 26 0.491 0.51475 0.50836 0.00935 0.01062 0.00935
4 36 0.43486 0.45726 0.45222 0.00164 0.00208 0.00164
5 51 0.37908 0.3992 0.39644 0.00023 0.00016 0.00023
6 73 0.32709 0.3442 0.34445 0.00452 0.00455 0.00452
7 93 0.29527 0.3101 0.31262 0.00981 0.01032 0.00981
8 118 0.26654 0.27904 0.28389 0.01633 0.01759 0.01633
9 146 0.24293 0.25333 0.26029 0.02292 0.02507 0.02292
10 181 0.22103 0.22931 0.23838 0.03003 0.03326 0.03003

R̂(t) = 0.39431 ; S2
R̂(t)

= 0.0258 ; R̃(t) = 0.41167; S2
R̃(t)

= 0.0273;

R̆(t) = 0.41167; S2
R̆(t)

= 0.0258.
Hence, using (6.3.2), the bias in R̂(t) is obtained as
Bias(R̂(t)) = 0.39431− 0.41167 = −0.01736.
Removing this bias from R̂(t), the Improved Estimator of R(t) is obtained as
R̆(t) = R̂(t)− (−0.01736) = R̂(t) + 0.01736.
Using equations (6.4.1) to (6.4.3), the coefficient of variation of the three estimators, are
respectively obtained as
CV(R̂(t))=0.4077, CV(R̃(t))=0.4012 and CV(R̆(t))=0.3905.
It can be observed that the Improved Estimator (R̆(t)) has the least value of the coefficient
of variation as compared to those of R̂(t) and R̃(t).
Further, the first and third quartiles of R̂(t) are respectively obtained as Q1=0.2665
and Q3=0.4910. Thus, the quartile coefficient of dispersion of R̂(t) is obtained as
QD(R̂(t))=0.2964. The first and third quartiles of R̃(t) are respectively obtained as
Q1=0.2790 and Q3=0.5148. Hence, the quartile coefficient of dispersion of R̃(t) is
obtained as QD(R̃(t))=0.2969. Also, the first and third quartiles of R̆(t) are respectively
obtained as Q1=0.2839 and Q3=0.5084. Thus, the quartile coefficient of dispersion of
R̆(t) is obtained as QD(R̆(t))=0.2833.
It can be observed that the Improved Estimator R̆(t) has the least value of the quartile
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coefficient of dispersion as compared to those of R̂(t) and R̃(t).

The reliability curves of R̂(t), R̃(t) and R̆(t) are shown in Fig. 6.4.3.
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Figure 6.4.3 Curves of R̂(t), R̃(t) and R̆(t) for Pareto Model (Case study 3)

From the three reliability curves, it can be observed that the value of the reliability in
the early stages obtained from R̆(t) is more closer to one than the values of reliability
obtained from R̂(t) and R̃(t). Further, it is observed that the estimated values of
reliability corresponding to R̆(t) are slightly higher than those of R̂(t) and R̃(t) for most
of the time instances.

Table 6.4.7 shows the consolidated values of the coefficient of variation (CV) of R̂(t),
R̃(t) and R̆(t) for all the three case studies. Table 6.4.8 shows the consolidated values of
the quartile coefficient of dispersion (QD) of R̂(t), R̃(t) and R̆(t) for all the three case
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Table 6.4.7 Pareto Models (Consolidated1)

Case study CV(R̂(t)) CV(R̃(t)) CV(R̆(t))
1 0.388 0.3818 0.3755
2 0.2844 0.2778 0.2754
3 0.4077 0.4012 0.3905

Table 6.4.8 Pareto Models (Consolidated2)

Case study QD(R̂(t)) QD(R̃(t)) QD(R̆(t))
1 0.2878 0.2881 0.2793
2 0.1492 0.1494 0.1450
3 0.2964 0.2969 0.2833

studies. From Tables 6.4.7 and 6.4.8, it is observed that, the Improved Estimator (R̆(t))
has the least values of the coefficient of variation and quartile coefficient of dispersion
than those of MLE (R̂(t)) and MVUE (R̃(t)) in all the three case studies, which means
that R̆(t) is more efficient than R̂(t) and R̃(t).
However, to choose the best estimator among the three estimates, the desirable properties
of good estimators as mentioned in Section 1.1 of Chapter 1 are to be considered.
Unbiasedness of R̆(t): It has been shown above that R̂(t) is biased for R(t), while R̃(t)

