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ABSTRACT

A major task in Systems Biology is to conduct accurate mechanistic

simulations of multistep reactions. The simulation of a biological process

from experimental data requires detailed knowledge of its model structure

and kinetic parameters. Despite advances in experimental techniques,

estimating unknown parameter values from observed data remains a

bottleneck for obtaining accurate simulation results. Therefore, the goal is to

focus on development of computationally efficient parameter inference

methods for characterizing transcriptional bursting process, for inferring

unknown kinetic parameters, given single-cell time-series data.

Many biochemical events involve multistep reactions. One of the most

important biological processes in gene expression, which involve multistep

reactions, is the transcriptional process. Models for multistep reactions

necessarily need multiple states, and it is a challenge to compute model

parameters that best agree with experimental data. To address this issue,

first, a novel model reduction strategy is devised, representing several

number of promoter OFF states by a single state, accompanied by specifying

a time delay for burst frequency. This model approximates complex

promoter switching behavior with Erlang-distributed ON/OFF times. To

explore combined effects of parameter inference and simulation, using this

model reduction, two inference methods are developed namely, Delay-Bursty

MCEM and Clumped-MCEM. These methods are applied to time-series data

of endogenous mouse glutaminase promoter to validate model assumptions

and infer the values of kinetic parameters. Simulation results are summarized

below:

1. Models with multiple OFF states produce behaviour that is most

consistent with experimental data and the bursting kinetics are

promoter specific.

2. Delay-Bursty MCEM and Clumped-MCEM inference are more efficient

for time-series data. The comparison with the state-of-the-art Bursty

i



MCEM2 method shows that Delay-Bursty MCEM and

Clumped-MCEM produce similar numerical accuracy. However, these

methods are better in terms of efficiency. Delay-Bursty MCEM reduces

computational cost by 37.44% as compared to Bursty MCEM2.

Clumped-MCEM reduces computational cost by 57.58% when

compared with Bursty MCEM2 and 32.19% when compared with

Delay-Bursty MCEM.

Keywords : Model reduction; Parameter Inference; Mass action kinetics;

Multistep promoter model; Single-cell time-series data.
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Chapter 1

Introduction

This chapter provides a context for this thesis work in the interdisciplinary field

of research named Systems Biology. The context is used to provide motivations

for this thesis and briefly describes the contribution to the field. The structure

of this thesis is also outlined here.

1.1 Motivations

1.1.1 Modeling chemical kinetics

To predict biological behaviours, Systems Biology seeks to combine

experiments with computation, aiming to understand how biological

processes produce specific behaviours at the system level, ultimately,

developing new biological processes for useful purposes. Systems Biology

takes into account the structure and dynamic interactions within the

biological processes and aims to use this understanding for important

purposes e.g., effective prevention and/or treatment of diseases.

Computational modeling and simulation plays a two-fold development

role in Systems Biology. First, biological process are abstracted to form a

model. The model encodes the temporal evolution of its state in a formal

form. Second, it allows to visualize and to predict the causal effect of the

biological system in time, through a computer simulation.

Essentially, the model is an effort to explicitly encode the knowledge of

1



the biological process in a precise form. The features of the model must

include sufficient information for analyzing the system dynamics. For

example, in molecular modelling, the model must be able to manage all the

detailed information (velocity and/or position) of all molecular species. In

contrast, a whole-cell model, must include only a description of all the key

cellular processes. Therefore, to some extent, the biological model is an

abstraction of the real system; however, it is useful to formalize the

understanding of the biological process. In addition, modelling also provides

an effective way to highlight gaps in the knowledge of biological processes.

The temporal behaviour of a given biological model is then realized by

conducting simulation (in silico experiments). These simulation results are

compared with real experimental data obtained from wet lab experiments.

The inconsistency shows a lack of knowledge in the model of the biological

process under study. Models which are validated can be used to discover

indirect and hidden implications in the biological process, which sometimes

are hard to perform in a wet lab. For example, in silico experiments, one

can isolate some vital genes and observe in detail their individual and group

behaviour. This is impossible in a wet lab condition since the cell may not

survive or may not exist. The results produced in silico experiments are used

for forming hypothesis, and suggesting new experiments, making its predictive

feature extremely useful for quantitative analysis of biological processes.

To sum up, biological modeling and simulation in the post-genomic era

are becoming increasingly important. The knowledge of biological process is

integrated into a model, and testable predictions are made through

simulation. Therefore,in silico experiments are highly preferred in terms of

speed, ease and cost; however, it is also important to emphasize that in silico

experiments are not an alternative to real biological experiments (such as wet

lab experiments). Instead, in silico experiments are better used as

complementary to wet lab experiments to advance biological research. The

methodology of computational biology and experimental biology is depicted

in 1.1. The method of integrating stochastic models and single-cell

experiments to infer valuable information about gene expression model is

2



depicted in 1.2.

Figure 1.1: The methodology of computational biology and experimental bi-

ology.

Figure 1.2: Integrating stochastic models and single-cell experiments to infer

valuable information about gene expression model.
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1.1.2 Noise in gene expression

Gene expression is the process, in which the information in a DNA sequence is

converted into mRNAs and proteins, playing an essential role in the execution

of all cellular functions. The widely studied aspect of gene expression is the

stochasticity or noise associated with the process. This biological noise can be

categorized into : Intrinsic noise and Extrinsic noise. Intrinsic noise (Barrio

et al., 2010) arises in the system due to small number of key molecules, and

also due to the uncertainty of knowing when a reaction occurs and which

reaction it might be. Extrinsic noise (Barrio et al., 2010) is entirely different

as the state changes are due to fluctuations in external conditions, such as

temperature. Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) is able

to capture intrinsic noise of biochemical reactions because it takes into account

discrete nature of species where the reactions between species are considered

as stochastic events.

1.1.3 The use of delays

The desire for more realistic and, consequently, more accurate models is

driven by the use of delays(Burrage et al., 2017). It is essential to introduce

delays in order to conform models with observations and experimental data.

In this case, complex processes are lumped while underlying mechanisms and

inherent intermediate steps are not explicitly accounted for. Yet, the time

that such processes require is included in the form of a constant delay or

delay distribution. In this case, the delay distribution is used as a

model-reduction technique, making the model smaller, and the analysis

potentially feasible.

1.2 The need and challenges for parameter

inference method

The construction of a suitable model depends on several factors, such as

molecule numbers, distributions, the type of reactions and their time scales,
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along with the noticeable effects of discreteness and intrinsic noise. To

generate new hypothesis, successfully implemented models must be

consistent with the data, reflect essential system properties, and also help

answer specific questions about the system. Hence, the choice of a suitable

parameter inference method depends on the models.

An ideal inference method must (1) leverage the intrinsic noise of the

system, to better identify underlying mechanisms (Munsky et al., 2009), (2)

accommodate unobserved/incomplete data, (3) infer the unknown kinetic

parameters, and (4) provide computationally efficient performance for

different multistep models. Currently, existing methods satisfy only a subset

of these requirements. Suter et al. (2011) has performed Hidden Markov

Model parameter inference for two and three state promoter models. These

models assume noise-free promoter activity and RNA levels between

discretely observed time points, but they do not provide an efficient means to

characterize models with larger numbers of states . Daigle et al. (2012) has

developed Monte Carlo Expectation Maximization (MCEM) with Modified

Cross Entropy Method (MCEM2), to infer kinetic parameters using

stochastic simulation. The Bursty MCEM2 (Daigle et al., 2015) modifies the

MCEM2 to accommodate the multistep model of transcriptional bursting.

Toni et al. (2009) has developed an Approximate Bayesian Computation

(ABC) based method, for inferring parameters and model structure, using

stochastic simulations. Unfortunately, when using this method to

discriminate between promoter models with increasing numbers of states, the

addition of each state increases the number of unknown kinetic parameters

(e.g. switching rates). More complex models become non-identifiable, in the

presence of limited amounts of experimental data. Note that this drawback

applies to any parameter inference method that explicitly represents

transitions between individual promoter states. Finally, stochastic simulation

of multistep promoter models suffers from a linear increase in computational

cost; with the addition of each promoter state making the study of more

complex models difficult. In the light of these observations, the goal is to

focus on development of computationally efficient parameter inference
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method for characterizing transcriptional bursting model by inferring the

unknown kinetic parameters, given single-cell time-series data.

1.3 Problem statement

Development of a multistep promoter model to analyse transcriptional bursting

process represented by biochemical reactions in terms of intrinsic noise and

exact sampling of switching times between individual elements present in the

system.

Objectives

• Development of model reduction strategy for the multistep

transcriptional bursting process.

• Development of computationally efficient parameter inference method

for characterizing transcriptional bursting model, given experimentally

observed time-series data.

– Analysis of intrinsic noise in the model caused by stochastic nature

of biochemical reactions and molecules.

– Calculation of exact sampling of switching times between individual

elements.

– To infer unknown parameters from the proposed model.

1.4 Contributions

This thesis aims to address two major issues in Systems Biology:

1. Model reduction for multistep reactions.

2. Development of parameter inference method for discrete stochastic sys-

tems.

Following are the specific contributions made:
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• The study focuses on formulating multistep promoter models which

accurately characterize transcriptional bursting. To this end, a novel

model reduction strategy is devised, representing several number of

promoter OFF states by a single state, accompanied by specifying a

delay for burst frequency. This model approximates complex promoter

switching behavior with Erlang-distributed ON/OFF times.

• The simulation part of the parameter inference method is performed by

modifying two existing simulation algorithms, namely, Delay Stochastic

Simulation Algorithm (DSSA) and Modified Cai’s Exact SSA Method

(MCEM). Both these algorithms are based on the idea of delays,

providing accurate representation of proposed multistep model.

• Two parameter inference methods are developed by using this model

reduction. Both strategies enable simulation and parameter inference.

– Delay-Bursty MCEM: This approach combines Monte Carlo

extension of Expectation Maximization (MCEM) and Delay

Stochastic Simulation Algorithm (DSSA) to infer unknown

parameters of discrete stochastic systems, given incomplete data.

– Clumped-MCEM: This approach combines Monte Carlo

extension of Expectation Maximization (MCEM) and Modified

Cai’s Exact SSA Method (MCEM) to infer unknown parameters

of discrete stochastic systems, given incomplete data.

These methods are applied to time-series data of endogenous mouse

glutaminase promoter to validate the model assumptions and infer the

kinetic parameters.

• Delay-Bursty MCEM and Clumped-MCEM reduce the computationally

intensive task of modeling every single detail of multistep reactions. A

delayed reaction is used to mimic the effects of these processes on the

overall system dynamics.

• The empirical results support two main claims of this research:(1) Models

7



with multiple OFF states produce behaviour which is most consistent

with experimental data and (2) Delay-Bursty MCEM, and Clumped-

MCEM inference is more efficient for time-series data. The comparison of

these methods with the state-of-the-art Bursty MCEM2 method reveals

that the same accuracy can be produced in less time.

1.5 Structure of the thesis

The thesis is outlined as follows.

• In Chapter 2, some well-known distributions from probability theory are

recalled. The stochastic models and an algorithm for simulating their

time-evolution is introduced in a detailed form, which gives basic notions

and related information to understand results outlined in this thesis.

• In Chapter 3, various parameter inference approaches, based on intrinsic

noise in gene regulatory models are briefly reviewed. It also discusses

the model selection briefly.

• In Chapter 4, the widely used gene expression model, random telegraph

model and its multistep model formulation is introduced. The

multistep promoter model formulation is presented for two different

inference approaches that have been developed in this work, namely;

Delay-Bursty MCEM and Clumped-MCEM.

• In Chapter 5, two parameter inference methods developed are

presented, namely, Delay-Bursty MCEM and Clumped-MCEM.

Application of these algorithms to time-series data of endogenous

mouse glutaminase promoter, validates model assumptions and infer

the values of kinetic parameters. These methods show that

Delay-Bursty MCEM and Clumped-MCEM produce the same

numerical accuracy as Bursty MCEM2 in less time.

• Finally, conclusions and possibilities for further research are presented

in Chapter 6.
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Chapter 2

Background Theory

Systems Biology is an interdisciplinary field of research involving mathematics,

biology and computer science at different level of detail; a non trivial task,

giving a comprehensive background of the required notions. In this chapter,

the focus is on the related background, necessary to understand the results,

outlined during the research. Moreover, the biological knowledge is recalled

only when presenting models in Chapter 4.

This chapter introduces some well known distributions from probability

theory. The Stochastic models and an algorithm for simulating their time-

evolution is introduced in a detailed form.

2.1 Notions of probability theory

The models and representations that are considered in this thesis, provide a

framework for thinking about the state of a biological processes; the

reactions that can take place and the change in state that occurs as a result

of particular chemical reactions. The state of biological processes evolves

continuously through time, with discrete changes in state, occuring as the

result of reaction events. These reaction events are stochastic and are

governed by concepts from probability theory. Therefore, it is necessary to

understand few concepts from probability theory in order to precisely

comprehend these processes.

In order to represent biological processes; probability measure is introduced
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with P, discrete random variables with N as sample space and continuous

random variables with R as sample space.

2.1.1 Exponential distribution

The most important continuous distribution in the theory of discrete-event

stochastic simulation is exponential distribution (Evans et al.,

2000)(Wilkinson, 2006). If X has exponential distribution with parameter

λ > 0 it is written as,

X ∼ Exp(λ)

and X has a probability density function

f(x) =

 λe−λx,x ≥ 0

0, otherwise

The cumulative distribution function is given by

F (x) =

 0,x < 0

1− e−λx,x ≥ 0

A very important property characterizes this distribution: the memoryless

property. If X ∼ Exp(λ) then for any positive s, t ∈ R

P(X > s+ t|X > t) = P(X > s) (2.1)

which holds since

P(X > s+ t|X > t) = e−λs

Finally, let {Xi ∼ Exp(λi)|i = 1, . . . , n} where all the variables are

independent, thus defines the new variable Y = min{X1, . . . , Xn}. For such

a variable,

P(Y > x) = P(X1 > x; . . . ;Xn > x) =
∏n

i=1 P(Xi > x) = e−x
∑n
i=1 λi

which means,

Y ∼ Exp(λ1 + . . .+ λn)
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Sampling from the exponential distribution

The stochastic simulation is heavily based on how to generate exponentially

distributed numbers. The sampling of a value, for a continuous random

variable, can be obtained by an Inverse Monte-Carlo Algorithm based on the

following considerations: given a continuous random variable X, with

cumulative distribution F and given p ∼ U [0, 1]; holds that

x = F−1(p)

The computation of F−1, though difficult, can be evaluated by the inverse of

F , for the exponential distribution. Assuming X ∼ Exp(λ), and noting the

definition of the exponential distribution,

P(X ≤ x) =
∫ x
0
λe−λudu

is the probability of X being smaller than x. Such a value is a probability, so

is a number in [0, 1]; also, assuming that a number can be picked r ∼ U [0, 1].

It can be written as, ∫ x

0
λe−λudu = r

which integrates as

e−λx = 1− r

and, as known from the property of the uniform distribution; if r ∼ U [0, 1]

then (1 − r) ∼ U [0, 1]. Now, computing the value for x is fairly easy, as

applying the logarithm results in

x = λ−1lnr−1

Once a value for r is picked, this equation permits to generate a sample for X.

2.1.2 Erlang distribution

The exponential distribution is a special case of a more general continuous

distribution, the Erlang distribution (Evans et al., 2000). A random variable

X following Erlang distribution is denoted as
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X ∼ Γ(n, λ)

where n ∈ N, n > 0 is called the shape, and λ > 0 is the rate. When

n ∈ R the distribution is called the Gamma distribution. Erlang distribution

has probability density function defined as

f(x) =


λnxn−1e−λx

(n−1)! ,x ≥ 0

0,x < 0

and cumulative distribution function defined as

F (x) =

 0,x < 0

1− e−λx
∑n−1
i=0

(λx)i

i!
,x ≥ 0

Three important properties can be stated for this distribution:

• Firstly, when the shape is 1, it reduces to the exponential distribution

X ∼ Γ(1, λ)⇒ X ∼ Exp(λ))

and can be easily verified by the analytical form of the density function.

• Secondly, the summation of independent exponentially distributed ran-

dom variables follows an Erlang distribution, namely

X1 ∼ Exp(λ) ∧X2 ∼ Exp(λ)⇒ (X1 +X2) ∼ Γ(2, λ)

and also

X1 ∼ Γ(n1, λ) ∧X2 ∼ Γ(n2, λ)⇒ (X1 +X2) ∼ Γ(n1 + n2, λ),

if X1 and X2 are independent.

• Finally, it is easy to notice that this distribution has infinite support in

the same sense as the exponential one.
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2.2 Stochastic models

This section introduces the importance of stochastic modelling, both for

simulation and inference, using simple example which appears in Wilkinson

(2006).

The example considered here is known as the linear birth-death process.

Initially it is perhaps helpful to view this as a model for the number of bacteria

in a bacterial colony. It is assumed that each bacterium in the colony gives rise

to new individuals at the rate λ and each bacterium dies at the rate µ. Let the

number of bacteria in the colony at time t be denoted X(t). Assume that the

number of bacteria in the colony at time zero is known to be x0. Viewed in a

continuous deterministic manner, this description of the system leads directly

to the Ordinary Differential Equation (ODE)

dX(t)
dt

= λX(t)− µX(t) = (λ− µ)X(t)

The analytical solution for this ODE is

X(t) = x0exp((λ− µ)t)

The qualitative behavior of the bacterial colony for the deterministic ones is

summarized in Table 2.1.

Table 2.1: Qualitative behavior of the bacterial colony in deterministic model.

Condition limt→∞X(t) Population size

λ > µ +∞ size increases exponentially

λ = µ X(t0) constant size

λ < µ 0 size decreases exponentially

In particular, the solution clearly depends only on λ − µ and not on the

particular values that λ and µ take. In some sense, therefore, λ − µ is a

sufficient description of the system dynamics. But it points out to a flip-side:

namely, study of the experimental data on bacteria numbers can only

provide information about λ− µ, and not on the particular values of λ and µ
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separately. Of course, this is not a problem if the continuous deterministic

model is really appropriate, as then λ − µ is the only thing one needs to

know and the precise values of λ and µ are not important for predicting

system behaviour. Note, however, that the lack of identifiability of λ and µ

has implications for model inference, as well as inference for rate constants.

