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ABSTRACT

A growing number of data owners are increasingly using cloud storage services of var-
ious Cloud Service Providers (CSPs) for storing and managing their information/doc-
uments. The cloud storage services provide numerous benefits to the data owners that
include cost savings, greater reliability, ubiquitous access, and better performance. In
spite of these benefits, the stored data at the remote cloud servers are vulnerable to the
attacks initiated by the untrustworthy CSPs. Such data risks and associated privacy
concerns have recently been in the limelight from revelations of extensive surveillance
by several national security agencies and other government entities. The primary con-
cerns of storing documents at cloud servers are confidentiality and privacy due to the
loss of control over who accesses and manages the outsourced documents. In order to
address these concerns, sensitive data is required to be outsourced in encrypted form
to the cloud servers. Although the encryption guarantees confidentiality, it makes the
retrieval process more complex.

Searchable Encryption (SE) is a technique that guarantees confidentiality and pri-
vacy by storing documents in encrypted form at the cloud servers and allows search over
encrypted data without decrypting it. In SE, the data owners store their documents, and
the corresponding indexes in encrypted form, and the data users retrieve the documents
by sending encrypted queries (trapdoors) to the cloud server. Despite its privacy and
confidential guarantee, the privacy of trapdoor keywords and index keywords could be
compromised due to the information leakages that are caused by the vulnerabilities in
the adopted schemes used for encrypting indexes and queries. The information leakages
include frequency of ciphertext values, rank-order information, and search pattern. The
cloud servers exploit these leakages to infer plaintext information through various in-
formation disclosure attacks such as frequency analysis attack, rank-order exploitation
attack, and scale analysis attack. Hence, this work aims at preventing these leakages
and thereby mitigates the attacks.

The cloud server uses frequency analysis attack to infer index keywords based on
the frequency leakage of ciphertext values (repetition of the same encrypted keywords’
relevance scores) in indexes. This leakage occurs due to the insufficient randomness in
the order preserving encryption (OPE) schemes that are used for encrypting keywords’
relevance scores in indexes. The existing OPE schemes leak frequency information
when there are same plaintext scores for two or more keywords within the same doc-
ument. In this work, an Enhanced One-to-Many order-preserving mapping technique



is developed with improved randomness to mitigate the frequency leakage. The ex-
perimental study confirms that the proposed technique reduces not only the frequency
leakage of keywords but also the co-occurring keywords.

The cloud server returns the relevant documents in descending order for a given
trapdoor based on the ranks of the documents. However, the cloud server uses the rank-
order exploitation attack to infer the plaintext information of frequently issuing query
keywords or frequently occurring keywords of the dataset based on the rank informa-
tion leakage. Scale analysis attack also occurs when the users issue the same trapdoor
again and again to retrieve the same documents. This attack enables the cloud server
to infer plaintext keywords of trapdoors based on the search pattern leakage, which can
be determined from the given set of trapdoors. The existing approaches prevent search
pattern leakage by adding random keywords to a list of query keywords in a trapdoor
generation approach, but precision gets affected due to the random keywords. These
approaches cannot prevent rank-order information leakage completely since the ran-
dom values of random keywords follow the distribution of actual keywords’ relevance
scores. Therefore, it is highly essential to prevent these attacks by preserving the pri-
vacy of both rank information and the search pattern. In this work, a Pseudo-Ranking
approach is developed to address this issue with the help of two servers, i.e., cloud
server (CS) and the intermediate server (IS). The CS assigns pseudo-ranks to the docu-
ments instead of actual ranks, and the IS would nullify the impact of random keywords
of a trapdoor for achieving higher precision. The experimental results confirm that the
proposed approach preserves the privacy of both rank information and search pattern
without affecting precision.

Besides preventing these attacks, it is also essential to provide the latest relevant
documents to the users to enable them to choose timely decisions based on updated in-
formation. To provide the latest relevant documents, there should be a provision in SE
for allowing the data owners to perform the dynamic updates efficiently over the existing
encrypted indexes. The existing tree-based indexing schemes cannot perform dynamic
operations efficiently since the trees’ size is larger in terms of height and breadth. This
causes a delay in performing dynamic updates and retrieving top-k relevant documents.
In this work, a Max-heap tree based index structure is developed to address this issue.
The experimental results of the proposed tree index confirm that it improves the time
efficiency of top-k document retrieval and dynamic updates.

Keywords: Searchable Encryption, Frequency of ciphertext values, Rank-orden infor-
mation, Search pattern, and Dynamic updates.
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CHAPTER 1

INTRODUCTION

Due to the proliferation of web, mobile, cloud, IoT and connected technologies, the

vast amounts of data are being generated due to many activities such as business trans-

actions, mobile devices, sensors, social media, high definition videos, share markets,

and web clicks. This generated data may belong to public or private organizations or

even individuals. The generation of such huge data has become indispensable for the

organizations and individuals to use third-party cloud storage services. Cloud storage

has become a prevalent storage option in recent years, where users can store their data of

any size and share it with others. Many individuals, government agencies, medium, and

large scale organizations are increasingly using cloud storage services of various Cloud

Service Providers (CSPs) like Google Cloud Platform, Amazon S3 (Simple Storage

Server), Microsoft Azure, DropBox. Examples of stored data include medical records,

personal tax documents, government policy documents, corporate personal communi-

cations, and financial data. The data owners store their data at cloud servers to avoid

the cost of both upfront investment involved in setting up their own data center, and

its maintenance and also to get other benefits such as ubiquitous access, and unlimited

access to hardware/software resources. Despite such benefits provided by the cloud,

the major challenge that remains is the concern over the confidentiality and privacy of

uploaded data onto the cloud servers (Kamara and Lauter 2010).

The confidentiality and privacy concerns hinder the adoption of cloud services by

many organizations in real world due to the following reasons:

1



1. Introduction

1. The data owners lose complete control on their data once uploaded onto the cloud

servers (Yan et al. 2017). They cannot control who can access and retrieve once

uploaded. The cloud servers will try to know about about the information they

have stored.

2. CSPs can misuse the stored data for their own business benefits and even can leak

this data to the business competitors of actual data owners (Cash et al. 2015;

Shahzad 2014).

Therefore, the data owners’ unencrypted data stored at the remote cloud server

would be vulnerable to the attacks initiated by the untrustworthy CSPs (Subashini and

Kavitha 2011). CSPs usually enforce users’ data security through mechanisms like

firewalls and virtualization. However, these mechanisms do not protect users’ privacy

from the CSPs themselves since they possess full control of the system hardware and

lower levels of the software stack, and, therefore, can misuse the stored data for their

personal or financial benefits. At cloud servers, there may exist disgruntled, profiteered,

or curious administrators and other employees who can access users’ sensitive informa-

tion for unauthorized purposes. For example, Facebook corporation has allowed its US

users’ data to be used by the Cambridge Analytica firm, which later used it to influence

US voters towards their favourable candidate in the 2016 US presidential elections1.

In this context, both the confidentiality of stored documents and the privacy of users

could be compromised. Confidentiality (Tari 2014) refers to the protection of out-

sourced data from being shared with unauthorized users other than the intended users.

While the privacy refers to the protection of data from being misused and leaked (Da-

woud and Altilar 2017; El Makkaoui et al. 2016). Several surveys indicate that the

confidentiality and privacy concerns are significant barriers to the adoption of cloud

storage services. To address these concerns, it is required to outsource the data in en-

crypted form, but it makes the retrieval process more complex. Searchable encryption

is a technique (Song et al. 2000) that guarantees confidentiality and privacy by storing

documents in encrypted form at the cloud servers. It also enables search over encrypted

1https://www.scmp.com/news/world/united-states-canada/article/2139327/explainer-how-
cambridge-analytica-exploited-facebook

2
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documents without decrypting with the help of searchable encrypted documents, which

corresponds to the documents. In general, confidentiality could be achieved through

encryption, which in turn assures privacy so that the cloud servers cannot come to know

anything about the plaintext data from encrypted data and cannot misuse the stored data

for unauthorized purposes. It is only the data owners or users with whom they share the

secret keys can perform search and decrypt the retrieved documents. Therefore, with

the help of searchable encryption, cloud servers cannot come to know any information

about the stored data. The guarantee of confidentiality and privacy depends on the type

of encryption approach that would be used for encrypting indexes and the documents.

The encryption approaches should be chosen so that users can search over encrypted

documents, and they do not leak any information to the cloud servers while searching

and retrieving required documents.

1.1 SEARCHABLE ENCRYPTION

Searchable Encryption (SE) is a technique that enables the cloud server to perform

search operation over encrypted data without knowing anything about plaintext infor-

mation. There are two types of searchable encryptions such as SSE (Searchable Sym-

metric Encryption) (Song et al. 2000) and PEKS (Public Key Encryption with Keyword

Search) (Boneh et al. 2004a) or it is also called as ASE (Asymmetric Searchable En-

cryption). SSE approaches use the same secret key for encryption and decryption, and

they are computationally efficient because they involve arithmetic operatins such as ad-

dition and multiplication in encryption and decryption. While the ASE approaches use

different key for encryption and decryption, and they are computationally expensive be-

cause they involve exponentiations and pairing operations in encryption and decryption.

SSE approaches (Yunling WANG 2016) are primarily meant to enable data access only

by data owners with the corresponding secret key, which is used to generate encrypted

indexes and encrypted documents. To enable the data access by other users in SSE, the

data owners have to provide them with either the secret keys for encrypting queries or

trapdoors that can be sent to the cloud servers to retrieve the documents. Broadcast en-

cryption should be used along with the SSE to enable search by other users (Curtmola

et al. 2006). On the other hand, PEKS approaches (Boneh et al. 2004a) allow any user
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to search over the encrypted data of multiple owners with his/her corresponding secret

key. The PEKS with encryption schemes such as the Ciphretext-Policy Attribute-based

encryption (Wang et al. 2014b) enables the data owner to allow search operation by

multiple users. In SE, whether it is SSE or PEKS, the cloud server adopt either Boolean

or Ranked search approaches to process the trapdoors and return the documents to the

users. In Boolean search approaches, the documents are returned only if they contain

one or more query keywords of the trapdoor. whereas in ranked search approaches,

the cloud server returns top-k documents in decreasing relevance order of the users’

trapdoors.

Figure 1.1: Different stages of searching over encrypted data.

Searching over Encrypted Data: The process of searching over encrypted docu-

ments is shown in Figure 1.1. It depicts the sequence of steps to be performed by the

data owners and users to enable the cloud server to perform search and retrieve the

encrypted documents of users’ interests through trapdoors.

The data owners are first required to generate plaintext indexes for all his/her plain-

text documents. There are two types of indexing schemes, such as Forward indexing,

in which there exists an index for each document (Jin et al. 2016) and Inverted index-

ing in which, for each keyword, it contains a pointer to document identities that they

contain (Curtmola et al. 2006). Each of them can be represented by different data struc-

tures, that results in various indexing methodologies, i.e., tree-based indexing (Xia et al.
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2016), Bloom filters (Bloom 1970), and Bucketization (Agrawal et al. 2004). These

indexing techniques aim at performing search operations that are either linear or sub-

linear to the total number of the documents stored. These indexes are then encrypted

with any one of the encryption schemes,i.e., Deterministic Encryption (DE) (Bellare

et al. 2007, 2008; Boldyreva et al. 2009), Non-deterministic encryption (Yang et al.

2017), Functional encryption(FE) (Boneh et al. 2011). To return the documents in

decreasing relevance order of the given trapdoors, the uploaded encrypted indexes, also

referred to as searchable indexes, should include ranking information, i.e., keywords’

relevance scores, which are determined by using various keyword weight measures such

as Term-Frequency (TF), and Term-Frequency-Inverse Document Frequency (TF-IDF)

(Lee et al. 1997). The keyword relevance scores also need to be encrypted by using

any one of the encryption schemes such Order Preserving Encryption (OPE) (Boldyreva

et al. 2009), Fully Homomorphic Encryption (FHE) (Wang et al. 2015; Wu 2015),

and schemes. These schemes help the cloud server to determine ranks of the documents

for given trapdoor from the encrypted scores. Each of these encryption schemes and in-

dexing techniques have certain advantages and limitations with respect to time, privacy,

and precision. Hence, they are selectively chosen for encrypting the indexes especially

as per the data owners’ privacy and precision requirements. After the indexes are en-

crypted, the data owners then encrypt the plaintext documents using either a public key

or secret key encryption schemes with a sufficiently large key. The data owner then

uploads both the encrypted documents and their corresponding searchable indexes onto

the cloud servers (Goh et al. 2003).

The data owners or the authorized data users can issue trapdoors, i.e., queries in

encrypted form along with a value ’k’ to the cloud server to send only the top-k relevant

documents. Upon receiving the trapdoor, the cloud server uses various similarity mea-

sures such as Coordinate matching (Witten et al. 1994), Cosine similarity (Manning

et al. 2008), Jaccard coefficient (Wong and Kim 2013), Locality sensitive hashing

(Zhang et al. 2016a), and Inner product operation (Li et al. 2017) to determine the

scores, i.e., ranks of the documents for a given trapdoor. The cloud server then sorts

the documents in decreasing order and sends top-k of them to the data users or owners.
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Returning the top-k relevant documents reduces the network traffic and also fulfills the

users’ information needs quickly.

1.2 LEAKAGES

In SE, the data owners hold complete control on the security keys used for encrypting

indexes and documents. Therefore, neither the adversaries nor the cloud servers can

directly obtain any information about the documents since they have no access to the

keys. However, there are two aspects, wherein information leakages are more likely to

occur, i.e., while generating trapdoors and while processing trapdoors using Boolean

and Ranked search approaches. Therefore, although the indexes and trapdoors are in

encrypted form, the cloud servers could still infer plaintext information due to the leak-

ages caused by the vulnerabilities in the adopted encryption schemes of indexes and

queries. The possible leakages in SE are given in Figure 1.2. The leakages in SE are

categorized into two types (Kumar and Thilagam 2019a): 1) Direct ciphertext leakages,

these leakages are directly extracted from the available encrypted information, i.e., up-

loaded encrypted indexes, and trapdoors. The leakages involved in this category are

Distribution information, Association information and Size pattern. The distribution

information can be obtained by observing the frequency of encrypted ranking infor-

mation, i.e., the repetition of same encrypted TF or TF-IDF values in indexes (Cash

et al. 2015). This leakage is caused especially when TF or TF-IDF values are en-

crypted by deterministic encryption schemes, which encrypts the same plaintext to the

same ciphertext. Association information leakage can be obtained while processing

trapdoors with the help of encrypted indexes, e.g., the cloud server can come to know

which document contains which keywords of the trapdoor (Zerr et al. 2008) and how

many documents have common keywords of the trapdoor. Size pattern leakage can be

obtained by observing the number of keywords present in indexes of the documents and

trapdoors (Goh et al. 2003). This is caused when sizes of each index and each trapdoor

are different. 2) Indirect ciphertext leakages, which are not directly dependent on the

available encrypted encrypted information, but on the user information requirements.

The leakages of this category are Rank-order information, Search pattern and Access

pattern. Rank-order information is leaked when the cloud server returns the documents
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in descending order as per their scores, i.e., ranks. Search pattern leakage information

can be obtained when a user sends the same trapdoor again and again. Access pattern

leakage refers to outcomes (search results) of the trapdoors. The same sequence of doc-

uments may be returned to the same trapdoors. The leakages of these two categories can

be exploited by the cloud server for inferring plaintext through various attacks which

are explained in Section 1.3 .

Figure 1.2: Leakages in searchable encryption.

1.3 THREAT MODEL AND ATTACKS

In this section, the formal definitions of privacy, confidentiality, and security in the

context of searchable encryption are provided first, and then a threat model and its

various possible attacks are presented.

Privacy: It refers to the protection of sensitive data from being leaked and misused

(Dawoud and Altilar 2017; El Makkaoui et al. 2016) while enabling the cloud server

to search over encrypted data.

Confidentiality: It refers to the protection of data owners’ outsourced data from being

known by the cloud server and thereby disclosing it with unauthorized users other than

the intended users (Tari 2014).

Security: It refers to guaranteeing Confidentiality, Integrity, Authenticity, and Non-

repudiation of outsourced data at the cloud server while ensuring the availability of

data for access by the data users (Tang et al. 2016; Tari 2014). This work focusses on

assuring confidentiality and privacy.
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Communication channels: All communication between the cloud server and the data

owner/user is done using a public channel (Diffie and Hellman 1976; Wang et al.

2014a). Although it is public, the adversaries (both external adversaries and the cloud

server) do not get any information from it because all communication between the user

and cloud server using this channel is done in encrypted form. A secure channel is

assumed to exist between the data owner and the data users for ensuring secure com-

munication with the help transport layer security protocol. The data owners use the

secure channel for sharing the secret keys that are necessary for generating trapdoors

and decrypting the retrieved documents (Yu et al. 2010).

Honest-but-Curious (HBC) Threat Model: In this threat model, the cloud server is

considered as an adversary and its behavior is assumed to be honesh-but-curious (Ghosh

Ray et al. 2018; Wang et al. 2012). It means that the cloud server follows the protocols

as agreed between the cloud server and data owner with respect to storing, searching and

retrieval of the documents for the given users’ trapdoors. However, it attempts to infer as

much information as possible from the available information. The available information

includes uploaded encrypted indexes, encrypted documents, previous trapdoors, and

their corresponding search results. In this honest-but-curious threat model, the cloud

server is also assumed to have some background knowledge about the dataset, i.e.,

knowledge about what data is stored, and distribution information of specific keywords

of the dataset, users search behavior.

In this threat model, the cloud server initially mounts various attacks to exploit the

information leakages (explained in Section 1.2) that are observed in the available infor-

mation for obtaining statistical information. The cloud server then relates this statistical

information to the background knowledge information (e.g., keyword specific distribu-

tion information) for inferring plaintext information. There exist information disclosure

attacks that exploit the leakages to infer sensitive information from the encrypted data.

The objective of these attacks is to infer as much plaintext information as possible by

exploiting the leakages. The details about each of these attacks are explained as follows.

1. Frequency analysis attack: This attack aims at deducing the index’s plaintext
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keyword from the encrypted keywords’ relevance scores, e.g., TF values of key-

words present in the uploaded encrypted index (Naveed et al. 2015). This attack

is based on the intuition that for some specific keywords, the distribution infor-

mation of plaintext TF values would be the same as the distribution information

of encrypted TF values. The cloud server infers plaintext information from the

encrypted TF values by relating the frequency information of uploaded dataset to

the frequency information of publicly available dataset (auxiliary dataset) or even

by guessing the most probable occurring keywords of the uploaded dataset by ob-

serving the frequency information. This attack is more likely to succeed with the

help of some background knowledge of the uploaded dataset. The background

knowledge could be about what data the data owners stored at the cloud server,

and what probable keywords that are most likely to occur that the cloud server

could guess easily. For example, assume that the data owners have stored Re-

quest for Comments (RFC 2016) dataset in encrypted form at the cloud server.

It is widely known that this dataset is all about how information can be com-

municated from one host to another in the internet using various protocols of

”computer network”. Then, it can be assumed that some of the specific keywords

like ”computer,” ”network” and ”communication” may appear in most of the doc-

uments of this dataset. The cloud server then infers one or all of these specific

keywords by generating histograms (showing distribution information) for all en-

crypted TF values of each encrypted index keyword. The cloud server observes

the histograms and identifies the ones whose frequency (i.e., the repetition of the

same encrypted TF value) is much higher than the frequency of other encrytped

TF values in other histograms. The corresponding encrypted keywords of those

histograms are noted. These encrypted keywords may be related to one or all of

those specific keywords. The cloud server thus infers plaintext keywords through

frequency analysis attack. Frequency information can be exploited to infer plain-

text information through correlation attack (Bindschaedler et al. 2018; Durak

et al. 2016). Therefore, it is necessary to prevent the leakage of frequency in-

formation from the encrypted TF values. The existing OPE schemes are prone
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to frequency analysis attack, especially when two or more keywords have the

same TF value in one or more documents of the dataset. Hence, there is a need

for a privacy preserving encryption scheme that either prevents or mitigates the

leakage of frequency information than the frequency leakage of the existing OPE

schemes. This research work aims to mitigate this attack by reducing frequency

leakage.

2. Rank-order exploitation attack: For any given trapdoor, the cloud server re-

turns the documents in descending order as per their scores, i.e., ranks. The

users’ information needs can be met quickly with the by going through top k

documents only (e.g., k=10 in Google search results) rather than going through

all the returned documents. However, when two or more related trapdoors are

provided in a given time period, this rank order information of documents can

be exploited by the cloud server to infer the plaintext information of frequently

issuing query keywords or frequently occurring keywords by observing the dif-

ference in scores of the returned documents for the given two or more trapdoors.

For example, assume that there exist 5 documents {d1, d2, d3, d4, d5} and three

keywords {”computer”, ”network”, ”communication”}, which are the most fre-

quently occurring keywords in these documents. There exists a user who issues

two related trapdoors, T1 and T2, both of which differ by just one keyword. T1

contains query keywords {”computer”, ”network”} and T2 contains {”computer”,

”network”, ”communication”}. In addition, assume that documents d3, d4, d5

contain the keywords {”computer”, ”network”} while the documents d1, d2 con-

tain all the three occurring keywords. When trapdoors T1 and T2 are issued,

the cloud server returns the top-5 documents with their scores for T1 and T2 are

{d1 : 2, d2 : 2, d3 : 2, d4 : 2, d5 : 2}, and {d1 : 3, d2 : 3, d3 : 2, d4 : 2, d5 : 2}

respectively. The cloud server observes the difference in scores of the documents

for both the trapdoors and relates it to its background knowledge of the database

(Rahman et al. 2015). This difference is easily observable as the scores of

the documents for trapdoor T2 is higher or equal to each document’s score of T1.

From this difference of scores, relativenss of trapdoors can estimated and the doc-
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uments that have high scores tend to convey that they match one or more extra

keywords of trapdoor T2 than T1. These extra keywords are the most likely to be

the frequently occurring keywords of the dataset or frequently searching query

keywords. Thus, the rank-order exploitation attack allows the cloud server to in-

fer plaintext keywords of the trapdoors or most occurring keywords of documents

(Rahman et al. 2014). The existing approaches cannot prevent the rank-order in-

formation leakage (Guo et al. 2019; Xia et al. 2016). Hence, it is important

to prevent the exploitation of rank order information, i.e., higher rank privacy is

required. This research work aims to preventing this attack by assigning pseudo-

scores to documents instead of actual scores so that the cloud server does not

come to know the actual scores of the documents.

3. Scale analysis attack: The cloud server uses this attack to infer plaintext key-

word of trapdoor (Cao et al. 2014). The success of this attack depends on the

the leakage of the search pattern, which could be determined by comparing one

trapdoor information with other trapdoors or may also be determined from the

similarity scores of the documents because same scores are assigned to the same

documents for the same trapdoors. Search pattern leakage conveys whether two

or more issued trapdoors are generated from the same query keyword set or not.

If they are same, then the search pattern is leaked. Then the cloud server in-

fers trapdoor’s plaintext keyword by defining the equivalence relationship among

the similarity scores of the documents for the given trapdoors. With this equiv-

alence relationship, the cloud server deduces two possible values of document

frequency (DF). The DF of keyword refers to the number of documents that con-

tain the given keyword. The cloud server then relates the inferred DF values of

keywords to the DF values of frequntly occurring keywords of the dataset. Thus,

the cloud server infers the plaintext keyword of the trapdoors through this at-

tack. This attack is more likely to succeed when the inferred DF value of the

keyword is either equal to the size (number of documents) of the dataset or more

than half of the entire dataset size. For example, consider the dataset related to

RFC (RFC 2016) and keywords set {”computer”, ”network”}. In addition, as-
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sume that one of the keyword appears in all the documents and the other one does

not appear in any document. When a data user issues trapdoors T1 and T2 con-

taining keywords {”computer”,} and {”computer”, ”network”} respectively, the

cloud server can infer one of the trapdoor’s plaintext keyword by inferring DF

value from the equivalence relationship, which is tested on documents’ similarity

scores of both the trapdoors. The cloud server then relates the derived DF value

to the DF values of some specific keywords. Thus, it derives the plaintext key-

words of the trapdoors. Hence, it is required to prevent the search pattern leakage

information. The existing approaches prevent search pattern leakage by adding

random keywords to a list of query keywords in a trapdoor generation approach,

but precision is affected with those random keywords. This research work aims

at preventing this attack by nullifying the impact of added random keywords.

4. Access pattern exploitation attack (or also referred to as IKK Attack): The

cloud server uses this attack to infer the plaintext keyword of the trapdoors (Cash

et al. 2015). The success of this attack depends on the leakage of access pattern,

which is exploited to infer the plaintext keyword of the trapdoor. The access pat-

tern conveys whether the sequence of the returned documents for the given two

or more trapdoors are same or not. If they are same, the cloud server assumes that

the data user is accessing those documents frequently, so he/she issues the same

trapdoor. Plaintext keyword of trapdoor can be known by using IKK attack by

exploiting the leakage of access pattern. For example, let us assume that a set of

documents stored at cloud server are about ”computer science” related informa-

tion. The keyword of the trapdoor can be inferred using this attack with the help

of some background knowledge, i.e., keyword distribution information of stored

documents. Based on the documents stored, let us assume a scenario, wherein the

keywords ’computer’, ’academic’, ’network’ are more likely to appear in most of

the given documents. Let us also assume that the data user sends trapdoors for

these keywords interspersed among other keywords in a particular period. After

all communications are finished between the data user and the cloud server, the

cloud server sees a list of trapdoors and the corresponding returned documents in

12



1.3. Threat model and Attacks

which those keywords present. The cloud server could then calculate the prob-

ability of appearance of any two of these keywords in any document by notic-

ing the number of same documents returned for those corresponding trapdoors.

By observing these probabilities, the adversary can isolate these three trapdoors

representing keywords ’computer’, ’academic’, ’network’ because of their high

probabilities. Further, it is also possible that the pair of keywords ’computer’, and

’network’ are more likely to appear together than the probabilities of the pair of

keywords ’computer’, and ’academic’, or ’academic’ and ’network’. This obser-

vation enables the cloud server to uniquely identify the trapdoor of the keyword

’academic’. Furthermore, if the cloud server knows the trapdoor for ’computer’,

it is also possible for it to know the trapdoor for ’network’. Therefore, it is quite

evident that the access pattern leakage information along with some background

knowledge about the dataset is sufficient enough for the cloud server to infer the

plaintext information of the trapdoors. Hence, it is required to return a unique

set of documents for the given trapdoors to prevent the access pattern leakage in-

formation and thus to prevent IKK attack. But efficiency, precision, and security

contradict each other; therefore, most of the existing SE schemes leak access pat-

tern due to efficiency reasons. SE schemes using Oblivious RAM (Goldreich and

Ostrovsky 1996a), Blind storage (Wang et al. 2015), Private Information Re-

trieval (PIR) (Boneh et al. 2007) can accomplish ideal security (no information it

leaks including access pattern) to the cloud server. However, these approaches are

practically infeasible to adapt in the real-world due to the poly-logarithmic com-

putation and communication overheads. Therefore, a more practical and feasible

SE approaches are required to prevent access this attack. The proposed research

work cannot prevent this attack but it avoids exploitation of access pattern infor-

mation.