is unbiased for R(t). Since the Improved Estimators are obtained from MLEs just by
removing the bias present in the MLEs, they satisfy the unbiasedness property. Thus,
R̆(t) is unbiased for R(t).
Sufficiency of R̆(t): Improved Estimator is a function of MLE, which is sufficient. Since
any function of sufficient estimator is also sufficient, Improved Estimator is sufficient.
Now, to compare the biased estimator R̂(t) with unbiased estimators R̃(t) and R̆(t),
the coefficient of variation and the quartile coefficient of dispersion are considered
as a measure of dispersion to check the efficiency property. The sample results of
comparison of coefficients of variation and the quartile coefficients of dispersion for
the three estimators indicate that Improved Estimator has least values of coefficient of
variation and the quartile coefficient of dispersion as compared to those of MLE and
MVUE of R(t), which indicates that the Improved estimators are efficient compared to
MLE and MVUE.
Thus, by referring to Table 1.1.1 of Chapter 1, Table 6.4.9 provides the statistical
properties satisfied by MLE, MVUE and the Improved Estimator of reliability for
exponential class models.
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Table 6.4.9 Pareto class models- Properties satisfied by estimators of reliability

Unbiased Sufficient Efficient
MLE No Yes No

MVUE Yes Yes No
Improved Estimator Yes Yes Yes

It can be seen from Table 6.4.9 that the Improved Estimator satisfies maximum number
of properties of estimators as compared to MLE and MVUE of R(t). Hence, it can be
inferred that the estimate of reliability obtained using the Improved Estimator, is more
efficient than those estimated using the methods of MLE and MVUE.
Hence, it is concluded that R̆(t) gives more accurate value of reliability than R̂(t) and
R̃(t), for Pareto class software reliability models.
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Chapter 7

CONCLUSION AND FUTURE DIRECTIONS

Software quality has become a major concern of all software developers. One
such measure of software quality is the software reliability, which is the probability of
failure-free operation of a computer program in a specified environment for a specified
period of time. Failures, which are random in nature, are described by software reliability
models. Usually, these models are described in terms of the failure time distributions.
Depending on the environment and various other factors, several software reliability
models have been developed. Even though there is no single model that fits in all the
situations, a proper model depending on the user requirements and specific environment
can always be selected. Each such model has certain number of parameters. These
parameters play vital role in determining the reliability measures. Reliability of software
can be measured using various quantities such as - the Mean Time To Failure (MTTF),
the Failure intensity function, the Mean value function, the Failure rate, the Reliability
function etc. However, estimating the reliability of a given software for various models
through the reliability function is a good mode of assessment of reliability, since it helps
the software developers to ensure that user requirements are met and also helps users to
decide whether or not to accept the software.
Herein, the finite failures category software reliability models have been considered.
The reliability of these models have been estimated by considering their failure time
distributions. Exponential, Weibull, Gamma and Pareto class models are considered.
The work is aimed at first obtaining the estimates of reliability for these four classes of
models using the methods of Maximum Likelihood Estimation (MLE) and Minimum
Variance Unbiased Estimation (MVUE). The MVUEs of reliability are always unbiased,
while the MLEs are not always unbiased. It is observed that for the four classes of
models mentioned above, MLEs are biased estimators. The bias in MLEs are hence
obtained using the MVUEs. The MLEs are thus improved by removing the bias present
in them, thus obtaining the Improved Estimators for all class of finite failures category
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models.
The three estimators, viz, the MLE, the MVUE and the Improved Estimators of reliability
are then compared to choose the best estimator amongst them. The desirable properties
of the estimators are considered for this purpose. Few case studies from different fields
have been considered for comparing the estimators by checking the properties satisfied
by them. It is found that the Improved Estimator of reliability satisfies maximum number
of desirable properties of good estimators, while MLE and MVUE satisfy only few
of them, for all finite failures category models. Hence it is concluded that Improved
Estimator gives more accurate value of reliability than MLE and MVUE.
Chapter one gives an overview of the concepts of software reliability, software reliability
models and estimation.
Chapter two deals with a detailed literature review in the filed of estimation of parameters
and reliability for various classes of software reliability models, the outcome of the review
and scope for further research thereby. It also states the objectives and methodology of
the proposed research work.
In chapter three, the exponential class software reliability models have been considered
and the reliability was estimated using the methods of MLE and MVUE. The Improved
Estimator was also obtained. The three estimators were compared using the properties
satisfied by them and the Improved Estimator was shown to be the best estimator
among the three estimators, by using sample failure data. This Improved Estimator of
reliability can be used to estimate the reliability more accurately, for any model, which
has exponential failure time distribution.
In chapter four, the Weibull class models were considered and the estimates of reliability
were obtained using the methods of MLE and MVUE. The Improved Estimator was
also obtained. The three estimators were compared using the properties satisfied by
them and the Improved Estimator was shown to be the best estimator among the three
estimators, by using sample failure data. This Improved Estimator of reliability can be
used to estimate the reliability more accurately, for any model, which has Weibull failure
time distribution.
Chapter five deals with the Gamma class models and the reliability estimates were
obtained using the methods of MLE and MVUE. The MLE was improved by removing
the bias present in it to get the Improved Estimator. By checking the properties satisfied
by the three estimates using sample failure data, Improved Estimator was found to be the
best estimator as compared to MLE and MVUE. This Improved Estimator is applicable
for all software reliability models that have Gamma failure time distribution.
In chapter six, the Pareto class software reliability model has been considered and the
estimates of reliability using the methods of MLE and MVUE were obtained. The