From the experimental data, it is clear that in this model a pure birth or

death process, or a process involving both births and deaths are not known,

as it is not possible to know if λ or µ is zero. To perform inferences and

predictions about such biological processes stochastic models is needed. The

important feature of the stochastic model is that it depends explicitly on

both λ and µ, and not just on λ− µ. This has important implications for the

use of stochastic models for inference from experimental data. Using

stochastic models representation for biological process, simulation and model

inference can be conducted accurately considering stochastic dynamics

having no deterministic counterparts (Caravagna and Hillston J, 2010;

Kouyous et al., 2006).

2.3 Chemical Master Equation

The Chemical Master Equation (CME) is a widely used formalism describing

stochastic reaction systems in well-mixed scenarios. The CME is a system of

Ordinary Differential Equations (ODEs) describing all the state transitions

by biochemical reactions. This section introduces the definition of the CME

as in Gillespie (1976); Gillespie (1977); Marchetti et al. (2017). Suppose the

biochemical reaction system starts with an initial state X(t0) = x0 at time

t0. The purpose of the stochastic chemical kinetics is to infer the probability

P(x, t|x0, t0). The probability function P(x, t|x0, t0) is

P(x, t|x0, t0) = probability that the system state is X(t) =

x at time t, given the initial state X(t0) = x0 at time t0.
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The probability P(x, t|x0, t0) is called the grand probability function as it gives

the probabilities of all reachable states of the system at time t, given the initial

stateX(t0) = x0 at time t0. Knowing P(x, t|x0, t0), all the statistical properties

(e.g., mean, variance) can be calculated for every species at any time t > t0.

To derive the time evolution for the grand probability, consider an

infinitesimal time interval [t, t + dt) so that there is at most one reaction

firing in this interval. Suppose at time t + dt the system state is

X(t + dt) = x. There are two cases in order to reach the state x in the next

infinitesimal time t+ dt, given the current time t.

1. be at state X(t) = x−vj at time t and reaction Rj fires in the next time

t+ dt which leads to the next state X(t+ dt) = x.

2. already be at state X(t) = x at time t and no reaction fires in the next

infinitesimal time interval [t, t+ dt).

The grand probability P(x, t+ dt|x0, t0) is thus written as

P(x, t+ dt|x0, t0) =
M∑
j=1

P {Rjfires in[t, t+ dt)}P {x− vj, t|x0, t0}

+P {no reaction fires in[t, t+ dt)}P {x, t|x0, t0}

(2.2)

where P {no reaction fires in[t, t+ dt)} denotes the probability that no

reaction fires in the infinitesimal time interval [t, t + dt). Note that when the

state vector x − vj gives negative populations, the probability

P {x− vj, t|x0, t0} in Equation 2.2 is zero because the populations of species

must be positive.

The probability that reaction Rj fires in the next infinitesimal time interval

[t, t+ dt) is given as:

P {Rj fires in [t, t+ dt)} = aj(x)dt+ o(dt) (2.3)

where the o(dt) is used to express that it asymptotically approaches zero faster

than dt. In other words, the probability that there is more than one firing of

Rj in an infinitesimal time interval [t, t+ dt) is in the order of o(dt) and thus

it is negligible.
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The probability that no reaction fires in the infinitesimal time interval

[t, t+ dt) can be computed as:

P {no reaction fires in[t, t+ dt)} =
M∏
j=1

(1− P {Rj fires in [t, t+ dt)})

=
M∏
j=1

(1− aj(x)dt+ o(dt))

= 1−
M∑
j=1

aj(x)dt+ o(dt)

(2.4)

Substituting Equation 2.3 and 2.4 into Equation 2.2 gives

P {x, t+ dt|x0, t0} =
M∑
j=1

P {x− vj, t|x0, t0} (aj(x− vj)dt+ o(dt))

+P {x, t|x0, t0} (1−
M∑
j=1

aj(x)dt+ o(dt))

(2.5)

Subtract P {x, t|x0, t0} from both sides of Equation 2.5 divide through by dt

and finally consider the limit dt→ 0 with a remark that limdt→0o(dt)/dt = 0;

this results in

dP {x, t|x0, t0}
dt

=
M∑
j=1

(aj(x− vj)P {x− vj, t|x0, t0})

−P {x, t|x0, t0}
M∑
j=1

aj(x)

(2.6)

Equation 2.6 is called the Chemical Master Equation (CME). It is in fact a

collection of differential equations in which each differential equation represents

the probability of each possible state of the system at the time t. Thus, CME

provides a complete description of the time evolution of the grand probability

P {x, t|x0, t0}.

The solution of CME gives the probabilities of all possible states at any

time; however, directly solving CME poses a lot of computational challenges.

An analytical and/or direct numerical approach to solve CME in general is

non-trivial and difficult to find, except for rather simple cases. These

difficulties have motivated in defining alternative techniques to find its

solution, leading to the definition of stochastic models. Stochastic simulation
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algorithm can precisely be defined from the CME, so that the probability

density function of the defined stochastic process is the exact solution of the

CME.

2.4 Representation of stochastic chemical

kinetics

To define stochastic simulation of biological processes, vector-based represen-

tation is introduced (Gillespie, 1976).

Consider a well-mixed biochemical system consisting ofN molecular species

S1, . . . , SN . These species interacts through M chemical reactions R1, . . . , RM .

The state of the system, at time t, is represented by an N-dimensional

integer value vector X(t) ∈ NN such that

X(t) = (X1(t), . . . , XN(t))T

where Xi(t) denotes the population of species Si at time t. In general, it is

denoted as X(t) = x.

A reaction Rj is given by its associated state-change vector vj ∈ NN

vj = (v1,j, . . . , vN,j)
T

where vi,j denotes the change in the molecular population of Si caused by

one reaction Rj. When informally seeing the structure of a chemical reaction,

one can say that some molecules are created and others are destroyed by the

reaction. More precisely, if in a reaction ω molecules of a species appear as

reactants and ω′ appear as products, then if ω > ω′; |ω′ − ω| molecules are

consumed, if ω < ω′; (ω′ − ω) molecules are created and finally, if ω = ω′,

the reaction does not affect the species. According to this consideration, the

state-change vector is defined as vi,j = (ω′ − ω) = ∆ω so that

vi,j =


−∆ω, if Rj consumes ∆ω molecules of species Xi(t)

0, if Rj does not affect species Xi(t)

∆ω, if Rj creates ∆ω molecules of species Xi(t)
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The stoichiometry matrix D ∈ NN×M can be defined from the state-change

vector of the reactions as

D = [v1, v2, . . . , vM ]

A consequence of this algebraic representation shows the semantics of firing a

chemical reaction which turns out to be represented as simple vector

summation. Given X(t) = x and the firing of reaction Rj modifies the state

based on the equation

x′ = x + vj (2.7)

where x′ denotes the new state vector; where the reactants are removed

and the products are inserted, which can be easily verified. The Equation 2.7

is demonstrated using a simple example: consider molecules of species A, B

and C, and two reactions

R1 : A+B
k1→ C

R2 : C
k2→ C + A

The state vector for R1 and R2 is, X(t0) = x0. The state-change vectors

v1 and v2 can be given as

x0 =


nA

nB

nC

 v1 =


−1

−1

1

 v2 =


1

0

0


where nA, nB and nc represent the number of molecules of species A, B and

C. The changes induced by the firing of R1 is given in v1. The first component

of the v1, which refers to species A, is −1, since one molecule A is consumed.

In contrast, the changes induced by the firing of R2 is given in v2, the third

component of vector v2, is 0; since one molecule C is consumed/produced and

at the same time, it appears as a reactant and a product. For such a system

the stoichiometry matrix is defined as D ∈ N3×2

D = [v1 v2] =


−1 1

−1 0

1 0
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The sequential firing of reaction R1 and R2 changes the state vector X(t0) as

X(t1) = x0 + v1 =


nA

nB

nC

+


−1

−1

1

 =


nA − 1

nB − 1

nC + 1

 = x1

X(t2) = x1 + v2 =


nA − 1

nB − 1

nC + 1

+


1

0

0

 =


nA

nB − 1

nC + 1


where t1 and t2 are the times at which reactions R1 and R2 fire, respectively.

2.5 The notion of propensity function

Given X(t) = x, each reaction is associated with a propensity function aj(x)

to each Rj as mentioned in Gillespie (1976); Gillespie (1977). aj(x)dt is the

probability of reaction Rj to fire in state x in the next infinitesimal time

[t, t + dt). The type of reaction determines the propensity function. Table

2.2 summarizes the analytical form of the propensity functions for chemical

reactions, as originally defined (Gillespie, 1977). Hence [A] denotes the number

of molecules A in the system state and Xi(t) denotes species A assigned to

location i in X(t). It is fairly easy to notice that well-stirred assumption gives

rise to the combinatorial form of such functions. Finally, it is important to

note that, for the reactions in Table 2.2, if [A] = 0, then the appropriate

propensity function evaluates to 0, practically defining the non-applicability

of the reaction in the current state because of the absence of the reactants.

Of course, this holds only for reactions requiring non-empty reactants; in this

case only for the first order and the second order.

For example, consider reactions R1 : A + B
k1→ C and R2 : C

k2→ C + A.

The propensity functions for R1 and R2 is given as:

a1(x) = k1X1(t)X2(t) a2(x) = k2X3(t)

for state vector X(t) = x since, species A, B and C are mapped to locations

1, 2 and 3 in the state vector, respectively.

19



Table 2.2: Analytical form of the propensity functions.

Type Reaction Propensity

zero order φ
k→ B k

first order A
k→ B k[A]

second order 2A
k→ B k[A] ([A]−1)

2

2.6 The Stochastic Simulation Algorithm

The Stochastic Simulation Algorithm (SSA) (Gillespie, 1976; Gillespie, 1977;

Gillespie and Petzold, 2006) is an alternative approach to solve CME by pro-

ducing possible realizations of the Equation 2.6.

Algorithm 1 Stochastic Simulation Algorithm

1: Initialize the time t = t0 and the system’s state x = x0, final time T

2: With the system in state x at time t, evaluate all the aj(x) and sum

a0(x)←
∑M

j=1 aj(x)

3: let r1, r2 ∼ U [0, 1]

4: τ ← a0(x)−1ln(r−11 )

5: let j such that
∑j−1

i=1 ai(x) < r2 · a0(x) ≤
∑j

i=1 ai(x)

6: x← x + vj

7: t← t+ τ

8: Go to step 2 or stop.

The SSA procedure is outlined in Algorithm 1. The input of SSA is an

initial simulation time t0; a maximum simulation time T and an initial state

x0 such that X(t) = x0. At each step of the algorithm, two decisions are

taken: when to fire the next reaction and what reaction it can be. Given the

system in state x at time t, the putative time τ for the next reaction to fire is

chosen by sampling an exponentially distributed random variable such that

τ ∼ Exp(a0(x))
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where a0(x) =
∑M

j=1 aj(x). The sampling of τ is obtained by the Inverse

Monte-Carlo Algorithm by using uniformly distributed numbers r1 and r2,

generated in step (3). Once τ is sampled, another random variable with values

in 1, . . . ,M denoting the type of reaction to fire at time t + τ , is sampled in

step (5) according to the following inequalities∑j−1
i=1 ai(x) < r2 · a0(x) ≤

∑j
i=1 ai(x)

which model a probabilistic choice dependent on the evaluations of the

propensity functions for the M reactions. Again, this means that every

reaction is chosen with weighted probability
aj(x)

a0(x)
. In fact another

formulation for such a choice is given by j = min{n|r2 · a0(x) ≤
∑n

i=1 ai(x)}.

When both the variables have been sampled, the system state is updated

performing the firing of Rj and setting time to t + τ , as given in steps (6)

and (7). Notice that, even if it may seem an intuitive interpretation that the

values for τ represent the durations of the reactions (i.e. a reaction starts

firing at time t and completes at time t + τ ), the interpretation turns out to

be confusing when introducing the notions of delay in stochastic simulation

algorithms. In fact, it appears from the discussion on the mathematical

foundations of the SSA, that the values of τ represent time instants in which

the system state is left unchanged. Indeed, the correct interpretation keeping

the system at time t, is that the system is left unchanged in [t, t + τ) which

then performs an instantaneous change by firing a reaction at time t+ τ .

Mathematical foundations of the SSA

The mathematical foundations of a simple algorithm SSA can be precisely

investigated. Here, two points have to be specifically discussed.

• Why the putative time for the next reaction to fire is an exponential

random variable?

• Why the reaction to fire is chosen with weighted probability?

Given X(t) = x, it denotes the probability of the next reaction to fire

at time t + τ as p(τ, j|x, t), and the probability of the reaction to fire is Rj,
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given that it is going to fire at t + τ , as p(j|τ ;x, t). Here, p(τ, j|x, t) is a

probability density function of a continuous random variable assuming values

in [∞, 0), and p(j|τ ;x, t) is a probability mass function of a discrete random

variable assuming values in [0,M ]. The algorithm is correct if and only if

the continuous random variable turns out to be exponentially distributed, and

the discrete random variable too has weighted probability dependent on the

propensity functions.

An example computation

Consider a system described by an initial state x0 and two reactions R1 and

R2. Assume the initial state x0 to be such that the reactions can fire an

arbitrary amount of times.

Some steps of the computation SSA(t0,x0, T ) are shown, where T > t0.

To shorten the notation, X(t′) = x′ is used to denote the assignments of the

variables t ← t′ and x ← x. Initially, the propensity functions are evaluated

so that a0(x0) = a1(x0) + a2(x0) and the putative time for the next reaction

to fire is generated as τ1 ∼ Exp(a0(x0)); each of the reaction is chosen to fire

with probability either a1(x0)
a0(x0)

or a2(x0)
a0(x0)

. If R1 is chosen, X(t0 + τ1) = x0 + v1,

otherwise X(t0 + τ1) = x0 + v2.

Assume to fire reaction R1 and t0 + τ1 < T . In the next step of the

algorithm, the propensity functions are evaluated so that a0(x0+v1) = a1(x0+

v1)+a2(x0+v1) and the putative time for the next reaction to fire is generated

as τ2 ∼ Exp(a0(x0 +v1)); again each reaction is chosen to fire with probability

either a1(x0+v1)
a0(x0+v1)

or a2(x0+v1)
a0(x0+v1)

. If R1 is again chosen, X(t0 + τ1 + τ2) = x0 + 2v1 ,

otherwise X(t0 + τ1 + τ2) = x0 + v1 + v2. A graphical representation of these

sequences of steps for the SSA is given in Figure 2.1, where R1 fires first, and

R2 second.
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Figure 2.1: A graphical representation of SSA computation.

2.7 Summary

This chapter presents basic concepts which is required to understand results

outlined in Chapter 4 and Chapter 5. Section 2.1 introduces some well

known distributions from probability theory. Section 2.2 presents stochastic

models. Section 2.3 presents Chemical Master Equation. Section 2.4 contains

representation of stochastic chemical kinetics. Section 2.5 presents the notion

of propensity function. Section 2.6 gives basic working of Stochastic

Simulation Algorithm.
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Chapter 3

Literature Survey

Gene regulatory models are estimated by numerical or analytical approaches.

Providing nonintuitive insights into gene regulatory models 1 can be highly

effective for both, numerical or analytical approaches. This chapter briefly

discusses the various parameter inference approaches based on intrinsic noise

in gene regulatory models. Also, model selection is reviewed briefly and

discussed.

3.1 Introduction

It is often necessary to rely on inference approach, based on observable

information, to understand the inner mechanism of the cellular system; the

direct observations or measurements of the values of parameters are rarely

possible. In the case of gene regulatory model, the modern experimental

technologies may allow researchers to obtain the following information:

1. Single-cell level mRNAs or proteins expressions measured at steady state.

2. Snapshots of single-cell level mRNAs or proteins expressions collected at

various time stages using the samples from the same populations.

3. The temporal tracking of mRNA or protein molecules of individual cells.

1Note: gene regulatory models and gene expression models are used interchagbly, wher-

ever applicable.
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From the viewpoint of Chemical Master Equation (CME) model, such

observations yield direct information on the equilibrium distribution; the

temporal distribution at different times or realizations of the trajectories of

CME. Here, the existing inference approaches that can utilize information

mentioned above to draw the meaningful conclusion of the underlying model

is discussed.

3.1.1 Analytical approach

The extent to which a given model can be solved analytically, often plays a

significant role in determining the inference approaches. If one can obtain

the analytical solution of the given CME, likelihood-based approaches will

be an obvious choice for inferring the unknown parameters. For instance,

considering the two-state model, where the gene can switch between active

and inactive states, the steady-state distribution of mRNA copy number can

be solved analytically (Raj et al., 2006). The key parameters, such as the rates

of activation and deactivation of mRNA can then be inferred directly, using

the maximum likelihood approach (Raj et al., 2006; Tan and Oudenaarden,

2010). Also, based on the observation; in the inference of complex dynamical

model, it is often hard to know in advance whether the model is adequate

for explaining the data or whether the unknown parameters are identifiable

(Tan and Oudenaarden, 2010). Thus, the validation of the inference results

requires additional measures. For instance, by comparing the experimental

data and the simulated samples from the model specified by the estimated

parameters, the adequacy of the model can be assessed (Raj et al., 2006). The

identifiability of the parameters can be investigated, by a thorough searching

of the parameters space, to see if the model can also be fitted with other values

(Zenklusen et al., 2008).

So et al. (2011) have inferred parameters from the two-state model, by

fitting the analytical formulas of fano factor and the square coefficient of

variation to the observed values. The similar method is used by Gandhi et al.

(2011), regarding the coordination of genes during cell divisions. The
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dependence between genes introduced by cell divisions has been explored by

numerically fitting the analytical expression of the covariance between gene

expressions. The moment-based approach can also be used to distinguish

different model assumptions. Singh et al. (2012) have used the analytical

formula of fano factor as the basis for inferring the source of noise in protein

level. This has been done to find out whether the noise is due to the Poisson

fluctuation in RNA numbers or by the stochastic transitions between

different states of the gene.