Of all the attacks discussed above, the proposed research work aims to mitigate fre-

quency analysis attack by mitigating frequency leakage, prevents rank-order exploita-

tion attack by preventing the rank-order information leakage and also prevents scale

analysis attack by preventing search pattern leakage.
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1.4 PRIVACY REQUIREMENTS

As described in the above Section 1.3, the cloud servers infer plaintext information from

the encrypted information through various attacks based on the leakages. Hence, it is

required for SE schemes to prevent the cloud server from the exploitation of leakages.

The SE schemes are required to meet both the following security and search accuracy

criteria to ensure the full confidentiality and privacy of stored documents at the cloud

server while allowing users to retrieve documents of their interest.

Data Confidentiality of Documents: The content of the uploaded encrypted doc-

uments should not be revealed to the cloud server. Almost, existing SE schemes (Cash

et al. 2013; Karame et al. 2011) used semantically secure encryption schemes like

AES with CTR or CBS mode for encrypting the documents (Bellare and Goldwasser

2008). Hence, they preserve the data privacy. The privacy of the documents’ content is

said to be guaranteed by a SE scheme if it satisfies the data privacy.

Index privacy: In Boolean search approaches, the indexes contain the document

identities and the corresponding encrypted keywords that they contain. The indexes

in Ranked search approaches also include the keywords’ relevance scores, i.e., Term

Frequency (TF) or Term Frequency-Inverse Document Frequency (TF-IDF) values for

each keyword of every document of entire dataset. In SE, even after encrypting the

index entries, i.e., document identities, keywords, and their corresponding keywords’

relevance scores are encrypted, the cloud server could try to infer the keywords of the

index based on the leakages such as distribution information, association information,

and size pattern through various information disclosure attacks. Hence, protecting the

privacy of index content is significant since any leakage from index compromises the

complete privacy of the stored documents. Privacy of index keywords can be guaranteed

if a SE scheme prevents these leakages with the help of suitable methodologies. A SE

scheme is said to satisfy index privacy if the cloud server does not distinguish the index

of one document from the index of another document in a polynomial time (Feng and

He 2018; Li and Liu 2017). Therefore, the index privacy can also be referred to as

Index Indistinguishability.

14



1.4. Privacy Requirements

Trapdoor privacy: A trapdoor is an encrypted query sent by the data user to the

cloud server to get the relevant documents. The objective of the trapdoor privacy is to

prevent the cloud server from knowing which keywords are encoded in a trapdoor. If

the cloud server knows the keywords, it tries to generate another trapdoor for the subset

of the known keywords. Hence, the cloud server should not be able to determine any

information from the given trapdoor and the indexes other than the ability to say that

the trapdoor matches with encrypted indexes of some documents. A SE scheme is said

to satisfy trapdoor privacy if the cloud server does not distinguish the trapdoor of one

query from the trapdoor of another query in a polynomial time. Trapdoor privacy can

also be referred to as Trapdoor Indistinguishability (Tahir et al. 2017). If trapdoor

privacy is satisfied, the cloud server cannot infer query keywords directly from the

given trapdoor other than through keyword guessing attacks and brute force attacks,

which are computationally expensive to carry out (Arriaga et al. 2014). The privacy

of the encoded keywords of both trapdoor and indexes can be guaranteed if trapdoor

privacy is satisfied.

Rank privacy: The cloud server must be provisioned with ranking functionality to

send the top-k relevant documents for the users’ trapdoors by using various similarity

measures such as Coordniate matching, Cosine similarity, and Jaccard Coefficient. For

the given trapdoor, the rank information of each document is determined using vari-

ous similarity measures with the help of encrypted TF, or TF-IDF values of trapdoor’s

keywords. This rank information conveys how significant a document is to the cloud

servers, and the rank-order information of the retrieved documents is more likely to be

exploited if two or more related trapdoors are sent to the cloud server over a given time

period. Therefore, it is required to preserve rank privacy, and at the same time, the users

should get the top-k relevant documents for their trapdoors. Hence, SE schemes are re-

quired to return the top-k relevant documents without affecting ranking privacy (Zhang

et al. 2016b), (Chen et al. 2016). The privacy of both the keywords of trapdoors and

indexes can be guaranteed if rank privacy is satisfied.

Search pattern privacy: Search pattern conveys what information the user is fre-

quently looking for. Whenever the user wants to issue the same query again and again,
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the same trapdoor may have to be generated by the data user each time for the same

query. Hence, it leaks some pattern (search pattern) that conveys to the cloud server

that two or more trapdoors are generated from the same keyword set. Search pattern

privacy can also be referred to as Trapdoor unlinkability (Cao et al. 2014), i.e., prevents

the cloud server from deducing the relationship between two or more trapdoors if all of

them belong to the same query keyword set. If search pattern is leaked, keywords of the

trapdoor can be known through scale analysis attacks (Cao et al. 2014). Search pattern

leakage is caused due to the lack of randomness in issued trapdoors. Hence, sufficient

randomness needs to be ensured while generating the trapdoors so that trapdoors cannot

be linked even when the user issues the same query. The privacy of trapdoor keywords

can be guaranteed if search pattern privacy is satisfied.

Access pattern privacy: Access pattern refers to information about whether a se-

quence of search results for the given two or more trapdoors is the same or not. It con-

veys the cloud server about what documents the user is frequently accessing. If access

pattern is leaked, keywords of the trapdoors can be inferred through access pattern ex-

ploitation attack (Cash et al. 2015). Hence, secure SE schemes are required that cannot

leak access pattern even if the users access the same documents again and again. There

are various approaches like PIR (Chor et al. 1998), Oblivious RAMs (Goldreich and

Ostrovsky 1996b), and Blind Storage technique, for preventing access pattern leakage.

However, these techniques are computationally expensive. Hence, these protocols are

practically infeasible for implementation in the real world environment. Therefore, effi-

cient, feasible and secure searchable schemes are required for preventing access pattern

leakage. The proposed research leaks access pattern, but it will avoid the exploitation

of access pattern information. Keywords of trapdoors can be guaranteed if the access

pattern privacy is satisfied.

Search accuracy: It is required for SE schemes to provide relevant documents to

the users for their trapdoors to satisfy their information requirements (Liu et al. 2019;

Xu et al. 2012). Besides guaranteeing the privacy, it is also required to ensure higher

search accuracy to fulfill the users’ needs and it will lead to the enhanced utilization

of cloud storage services. However, search accuracy and security contradict with each

16



1.5. Applications

other, i.e., search accuracy is affected if security is met and vice versa. For example,

assume that search pattern privacy is preserved by adding random keywords to a list of

actual query keywords in trapdoor generation approach to ensure that different trapdoor

is generated each time for the same query. But search accuracy may be affected as the

cloud server might return some non-relevant documents, which are in response to the

random keywords of the trapdoor. Therefore, it is equally important for the SE schemes

to meet search accuracy besides meeting the above privacy requirements.

1.5 APPLICATIONS

There are some of the real-world application domains where the searchable encryption

has scope for adoption. They are provided below.

1. Health care systems: The patients are concerned about their health records stored

at the hospitals. The patients may lose their jobs if their sensitive health infor-

mation is leaked to the owners of their organizations. Sometimes the patients

may also visit another hospital on recommendations of regular doctor for better

medication, where the patients may need, to share health records with the new

doctor. In these scenarios, searchable encryption can guarantee the privacy of

health records by storing them in encrypted form at cloud servers (Fabian et al.

2015), (Gardiyawasam Pussewalage and Oleshchuk 2016). Thus it benefits the

hospitals in terms of saving money by uploading their data onto the cloud servers

and also benefits the patients in terms of privacy as their data is accessible only by

the recommended doctors but not by the administrative staff of the cloud servers

and hospitals.

2. Computer forensics: The digital evidence such as cell phone records, log files,

and email messages related to civil and felony crimes are stored in systems at

forensic labs. The evidence could be targeted for destruction or alteration by the

guilty involved in those crimes through administrative staff of these labs. There-

fore, this evidence is significant, and is required to prevent the disclosure of this

information to the unauthorized personnel to convict the guilty. Searchable en-

cryption could be a viable solution in this scenario, since entire information would
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be in encrypted form so that the administrative staff cannot come to which docu-

ment belongs to which person and at the same time, it also allows the investigat-

ing agencies like FBI, Interpol, and CBI to retrieve the required information from

forensic labs through trapdoors (Armknecht and Dewald 2015).

3. Email routing systems: The email service providers normally have access to all

the emails that is a concern for many users since the mails may contain sensitive

information. The email users want their mails to be secured against adversaries

and even email service providers from knowing anything about their mails (Tang

2012). Searchable encryption can be used to store only encrypted mails at the

email service providers while enabling retrieval of the mails through trapdoors.

4. Secure audit logging: Audit logs of any system are an important as they represent

current and past activities of the system users. The audit logs can be used to detect

unauthorized past activities carried out by different people in an organization.

The contents of the audit logs contain sensitive information. Therefore, it needs

to be protected from the adversaries who try to tamper those audit logs. Hence,

searchable encryption can be used to preserve the privacy of audit logs contents

(Waters et al. 2004).

5. Encrypted Search Engines: Search engines like Google, Yahoo, and Bing. allow

the users to search for plaintext information retrieval. The cloud servers act as

the search engines, which are aimed to retrieve the relevant information from the

plaintext data. In SE context, retrieving relevant information from encrypted data

without leaking any information is not yet fully realized. Even though CSPs like

Amazon, Microsoft Azure offer support for SE, but they store some auxiliary in-

formation about the secret key, which is enough to infer all plaintext information

from the encrypted data. SE has a scope in fulfilling the privacy and security

requirements of the medium and large-scale organizations and also the universi-

ties. These institutions may have some sensitive information, i.e., regarding the

current employees who are working on the ongoing projects, documents about

the past and current projects, and future plans. This information is generally
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stored in plaintext form on the servers of these institutions. As this information

is highly sensitive, the organizations wish that their information is not be known

even to the administrators of those servers. SE can fulfill their needs by develop-

ing encrypted search engines, wherein any data owner within the organization can

encrypt their own data and store it at cloud servers while ensuring it is searchable

by the intended recipients.

1.6 RESEARCH GAPS AND MOTIVATION

Data owners are interested in utilizing cloud servers to store and manage their data for

achieving the benefits of lower cost, higher reliability, ease of access, and better per-

formance. However, confidentiality and privacy (Kamara and Lauter 2010) prevent

the data owners from excessive usage of cloud servers for storing their documents that

contain sensitive information. Although searchable encryption guarantees privacy and

confidentiality through encryption, privacy issues are not yet resolved completely be-

cause of the vulnerabilities in the adopted schemes that are used for encrypting indexes

and queries. These vulnerabilities cause information leakages that could be exploited

by the cloud servers to infer plaintext information through various informatino disclo-

sure attacks, which are described in Section 1.3. The information leakages include

frequency of ciphertext values, rank-order information, and search pattern. This dis-

sertation focuses on addressing the research gaps involved in preventing these leakages

besides supporting dynamic updates efficiently. This dissertation focuses on address-

ing the research gaps involved in preventing these leakages besides supporting dynamic

updates efficiently. Each of them is briefly explained here in the context of encrypted

search engines, while the full details are provided in Section 2.4.

• The frequency leakage of ciphertext values leads to the disclosure of index key-

words. This leakage occurs due to the insufficient randomness in the order pre-

serving encryption (OPE) schemes (Boldyreva et al. 2009; Wang et al. 2012). It

is shown in (Pan et al. 2020); that this leaked frequency information even enables

the attackers to infer plaintext information of not just a single keyword, but multi-

ple keywords’ values from the OPE encrypted values. Due to the frequency leak-
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age, the existing OPE schemes are not applicable for usage in encrypted search

engines, in which these schemes are used for encrypting index content of the

documents, i.e., relevance scores of keywords. Probabilistic encryption schemes

like Fully Homomorphic Encryption (Wang et al. 2015; Wu 2015) prevent fre-

quency leakage, but the ciphertext values do not preserve the plaintext order due

to which the relevant documents cannot be identified by the cloud server from the

encrypted values. Hence, encryption schemes that preserve the plaintext order

without leaking frequency information should be used. To fill this research gap, it

is highly essential to improve the randomness of the OPE schemes; thereby, fre-

quency leakage can be minimized or prevented. The first objective of our thesis

focuses on mitigating the frequency leakage.

• The exposure of rank-order information to the cloud server leads to the disclosure

of frequently issuing query keywords of trapdoors or frequently occurring key-

words of the dataset. The search pattern also would be leaked to the cloud server

when the user issues the same trapdoor again and again to retrieve the same doc-

uments. The search pattern leakage leads to the disclosure of plaintext keywords

of the trapdoor. In encrypted search engines, the data users do not prefer to re-

trieve the documents in relevance order of his/her trapdoors due to the leakage of

rank-order information, and they also cannot issue the same trapdoor to retrieve

the same documents due to the leakage of the search pattern. The existing SE

approaches proposed in (Cao et al. 2014) prevent the search pattern leakage by

adding some random keywords to a list of actual keywords in queries. However,

precision is affected in these approaches as the cloud server would return some

non-relevant documents because of the random keywords. They also cannot pre-

vent the rank-order information leakage completely as the cloud server could still

determine the ranks of the documents because the random values of random key-

words in indexes follow the standard deviation (σ) of actual keywords’ values. To

fill this research gap, it is highly essential to preserve the privacy of both rank-

order information and search pattern without affecting precision. The second

objective of our thesis focuses on meeting this requirement.
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• After the documents are uploaded on to the cloud server in the context of en-

crypted search engines, the data owners would carry out their day-to-day busi-

ness activities due to which the stored documents undergo some changes. It is,

therefore, essential to reflect the updates in the already existing encrypted indexes

efficiently. Incorporation of the updates facilitates the data users to get the latest

top-k documents, which are very important in today’s digital era, wherein, hav-

ing access to the latest information makes the data users choose timely decisions.

The existing SE approaches incorporate the updates using tree-based indexing

schemes (Kamara and Papamanthou 2013; Wu and Li 2019; Xia et al. 2016).

However, as the size of the tree in terms of height and width is higher, the existing

approaches do not support all the dynamic operations (Insert, Delete, and Mod-

ify) efficiently. To fill this research gap, an efficient index structure is developed

in this work to support dynamic updates efficiently.

1.7 THESIS CONTRIBUTIONS

The proposed research work aims at guaranteeing the privacy of documents stored at

the cloud servers and also enables the data users to retrieve the latest top-k relevant

documents more efficiently than the existing SE schemes. The major contributions of

this work are provided below.

• A comprehensive literature of a single and multi-keyword search over encrypted

data using Boolean and Ranked Search approaches (Kumar and Thilagam 2019a).

Each of the existing SE approaches is analyzed with respect to the privacy of in-

dexes, trapdoors, ranking information, search pattern, and access pattern along

with search accuracy.

• An Enhanced One-to-Many Order Preserving Mapping technique to map the

same plaintext keywords’ relevance score to different ciphertext values. This

technique mitigates the frequency leakage of same ciphertext values than the fre-

quency leakage (Kumar and Thilagam 2019b) caused by the existing order pre-

serving mapping techniques.
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• A Pseudo-Ranking approach to retrieve top-k relevant documents securely with-

out leaking rank-order information and search pattern to the cloud server. This ap-

proach also guarantees higher precision while assuring the privacy of both rank-

order information and search pattern.

• A Max-heap tree based index structure for supporting dynamic updates efficiently

and also for retrieving top-k documents efficiently. Also, a secure keyword dic-

tionary expansion approach is proposed for adding new keywords to the existing

dictionary without allowing the cloud server to know the location of the added

keyword.

• A secure keyword dictionary expansion approach has been proposed to add a new

keyword to the index without allowing the cloud server to know the location of

the added keyword (Rashmi et al. 2018).

1.8 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 presents the literature review on

searchable encryption with respect to Boolean search, and Ranked search. Additionally,

this chapter discusses dynamic updates supported by the existing searchable encryption

schemes. Chapter 3 presents the problem description and objectives. Chapter 4 illus-

trates the proposed approach for mitigating frequency analysis attack and Chapter 5 for

preventing rank-order exploitation attack and scale analysis attack. Chapter 6 presents

the proposed tree based index structure for supporting dynamic updates. Chapter 7

summarizes the contributions of the research work presented in this thesis and discusses

future research directions.
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CHAPTER 2

LITERATURE REVIEW

Searchable Encryption (SE) approaches are classified as SSE (Searchable Symmetric

Encryption) (Curtmola et al. 2006) and PEKS (Public Key Encryption with Keyword

Search) based on the type of the key used in it. The above two approaches are used

to retrieve either all relevant documents or top-k relevant documents based on the user

issued trapdoors. The trapdoors may contain single or multiple query keywords, there

exists various privacy issues involved in processing these trapdoors. This chapter re-

views existing literature on SE approaches based on i) the type of search (Boolean or

Ranked search) performed on the encrypted documents and ii) the number of keywords

present in the trapdoors, which are given below:

1. Boolean Search

• Single Keyword Boolean Search

• Multi-Keyword Boolean Search

2. Ranked search

• Single Keyword Ranked search

• Multi-Keyword Ranked search

In this chapter, a comprehensive review of searching over encrypted documents

using Boolean and Ranked search approaches are presented in Sections 2.1 and 2.2
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respectively with respect to the precision and privacy requirements. In addition, Section

2.3 presents a review of dynamic updates supported by various searchable encryption

approaches.

2.1 BOOLEAN SEARCH

Boolean search approaches return the documents that contain the user issued query key-

words. The Boolean search systems are used in social networking sites, e.g., LinkedIn,

Monster, Facebook, Mail Servers and many online shopping cart sites like Amazon,

eBay, Flipkart. The Boolean searchable encryption approaches are simple, efficient,

and easy to implement. The relevance in Boolean search can be interpreted using a

matching between query keywords and document keywords. Two types of Boolean

searches are possible based on the number of keywords present in Boolean search re-

quests: i) Single Keyword Boolean Search, and ii) Multi-Keyword Boolean Search.

2.1.1 Single Keyword Boolean Search (SKBS)

SKBS approaches return the documents only if they contain the given keyword of the

query. The SKBS approaches can be categorized further based on the indexing tech-

nique they have used: i) Forward-index based SKBS approaches, and ii) Inverted-index

based SKBS approaches. In forward index, there exists an index for each document (Jin

et al. 2016). It is suitable for updating documents but searching time is proportional

to the number of documents in the dataset. Whereas, in Inverted index, for each key-

word, it contains a pointer to document Ids that they contain (Curtmola et al. 2006).

In this approach, searching time is constant but performing update operation is costly

as it may require adjustment of n positions for each update. Hence, SE approaches

of SKBS are grouped into Forward-index based SKBS approaches and Inverted-index

based SKBS approaches. The following sections present the SE approaches under these

two categories with respect to the privacy requirements.

2.1.1.1 Forward-index based SKBS approaches

A deterministic and sub-linear efficient public key searchable encryption scheme is pro-

posed in (Bellare et al. 2007) with a hash-based indexing method. It achieves the
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sub-linear search time by tagging the hash of plaintext keyword to encrypted index key-

word in order to give the exact location for the server to determine the corresponding

encrypted documents for the given queries. The proposed approach guarantees search

accuracy due to hashing but it is prone to false positives as many ciphertext messages

are associated with a single hashtag. It leaks the search pattern because the trapdoor is

generated using hash functions. Hence, the same hash value is generated if the same

query is issued again. The privacy of indexes is not preserved as they are vulnerable

to dictionary attacks because of the low min-entropy in encryption and restriction in

length of the encrypted keywords in the indexes.

The public key based SE scheme (Boneh et al. 2004b) was first proposed using

bilinear map. Index privacy is preserved due to the usage of the bilinear map with

prime order groups for encrypting index keywords. Trapdoor privacy is preserved due

to the usage of hash functions and random number in its trapdoor generation approach.

However, due to the usage of same hash functions and same random number, search

pattern privacy cannot be preserved.

The first storage efficient fuzzy keyword search is proposed in (Li et al. 2010) to im-

prove the user searching experience. This approach returns the closest possible match-

ing documents for the given query using wildcard ’*’ based edit distance approach. The

privacy of both index and trapdoor is preserved due to the usage of one-way function

for encryption. Search pattern privacy is not preserved because of the usage of the same

one-way function and the same fuzzy keyword set for the same query in generating trap-

doors. For example, for the given query keyword, and distance ’d’, which specifies the

number of operations required to transform from one keyword into another, the wild-

card ’*’ can be used to generate fuzzy keyword set by placing it at any position within

the keyword. ’*’ indicates any alphabet character can be substituted in place of ’*’. The

number of substitutions allowed is limited by a distance ’d’. The resulting keywords set

after substitution is called fuzzy keywords set. This fuzzy keyword is generated again

when the user reissues the same query. Hence, search pattern privacy is not preserved.

The search accuracy is not high as the adopted wildcard approach misses some of the

other possible fuzzy keywords that are close to the actual keywords of the dataset.
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A two-round communication protocol is proposed in (Chang and Mitzenmacher

2005) to preserve index and trapdoor privacies by masking the content of the indexes

and queries with pseudo-random functions. The index of each file is represented using a

’ n’ bit string, where n indicates the number of keywords in the dataset. If a keyword wi

belongs to file Fi, the corresponding bit in index string is set to 1 using pseudo-random

functions. Similarly, the trapdoor is also an n-bit string, and the corresponding bit of

query keyword is set to 1. This approach also allows the data owners to update their

documents securely and retrieves the latest documents for their queries. It meets the

forward privacy, i.e., earlier issued trapdoors do not match the updated documents since

the indexes of newly added documents are encrypted with different keys. Even though

the precision is high in this approach, it is more prone to search pattern leakage since

the same bit of the keyword has to be set if the same query is issued.

PEKS with different variations is proposed for achieving time constraint based pri-

vacy (Abdalla et al. 2005). The authors have come up with such a searchable en-

cryption method by converting hierarchical identity based encryption into public key

encryption with temporary keyword search. Index privacy is preserved due to the usage

of the bilinear pairing operation with prime order group elements for encrypting key-

words and time period. The trapdoor privacy is preserved due to the inclusion of a time

period and usage of the hash function and random number in generating trapdoor. After

the validity period expires, it cannot be used for searching. Search accuracy is preserved

due to the usage of the same random number in encrypting document keywords and the

queries. But, this approach leaks the search pattern since it generates the same trapdoor

for the same query because of the usage of the same hash function and the same random

number in its trapdoor generation function.

The secure Z-IDX index technique has been proposed in (Goh et al. 2003) for

faster retrieval of the documents. The proposed Z-IDX index is built using Bloom

filters and pseudo-random functions. Index privacy is preserved due to the usage of

pseudo-random functions twice for encrypting index keywords of the documents and

also due to the incorporation of random keywords in indexes such that the adversaries

cannot distinguish the document indexes by their sizes. Trapdoor privacy is preserved in
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Table 2.1: Security analysis of Forward-index based Single Keyword Boolean Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Search
Pattern

Access
Pattern

HBC

Bellare et al.
(2007)

PEKS X X X

Boneh et al.
(2004b)

PEKS X X X X

Li et al.
(2010)

SSE X X X

(Chang and
Mitzen-
macher
2005)

SSE or PEKS X X X X

(Abdalla
et al. 2005)

PEKS X X X X

Goh et al.
(2003)

SSE X X X X

(Boneh et al.
2007)

PEKS X X X X X X
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this approach as it uses pseudo-random functions for encrypting keywords of the query.

This approach also supports occurrence search in which the data users can specify the

occurrence of particular query keyword in documents. Due to the presence of occur-

rence number in trapdoors that may change each time as per the users’ requirements,

it will generate different trapdoor for the same query. Hence, search pattern privacy

is preserved in this context. However, search accuracy cannot be achieved due to the

usage of bloom filters in indexes that cause false positives.

A Private Information Protocol (PIR) protocol based keyword search is aimed to

preserve the access pattern privacy (Boneh et al. 2007) using an oblivious storage

approach. The privacy of access pattern is safeguarded because of the expulsion of re-

trieved documents of the earlier trapdoors and also due to some irrelevant documents

returned to each trapdoor because of the presence of random keywords in trapdoors.

The privacy of index and trapdoor is preserved as pseudo-random functions and proba-

bilistic approaches are used for encrypting each keyword of the documents and queries.

Besides this, each document index and trapdoor includes some random keywords along

with actual keywords. Search pattern privacy is preserved due to the presence of ran-

dom keywords in each trapdoor. Search accuracy is not preserved as it returns false

positives because of the usage of bloom filters for storing each document index. This

approach meets all the privacy requirements, but it involves two rounds of interaction

for each trapdoor between the cloud server and users due to oblivious storage. More-

over, it is a cumbersome process due to the large post-computational cost on data users

in filtering out the random documents to get the actual documents, and it also requires

enormous storage for storing multiple copies of the actual documents’ indexes along

with random ones. It is found that PIR based approach (Boneh et al. 2007) preserves

all privacy requirements specified in Section 1.4, but search accuracy is not satisfied

due to the involvement of random keywords in trapdoor. The analysis of forward-index

based SKBS approaches with respect to the privacy requirements is presented in Table

2.1.
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2.1.1.2 Inverted-index based SKBS approaches

Block and stream cipher approaches for encrypting index keywords is proposed in

(Song et al. 2000). It achieves higher search accuracy as the location of the corre-

sponding documents for the given query keyword can be directly determined by the

trapdoor itself. The privacy of index and trapdoor is not preserved since they are prone

to brute force attack with the less computational cost since the intruder has to apply

brute force technique to only half of the encrypted word to derive the keyword of the

query. The other half of the encrypted word is meant for searching and decryption pur-

poses. Search pattern privacy is not preserved as it generates the same trapdoor for the

same query due to the usage of a deterministic encryption scheme for encrypting query

keyword.