98



estimators are then used to obtain the Improved Estimator. The three estimators are
compared using the desirable properties satisfied by them. A set of sample failure data
from various fields were considered for this purpose. It was found that the Improved
Estimator provides a better estimate of reliability as compared to MLE and MVUE of
reliability. This Improved Estimator is applicable for all software reliability models,
which have failure time distribution as Pareto.

Though the coefficients of variation and the quartile coefficients of dispersion are
considered here as a measures of dispersion to check the efficiency property, the
comparison can further be enhanced by using other measures of dispersion. Further,
statistical testing methods can also be used for validating the above claim. Also, here it
is assumed for Weibull model that only one of the parameters in the model is unknown,
by considering the model due to Schick-Wolverton. This assumption may be relaxed
when both the parameters in the model are unknown. Hence, the work can be extended
in this direction; but in such a case, the complexity may increase. However, a similar
procedure may be adopted to obtain the unbiased, sufficient and efficient estimator of
the reliability.
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Appendix A

Appendix1

Moment Generating function: The moment generating function (mgf) of a random
variable X , having the probability function f(x), denoted by MX(t), is a function that

generates moments and is defined by MX(t) = E(etX) =

∞∫
−∞

etxf(x)dx,

where t is any real parameter>0.

Result 1: The mgf of the sum of a number of independently and identically distributed
random variables is equal to the product of their respective mgfs.
Symbolically, if X1, X2, . . . Xn are independently and identically distributed random
variables, then the mgf of their sum X1 +X2 + . . .+Xn is given by
MX1+X2+...Xn(t) = MX1(t) ·MX2(t) ·MX3(t) . . . ·MXn(t).

Result 2: The mgf of a distribution, if it exists, uniquely determines the distribution.
This implies that corresponding to a given probability distribution, there is only one
mgf and corresponding to a given mgf, there is only one probability distribution. Hence,
MX(t) = MY (t) =⇒ X and Y are identically distributed.

MGF of some standard distributions:
(i) Exponential distribution: Let X ∼ E (Φ). Then, its pdf is f(x) = Φe−Φx, x > 0.
Hence, its mgf is given by

MX(t) = E(etX) =

∞∫
0

etxΦe−Φxdx =

∞∫
0

Φe−x(Φ−t)dx = Φ
( e−x(Φ−t)

−(Φ− t)

)∣∣∣∣∣
∞

0

=
Φ

Φ− t
.

Hence,

MX(t) =
Φ

Φ− t
, Φ > t. (A.0.1)
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(ii) Gamma distribution: Let X ∼ G(α, β). Then, its pdf is

f(x) =
βα

Γ(α)
e−xβxα−1 x > 0, α, β > 0.

Hence, its mgf is given by

MX(t) = E(etX) =

∞∫
0

etx
βα

Γ(α)
e−xβxα−1dx =

βα

Γ(α)

∞∫
0

e(β−t)xxα−1dx

=
βα

Γ(α)

Γ(α)

(β − t)α
=

(
β

β − t

)α

.