If exact moment equality cannot be derived, the moment closure methods

are usually employed to establish approximated expressions of key moments

for inference purpose. Milner et al. (2013) have studied the inference of model

parameters based on time series observations of CME system and modeled

the observed data as Gaussian distributed random variables, whose means

and variance are determined by moment closure scheme. Kugler (2012) has

also considered a similar approach, but has focused on fitting the parameter

by minimizing the distance between the observed moments and the moments

predicted by the model. For the biological systems with rational propensity

functions, Pedraza and Oudenaarden A (2005) have proposed moment closure

schemes for three genes system. The interactions are modeled by Hill functions,

applying linear expansion around the steady state. Achimescu and Lipan

(2006), Raffard et al. (2008) have explored the inference in a single gene system

with mRNA and protein species, where the propensity function is considered

as rational functions.

To quantify the uncertainty of the inferred parameters through

moment-based approach (Zechner et al., 2012), state that, due to the large

number of cells measured simultaneously in cytometry experiments, it is

reasonable to expect that the sample size is large. Hence, the empirical

moments follow normal distribution, whose means and variances can be

expressed as functions of moments. As a result, given suitable moment

closure scheme; to determine the dependency of particular moments on

unknown parameters, it is possible to quantify the uncertainty of

estimations, using the frequentist property of maximum likelihood estimator
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or by employing the posterior distribution, in case of the assignment of prior

distribution to the unknown parameters. Similar methods have been

presented and can be refered to (Ruess and Lygeros, 2013, 2015; Schilling

et al., 2016).

The chosen closure scheme, serving only as an approximation of the

system under investigation, is another primary source of uncertainty. The

reasonable level of approximation is attained by applying either different

moment closure schemes on different systems, or different value of

parameters for the same system. However, the error introduced by moment

closure scheme is often hard to evaluate in practice. Schilling et al. (2016)

have proposed an adaptive algorithm to handle this issue. In this approach,

given the current parameter values, the samples are generated using

stochastic simulation algorithm. The fitness, of the employed moment closure

schemes, is evaluated by the discrepancy between the simulated samples and

observations. The adaptive algorithm selects the most appropriate moment

closure schemes and also adopt different schemes in different parts of the

parameter space.

Shortcoming of analytical approach

The inference methods discussed so far are based on analytical formulas. While

such approaches are often easy to implement and require minimal computation

resources, there are several potential drawbacks. As mentioned earlier, the

exact analytical formulas cannot be established for most CME models and

are forced to adopt approximation formulations. However, the discrepancy,

between the approximation formulations and the true model, is often hard

to evaluate; it is also hard to quantify the bias and uncertainty introduced

by the approximation schemes during the inference procedure. In addition,

certain summary statistics (such as the moments) of the observed data is used

in the approximation formulations and thus may not be able to fully utilize

the information.
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3.1.2 Numerical approach

In this section, the inference approaches that utilize the numerical method to

bridge the gap between the data and model parameters are investigated.

Inference of discrete stochastic model

The numerical solution of CME system, with the desired precision, can be

calculated using Finite State Projection (FSP) approach. Such a numerical

solution can then allow inferring the unknown parameters, by searching the

parameter space and locating the values that minimize the distance between

numerical solution and the empirical distribution. The CME model on the

lac operon of Escherichia coli. has been fitted by numerically searching the

values of parameters, minimizing the L1 distance between the FSP solution

and observed distribution (Munsky et al., 2009). In calculating this distance

metric, measurements are obtained under various conditions and have been

assigned different weights for specifying the relative importance. The

detailed optimization procedure includes a random initial guess; the value is

then updated, using gradient-based and simulated annealing searches.

Similar methods are presented in (Neuert et al., 2013; Senecal et al., 2014;

Shepherd et al., 2013).

The numerical solution of CME is recalculated throughout the optimization

algorithm in the aforementioned FSP based inference approach. Even though

the FSP method can reduce the computational burden of finding the numerical

solution of CME significantly, it can still be computationally very demanding,

particularly when the dimension of parameter space is large. In this regard,

it can be worthy to consider likelihood-free inference approach to avoid the

difficulty of finding the solution of CME. In particular, the Bayesian method

is known as Approximate Bayesian Computation (ABC) (Beaumont et al.,

2002; Pritchard et al., 1999; Tavare et al., 1997) and can be used for such a

purpose. In a standard ABC rejection algorithm, a particle θ∗ is firstly sampled

from the prior distribution of the unknown parameter, and is used to generate

a simulated data set Xθ∗ . The proximity between Xθ∗ and the observed data

29



set X can then be evaluated, based on a chosen distance metric. The decision

on whether to reject or accept the particle θ∗ is then taken on the basis of

whether the distance is greater or smaller than a predefined threshold ε. This

procedure necessarily allows to obtain independent sample of θ from density

p(θ|d(X, X̂) < ε), which can be regarded as a reasonable approximation to

the posterior distribution p(θ|X) for small ε. Thus, the posterior samples

of parameters, without evaluating the likelihood function, can be obtained,

as long as samples from the given model with specified parameters can be

simulated. ABC can be a suitable choice for inferring parameters in CME.

The acceptance rate of particles determines the efficiency of an ABC

sampling algorithm. By adopting Markov Chain Monte Carlo (MCMC)

method (Marjoram et al., 2003) and sequential sampling technique (Liepe

et al., 2014; Toni et al., 2009), the acceptance rate of particles can be

improved. The ABC SMC algorithm utilizes a gradient of thresholds

(ε1, ε2, . . . , εT ) in strictly decreasing order with εT as the desired threshold.

The sampled particles are propagated through a sequence of intermediate

distributions, corresponding to the intermediate thresholds, until the final set

of samples represents the posterior target distribution.

The control of the false rejection error is another critical issue in applying

ABC algorithm. The error rejects proposed particle, even though the

distribution of experimental data is consistent with the distribution of

simulated data. This error is caused by using the finite size of samples, to

approximate the true distribution, as defined by the particle. This error can

be reduced by increasing the size of simulated data set at the price of

increasing computational cost. The ABC algorithm named INSIGHT shows

that, if the distance metric used for analyzing flow cytometry data (Lillacci

and Khammash, 2013), is Kolmogorov distance, the false rejection error then

depends on the specified threshold ε; the size of experimental and simulated

data. Moreover, the size of experimental data, in a typical flow cytometry

experiment, is often large, whereas, the required size of the sample for

attaining a reasonable false rejection error can be surprisingly small. As long

as the size of observed data is large, the ABC algorithm can be implemented
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in a very efficient way. In addition, the use of Kolmogorov distance allows

the bounds of a mismatch index to be estimated, and is defined as the

distance between the distribution of experimental data and the distribution

of best fitted model. This index grants valuable insight on the fundamental

discrepancy between experimental data and the stochastic model and can be

used to determine whether alternative models may be investigated or not.

ABC method also opens the possibility of using Bayes factor or posterior

probability to compare competing models (Liepe et al., 2014; Toni et al.,

2009). For instance, the ABC SMC algorithm (Toni et al., 2012), is used

to study the MEK/ERK phosphorylation dynamics using time course data

obtained from vivo cells. The estimated posterior probabilities are then used

to rank candidate models that represent different hypothesis on the underlying

systems. Moreover, by comparing the simulated samples and the observed

data, it also makes a direct diagnosis of the discrepancy between the model

and the data possible (Ratmann et al., 2009).

The inference problem can be handled in a different manner if the

expressions of mRNA or protein can be monitored within individual cells,

continuously (Golding et al., 2005; Yu et al., 2006). In particular, as

described in Gillespie algorithm (Gillespie, 1977), given the complete

information on a particular trajectory of CME over time [t0, tn], (including

the initial copy number(s) x(t0), as well as the firing times of each reaction

up to time tn), the likelihood function is expressed as the product of

exponential and multinomial densities. The corresponding inference problem

can then be easily solved. For instance, given the full trajectory, in a

stoichiometric system, where the propensity functions are linear functions of

the unknown parameters, the maximum likelihood estimator can be solved

analytically (Daigle et al., 2012).

Nevertheless, the complete information is hard to obtain. In practice, the

system state can be observed at a few discrete time points. The observed data

is represented as x(t0),x(t1), . . . ,x(tn), the likelihood function is then the

products of transition likelihood p(x(ti)|x(ti−1), θ) whose expression is usually

not analytical. For example, considering a single molecular species that evolves
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according to a simple birth and death process, if the copy numbers are 10 and

20 at time 0 and t respectively, then any full trajectory that satisfies the

following condition is consistent with the observation:

1. The total number of births minuses the total number of deaths during

(0, t] equals 10.

2. The birth events and the death events can occur in any order and at any

time as long as the total copy number never drops below 0.

Consequently, transition probability from 0 and t is the sum of probabilities of

all the consistent full trajectories, which can be hard to compute if the system

is complex.

Many authors have thus explored approximated approaches to estimate

the transition probability, so that the unknown parameters can be inferred

with conventional methods. Reinker et al. (2006), under the assumption that

the number of firings are limited or the propensity functions remain constant

during the period (ti−1, ti], show that the transition probability can be

approximated with relatively simple analytical formulas. This approach is

roughly equivalent to approximating the exact transition probability, as the

sum of probabilities of the most probable paths from ti−1 to ti. The

transition likelihood from ti−1 to ti is estimated using non-parametric kernel

density function based on the simulated realizations of the system at ti given

initial condition (ti−1,x(ti−1)) (Tian et al., 2007).

The maximum likelihood estimator of parameters can also be found using

Expectation Maximization (EM) algorithm. In the E-step, the expectation of

the likelihood function of the full trajectory, conditional on the observations

and the current value of parameters, is evaluated. Then in the M-step, the

value of parameters can be updated by maximizing the conditional

expectation. Due to the intractability of EM algorithm, the Monte Carlo

extension of EM algorithm (MCEM) is often used. In MCEM, the

conditional expectation is estimated, based on the sampled, full trajectories.

The major difficulty in applying MCEM in CME system lies in the fact that,

the simulated trajectories must be consistent with the observed data. This
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can be hard to achieve, if unmodified Stochastic Simulation Algorithm is

used. Horvath and Manini (2008) suggest that the full path must be

simulated piece-wise for each interval (ti−1, ti]. Daigle et al. (2012) argue

that, to implement MCEM efficiently, the initial choice of parameters must

be the values that are likely to generate consistent trajectories. An iterative

algorithm based on the Cross Entropy (CE) method (Rubinstein, 1997) is

used to find such initial values. In each iteration, trajectories are simulated

using previous parameter values but, only the trajectories that are closed to

the observed path are used for updating the parameters.

Wang et al. (2010) have presented an approach to maximize likelihood

function using Stochastic Gradient Descent (SGD). The gradient of

likelihood function can be determined based on the expectation of the

duration, in which the system stays on different states and the number of

transitions between states are conditional on the observed path. A Reversible

Jump Markov Chain Monte Carlo (RJMCMC) algorithm, is implemented for

simulating paths that are consistent with the observations, where new paths

are proposed by adding/deleting certain set of reactions from the initially

proposed path. This method can also be applied to the dataset, where only

part of the species is observed.

In addition to the frequentist approaches, Bayesian methods that utilize

MCMC sampling algorithms can also be used to solve such problems. Boys

et al. (2008) use MCMC algorithm to sample the full trajectories, conditional

on the observations. The efficiency of MCMC sampling is improved by using

reversible jumping and blocking update methods. In general, the Bayesian

approach can be directly applied to the system with unobserved species, since

Bayesian approach can readily impute such missing information in the same

way as imputing the full trajectories.

Inference of continuous stochastic model

The discreteness of CME is often the major obstacle in obtaining its solution.

It can be approximated by other continuous stochastic processes, including

the Linear Noise Approximation (LNA) and the Stochastic Differential
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Equation (SDE). In this section, existing inference approaches for the

continuous stochastic models is discussed using time-series data.

LNA approximates the CME as the sum of deterministic term and

stochastic fluctuation. As is mentioned in Komorowski et al. (2009), the

stochastic fluctuation can be modeled by SDE. The drifting and diffusion

parameters of SDE depend on the deterministic part of LNA. As a result, the

solution which is proposed by LNA is always multivariate Gaussian

distribution, whose mean vector and covariance matrices can be determined

by the propensity functions. Thus, the posterior distribution can be sampled,

directly using standard Metropolis-Hastings (MH) algorithm; given the

suitable choice of prior values over the unknown parameters. This framework

can readily include the presence of unobserved species and also the

measurement errors (assuming to be an additive Gaussian noise). This

method has been employed to estimate the GFP protein degradation rate

from the cycloheximide experiment. Fearnhead et al. (2014) also consider the

inference problem using LNA and show that such approach can be

statistically and computationally more efficient than approaches based on

deterministic differential equation or SDE.

In a full SDE approximation, unlike in LNA, the transition probability

between two successive observations is often analytically intractable. It is

possible to estimate such transition probability by discretizing the trajectory

of SDE system; a technique commonly known as Euler-Maruyama

approximation. Under this approximation, the sample path between two

successive observations is discretized into multiple segments. The increment

in each segment is then modeled as independent Gaussian random variables,

whose means and values are determined by SDE. This approximation forms

the basis of the Bayesian inference framework proposed for the general

stoichiometric model (Golightly and Wilkinson, 2005). A MCMC scheme is

then applied to obtain posterior samples of unknown kinetic parameters. The

sampling procedure is alternative, between the sampling of parameters

conditional on the augmented data, the sampling of missing data given

observations and the current set of parameters, due to the need of imputing
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values to discretize the SDE, as well as handling the unobserved species.

Further enhancement of this scheme is possible with advanced sampling

methods. The dependence between the parameters and missing data can be

overcome through the use of sequential MCMC methods to sample the model

parameters (Golightly and Wilkinson, 2006). The accuracy of

Euler-Maruyama approximation increases as the number of imputed value

increases. However, increasing the number of imputed values also increases

the computational cost which can break down an ordinary Bayesian

imputation algorithm. To overcome this issue, Golightly and Wilkinson

(2008) have proposed a global MCMC strategy with an improved Gibbs

sampler. In this approach, a Brownian motion process is used, to impute

values between successive observations, so as to prevent the increase in

computational cost as the number of segments increase. However, the speed

of such computation scheme is still hindered by the complexity of the model,

and for this particle, Markov Chain Monte Carlo method can be

implemented to lessen the computation burden (Golightly and Wilkinson,

2011).
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Figure 3.1: Categorization of different approaches for parameter inference.

3.2 Model selection

A model can be proposed with different level of details for explaining the

mechanics of gene regulatory system. Nevertheless, it is often difficult to

observe the inner mechanism of the regulatory system directly and hence have

to rely on the available information to choose between different models. For

instance, there is a need to find out if it is possible to choose between the two-

state model and multistate model, by analyzing the single-cell level distribution

of the copy number of protein molecules. There is also a need to know how

to make sure that the selected model is sophisticated enough to explain what

has been observed or whether the observed information is sufficient to infer

the detail of the model being proposed. In this section, the relevant literature

that deals with the problem of model selection in the context of studying CME

system is discussed.

The fitness of the model is evaluated by proposing suitable metrics. This

36



metrics can be used to measure the distance between model and data. In

earlier works (Babtie et al., 2014; Kugler, 2012; Liepe et al., 2014) have used

this metrics to measure the distance, between the observed and predicted

values or time derivatives of state variables or between the predictive and

observed moments. If the predictive distribution can be obtained, χ2 test can

be used to determine whether the prediction of model is consistent with the

data (Zenklusen et al., 2008). Also, Euclidean distance or Hellinger distance

can be used as metric of discrepancy or the difference (Munsky et al., 2009; Silk

et al., 2014; Sunnaker et al., 2013). For comparing models with different level

of details, Akaike Information Criterion (AIC) and Bayes factor can be used

to penalize additional complexity of model parameters or structure (Babtie

et al., 2014; Liepe et al., 2014; Silk et al., 2014; Sunnaker et al., 2013; Toni

et al., 2009). The fitness and complexity of the model can also be balanced

by measuring the uncertainty introduced by the model. For instance, Neuert

et al. (2013), the log-likelihoods are used as measurement of fitness, while the

uncertainty is evaluated by cross-validation. Specifically, the uncertainty is

defined as the average log-likelihoods of complete data set calculated using

parameters that are obtained through fitting the model with sampled partial

data set. The best model is chosen based on the balance between fitness and

uncertainty.

As many authors have pointed out, due to the complexity of dynamical

system, even if good fit has been achieved, using a particular model or

particular set of parameters, there may be other alternative models or sets of

parameters that can fit the data equally well. Consequently, it is often useful

to search the space of candidate models or the parameter space thoroughly,

before making a final conclusion. Villaverde et al. (2015) have explored the

predictive accuracy of fitted model using a consensus approach for a fixed

model. This approach searches the parameter space of the given model and

collects sets of all parameter values that fit the data well. Then the accuracy

of prediction can be analyzed, based on whether these collected sets of

parameter values can reach a consensus. By grouping the parameters into

modules of meta-parameters, the burden of searching the parameter space
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can be reduced. Topological Sensitive Analysis (Babtie et al., 2014) is used

to explore the uncertainty present in the structure of the model. This

approach proposes alternative structure by modifying the relationship

between nodes in the given model. Restrictions are imposed to limit the

search space. Gaussian process regression is used to evaluate the fitness of

the proposed structure. Topological Filtering method (Sunnaker et al., 2013)

is used to explore alternative models by constructing a tree of models. The

base model is the root of this tree which consists of many detailed

interactions. The creation of new nodes includes removing interactions and

the associated parameters, step by step. Analysis on the fitness of the model

is carried along the way. The process of the new nodes creation is stopped

only if further simplification makes the model unfit for the data. This

approach may create multiple branches and candidate models at the end of

each branch. The model is then collected for further study. Finally, the

exploration of alternative models may guide the researchers to design new

experiments or to discriminate different models.