Another sub-linear searching method presented in (Curtmola et al. 2006) uses an

inverted indexing technique. It introduces a new security notion called security against

the adaptive adversarial model, who tries to infer information from the outcome of

previous search requests. Index privacy is preserved as pseudo-random permutations

are used to encrypt the index keywords and the keywords of the documents in indexes

are scrambled if they are present. If keywords are not present in any document, some

random values are added in order to ensure that the number of documents that match

each keyword is the same. The authors extended their approach for supporting search

by multiple users through a Broadcast encryption scheme. However, search pattern

privacy is not preserved in this approach as the trapdoor generation function uses the

same pseudo-random permutation and the same seed for the same query. The analysis

of inverted-index based SKBS approaches with respect to the privacy requirements is

presented in Table 2.2.

2.1.2 Multi-Keyword Boolean Search (MKBS)

MKBS approaches support multi-keyword queries by using Boolean operators, i.e.,

AND, OR, and NOT. The precision of MKBS approaches is higher than SKBS since

each returned document contains either all the keywords or more than one keyword of

the query. However, due to the involvement of multiple keywords in a query, the MKBS

29



2.Literature
R

eview

Table 2.2: Security analysis of Inverted-index based Single Keyword Boolean Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Search
Pattern

Access
Pattern

HBC

Song et al.
(2000)

Block and
Stream ciphers

X X

Curtmola
et al.
(2006)

SSE X X X X
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approaches give more scope for the cloud server to infer meaningful information, i.e.,

the documents containing the common keywords and keywords of the indexes through

statistical analysis from the previous trapdoors and their corresponding search results.

The MKBS approaches are further classified based on the indexing technique used:

they are Forward-index based MKBS approaches, and Inverted-index based MKBS ap-

proaches. The following sections present the SE approaches under these two categories

with respect to the privacy requirements.

2.1.2.1 Forward-index based MKBS approaches

The first MKBS approach over encrypted data uses a forward index (Golle et al. 2004).

They have proposed two approaches under two security constructions for MKBS. One is

by the Decisional Diffie-Hellman (Boneh 1998) approach, wherein the communication

cost of trapdoor is proportional to the number of documents, and another one is by

using Bilinear Decisional Diffie-Hellman (BDDH) (Joux 2002) that achieves constant

cost. This approach achieves search accuracy since the trapdoor includes the keywords

that will directly match with the keyword fields of each document index. As the index

of each document includes keyword fields for enabling search, the server can try to

infer some specific keyword fields of indexes and trapdoors through keyword guessing

attacks. Hence, the index and trapdoor privacies are not preserved in this approach.

Hidden Vector Encryption (HVE) scheme based multi-keyword search approach is

proposed to support a rich set of query predicates, i.e., subset, range, and comparison

queries over encrypted data (Boneh and Waters 2007). The privacy of both indexes and

tokens i.e., the trapdoors, which consists of predicates of the query, is preserved due to

the usage of the bilinear map operation for encrypting both keywords of indexes and

predicates of queries. However, the search pattern privacy is not achieved due to the

reasons that include; usage of the same secret key with the same exponent in its token

generation approach to meet the search accuracy and also due to the threshold of the

predicates in trapdoors that the cloud server comes to know with a simple binary search

technique.
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Table 2.3: Security analysis of Forward-index based Multi-Keyword Boolean Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Search
Pattern

Access
Pattern

HBC

Golle et al.
(2004)

PEKS X X

Boneh and
Waters (2007)

Hidden Vector Encryption X X X X

Hwang and
Lee (2007)

PEKS X X X X

Katz et al.
(2008)

Predicate Encryption X X X X

Shen et al.
(2009)

Predicate Encryption X X X X

Zhang and
Zhang (2011)

PEKS X X X X

Ryu and Tak-
agi (2007)

SSE X X X X

Park (2011) Hidden Vector Encryption X X X X

Yang et al.
(2017)

Paillier Encryption X X X X
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A storage efficient conjunctive keyword search mechanism is proposed in (Hwang

and Lee 2007). Compared to other public-key based conjunctive keyword search ap-

proaches, it reduces the size of ciphertexts of documents due to the usage of bilinear

map operation and a single random value as a private key, this approach is highly use-

ful when data owners upload encrypted information onto the cloud servers for multiple

users. It conserves index privacy as it uses prime-order group based bilinear map op-

eration, which uses two collision-resistant hash functions for encrypting each index

keyword of the document. Hence, the server cannot infer any information from that

index. The trapdoor privacy is also achieved in the same way as in index privacy. This

approach also enables multiple users to search without creating separate ciphertext for

each individual user by using their mPECK scheme. But, search pattern privacy is not

preserved in this approach as it uses the same secret key with the same hash functions in

generating trapdoors, due to which, the same trapdoor is generated for the same query.

Another predicate-only encryption scheme for multi-keyword search proposed in

(Katz et al. 2008) uses forward indexing method and PEKS. In this approach, the

secret keys correspond to predicates, and the ciphertext is related to attributes, i.e., at-

tributes of the index. The predicates in this approach support a wide variety of queries

such as equality, conjunctive, disjunctive, and also allow to evaluate polynomial equa-

tions. This approach also allows other intended users to search by converting it to an

anonymous identity-based encryption scheme. Search accuracy is achieved due to the

inner product operation, which allows the predicates to be evaluated on correspond-

ing attributes of the encrypted documents successfully if they match. Index privacy is

preserved since the bilinear map operation with composite order groups’ elements are

used for masking attributes of documents by multiplying them with different groups’

elements. Similarly, trapdoor privacy (predicate privacy) is preserved by multiplying

predicates with random elements of groups’ elements. But, search pattern privacy is

not preserved due to the usage of the same random elements in generating trapdoors for

the same queries. An improvised symmetric-key based predicate encryption scheme is

proposed in (Shen et al. 2009) using bilinear maps with composite order group, which

has the product of four primes as the order compared to (Katz et al. 2008), which has
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the product of three primes. Due to this extra randomness, it preserves search pattern

privacy. However, this randomness may impact the search accuracy as it may generate

a predicate, i.e., a token, which may not correspond to the intended documents’ index

attributes.

A conjunctive multi-keyword subset search approach is proposed in (Zhang and

Zhang 2011) using a public key encryption approach. It returns documents for the

queries when they match subsets of indexed keywords of each document. In this ap-

proach, keywords of document indexes are transformed to l-degree polynomial equa-

tions, where ’l’ indicates the number of keywords of each document. The length of

each polynomial equation of each document would be the same in this approach. The

roots of these equations would be used as the trapdoors to retrieve the corresponding

documents. It preserves index privacy as the coefficients of these polynomial equations

are encrypted using bilinear map operation with prime order groups. Trapdoor privacy

is preserved as the roots are encrypted using a bilinear map with a secret key corre-

sponding to the intended documents. It achieves search accuracy since the cloud server

returns the documents whose polynomial equations are satisfied by the roots of the

given trapdoor. Search pattern privacy is not preserved since the same roots may have

to be issued to evaluate the corresponding polynomial equations in order to retrieve the

same intended documents.

An efficient multi-keyword search mechanism is introduced in (Ryu and Takagi

2007) using SSE and forward indexing method. This approach is efficient as it uses

bilinear maps, which are constructed from ordinary curves for encrypting indexes and

trapdoors. The privacy of both index and trapdoor is preserved because of the usage of

bilinear groups of prime order and hash functions for generating encrypted indexes and

trapdoors. But, search pattern privacy is not preserved as it generates the same trapdoor

for the same query because of the usage of the same random number of bilinear group

in its trapdoor generation approach.

An efficient Hidden Vector Encryption (HVE) approach is proposed (Park 2011) for

supporting a conjunctive keyword search on encrypted data using prime-order based bi-

linear map operation. The privacy of the index and trapdoor is preserved using two
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random exponents in generating encrypted indexes and tokens. Search pattern privacy

is also preserved as it generates different trapdoor for the same query due to the usage

of two random exponents in its token generation approach. The authors also proposed

anonymous identity-based encryption, which is more efficient than the approach pro-

posed in (Boyen and Waters 2006) because of the usage of less number of random

elements in public keys for encryption. Search accuracy is affected for certain tokens

as it uses random exponents in the token generation that may not correspond to the

attributes of intended documents.

A wildcard based multi-keyword search approach is proposed in (Yang et al. 2017)

to enhance the system users’ searching experience. It is useful for the users who usually

issue queries containing spelling errors in each keyword of the query. The wildcard ’*’

can be present in any position, i.e., front, middle, or at the back of each keyword in

the query and up to two wildcards are allowed in this approach for each keyword of

the query. If the wildcard is present at the back of the keyword, any number of char-

acters can be substituted in place of a wildcard. Otherwise, the user specifies a max-

imum number of characters to be allowed for substitution. No information is leaked

during wildcard based search operation due to the usage of secure ciphertext partition

approach, which is required to partition the encrypted keyword at the wildcard position

and also due to secure multi-bit extraction protocol, which is necessary to extract the

specified number of bits up to the partitioned position. It starts substituting the char-

acters from the wildcard position for a possible match with the index keyword using

secure greater than or equal protocol. This approach preserves the privacy of indexes

and trapdoors since both the index and query keywords are encrypted by using a pail-

lier encryption scheme. Search pattern privacy is also met due to the non-deterministic

nature of paillier encryption, which generates a different trapdoor for the same query.

However, search accuracy would not be high since it might match other index key-

words especially when wildcard appears at the end of query keyword, e.g., wildcard

query keyword priv* might match with the keyword ”privacy” but the user intends to

give keyword ”private”. The users in this approach can also search over encrypted data

of multiple owners by obtaining an individual authorization certificate from each data
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owner. With a flexible time-period based authorization methodology, where the cloud

server has information about authorized and revocated users, only the authorized data

user is allowed to perform search operation during that time period and cannot search

once the period expires. The analysis of forward-index based SKBS approaches with

respect to the privacy requirements is presented in Table 2.3. In summary, it is found

that there exists no approach that guarantees all the specified security requirements in

Section 1.4.

2.1.2.2 Inverted-index based MKBS approaches

A public key based two-round communication protocol for multi-keyword search is

proposed (Wang et al. 2015) to preserve access pattern privacy. It prevents the access

pattern leakage due to the adoption of blind storage protocol (Naveed et al. 2014), in

which, the documents are stored in the form of blocks in different locations because of

which the cloud server does not come to know which documents are retrieved for the

given trapdoor each time. The index is represented as a matrix of polynomial equa-

tions. Each equation represents the inverted list of each keyword. Each equation is

padded with random elements and is encrypted using paillier encryption scheme. As it

uses private set intersection protocol (Freedman et al. 2004), the cloud server cannot

even infer the documents containing common keywords from the intersection results

of index keywords correspond to the query keywords. Hence, the index privacy is pre-

served. Similar to the index privacy, the trapdoor privacy is preserved as the coefficients

of query keywords are also encrypted using paillier encryption scheme. This approach

generates different trapdoor for the same query due to the non-deterministic nature of

paillier encryption scheme used for generating trapdoor and besides this, the trapdoor

also contains encrypted coefficients of random numbers along with the coefficients of

actual query keywords due to which search pattern privacy is also protected. However,

it causes the difficulty for owners and the users to adapt it in the real-world environ-

ment since the proposed approach involves two round communications for retrieving

documents for their trapdoors due to the adoption of blind storage protocol and paillier

encryption scheme.
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Table 2.4: Security analysis of Inverted-index based Multi-Keyword Boolean Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Search
Pattern

Access
Pattern

HBC

Wang et al.
(2015)

Paillier
Encryption

X X X X X X

Drazen et al.
(2015)

SSE and OXT
Protocol

X X X X

Miao et al.
(2017)

CP-ABE X X X X X
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A multi-keyword verifiable searchable encryption scheme proposed in (Drazen et al.

2015) uses the Oblivious Cross Tags (OXT) protocol (Cash et al. 2013). This approach

is useful when cloud servers do not follow the protocol as specified by the data owner

in returning the relevant documents for the given trapdoor. For each trapdoor, the cloud

server returns the encrypted document identities and corresponding tags of trapdoor

keywords. The data user verifies the returned document identities by validating the

tag, which is a pseudo-random value that is generated using the corresponding pseudo-

random function with the same secret key. Data user determines the actual document

identities on successful verification of the results upon which the data user can request

them from the cloud server. The index privacy is preserved as this approach uses the

pseudo-random function and non-deterministic encryption scheme for encrypting in-

dex keywords, tags, and document identities, respectively. Trapdoor privacy is also

preserved as it uses the pseudo-random function for encrypting keywords of the query.

Search pattern privacy is not achieved as it uses the same function with the same key

for generating trapdoor for the same query. This approach is not acceptable to the data

owner and users as it involves two rounds of communication for each trapdoor between

the user and the server.

Attribute-Based Keyword Search over Hierarchical Data (ABKSA-HD) for multi-

ple users is proposed (Miao et al. 2017). Two approaches are introduced, namely,

ABKS-HD-I for supporting search operation without user revocation and ABKS-HD-II

with user revocation. This approach is highly suitable for searching over the data that

have a hierarchical relationship with other data items in the dataset. The privacy of both

Index and Trapdoor is met due to the adoption of a hash function applied to each key-

word, whose result is used as an exponent of the bilinear group generator for encrypting

index and query keywords. The search pattern privacy is preserved as the exponent in

trapdoor is the multiplication of the hash value of each query keyword with two random

numbers. Hence, the different trapdoor is generated for the same query. This approach

uses the CP-ABE technique to support search operation by multiple users. It maintains

a unique version number for each user at the cloud server that is generated based on the

user’s attributes. To retrieve data from the cloud server (CS), the user has to submit the
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trapdoor along with his/her attribute set to the cloud server. The CS then first verifies

the version number from those attributes and then uses the trapdoor to search the index

upon successful verification. When a user is revoked, the data owner communicates the

corresponding updated version number to the cloud server. Therefore, the revoked user

cannot perform search operation with an old version number once he is revoked. Hence,

this approach efficiently handles user revocation than the existing methods. However,

this approach does not hide the privacy of the attributes of the users. Security analysis

of inverted-index based MKBS approaches is presented in Table 2.4.

From the literature review, it is found that paillier encryption based approach (Wang

et al. 2015) preserves all privacy requirements specified in Section 1.4, but search

accuracy is not satisfied due to the presence of random coefficients in trapdoors.

2.2 RANKED SEARCH

In ranked search approaches, the cloud server returns relevant documents in decreasing

relevance order of the user query. Ranked search approaches are currently being used

in search engines such as Google, Yahoo, and Microsoft Bing on plaintext data. With

regard to encrypted data, it can be used in various third-party cloud service providers

for enabling ranked search over encrypted data, e.g., secure E-mail communication.

Ranking of documents is done by including additional keywords’ relevance scores into

searchable indexes. The additional information, i.e., encrypted TF or TF-IDF weights

of all searchable keywords of documents is stored in indexes. Due to this additional

information, the precision of Ranked search approaches is higher than Boolean search

approaches. This is because of the indexes in Boolean search approaches contain just

1 or 0 ,i.e., indicating presence of keyword in corresponding documents, whereas in

indexes of ranked search approaches, different keyword scoring measures such as TF,

and TF-IDF are stored that convey the relevance, i.e., importance of the keyword in

documents and document collection respectively. However, this additional information

may lead to a frequency analysis attack if the distribution information is leaked to the

cloud server from the encrypted keywords’ relevance scores. In addition, it may also

lead to rank-order exploitation attack as the cloud server comes to which document is
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Table 2.5: Security analysis of Forward-index based Single Keyword Ranked Search approach.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Rank
Privacy

Search
Pattern

Access
Pattern

HBC

(Kuzu et al.
2012)

Threshold-based
Similarity using
LSH and Paillier
Encryption

X X X X X X
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more relevant and which ones are not since the cloud server only returns the top-k rele-

vant documents to the users’ trapdoors. This rank order information can be exploited by

the cloud server to infer the plaintext information of frequently issuing query keywords

or frequently occurring keywords by observing the difference in scores (or ranks) of

the returned documents for the given two or more trapdoors. To prevent this attack, SE

approaches are required to preserve rank privacy. However, if rank privacy is preserved,

precision would be affected. Hence, rank privacy is a very significant privacy require-

ment in ranked search approaches, and the SE approaches should assure rank privacy

without affecting the search accuracy, i.e., precision. Two types of Ranked searches are

possible based on a number of keywords present in ranked search requests: i) Single

Keyword Ranked Search (SKRS), and ii) Multi-Keyword Ranked Search (MKRS).

2.2.1 Single Keyword Ranked Search (SKRS)

In SKRS approaches, documents are assigned ranks based on the single keyword of

the given query. The SKRS approaches are further classified based on the indexing

technique used: they are Forward-index based SKRS approaches, and Inverted-index

based SKRS approaches. Each SE approach of these two categories are analyzed with

respect to the privacy requirements in the following two subsections.

2.2.1.1 Forward-index based SKRS approaches

A fault tolerant and secure Ranked search approach (Kuzu et al. 2012) is proposed

using Paillier Encryption (PE) and Locality Sensitive Hashing (LSH) methods. It al-

lows queries that consist of spelling, representation errors but still provides relevant

documents due to LSH indexing. In this approach, the cloud server returns the relevant

documents by forwarding the given trapdoor to the corresponding buckets, where the

stored document’s features are much closer to the given query, hence, search accuracy

is preserved. The index privacy is protected since the original bucket’s content with a

few added fake records is encrypted with a paillier encryption. The trapdoor privacy

is preserved as the trapdoors are generated using pseudo-random functions and LSH

functions. The access pattern privacy is also accomplished by using two-servers that

are assumed to be not colluding, where one server stores the index information and
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other server stores corresponding encrypted document collection. When a user issues

trapdoor, first, it goes to the index server that finds the encrypted document identifiers

with the top scores due to the homomorphic additive property of paillier encryption.

Those encrypted identifiers will be sent to the documents server, which decrypts the

scores of those identifiers and sends the corresponding top-k documents to the user.

The ranking privacy is also satisfied as the second server has access to encrypted docu-

ments only and does not have any information about the trapdoors. Therefore, it cannot

infer any information from the decrypted paillier scores. Search pattern privacy is not

preserved due to the usage of pseudo-random functions, and LSH functions with the

same key for generating the trapdoor.

There exists only one forward-index based SKRS approach in literature for search-

ing over encrypted data. Security analysis of this approach is presented in Table 2.5.

2.2.1.2 Inverted-index based SKRS approaches

A ZERBER+R model based approach (Zerr et al. 2009) is proposed to preserve the

privacy of rank information by merging posting lists of different keywords in inverted

indexing. Each merged list includes some encrypted keywords, the corresponding post-

ing elements, i.e., document IDs and encrypted TF values. The data users in this ap-

proach retrieve the top-k documents by informing the cloud server about which posting

lists he/she wants to retrieve for their query keywords. The cloud server then returns the

posting lists, which are then decrypted by the user and determines the top-k document

IDs based on the corresponding query keyword score present within the returned lists.

The user then further requests the top-k identified documents from the cloud server. In

this approach, the index privacy is preserved by merging posting lists of unrelated key-

words to prevent the leakages of even document frequency (Büttcher and Clarke 2005).

Due to the merging of lists, the cloud server cannot come to know how many documents

contain given the query keyword. Search accuracy is achieved as ranking documents is

done at the user side. Ranking privacy is also achieved because of usage of relevance

score transformation function for encrypting relevance scores. This function maps each

plaintext TF value of each keyword to a unique value within the given range so as to
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Table 2.6: Security analysis of Inverted-index based Single Keyword Ranked Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Rank
Privacy

Search
Pattern

Access
Pattern

HBC

Zerr et al.
(2009)

TF relevance
score with
Relevance score
transformation
function

X X X X

Wang et al.
(2012)

TF relevance
score with
One-to-Many
OPE

X X X X

Tahir et al.
(2017)

TF-IDF
relevance score
with Masking
approach

X X X X X
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prevent the distribution information leakage of keywords to the cloud server. Search

pattern privacy could not be achieved as the users need to specify the same posting lists

if the users issue the same query. This approach also does not preserve access pattern

privacy, and it is not adoptable in the real world since it requires at least two rounds of

interactions with the cloud server for processing each search request.

Another single keyword Ranked search approach is devised (Wang et al. 2012)

to enable rank-ordering the documents for the given trapdoor using One-to-many Or-

der preserving encryption (OPE) scheme. This scheme ensures that the same relevance

scores in the index of documents are mapped to different values. Trapdoor privacy is

preserved due to the usage of pseudo-random functions and hash functions for generat-

ing trapdoors. As TF values of index keywords are encrypted using One-to-Many OPE,

index privacy is preserved as long as the output range of One-to-Many OPE scheme is

comparatively very large than the input TF values. If not, it compromises the privacy of

index keywords from encrypted TF values through the leakage of distribution informa-

tion of specific index keywords. Due to the usage of One-to-many OPE for encrypting

TF values, search accuracy is achieved as it maintains the order information after en-

cryption. This order information suffices for the cloud server to determine the order

of retrieved documents. Hence, ranking privacy is not preserved as the cloud server

comes to know the top-k relevant documents for the given trapdoor. The privacy of the

search pattern is also not preserved due to the usage of hash functions for generating

the trapdoors.

Lightweight single keyword ranked search approach (Tahir et al. 2017) is proposed

to preserve search pattern privacy by using one-way hash functions and a probabilistic

symmetric key encryption scheme for generating trapdoor. Index privacy is preserved

due to the usage of inverse one-way hash functions for encrypting each plaintext key-

word. Ranking privacy is preserved by multiplying each TF-IDF value of each keyword

with a pseudo-random number so that extracting the plaintext TF-IDF value from that

multiplication result is computationally infeasible. Due to this random number, the

cloud server does not come to the actual ranks of the documents. But, search accu-

racy is affected because of masking, i.e., multiplying actual TF-IDF values with the
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pseudo-random numbers, which cannot preserve the order of plaintext TF-IDF values

after masking. Security analysis of inverted-index based SKRS approaches is presented

in Table 2.6.

In this subsection, various inverted-index based SKRS approaches are explored for

searching over encrypted data. The literature review reveals that there exists no ap-

proach that guarantees all the privacy requirements as specified in Section 1.4.

2.2.2 Multi-Keyword Ranked Search (MKRS)

MKRS approaches return documents in decreasing relevance order of queries. The pre-

cision of MKRS is higher than SKBS, MKBS, and SKRS because of the presence of

multiple keywords in a query, i.e., MKRS allows the user to specify all his/her search

constraints in a query and also due to the availability of keywords’ relevance scores.

Though the indexes in SKRS contain TF or TF-IDF values, the precision of SKRS can-

not be higher than MKRS since all the user search constraints cannot be specified with

the single keyword of the query. The MKRS approaches are further classified based on

the indexing technique used. They are Forward-index based MKRS approaches, and

Inverted-index based MKRS approaches. Each SE approach of these categories are an-

alyzed with respect to the privacy requirements such as Data, Index, Trapdoor, Ranking,

Search and Access pattern privacy along with search accuracy. Review of these sections

is presented in the following two subsections.

2.2.2.1 Forward-index based MKRS Approaches

The access pattern privacy preserving MKRS approach proposed in (Örencik and Savaş

2012) uses PIR protocol by which the cloud server does not come to know which doc-

uments are relevant ones for users among the returned documents for their trapdoors.

This approach also preserves search pattern privacy due to PIR in which a randomized

trapdoor is sent to the cloud servers that includes a set of random keywords and ac-

tual query keywords. Trapdoor privacy is preserved as the trapdoor, which is an r-bit

string generated as a result of applying hash functions on randomized queries. Search

accuracy is good due to the usage of hash functions for generating both trapdoors and

encrypted indexes. The keywords’ relevance scores in indexes are stored in n-different
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levels for each document, and a query matching in higher level indicates it is the more

relevant document. This n-level information is directly exposed to the cloud server,

which exploits it to infer specific keywords of some indices through a frequency analy-

sis attack.

A full-text retrieval approach (Song et al. 2017) is proposed for enabling efficient

search over a massive number of encrypted documents by storing their documents in

hierarchical tree form based on the similarity of the documents.. Each document in-

dex consists of sets of compound keywords that are grouped based on their similarity.

For each compound keyword, membership entropy score is determined using term fre-

quency and document length. These scores are helpful in assigning ranks to the docu-

ments for the given trapdoor. The data owners then generate a set of index bloom filters

using hash functions for each group of compound keywords. These bloom filter based

indexes and corresponding encrypted documents are dispatched to the cloud server,

which organizes bloom filters in a hierarchical index tree form at the cloud server. Sim-

ilar to the index bloom filters, the data users also generate query bloom filters for his/her

actual query keywords and sends their entropy scores to the cloud server along with the

query bloom filters. Search accuracy is achieved due to the usage of larger width size

of bloom filters in order to avoid false positives. The privacy of index and trapdoor is

preserved due to the usage of one-way hash functions applied to both index and query

compound words. Rank privacy is not preserved as the entropy scores are not encrypted.

Search pattern privacy is also not preserved due to the hash functions applied to queries

that generate the same bloom filters if the same query is issued. Though this approach

is efficient as far as searching functionality is concerned due to the Bloom filters, it in-

curs extra computational burden on data users and owners due to a lot of pre-processing

work involved in generating compound words for each document and each query. An

effective MKRS scheme proposed in (Cao et al. 2014) uses a secure inner product

similarity measure and SSE. The indexes and trapdoors are vectors, which represent TF

values of documents’ keywords and IDF values of queries’ keywords respectively. Each

index and query vectors are extended from Di, Qi to Di+U+1, Qi+U+1 respectively,

where U indicates number of dummy keywords added to both actual documents and
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Table 2.7: Security analysis of Forward-index based Multi-Keyword Ranked Search approaches.

Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search Ac-
curacy

Rank
Privacy

Search
Pattern

Access
Pattern

HBC

Örencik and
Savaş (2012)

TF-IDF relevance
score with SSE

X X X X X

Song et al.
(2017)

Membership entropy
based relevance score
with SSE

X X X X

Cao et al.
(2014)

TF-IDF relevance
score with Masking
approach

X X X X X

Xia et al.
(2016)

TF-IDF relevance
score with Masking
approach

X X X X X

Li et al.
(2014b)

TF relevance score
with Inner product
operation and ABE

X X X X X X

Sun et al.
(2013)

TF relevance score
with Masking
approach

X X X X X

Shen et al.
(2018)

TF-IDF relevance
score with Masking
approach

X X X X X

Fu et al. (2014) Enhanced TF-IDF rele-
vance score with Mask-
ing approach

X X X X X

Orencik et al.
(2013)

TF-IDF relevance
score with SSE and
Paillier Encryption

X X X X X X

Yu et al. (2013) TF-IDF relevance
score with HME

X X X X X X
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query vectors. Random values are assigned to the dummy keywords in index vectors

and value 1 is assigned to some of the dummy keywords in query vector and for others,

value 0 is assigned. The privacy of index and trapdoor is preserved as both index and

query vectors are masked (multiplied) with two invertible matrices and their inverses

respectively based on a random vector. The ranking privacy is preserved as the ranking

information is masked and randomized with random values of dummy keywords due to

which some non-relevant documents will be sent to the users. Hence, the cloud server

cannot determine which documents among the returned documents are more important

for the user’s trapdoors. The privacy of the search pattern is also safeguarded due to

the random values of the dummy keywords in queries which makes the generated trap-

doors indistinguishable. However, search accuracy cannot be higher due to the presence

of random values of dummy keywords in trapdoors. An efficient and effective MKRS

scheme is proposed in (Sun et al. 2013), which achieve the same privacy requirements

in the same way as achieved in (Cao et al. 2014). It uses Multidimensional B-Tree

(MDB) (Bentley 1975) based indexing method to retrieve the top-k related documents

more efficiently with the help of MD search algorithm. The MD search algorithm helps

in retrieving documents quickly by skipping some nodes of the tree that are not required.