Hence,

MX(t) =

(
β

β − t

)α

, β > t. (A.0.2)

Section 1
Sum of independent exponentially distributed random variables is distributed as
Gamma:
The concept of mgf can be used to prove this result. Let X1, X2, . . . Xn be independently

distributed as E (Φ). Then, from (A.0.1), MXi(t) =
Φ

Φ− t
.

Hence, the mgf of the sum X1 +X2 + . . .+Xn is obtained using Result 1 as

MX1+X2+...Xn(t) = MX1(t) ·MX2(t) ·MX3(t) . . . ·MXn(t) =

(
Φ

Φ− t

)n

.

Comparing it with (A.0.2), it can be seen that
n∑
i=1

Xi has G(n,Φ). This result is true for

any number of independent random variables. Hence,
n−1∑
i=1

Xi has G(n− 1,Φ).

Section 2
Power of Weibull distributed random variable is exponential:
Let the r. v. X ∼ W (Φ, β). Then, the pdf of X is given by f(x) = αβxβ−1e−Φxβ , x > 0.
Consider the transformation Y = xβ. Then, the inverse transformation is X = Y

1
β .

Hence,
dy

dx
= βxβ−1. Therefore, the pdf of Y , denoted by g(y) is obtained as

g(y) = f(x) · |dx
dy
|, where x is expressed in terms of y. Now, differentiating y with

respect to x,
dy

dx
= βxβ−1. Hence,

dx

dy
=

1

βxβ−1
. Thus, the pdf of Y is obtained as

g(y) = αβ

(
y

1
β

)β−1

e
−Φ

(
y

1
β

)β

· 1

β

(
y

1
β

)β−1
= Φe−Φy, y > 0.

Hence Y ∼ E (Φ).
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Section 3
Sum of independent Gamma variates is a Gamma variate:
Let X ∼ G(α, β). Let X1, X2, . . . Xn be independently distributed as G(α, β). Then,

from (A.0.2), MX(t) =

(
β

β − t

)α

, β > t..

Hence, the mgf of the sum X1 +X2 + . . .+Xn is obtained using Result 1 as

MX1+X2+...Xn(t) = MX1(t) ·MX2(t) ·MX3(t) . . . ·MXn(t) =

(
β

β − t

)nα

.

Comparing it with (A.0.2), it can be seen that
n∑
i=1

Xi has G(nα, β). This result is true

for any number of independent random variables. Hence,
n−1∑
i=1

Xi has G(α(n− 1), β).

Replacing α by 2 and β by Φ, we have, X ∼ G(2,Φ).

∴MX1+X2+...Xn(t) = MX1(t) ·MX2(t) ·MX3(t) . . . ·MXn(t) =

(
Φ

Φ− t

)2n

, which is

the mgf of Gamma random variable with parameters 2n and Φ.

Hence, if X ∼ G(2,Φ), then
n∑
i=1

Xi ∼ G(2n,Φ).

Section 4
Log of Pareto r.v. is exponential r.v.:

Let X ∼ P (α, β). Then its pdf is given by f(x) =
αβα

(x+ β)α+1
.

Consider the transformation Y = ln
(

1 +
X

β

)
. Hence, 1 +

X

β
= eY , so that

X

β
= eY − 1

and hence, X = β(eY − 1). i.e., X + β = βeY . Therefore,
dx

dy
= βey.

Hence, the pdf of Y is given by g(y) = f(x)|dx
dy
|, where x is expressed in terms of y.

i.e., g(y) =
αβα

(βey)α+1
βey =

αβα

βey(βey)α
βey = αe−αy, which is the pdf of exponential

distribution with parameter α. Hence, Y ∼ E (α).
Also, since sum of n independent exponential r.v.s is a Gamma r.v. as established in
Section 1 above,
n∑
i=1

Yi ∼ G(n, α).

Result 3: Let the statistic T have Gamma distribution G(n, α) with pdf f(t) =
Φn

Γ(n)
e−Φttn−1. Then, T is a complete statistic.

i.e., E(h(T )) = 0 for every Φ implies h(t) = 0, where h(T ) is any function of T .