3.3 Summary

This chapter briefly summarizes the inference methods to infer the unknown

kinetic parameters from the model using single-cell gene expression data. Also,

model selection is reviewed briefly and discussed.
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Chapter 4

Model Formulation for

Multistep Reaction Processes

This chapter introduces the widely used gene expression model, random

telegraph model and its multistep model formulation. The multistep

promoter model formulation is presented for two different inference

approaches that have been developed in this work, namely; Delay-Bursty

MCEM and Clumped-MCEM respectively.

4.1 Introduction

A fundamental issue in Systems Biology is to formulate simple models to

describe biological processes with multistep reactions. This is very important

because recent theoretical and experimental studies have shown that a wide

variety of biochemical events exhibits multistep reactions. Among them, the

most important biological processes in gene expression, that involve

multistep reaction, are transcriptional and translational processes, that

produce mRNAs and proteins respectively. Transcription plays a major role

in all cellular functions. The irregularity of transcription process results in

diseases such as cancer, diabetes and neurological disorders (Lee and Young,

2013). Despite its importance, the mechanistic details of gene expression are

not very well understood. In particular, lack of molecular-level explanation

for bursts in gene expression is observed in prokaryotes and eukaryotes (Cai
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et al., 2006; Raj et al., 2006). The accurate characterization of the

mechanisms underlying expression bursts is very important, as the properties

of these bursts have been implicated in disease related processes such as

bacterial phenotype switching (Choi et al., 2008) and HIV activation (Singh

et al., 2010). Recently, several works have provided proof for the synthesis of

mRNAs (Chubb et al., 2006; Dar et al., 2012; Golding et al., 2005; Halpern

et al., 2015; Ochiai et al., 2014; Raj et al., 2006; Senecal et al., 2014; So

et al., 2011; Suter et al., 2011; Taniguchi et al., 2010; Zong et al., 2010) and

proteins (Cai et al., 2006; Yu et al., 2006) in bursts. Although the origins of

the transcriptional burst remain poorly understood (Chubb and Liverpool,

2010), it has been shown that stochastic switching between promoter active

and inactive states leads to bursts (Blake et al., 2003; Boeger et al., 2008;

Harper et al., 2011; Larson, 2011; Mao et al., 2010; Mariani et al., 2010;

Miller Jensen et al., 2011; Raser and OShea, 2004; Suter et al., 2011). The

random telegraph model (Dobrzyski and Bruggeman, 2009; Peccoud and

Ycart, 1995; Shahrezaei and Swain, 2008) is most commonly used to analyze

transcriptional bursting. This model has been used as the key model for

several works to infer parameters from experimental data. In general, the

assumption of random telegraph model is not valid because it involves

multiple kinetic steps in promoter activation (Jia and Kulkarni, 2011;

Pedraza and Paulsson, 2008; Xu et al., 2013). All these experimental facts

combine with the above analysis and are motivation to introduce a more

accurate model for the multistep reaction processes. Therefore, the aim of

this work is to design a model which accurately characterizes transcriptional

bursting and is consistent with the observed data.

4.2 Biological motivation for multistep model

formulation

Several experimental studies on promoters shed light on multistep OFF

mechanism that are exhibited. The effective number of steps for most
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promoters, due to simultaneous regulation by multiple transcription factors,

as well as chromatin modifications, is considered to be larger than two

(Zhang et al., 2012). The distribution of time, the human prolactin gene

promoter spents in an inactive state is inferred to be strongly

non-exponential and thus indicative of multiple, sequential OFF states, as is

studied by Harper et al. (2011). In particular, when promoters are modeled

as an irreversible cycle, endogenous promoters show five sequential inactive

steps, while minimal synthetic promoters exhibit only one (Zoller et al.,

2015). PRM in phage lambda, where complex mechanism of regulation gives

rise to 128 regulatory states (Sanchez et al., 2013) and the Endo16 gene in

sea urchin, where cis-regulatory domain contains > 30 binding sites for 15

different proteins that perform combinatorial regulation (Yuh et al., 1998),

are classical examples of multistep promoters. Recently, to explore kinetic

control - the combinatorial control of gene expression, through regulation of

different steps in the transcription cycle, is presented (Scholes et al., 2017).

4.3 Random telegraph model

The gene expression description, widely popular for both, its simplicity and

generality, is the random telegraph model. It has been first proposed by Ko

(Ko M S H, 1991) and later has been expanded by Peccoud and Ycart (1995).

The random telegraph model is represented by using biochemical reactions as

follows:

DNAoff
kon


koff

DNAon

DNAon
km−→ DNAon +mRNA

mRNA
γm−→ φ .

(4.1)

In model 4.1, the promoter switches, from OFF to ON and ON to OFF

state, are with rate kon and koff respectively. The mRNA production

happens from the ON state with rate km. mRNAs live for an

exponentially-distributed time interval with mean lifetime 1/γm, where γm is

the rate of mRNA degradation.
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4.4 Transcriptional bursting model

The representation of transcriptional bursting model based on random

telegraph model is given in Model 4.2.

DNAon
km−→ DNAon +Bm ×mRNA

mRNA
γm−→ φ

Bm ∼ Geometric(c3) .

(4.2)

Basically, transcriptional bursting is represented by two parameters;

where km and Bm denote the burst frequency and burst size respectively. In

this model formulation of 4.2 (Gillespie, 2007), mRNA bursts arrives at

exponentially-distributed time intervals with rate km. Each burst produces a

geometrically-distributed number of transcripts Bm with the mean value

(1− c3)/c3 (Evans et al., 2000).

4.5 Multistep formulation of random

telegraph model

The realistic representation of multiple, sequential OFF states in 4.1 is shown

in Model 4.3. Pictorial representation of Model 4.3 is depicted in Fig.4.1 and

its abridged version is depicted in Fig.4.2.

DNAoff1
k1−→ DNAoff2

...

DNAoffN−1

kN−1−→ DNAoffN

DNAoffN
kN−→ DNAon

DNAon
koff−→ DNAoff1 .

(4.3)

Model 4.3 (Fig.4.1) differs from the model 4.1 in the distribution of time

spent in OFF states. In contrast to 4.1, it is now non-exponential. It follows

hypoexponential distribution (sum of exponential random variables) (Evans

et al., 2000) which approaches an Erlang distribution (Evans et al., 2000)

when switching rates are identical.
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Figure 4.1: Original model of promoter activation

Figure 4.2: Abridged model

4.6 Model reduction stratergy for multistep

transcriptional bursting model

The model reduction for multistep promoter models is achieved through the

use of time delays. The key idea here is to lump multistep reaction of processes,

by equivalent delayed reactions that transform reactants into products, after

a prescribed time delay. A novel model reduction stratergy, that represents

several OFF states, by a single state, accompanied by specifying time delays

for burst frequency, is devised. This stratergy enables, both efficient simulation

and parameter inference which is demonstrated in Chapter 5.

4.6.1 Multistep formulation of transcriptional bursting

model

The representation of the transcriptional bursting model 4.2, in terms of 4.3,

requires the generation of inter-burst arrival times. This is achieved by

introducing prescribed delays for inter-burst arrival times. The

corresponding bursting model is formulated as

DNAoff1−→ . . .−→DNAoffN
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA .

(4.4)
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Model 4.4 is modeled as a delayed reaction by generating delay time(τ) as an

Erlang distribution. There are two points to consider:

• First, the delay time of the reaction, which is modeled as an Erlang

distribution, is the time from the initiation to completion. The firing

time τ of the delayed reaction is generated as Erlang(N, k) distribution,

in which the shape parameter N corresponds to the distribution of the

sum of N and are independent exponentially distributed numbers, with

the same rate parameter k.

• Second, this work focuses on delayed and nondelayed nonconsuming re-

actions.

When τ is set to 0, it reduces to random telegraph model where the promoter

switching times from OFF to ON and ON to OFF states are exponentially

distributed.

The correspondence between the parameters of the Erlang distribution

and the number of promoter states is most accurate, when the switching rates

are equal. When switching rates are not equal, the closed form for the sum

is not known. In this case, it has been empirically observed that the slowest

promoter transitions become rate limiting and thus mask the presence of faster

transitions (Daigle et al., 2015).

4.6.2 Comparison with Barrio et al. 2013 paper

• The focus of the thesis is to develop computationally efficient

parameter inference methods for characterizing transcriptional bursting

process, for inferring unknown kinetic parameters, given single-cell

time-series data. On the other hand, the work of Barrio et al. 2013

focuses on representing chains of chemical reactions by reduced models.

The abridgement is achieved by generation of model-specific delay

distribution functions, consecutively fed to a delay stochastic

simulation algorithm. Barrio et al. also shows analytical description of

delay distributions for the system which consists of first-order
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reactions, with or without additional backward bypass reactions.

Further, they also discussed why one must adopt numerical approach

for monomolecular reactions.

• To model multistep promoter OFF states with bursting (as shown in

Model 4.4), first, delay constant (τ in the Model 4.4) associated with

each reaction is specified. As in Barrio et al., we assume model specific

delay distribution. Our work focuses only on delayed and nondelayed

nonconsuming reactions whereas Barrio et. al model reduction

approaches are more universally applicable as it does not rely on time

scale separation conditions. We consider reactions that follow mass

action kinetics. The use of delays in our work is described below.

– The more realistic representation of reversible reaction of Model

4.1 is given in Model 4.3. The representation of the transcriptional

bursting model 4.2, in terms of 4.3, requires the generation of

inter-burst arrival times. This is achieved by introducing

prescribed delays for inter-burst arrival times. The corresponding

bursting model is explained in Subsection 4.6.1

• The Barrio et al. work does not require any time-scale separation

conditions to be accurate. Thus, Barrio et al. approach largely

increases the range of reducible biochemical models. It depends on

model specific delay distribution, consecutively fed to a delay stochastic

simulation algorithm. The approach proposed in Barrio et al. is

summarized below:

– The approach in Barrio et al. (2013) was based on the idea of

random walks and first-arrival times (Van Kampen, 2007). It

considers some kind of reaction blocks that could be lumped.

These restrictions were related not only to the type of reactions

contained in the blocks but also to how blocks could be connected

among themselves. Namely, a linear chain of reactions composing
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a block

S1
c1−→ S2

c2


c2r

. . . Sn−2
cn−2



cn−2r

Sn−1
cn−1−→ Sn . (1)

Equation (1) was shown to be exactly reducible to a single delayed

reaction

S1
c1,τ−→ Sn′ . (2)

with appropriate delay distribution. Here, S1 and Sn, required the

irreversibility of the first and last reaction of the linear chain.

– Barrio et al. approach also provides an exact reduction in

scenarios solely composed of unimolecular and/or backward

bypass reactions, as the delay distributions can be derived

analytically. For all other monomolecular reactions (constitutive

creation, degradation, or forward bypass reactions), Barrio et al.

approach accuracy can be tailored at will, as the delay

distributions can be derived numerically, either in terms of

first-passage time (SSA) runs or matrix exponentials for sampled

time points. In these cases, the accuracy depends on the number

of SSA simulations obtained for the first-passage distribution, or

the number of time points at which the matrix exponential is

calculated, respectively.

– Barrio et al. work also presents to reduce models with backward

and forward bypass reactions, degradation of involved molecular

species, and constitutive creation of intermediate species through

Arnoldi estimates (Trefethen and Bau, 1997).

• The model reduction techniques presented in Barrio et al. 2013 cannot

be used for the models we study in our thesis because we consider

reactions that follow mass action kinetics - i.e. where

aj(x(t)) = θjhj(x(t)). Where θj, a kinetic rate constant and hj(x(t)), a

function that quantifies the number of possible ways reaction Rj, can

occur, given system state x. For instance, for unimolecular,
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homo-bimolecular and hetero-bimolecular reactions hj(x(t)) takes the

form x1,
x1(x1−1)

2
, x1x2 respectively. In our work, for the delayed

nonconsuming reactions, hj(x(t)) is set to 1. Hence, accommodating

other types of reactions using Barrio et al’s delay distribution for the

problem setting in our thesis is not possible.

4.6.3 Delay estimation for unimolecular and bimolecu-

lar reactions

Degradation is an essential process in all biological processes. The special

unimolecular reaction A → φ represents the degradation of species A. The

reaction φ → A is called a synthesis reaction. The A molecules are

introduced into the biological system from outside, e.g., species reservoir.

Synthesis reactions are often used to model the effects of outside

environment on the system dynamics.

An A molecule can associate with a B molecule to produce a complex

C through an association reaction A + B → C. Such a reaction is called

a bimolecular reaction. The special bimolecular reaction 2A → B is called

a dimerization, where two molecules of the same species A are consumed to

produce a B molecule.

This work focuses on reactions that follow mass action kinetics - i.e.

where aj(x(t)) = θjhj(x(t)). Where θj, a kinetic rate constant and hj(x(t)),

a function that quantifies the number of possible ways reaction Rj, can

occur, given system state x. For instance, for unimolecular,

homo-bimolecular and hetero-bimolecular reactions hj(x(t)) takes the form

x1,
x1(x1−1)

2
, x1x2 respectively. In this work, for the delayed nonconsuming

reactions, hj(x(t)) is set to 1. Hence, accommodating unimolecular and

bimolecular reactions using delay distribution in this setting is not possible.

4.7 Experimental data

The Delay-Bursty MCEM and Clumped-MCEM is applied to actual

time-lapse microscopy data from a reporter gene driven by a mammalian
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promoter. A single trajectory of luminescence data collected once every five

minutes, from the glutaminase promoter is extracted (Suter et al., 2011)(Fig.

1C in Suter et al.). The data smoothing and calibration is performed to

convert light intensity values to numbers of proteins. This data consists of

539 measurements, sampled approximately, once every five minutes for 43.5h

arbitrary units (Daigle et al., 2015). Fig. 4.3 and Fig. 4.4 displays the

glutaminase trajectory before and after preprocessing.

Note: The Bmal1a and Prl2c2 (datasets provided in (Suter et al., 2011))

includes other components for bursting patterns for example, circadian

component. The goal of present work is to characterize transcriptional

bursting process which involves multistep reactions. Hence, the proposed

methods has been tested only with time-series data of endogenous mouse

glutaminase promoter from (Daigle et al., 2015). Further, the performance of

model systems other than glutaminase promoter (Daigle et al., 2015) could

not be evaluated due to lack of publicly available data.

Figure 4.3: Glutaminase promoter time-lapse microscopy data from (Suter

et al., 2011).
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Figure 4.4: Glutaminase promoter time-lapse microscopy data from (Daigle

et al., 2015).

4.8 The interpretation of experimental data

for multistep models

DNAoff1−→ . . .−→DNAoffN
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.5)

DNAon1−→ . . .−→DNAonN
kon,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.6)

In this study, all models share fixed, identical rates of mRNA degradation,

protein translation and protein degradation.
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• mRNA degradation is derived from the 45 min glutaminase reporter

mRNA half life experimentally determined by (Suter et al., 2011).

• Protein degradation is derived from the 21 minute luciferase protein half

life experimentally determined by (Suter et al., 2011).

• Protein translation is reported in (Molina et al., 2013).

In addition, the unobserved initial promoter state for multistep OFF model

and multistep ON model is set to DNAoff (4.5) and DNAon (4.6)

respectively. The protein number is set as 137 for glutaminase dataset. For

the unobserved initial number of mRNA molecules, values from 0, 10, 20, 30

are tried. However, number of mRNAs = 20 molecules allowed the

simulation of trajectories with the largest observed data likelihood. So this

number is used in all simulations. The initial value of the reaction clock is

set to 0 for all model simulations.

4.9 Parameter inference using glutaminase

promoter time-series data

DNAoff1
kon,τ


koff

DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.7)

DNAoff1−→DNAoff2
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.8)

50



DNAoff1−→ . . .−→DNAoff3
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.9)

DNAoff1−→ . . .−→DNAoff4
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.10)

DNAoff1−→ . . .−→DNAoff5
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.11)

DNAoff1−→ . . .−→DNAoff10
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.12)
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DNAoff1−→ . . .−→DNAoff15
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(4.13)

The unknown kinetic parameters of the models 4.7, 4.8, 4.9, 4.10, 4.11, 4.12,

4.13 are τ, kon, koff , km. These models includes the mRNA degradation,

protein translation and degradation reactions with .924 (Suter et al., 2011),

12.6 (Molina et al., 2013), 1.98 (Suter et al., 2011) respectively. Models 4.7,

4.8, 4.9, 4.10, 4.11, 4.12, 4.13 represents 1, 2, 3, 4, 5, 10, 15 promoter OFF

states, respectively. These models include, bursting with the correct

parameterization. It assumes random bursts production. The unknown

parameters of the model are initialized to 1. But c3 is initialized to 0.5. The

unobserved initial promoter state and number of mRNAs are initialized to

DNAoff and 20, respectively. The time delay value ranging from 0.5 − 5 is

selected (when present i.e. denoted as τ). Table 4.1 defines reactions for

Model 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13. The pictorial representation of the

models 4.7 to 4.13 is depicted in Fig.4.5.

Table 4.1: Reactions defining Model 4.7-4.13.

Reaction Rate Constant Interpretation

DNAoff1−→ . . .−→DNAoffN
kon,τ−→ DNAon kon multistep promoter activation

DNAon

koff−→ DNAoff1 koff promoter inactivation

DNAon
km−→ DNAon +mRNA km transcription

mRNA
.924−→ φ .924(Suter et al., 2011) mRNA degradation

mRNA
12.6−→ mRNA+ Protein 12.6 (Molina et al., 2013) translation

Protein
1.98−→ φ 1.98 (Suter et al., 2011) protein degradation
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Figure 4.5: Diagrammatic representation of model description using time-

series data.

Stoichiometric representation

The stoichiometric representation of the models 4.7 to 4.13 is given as follows.

R =





1 0 1 0 0 0 ON

0 1 0 0 0 0 OFF

0 0 0 1 1 0 mRNA

0 0 0 0 0 1 protein

0 0 0 0 0 0 t

P =





0 1 1 0 0 0 ON

1 0 0 0 0 0 OFF

0 0 1 0 1 0 mRNA

0 0 0 0 1 0 protein

0 0 0 0 0 0 t

The matrices R and P represents the reactant and product stoichiometric

coefficients for each species (row) in each reaction (column).