However, search accuracy could be affected due to the random values of phantom key-

words in both trapdoors and indexes.

A novel approach for performing dynamic Multi-Keyword Ranked search method

proposed in (Li et al. 2014b) handles the update operations (adding new keywords)

efficiently. The search accuracy is achieved without affecting ranking privacy because

of the two reasons: i) It ensures that the weight of dummy keywords in index and

query vectors are restricted to be within a sufficiently large range. ii)The index also

includes the popularity of queried keywords and keywords’ accessed frequency infor-

mation. This approach meets the privacy of indexes, trapdoors, ranking privacy, and

search pattern in the same way as achieved in (Cao et al. 2014). It handles the data up-

dates efficiently without re-encrypting the whole index with the partition matrix based

approach, wherein, for the newly updated information, a new square matrix is added to

the already existing index matrix at the cloud server. It also authorizes other intended
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users to perform search operation on stored data using ABE. However, the only problem

with this approach is burdensome that the data owner has to keep track of secret keys

whenever an update operation occurs since the newly added matrix will be encrypted

with a new key instead of the old key. This approach cannot handle deletion operations

efficiently.

Preference-based MKRS approach proposed in (Shen et al. 2018) returns the rele-

vant documents as per the preferences of user’ s query keywords using lagrange coef-

ficients and secure inner product similarity measure. The preferences are represented

by a priority, which is a numerical value, which conveys the significance of query key-

word, i.e., the higher the priority number, the more priority the user gives for these

keywords. Index vector of each document in this approach represents TF-IDF values

of document’s keywords that are encrypted using two invertible matrices based on a

random vector, due to which index privacy is preserved. The trapdoor generated for

each query includes two vectors, i.e., encrypted query vector and encrypted prefer-

ence vector. These two vectors are generated by first converting query keywords and

their priorities into legrange polynomial equations and then the coefficients of these

equations are represented as vectors. These two vectors are then encrypted using two

inverses of invertible matrices based on a random vector due to which trapdoor privacy

is preserved. The privacy of ranking and search pattern is preserved in the same way

as it is preserved in (Cao et al. 2014). Search accuracy is also not achieved in this

approach due to the presence of random values of some random keywords in trapdoors

and indexes.

A semantic-based MKRS approach is proposed in (Fu et al. 2014) to support not

only the given query keywords but also the synonyms of query keywords by construct-

ing a synonym keyword set for each keyword of the document collection. It uses a

balanced binary tree indexing scheme to retrieve the documents efficiently. The doc-

uments are ranked by computing cosine similarity measure between documents and

query vectors. This approach uses a new keyword weighting measure called Enhanced

Term Frequency-Inverse Document Frequency (ETF-IDF) to reflect keyword’s signif-

icance across all categories within the document collection. The proposed approach
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satisfies ranking, trapdoor, index, data, and other privacies in the same way as achieved

in (Sun et al. 2013),(Cao et al. 2014) using the same methodology by extending the

vectors of documents and queries with random values and their encryption using invert-

ible matrices based on a random vector. However, search accuracy is affected because

the random values of dummy keywords in index and query vectors affect the actual

relevance scores of documents.

Paillier cryptosystem based MKRS approach devised in (Orencik et al. 2013) pre-

serves the ranking privacy without affecting search accuracy using two servers. In this

approach, a signature, which is generated using minhash functions, is used to represent

each document. These functions map each keyword of the document into one of the λ

buckets. Each bucket stores the keywords of the documents that have similar features.

The search accuracy is achieved due to minhash functions, which map the signature of

the query to corresponding buckets, which contain the relevant documents. The privacy

of both ranking and access pattern is preserved due to paillier encryption scheme and

the usage of two non-conspired servers, i.e., Search Server (SS) and File Server (FS),

respectively. As TF-IDF values are encrypted using paillier encryption scheme, which

maps each TF-IDF value to different ciphertext values, the frequency information will

not be leaked. Also, the cloud server cannot come to know which document has a

higher rank and which documents not due to the paillier encryption. Thus, ranking pri-

vacy is preserved. But, due to the homomorphic additive property of paillier encryption

scheme, SS ascertains the scores of the documents straightforwardly from the encoded

TF-IDF values of keywords. Then, paillier scores, their document identities, and value

’k’ are sent to the File server, which decrypts the scores and sorts them in descending

order; then returns the top-k encrypted documents. FS holds only document identities,

their plaintext scores, and encrypted documents and no access to trapdoors. Hence, no

other information can be extracted from them. SS does not know what documents were

returned for earlier trapdoors of the users. Thus, ranking privacy, access pattern pri-

vacy are preserved without affecting search accuracy. However, the problem with this

approach is that FS should be supplied with a secret key for decrypting paillier scores.

Search pattern privacy is also not preserved due to the usage of minhash functions.
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Two Round Searchable Encryption (TRSE) approach is designed (Yu et al. 2013)

to prevent the statistical information leakages from encrypted TF-IDF values, i.e., inter-

distribution of files and term distribution. It uses modified Fully Homomorphic Encryp-

tion over Integers(FHEI) for encrypting TF-IDF values of document keywords due to

which there exists no frequency leakage, and the cloud server can assign scores to the

documents directly from the encrypted TF-IDF values because of the additive property

of homomorphic encryption. For any given trapdoor, the cloud server sends document

Ids and their scores to the users, who decrypts the encrypted scores and then requests

the cloud server actual top-k document Ids in the second round. Thus, search accuracy

is achieved. Rank privacy is also preserved as rank-ordering of documents is done at

the user’s side and the cloud server cannot determine which document is more relevant

than others. Search pattern privacy is preserved as it generates different trapdoor for the

same query as it uses a different random number for the same query keywords in gen-

erating trapdoor. However, the proposed TRSE scheme is computationally expensive

as it generates large ciphertext because of the usage of large prime numbers and ran-

dom numbers in FHEI for encrypting each TF-IDF value. Performing any operation on

such large ciphertext is expensive. This computational burden, because of FHEI incurs

more cost on data owners for consuming more computational power from the resources

of the cloud server. The privacy of the access pattern is not achieved since this cloud

server knows the returned documents. Hence, this approach cannot hide the association

between trapdoors and their search results. Security analysis of forward-index based

MKRS approaches with respect to the privacy requirements is presented in Table 2.7.

Rank privacy in approaches (Cao et al. 2014), (Xia et al. 2016) is preserved by

randomization of ranking information with invertible matrices in indexes, i.e., some

dummy values are added to phantom keywords in each document index. Due to these

dummy values, search accuracy is compromised as the cloud server may return some

non-relevant documents to the users for their trapdoors. It is also found that there exists

no approach that guarantees all the specified privacy requirements as given in Section

1.4 along with search accuracy.
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Privacy Requirements

Ref. Approach Data
Confidentiality

Index
Privacy

Trapdoor
Privacy

Search
Accuracy

Rank
Privacy

Search
Pattern

Access
Pattern

HBC

Swaminathan
et al. (2007)

Okapi relevance
score with One-
to-Many OPE

X X X X

Ibrahim
et al.
(2012)

TF-IDF
relevance score
with Paillier
encryption

X X X X X X

Li et al.
(2015)

TF-IDF
relevance score
with Masking
approach and
CP-ABE

X X X X X X X X
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2.2.2.2 Inverted-index based MKRS Approaches

The first Ranked search approach for multi-keyword query (Swaminathan et al. 2007)

is proposed using okapi relevance score and One-to-Many Order Preserving encryption

(OPE) scheme. Privacy of both index and trapdoor keywords are preserved as they are

first encrypted using symmetric encryption scheme and they are further mapped to hash

values using hash functions. It achieves search accuracy as the relevance scores of each

keyword of each document are encrypted using one-to-many OPE, which maintains

the order information after encryption. However, the rank privacy is dependent on an

intermediate unit of cloud server called secure computing unit (SCU), which rank orders

the documents based on encrypted TF values of query keywords. This SCU is a trusted

entity of data owners and assumed that it does not leaks ranking information to the data

server. Hence, this approach may not be adoptable by the people who wish the server

to perform ranking without relying on the trust of computing units. The search pattern

is also leaked as it generates the same trapdoor for the same query due to the usage of

the hash functions with the same key in generating trapdoors.

A MKRS approach (Ibrahim et al. 2012) is aimed at preventing the access pattern

leakage by separating the association between trapdoors and corresponding returned

documents by using two servers; Search server (SS) and Document server (DS). The

SS stores encrypted indexes and DS stores encrypted documents. Search accuracy with-

out affecting rank privacy is attained due to two reasons:i) Paillier encryption scheme,

which ensures all encrypted TF-IDF values will follow the uniform distribution, which

prevents leakage of distribution information of relevance scores. ii) SS does not know

the actual scores of document IDs because of the paillier encryption which does not

maintain plaintext order information after encryption. For any given user’s trapdoor,

the SS calculates each document’s score by adding the paillier scores of keywords of

the trapdoor due to its additive homomorphic property. The SS then sends the docu-

ment id’s with their paillier scores to the DS, which determines the actual scores after

decrypting the scores with the corresponding secret key. The SS does not know which

documents are returned and the DS does not know anything about trapdoor, but the user

gets the relevant documents with the help of DS. Thus, access pattern privacy and rank-
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ing privacy is preserved along with search accuracy. Index privacy is also preserved

since the index information contains few fake keywords with random values, and the

keywords are encrypted using a one-way hash function, document id’s, and keywords’

relevances by paillier encryption. Hence, the SS cannot obtain any statistical informa-

tion from the indexes. Trapdoor privacy is also preserved since each query keyword is

encrypted with one way hash function. However, this approach does not preserve search

pattern privacy because the same trapdoor is generated for the same query because of

usage of hash functions in generating trapdoors.

Blind storage (Naveed et al. 2014) based MKRS approach is devised in (Li et al.

2015) to preserve access pattern privacy. It also enables multiple users to perform search

operation using CP-ABE. Each trapdoor includes encrypted query, stag, which contains

random numbers that give the location of the corresponding index entries for computing

relevance score. Index and Trapdoor privacy are preserved as they both are encrypted

using two invertible matrices and their inverses respectively based on a random vector.

Search accuracy is achieved due to the usage of inner product similarity operation for

computing similarity score of documents between query vector and document vector.

The search pattern privacy is preserved as each stag of trapdoor contains some random

numbers, and the encrypted query of trapdoor also includes two random values due to

which different trapdoor is generated for the same query. After computing the relevance

scores, the cloud server sends the encrypted document identifies called descriptors to

the users, who decrypt them using corresponding secret key. The users then determine

block identities based on the decrypted documents identities and then further requests

the cloud server those block identities along with some random Ids in order to preserve

the access pattern privacy. This approach preserves all the security requirements along

with precision. However, the proposed approach requires two rounds of communica-

tion for processing each trapdoor. Security analysis of inverted-index based MKRS

approaches is presented in Table 2.8.

Blind storage based approach (Li et al. 2015) preserves all the security requirements

as specified in Section 1.4 along with search accuracy, but it requires two rounds of

interaction between the cloud server and the user for each trapdoor.
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In summary, as far as the privacy requirements of all the Boolean and Ranked search

approaches are concerned, there exists only one approach (Li et al. 2015) that preserves

all the security requirements specified in section 3 along with search accuracy. How-

ever, it requires two rounds of interaction for processing each trapdoor. Access and

Search Pattern leakages in most of the approaches are prevented by approaches that are

practically infeasible solutions such as private information retrieval, blind storage pro-

tocol or by storing index information and associated documents in two different servers.

Hence, secure and efficient multi-keyword search approaches are needed to retrieve the

top-k relevant documents securely in a single round of communication.

2.3 DYNAMIC UPDATES

In this section, a literature review of searchable encryption schemes supporting dynamic

updates on documents is presented. The data users expect to get the latest top-k relevant

documents for their trapdoors. In today’s digital era, wherein, having access to the latest

information makes the data users choose timely decisions. To provide the latest top-

k relevant documents, it is required to incorporate the updates in the already existing

encrypted indexes efficiently. Therefore, the SE schemes are required to incorporate the

updates in the already existing indexes efficiently. The forward-index based SE schemes

proposed in (Bellare et al. 2007; Boneh et al. 2004b; Goh et al. 2003; Kuzu et al.

2012) support dynamic updates straightforwardly, but they are not efficient as the update

operations and searching time is proportional to the number of documents of the dataset.

Hence, the tree-based indexing schemes are used in SE to address this issue. Tree-based

indexing schemes are helpful in improving the time complexity of performing dynamic

updates and search operation. There exists various tree-based indexing structures that

are aimed to facilitate data owners to perform dynamic updates, and they enable the

cloud servers to retrieve the top-k relevant documents for the users’ trapdoors in sub-

linear time.

A boolean search approach is proposed to improve the efficiency of search time

and dynamic updates using a keyword red-black (KRB) tree-based indexing structure

(Kamara and Papamanthou 2013). In this indexing structure, each node consists of
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two vectors, each with m-bits (number of unique keywords in the dataset), are used to

represent the index information of the document. This indexing structure is developed

in a bottom-up fashion, where first leaf nodes are created from the given documents,

and then the internal nodes are generated based on the content of leaf nodes. Each

leaf node consists of two m-bit vectors, where a bit i in either of the vectors indicates

the presence of the corresponding keyword ki in that document. The internal nodes

also consist of two vectors, where each bit in either of the vectors is the result of OR

operation on the respective bits of the left and right child nodes. For a given single

keyword of the trapdoor, the search process starts from the root to the leaf nodes that

contain the given keyword. It involves recursively searching the corresponding bit in

the vectors of the nodes starting from the root node to the leaf nodes. It stops searching

at an internal node if the corresponding bit in vectors is set to 0, which indicates the

keyword does not present in the below sub-tree nodes. As the height of the tree is

O (log n), the search time complexity of determining a document that contains the

given keyword is O(log n). Therefore, the search time complexity of determining r

documents that contain the given keyword is O(rlogn). Similarly, the time complexity

of performing dynamic updates is O(q log n), where q the number of unique keywords of

the added document. The problem with this indexing technique is that while searching

and updating, it involves many internal nodes which do not represent the documents’

content directly. Due to this, the height and breadth of the tree is very high , which will

directly impact the efficiency of retrieving documents and performing dynamic updates.

Another boolean search approach using a Privacy Bloom Filter (PB) based tree in-

dexing technique (Li et al. 2014a) is proposed for retrieving documents and performing

updates efficiently. This indexing structure is developed in a top-down fashion, where

the root node is constructed first that contains all the possible keywords of the dataset,

and then the content of the root node is divided into left and right child nodes. Each of

the child nodes contains half of the elements of the root node. Then, each left and right

child nodes are further partitioned recursively until the leaf nodes are formed where

each leaf node stores the index content of a single document. In this indexing struc-

ture, bloom filters are used to store the content of the document’s index. Each index
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represents the actual keywords of the document along with some random keywords,

which prevent the cloud server from distinguishing one document’s index from another

document’s index. Similar to (Kamara and Papamanthou 2013), the height of this

tree-based indexing structure is also O(logn). Therefore, the search time complexity of

determining ′R′ documents for a given trapdoor is O(R log n). This indexing technique

also contains internal nodes that do not represent documents directly, but they are re-

quired to be traversed while searching and performing updates. Hence, it incurs extra

cost in index construction, searching, and performing updates. Another multi-keyword

boolean search with an Indistinguishable binary tree structure (Li and Liu 2017) is pro-

posed. This indexing structure is developed in bottom-up fashion (Wu and Li 2019).

Each node of this tree consists of two m-bits vectors where a bit i in either of the vectors

indicates the presence of the corresponding keyword ki in that document. Bloom filters

are used to store the indexed keywords of the document. In this approach, a pseudo-

random function is used to determine which of the two vectors to be used to store

the keyword of the document, and the corresponding keyword’s position in that vector

would be set to 1. This tree-based indexing is called an indistinguishable bloom filter

tree index because the random numbers are used to decide which of the two vectors to

be chosen in each node for storing keywords of the document in order to de-correlate the

content of other nodes. The search complexity of this approach is also O(R log n) sim-

ilar to (Li et al. 2014a). Both of the bloom filter based indexing structures (Li and Liu

2017; Li et al. 2014a) are optimized through their width optimization and depth opti-

mization techniques. These optimization techniques avoid visiting some internal nodes

while processing trapdoors and performing updates, but not all the intermediate nodes

would be avoided. Hence, the worst-case time complexity of searching and performing

updates cannot be improved unless all internal nodes are avoided. Search accuracy is

also affected by these indexing techniques since they have used bloom filters to store

the content of the indexes that cause false positives.

A multi-keyword boolean search approach using Virtual Binary (VB) tree-based

indexing structure is proposed (Wu and Li 2019). VB tree is a complete binary tree

where each leaf node represents a document, and the keywords of the corresponding
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document are stored in it. The internal nodes store the union of the keywords of the

left and right child, and the root node of the tree contains all the unique keywords

of the dataset. In this indexing structure, the tree does not exist in real, but the each

node of the tree is stored in a hash table in order to prevent the exposure of branches

and nodes’ information to the cloud server. Each element in this hash table consists

of an encrypted keyword and the path information. The path information is stored

in binary form, i.e., 0 for left child and 1 for a right child that gives the document

identity id(doc) after the conversion of binary information into a decimal value. For any

given trapdoor, the search process involves recursively checking all the paths wherever

a matching encrypted keyword of the trapdoor exists. A relevant document is found

only if the length of the path is equal to the height of the tree, and then it determines the

document identity from that path information. Since only the leaf nodes represent the

actual documents, searching time and performing updates in this indexing structure is

also not optimal. Because of the existence of many internal nodes that do not represent

the documents directly, the height and breadth of VB tree are higher, which have a

higher impact on searching time and performing dynamic updates.

There exists only one multi-keyword ranked search work that retrieves the top-k

relevant documents and supports dynamic updates efficiently with the help of the Key-

word Balanced Binary (KBB) tree indexing structure (Xia et al. 2016). This indexing

structure is developed in a bottom-up fashion, where first leaf nodes are formed based

on the keywords’ relevance scores of documents, i.e., TF values. Then, the internal

nodes are generated using the content of the leaf nodes. Each element in internal node

represents the maximum TF value of either the left or right child nodes. Both the inter-

nal and leaf nodes in this tree consist of m +m′ values, where there are ’m’ TF values

of actual keywords and m′ random values. The trapdoor also consists of m+m′ values,

where each of the value in m is generated based on the IDF value of query keywords,

and Other m′ values are random keywords, whose values are set to either 0 or 1 ran-

domly. For any given trapdoor, the search procedure starts from the root node to the

leaf nodes using Greedy Depth-First Search (GDFS). In this technqiue, the cloud server

determines top-k relevant documents by calculating the similarity score at each node,
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starting from the root node. The cloud server also determines scores at the left and right

child nodes and searches based on the maximum score of the child and continues the

same procedure until the leaf node with the help of GDFS. At each leaf node, the doc-

ument will be added to a list only if its score is greater than the scores of other existing

nodes in a list, and it stops searching when the top-k relevant documents are found. As

this approach uses the GDFS approach, it determines top-k relevant documents without

visiting all the internal nodes. Thus, the time complexity of determining top-k relevant

documents using this indexing structure is O(m + m′)2 + xmlogn). However, this

approach involves visiting some internal nodes that do not represent the documents di-

rectly. Hence, the search time complexity is not optimal. Due to the presence of internal

nodes, it increases the height and breadth of the trees that will affect the efficiency of

Insert, Delete, and Modify operations besides searching time.

All the above tree-based indexing structures such as KRB tree, PB tree, and VB tree-

based approaches support only boolean search. These approaches guarantee the privacy

of indexes and trapdoors. But these approaches leak search patterns since they have used

either pseudo-random functions or one-way hash functions for generating trapdoors

that are deterministic. Hence, they generate the same trapdoor for the same query.

IBF tree based boolean search approach prevents search pattern leakage by inserting

some random location hash pairs along with the actual location hash pairs of query

keywords in their trapdoors. However, these random location hash pairs cause some

false positives, thus affects the precision. The KBB tree-based SE approach supports

ranked search and also prevents the leakages of both rank-order information and search

pattern due to the presence of random keywords in trapdoors and the assignment of

values to the random keywords in indexes. However, search accuracy is affected in this

approach due to the random keywords. Another problem with KBB tree-based scheme

is that it is required to visit all internal nodes while processing trapdoors and performing

dynamic updates. Therefore, this causes an increase in tree height and width, which

affects the efficiency of dynamic updates and search time. The time complexity analysis

of all the tree-based indexing SE approaches is presented in Table 2.9.
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Table 2.9: Comparison of SE schemes supporting dynamic updates

Ref. Approach Search
Methodology

Search time Updates time

Kamara and
Papamanthou
(2013)

Keyword red-black tree Boolean Search O(xlogn) O(mlogn)

Li et al. (2014a) PBtree Range and
Boolean search

O(xlogn) O(logn)

Xia et al. (2016) Keyword balanced bi-
nary Tree

Ranked Search O(mlogn+m) O(m2logn+m)

Li and Liu
(2017)

Indistinguishable
binary tree

Boolean Search O(xlogn) -

(Wu and Li
2019)

Virtual binary tree Boolean Search O(xlogn) O(logn)

Note: n indicates of number of documents, m indicates the number of keywords, x refers to the number of
documents that are relevant to the given trapdoor’s keywords.
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2.4 RESEARCH DIRECTIONS AND CHALLENGES

The privacy issues of existing searchable encryption approaches are mainly involved in

encrypting keywords’ relevance scores, generating trapdoors, retrieval of top-k relevant

documents, search pattern, and access pattern. The keyword relevance scores, i.e., TF

or TF-IDF values in indexes helpful in determining ranks of the documents. The key-

words’ relevance scores need to be encrypted in such a way that the cloud server can

perform rank-ordering the documents from the encrypted scores. Encryption schemes

like Order preserving encryption, One-to-Many OPE meet this requirement. These en-

cryption schemes should not leak any information other than order information. How-

ever, these schemes leak both frequency and order information. Order information helps

in performing rank order information, but the frequency information should either be

prevented or mitigated. The cloud server mounts a frequency analysis attack to exploit

the frequency leakage information to infer plaintext information from the encrypted

keywords’ relevance scores. The reason for frequency leakage is that the lack of ran-

domness in mapping the given plaintext values to ciphertext values. A pseudo-random

number cannot be used directly for the purpose of preventing frequency, if it is so, the

ciphertext values will not preserve the order of plaintext values after mapping. There-

fore, it is highly challenging to balance the randomness while minimizing the frequency

leakage without affecting the order of plaintext values in ciphertext values.

Another privacy issue arises when a user wants to retrieve the same documents

repeatedly. The user sends the same trapdoor again and again for this purpose. Search

pattern leakage can be determined from the issued trapdoors in this context that leads

to the scale analysis attack. The existing multi-keyword search approaches prevent

search pattern leakage by adding random keywords along with actual query keywords

(Cao et al. 2014; Xiangyu et al. 2019). As these random keywords change each

time, the different trapdoor would be generated for the same query. Thus, it prevents

the search pattern leakage. However, random keywords of trapdoors affect precision

because some non-relevant documents would be returned to the user in response to

the added random keywords of the trapdoor. A privacy issue also arises when cloud

servers send the top-k relevant documents in descending order based on their ranks
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to the users’ trapdoors. The rank information leakage leads to rank-order exploitation

attack. This attack allows the cloud server to infer plaintext information from the rank-

order information. To prevent this attack, rank information should not be leaked to

the cloud server. Without allowing cloud server to know rank-order information, it

cannot decide which documents are relevant documents and which ones are not relevant

documents. The existing approaches cannot prevent rank-order information completely.

It is, therefore, highly difficult to satisfy users’ information requirements by sending

top-k relevant documents while preserving the privacy of both rank-order information

and search pattern without affecting precision.

In addition to addressing the privacy issues, it is also highly essential to fulfill the

user’s information needs quickly by sending the latest relevant documents efficiently for

the given users’ trapdoors. To meet this requirement, it is required to support dynamic

updates such as Insert, Delete and Modify operations efficiently over encrypted data.

Tree-based indexing techniques certainly helpful in retrieving documents and perform-

ing updates, but they are not optimal in searchable encryption. Since the tree-based

index structuretures are constructed either in a top-down or bottom-up fashion, an up-

date operation on any single node may lead to updates on many other nodes of the

tree. Therefore, it is required to minimize the impact of one nodes’ update operation

on other nodes of the tree. To satisfy this requirement, the height and breadth of the

trees must be kept as minimum as possible so that the impact of update operation on

other nodes would be minimum. Thereby it helps to perform dynamic updates in near-

optimal sub-linear time and also the retrieval of the documents. The existing tree-based

indexing techniques do not achieve this as they involve many intermediate nodes to be

visited while processing trapdoors and performing updates. It is highly challenging,

and a complex task is involved in designing a tree-based indexing structure with mini-

mum height and breadth while enabling it to be easily updated. At the same time, it is

also required to make it searchable quickly for the identification of the top-k relevant

documents without visiting all tree nodes.
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The following major research gaps are identified from all the issues identified through

our literature work:

• Secure order preserving encryption scheme : The existing schemes such as OPE

(Boldyreva et al. 2009) and One-to-Many OPE (Wang et al. 2012) can be used

to encrypt the relevance scores of keywords in indexes. These schemes enable

the cloud server to assign ranks to the documents for the given trapdoors based

on the encrypted scores directly. However, they both leak frequency informa-

tion that leads to a frequency analysis attack. This frequency information leakage

even enables the attackers to infer plaintext information of multiple keywords’

values from the OPE encrypted values (Pan et al. 2020). This leakage is due to

the lack of sufficient randomness in their encryption processes. Another variant

of OPE (Kerschbaum 2015) also leaks the frequency information in the form

of linear depth of the tree. This depth precisely corresponds to the frequency of

plaintext scores. Several works proposed in (Grubbs et al. 2017; Maffei et al.