102



Proof: Consider E(h(T )) = 0.

i.e.,

∞∫
0

h(t)
Φn

Γ(n)
e−Φttn−1dt = 0, which implies

Φn

Γ(n)

∞∫
0

e−Φt{h(t) · tn−1}dt = 0.

i.e., L{h(t) · tn−1} = 0, which implies h(t) · tn−1 = L−1(0), where L denotes the
Laplace transform.

∴ h(t) · tn−1 = 0. This implies either h(t) = 0 or tn−1 = 0.

But, tn−1 6= 0. Hence, h(t) = 0.

Result 4: For any variable x,

∞∫
0

e−axxn−1dx =
Γ(n)

an
.
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Appendix B

Appendix2

(i) Consider the transformation U = X+Y and V = X , where U =
n∑
i=1

Ti and V = T1,

so that U = X + Y implies
n∑
i=1

Ti = T1 +
n∑
i=2

Ti. Thus, the inverse transformation is

X = V and Y = U − V . i.e., X = T1 and Y =
n∑
i=1

Ti − T1 =
n∑
i=2

Ti.

Hence, the Jacobian of this inverse transformation is given by

J =

∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂t1

∂
n∑
i=1

ti

∂t1
∂t1

∂
n∑
i=2

ti

∂
n∑
i=1

ti

∂
n∑
i=2

ti

∂t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(∂ n∑
i=1

ti

∂t1

) 1

1(∂ n∑
i=1

ti

∂
n∑
i=2

ti

) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i.e.,J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(∂(t1+
n∑
i=2

ti)

∂t1

) 1

1(∂(t1+
n∑
i=2

ti)

∂
n∑
i=2

ti

) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

1 + 0
1

1

0 + 1
0

∣∣∣∣∣∣∣ =

∣∣∣∣∣1 1

1 0

∣∣∣∣∣ = −1

Hence, | J |= 1.

(ii) Consider the transformation U = X + Y and V = X , where U =
n∑
i=1

T βi and

V = T β1 , so that U = X + Y implies
n∑
i=1

T βi = T β1 +
n∑
i=2

T βi . Thus, the inverse

transformation isX = V and Y = U−V . i.e.,X = T β1 and Y =
n∑
i=1

T βi −T
β
1 =

n∑
i=2

T βi .
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Hence, the Jacobian of this inverse transformation is given by

J =

∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂tβ1

∂
n∑
i=1

tβi

∂tβ1

∂tβ1

∂
n∑
i=2

tβi

∂
n∑
i=1

tβi

∂
n∑
i=2

tβi

∂tβ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(∂ n∑
i=1

tβi

∂tβ1

) 1

1(∂ n∑
i=1

tβi

∂
n∑
i=2

tβi

) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

i.e.,J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1(∂(tβ1 +
n∑
i=2

tβi )

∂tβ1

) 1

1(∂(tβ1 +
n∑
i=2

tβi )

∂
n∑
i=2

tβi

) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

1 + 0
1

1

0 + 1
0

∣∣∣∣∣∣∣ =

∣∣∣∣∣1 1

1 0

∣∣∣∣∣ = −1

Hence, | J |= 1.

(iii) Consider the transformation U = X+Y and V = X , where U =
n∑
i=1

ln(1+
Ti
β

) and

V = ln(1+
T1

β
), so that U = X+Y implies

n∑
i=1

ln(1+
Ti
β

) = ln(1+
T1

β
)+

n∑
i=2

ln(1+
Ti
β

).

Thus, the inverse transformation is X = V and Y = U − V . i.e., X = ln(1 +
T1

β
) and

Y =
n∑
i=2

ln(1 +
Ti
β

).

Hence, the Jacobian of this inverse transformation is given by

J =

∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ln(1 + t1
β

)

∂
n∑
i=1

ln(1 + ti
β

)

∂ln(1 + t1
β

)

∂ln(1 + t1
β

)

∂
n∑
i=2

ln(1 + ti
β

)

∂
n∑
i=1

ln(1 + ti
β

)

∂
n∑
i=2

ln(1 + ti
β

)

∂ln(1 + t1
β

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

1 + 0
1

1

0 + 1
0

∣∣∣∣∣∣∣ =

∣∣∣∣∣1 1

1 0

∣∣∣∣∣ = −1

Hence, | J |= 1.
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