• the 1st column of R is
[
1 0 0 0 0

]
and the 1st column of P is[

0 1 0 0 0
]
. This shows that the 1st reaction occurs as follows:

DNAon−→DNAoff .

• the 2nd column of R is
[
0 1 0 0 0

]
and the 2nd column of P is
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[
1 0 0 0 0

]
. This shows that the 2nd reaction occurs as follows:

DNAoff−→DNAon.

• the 3rd column of R is
[
1 0 0 0 0

]
and the 3rd column of P is[

1 0 1 0 0
]
. This shows that the 3rd reaction occurs as follows:

DNAon−→DNAon +mRNA.

• the 4th column of R is
[
0 0 1 0 0

]
and the 4th column of P is[

0 0 0 0 0
]
. This shows that the 4th reaction occurs as follows:

mRNA−→φ.

• the 5th column of R is
[
0 0 1 0 0

]
and the 5th column of P is[

0 0 1 1 0
]
. This shows that the 5th reaction occurs as

follows:mRNA−→mRNA+ Protein.

• the 6th column of R is
[
0 0 0 1 0

]
and the 6th column of P is[

0 0 0 0 0
]
. This shows that the 6th reaction occurs as follows:

Protein −→ φ.

• The 6th rows of R and P are reserved for the reaction clock (t), and they

should only contain zeros.

4.10 Summary

Section 4.2 presents biological motivation for multistep models. Section 4.3

describes widely used random telegraph model. Section 4.4 describes

transcriptional bursting model. Section 4.5 and 4.6 details multistep

promoter formulation of widely used random telegraph model and bursting

model, respectively. Section 4.7 presents experimental data used in this

work. Section 4.8 gives the interpretation of experimental data for multistep

models. Section 4.9 gives model description for inference using glutaminase

data.
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Chapter 5

Delay-Bursty MCEM and

Clumped-MCEM: Inference for

Multistep Reaction Processes

5.1 Introduction

Many biochemical events involve multistep reactions. In order to lump

multistep reactions, delays are employed (Barrio et al., 2013; Leier et al.,

2014). This is, to avoid a computationally intensive task of modeling every

single detail of multistep reactions, a delayed reaction is used to mimic the

effects of these processes on the overall system dynamics.

A major task in computational systems biology is to conduct accurate

mechanistic simulations of multistep reactions. The simulation of a biological

process from experimental data requires detailed knowledge of its model

structure and kinetic parameters. Despite advances in experimental

techniques, the estimating unknown parameter values from observed data

remains a bottleneck for obtaining accurate simulation results. Many

methods exist for parameter estimation in deterministic biochemical systems;

methods for discrete stochastic systems are less well developed (Wang et al.,

2010). In recent years, it has become increasingly clear that, stochasticity

plays a crucial role in many biological processes. For instance, intrinsic noise

has been reported to have an impact on, cellular gene expression and
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regulation (Cai et al., 2008); cellular differentiation (Suel et al., 2007); (ion)

channel gating in neurons (White et al., 2000); pattern formation (Rudge

and Burrage, 2008) and evolution (Eldar et al., 2009). As a consequence,

modeling and simulation frameworks that are able to represent stochastic

systems accurately have become increasingly popular.

The dynamics of a stochastic system are described by a probability

distribution which cannot usually be obtained analytically (approximate

methods such as finite state projection have been used with some success

(Munsky and Khammash, 2010)). Instead, sampling methods like the

Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) are used to generate

ensembles of trajectories from the unknown distribution. The SSA cannot be

directly used for delayed models. Therefore, this chapter focuses on the

modification of existing methods for delayed models (Barrio et al., 2006) and

(Cai, 2007), which are then used for the two inference approaches that have

been developed.

5.2 Maximum likelihood estimation

A natural approach for parameter estimation, given the stochastic nature of

biochemical models, is to choose values that maximize the probability of the

observed data with respect to the unknown parameters (Maximum

Likelihood Estimates or MLEs). In the case of fully observed/complete data,

where the number of molecules of each system species is known at all time

points, MLEs can be calculated analytically. However, since realistic

biochemical models are discretely and partially observed, computational

MLE methods are needed to accurately characterize multistep promoter

models and simulate their behavior.

Fig.5.1 displays workflow for modeling, parameter inference and model

selection.
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Figure 5.1: Workflow for modeling, parameter inference and model selection.

5.3 The expectation maximization algorithm

: an overview

Stochatic models are commonly used to model biological data. Much of their

popularity is attributed to the existence of efficient and robust procedures for

learning parameters from observations. However, very often, the only data

available for developing a stochatic model is incomplete. The expectation

maximization algorithm enables parameter estimation in stochastic models

with incomplete data. The working of expectation maximization algorithm is
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demonstrated below by considering example of coin-flipping experiment.

A coin-flipping experiment

A simple coin-flipping experiment (Do and Batzoglou, 2008) in which a pair

of coins A and B of unknown biases, θA and θB, respectively, are given (on

any given flip, coin A may land on heads with probability θA and tails with

probability 1 − θA, similarly, coin B may land on heads with probability θB

and tails with probability 1 − θB). The goal is to estimate θ = (θA, θB) by

repeating the flipping procedure five times; randomly choosing one of the two

coins (with equal probability), and perform ten independent coin tosses with

the selected coin.. Thus, the entire procedure involves a total of 50 coin tosses.

This experiment considers two vectors; x = (x1 . . .x5) and z = (z1 . . . z5),

where xi ∈ {0 . . . 10} is the number of heads observed during the ith set of

tosses, and zi ∈ {A,B} is the identity of the coin used during the ith set of

tosses. In this setting, parameter estimation is known as the complete data

case in which the values of all relevant random variables (the result of each

coin flip and the type of coin used for each flip) are known. Here, a simple

way to estimate θA and θB is to calculate the observed flips of heads for each

coin:

θ̂A =
number of heads using coin A

total number of flips using coin A
(5.1)

θ̂B =
number of heads using coin B

total number of flips using coin B
(5.2)

This intuitive guess is, in fact, known in the statistical literature as

maximum likelihood estimation (the maximum likelihood method assesses

the quality of a statistical model, based on the probability it assigns to the

observed data). If logP (x, z; θ) is the logarithm of the joint probability (or

log likelihood) of obtaining any particular vector of observed head counts x

and coin types z, then the formulae in (5.1) solve for the parameters

θ = (θA, θB) that maximize logP (x, z; θ).

Now consider a more challenging variant of the parameter estimation

problem, where the recorded head counts x are given, but, the identities z of
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the coins used for each set of tosses are not known; z is referred to as hidden

variables or latent factors. Parameter estimation in this new setting is known

as the incomplete data case. This time, calculating heads for each coin toss is

no longer possible, because the coin used for each set of tosses is not known.

However, if there can be some way of completing the data (in this case,

guessing correctly which coin has been used in each of the five sets), then the

parameter estimation for this problem with incomplete data can be reduced

to maximum likelihood estimation with complete data.

One iterative scheme for obtaining completion of the incomplete data can

work as follows: starting from some initial parameters, θ̂(t) = (θ̂
(t)
A , θ̂

(t)
B );

determine for each of the five sets, whether coin A or coin B has more likely

generated the observed flips (using the current parameter estimates). Then,

assume these completions (that is, guessed coin assignments) to be correct,

and apply the regular maximum likelihood estimation procedure to get θ̂(t+1).

Finally, repeat these two steps until convergence. As the estimated model

improves, so does the quality of the resulting completions.

The Expectation Maximization algorithm is a refinement on this basic

idea. Rather than picking the single most likely completion of the missing

coin assignments on each iteration, the Expectation Maximization algorithm

computes probabilities for each possible completion of the missing data,

using the current parameters θ̂(t). These probabilities are used to create a

weighted training set consisting of all possible completions of the data.

Finally, a modified version of maximum likelihood estimation, that deals

with weighted training examples, provides new parameter estimates, θ̂(t+1).

By using weighted training examples rather than choosing the single best

completion, the Expectation Maximization algorithm accounts for the

confidence of the model in each completion of the data.

In summary, the Expectation Maximization algorithm alternates between

the steps of guessing a probability distribution over completions of missing

data, given the current model (the E-step) and then re-estimating the model

parameters using these completions (the M-step). The name E-step comes

from the fact that one does not usually need to explicitly form the probability
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distribution over completions, rather the need is to only compute expected

sufficient statistics over these completions. Similarly, the name M-step comes

from the fact that model re-estimation can be thought of as maximization of

the expected log-likelihood of the data.

5.4 Simulation

This section modifies existing simulation algorithms to simplify multistep

reactions. The modified algorithms are presented in following subsections

namely, Delay Stochastic Simulation Algorithm (DSSA) and Modified Cai’s

Exact SSA Method (MCEM).

5.4.1 Delay Stochastic Simulation Algorithm for

multistep reactions

The Delay Stochastic Simulation Algorithm (DSSA) is the extension of SSA

for simulating models with delays. The DSSA differs from the SSA by making

a clear distinction between the reaction type and reaction delay. First, it

divides reactions with delays into two groups (1) Consuming delayed reactions;

(2) Nonconsuming delayed reactions. When a consuming reaction occurs, the

numbers of reactant molecules are updated at the time of initiation, while

numbers of product molecules are updated at the end of the time delay. When

a nonconsuming reaction occurs, the numbers of reactants and products are

updated only at completion. The choice of reaction type for modeling of

biochemical reactions depends on the biological context. For instance, a single

gene is transcribed simultaneously (by several RNA polymerases) and the DNA

itself is not consumed by the first transcription. Thus, one can assume that,

the transcription process is a nonconsuming reaction. The reaction delay is the

time from the initiation to completion (i.e. processing of the reactants to the

appearance of the products). In this work, DSSA version of nondelayed and

delayed nonconsuming reactions is considered. As is mentioned, nondelayed

and delayed nonconsuming reactions have only one update point for updating
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both numbers of reactants and products molecules. The former when the

nondelayed reaction happens, the latter when the delay ends.

To model multistep promoter OFF states with bursting, as shown in Model

4.4, first, the delay constant (τ in the model 4.4) associated with each reaction

is specified. If the nondelayed reaction is chosen, then the state is updated as

in SSA (Algorithm 1). But, if delayed reaction is selected, it is not updated

until prescribed time delay.

As mentioned in Model 4.4, the distribution of time spent in multistep

promoter approaches an Erlang distribution. Using this distribution, it is

formulated in such a way that for a burst arrival with delay τj, the current

burst arrival should depend on the historical state at time t − τj. It can be

interpreted as the probability that a burst occurred in [t− τj, t− τj + dt) that

is to be updated in [t, t + dt). The method for the implementation of this

algorithm is given in Algorithm 2.

Algorithm 2 Delay Stochastic Simulation algorithm

Input: a model of M reactions in which each reaction Rj, j = 1 . . .M and

propensity aj, the initial state x0 at time 0.

Output: trajectories of the model.

1. Set time t = 0 with state X(t) = x0

2. Calculate propensity functions aj(x), j = 1 . . .M, a0(x) =
∑M

j=1 aj(x)

3. Generate random numbers r1, r2 ∼ U(0, 1)

compute τ = 1
a0
ln
(

1
r1

)
4. If there are nonconsuming delayed reaction to finish in the time interval

[t, t+ τ), update time t← τ , where τ is the time when the first delayed

reaction finishes. Update reactants and products. Repeat step 2 and 3.

If there is no delayed reaction to finish in [t, t+ τ), proceed to step 5.

5. Generate j from a random number r2∑j−1
j′=1 aj′(t) < r2a0(t) ≤

∑j
j′=1 aj′(t)

If Rj is nondelayed reaction, update reactants and products.
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6. set t← t+ τ , go to step 2 or stop.

5.4.2 Modified Cai’s Exact SSA Method

Cai’s method (Cai, 2007) involves two computationally intensive steps in

computing the firing time τ . To begin with, it has to consider each element

of the delayed event queue Tstruct , to evaluate the cdf F of the firing time τ .

Following this, the relative completion times of delayed events, in the delayed

event queue Tstruct , need to be updated by the simulation.

This work proposes the Modified Cai’s Exact SSA Method (MCEM) to

simplify multistep reactions. The idea for processing delays for Model 4.4

is as follows. Let R be a nonconsuming delayed reaction with the delay τd,

assuming that R is initiated at time t + τ . First, an event is created with

time t+ τ + τd and stored for later processing. Then the simulation continues

processing until time t+τ +τd. At this point, the delay reaction R is retrieved

to update the state. This work is based on the fact that none of the delayed

reactions are scheduled to complete before the specified time that follows an

exponential distribution. Considering that the delayed event occurs after time

t + τ , the firing time τ does not change (Thanh et al., 2017). Thus, it is

safe to select the next reaction Rj, with probability
aj
a0

, to initiate at time

t + τ . The Modified Cai’s Exact SSA Method (MCEM) considers absolute

completion times of delayed reactions instead of relative time. The method

for the implementation of this algorithm is given in Algorithm 3.

Algorithm 3 Modified Cai’s Exact SSA Method (MCEM)

Input: a model of M reactions in which each reaction Rj, j = 1 . . .M and

propensity aj, the initial state x0 at time 0.

Output: trajectories of the model.

1. Set time t = 0 with state X(t) = x0

2. Calculate propensity functions aj(x), j = 1 . . .M, a0(x) =
∑M

j=1 aj(x)

3. Generate random numbers r1, r2 ∼ U(0, 1)
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compute τ = 1
a0
ln
(

1
r1

)
set tnext = t+ τ

4. IF τd > tnext let τd be the completion time of delayed reaction Rj

select reaction firing Rj with probability
aj
a0

by finding the smallest

reaction index j′ such that
∑j′

j=1 aj ≥ r2a0

Nonconsuming delayed reaction: update reactants and products after

delay τd

ELSE Nondelayed reaction: update state by reactants and products of

Rj

5. set t = tnext

6. Go to step 2 or stop.

5.5 Discrete-state stochastic reaction kinetics

Consider, discrete, stochastic chemical kinetic models that assume a

well-mixed reactor volume, consisting of N molecular species, denoted by Si

for i = 1 . . . N . The system state is represented by the N-dimensional

random process X(t) = (X1(t) . . . XN(t)) at time t, where Xi(t) denotes the

number of molecular species Si at time t. The firing of M reactions

R1 . . . RM , evolve through the discrete-valued molecular population numbers.

aj(x(t))dt (j = 1 . . .M) gives the probability that, reaction Rj fires in the

next infinitesimal time interval [t, t + dt), given X(t) = x with sum a0(x(t)).

This work focuses on reactions that follow mass action kinetics - i.e. where

aj(x(t)) = θjhj(x(t)). Where θj, a kinetic rate constant and hj(x(t)), a

function that quantifies the number of possible ways reaction Rj, can occur,

given system state x. In this work, for the delayed nonconsuming reactions,

hj(x(t)) is set to 1.
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5.6 Simulation for reactions with delays

The implementation of the Algorithm 2 and 3 provides a numerical

procedure for generating system trajectories of the molecular populations

from their underlying distribution. It works by selecting the time to the next

reaction (τ) and the index of the next reaction (j′) as exponential with mean

1/a0(x) and categorical with probabilities aj(x)/a0(x) (j = 1, . . . ,M)

random variables, respectively. Given, x0 and final time T , application of the

Algorithm 2 and 3 yields a trajectory z ≡ (τ1, j1
′, . . . , τr, jr

′), Where r is the

number of times the jth reaction fires. The likelihood of the complete system

trajectory (x0, z), as the function of kinetic parameters θ, is given by,

fθ(x0, z) =
( r∏
i=1

θji′hji′(xi−1)
)
× exp

(
−

r+1∑
i=1

[τi

M∑
j=1

θjhj(xi−1)]
)
. (5.3)

5.7 Parameter inference using maximum like-

lihood approach

Single-cell time-series data is incomplete as it provides the number of molecules

for a species at d discrete time instances. The observed data is represented

as y ≡ (x0,x1
′, . . . ,xd

′), where xi
′ denotes the numbers of molecules of a

subset of the N species, at some time point ti. The Expectation Maximization

(EM) (Dempster et al., 1977), given an incomplete data, is an algorithm to

calculate maximum likelihood. Given θ̂(0), this algorithm is based on iterative

computation (Robert and Casella, 2004):

θ̂(n+1) = argθmax
(
E
[
logfθ(x0, z)|y, θ̂(n)

])
(5.4)

θ̂(n+1) = argθmax

 ∑
z∈Z(y)

[
g(z|y, θ̂(n))× logfθ(x0, z)

] (5.5)

where E
[
·|y, θ̂(n)

]
is the expectation operator w.r.to the conditional distribu-

tion of z given y and θ(n). Z(y) is the set of all valid trajectories that are con-

sistent with y. g
[
z|y, θ̂(n)

]
denotes the unknown conditional density of z.
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An explicit evaluation of the summation is intractable in Equation 5.5,

instead, the following methods are used to generate reaction trajectories:

Method 1: This method combines Monte Carlo approach of Expectation

Maximization (MCEM) and Algorithm 2 and is termed as Delay-Bursty

MCEM.

Method 2: This method combines Monte Carlo approach of Expectation

Maximization (MCEM) and Algorithm 3 and is termed as Clumped-MCEM.

Method 1 and Method 2 generates reaction trajectories to approximate

θ̂(n+1):

θ̂(n+1) ≈ argθmax
( K∑
k=1

[I (znk ∈ Z(y))× logfθ (x0, z
n
k )]
)

(5.6)

θ̂(n+1) = argθmax
( K′∑
k′=1

log(fθ(x0, z
n
k′))
)

(5.7)

where znk is the kth Delay Stochastic Simulation Algorithm (DSSA)

(Algorithm 2) or Modified Cai’s Exact SSA Method (MCEM) (Algorithm 3)

trajectory, simulated using the parameter vector θ̂n. I(znk ∈ Z(y)) is an

indicator function taking a value of 1 if znk is consistent with y (otherwise 0).