2017) demonstrated the inference of sensitive plaintext information from the en-

crypted values of this OPE scheme. A multi-source order-preserving encryption

(MSOPE) scheme (Liang et al. 2020) is proposed to prevent the frequency leak-

age with the help of Paillier encryption. However, identifying relevant patients’

encrypted health records require an interactive session between a doctor and a

patient for each query, or it requires a secret key to be shared with a doctor to de-

crypt and identify the actual patient’s health records. The data owners and users

do not prefer to adopt the approaches that require them to share the decryption key

and force them to involve in interaction with the server for each retrieval. There-

fore, there is a need for an order preserving encryption scheme for encrypting

keywords’ relevance scores without leaking frequency information to the cloud

server. This leakage can be mitigated or prevented completely by increasing the

randomness of the existing schemes appropriately.

• Precision and privacy preserving multi-keyword search approach: The precision

and privacy are two contradicting requirements of SE schemes. Precision might

be compromised to some extent if privacy is more preferred, and privacy would
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be compromised if precision is more preferred (Cao et al. 2014; Xiangyu et al.

2019). For example, to achieve higher precision, it is required to send top-k rele-

vant documents to the users’ for their trapdoors. But, the rank-order information

might be leaked while sending the documents. Thus, the privacy of rank infor-

mation would be compromised while guaranteeing higher precision. This rank-

order information leakage leads to the disclosure of entire plaintext information

of documents through a full reconstruction attack (Lacharité et al. 2018). Like-

wise, consider another contradicting example where it is required to preserve the

search pattern privacy. The existing approaches prevent search pattern leakage by

adding random keywords in trapdoors besides query keywords or by adding con-

fusing keywords (Fu et al. 2020), but these random or confusing keywords could

cause false positives. Thus, precision is compromised while guaranteeing search

pattern privacy. However, the data user has to process the retrieved documents

(that includes some non-relevant documents) again to find out the actual relevant

documents. This post processing after retrieval needs to be avoided at data user

side. Therefore, there is a need for a searchable encryption approach that guaran-

tees both precision and privacy without the involvement of user in post processing

of the retrieved documents.

• Efficient indexing structure for supporting dynamic updates: The focus of the

existing tree-based SE schemes is to retrieve the relevant documents efficiently

while supporting dynamic updates (Dai et al. 2020; Kamara and Papamanthou

2013; Wu and Li 2019; Xia et al. 2016). However, since the height and breadth

of the existing tree-based indexing structures are higher, they cause a delay and

not optimal in performing dynamic updates and retrieval of the top-k relevant

documents. Therefore, there is a need for an efficient indexing structure to address

this issue.

• Feasible approach for preserving access pattern privacy: The access pattern pri-

vacy in existing approaches is preserved through practically infeasible solutions

such as Private information retrieval (Chor et al. 1998), blind storage meth-

ods Naveed et al. 2014 and Oblivious RAM Goldreich and Ostrovsky 1996b.
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There exists no feasible approach that guarantees access pattern privacy (Cui

et al. 2018; John et al. 2020). Some approaches preserve access pattern pri-

vacy by using two servers (search server and file server), of which one holds the

secret key for decrypting the search server assigned ranks (Orencik et al. 2013)

and the file server for sending the relevant documents to the users. The file server

comes to know the access pattern, but cannot infer any information from it as it

has no access to the trapdoors and the indexes. But, disclosing a secret key to

file server causes a serious threat to the stored data. Therefore, it is required to

preserve access pattern privacy without disclosing a secret key to any server in

the two-server approach.

2.5 SUMMARY

In this chapter, a comprehensive review of searching over encrypted data using Boolean

and Ranked search approaches is presented with respect to the precision and privacy re-

quirements specified in Section 1.4. This chapter also provides a review of dynamic up-

dates supported by various searchable encryption schemes. The existing SE approaches

have been presented categorically based on the features that include; the number of key-

words present in the trapdoor, how the search results are returned to the users’ trapdoors,

and their support for dynamic updates. Finally, a discussion on all research issues and

challenges associated with privacy, precision, and dynamic updates is provided.

From the literature review, it is identified that the information disclosure attacks in

SE exploit the leakages to infer plaintext information from the encrypted data. Some of

the primary reasons for these leakages include the lack of sufficient randomness in the

encryption schemes adopted in SE, functionality support for enabling the cloud server

to perform some operation on encrypted data. The encryption schemes are different

from each other in terms of security, efficiency and precision. Hence, they should be

selectively chosen while encrypting data as per the precision and security requirements

of data owners. If the concern of data owners is more about precision, then they can use

deterministic encryption schemes for encrypting data. If their concern is more about

the privacy, then they can use the non-deterministic encryption schemes for encrypting
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data. Therefore, the adopted SE approaches can be classified based on their ability to

guarantee precision. They are Deterministic encryption (DE) and Non-deterministic

encryption (NDE), of which NDE is also referred to as Probabilistic encryption Gold-

wasser and Micali (1984). In DE schemes, the same plaintext is always mapped to the

same ciphertext. Hence, they guarantee high precision, and they are also efficient, but

there exists a lot of scope for the possibility of security attacks discussed in Section 1.3.

Unpadded RSA and AES with ECB mode are a couple of examples of DE schemes. In

NDE schemes, the same plaintext will be encrypted to different ciphertext value each

time under the same key. Hence, NDE schemes are secured, but they are not as efficient

as DE schemes, and the precision also won’t be high. For example, Paillier encryption

is NDE scheme. This scheme require a secret key to decrypt the paillier scores of the

documents in order to determine actual ranks of the documents.

The existing SE approaches can also be classified on various features to allow data

owners to specify multiple users to read and modify their data, functionality to ver-

ify the returned results, and the type of index that is supported, i.e., forward- index-

based and inverted-index based. Based on the number of writers and readers, SE ap-

proaches can be classified as Single Writer Single Reader (SWSR), Single Writer Mul-

tiple Reader (SWMR), Multiple Writer Single Reader (MWSR) and Multiple Writer

Multiple Reader (MWMR) (Bösch et al. 2014; Rao et al. 2018). Similarly, based on

the ability to verify whether the returned results are correct or not, the SE approaches

can be classified as Verifiable Searchable Encryption (VSE) (Drazen et al. 2015) and

Non-Verifiable Searchable Encryption (NVSE). SE approaches can also be classified

based on the type of index, i.e., Forward-index and Inverted-index. While the former

one supports updates without much overhead but searching time is proportional to the

number of documents, and the latter one is efficient at retrieving, but it has difficulty

in updating the index due to the readjust of many index entries for every single update.

The taxonomy of adopted SE approaches based on these features is shown in Figure

2.1.

There are other cryptographic approaches such as Private Information Retrieval

(PIR), Blind Storage, and Oblivious RAM. These approaches are exclusively meant
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for preventing both the search pattern and access pattern leakage information. In PIR

protocol, for each query, a set of random queries are also sent to the cloud server, and

similarly, a set of random documents are also stored at the cloud server along with the

actual documents. Due to the random queries and random documents, the cloud server

does not come to know which query is real and which original documents are returned

to the users for their queries. Blind storage is another protocol, in which, the encrypted

documents are stored in blocks of memory so that the cloud server only knows which

blocks are uploaded and retrieved and it does not come to know which blocks constitute

the same file. Similarly, Oblivious RAM is another protocol, in which, the documents

would be kept re-encrypted and the locations of the stored documents in memory would

be kept changing, due to which the cloud server does not come to know which docu-

ments the user is frequency accessing. These approaches have a higher scope to guar-

antee higher privacy, but they are not viable to adopt in the real world due to the reasons

include; incurring the vast cost of post-processing search results, multiple rounds of

communication between user and server, and also required to keep track of memory

blocks in which the required files are stored respectively. Therefore, it is needed to

come up with easily deployable SE schemes to address theses issues.

From the literature, it has been found that there exists no straight forward approach

in SE that guarantees precision and all the privacy requirements in a single round of

communication due to the contradictory nature of precision and privacy. Because of the

lack of a single suitable encryption scheme that facilitates determining relevant docu-

ments without compromising privacy, developing a deployable multi-keyword search

approach that ensures both higher precision and privacy is always highly challenging.
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Figure 2.1: Taxonomy of searchable encryption approaches.
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CHAPTER 3

PROBLEM DESCRIPTION

In this research work, the primary goal is to develop a multi-keyword search approach

over encrypted documents that allows the data users to get the latest top-k relevant doc-

uments securely and efficiently for their trapdoors. It has been found from the literature

review that the existing searchable encryption approaches are prone to various informa-

tion disclosure attacks due to the leakages caused by the vulnerabilities of encryption

schemes, which are used for encrypting indexes and queries. The leakages include

frequency of same ciphertext values in indexes, search pattern information determined

from the issued trapdoors, rank-order information determined from the retrieval of the

top-k relevant documents. These leakages allow the cloud server to infer plaintext in-

formation from the encrypted data through various attacks such as Frequency analysis

attack, Scale analysis attack, and Rank-order exploitation attack. Therefore, it is es-

sential to prevent the cloud server from mounting these attacks in order to assure the

privacy and confidentiality of outsourced documents. This research work is focused on

mitigating the leakages and thereby avoids the possibility of attacks. Besides guaran-

teeing the privacy of stored documents from these attacks, this work is also focused

on providing the latest relevant documents for the users’ trapdoors in order to enable

users to choose timely decisions based on the availability of updated information. The

primary objective of this research work is subdivided into the following objectives.

69



3. Problem Description

3.1 OBJECTIVES

1. Development of an enhanced one-to-many order-preserving mapping technique

to mitigate the frequency leakage: The aim of this work is to develop an En-

hanced One-to-Many order preserving encryption (OPE) scheme that can be used

to encrypt keywords’ relevance scores in indexes without leaking frequency infor-

mation. As this scheme preserves the order of plaintext values after encryption,

the cloud server can perform rank-ordering of the documents directly from the

encrypted relevance scores. There exists already some OPE schemes (Boldyreva

et al. 2009; Wang et al. 2012), but they leak frequency information, especially

when two or more keywords are likely to co-occur equally in the same document

(Pan et al. 2020). This leakage is due to the lack of sufficient randomness in the

encryption process of existing OPE schemes. The proposed scheme is focused on

mitigating the frequency leakage of keywords as well as co-occurring keywords

than the frequency leakage of the same caused by the existing OPE schemes.

2. Development of a privacy-preserving search approach for preventing rank-order

and search pattern leakages: The aim of this work is to develop a privacy-

preserving multi-keyword search approach that prevents the leakages of both

rank-order information and search pattern without affecting precision. The ex-

isting multi-keyword search approaches (Cao et al. 2014; Xiangyu et al. 2019)

prevent search pattern leakage by adding random keywords in trapdoors, but they

affect precision. Also, these approaches do not prevent rank-order information

leakage completely as the cloud server comes to know some of the actual rel-

evant documents for a given trapdoor. Therefore, it is essential to develop an

approach that securely retrieves the top-k relevant documents without leaking

rank-order information and search pattern information to the cloud server. The

proposed approach prevents rank-order information by assigning pseudo-ranks to

the documents instead of actual ranks, also prevents search pattern leakage by

adding random keywords in trapdoors. The effect of added random keywords

on precision would be nullified with the help of an intermediate server adopted

in the proposed approach. The proposed approach is focused on returning top-
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k relevant documents to the users in a single round of communication without

disclosing any secret information to the cloud server and the intermediate server.

3. Development of an efficient index structure to support dynamic updates: The aim

of this work is to develop an efficient tree-based index structure to support dy-

namic updates such as Insert, Delete and Modify operations and to retrieve the

top-k relevant documents efficiently. In the existing tree-based indexing tech-

niques (Dai et al. 2020; Kamara and Papamanthou 2013; Wu and Li 2019; Xia

et al. 2016), only leaf nodes contain information corresponding to the documents

and internal nodes contain information required to guide the search. Due to this,

the existing tree-based indexes require higher height and breadth to create an in-

dex for all the documents of the dataset. Therefore, these index structures involve

visiting a lot of unnecessary nodes while searching as well as while performing

updates on any nodes of the tree that corresponds to the intended documents. This

leads to inefficiency in performing both dynamic updates and the retrieval of top-

k relevant documents. This research work is focused on developing an efficient

tree-based index structure, where the content of each node, including leaf and in-

ternal nodes, represent the documents and thus reduces the height and breadth of

the tree. This reduction leads to the improvement in the efficiency of performing

dynamic updates as well as retrieval of the top-k relevant documents.
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CHAPTER 4

MITIGATION OF FREQUENCY LEAKAGE

4.1 INTRODUCTION

In Searchable Encryption (SE), the information in searchable indexes includes unique

keywords and their corresponding relevance scores. There are many keyword relevance

score measures like TF (Term Frequency), TF-IDF (Term Frequency-Inverse Document

Frequency), and Okapi relevance score. These measures help ranked search approaches

to return relevant top-k documents for the given trapdoors (encrypted queries). These

relevance scores are significant, and they convey keywords’ distribution information in

the dataset. This information should not be disclosed to the cloud servers. Hence, these

relevance scores need to be encrypted along with the index keywords to prevent the

direct leakage of keyword distribution information to the cloud server. The relevance

scores should be encrypted in such a way that the cloud server could still perform rank-

ordering of the documents directly from the encrypted relevance scores of keywords.

To meet this requirement, the encryption scheme is required to preserve the plaintext

order of the relevance scores after encryption. Cryptographic algorithms such as RSA,

Elgamal, and AES can not be used to encrypt the relevant scores because they do not

preserve plaintext order. Therefore, we need encryption schemes that preserve the plain-

text order of keywords’ relevance scores after encryption. Various encryption schemes

exist, i.e., Order Preservation Encryption (OPE) (Boldyreva et al. 2009), One-to-Many

OPE (Wang et al. 2012) maintain the order of plaintext values after encryption. How-

ever, in OPE, the same plaintext score will always be mapped to the same ciphertext
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4. Mitigation of Frequency Leakage

value due to the usage of plaintext score as the seed in its mapping process. Thus, it

leaks the frequency information. In One-to-Many OPE, due to the improvisation of

randomness in the seed value compared to the seed value of OPE, the same plaintext

score will be mapped to a distinct ciphertext value. Hence, the frequency leakage of ci-

phertext values of One-to-Many OPE scheme is less than the frequency leakage of OPE

scheme. However, this scheme also leaks the frequency information especially when

two or more keywords have the same plaintext score within the same document. This

allows the cloud server to derive some specific keywords from the encrypted relevance

scores by mounting frequency analysis attack (Naveed et al. 2015). The frequency

of ciphertext values (i.e., repetition of same encrypted TF values) would enable the

cloud server to infer the plaintext keyword through frequency analysis attack by us-

ing some background knowledge of the uploaded dataset. The background knowledge

could be the information about the uploaded dataset, e.g., the uploaded dataset is related

to ”computer science,” or ”United States,”. Hence, it is required to prevent or minimize

the leakage of frequency information to the cloud server. The objective of this work in

this chapter is to mitigate the frequency leakage.

Illustration of frequency leakage: Assume that the plaintext version of the inverted

index shown in Figure 4.1 is generated for a set D of some documents, D1, D2, .., Dn.

The corresponding encrypted index is shown in Figure 4.2. In plaintext index, the TF

value is stored for each unique word for each document Di of the document set D. For

example, it can be observed in plaintext index that the TF value of W1 in documents

D1, D3, D4 and Dn is same. The frequency, i.e., the repetition of same TF value is

4, which can be observed in plaintext index. It is to be noted that the corresponding

TF values after encryption are same value for documents D1, D3, D4 and Dn in the

encrypted index. The frequency of same encrypted TF value of the same encrypted

keyword EW1 in encrypted index is also 4.

Also, the frequency of co-occurring keywords W1 and W2 is same in documents

D1, D4 and D4 in plaintext index and also the same frequency for these co-occuring

keywords in the encrypted index. In spite of only encrypted index is uploaded onto the

cloud server, the inference of the corresponding plaintext keyword can be inferred from
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the encrypted TF values. This is possible when the cloud server has some background

knowledge of the uploaded dataset, e.g., which keywords may occur the most in the

given dataset. Therefore, it is necessary to ensure that the frequency of the same ci-

phertext values of keywords should not be the same as the frequency of corresponding

plaintext values.

Figure 4.1: Frequency Leakage in Plaintext Index.

Figure 4.2: Frequency Leakage in Encrypted Index.

Need for mitigating the frequency leakage: The existing order preserving encryp-

tion (OPE) schemes leak both the order of plaintext information and frequency infor-

mation due to their deterministic property. Various attacks such as frequency analysis

attack (Cash et al. 2015) and also correlation attack (Bindschaedler et al. 2018; Durak

et al. 2016; Pan et al. 2020) exploit frequency information from encrypted data to

infer plaintext information. Hence, it is required to minimize or prevent the frequency

information leakage in order to use it for encrypting sensitive information. Probabilistic

encryption schemes like Paillier (Orencik et al. 2013) and Fully Homomorphic encryp-

tion schemes (Wu 2015) have been used to prevent frequency information leakage, but

they do not preserve plaintext order due to which the relevant documents cannot be

identified by the cloud server from the encrypted values. Hence, only the encryption
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schemes that preserve the plaintext order should be used. OPE schemes should leak

only order information, but frequency information should be avoided. This ordering in-

formation helps in performing sorting and comparison operations and thus enables the

cloud server to perform rank-ordering the documents. However, the existing Order Pre-

serving Encryption (Boldyreva et al. 2009), and One-to-Many OPE (Wang et al. 2012)

schemes leak the frequency information. Therefore, an Enhanced One-to-Many OPE

scheme is developed to minimize the frequency leakage information than the leakage

caused by the existing OPE schemes.

This chapter contributes to the existing literature in the following ways:

• Proposing an Enhanced One-to-Many OPE scheme to map a plaintext relevance

score to a ciphertext value such that it minimizes the frequency leakage of same

ciphertext values in indexes and yet it preserves the plaintext order.

• A thorough analysis of the proposed approach with respect to the frequency leak-

age of keywords, co-occuring keywords and efficiency.

The remainder of this chapter is organized as follows: Section 4.2 presents the

preliminary details. Section 4.3 deals with the problem statement and the proposed

approach is presented in Section 4.4. Section 4.5 presents the experimental study and

analysis of the proposed approach. The summary of this chapter is presented in Section

4.6.

4.2 PRELIMINARIES

The proposed work includes the below notations that are used throughout this chapter.

Term Frequency (TF): There are many measures for determining keywords’ weight

information such as TF, TF-IDF, and Okapi relevance score. But TF values of the

keywords are more repetitive than the others. Hence, the TF value of keyword is used

in our work to demonstrate the effectiveness of the proposed approach with respect

to the leakage of frequency information. The TF value of a keyword in a document

represents the relevance score of the keyword in the corresponding document. TF value
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Notation Description
D — The input document collection, denoted as a set of n documents D =

(D1, D2, ..., Dn).
W — The distinct keywords extracted from D, denoted as set of m keywords

W = (kw1, kw2, ..., kwm).
TFkwj ,Di

— The Term Frequency of keyword kwj in document Di.

I — The plaintext inverted index generated from documents D.

Ĩ — Encryption of the inverted index to be outsourced, which is constructed
from I .

C — The encrypted document collection to be outsourced, denoted as the set
of ciphertext documents C = (C1, C2, C3, ..., Cn). Each Ci corresponds
to Di in D.

Qkw — The query keywords, a subset of W , represents the keywords of user’s
query.

M̃Qkw
— The masked query corresponds to Qkw.

of keyword kw can be measured by counting the number of occurrences of a keyword

in the given document di. As some keywords in longer documents will have higher TF

values, the TF value is normalized by dividing it with the length of the document. The

equation used for normalizing the TF value of keyword kw in a document Di is given

below:

TF (kw,Di) =
1

|di|
(1 + log(tfi)) (4.1)

where,|Di| - Length of the document, i.e., the total number of keywords in document di

tfi - The number of keyword kw occurrences in a document di.

Coordinate Matching: It is a similarity measure used to determine the relevance

score of the documents based on the presence of query keywords in the document Wit-

ten et al. (1994).

4.3 PROBLEM STATEMENT

It is defined as follows: For a given set of plaintext TF values of keywords of the

documents D, the proposed Enhanced One-to-Many OPE scheme maps each plaintext

TF value to a ciphertext value such that it minimizes the frequency leakage of same

ciphertext values for any keyword in encrypted indexes and yet it preserves the plaintext
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order. This approach enables the cloud server to determine relevant documents for a

given trapdoor while minimizing the leakage of frequency information to the cloud

server from the encrypted relevance scores of keywords in indexes.

System Architecture: The schematic view of the system architecture shown in Fig-

ure 4.3 is considered in this work. It consists of a Data owner, Data users, and the Cloud

server (CS). The data owner creates searchable indexes, which are in encrypted form,

for all his/her plaintext documents. The data owner also encrypts the documents and

uploads both of them onto the CS. Whenever the data users need to find the documents

for their queries, they generate the trapdoors, which are then submitted to the CS. The

CS processes the trapdoors and then assigns the score to each document using a sim-

ilarity measure. Then, the most relevant top-k documents will be sent to the users. It

is assumed that the keys required for generating trapdoors and decrypting the retrieved

documents are shared with the data users by the data owners through a secure channel.

Figure 4.3: A Schematic view of the searchable encryption system.

78



4.4. Enhanced One-to-Many OPE Scheme

4.4 ENHANCED ONE-TO-MANY OPE SCHEME

The aim of the proposed Enhanced One-to-Many OPE scheme is to mitigate the fre-

quency leakage while enabling the cloud server to determine relevant documents for a

given trapdoor. The proposed scheme consists of two phases,i.e.,1) Initialization phase

and 2) Retrieval Phase. The initialization phase involves generating encrypted indexes

and encrypted documents and then uploading both of them onto the cloud server for

storage, as shown in Figure 4.1. The proposed Enhanced One-to-Many OPE scheme

can be used as the encryption scheme for encrypting keywords’ relevance scores in

the initialization phase. The retrieval phase involves generating trapdoor for the given

query and sending it to the cloud server, which processes it and sends back the users the

top-k relevant documents. Each of these phases is explained in detail as follows.

Initialization Phase: This phase includes the following activities to be done by the

data owner:

1. Build the Encrypted Index: The steps required to generate the encrypted index Ĩ

for all the documents of dataset D is explained as follows:

(a) Building Dictionary W : Construct the dictionary W by extracting all the

unique keywords kw from the input documents of the dataset D.

(b) Building Plaintext Index I: For each keyword kw in W , determine its TF

value as per the equation (4.1) for each document Di if it is present in doc-

ument Di and store it in index as I[kw]= [Di][TF ].

Otherwise, set its TF value to 0 if it is not present, i.e., I[kw]= [Di][0].

(c) Generate Encrypted Index Ĩ: The content of the above generated index I is

encrypted as follows:

• Each keyword in I is hashed by using a one-way secure hash algorithm

SHA-2 with a 256-bit key.

• The TF value of each keyword kw of every document Di is encrypted

using the proposed Enhanced One-to-Many OPE scheme, which is ex-

plained in next page.
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• The document identities are not necessary to encrypt as they do not con-

vey any information about the content of the documents. The encrypted

index generated would then be: Ĩ = [T̃F ][Di].

2. Encrypting Documents: After generating the encrypted index, the data owner also

encrypts his/her entire document collection D using AES algorithm with 128 bit

key size.

Retrieval Phase: This phase includes the following activities to be done by the data

users:

1. Query Masking: To retrieve the documents of users’ interest, a masked query

must be generated by the data user. The masked query M̃Qkw
is generated by

hashing each keyword of his/her query Qkw using a secure SHA-256 hash func-

tion. Then, the data user sends the masked query and also the parameter k to the

cloud server to send only the relevant top-k documents.

2. Searching:

(a) The cloud server upon receiving M̃Qkw
, it utilizes the encrypted index Ĩ

and adopt the coordinate matching similarity measure (Witten et al. 1994)

to assign the scores to each document Did. Then it sorts the scores of the

documents in descending order and sends the top-k of them to the user.

(b) The data user then decrypts the received documents with the corresponding

secret key shared by the data owner through a secure channel.

Enhanced One-to-Many OPE Scheme

The proposed Enhanced One-to-Many OPE scheme returns a possible unique ciphertext

value c for each keyword kw’s TF value, i.e., a plaintext relevance score pscore by

mapping it to one of the output range of values. The procedure for mapping a pscore to

a ciphertext c is explained in Algorithm 1. It takes Key (K), input domain (D) , output

range (R), plaintext relevance score (pscore), document identity id(D), and keyword

(kw) and returns a possible unique ciphertext value c. During mapping, the range R
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is divided into some non-overlapping interval buckets each with different size. Each

bucket contains some range of values. For the given pscore, the random-sized bucket

is determined using a Binary Search(.) procedure, which is explained in Algorithm

2. Binary Search(.) is a recursive procedure, which returns a new domain and a new

range of values for a given pscore based on an HYGEINV(.) function. HYGEINV(.)

is a hypergeometric sampling process that returns an integer value based on the initial

domain, range, and middle value. This integer helps Binary Search(.) in choosing a

new domain, and a new range of values for the given pscore. In each iteration of binary

search, the size of domain D and range R will be reduced to half. Binary Search(.)

stops when the size of the domain becomes 1 during when the domain contains only

the given pscore. The pscore then will be mapped to one of the values in a new range

R using a TapeGen(.) function. TapeGen(.) is a random coin generator, which can be

used for generating the seed value. This seed value helps in choosing one of the values

in the new range as the ciphertext value c for the given pscore.

Algorithm 1: Enhanced One-to-Many OPE
Input: K (Key), D (domain), R (range), pscore, id(D), kw
Output: Cipher text c

1 while|D|! = 1 do
2 {D,R} = Binary Search(K,D,R, pscore)

3 coin← TapeGen(K,(D,R,1||pscore, id(D), kw)

4 c
coin←−− R

5 return c

4.5 THEORETICAL AND SECURITY ANALYSIS

In this section, the reversibility, time complexity, and security analysis of the proposed

scheme are presented.

a) Reversibility

The proposed Enhanced One-to-Many OPE scheme is also reversible, i.e., returns a

plaintext score pscore for the given ciphertext value c. Reversibility would be helpful

in many applications where the underlying plaintext values are frequently modified or
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Algorithm 2: Binary Search
Input: K, D, R, pscore
Output: D,R

1 M ← length(D); N ← length(R)
2 d←min(D)− 1; r←min(R)− 1

3 y← r+ceil(N
2

)

4 coin
R←− TapeGen(K,(D,R,0||y))

5 x
R←− d + HYGEINV(coin,M ,N ,y − r)

6 if pscore ≤ x then
7 D ← {d+ 1, ...., x}
8 R← {r + 1, ...., y}
9 else

10 D ← {x+ 1, ...., d+M}
11 R← {y + 1, ...., r +N}
12 return D,R

when they are further used for some other computations. The reversibility procedure

for obtaining a plaintext value pscore for a given c is explained in Algorithm 3. It takes

key k, ciphertext value c, the document identity id(D) and keyword kw as arguments

and returns a plaintext value pscore that corresponds to c. In this process, the given c

value would be mapped to the same bucket that the plaintext value was mapped to using

the Binary Search(.) procedure explained in Algorithm 4. The Binary Search(.) returns

a new domain and new range recursively for the given c value, and it stops when the

size of the domain becomes 1. The value left in this domain is a minimum value of D,

and it would be returned as the plaintext value pscore. To confirm the pscore if it really

corresponds to c, the pscore is passed as an argument to the TapeGen(.) procedure

along with the document identity id(D) and keyword kw. TapeGen() generates a seed

value using which one of the values in a new range R would be chosen as the new

ciphertext value cnew. If the generated cnew and the initial c values are same, then the

pscore would be returned as a plaintext score for the given ciphertext value c. Thus, the

proposed scheme returns a plaintext score pscore.
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Algorithm 3: Reversibility of Enhanced One-to-Many OPE
Input: K (Key), D (domain), R (range), c (ciphertext value), id(D), kw
Output: pscore

1 while|D|! = 1 do
2 {D,R} = Binary Search(K,D,R, c)

3 pscore←min(D)
4 coin← TapeGen(K,(D,R,1||pscore, id(D), kw)

5 cnew
coin←−− R

6 if cnew == c then
7 return pscore
8 else
9 return ⊥

b) Time Complexity

The time complexity of mapping a plaintext score pscore to a ciphertext c is O(log

n), i.e., log n times the Binary Search(.) process will be called for mapping a single

plaintext score pscore to a value c. The time complexity of mapping n elements from a

domain D to n elements in range R using the proposed approach is O(nlogn).

c) Security Analysis

The aim of the proposed scheme is to prevent the cloud server from exploiting the

frequency information from the encrypted keywords’ relevance scores (TF values) in

indexes. As the index keywords are hashed using a secure hash function SHA-256, it

is difficult for anyone to break the SHA because it is a one-way hash function. For

a given any hash value, it is impossible to reverse engineer the hash value to find its

corresponding keyword. Similarly, the privacy of query keywords is also maintained,

since query keywords are also hashed using the SHA-256 algorithm. The privacy of

index keywords from the encrypted TF values is explained in the below subsection.

Privacy of index keywords’ from the encrypted TF values: The TF values of key-

words in indexes are encrypted using the proposed Enhanced One-to-Many OPE. As

per the experimental results observed in Section 4.4, the proposed scheme minimizes

the frequency leakage of not only individual keywords’ relevance scores but also the

co-occurring keywords. Thus, it mitigates the possibility of frequency analysis attack
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Algorithm 4: Binary Search
Input: K, D, R, c
Output: D,R

1 M ← length(D); N ← length(R)
2 d←min(D)− 1; r←min(R)− 1

3 y← r+ceil(N
2

)

4 coin
R←− TapeGen(K,(D,R,0||y))

5 x
R←− d + HYGEINV(coin,M ,N ,y − r)

6 if c ≤ y then
7 D ← {d+ 1, ...., x}
8 R← {r + 1, ...., y}
9 else

10 D ← {x+ 1, ...., d+M}
11 R← {y + 1, ...., r +N}
12 return D,R

on Enhanced One-to-Many OPE values. It can also be observed from the experimen-

tal results that the proposed approach cannot prevent the frequency leakage completely

especially when plaintext TF values are more densely distributed, i..e., same TF value

for numerous keywords in the same document. Therefore, proposed approach is rec-

ommended to use it for encrypting sensitive data that is moderately distributed. For an

appropriate domain D, and range R, where |R|≥ 2|D|, the proposed Enhanced One-

to-Many OPE scheme does not leak frequency information and is secure under the

frequency of ordered chosen plaintext attack (FOCPA) as per the definition of IND-

FOCPA. The corresponding definition and the proof of the proposed scheme are ex-

plained below.

Definition (IND-FOCPA): For the given domain D and range R, the proposed En-

hanced One-to-Many OPE scheme (K,E,D) guarantees indistinguishable ciphertexts un-

der the frequency of ordered chosen plaintext attack (FOCPA).K refers to secret key, E

refers to the encryption procedure, and D refers to the decryption procedure explained

in Algorithm 3. The proposed scheme is secure under FOCPA only if the adversary has

negligible advantage in the security parameter ’k’:∣∣∣Pr[Exp
A
FOCPA(k, 1) = 1]− Pr[Exp

A
FOCPA(k, 0) = 1]

∣∣∣ (4.2)

where ExpAFOCPA(k, b) is the experiment, which is explained here.
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Experiment ExpAFOCPA(k, b)

(X0, X1) ← A, where |X0| = |X1| = s and let Xi be the sequence of the form kw1 :

v1(d1), kw2 : v2(d2), ..., kwj : vk(dl), where kwj refers to jth keyword, vk refers to

keywords’ relevance score, i.e., (TF) value, and dl refers to the identity of the document

and also let X0 and X1 have common frequency for at least one keyword in Xi, i.e.,

frequency of at least one keywords’ relevance score in both the sets is same.

Select a bit uniformly b ∈ {0, 1} and choose Xb from X0 and X1.

For all 1 ≤ i ≤ s, yb,i← E(K, xb,i)

b
′ ← A(yb,1, yb,2, ...., yb,s)

Output 1 if and only if b = b
′

Theorem: The proposed Enhanced One-to-Many OPE scheme is IND-FOCPA.

Proof: Let A is assumed to be an arbitrary adversary for the game in IND-FOCPA.

Also, assume that X0 and X1 are two plaintext sequences that are chosen by the A. As

per the definition of IND-FOCPA, these two sequences have at least common frequency

for any element of the sequences.

When encrypting eitherX0 orX1, the proposed Enhanced One-to-Many OPE scheme

uses TF value, Keyword, and document identity id(D) for generating a seed value that

decides where the TF value will be mapped to one of the values within the range R.

Hence, the proposed approach is independent of the frequency of the input plaintext se-

quence and therefore independent of the chosen bit b. The information that A receives

from the challenger (E) is therefore independent of the selected bit ’b’ and thus A can

only guess what ’b’ is. This concludes the proof.

4.6 EXPERIMENTAL STUDY AND ANALYSIS

In this section, implementation methodology, experimental results of frequency leak-

age of the proposed Enhanced One-to-Many OPE scheme, efficiency, and its usage are

presented.
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4.6.1 Implementation Methodology

The proposed approach has been implemented using Python 3.6 version and tested on

Intel i7-4770 CPU system. We have conducted experiments on Requests for Com-

ments (RFC) (RFC 2016) dataset. For evaluating the proposed approach, frequency

leakage, i.e., the repetion of same ciphertext values in index and the time efficiency of

performing encrypted operations are considered. The proposed approach is assessed

by practically inferring plaintext information of frequently occurring keywords by ob-

serving frequency leakages from the encrypted TF values of indexes through frequency

analysis attack. The frequency leakage of the proposed approach is compared with the

OPE and One-to-Many OPE schemes for different keywords as well as some phrases

(co-occuring keywords) of RFC dataset.

4.6.2 Experimental Results

Frequency Information: The proposed Enhanced One-to-Many OPE scheme is an

extension of One-to-Many OPE (Wang et al. 2012), which in turn is an extension of

OPE (Boldyreva et al. 2009). In OPE, the plaintext score pscore, .i.e., the TF value

of the keyword is mapped to a ciphertext, which is a value within the specified output

range. In our experiments, the input domain is the actual plaintext relevance scores,

and the output range is set between 0 and 245−1. While mapping, initially the range

R is divided into some non-overlapping interval buckets each with different size. For

the given plaintext TF value pscore, the random-sized bucket is determined by binary

search (Algorithm 2) with the help of HYGEINV(.) function. One of the values within

the bucket is chosen as a ciphertext value for the given pscore based on the seed value

that is generated by TapeGen(.). In OPE, this seed value is completely dependent on the

plaintext score pscore due to which the same pscore is mapped to the same ciphertext

value within the values of the bucket. Therefore, the OPE is a deterministic encryp-

tion scheme; wherein, the same plaintext value would always be mapped to the same

ciphertext value. Because of this deterministic property, the frequency of ciphertext c

is leaked. This frequency leakage is due to the usage of plaintext score pscore as the

seed in mapping process of OPE. Hence, the distribution of ciphertext values in OPE

86



4.6. Experimental Study and Analysis

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

N
u
m
b
e
r
 
o
f
 
p
o
i
n
t
s

Relevance score

(a)

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

N
u
m
b
e
r
 
o
f
 
p
o
i
n
t
s

Relevance score

(b)

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100

N
u
m
b
e
r
 
o
f
 
p
o
i
n
t
s

Relevance score

(c)

Figure 4.4: Plaintext keyword relevance score distribution for keywords: (a) computer
(b) network (c) communication
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4. Mitigation of Frequency Leakage

follows the same distribution of plaintext scores. Therefore, the frequency leakage of

ciphertext values cannot be prevented with OPE. For the given dataset, if plaintext score

is repeated n number of times, then there will be a ciphertext c that will also be repeated

n number of times. Frequency leakage, i.e., distribution information can be exploited

by frequency analysis attack to infer the specific plaintext keywords of the index.

In RFC dataset, the keywords ”computer”, ”network”, and ”communication” are the

frequently occurring keywords, and they appear in most of the documents. Hence, the

relevance scores of these keywords in the index of this dataset will be higher than the

relevance scores of other keywords. The plaintext distribution information of these three

keywords is respectively shown in figures Figure 4.4.a, 4.4.b and 4.4.c respectively.

The values on the x-axis represent the actual plaintext TF values and values on y-axis

represent the frequency, i.e., the number of times a particular TF value is repeated.

As the OPE maps the same plaintext score to the same ciphertext, the distribution of

ciphertext values of these keywords would be the same as the plaintext distribution.

Hence, if the cloud server has some idea (background knowledge) that the keyword

”network” is more likely to appear in the uploaded dataset than other keywords, then it

could easily guess that plaintext keyword from the encrypted relevance scores. To infer

the plaintext keyword, the cloud server plots the graphs for each encrypted keyword ’s

relevance scores in index. Then, it will note down the encrypted or masked keyword of

the index for which the frequency (the repetition of the same encrypted score) is higher

than the frequency of scores of other encrypted keywords. The keyword ”network” is

more likely to be this encrypted keyword. Thus, the cloud server infers the keyword.

Comparison with the existing approach: The frequency leakage of the existing

One-to-Many OPE scheme is compared with the proposed Enhanced One-to-Many

OPE scheme. In One-to-Many OPE scheme (Wang et al. 2012), for the given plain-

text score pscore, it uses the same algorithm 2 (Binary search) to select the bucket, but

TapeGen(.) uses both the pscore, and document identity id(D) for generating a differ-

ent seed value for the same pscore . Due to this seed, it maps the same plaintext to

different ciphertext value within the values of the bucket. With One-to-Many OPE, fre-

quency information leakage can be prevented only when there exist the same plaintext
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4.6. Experimental Study and Analysis

relevance scores in different documents. However, there is a scope for the frequency

leakage when there are same plaintext scores for two or more keywords within the same

document. For example, assume that the plaintext scores of keywords kw1 and kw2 are

identical in the document di. As this approach uses both plaintext score pscore and doc-

ument identity id(D) to generate the seed, the same plaintext score of these keywords

in the same document is likely to be mapped to the same value within the values of the

bucket. This is possible especially when some keywords have the equal occurrences in

the same document, e.g., the keywords of the phrases like { ”computer”, ”network”}

or { ”communication”, ”network”}, have the same number of occurrences in some of

the documents of RFC dataset. Therefore, the plaintext scores of the keywords in these

phrases are likely to be mapped to the same ciphertext. If One-to-Many OPE scheme

is used for encrypting the scores, then the cloud server can infer the keywords of these

phrases from the encrypted scores. The cloud server first plots the histogram for the

relevance scores of each encrypted index keyword. Then it identifies the histogram in

which the frequency of the same relevance score is higher than the other keywords in

the index. Then it looks for the histogram of another keyword whose frequency of rel-

evance scores is closer to the frequency of the chosen histogram. Then it combines the

relevance scores of these two encrypted index keywords and plots the graph. Similarly,

it does the same for other histograms, in which the frequency of relevance scores is

closer to the already chosen histogram. Then the cloud server identifies the histogram

of the phrase in which the frequency of relevance score is higher than the frequency of

other possible phrases. The cloud server notes the histogram of encrypted keywords of

this phrase. These encrypted keywords are more likely to be the most occurring key-

words of the phrases. Thus, the cloud server could infer the plaintext keywords of the

phrases from the One-to-Many OPE encrypted scores.

The proposed Enhanced One-to-Many OPE scheme, which is explained in Section

4.4, minimizes the frequency leakage of the phrases caused by the One-to-Many-OPE

scheme. This approach also uses the same algorithm 2 (Binary search) to select the

bucket, but the TapeGen(.) here uses pscore, document identity id(D) and keyword

kw for generating a different seed value for the same plaintext score pscore. Due to
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Figure 4.5: Encrypted score distribution for ”computer”: (a) One-to-Many OPE (b)
Enhanced One-to-Many OPE

this seed, the same pscore will be mapped to a different value within the values of the

bucket even if there exists the same plaintext score for multiple keywords in the same

document. Thus, it minimizes the frequency leakage of keywords of the phrases. This

minimization is due to the improvement of the randomness in generating the seed value.

Due to this seed, this approach reduces not only the frequency leakage of phrases but

also the individual keyword’s frequency information.

We have compared the frequency leakage of One-to-Many OPE encrypted scores

and the proposed Enhanced One-to-Many OPE encrypted scores for the keywords ”com-

puter”, ”network”, ”communication”. The distribution information (frequency) of One-

to-Many encrypted scores and the proposed Enhanced One-to-many encrypted scores

for the keyword ”computer” is shown in figures Figure 4.5.a and 4.5.b respectively. The

values on x-axis represent the normalized One-to-Many OPE encrypted scores using the

min-max normalization approach (Margae et al. 2014). Normalization is necessary be-

cause the encrypted values are very large numbers that can not be shown clearly in

graphs. The values of the y-axis represent information about the frequency, i.e., the

number of points with the same encrypted TF value. Similarly, the comparison of rele-
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Figure 4.6: Encrypted score distribution for ”network”: (a)One-to-Many-OPE (b)
Enhanced-One-to-Many-OPE
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Figure 4.7: Encrypted score distribution for ”communication”: (a)One-to-Many-OPE
(b) Enhanced-One-to-Many-OPE

vance scores for the keywords ”network” and ”communication” is also shown in figures

Figure 4.6.a, 4.6.b, 4.7.a, and 4.7.b respectively. It can be observed in these figures that

the frequency leakage of certain encrypted scores using the proposed Enhanced One-
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Figure 4.8: Encrypted score distribution of One-to-Many OPE scheme for ”Computer
Network”
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Figure 4.9: Encrypted score distribution of Enhanced-One-to-Many OPE scheme for
”Computer Network”
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to-Many OPE scheme is less than the frequency leakage of One-to-Many OPE for all

the keywords (”computer,” ”network,” ”communication”) respectively.

As it is already mentioned, One-to-Many-OPE scheme cannot prevent the frequency

leakage of phrases whose keywords are likely to co-occur equally in the same document.

The proposed scheme minimizes the frequency leakage of phrases due to the usage of

plaintext score pscore, document identity id(D) and keyword kw for generating a dif-

ferent seed value. Due to this seed, the different value within the values of the bucket

will be chosen as the ciphertext value for the same plaintext relevance score pscore. In

RFC dataset, ”computer network” and ”communication network” are the most occur-

ring phrases. The distribution information of One-to-Many-OPE encrypted scores and

the proposed Enhanced One-to-Many-OPE encrypted scores for the phrase ”computer

network” is shown in figures Figure 4.8 and 4.9, respectively. Similarly, figures Figure

4.10 and 4.11 respectively show the distribution information for the phrase ”commu-

nication n1etwork”. It can be observed that the frequency leakage of the proposed

approach shown in figures Figure 4.9 and 4.11 is much lesser than the frequency leak-

age of the One-to-Many OPE scheme shown in figures Figure 4.8 and 4.10 respectively.

Therefore, the proposed approach leaks less frequency information than the frequency

leakage of One-to-Many OPE scheme. Thus, the proposed approach makes it difficult

for the cloud server for inferring plaintext keywords of the phrases from the encrypted

relevance scores. Thus, the privacy of index keywords from the encrypted relevance

scores is improved using the proposed Enhanced One-to-Many OPE scheme.

Efficiency: We have compared the efficiency of the proposed approach experimen-

tally with the efficiency of the One-to-Many OPE. The time cost comparison of map-

ping a pscore to c over different domain and ranges using the proposed Enhanced

One-to-Many OPE and One-to-Many OPE schemes is shown in Figure 4.12.a. The

x-axis values in this figure represent domain size and the values on y-axis represent the

amount of time taken to map a plaintext score pscore to a ciphertext value c. Y-axis

represents the average time of 100 trails for a single mapping operation over different

domain sizes and a range |R| = 245. It is to be noted from this figure that the ef-

ficiency of the proposed Enhanced One-to-Many OPE and the existing One-to-Many
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Figure 4.10: Encrypted score distribution of One-to-Many OPE scheme for ”communi-
cation network”
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Figure 4.11: Encrypted score distribution of Enhanced One-to-Many OPE scheme for
”communication network”
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Figure 4.12: (a) The time cost comparison of single mapping operation using Enhanced
One-to-Many OPE and One-to-Many OPE over a range |R| = 245. (b) The time cost
comparison of a single reversing operation using Enhanced One-to-Many OPE and
One-to-Many OPE over a range |R| = 245.

OPE is almost same. Similarly, the reversibility (decryption) efficiency of the proposed

Enhanced One-to-Many OPE and One-to-Many OPE is shown in Figure 4.12.b. The

reversibility procedure for returning a plaintext value for the given ciphertext value c is

explained in algorithm 3. It is to be noted that the reversibility efficiency is also same

for both the schemes. From the figures Figure 4.12.a and 4.12.b, it can be observed

that efficiency of mapping and reversibility is almost same since both of them call the

Binary Search procedure recursively same number of times. Also, to be noted that the

time of mapping and reversibility operations take slightly higher time for some domains

that are smaller in size than the domains of larger size due to the variation in the num-

ber of times the Binear Search(.) procedure is called for a given plaintext score pscore.

Overall, the maximum time the proposed Enhanced One-to-Many OPE scheme takes

for performing both mapping and reversibility operations is 300 milliseconds, which is

reasonably efficient in today’s computing environment.
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4. Mitigation of Frequency Leakage

4.6.3 Usage of the proposed Enhanced One-to-Many OPE scheme

The proposed scheme can be used for encrypting both unstructured data, .e.g, encrypted

search engines where documents are used and also structured database, e.g., health care

applications and banking applications, where patients and customers sensitive data is

stored in their databases in the form of tables, e.g., balance of a customer account,

salary of a doctor and age of a patient. The proposed scheme can be used for encrypting

the data of all these numeric columns on top of which some arithmetic operations can be

performed. However, the only problem with the approach is that the proposed approach

should be used only when the distribution of plaintext values is not high otherwise,

frequency information would be leaked.

4.7 SUMMARY

In this chapter, an Enhanced One-to-Many OPE scheme is proposed and developed for

mapping a given plaintext score to a ciphertext value uniquely while preserving the

order of plaintext scores. Our experimental study confirms that the proposed scheme

reduces not only the frequency leakage of keywords but also the co-occurring key-

words. Reduction of frequency leakage mitigates the possibility of frequency analysis

attack. Thus, the proposed approach makes it difficult for the cloud server to infer the

plaintext keywords by observing the frequency leakage of encrypted relevance scores

of keywords in indexes. The proposed approach may prevent complete frequency leak-

age if it is used for encrypting information that is moderately distributed. Hence, the

proposed approach is recommended to use it for encrypting sensitive information that

is moderately distributed.
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CHAPTER 5

PREVENTION OF RANK-ORDER AND SEARCH
PATTERN LEAKAGES

5.1 INTRODUCTION

In Searchable Encryption (SE), there exists some other privacy concerns due to the gen-

eration of same trapdoor for the same query and also due to the retrieval of documents in

descending order based on their ranks for the given trapdoors. The rank-order informa-

tion and the search pattern leakage may enable the cloud server to infer plaintext key-

words of trapdoors, and documents through Rank-order exploitation attack and Scale

analysis attack. To prevent these leakages, the existing SE approaches like (Cao et al.

2014) add random keywords in both indexes and trapdoors and assign ranom values to

these random keywords. The addition of different random keywords in a trapdoor gen-

eration approach leads to the generation of different trapdoor for the same query. Thus,

search pattern leakage is prevented. However, addition of random keywords affect the

search accuracy, i.e., precision. since the cloud server returns few non-relevant docu-

ments as a response to these random keywords. Also, the existing approaches cannot

prevent the rank-order information leakage completely as the assignment of random

values to the random keywords in their indexes follow the standard deviation (σ) of

existing values of actual keywords. Due to which, the cloud server can still determine

rank-order information for some of the returned documents in those approaches. Thus,

they cannot prevent the rank-order exploitation attack. It has been found in the literature

that there exists no approach that achieves precision while preventing the leakages of
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5. Prevention of Rank-order and Search pattern leakages

both rank-order information and search pattern. Hence, there exists a need for a preci-

sion and privacy preserving multi-keyword search approach to address this issue. The

objective of this work is to guarantee the privacy of rank-order information and search

pattern without affecting precision.

Need for higher precision and privacy without affecting precision: The data users

who retrieve the documents of their interests through trapdoors expect that the cloud

server does not come to know about what they are searching (search pattern) and what

they are retrieving (rank-order information). Since the cloud server has access to search-

able indexes and also the trapdoors, which are processed by the cloud server itself, the

exposure of rank-order information and search pattern to the cloud server leads to the

Rank-order exploitation attack and Scale analysis attack respectively, which are ex-

plained in Section 1.3. These attacks enable the cloud server to infer plaintext infor-

mation of frequently issuing query keywords or the most occurring keywords of the

dataset. Hence, it is required to prevent both the leakages in order to ensure the re-

quired security. However, as security and precision contradict each other, i.e., precision

might be compromised to some extent if privacy is more preferred, and privacy would

be compromised if precision is more preferred. For example, to achieve higher preci-

sion, it is required to send top-k relevant documents to the users’ for their trapdoors.

But, the rank-order information would be leaked to the cloud server while sending the

documents. Thus, the privacy of rank information would be compromised while guar-

anteeing higher precision. Similarly, search pattern privacy can be prevented by adding

random keywords in a trapdoor generation approach, but precision would be affected

due to the random keywords. It has been observed from the literature review that achiev-

ing higher precision and privacy together using a single server would be impossible. But

both the data owners and users expect higher privacy as well as higher precision. In this

chapter, a pseudo-ranking approach is developed to prevent both the rank-order and the

search pattern leakages without affecting precision with the help of two servers, namely,

i.e., cloud server and the intermediate server.
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5.2. Preliminaries

This work contributes to the existing literature in the following ways:

• Proposing a Pseudo-Ranking approach to prevent the cloud server from the ex-

ploiting rank-order information and search pattern information without affecting

precision.

• A thorough analysis of the proposed approach with respect to the security and

efficiency .

The remainder of the chapter explained as follows: Section 5.2 presents the infor-

mation on preliminaries. Section 5.3 presents the problem statement and the proposed

approach proposed approach is presented in Section 5.4 . Section 5.5 presents the ex-

perimental study and analysis of the proposed approach. The summary of this chapter

is presented in Section 5.6.

5.2 PRELIMINARIES

Term Frequency-Inverse Document Frequency (TF-IDF): For returning relevant

documents, it is necessary to store keywords’ relevance scores in indexes. Keyword’s

score conveys the importance of the corresponding keywords in documents and the

dataset. Two measures are used frequently in literature, e.g., Term Frequency (TF) or

Term Frequency-Inverse Document Frequency (TF-IDF). Among all these measures,

we have used the TF-IDF measure in our approach for storing the relevance of keywords

in indexes since the TF-IDF measure is the most frequently used, and it balances the

impact of frequently occurring keywords and rarely occurring keywords. The TF-IDF

value of a keyword can be by obtained by multiplying TF and IDF values. TF value can

be obtained by counting the number of times the keyword kwi occurs in the document

Di and IDF value can be obtained by dividing the total number of documents (N ) in the

dataset with the document frequency of keyword dfkw. and The document frequency of

keyword dfkw is the number of document that contain given keyword kw. The TF-IDF

value of the keyword of a document Di be computed using (5.1).

TF − IDF (kw,Di) =
1

|Di|
(1 + log(TFi)) log(

N

dfkw
) (5.1)

where |Di| is the number of keywords present in the document Di.
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Enhanced One-to-Many OPE: We have used the proposed Enhanced One-to-Many

OPE scheme, which is explained in Section 4.4 for encrypting the TF-IDF values of

keywords. As it preserves the order of plaintext TF-IDF values after encryption, the

ranks of documents can be determined directly by a server from the encrypted TF-IDF

values.

Coordinate Matching: It is a similarity measure used to assign ranks, i.e., scores to

the documents based on the presence of query keywords in the documents. The rank

(or relevance score) of the document Di for the given query Qi, which consists of ’k’

keywords, is computed using (5.2).

Rank(Di, Qi) =
∑

1≤j≤k

TF − IDF (i, j) (5.2)

5.3 PROBLEM STATEMENT

For any given one or more trapdoors, it is required to return the top-k relevant doc-

uments to the users without leaking rank-order and search pattern information to the

cloud server. The aim of work presented in this chapter is to develop a Pseudo-Ranking

approach that preserves the privacy of rank-order information by assigning pseduo-

ranks to documents instead of actual ranks and it also preserves search pattern privacy

by adding more random keywords in a trapdoor generation approach. An intermediate

server has been adopted in the proposed approach to nullify the impact of added random

keywords of a trapdoor.

System Architecture: The system architecture shown in Figure 5.1 has been adopted

in our proposed Pseudo-Ranking approach to ensure both higher privacy and higher

precision. It consists of a Data owner, a set of Data users, the Cloud server (CS) and

the Intermediate server (IS). The activities performed by each of the entities involved in

this architecture is explained as follows:

• The data owner creates indexes for his/her documents based on plaintext informa-

tion and encrypts the indexes and then uploads them onto the CS. The data owner

also uploads the encrypted documents and the encrypted randomized indexes,

which contain information about only random keywords, onto the IS.
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Figure 5.1: Schematic view of the proposed system architecture

• The data users retrieve the documents by generating the trapdoors, i.e., the en-

crypted queries, which are then submitted to the cloud server. The data users also

send the encrypted random keywords of the trapdoor to the IS.