K is the total number of simulated trajectories. k
′

indexes only the K
′

simulated trajectories that are consistent with the observed data (Equation

5.7). K is set to the value that leads to the number of consistent trajectories

K
′
. Simplifying Equation 5.7 as in (Wilkinson, 2006), the maximum

likelihood estimates for each reaction is given by

θ̂j
(n+1)

=

∑K′

k′=1r
n
jk′∑K′

k′=1

(∑rn
k′+1

i=1 ainjk × τnik′
) . (5.8)

Equation 5.8 can be rewritten as,

θ̂j
(1)

= θ̂j
(0)
×

∑K′

k′=1r
n
jk′∑K′

k′=1

(∑rn
k′+1

i=1 ainjk × τnik′
) (5.9)

where θ̂j
(0)

and θ̂j
(1)

indicates the initial guess and first update respectively,

for parameter θj. i indexes the start of the simulation and rk
′ is the total

number of reactions firing, arriving at the final time rk
′+ 1. rjk′ is the number

of times the jth reaction fires. aijk is the value of the propensity function for the
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jth reaction, immediately after the ith event; τik′ is the time interval between

the events.

Method 1: The Delay-Bursty MCEM uses ascent-based MCEM (Caffo

et al., 2005) to select number of consistent trajectories K
′

and iterations n.

The trajectories of this method are generated using Algorithm 2. The

MCEM version of the maximum likelihood estimates for each reaction is

given in Equation 5.9.

Method 2: The Clumped-MCEM involves two phases, as in Bursty

MCEM2. When an initial guess is given for the unknown parameters (θ̂j
(0)

),

the Cross Entropy (CE) method begins by simulating K trajectories using

Algorithm 3. The K ′ = ρ × K trajectories, that are closest to a given

observed data, are selected based on the computation of distance (Daigle

et al., 2015) from each trajectory to the observed data. It leads to compute

better parameter estimates for θ̂j
(1)

. This process is repeated until final time.

Upon reaching the final time, the CE phase computes the update shown in

Equation 5.9. The CE phase parameter estimates are used as input

parameters to MCEM phase. This phase simulates trajectories using

Algorithm 3. Upon reaching the final time, the MCEM phase computes the

update shown in Equation 5.9 (with K ′ replaced by K ′′). Table 5.1

summarizes the phases of Delay-Bursty MCEM and Clumped-MCEM.

Table 5.1: The phases of Delay-Bursty MCEM and Clumped-MCEM simula-

tion.

Methods CE phase MCEM phase

Delay-Bursty MCEM - Delay Stochastic Simulation Algorithm (DSSA)

Clumped-MCEM Modified Cai’s Exact SSA Method (MCEM) Modified Cai’s Exact SSA Method (MCEM)

5.8 Results

In this section, empirical results are presented to support two main claims:

1. Models with multiple OFF states produce behaviour which is most con-

sistent with experimental data.
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2. Delay-Bursty MCEM and Clumped-MCEM inference is more efficient

for time-series data.

5.8.1 Accuracy of the model

In this work, Akaike Information Criterion (AIC) (Akaike, 1974) is used to

compare the complexity of different models. It gives lower value for models

which best fit observed experimental data. It is given by

AIC = 2m− 2log(L̂) . (5.10)

where m denotes the number of unknown parameters from the model.

The goal is to decide on parameter values( τ and Number Of States), such

that, AIC is as low as possible and km/koff is as close as possible to the number

of mRNAs 20(i.e. observed value column in this experiments).

Tables 5.2 to 5.8 and Tables 5.9 to 5.15 show maximum likelihood

parameter estimates for model parameters kon, koff , km. Tables 5.2 to 5.8

and Tables 5.9 to 5.15 show km/koff and AIC score for various values of τ

and Number Of States, using experimentally observed values in the

glutaminase dataset for Delay-Bursty MCEM and Clumped-MCEM

respectively. From these rows of Tables 5.2 to 5.8 and Tables 5.9 to 5.15, it is

seen that, setting τ = 4.75 and Number Of States = 15 give the best fit when

compared to experimentally observed time-series data (with mRNAs = 20)

with the lowest value of AIC. These results further support the hypothesis,

that a model with the larger number of OFF states (15 in our case) is able to

better explain the experimentally observed values during transcriptional

bursting.

To further evaluate the robustness of these inference techniques, data

from a model is generated, and used to carry out parameter inference, to

determine if the inferred parameters agree with the original values used

during data generation. These details are presented in Appendix A.2.

Results in highlighted text describe the models that best fits the data.

Simulation results, using synthetic and glutaminase promoter data, show

that (i) bursting kinetics are promoter specific (i.e. it depends on the number
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of promoter OFF states) and (ii) mRNA production is consistent with

multiple promoter OFF states.

Table 5.2: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.7.

Number Of States τ kon koff km km/koff observed value AIC

1 0.5 2.97 3.57 66.02 18.49 20 3478.17

1 0.75 3.44 4.08 71.18 17.44 20 3471.10

1 1.10 4.27 3.79 72.24 19.06 20 3467.85

1 1.40 4.32 3.54 73.13 20.65 20 3470.18

1 1.65 6.84 3.89 73.82 18.97 20 3468.89

1 2.10 8.80 3.56 68.94 19.36 20 3469.89

1 3.40 18.77 3.13 67.21 21.47 20 3468.24

1 4.00 19.79 3.23 68.75 21.28 20 3469.25

1 4.10 26.20 3.28 69.09 21.06 20 3468.55

1 4.75 45.33 3.50 65.60 18.74 20 3467.55

1 5.00 50.70 2.96 63.54 21.46 20 3469.31

Table 5.3: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.8.

Number Of States τ kon koff km km/koff observed value AIC

2 0.5 3.13 3.73 66.06 17.71 20 3476.68

2 0.75 3.22 3.60 70.91 19.69 20 3473.79

2 1.10 4.43 3.87 72.62 18.76 20 3470.25

2 1.40 4.89 3.64 72.89 20.02 20 3465.37

2 1.65 6.58 3.89 74.95 19.26 20 3468.70

2 2.10 8.43 3.64 70.71 19.42 20 3467.16

2 3.40 18.79 3.55 68.62 19.32 20 3463.77

2 4.00 22.34 3.28 67.65 20.62 20 3466.19

2 4.10 25.79 3.48 71.08 20.42 20 3464.17

2 4.75 48.37 3.40 64.36 18.92 20 3462.45

2 5.00 45.30 3.12 65.53 21.00 20 3463.45
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Table 5.4: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.9.

Number Of States τ kon koff km km/koff observed value AIC

3 0.5 3.00 3.63 66.58 18.34 20 3476.51

3 0.75 3.23 3.44 70.46 20.48 20 3473.48

3 1.10 4.36 3.71 72.00 19.40 20 3470.32

3 1.40 4.98 3.62 73.30 20.24 20 3467.78

3 1.65 6.53 3.74 73.70 19.70 20 3469.18

3 2.10 7.56 3.45 70.52 20.44 20 3465.09

3 3.40 19.43 3.48 67.95 19.52 20 3467.50

3 4.00 24.18 3.26 67.62 20.74 20 3465.99

3 4.10 24.85 3.44 71.70 20.84 20 3465.65

3 4.75 47.50 3.17 67.30 21.23 20 3463.78

3 5.00 41.69 3.30 65.38 19.81 20 3465.42

Table 5.5: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.10.

Number Of States τ kon koff km km/koff observed value AIC

4 0.5 2.93 3.69 66.55 18.03 20 3475.98

4 0.75 3.42 3.67 69.33 18.89 20 3474.17

4 1.10 4.27 3.78 73.13 19.34 20 3470.04

4 1.40 5.27 3.65 73.20 20.05 20 3467.86

4 1.65 6.88 3.97 74.11 18.66 20 3468.22

4 2.10 6.90 3.30 70.40 21.33 20 3465.86

4 3.40 18.53 3.39 68.51 20.20 20 3464.76

4 4.00 25.93 3.22 67.32 20.90 20 3463.94

4 4.10 24.61 3.45 70.84 20.53 20 3465.4

4 4.75 44.46 3.20 67.49 21.09 20 3462.74

4 5.00 44.09 3.23 65.51 20.28 20 3469.26
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Table 5.6: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.11.

Number Of States τ kon koff km km/koff observed value AIC

5 0.5 3.00 3.81 67.04 17.59 20 3476.03

5 0.75 3.09 3.55 69.46 19.56 20 3475.37

5 1.10 4.38 3.85 73.13 18.99 20 3469.86

5 1.40 5.10 3.75 72.33 19.28 20 3468.99

5 1.65 6.70 3.87 72.91 18.83 20 3468.71

5 2.10 7.22 3.29 69.00 20.97 20 3468.97

5 3.40 18.86 3.32 67.64 20.37 20 3464.22

5 4.00 26.24 3.20 65.66 20.51 20 3464.53

5 4.10 25.87 3.51 70.77 20.16 20 3465.15

5 4.75 46.20 3.43 66.06 19.25 20 3463.14

5 5.00 40.66 3.11 67.41 21.67 20 3464.64

Table 5.7: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.12.

Number Of States τ kon koff km km/koff observed value AIC

10 0.5 3.03 4.03 70.86 17.58 20 3477.00

10 0.75 3.52 3.84 70.59 18.38 20 3472.88

10 1.10 4.45 3.89 73.12 18.79 20 3471.10

10 1.40 5.32 3.76 72.88 19.38 20 3469.35

10 1.65 6.26 3.68 72.45 19.68 20 3467.27

10 2.10 8.45 3.39 69.04 20.36 20 3469.83

10 3.40 19.40 3.47 69.17 19.93 20 3465.22

10 4.00 25.55 3.45 69.99 20.28 20 3464.87

10 4.10 27.82 3.14 67.16 21.38 20 3465.08

10 4.75 42.57 3.19 65.60 20.56 20 3463.33

10 5.00 45.59 3.15 66.10 20.98 20 3464.39
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Table 5.8: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.13.

Number Of States τ kon koff km km/koff observed value AIC

15 0.5 3.02 4.04 70.67 17.49 20 3476.14

15 0.75 3.49 3.84 70.92 18.46 20 3473.14

15 1.10 4.29 3.79 72.96 19.25 20 3469.84

15 1.40 5.25 3.71 72.57 19.56 20 3468.60

15 1.65 6.13 3.71 72.89 19.64 20 3467.4

15 2.10 8.48 3.55 70.51 19.86 20 3467.18

15 3.40 19.58 3.46 69.27 20.02 20 3464.02

15 4.00 27.58 3.46 70.01 20.23 20 3463.78

15 4.10 31.01 3.43 68.88 20.08 20 3465.34

15 4.75 41.64 3.15 63.36 20.11 20 3461.25

15 5.00 45.25 3.29 67.68 20.57 20 3464.53

Table 5.9: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.7.

Number Of States τ kon koff km km/koff observed value AIC

1 0.5 3.00 3.77 69.03 18.31 20 3478.16

1 0.75 3.38 4.11 74.32 18.08 20 3476.71

1 1.10 3.76 3.68 76.03 20.66 20 3469.46

1 1.40 5.16 3.76 73.41 19.52 20 3472.05

1 1.65 7.60 4.43 74.76 16.87 20 3470.29

1 2.10 10.06 3.84 69.37 18.06 20 3467.80

1 3.40 22.61 3.31 67.41 20.36 20 3467.89

1 4.00 26.20 2.97 62.70 21.11 20 3471.95

1 4.10 23.44 3.38 69.44 20.54 20 3468.16

1 4.75 49.22 3.35 67.50 20.14 20 3464.20

1 5.00 44.51 3.40 69.64 20.48 20 3464.79
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Table 5.10: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.8.

Number Of States τ kon koff km km/koff observed value AIC

2 0.5 2.89 3.95 70.85 17.93 20 3474.89

2 0.75 3.26 3.80 75.22 19.79 20 3478.29

2 1.10 4.09 3.92 75.20 19.18 20 3472.57

2 1.40 5.36 3.84 75.01 19.53 20 3467.90

2 1.65 7.67 4.32 76.06 17.60 20 3470.97

2 2.10 10.01 3.50 69.38 19.82 20 3467.70

2 3.40 21.79 3.41 68.69 20.14 20 3464.82

2 4.00 29.96 3.03 62.88 20.75 20 3464.69

2 4.10 26.54 3.53 70.49 19.96 20 3466.18

2 4.75 44.50 3.22 67.25 20.88 20 3461.93

2 5.00 40.23 3.32 70.21 21.14 20 3464.84

Table 5.11: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.9.

Number Of States τ kon koff km km/koff observed value AIC

3 0.5 2.91 3.83 69.49 18.14 20 3476.91

3 0.75 3.29 4.07 73.79 18.13 20 3475.89

3 1.10 4.14 3.89 74.22 19.07 20 3468.52

3 1.40 5.25 3.75 73.65 19.64 20 3465.47

3 1.65 7.88 4.45 77.67 17.45 20 3467.19

3 2.10 10.17 3.85 70.40 18.28 20 3466.82

3 3.40 20.07 3.33 68.45 20.55 20 3462.85

3 4.00 34.38 3.09 62.63 20.26 20 3467.19

3 4.10 29.98 3.59 70.94 19.76 20 3464.23

3 4.75 41.87 3.28 66.98 20.42 20 3462.38

3 5.00 42.19 3.54 71.86 20.29 20 3466.86
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Table 5.12: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.10.

Number Of States τ kon koff km km/koff observed value AIC

4 0.5 2.78 3.95 71.39 18.07 20 3477.91

4 0.75 3.50 3.98 72.01 18.09 20 3472.68

4 1.10 4.28 3.57 71.21 19.94 20 3474.63

4 1.40 5.14 3.78 75.41 19.94 20 3470.73

4 1.65 7.11 4.21 77.58 18.42 20 3469.49

4 2.10 8.64 3.44 69.63 20.24 20 3465.24

4 3.40 21.15 3.47 68.59 19.76 20 3466.23

4 4.00 30.94 3.05 61.36 20.11 20 3465.18

4 4.10 27.83 3.65 72.38 19.83 20 3463.49

4 4.75 43.33 3.18 67.45 21.21 20 3463.40

4 5.00 40.40 3.60 69.79 19.38 20 3467.09

Table 5.13: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.11.

Number Of States τ kon koff km km/koff observed value AIC

5 0.5 3.01 4.21 72.52 17.22 20 3479.93

5 0.75 3.63 4.00 70.36 17.59 20 3475.69

5 1.10 4.42 3.90 70.65 18.11 20 3470.04

5 1.40 4.88 3.85 75.56 19.62 20 3467.75

5 1.65 6.76 4.33 77.43 17.88 20 3469.57

5 2.10 9.46 3.67 70.31 19.15 20 3466.92

5 3.40 20.09 3.40 69.19 20.35 20 3465.45

5 4.00 32.06 2.92 62.83 21.51 20 3467.89

5 4.10 28.15 3.88 74.15 19.11 20 3464.93

5 4.75 42.01 3.35 67.39 20.11 20 3463.33

5 5.00 43.92 3.64 71.09 19.53 20 3464.54
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Table 5.14: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.12.

Number Of States τ kon koff km km/koff observed value AIC

10 0.5 3.02 4.18 72.65 17.38 20 3476.45

10 0.75 3.54 3.88 70.84 18.25 20 3473.72

10 1.10 4.36 3.86 73.57 19.05 20 3471.29

10 1.40 4.79 3.93 77.28 19.66 20 3468.89

10 1.65 6.42 3.93 75.05 19.09 20 3468.40

10 2.10 9.48 3.53 69.68 19.73 20 3466.36

10 3.40 19.89 3.46 68.77 19.87 20 3464.57

10 4.00 30.66 3.07 63.90 20.81 20 3464.47

10 4.10 28.10 3.56 71.79 20.16 20 3464.55

10 4.75 39.14 3.27 66.73 20.40 20 3463.56

10 5.00 35.08 3.29 68.11 20.70 20 3465.42

Table 5.15: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.13.

Number Of States τ kon koff km km/koff observed value AIC

15 0.5 2.96 4.14 72.70 17.56 20 3475.75

15 0.75 3.45 3.82 71.35 18.67 20 3472.87

15 1.10 4.50 3.79 72.05 19.01 20 3471.24

15 1.40 5.25 3.84 75.16 19.57 20 3469.21

15 1.65 6.31 3.86 74.22 19.22 20 3467.42

15 2.10 8.70 3.54 69.74 19.70 20 3466.53

15 3.40 20.08 3.34 67.92 20.33 20 3463.80

15 4.00 29.72 3.14 64.73 20.61 20 3463.70

15 4.10 27.51 3.51 70.56 20.10 20 3463.88

15 4.75 35.76 3.26 67.62 20.74 20 3460.27

15 5.00 44.92 3.22 67.25 20.88 20 3464.48
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5.8.2 Comparison of random telegraph model with

multistep model

DNAoff
kon


koff

DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(5.11)

Table 5.16 show inferred values kon, koff , km and AIC values for random

telegraph model. When τ is set to 0, it reduces to random telegraph model.

Model 5.11 also includes the mRNA degradation, protein translation and

degradation reactions with .924 (Suter et al., 2011), 12.6 (Molina et al.,

2013), 1.98 (Suter et al., 2011) respectively. It assumes bursting with the

correct parameterization. From these rows of Table 5.16, it is seen that the

random telegraph model fails to produce bursts consistent with data

(mRNAs = 20 in our case). These results further strengthens the conclusions

drawn from multistep promoter models.

Table 5.16: Parameter inference values for random telegraph model using glu-

taminase promoter time-series data for Model 5.11.

Method τ kon koff km km/koff observed value AIC

Delay-Bursty MCEM 0 1.95 4.36 69.35 15.90 20 3484.46

Clumped-MCEM 0 2.12 5.18 73.89 14.26 20 3482.94

5.8.3 Scaling of inference approach with model

complexity

θ̂(n+1) = argθmax

 ∑
z∈Z(y)

[
g(z|y, θ̂(n))× logfθ(x0, z)

] (5.12)

The theory behind the EM (Dempster et al., 1977) algorithm guarantees that

Equation 5.12 will converge to estimates that locally maximize the observed

data likelihood, given sufficiently large number of iterations. An explicit
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evaluation of the summation is intractable in Equation 5.12, instead, we use

Monte Carlo extension of EM that generate reaction trajectories using

simulation algorithms. The effective use of these inference approaches

involves appropriate selection of the consistent trajectories and iterations.