• The CS processes the trapdoor and then assigns the score to each document Id

based on the given trapdoor. The document identitiesDid’s along with their scores

are sent to the IS. The relevant documents will not be in the top-k of the list of

the documents sent by the CS.

• The IS based on the encrypted random keywords received from the user, deter-

mines the actual top-k relevant documents and sends them to the users.
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It is assumed that the keys required by the data users for generating trapdoors and

the random keywords to be added in a trapdoor are shared by the data owners through a

secure channel. It is also assumed that there exists no collusion between the IS and the

CS. S in the Figure 5.1 indicates scores of the returned documents and ∗ indicates the

relevance of the documents for the given trapdoor. More ∗ indicates the most relevant

the documents are.

5.4 PSEUDO-RANKING APPROACH

To retrieve the relevant documents for the given user’s trapdoors without compromising

privacy and precision, the proposed approach includes the following set of activities to

be done by a Data Owner, Data User, Cloud Server, and Intermediate Server respec-

tively.

5.4.1 Generation of Encrypted Indexes

The Data owner generates encrypted indexes and encrypted documents. The steps re-

quired to create the encrypted indexes for a given dataset are explained below.

i. Dictionary construction: Extract a unique set of keywordsKW = {kw1, kw2, ..., kwm}

from the data owner’s dataset by removing punctuation marks, case folding, stop-

words and applying lemmatization on each keyword of the dataset.

ii. Plaintext indexes: A set of indexes I = {I1, I2, ..., In} are generated, where each

index Ii is created for each document di in the dataset D = {d1, d2, ..., dn}. The

index of each document stores the following information:

– Each keyword kwi of the dictionary KW .

– Store the TF-IDF value for each keyword kwi that is determined using (5.1)

if it occurs in the document. Otherwise, set TF-IDF= 0.

iii. Randomized indexes: Generate a set of randomized indexesRI = (RI1, RI2, ..., RIn).

EachRIi corresponds to Ii in I . Each randomized index is generated by perform-

ing the following activities:
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5.4. Pseudo-Ranking Approach

– Determine the minimum min, maximum max TF-IDF values of index I

and determine their mid value as (min+max)
2

. Also, determine the average

score of the document Avg score(D) using TF-IDF values of actual key-

words of each document Di from index I .

– Generate a set of random keywords RKW = {rkw1, rkw2, ..., rkwm} that

is same in size as the size of dictionary D.

– Add these random keywords to each document in its index Ii and assign

the values to these random keywords based on document’s score, which is

explained as follows:

* for each document Di in dataset D, determine its score dscore(Di).

* For each random keyword rkw in random keyword set RKW , assign

random values to them uniquely as follows:

- If dscore(Di) >= Avg score(D), then assign values to these ran-

dom keywords uniformly in the range from min to (min+mid
3

)).

- Else, assign uniformly in the range from (mid+max
1.8

) to max.

iv. Encrypted randomized indexes: Generate the encrypted randomized index, ẼRI =

(ẼRI1, ẼRI2, ẼRI3, ..., ẼRIn), where each ẼRIi corresponds to RIi in RI .

The generation of each encrypted index R̃Ii is explained as follows:

– Each keyword in RIi is first hashed with the SHA-256 secure cryptographic

hash function and then the resultant hash value is then encrypted using the

below function f .

f : {0, 1}k × {0, 1}l → {0, 1}m (5.3)

where k, l, and m are equal in length. The first part in this equation repre-

sents a secret key parameter, the second part represents the hash value and

the output of f is a ciphertext value.

– Keywords’ relevance score, i.e., TF-IDF value is encrypted by using the

proposed Enhanced One-to-Many OPE scheme, which is explained in Sec-

tion 4.4.
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5. Prevention of Rank-order and Search pattern leakages

Once the encrypted indexes are generated, the data owner separates the encrypted ran-

dom keywords and the corresponding encrypted values of each index from ẼRI . The

data owner then also encrypts the documents using AES algorithm. The data owner then

uploads both the encrypted documents and the separated randomized indexes, which

contain only the encrypted random keywords with their values on to the intermediate

server and also uploads the main encrypted indexes ẼRI on to the cloud server. The

data owner also shares the entire random keyword set and the secret keys with the data

users via a secure channel to generate trapdoors and decrypt the retrieved documents.

5.4.2 Generation of Trapdoors

The data user is required to generate the trapdoor, i.e., an encrypted query to retrieve

documents of his/her interest. The generation of the trapdoor for user query is explained

as follows:

• The data user first randomizes his/her plaintext query by adding more number of

random keywords than the actual query keywords.

• Generates a trapdoor T̃Qkw
by encrypting each keyword of the randomized query

using both the SHA-256 hash function and the pseudo-random function (5.3).

The trapdoor T̃Qkw
is then sent to the cloud server. The data user also sends the

encrypted random keywords and the parameter ’k’ to the IS as shown in Fig-

ure 5.1. The parameter ’k’ is to request the IS to send only the top-k relevant

documents.

5.4.3 Retrieval of Top-k Relevant Documents

• Score assignment to the documents: Upon receiving a trapdoor T̃Qkw
, the cloud

server uses the encrypted index ẼRI and uses the coordinate matching similar-

ity measure (5.2) to assign scores to each document identity Did for the given

trapdoor. The document identities Did’s with their scores are sent to the IS in

descending order of scores.

• Determining top-k documents: The IS after receiving the Did’s and their corre-

sponding scores, uses the encrypted random keywords of the trapdoor (sent by
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the data user) and the encrypted indexes of random keywords to find out the top-k

relevant documents. This is explained as follows:

– The IS first determines the sum of encrypted TF-IDF values of the random

keywords of the trapdoor for each documentDi using the encrypted indexes,

which contains only the encrypted random keywords and their encrypted

random values.

– Subtracts the value of sum from each document’s score received from the

cloud server and updates the corresponding document’s score.

After the assignment of updated scores to each document, the IS then sorts the

documents based on newly assigned scores in decreasing order and sends the top-

k documents among them to the user. The data user finally decrypts the received

documents with the corresponding secret key shared by the data owner.

5.5 THEORETICAL AND SECURITY ANALYSIS

In this section, the time complexity, and security analysis of the proposed Pseudo-

Ranking approach are presented.

a) Time Complexity

The time complexity of the proposed Pseudo-Ranking approach is analyzed with respect

to the index construction, trapdoor generation and search time.

• Index construction: It is required to create an index for each document in the

dataset as forward indexing technique (per document indexing technique) is adopted

in this approach to enable updates of the indexes efficiently, i.e., for adding ran-

dom keywords in each document index. Time complexity of index construction is

(O(n(m+m
′
))), where n is number of documents in the dataset, m is the number

of actual keywords in the dictionary and m′ is the number of random keywords

added in the dictionary for each document index.

• Trapdoor generation: To retrieve the top-k relevant documents securely, the user

generates the trapdoor for his/her keywords of the query. Before generates trap-
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doors, he/she adds some random keywords to the list of his/her actual query

keywords. These keywords are then encrypted using SHA-256. and a pseudo-

random function. As the data user can issue any keywords of his/her interest and

can select any number of random keywords, the time complexity for generating

trapdoor is (O(m+m
′
)).

• Search time: Upon receiving a trapdoor, the cloud server processes the trapdoors

and assigns scores to the documents and sends them to the IS in decreasing

relevance order of the trapdoors. The IS then determines actual scores of the

documents by subtracting the sum of encrypted values of added random key-

words of trapdoor from the cloud server assigned scores. The IS then sort the

documents in descending order using updated scores and sends the top-k doc-

uments to the user. The average search time complexity of generic trapdoor

based approaches is O(nm+nlogn), and randomized trapdoor based approaches

is O(n(m + m
′
) + nlogn). The search time complexity of our approach is

O(nm
′
+ nlogn + n(m +m

′
) + nlogn), which is little higher than randomized

trapdoor based approaches due to the re-ordering operation at the IS.

b) Security

As two servers are involved in processing each user’s trapdoors for returning top-k

relevant documents, the proposed approach is assessed against the threats of the cloud

server and the intermediate server.

i) Privacy guarantee at the Cloud Server : The proposed approach prevents the

cloud server from the exploitation of available information, i.e., encrypted indexes,

which contains the encrypted information of actual and random keywords of the doc-

uments, and user’s trapdoors for inferring plaintext information by guaranteeing the

privacy of the following:

• Privacy of indexes: Each document’s index size is kept same in our proposed

approach so that the cloud server cannot distinguish the content of one document

index from another document index. The index of each document contains key-

words and their corresponding TF-IDF values. The keywords of indexes are en-
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crypted using both a secure SHA-256 and a pseudo-random function (5.3). Due

to the irreversible nature of one-way hash functions, it is computationally hard

for the cloud server to infer plaintext information from the hash values of query

keywords. However, as the hash functions are deterministic, keyword guessing

attacks are prone to occur on hash values. Hence, the hash values are further

encrypted in our approach using a pseudo-random function (5.3) to prevent the

keyword guessing attacks. The TF-IDF values are encrypted using the proposed

Enhanced One-to-Many OPE scheme Wang et al. (2012), which returns a pos-

sible unique ciphertext value for a given plaintext TF-IDF value. Due to this

scheme, the same ciphertext values would not be there in the uploaded indexes

irrespective of same plaintext TF-IDF values. Hence, the cloud server cannot

exploit frequency information Naveed et al. (2015) to infer the plaintext index

keywords from the encrypted TF-IDF values. Thus, the privacy of indexes is

preserved guaranteed.

• Privacy of trapdoors: The user’s trapdoor consists of actual query keywords and

random keywords. Like index keywords, the trapdoor is generated by encrypt-

ing each keyword using both an SHA-256 secure one-way hash function and a

pseudo-random function. Thus, the plaintext keywords of the trapdoors cannot

be inferred. The proposed Pseudo-Ranking approach guarantees search pattern

privacy since it generates different trapdoor for the same query due to the inclu-

sion of more random keywords while generating trapdoors.

• Rank privacy: In general, the cloud server gets to know which documents are

more important and which ones are not with the provision of ranking functional-

ity. This information allows the cloud server to infer possible plaintext informa-

tion from the rank-ordered documents through rank-order exploitation attack. In

the proposed approach, the cloud server does not come to know the actual ranks

of the documents due to the perturbed assignment of random values to the random

keywords in indexes.

ii) Privacy guarantee at the Intermediate Server (IS): This server holds random

indexes containing encrypted random keywords with the corresponding encrypted ran-
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dom values, encrypted documents uploaded by the data owner and the encrypted ran-

dom keywords of trapdoors sent by the data user and also the document Ids and their

scores sent by the cloud server. As the IS has access only to the encrypted information

related to random keywords, it cannot infer any other possible information about the

actual keywords of the trapdoors and indexes. It is explained in the following cases

about how the privacy of actual keywords of indexes and trapdoors can be guaranteed.

1. Top-k documents: The IS comes to know the rank-order information as it returns

the top-k documents to the users. However, as it has no access to the actual

keywords of the trapdoors and indexes, no other information can be inferred from

the rank order information alone. Without relating the rank-order information to

either trapdoors or indexes, it cannot infer any plaintext information.

2. Exploitation of access pattern: The IS returns top-k relevant documents to a user

in response to his/her trapdoors sent to the cloud server. The access pattern, i.e.,

sets of documents returned to the user’s trapdoors, is leaked to the IS. Various at-

tacks such as access pattern exploitation attack (Cash et al. 2015), volume attacks

(Grubbs et al. 2018) and database reconstruction attacks (Lacharité et al. 2018)

could be used to exploit the access pattern leakage to infer plaintext information.

However, the access pattern alone is not sufficient for these attacks to infer the

underlying plaintext information. The success of these attacks depends on both

the access pattern information and the knowledge of keywords’ distribution in-

formation. In our proposed approach, assume that the IS knows the keywords’

distribution knowledge of the databaset by guessing, but it cannot be exploited as

the IS cannot perform any analysis using this information because the encrypted

index of the actual dataset is stored at the cloud server and the IS has access to

the encrypted indexes only that contain encrypted random keywords and their en-

crypted random values. Similarly, the actual query keywords of randomized trap-

doors are sent to the cloud server, and the IS has access to the encrypted random

keywords of trapdoors. Therefore, the access pattern is leaked in our proposed

pseudo-ranking approach using two servers, but plaintext information cannot be

inferred from it.
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3. Possibility of collusion: It has already been mentioned in Section 5.1, that the

intermediate server and the cloud server in the the proposed System architecture

do not collude, but even if the intermediate server colludes with the cloud server,

still no information is revealed to them directly as they both have no access to

actual plaintext keywords information and the keys used for encrypting them.

5.6 EXPERIMENTAL STUDY AND ANALYSIS

In this section, implementation methodology, experimental results of the proposed ap-

proach, its efficiency, and usage are presented.

5.6.1 Implementaion Methodology

The proposed approach has been implemented using Python 3.6 version, and the exper-

iments are conducted on an instance of the Google Cloud Platform that has two virtual

CPUs with 12 GB RAM and 40GB Solid State Drive. We have used 1000 documents

of RFC (RFC 2016) dataset for testing the proposed approach. After preprocessing

these documents, i.e., removal of punctuation, and stopwords, a total of 20000 unique

keywords are included (10000 actual keywords of documents + 10000 random key-

words) in each document index. For evaluating the proposed approach, the evaluation

parameters such as rank privacy, i.e., the privacy of each returned document in the top-k

retrieved documents, precision, i.e., the fraction of the relevant results within the top-k

documents, search pattern, and the time of index construction and processing time, i.e.,

search operation of generic trapdoors and randomized trapdoors are considered.

5.6.2 Experimental Results

The performance details of the proposed pseudo-ranking approach with respect to pre-

cision and privacy are provided as follows:

Precision and Rank Privacy: The search results of a given trapdoor can be evaluated

using Precision and Rank privacy. The cloud server sends all the documents based on

their ranks (scores) in decreasing relevance order for the given trapdoor. Precision and

Rank privacy are evaluated for the top-k documents among the returned documents;

as these top-k documents only the users show interest. Precision at point k can be
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Figure 5.2: (a) Precision of top-k retrieved documents when 1000 documents are in-
dexed at the cloud server. (b) Ranking Privacy of top-k retrieved documents when 1000
documents are indexed at the cloud server.

evaluated as Pk =
k
′

k
, where k′ indicates the number of real relevant documents among

the retrieved top k documents. The precision of the proposed approach at the cloud

server is shown in Figure 5.2.a. The Gen. Trapdoor in this figure indicates a generic

trapdoor that contains only the data user’s query keywords while the Rand. Trapdoor

indicates a randomized trapdoor that includes both random keywords and actual query

keywords. Rand. Trapdoor contains a total of 100 keywords that includes 5 actual

query keywords and 95 random keywords. It can be observed in Figure 5.2.a that the

precision for randomized trapdoor is very less. The less precision at the cloud server

indicates less scope for information exploitation and thus, guarantees a higher scope for

achieving rank privacy. The rank privacy can be defined as the fraction of the number

of non-relevant documents within the top-k documents. It can be determined using

R̃Pk = k
′′

k
, where k′′ indicates the number of non-relevant documents within the k

documents. The more non-relevant documents within the top-k, the more rank privacy

it guarantees. Figure 5.2.b shows the rank privacy of the proposed approach at the cloud

server. As precision and rank privacy contradict with each other, privacy gets affected if

precision is high and vice versa. It can be observed in Figure 5.2.a that precision at the

cloud server is very low for the randomized trapdoor because of more random keywords

in trapdoor than the actual keywords. The more we add random keywords, the more the
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precision it gets affected. It can be observed in Figure 5.2.b that rank privacy at the

cloud server is very high (average of 96%) for the randomized trapdoor. Therefore, to

achieve higher rank privacy at the cloud server, it is required to include more number of

random keywords in a trapdoor than the actual number of query keywords and thereby

rank-order exploitation attack can be prevented entirely.

Among all the documents returned by the cloud server, the top-k of them cannot

satisfy the user requirements because they are not the actual relevant documents. This

is because of the assignment of higher random values (from min to min+mid
3

) or lower

values (mid+max
1.8

to max) to the random keywords in each document index based on

a document’s score. An intermediate server is employed to minimize the impact of

these random keywords’ values. This server has the encrypted indexes containing the

encrypted random keywords and their corresponding encrypted values sent by the data

owner and also the encrypted random keywords of the trapdoor sent by the data user.

This server then reassigns the documents’ scores, i.e., subtracts the sum of random

keywords’ weights from the scores of the documents sent by the cloud server. The in-

termediate server then sorts the documents in decreasing order based on updated scores

and sends the top-k to the user. Thus, the user information requirements can be fulfilled

without compromising precision using our proposed approach. The precision of the

top-k documents that the user receives for his/her trapdoor is shown in Figure 5.3.a. It

can be observed that precision at the user side is same (average of 91%) for both generic

trapdoor and randomized trapdoor. Therefore, the proposed approach achieves not only

higher rank privacy but also precision.

In general, the users go through only the top 10 documents instead of going through

all ’k’ returned documents like people generally do in Google search results. The pre-

cision and rank privacy of top-10 documents at the cloud server is shown in Figure

5.4.a and Figure 5.4.b respectively. It can be observed in Figure 5.4.b that rank privacy

is 100 % while the precision is zero for the randomized trapdoor at the cloud server.

Thus, for the randomized trapdoor, the cloud server cannot exploit the rank order infor-

mation from the returned documents. This is due to the presence of random keywords

in trapdoors and the random values assigned to these random keywords using the pro-
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Figure 5.3: (a) Precision of top-k retrieved documents at the user side when 1000 doc-
uments are indexed. (b) Precision of top-10 retrieved documents at the user side when
different number of documents are indexed.
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Figure 5.4: (a) Precision of top-10 documents when different number of documents are
indexed at the cloud server. (b) Ranking Privacy of top-10 documents when different
number of documents are indexed at the cloud server.

posed pseudo-ranking approach. The users expect higher precision beside privacy, the

precision of the proposed approach at the user’s side for top-10 documents is shown

in Figure 5.3.b. It is to be noted in this figure that the precision of top-10 documents

decreases from 100% to 90% over the index of 600 documents. This is due to the usage

of Enhanced One-to-Many OPE scheme, which maps the same plaintext TF-IDF value

to different ciphertext values. For example, the same plaintext values 2,2 of documents
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d1, d2 would be mapped to 1000,1400 respectively, due to which, the rank of d2 would

be higher than the rank of document d1. Therefore, the document d1 would not be in

top-10 documents. Thus, precision is slightly affected. Overall, the average precision

of our approach for a randomized trapdoor is 98%, which is same as the precision for

a generic trapdoor. The proposed approach achieves higher ranking privacy because of

the assignment of constrained random values to the random keywords in indexes and

allows the users to include more number of random keywords in trapdoors. Similarly,

higher precision is also achieved by the proposed approach due to the re-order operation

performed by the intermediate server.
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Figure 5.5: (a) Ranking Privacy of top-k retrieved documents. (b) Precision of top-k
retrieved documents.

Comparison with the existing approach: In general, the data users randomize the

trapdoors by adding random keywords to a list of actual keywords to prevent the leak-

age of the search pattern. The added random keywords affect the precision but al-

ter rank-order information of documents. Hence, the ranking privacy and precision of

the proposed Pseudo-Ranking approach are compared with the Xia et al.’s (Xia et al.

2016) multi-keyword ranked search approach for the randomized trapdoors. In Xia’s

approach, random values are assigned to random keywords in indexes using a uniform

distribution based on the σ value, i.e., the standard deviation of TF-IDF values of actual

keywords in the index of documents’ collection. This σ value is completely dependent

on the dataset. For the higher value of σ, random keywords would be assigned far apart
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values from the mean of actual values to assure higher rank privacy. For the lower σ,

random keywords would be assigned random values that are nearer to the mean to as-

sure higher precision. The rank privacy comparison of randomized trapdoors using the

proposed Pseudo-Ranking approach and the Xia’s approach with the σ value 0.05 is

shown in Figure 5.5.a. It can be observed that rank privacy of the proposed approach is

very higher than the Xia’s approach because of assigning random values to the random

keywords based on the individual document’s score. If the document’s score is higher

than the average score of the documents, then the random keywords would be assigned

values that are higher than the TF values of actual keywords of the document. Simi-

larly, if the document’s score is lesser than the average score of the documents, then

the random keywords would be assigned values that are lower than the TF values of

actual keywords of the document. This sort of assigning random values to random key-

words based on documents’ scores changes the actual ranks of the documents because

of which relevant documents become non-relevant ones and non-relevant documents

become relevant ones. Thus, the proposed pseudo-ranking approach achieves higher

rank-privacy (average of 96%).

The precision comparison of randomized trapdoors using the proposed Pseudo-

Ranking approach and the Xia’s approach is shown in Figure 5.5.b. The precision of

Xia’s approach is affected compared to the proposed approach as random values of ran-

dom keywords involve in determining the actual ranks of the documents for the given

trapdoors, which cause false positives. The proposed approach also achieves higher

precision (average of 91%) as the impact of random keywords’ values is nullified by

the intermediate server. Thus, the proposed Pseudo-Ranking approach assures both

higher rank privacy and higher precision for any trapdoor without sharing any secret

information with the intermediate server.

Search pattern privacy: It can be observed from the results in Figures 5.2.b, and

5.4.b that the randomized trapdoors achieve higher rank privacy than the generic trap-

doors. These trapdoors contain random keywords along with actual query keywords

due to which different trapdoor would be generated for the same query. In our ap-

proach, the search pattern leakage is prevented since the randomized trapdoor includes
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more number of random keywords than the number of actual query keywords. The ran-

domized trapdoor in the proposed approach consists of 5 actual query keywords and 95

random keywords. As these random keywords change each time, distinct trapdoors are

generated for the same query. Thus, leakage of search pattern is prevented, and resists

scale analysis attack successfully. The probability of the cloud server knowing whether

earlier trapdoors are related to the same query or not is 5/100, i.e., 0.05, which is very

low. This can be minimized further by adding more random keywords in trapdoors. In

our approach, the users are provisioned with more number of random keywords, i.e.,

(10000 keywords) for including them uniformly while generating trapdoors. Therefore,

the probability of repetition of the same random keywords for the same query is low.

Search pattern leakage is thus prevented and resists scale analysis attack.

Efficiency

The efficiency of the proposed Pseudo-Ranking approach is analyzed with respect to

the index construction and search time of the trapdoor.

• Index construction: The required time for constructing encrypted indexes is shown

in Figure 5.6. The index construction time includes the time for preprocessing

documents, i.e., removal of stopwords, constructing a dictionary, determining TF

values and their encryptions. It can be observed that index construction time is

linear to the number of documents in the dataset.

• Search time: Total searching time of the proposed approach for trapdoors with

and without random keywords in trapdoors is shown in Figure 5.7, which includes

the processing time of trapdoors at the cloud server and the intermediate server.

Processing time of trapdoors at the cloud server for initial scoring of documents

and at the intermediate server for re-assignment scores is shown in figures Figure

5.8 and Figure 5.9 respectively.

5.6.3 Usage of the proposed Pseudo-Ranking approach

The proposed Pseudo-Ranking approach is useful in all client-server applications, where

processing data is in encrypted form, and the server is not trustworthy, but complete pro-
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Figure 5.6: Total Searching time of trapdoors for retrieval of Top-10 documents over
different sizes of indexes.
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Figure 5.7: Processing time of trapdoors at cloud server for assigning initial scores to
documents.

tection of data is expected from the servers. Examples of applications include encrypted

search engines and banking applications, where customers’ bank account details need

to be protected from the administrators of the bank organizations.

The only problem with the proposed approach is that it requires two servers for

which the data owner has to pay the price for storing and managing his/her data. This

cost is minimal in the present day world due to a highly competitive price model where

services are offered at the lower price from various cloud service vendors.

5.7 SUMMARY

The proposed Pseudo-Ranking approach is aimed to prevent the cloud server from the

exploitation of rank-ordered information and the search pattern leakage information

without affecting the precision. The cloud server does not come to know the actual
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Figure 5.8: Processing time of re-assignment of scores to documents at intermediate
server.
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Figure 5.9: Index construction time for a different number of documents with a dictio-
nary,|W | = 20000.

ranks of the documents due to the presence of random keywords in trapdoors and the

perturbed assignment of random values to the random keywords in indexes. Hence, the

proposed approach preserves the privacy of both rank-order information as well as a

search pattern. The experimental results confirm that the proposed approach guarantees

high precision and higher privacy without affecting precision with the help of the in-

termediate server (IS). The role of IS in this approach is to nullify the impact of added

random keywords in a trapdoor and thereby determines the top-k relevant documents

without knowing any secret information and actual query. To guarantee both higher

precision and privacy, it is highly recommended to include more number of random

keywords than the number of query keywords while generating trapdoors.
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CHAPTER 6

A DYNAMIC INDEX STRUCTURE

6.1 INTRODUCTION

Cloud server uses the index structure to retrieve the relevant documents for a given

user trapdoor. But in reality, the documents that are stored at the cloud server may

get updated frequently by the data owner. In this case, the index structure must also

be updated to reflect these changes. In order to retrieve the latest relevant documents

for a given user trapdoor, an efficient index structure is required to accommodate the

updates. Hence, there is a requirement of an efficient index structure that supports

dynamic updates efficiently and also enables the retrieval of top-k relevant documents

efficiently for a given trapdoor. Tree-based indexing schemes are helpful in improving

the time complexity of performing dynamic updates and retrieval operation. Searchable

Encryption (SE) schemes use various tree-based index structures such as keyword red-

black (KRB) tree (Kamara and Papamanthou 2013), Privacy Bloom Filter (PB) based

tree (Li et al. 2014a), Indistinguishable Binary (IB) tree (Li and Liu 2017), Keyword

Balanced Binary (KBB) tree (Xia et al. 2016), and Virtual Binary (VB) tree (Wu and

Li 2019) techniques for supporting dynamic updates.

However, the major problem is that the time required for top-k documents retrieval

and for performing dynamic updates using these index structures are not optimal be-

cause of the large size of the tree structure. Therefore, there is a need for an efficient

index structure to address this issue. The objective of this work is to develop an index

structure that supports dynamic updates including Insert, Delete and Modify operations
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and also helps in retrieving top-k relevant documents efficiently.

There exists some privacy issues while incorporating the updates in index structure.

For example, performing a update operation (e.g., an addition of a new keyword) on

encrypted documents may leak the position of the added keyword in a dictionary. The

existing SE approaches (Fu et al. 2017) leak the potential positions of newly added

keywords. Using this information, the cloud server can infer plaintext information of

added keywords if index keywords of the documents are stored in lexicographical order.