Such selections are done by heuristics that are dependent on the model being

analyzed.

5.8.4 Comparison with the literature

The results presented in Tables 5.2 to 5.8 can be produced using Bursty

MCEM2 (Daigle et al., 2015) and Delay-Bursty MCEM. The results

produced using Clumped-MCEM is presented in Tables 5.9 to 5.15. In this

section, the comparison of these approaches is made in terms of efficiency.

Numerical experiments have ran on 8 core Intel Xeon CPU

(E52650@2.6GHz) with 64GB memory. Tables 5.17 and 5.19 show an initial

number of trajectories simulated for each method using glutaminase

promoter time-series data. The total simulation time for Delay-Bursty

MCEM and Clumped-MCEM using glutaminase data is given in Table 5.18

and 5.20. The total simulation time in Table 5.18 shows that the Bursty

MCEM2 takes ≈ 8 days to obtain an estimate of the similar numerical

accuracy, as the Delay-Bursty MCEM estimate takes ≈ 5 days. The

computational cost of Delay-Bursty MCEM is reduced by 37.44% as

compared to Bursty MCEM2. The total simulation time for

Clumped-MCEM in Table 5.20 shows that it takes ≈ 3.5 days to obtain

similar accuracy as Delay-Bursty MCEM and Bursty MCEM2. The

computational cost of Clumped-MCEM is reduced by 57.58% as compared to

Bursty MCEM2. Further, the computational cost of Clumped-MCEM is

reduced by 32.19% as compared to Delay-Bursty MCEM.

Fig.5.2 compares the execution times of Clumped-MCEM, Delay-Bursty

MCEM and Bursty MCEM2 in simulating the multistep promoter model,

using glutaminase promoter time-series data respectively.
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Table 5.17: Initial number of trajectories simulated for the glutaminase data.

Method No. of trajectories in CE phase No. of trajectories in MCEM phase

Delay-Bursty MCEM - 2500

Bursty MCEM2 10000 2500

Table 5.18: Execution times for the multistep promoter model using glutami-

nase data.

Number Of States Method CPU(h)

15 Delay-Bursty MCEM 120.34

15 Bursty MCEM2 192.36

Table 5.19: Initial number of trajectories simulated for the glutaminase data.

Method No. of trajectories in CE phase No. of trajectories in MCEM phase

Clumped-MCEM 10000 1500

Bursty MCEM2 10000 2500

Table 5.20: Execution times for the multistep promoter model using glutami-

nase data.

Number Of States Method CPU(h)

15 Clumped-MCEM 81.6

15 Bursty MCEM2 192.36
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Figure 5.2: Performance of Clumped-MCEM, Delay-Bursty MCEM and bursty

MCEM2 in simulating the multistep promoter model using time-series data.

5.9 Additional results

There may be some other models that match the experimental data equally

well. To select such models, the relative likelihood value is calculated. The

relative likelihood, that any other model is preferable, is given by (Burnham

and Anderson, 2002)

exp((AICmin − AICi)/2) . (5.13)

where AICmin denotes the minimum AIC score and AICi is the score of the

model under consideration. In this work, models with relative likelihoods

≥ 0.368 are considered to constitute probable fits to the data. Tables 5.21 to
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5.27 and Tables 5.28 to 5.34 show km/koff , AIC score, and relative likelihood,

for various values of τ and Number Of States, using glutaminase data for

Delay-Bursty MCEM and Clumped-MCEM respectively. The highlighted text

indicates the models that best fits the experimental data.

Table 5.21: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.7.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

1 0.5 2.97 3.57 66.02 18.49 20 3478.17 0.0049

1 0.75 3.44 4.08 71.18 17.44 20 3471.10 0.169

1 1.10 4.27 3.79 72.24 19.06 20 3467.85 0.860

1 1.40 4.32 3.54 73.13 20.65 20 3470.18 0.268

1 1.65 6.84 3.89 73.82 18.97 20 3468.89 0.511

1 2.10 8.80 3.56 68.94 19.36 20 3469.89 0.310

1 3.40 18.77 3.13 67.21 21.47 20 3468.24 0.708

1 4.00 19.79 3.23 68.75 21.28 20 3469.25 0.427

1 4.10 26.20 3.28 69.09 21.06 20 3468.55 0.606

1 4.75 45.33 3.50 65.60 18.74 20 3467.55 1

1 5.00 50.70 2.96 63.54 21.46 20 3469.31 0.414

Table 5.22: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.8.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

2 0.5 3.13 3.73 66.06 17.71 20 3476.68 0.000 81

2 0.75 3.22 3.60 70.91 19.69 20 3473.79 0.0034

2 1.10 4.43 3.87 72.62 18.76 20 3470.25 0.020

2 1.40 4.89 3.64 72.89 20.02 20 3465.37 0.232

2 1.65 6.58 3.89 74.95 19.26 20 3468.70 0.043

2 2.10 8.43 3.64 70.71 19.42 20 3467.16 0.094

2 3.40 18.79 3.55 68.62 19.32 20 3463.77 0.516

2 4.00 22.34 3.28 67.65 20.62 20 3466.19 0.154

2 4.10 25.79 3.48 71.08 20.42 20 3464.17 0.423

2 4.75 48.37 3.40 64.36 18.92 20 3462.45 1

2 5.00 45.30 3.12 65.53 21.00 20 3463.45 0.606
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Table 5.23: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.9.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

3 0.5 3.00 3.63 66.58 18.34 20 3476.51 0.0017

3 0.75 3.23 3.44 70.46 20.48 20 3473.48 0.0078

3 1.10 4.36 3.71 72.00 19.40 20 3470.32 0.038

3 1.40 4.98 3.62 73.30 20.24 20 3467.78 0.135

3 1.65 6.53 3.74 73.70 19.70 20 3469.18 0.067

3 2.10 7.56 3.45 70.52 20.44 20 3465.09 0.519

3 3.40 19.43 3.48 67.95 19.52 20 3467.50 0.155

3 4.00 24.18 3.26 67.62 20.74 20 3465.99 0.331

3 4.10 24.85 3.44 71.70 20.84 20 3465.65 0.392

3 4.75 47.50 3.17 67.30 21.23 20 3463.78 1

3 5.00 41.69 3.30 65.38 19.81 20 3465.42 0.440

Table 5.24: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.10.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

4 0.5 2.93 3.69 66.55 18.03 20 3475.98 0.0013

4 0.75 3.42 3.67 69.33 18.89 20 3474.17 0.0032

4 1.10 4.27 3.78 73.13 19.34 20 3470.04 0.025

4 1.40 5.27 3.65 73.20 20.05 20 3467.86 0.077

4 1.65 6.88 3.97 74.11 18.66 20 3468.22 0.0645

4 2.10 6.90 3.30 70.40 21.33 20 3465.86 0.2101

4 3.40 18.53 3.39 68.51 20.20 20 3464.76 0.364

4 4.00 25.93 3.22 67.32 20.90 20 3463.94 0.548

4 4.10 24.61 3.45 70.84 20.53 20 3465.4 0.264

4 4.75 44.46 3.20 67.49 21.09 20 3462.74 1

4 5.00 44.09 3.23 65.51 20.28 20 3469.26 0.038
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Table 5.25: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.11.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

5 0.5 3.00 3.81 67.04 17.59 20 3476.03 0.0015

5 0.75 3.09 3.55 69.46 19.56 20 3475.37 0.0022

5 1.10 4.38 3.85 73.13 18.99 20 3469.86 0.034

5 1.40 5.10 3.75 72.33 19.28 20 3468.99 0.053

5 1.65 6.70 3.87 72.91 18.83 20 3468.71 0.0617

5 2.10 7.22 3.29 69.00 20.97 20 3468.97 0.0542

5 3.40 18.86 3.32 67.64 20.37 20 3464.22 0.582

5 4.00 26.24 3.20 65.66 20.51 20 3464.53 0.499

5 4.10 25.87 3.51 70.77 20.16 20 3465.15 0.366

5 4.75 46.20 3.43 66.06 19.25 20 3463.14 1

5 5.00 40.66 3.11 67.41 21.67 20 3464.64 0.472

Table 5.26: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.12.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

10 0.5 3.03 4.03 70.86 17.58 20 3477.00 0.001 07

10 0.75 3.52 3.84 70.59 18.38 20 3472.88 0.0084

10 1.10 4.45 3.89 73.12 18.79 20 3471.10 0.0205

10 1.40 5.32 3.76 72.88 19.38 20 3469.35 0.049

10 1.65 6.26 3.68 72.45 19.68 20 3467.27 0.139

10 2.10 8.45 3.39 69.04 20.36 20 3469.83 0.038

10 3.40 19.40 3.47 69.17 19.93 20 3465.22 0.388

10 4.00 25.55 3.45 69.99 20.28 20 3464.87 0.463

10 4.10 27.82 3.14 67.16 21.38 20 3465.08 0.416

10 4.75 42.57 3.19 65.60 20.56 20 3463.33 1

10 5.00 45.59 3.15 66.10 20.98 20 3464.39 0.588
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Table 5.27: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model 4.13.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

15 0.5 3.02 4.04 70.67 17.49 20 3476.14 0.000 58

15 0.75 3.49 3.84 70.92 18.46 20 3473.14 0.0026

15 1.10 4.29 3.79 72.96 19.25 20 3469.84 0.0136

15 1.40 5.25 3.71 72.57 19.56 20 3468.60 0.0253

15 1.65 6.13 3.71 72.89 19.64 20 3467.4 0.0461

15 2.10 8.48 3.55 70.51 19.86 20 3467.18 0.0515

15 3.40 19.58 3.46 69.27 20.02 20 3464.02 0.250

15 4.00 27.58 3.46 70.01 20.23 20 3463.78 0.282

15 4.10 31.01 3.43 68.88 20.08 20 3465.34 0.129

15 4.75 41.64 3.15 63.36 20.11 20 3461.25 1

15 5.00 45.25 3.29 67.68 20.57 20 3464.53 0.193

Table 5.28: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.7.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

1 0.5 3.00 3.77 69.03 18.31 20 3478.16 0.000 93

1 0.75 3.38 4.11 74.32 18.08 20 3476.71 0.0019

1 1.10 3.76 3.68 76.03 20.66 20 3469.46 0.072

1 1.40 5.16 3.76 73.41 19.52 20 3472.05 0.019

1 1.65 7.60 4.43 74.76 16.87 20 3470.29 0.047

1 2.10 10.06 3.84 69.37 18.06 20 3467.80 0.165

1 3.40 22.61 3.31 67.41 20.36 20 3467.89 0.158

1 4.00 26.20 2.97 62.70 21.11 20 3471.95 0.020

1 4.10 23.44 3.38 69.44 20.54 20 3468.16 0.138

1 4.75 49.22 3.35 67.50 20.14 20 3464.20 1

1 5.00 44.51 3.40 69.64 20.48 20 3464.79 0.744
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Table 5.29: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.8.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

2 0.5 2.89 3.95 70.85 17.93 20 3474.89 0.0015

2 0.75 3.26 3.80 75.22 19.79 20 3478.29 0.000 28

2 1.10 4.09 3.92 75.20 19.18 20 3472.57 0.0048

2 1.40 5.36 3.84 75.01 19.53 20 3467.90 0.050

2 1.65 7.67 4.32 76.06 17.60 20 3470.97 0.010

2 2.10 10.01 3.50 69.38 19.82 20 3467.70 0.055

2 3.40 21.79 3.41 68.69 20.14 20 3464.82 0.235

2 4.00 29.96 3.03 62.88 20.75 20 3464.69 0.251

2 4.10 26.54 3.53 70.49 19.96 20 3466.18 0.119

2 4.75 44.50 3.22 67.25 20.88 20 3461.93 1

2 5.00 40.23 3.32 70.21 21.14 20 3464.84 0.233

Table 5.30: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.9.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

3 0.5 2.91 3.83 69.49 18.14 20 3476.91 0.000 69

3 0.75 3.29 4.07 73.79 18.13 20 3475.89 0.0011

3 1.10 4.14 3.89 74.22 19.07 20 3468.52 0.046

3 1.40 5.25 3.75 73.65 19.64 20 3465.47 0.213

3 1.65 7.88 4.45 77.67 17.45 20 3467.19 0.090

3 2.10 10.17 3.85 70.40 18.28 20 3466.82 0.108

3 3.40 20.07 3.33 68.45 20.55 20 3462.85 0.790

3 4.00 34.38 3.09 62.63 20.26 20 3467.19 0.090

3 4.10 29.98 3.59 70.94 19.76 20 3464.23 0.396

3 4.75 41.87 3.28 66.98 20.42 20 3462.38 1

3 5.00 42.19 3.54 71.86 20.29 20 3466.86 0.106
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Table 5.31: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.10.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

4 0.5 2.78 3.95 71.39 18.07 20 3477.91 0.0007

4 0.75 3.50 3.98 72.01 18.09 20 3472.68 0.0096

4 1.10 4.28 3.57 71.21 19.94 20 3474.63 0.0036

4 1.40 5.14 3.78 75.41 19.94 20 3470.73 0.026

4 1.65 7.11 4.21 77.58 18.42 20 3469.49 0.047

4 2.10 8.64 3.44 69.63 20.24 20 3465.24 0.398

4 3.40 21.15 3.47 68.59 19.76 20 3466.23 0.242

4 4.00 30.94 3.05 61.36 20.11 20 3465.18 0.410

4 4.10 27.83 3.65 72.38 19.83 20 3463.49 0.955

4 4.75 43.33 3.18 67.45 21.21 20 3463.40 1

4 5.00 40.40 3.60 69.79 19.38 20 3467.09 0.158

Table 5.32: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.11.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

5 0.5 3.01 4.21 72.52 17.22 20 3479.93 0.000 24

5 0.75 3.63 4.00 70.36 17.59 20 3475.69 0.002

5 1.10 4.42 3.90 70.65 18.11 20 3470.04 0.034

5 1.40 4.88 3.85 75.56 19.62 20 3467.75 0.109

5 1.65 6.76 4.33 77.43 17.88 20 3469.57 0.044

5 2.10 9.46 3.67 70.31 19.15 20 3466.92 0.166

5 3.40 20.09 3.40 69.19 20.35 20 3465.45 0.346

5 4.00 32.06 2.92 62.83 21.51 20 3467.89 0.102

5 4.10 28.15 3.88 74.15 19.11 20 3464.93 0.449

5 4.75 42.01 3.35 67.39 20.11 20 3463.33 1

5 5.00 43.92 3.64 71.09 19.53 20 3464.54 0.546
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Table 5.33: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.12.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

10 0.5 3.02 4.18 72.65 17.38 20 3476.45 0.0015

10 0.75 3.54 3.88 70.84 18.25 20 3473.72 0.0062

10 1.10 4.36 3.86 73.57 19.05 20 3471.29 0.020

10 1.40 4.79 3.93 77.28 19.66 20 3468.89 0.069

10 1.65 6.42 3.93 75.05 19.09 20 3468.40 0.088

10 2.10 9.48 3.53 69.68 19.73 20 3466.36 0.246

10 3.40 19.89 3.46 68.77 19.87 20 3464.57 0.603

10 4.00 30.66 3.07 63.90 20.81 20 3464.47 0.634

10 4.10 28.10 3.56 71.79 20.16 20 3464.55 0.609

10 4.75 39.14 3.27 66.73 20.40 20 3463.56 1

10 5.00 35.08 3.29 68.11 20.70 20 3465.42 0.394

Table 5.34: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model 4.13.

Number Of States τ kon koff km km/koff observed value AIC Relative likelihood

15 0.5 2.96 4.14 72.70 17.56 20 3475.75 0.000 43

15 0.75 3.45 3.82 71.35 18.67 20 3472.87 0.0018

15 1.10 4.50 3.79 72.05 19.01 20 3471.24 0.0041

15 1.40 5.25 3.84 75.16 19.57 20 3469.21 0.011

15 1.65 6.31 3.86 74.22 19.22 20 3467.42 0.028

15 2.10 8.70 3.54 69.74 19.70 20 3466.53 0.043

15 3.40 20.08 3.34 67.92 20.33 20 3463.80 0.171

15 4.00 29.72 3.14 64.73 20.61 20 3463.70 0.179

15 4.10 27.51 3.51 70.56 20.10 20 3463.88 0.164

15 4.75 35.76 3.26 67.62 20.74 20 3460.27 1

15 5.00 44.92 3.22 67.25 20.88 20 3464.48 0.121
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5.10 Summary

This chapter presents two inference method developed in this work, namely,

Delay-Bursty MCEM and Clumped-MCEM. Application of these algorithms

to time-series data of endogenous mouse glutaminase promoter, validates the

model assumptions and infer the kinetic parameters. Comparison of

Delay-Bursty MCEM and Clumped-MCEM with BurstyMCEM2 reveals

that Clumped-MCEM produces same numerical accuracy in less time.

Table 5.35: Summary of parameter inference methods

Method Description

Bursty MCEM2 - A novel model reduction using time-dependent

functions for multistep promoters along with an

efficient computational technique for inferring the

unknown parameters from single-cell gene

expression data.

Delay-Bursty MCEM - A novel model reduction using delay distribution

for multistep promoters along with an efficient

computational technique for inferring the unknown

parameters from single-cell gene expression data.

Clumped-MCEM - A novel model reduction using delay distribution

for multistep promoters along with an efficient

computational technique for inferring the unknown

parameters from single-cell gene expression data.

The Clumped-MCEM produces same numerical

accuracy as Bursty MCEM2 and Delay-Bursty

MCEM in less time.
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Chapter 6

Conclusion and Future Work

This thesis focuses on novel model reduction techniques for modeling multistep

reactions, along with computational methods for inferring unknown kinetic

parameters from single-cell time-series data.

First, a novel model reduction strategy is devised, representing several

number of promoter OFF states by a single state, accompanied by specifying

a time delay for burst frequency. This model approximates complex

promoter switching behavior with Erlang-distributed ON/OFF times. To

explore combined effects of parameter inference and simulation, using this

model reduction, two inference methods are developed namely, Delay-Bursty

MCEM and Clumped-MCEM. Simulation of these methods are performed by

modifying two existing simulation algorithms, namely, Delay Stochastic

Simulation Algorithm (DSSA) and Modified Cai’s Exact SSA Method

(MCEM). Both these algorithms are based on the idea of delays, to provide

accurate representation of proposed multistep models.

Using these methods, computational cost of inferring parameters in

multistep models can be greatly reduced. For example, modeling a promoter

switching between five OFF states and single ON state requires six switching

parameters and simulation of six reactions per transcription process.

However, introducing time delays in transcriptional bursting model reduces

model complexity as well as computational cost.

The application of these methods to time-series data of endogenous

mouse glutaminase promoter validates the model assumptions and infer
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values of kinetic parameters. Simulation results show that: (1) models with

multiple OFF states produce behaviour that is most consistent with

experimental data and also reveals that bursting kinetics are promoter

specific (2) Delay-Bursty MCEM and Clumped-MCEM inference are more

efficient for time-series data. The comparison with the state-of-the-art Bursty

MCEM2 method shows that Delay-Bursty MCEM and Clumped-MCEM

produce the similar numerical accuracy. Further, when these methods are

compared in terms of efficiency, it is observed that Delay-Bursty MCEM

reduces computational cost by 37.44% as compared to Bursty MCEM2.

Clumped-MCEM reduces computational cost by 57.58% and 32.19% as

compared to Bursty MCEM2 and Delay-Bursty MCEM respectively.

In conclusion, Delay-Bursty MCEM and Clumped-MCEM reduce the

model complexity involved in modeling multistep reactions, and enables

efficient simulation and parameter inference. These methods provide faster

and more accurate parameter inference and simulation of more complex

models. This can open new perspectives in Systems Biology, where

researchers have to often balance the accuracy of their parameter inference

and simulations with the need of considering complex models.

Scope for future work

Some possibilities for further research are presented below:

• The proposed models assume that switching rates are identical in the

multistep reactions. Future work can consider extending this approach

to nonidentical switching rates.

• Both Delay-Bursty MCEM and Clumped-MCEM are based on the mass

action kinetics. There is scope to extend this research work for other

types of multistep reactions.

• Both Delay-Bursty MCEM and Clumped-MCEM consider delayed and

nondelayed nonconsuming reactions. These methods can potentially be

extended to delayed and nondelayed consuming reactions.
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• Finally, extending simulation techniques for systems that are not

well-mixed also presents many challenges, for which good solutions are

needed.
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Appendix A

Other Models

This appendix presents additional experiments carried out for multistep ON

states and single OFF state model. It also describes parameter inference

performed, using synthethic data for multistep OFF state and single ON

state model.

A.1 Multistep ON model : parameter

inference using time-series data

DNAon1

koff ,τ



kon

DNAoff

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.1)

DNAon1−→DNAon2

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.2)
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DNAon1−→ . . .−→DNAon3

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.3)

DNAon1−→ . . .−→DNAon4

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.4)

DNAon1−→ . . .−→DNAon5

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.5)

DNAon1−→ . . .−→DNAon10

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.6)
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DNAon1−→ . . .−→DNAon15

koff ,τ−→ DNAoff

DNAoff
kon−→ DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.7)

The unknown kinetic parameters of the model A.1, A.2, A.3, A.4, A.5, A.6,

A.7 are τ, kon, koff , km. These models include the mRNA degradation,

protein translation and degradation reactions with .924 (Suter et al., 2011),

12.6 (Molina et al., 2013), 1.98(Suter et al., 2011) respectively. Model A.1,

A.2, A.3, A.4, A.5, A.6, A.7 represents 1, 2, 3, 4, 5, 10, 15 promoter OFF

states respectively. These models include bursting, with the correct

parameterization. It assumes random bursts production. The unknown

parameters of the model are initialized to 1. But c3 has been initialized to

0.5. The unobserved initial promoter state and number of mRNAs is

initialized to DNAon and 20 respectively. The time delay value, when

present, ranging from 0.5-5 is selected (denoted as τ). Tables A.1 to A.7 and

Tables A.8 to A.14 displays results for multistep ON states and single OFF

state for Delay-Bursty MCEM and Clumped-MCEM using glutaminase

promoter time-series data respectively. Simulation results reveal, that model

with multistep ON states and single OFF state does not agree well with

experimental data.
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Table A.1: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.1

Number Of States τ koff kon km AIC

1 0.5 11.03 1.77 69.51 3484.32

1 0.75 18.99 1.87 68.73 3481.57

1 1.10 33.48 1.46 76.44 3483.09

1 1.40 25.30 1.64 58.17 3485.13

1 1.65 59.12 1.64 67.74 3481.36

1 2.10 114.12 1.44 71.58 3482.56

1 3.40 476.82 1.48 63.61 3486.48

1 4.00 1474.37 1.52 65.40 3485.14

1 4.10 1982.29 1.57 68.61 3483.65

1 4.75 1960.33 1.52 63.63 3489.20

1 5.00 2491.61 1.58 59.58 3490.54

Table A.2: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.2

Number Of States τ koff kon km AIC

2 0.5 10.87 1.75 68.13 3484.50

2 0.75 18.32 1.88 69.72 3483.63

2 1.10 32.60 1.50 76.91 3483.86

2 1.40 26.47 1.60 59.03 3485.92

2 1.65 65.81 1.69 66.33 3477.61

2 2.10 114.87 1.55 70.22 3482.57

2 3.40 504.73 1.65 62.39 3488.62

2 4.00 1425.18 1.56 66.12 3485.31

2 4.10 2040.87 1.61 66.53 3486.94

2 4.75 1907.24 1.46 63.27 3487.61

2 5.00 2774.97 1.68 59.05 3485.93
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Table A.3: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.3

Number Of States τ koff kon km AIC

3 0.5 11.49 1.94 68.21 3484.50

3 0.75 18.02 1.76 71.47 3484.46

3 1.10 31.56 1.51 75.99 3484.07

3 1.40 26.60 1.61 59.60 3484.80

3 1.65 62.26 1.63 66.69 3483.44

3 2.10 119.44 1.52 70.03 3484.34

3 3.40 477.097 1.52 62.58 3489.14

3 4.00 1321.88 1.57 65.29 3485.06

3 4.10 2040.16 1.61 65.97 3486.47

3 4.75 2002.73 1.46 62.79 3487.47

3 5.00 2631.97 1.56 58.60 3487.36

Table A.4: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.4

Number Of States τ koff kon km AIC

4 0.5 11.14 1.80 68.64 3483.49

4 0.75 17.10 1.67 72.42 3486.40

4 1.10 30.79 1.53 75.95 3483.19

4 1.40 25.90 1.59 60.46 3485.03

4 1.65 58.58 1.67 66.17 3482.59

4 2.10 121.37 1.52 70.94 3481.99

4 3.40 453.26 1.51 64.62 3483.09

4 4.00 1422.13 1.55 67.84 3485.43

4 4.10 1900.97 1.58 67.67 3485.19

4 4.75 1930.04 1.53 60.07 3490.21

4 5.00 2473.80 1.59 60.61 3489.66
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Table A.5: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.5

Number Of States τ koff kon km AIC

5 0.5 10.13 1.66 68.77 3484.38

5 0.75 18.10 1.71 71.25 3484.49

5 1.10 32.05 1.55 75.03 3482.08

5 1.40 27.52 1.59 61.22 3484.63

5 1.65 68.42 1.71 65.78 3485.41

5 2.10 125.41 1.57 70.13 3484.08

5 3.40 481.46 1.49 65.88 3489.02

5 4.00 1584.53 1.58 66.53 3484.47

5 4.10 1862.30 1.54 67.22 3487.40

5 4.75 2295.26 1.59 61.62 3488.46

5 5.00 2798.56 1.53 61.62 3489.80

Table A.6: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.6

Number Of States τ koff kon km AIC

10 0.5 11.13 1.74 70.46 3483.52

10 0.75 17.99 1.68 72.40 3482.16

10 1.10 32.98 1.67 72.67 3481.35

10 1.40 30.15 1.58 63.06 3482.76

10 1.65 61.64 1.57 70.95 3484.18

10 2.10 112.04 1.51 69.65 3482.88

10 3.40 529.27 1.54 65.49 3485.84

10 4.00 1604.51 1.51 67.86 3485.52

10 4.10 1787.93 1.53 67.68 3486.03

10 4.75 2694.76 1.57 63.34 3487.1

10 5.00 3427.36 1.53 62.95 3487.57
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Table A.7: Delay-Bursty MCEM parameter inference using glutaminase pro-

moter time-series data for Model A.7

Number Of States τ koff kon km AIC

15 0.5 11.36 1.72 71.82 3483.1

15 0.75 16.86 1.65 71.74 3481.81

15 1.10 29.17 1.60 71.41 3481.96

15 1.40 32.33 1.56 64.93 3482.05

15 1.65 53.06 1.53 68.90 3483.53

15 2.10 113.77 1.53 69.35 3482.92

15 3.40 586.16 1.53 66.46 3484.51

15 4.00 1605.07 1.53 67.71 3485.32

15 4.10 1800.45 1.53 67.66 3486.08

15 4.75 2884.39 1.51 64.47 3487.22

15 5.00 4062.69 1.56 63.48 3487.04

Table A.8: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.1

Number Of States τ koff kon km AIC

1 0.5 9.53 1.60 70.92 3483.30

1 0.75 21.54 1.82 71.70 3478.96

1 1.10 32.55 1.64 74.48 3489.45

1 1.40 29.59 1.64 59.27 3488.62

1 1.65 46.66 1.56 65.71 3485.28

1 2.10 126.31 1.57 71.81 3485.71

1 3.40 423.09 1.59 62.20 3488.58

1 4.00 1405.73 1.66 64.68 3487.17

1 4.10 1750.40 1.52 69.75 3487.48

1 4.75 2121.67 1.45 63.32 3490.49

1 5.00 2664.34 1.56 60.71 3492.88
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Table A.9: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.2

Number Of States τ koff kon km AIC

2 0.5 10.81 1.67 72.19 3480.91

2 0.75 20.76 1.93 71.91 3486

2 1.10 29.20 1.55 72.99 3480.61

2 1.40 29.41 1.60 62.09 3483.30

2 1.65 43.14 1.44 66.48 3486.69

2 2.10 150.19 1.48 72.15 3486.03

2 3.40 404.80 1.64 61.20 3484.01

2 4.00 1314.91 1.63 64.02 3489.78

2 4.10 1961.96 1.56 67.97 3487.51

2 4.75 1957.79 1.41 64.48 3491.60

2 5.00 2702.06 1.41 63.42 3489.18

Table A.10: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.3

Number Of States τ koff kon km AIC

3 0.5 10.36 1.57 71.78 3480.4

3 0.75 20.02 1.83 72.85 3483.53

3 1.10 32.26 1.60 74.56 3477.75

3 1.40 30.73 1.64 63.18 3481.85

3 1.65 43.93 1.56 65.89 3483.61

3 2.10 162.55 1.57 72.52 3482.49

3 3.40 405.85 1.57 61.22 3486.45

3 4.00 1242.35 1.61 63.84 3487.38

3 4.10 1780.24 1.51 67.73 3485.74

3 4.75 2026.37 1.37 66.29 3488.95

3 5.00 2641.90 1.45 62.35 3491.61
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Table A.11: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.4

Number Of States τ koff kon km AIC

4 0.5 10.90 1.64 72.10 3485.31

4 0.75 20.25 1.82 71.36 3484.57

4 1.10 31.63 1.53 76.17 3483.26

4 1.40 29.25 1.61 62.49 3481.73

4 1.65 47.01 1.54 66.94 3486.35

4 2.10 170.46 1.53 73.65 3482.14

4 3.40 418.10 1.51 62.54 3486.52

4 4.00 1196.37 1.50 64.95 3486.54

4 4.10 1989.89 1.58 66.86 3483.23

4 4.75 2090.92 1.41 64.52 3490.55

4 5.00 2760.17 1.56 61.41 3488.55

Table A.12: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.5

Number Of States τ koff kon km AIC

5 0.5 11.07 1.71 71.60 3483.41

5 0.75 18.92 1.73 72.07 3483.05

5 1.10 30.65 1.52 76.76 3483.39

5 1.40 30.36 1.57 63.13 3482.71

5 1.65 56.12 1.62 67.72 3482.79

5 2.10 170.19 1.66 74.04 3485.27

5 3.40 447.48 1.53 62.65 3488.09

5 4.00 1109.80 1.52 64.53 3487.45

5 4.10 2155.95 1.61 66.06 3487.58

5 4.75 2445.56 1.37 64.74 3489.05

5 5.00 2558.23 1.54 60.77 3491
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Table A.13: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.6

Number Of States τ koff kon km AIC

10 0.5 11.55 1.79 70.60 3482.89

10 0.75 18.67 1.70 73.91 3483.41

10 1.10 33.13 1.60 75.01 3482.67

10 1.40 34.48 1.62 65.35 3482.58

10 1.65 62.63 1.59 69.50 3482.69

10 2.10 187.39 1.61 75.08 3483.44

10 3.40 467.57 1.53 63.23 3485.91

10 4.00 1011.60 1.53 63.21 3487.39

10 4.10 2516.22 1.55 69.48 3486.11

10 4.75 2847.78 1.54 63.73 3488.83

10 5.00 2256.70 1.54 61.32 3489.57

Table A.14: Clumped-MCEM parameter inference using glutaminase promoter

time-series data for Model A.7

Number Of States τ koff kon km AIC

15 0.5 11.45 1.75 71.42 3482.92

15 0.75 17.84 1.67 73.34 3482.09

15 1.10 31.98 1.62 73.64 3482.05

15 1.40 37.55 1.61 66.52 3482.41

15 1.65 61.48 1.58 69.40 3482.49

15 2.10 172.05 1.56 74.94 3483.15

15 3.40 494.52 1.53 64.74 3485.51

15 4.00 1125.95 1.50 65.71 3487.43

15 4.10 2258.79 1.49 70.60 3485.89

15 4.75 2663.96 1.53 63.60 3487.20

15 5.00 2743.42 1.51 62.43 3488.44
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A.2 Parameter inference using synthetic data

The unknown kinetic parameters of the model A.8, A.9, A.10, A.11, A.12,

A.13, A.14 are τ, kon, koff , km. The mRNA degradation rate is given as .0001

for models A.8, A.9, A.10, A.11, A.12, A.13, A.14. The synthetic data is

generated in such a way that the model can produce on an average, 20 mRNAs

once per time unit, before switching to first OFF state. The promoter state

is initialized to DNAoff1 for models A.8, A.9, A.10, A.11, A.12, A.13, A.14

respectively for each simulations. The τ value is set to 4.75 for simulations.

These models include bursting, with the correct parameterization. Table A.15

represents inferred kinetic rates, mean burst size(km/koff ) and AIC values,

using synthetic data. Related model number is mentioned adjacent to the

number of states in the first column of Table A.15.

DNAoff1
kon,τ


koff

DNAon

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.8)

DNAoff1−→DNAoff2
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.9)

DNAoff1−→ . . .−→DNAoff3
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.10)

DNAoff1−→ . . .−→DNAoff4
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.11)
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DNAoff1−→ . . .−→DNAoff5
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.12)

DNAoff1−→ . . .−→DNAoff10
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.13)

DNAoff1−→ . . .−→DNAoff15
kon,τ−→ DNAon

DNAon
koff−→ DNAoff1

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.14)

Table A.15: Delay-Bursty MCEM parameter inference using synthetic data.

Results in bold font shows that mRNA number improves with number of OFF

states.

Number Of States τ kon koff km km/koff observed value AIC

1(A.8) 4.75 5.39 1.23 16.76 13.62 20 244.14

2(A.9) 4.75 5.18 0.97 15.70 16.18 20 245.14

3(A.10) 4.75 4.68 1.12 17.12 15.28 20 243.8

4(A.11) 4.75 4.75 1.09 17.76 16.29 20 241.78

5(A.12) 4.75 4.50 0.80 14.60 18.25 20 242.74

10(A.13) 4.75 3.61 0.78 15.29 19.60 20 242.16

15(A.14) 4.75 3.18 0.72 14.48 20.11 20 240.18
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The pictorial representation of of the models A.8 to A.14 is depicted in

Fig.A.1.

Figure A.1: Diagrammatic representation of model description using time-

series data.

A.3 SSA simulation for original formulation

DNAon
5.0−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.15)

Model A.15 produces an average of 5 mRNA molecules per unit of time.

mRNA degradation rate is given as .0001. This model exhibits non-bursty

production of mRNA. A single trajectory over 100 time units is simulated

and recorded the number of mRNA molecules at 400 equally spaced

intervals. The initial conditions for this simulation were 0 mRNA molecules

and promoter state is set to DNAon.

Using data from Model A.15 (Daigle et al., 2015), unknown parameters are

inferred from Model A.16:

DNAon
km−→ DNAon +mRNA

mRNA
.0001−→ φ

(A.16)
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Table A.16: parameter inference using synthetic data for Model A.16.

Model τ km observed value AIC

2 NA 4.81 5 1135.87

τ - delays Not Applicable (NA).

Table A.16 suggests inferred parameter km is close to observed value 5.

The trajectories of Model A.16 and Model A.17 is simulated using SSA.

DNAon
km−→ DNAon +mRNA

mRNA
.924−→ φ

mRNA
12.6−→ mRNA+ Protein

Protein
1.98−→ φ .

(A.17)

Table A.17: parameter inference using glutaminase promoter time-series data

for Model A.17.

Model τ km observed value AIC

3 NA 20.53 20 3683.47

τ - delays Not Applicable (NA).

Model A.17 is similar to Model A.16, with protein translation and protein

degradation reactions added. The simulation results for glutaminase data

inference also suggests that km is close to observed value 20.

From the original formulation of Model A.16 and Model A.17, it is clearly

understood that Model A.16 and Model A.17 cannot exhibit bursting. To

characterize multistep transcriptional bursting model delays are used.
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