Hence, there exists a need for a privacy preserving searchable index structure that leaks

no information regarding the positions of newly added keywords.

Need for an efficient index structure: The existing tree-based index structures such

as KRB tree, PB tree, IBF tree and VB tree-based approaches support only boolean

search but not ranked search. The KBB tree-based index supports ranked search, but it

visits many internal nodes while performing dynamic updates and processing trapdoors.

All these index structures are constructed either in a top-down or bottom-up fashion and

many internal nodes store information required for guiding the search not the actual

documents. Because of these, the size of the tree is higher in terms of height and

breadth and also involves visiting more number of nodes for retrieving top-k documents

for a given trapdoor. This greatly impacts the efficiency of search and update time.

Therefore, it is required to minimize the size of the tree as well traversing time involved.

Hence, a max-heap based binary tree index structure is developed to address this issue.

Need for a secure keyword dictionary expansion approach: Addition of new key-

words to the already existing dictionary requires the re-creation of unencrypted index

followed by re-encryption of the entire index. This incurs a huge cost because of re-

encrypting the whole index. In order to reduce the re-encryption time, we use par-

titioned matrices concept (Li et al. 2014b). When new keywords are added to the

existing index, the existing SE schemes (Fu et al. 2017; Li et al. 2014b) leak the

newly added keywords’ positions to the cloud server. This privacy breach leaks the

information regarding the newly added keywords to the cloud server. To minimize this

leakage, a secure keyword dictionary expansion approach is required such that the cloud
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server should not come to know the locations of the newly added keywords when new

keywords are added.

This work contributes to the existing literature in the following ways:

• Proposing an efficient Max-heap based Binary Tree index structure for supporting

dynamic updates.

• Proposing a Privacy Preserving Keyword Dictionary Expansion approach for adding

new keywords securely to the existing dictionary.

• Performing security analysis of the proposed approaches.

The rest of the chapter is explained as follows: Section 6.2 presents the information

on preliminaries. Section 6.3 presents the problem statement and the proposed approach

is presented in Section 6.4. Section 6.5 presents the experimental study and analysis of

the proposed approach. The summary of this chapter is presented in Section 6.6.

6.2 PRELIMINARIES

The proposed work includes the below notations that are used throughout this chapter.

Vector Space Model: The proposed index structure uses vector space model in which

both documents and queries are represented as vectors. Since the proposed index struc-

ture supports dynamic updates, any update on a single document may change the IDF

values of many documents if TF-IDF values are stored as the keywords’ relevance

scores in existing indexes. To avoid this, both TF and IDF values of keywords are

separated and stored in the document and query vectors respectively as shown below:

Document vector: Each document is represented as a sequence of TF values of each

keyword of the dictionary present in the document. The vector information would be

used as an index information of the document.

Query vector: Each query is represented as a sequence of IDF values of dictionary’s

keywords present in the query. The size of both the query and document vectors should

be the same.

121



6. A Dynamic Index Structure

Notation Description
D — The input document collection, denoted as a set of n docu-

ments D = (D1, D2, ..., Dn).
W — The distinct keywords extracted from D, denoted as set of

m keywords W = (kw1, kw2, ..., kwm).
n — The total number of documents of the input dataset D.

m — The total number of keywords of the dictionary W .

TFkwj ,Di
— The Term Frequency of keyword kwj in document Di.

IDFkwj ,W — The Inverse Document Frequency of keyword kwj of dic-
tionary Wi.

I — The plaintext index generated from documents D.

I
′ — Encrypted index to be outsourced, which is constructed

from I .
C — The encrypted document collection to be outsourced,

denoted as the set of ciphertext documents C =
(C1, C2, C3, ..., Cn). Each Ci corresponds to Di in D.

TFV ector — The vector of TF values of each keyword of the dictionary
present in Di.

MaxV ector — AMaxV ector of parent node consists of maximum TF val-
ues from the left and right child nodes’ TF values.

TD — The trapdoor, which is encrypted Query vector consists of
encrypted IDF values of query keywords

QueueNodesList — It contains a list of nodes added while constructing max-
heap tree in a level order form.

MaxV ectorList — It contains of list of identities of the nodes and the corre-
sponding encrypted MaxV ectors.

Secure inner product similarity operation: A secure k-nearest neighbor algorithm

is used to compute the relevance score of the document without conveying plaintext

information of document and query vectors to the cloud server. It involves the follow-

ing processes to determine the relevance scores of the document securely for a given

trapdoor.

• Key generation: A secret key SK is generated that consists of a random bit vector

and two symmetric invertible matrices, i.e., SK = {S, M1, M2}, where the size of

S should be same as the size of dictionary (e.g., m keywords) and the size of both

matrices M1 and M2 should also be (m x m).
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• Encrypting document vector: It involves splitting the document vector into two

parts based on a random vector S and then encrypt each part by multiplying with

the invertible matrices M1 and M2, respectively. The index of encrypted docu-

ment vector would then be generated as I′Di={I′D1 , I′′D2} = {D′1M1T, D′′2M2T}.

• Encrypting Query Vector: It also involves splitting the query vector into two

parts based on the random bit vector S and then encrypt each part by multiplying

with the inverses of the invertible matrices M−1
1 and M−1

2 , respectively. For a

given query Q, the trapdoor TD, i.e., the encrypted query vector would then be

generated as {TD′, TD′′} = {Q′M1-1, Q′′M2-1}

• Determining relevance score: The description of determining the relevance score

of a document D using the encrypted document vector I′Di and the trapdoor TD

is provided below.

RScore(IDi.TD) = I′D1.TD
′ + I′′D2.TD

′′

= (M1
T.D′1).(M1

-1.Q′) + (M2
T.D′′2).(M2

-1.Q′′)

= D′1.Q
′ + D′′2.Q

′′

= D.Q

= RScore(D,Q)

For any given document vector Di of TF values and a query vector Q of IDF

values, the relevance score (rank) of a document can be determined as

RScore(Di, Q) =
∑

1≤i≤m

TFDi
∗ IDFQi

(6.1)

where, m indicates the length of the dictionary.

6.3 PROBLEM STATEMENT

An efficient index structure is required to return the latest top-k relevant documents

efficiently for a given trapdoor. To return the latest relevant documents, the index struc-

ture is required to accommodate the dynamic updates, i.e., Insert, Delete and Update

operations efficiently and securely over encrypted documents.
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Figure 6.1: System architecture for performing dynamic updates.

System Architecture: This work adopts the system architecture shown in Figure 6.1

to test the efficiency of the proposed index structure for retrieving top-k relevant doc-

uments. In this approach, the data owner uploads the encrypted index onto the cloud

server and keeps the plaintext version of the index with him for performing dynamic up-

dates. The data owner can later perform the dynamic updates efficiently in an already

existing index. The data owner then shares the secret keys and also the IDF values of

the keywords of the dictionary with the data users. The data users then sends the trap-

door, which consists of encrypted IDF values of query keywords to the cloud server.

The cloud server then retrieves the latest top-k relevant documents efficiently using the

above index and sends them to the users, who decrypt them with the corresponding

secret keys.

6.4 MAX-HEAP BASED BINARY TREE INDEX

This section explains the proposed Max-heap based Binary Tree index structure. This

structure uses the properties of both Max-heap based binary tree and Keyword Balanced

Binary (KBB) tree. The KBB tree helps in searching for relevant documents for a given

trapdoor using greedy depth first search approach, while max heap based binary tree

helps in constructing the tree index with minimum height and breadth. Three major

steps such as index construction, retrieving top-k relevant documents and performing

dynamic updates, are involved in retrieving top-k relevant documents efficiently while
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Figure 6.2: Max-heap based Searchable Tree Index.

supporting dynamic updates using the max-heap based binary tree index structure. Each

of the steps are explained in the subsequent subsections.

6.4.1 Index construction

The data owner is required to generate an index for all the documents of the dataset D.

First, plaintext tree index is created and then the content present in each node of the

tree is encrypted. The procedure for constructing the plaintext tree index is explained

as follows:

i) Generating plaintext tree index: A separate node u is created for each document

Di of the dataset D, which is represented in the following form.

u = <id(u), id(Di), TFV ector,MaxV ector,DiScore, Pl, Pr, Pp>

where, id(u) is the identity of the node that is useful while performing dynamic updates,

id(Di), the identity of the document Di, TFV ector the vector of TF values of each

keyword of the dictionary present in Di, MaxV ector the vector of the maximum TF

values of left and right child nodes’ TF values, DiScore the score of the document Di
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that is determined by summing all the values of TFV ector, the pointers Pl points to

left child node, Pr points to right child, PP points to a parent node.

Initially the MaxV ector is same as TFV ector but gets updated as the number of

nodes in tree index get added. After the index construction, MaxV ector of leaf node

is same as TFV ector, the PP of root node points to NULL value and the pointers Pl

and Pl are set to NULL for all the leaf nodes. Once the nodes for all the documents

are created, the construction of the max-heap based binary tree index is initiated based

on the total scores of the documents. The first node is considered as a root node of

the tree initially, then it picks the next node and is inserted at a next available location

in a level order fashion starting from left to right. After the insertion of a new node,

heapify property (total document score of a parent node must be higher or equal to

their left and right child nodes’ scores.) is maintained. As new nodes are incorporated

into an existing tree, the heapify property may be affected, i.e., the total score of the

parent nodes would not be greater than or equal to the total scores of the child nodes.

Therefore, it is required to call the heapify procedure at the newly inserted node to

maintain the heapify property. Thus, the plaintext version of the proposed Max-heap

based binary tree index is created. The plaintext version of the proposed max-heap

based KBB tree indexing for seven documents is shown in Figure 6.2. The complete

procedure for constructing the proposed Max-heap based KBB tree index is given in

Algorithm 5. This algorithm takes the input the documents of the given dataset D and

returns the max-heap index tree T . The procedure for heapifying tree starting from the

newly inserted node till the root node in an upward direction is provided in Algorithm

6.

ii) Encrypting the content of the plaintext tree index: After the generation of the

plaintext tree index, the data owner then encrypts the content in each node of the tree

index, i.e., TFV ector, MaxV ector, DiScore. This information in each node of the

proposed tree index is encrypted with the 3-step procedure given below.

• Setup: It involves generating secret key that is required for encrypting the content

of the nodes. An m-bit secret random binary vector S and two symmetric random
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Algorithm 5: Max-heap based Binary Tree Index
Input: D, the input document collection, denoted as a set of n documents

D = (D1, D2, ..., Dn).
Output: The max-heap based binary tree index T .

1 for each document Di in D do
2 create a node u with the pointers set to u.Cleft=u.Cright=u.P=Null,

u.Id=Generate Id(Di), TFV ector(Di)=TFDi,wj
, and

MaxV ector(Di)=TFDi,wj
, Dscore=sum(TFDi,wj

) for j=1,2,3,...,m of
dictionary W .

3 Insert node u to TreeNodesList

4 Delete the first node from TreeNodesList, then make it as a root and append
it to the QueueNodesList.

5 while number of nodes in TreeNodesList is not NULL do
6 Delete a node from QueueNodesList, which will act as a current parent

node.
7 if Number of nodes in TreeNodesList ≥ 2 then
8 Extract the first two nodes of TreeNodesList and add them as left and

right child nodes to the current parent node, i.e.,
parent.left=parent.right=parent and also assign parent to the left
and right child nodes, i.e., left.parent = right.parent = P .

9 Call Heapify Upward() procedure on parent node based on Discore.

10 else
11 Extract a node from TreeNodesList and add it as either left or right

child to the parent.
12 Append it to the QueueNodesList
13 Call Heapify Upward() on parent node based on Discore.

14 return root

invertible matrices M1 and M2 of size m × m are created, where m is the cardinality

of the dictionary. Secret key SK is set as SK = {S, M1T and M2T}.

• Encrypting the vectors at node u: The node u of the tree contains two vectors

TFV ector and MaxV ector that are having the same size m as the size of the

dictionary. Each of the vectors are encrypted as follows:

The TFV ector at node u in the tree index is split into two random vectors DuTF′,

DuTF′′, which are generated based on the secret vector S, i.e., if S[i] = 0 then

D′uTF[i] = D′′uTF[i] = DuTF[i]. Otherwise, if S[i] = 1 then D′uTF[i] =

b, where b is any random number such that b ∈ (0, DuTF[i]), D′′uTF[i] =

(DuTF[i] - D′uTF[i]). The split vectors D′uTF and D′′uTF are then encrypted by
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Algorithm 6: Heapifying Upward(parent)
Input: parent, Tree T
Output: Heapfied Tree T

1 if parent==Null then
2 return
3 else
4 if parent has both the childs then
5 if leftchild.Discore > rightchild.Discore
6 and leftchild.Discore > parent.Discore then
7 Swap the content, i.e., (TFV ector(Di),Discore, and id(Di)) of left

child with parent node’s content and update the parent’s
MaxV ector[j]=
Max(leftchild.TFV ector[j],rightchild.TFV ector[j]), for all
j=1,2,3,...,m of dictionary W .

8 Heapifying Upward(parent of parent)

9 else
10 if rightchild.Discore >leftchild.Discore and
11 rightchild.Discore > parent.Discore then
12 Swap the content, i.e., (TFV ector(Di),Discore, and id(Di)) of

right child with parent node’s content and update the parent’s
MaxV ector[j]=
Max(leftchild.TFV ector[j],rightchild.TFV ector[j]), for all
j=1,2,3,...,m of dictionary W .

13 Heapifying Upward(parent of parent)

14 else
15 Only one child exists, i.e., parent has either left or right child.
16 if child’s Discore > parent.Discore then
17 Swap the content, i.e., (TFV ector(Di),Discore, and id(Di)) of

child node with the parent node’s content and update the parent’s
MaxV ector[j]= child.TFV ector

18 Heapifying Upward(parent of parent)

19 return Heapfied Tree T

multiplying D′uTF and D′′uTF with the transposes of random invertible matrices

M1T and M2T. The encrypted TF vectors after splitting the TFVector into two parts

at index node u would then be IuTF={I′uTF, I′′uTF} = {D′uTFM1T, D′′uTFM2T}.

Similarly, the MaxV ector at node u is encrypted in the same way as TFV ector

is encrypted. TheMaxV ector at node u in the tree index is split into two random
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vectors DuMax′, DuMax′′, which are generated based on the secret vector S, i.e., if

S[i] = 0 then D′uMax[i] = D′′uMax[i] = DuMax[i]. Otherwise, if S[i] = 1

then D′uMax[i] = b, where b is any random number such that b ∈ (0, DuMax[i]),

D′′uMax[i] = (DuMax[i] - D′uMax[i]). The split vectors D′uMax and D′′uMax are

encrypted by multiplying D′uMax and D′′uMax with the transposes of the random

invertible matrices M1T and M2T. The encrypted Max vectors after splitting the

MaxV ector into two parts at index node u would then be {I′uMax, I′′uMax} =

{D′uMaxM1T, D′′uMaxM2T}.

• Encrypting the score of the document at the node u: The score of the document

Di is encrypted using the proposed Enhanced One-to-Many OPE scheme. This

scheme takes the input id(Di), score and NULL value as the input and returns

ciphertext score. As this scheme preserves the order of the plaintext scores, the

cloud server can heapify the tree index based on the encrypted scores.

After encrypting the content in each node of the tree index, the data owner then encrypts

all the documents of the dataset using the AES algorithm. The data owner then uploads

both the tree index in encrypted form and the encrypted documents C onto the cloud

server.

6.4.2 Retrieval of Top-k relevant documents

Retrieving top-k relevant documents for a given trapdoor includes two processes:

i) trapdoor generation and ii) searching. Each of them are explained below:

i) Trapdoor Generation: The data user first represents his query in a query vector Q,

which consists of a sequence of IDF values of query keywords. The size of the query

vector should be same as the size of the dictionary in order to determine the score of

the documents correctly using the secure inner product operation. Therefore, the query

vector may include some random values along with the IDF values of actual query

keywords. The query vector is then encrypted in the same way as the TF and MAX

vectors are encrypted. The query vector, i.e., the IDF vector, is split into two random

vectors Q′ and Q′′, which are generated based on the same secret vector S, i.e., if S[i]
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= 1 then Q′[i] = Q′′[i] = Q[i]. Otherwise, if S[i] = 0 then Q′[i] = b, where

b is any random number such that b ∈ (0, Q[i]), Q′′[i] = (Q[i] - Q′[i]). The

split query vectors Q′ and Q′′ are encrypted by multiplying them with the inverses of

random invertible matrices M1-1 and M2-1. The trapdoor, i.e., encrypted query vectors

after splitting the query vector into two parts would then be, TD={TD′, TD′′} = {Q′M1-1,

Q′′M2-1}. The data user then sends the trapdoor to the cloud server.

ii) Searching: Upon receiving the given trapdoor, the cloud server processes it to de-

termine relevant documents efficiently using the proposed max-heap based index struc-

ture. The search procedure for determining top-k relevant documents for a given trap-

door, is given in Algorithm 7. The search procedure starts from the root node to leaf

nodes in downward direction until the top-k relevant documents are determined. It uses

the greedy depth first search approach to determine the top-k relevant documents effi-

ciently without visiting all the nodes of the tree index. While searching at each node u

of the tree index structure, two scores are determined, i.e., relevance score of the docu-

ment D and the maxscore of a node u. The determination of the two scores at node u

based on its vectors, i.e., encrypted TFV ector and MaxV ector is given below.

The relevance score of a document at index node Iu is obtained by applying secure

inner product similarity measure between the node’s encrypted TFvector and trapdoor

vector TD. This relevance score is equal to the plaintext score that is obtained by

applying inner product operation on the plaintext TFvector and the query vector Q,

which is shown below:

IuTF.TD = I′uTF.TD
′ + I′′uTF.TD

′′

= (M1
T.D′uTF).(M1

-1.Q′) + (M2
T.D′′uTF).(M2

-1.Q′′)

= D′uTF.Q
′ + D′′uTF.Q

′′

= D.Q

= RScore(D,Q).

Similarly, the maxscore at node u can be obtained by applying secure inner product
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similarity measure between trapdoor vector TD and encrypted Maxvector.

IuMax.TD = I′uMax.TD
′ + I′′uMax.TD

′′

= (M1
T.D′uMax).(M1

-1.Q′) + (M2
T.D′′uMax).(M2

-1.Q′′)

= D′uMax.Q
′ + D′′uMax.Q

′′

= DuMax.Q

= RScore(DuMax,Q).

After both the scores are determined at node u, the score of the document along with
its identity id(Di) is added to the top-k list only if it is greater than the kth score of

the document. The kth score in the top-k list is initially set to be 0. The searching

continues either in the left subtree or in the right subtree based on the maxscore of the

child nodes. At any node u, if its document’s relevance score is greater than the kth

score in the top-k list, then it replaces the kth score element in the top-k list with a

determined relevance score. It continues searching recursively till the top-k relevant

documents are determined. It stops searching when the maxscore determined node u

is not greater than the kth score of the document. At this node, it checks whether the

document’s score of this node is greater than the kth score; if so, replace it with this

document; otherwise, it stops searching from this node. The cloud server then finally

returns the top-k relevant documents to the users.

6.4.3 Dynamic Updates

Besides retrieving the top-k relevant documents efficiently, the proposed index structure

also supports Insert, Delete and Modify operations efficiently over the encrypted docu-

ments. The description of incorporating the updated information in an already existing

max-heap based KBB tree index is explained below.

i) Insertion of new documents: When a set of new documents are to be inserted,

it is required to update the existing tree index by accommodating the updated index

information of newly added documents. The data owner first creates a separate node

containing plaintext information for each of the new documents as explained in Section

6.4.1. Each node contains id(Di), TFV ector,MaxV ector,DiScore, Pl, Pr, Pp, where

id(Di) is the identity of document (document name), TFV ector is a vector which
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Algorithm 7: GDFS(MaxTreeNode node)
Input: root
Output: Top k List

1 if root==Null then
2 return
3 else
4 Determine the relevance score rscore at root node using TFV ector(Di)

and then add both the Dscore and its document identity id(Di) to the
Top k List.

5 Also, determine maxscore using MaxV ector of root node.
6 if maxscore > kthscore then
7 Determine left child’s maxscore using MaxV ector of left child and

also determine right child’s maxscore using MaxV ector of right
child

8 Consider the Maximum score of child, then determine Discore using
its TFV ector

9 if number of elements in Top k List ≤ K then
10 Add its identity id(Di) and Discore to the Top k List.

11 else
12 Replace the element at kth position in the Top k List with the

child’s Discore and its identity id(Di).
13 Sort the elements of Top k List in descending order using Discore.

14 GDFS(maxScore of child)
15 GDFS(Other child node)

16 else
17 return

18 return Top k List

consists of TF values of each keyword of the document, MaxV ector is determined

with the help of plaintext version of max-heap based binary tree and it consists of the

maximum TF values that are determined from the maximum of left and right child

nodes’ TF values, DiScore is a score of the document that is determined by adding

all the values of TFV ector, the pointers Pl, Pr, and PP are set to Null. Once the

plaintext information of TFV ector, MaxV ector and DiScore are ready for each node

of the new documents, the data owner then encrypts the content present in each node,

i.e., TFV ector, MaxV ector by using two randomized invertible matrices, and the

DiScore by using Enhanced One-to-Many OPE scheme. Then, data owner sends the

nodes containing the encrypted information related to newly inserted documents to the
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cloud server. The data owner also encrypts the newly added documents using the AES

algorithm and sends them onto the cloud server.

Algorithm 8: Heapifying Downward
Input: Replaced Node RN , Tree T
Output: Heapified tree T

1 if RN==Null then
2 return
3 else
4 if RN has both childes then
5 if leftchild.Discore > rightchild.Discore and
6 leftchild.Discore > RN.Discore then
7 Swap the content of RN node, i.e., id(Di),TFArray,Discore with

the content of leftchildnode.
8 Then update the MaxV ector of replaced node, i.e.,

RN.MaxV ector=
Max(leftchildnode.TFV ector[j],rightchildnode.TFV ector[j]),
for all j=1,2,3,...,m of dictionary W .

9 Heapify Downward(RN.left)

10 else
11 if rightchild.Discore > leftchild.Discore and
12 rightchildnode.Discore > RN.Discore then
13 Swap the content of RN node, i.e., id(Di),TFArray,Discore

with the content of rightchildnode.
14 Then update the MaxV ector of RN, i.e., RN.MaxV ector=

Max(leftchildnode.TFV ector[j],rightchildnode.TFV ector[j])
for all j=1,2,3,...,m of dictionary W .

15 Heapify Downward(RN.right)

16 else
17 RN has only one child, i.e., either or left or right child.
18 if childnode.Discore > RN.Discore then
19 Swap the content of RN node, i.e., id(Di),TFArray,Discore with

the content of childnode.
20 Then update the MaxV ector of RN, i.e.,

RN.MaxV ector=childnode.TFV ector
21 Heapify Downward(RN.childnode)

22 return

The cloud server then stores each of the received nodes at an appropriate positions

with the help of QueueNodeslist given in an Algorithm 5, which always point to loca-
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tion where the new nodes are to be incorporated. After the accommodation of each new

node, the heapify property may get affected and therefore, it is required maintain the

heapify property based on Discore of the new inserted node. The procedure for heapi-

fying the plaintext max-heap based tree index starting from the parent of the newly

inserted node till the root node of the tree is provided in Algorithm 6.

ii) Deletion of existing documents: To delete a set of documents, the data owner

is required to send the list of document identities to the cloud server that are to be

deleted from an existing tree index. The cloud server then deletes the nodes that contain

these document identities from an existing tree index and then deletes corresponding

encrypted documents. In max-heap based tree index, deletion of intended node is to be

replaced by the last node of the existing tree index. Therefore, deletion of each node

in a max-heap tree index affects the max heap property after the replacement at the

deleted node. Hence, it is required to heapify the updated tree index at the deleted node

till the leaf node in a downward direction. The procedure for heapifying the plaintext

max-heap based tree index after deleting and replacing it with a last node of the tree is

provided in Algorithm 8.

iii) Modification of existing documents: While performing modify operation on any

existing document, it is highly desirable to incorporate only the updated part of the doc-

ument in an already existing indexes instead of re-generating the entire index of this

document. For example, when a document is modified, i.e., a set of new keywords are

added to a document, then it is required to update only this part in an already existing

index without regenerating the entire index. The modification of a document required to

include a set of newly added keywords into an already existing dictionary securely and

call the heapify proedure. But, there exists a privacy problem when any new keywords

are added to the existing dictionary. As the keywords in dictionary are stored in lexico-

graphical order, any leakage of the locations of newly added keywords allows the cloud

server to infer plaintext information. Hence, it is required to prevent the cloud server

from knowing the actual locations in order to prevent it from inferring added keywords.

To address this issue, a privacy preserving keyword dictionary expansion approach is

proposed, which is explained in the below subsection.
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6.4.3.1 Secure Keyword Dictionary Expansion Approach

It is aimed to prevent the leakage of the actual location of the newly added keyword

to the cloud server. The proposed privacy preserving keyword dictionary expansion

approach is shown in Figure 6.3 for preserving the privacy of the location of newly

added keyword. It shows that there exists already some original keywords (m+m’),

where m is length of the dictionary and m’ is number of dummy keywords added to

ensure that the size of each document’s index is same. The picture depicts the dictionary

expansion when a new genuine keyword is added along with y-1 dummy keywords to

the list of already existing keywords (m+m’). In this approach, a set of (y-1) dummy

keywords are added along with the genuine keyword, where y is a positive integer which

is varied randomly every time we add a new keyword. Even the position of the genuine

keyword is varied during every addition. Let x <(y-1) be the number of dummy

keywords ahead of the genuine keyword. This adds randomness in the newly added

keywords to the dictionary that greatly reduces the probability of finding the position of

the newly added genuine keyword.

For the newly added keyword, the actual TF value would be assigned in the cor-

responding document vector, but it is required to assign random values to the added

random keywords in that vector. To store the TF value of actual keyword and the ran-

dom values of random keywords in an already existing document vector, it is required to

extend the document vector Du corresponding to node u in the proposed tree index from

m+m’ to (m + y) as shown in the Figure 6.3. After extending the document vector, it

is required to encrypt only the index information of the newly added keywords instead

of re-encrypting the whole document’s vector.

Encrypting the extended document vector of newly added keywords without re-

encryption: In general, addition of new keywords to the already existing dictionary

requires the re-creation of unencrypted index tree followed by the re-encryption of the

entire content in each node of tree. This incurs a huge cost because of the generation

of new invertible random matrices of new size. In order to reduce the re-encryption

time, we use partitioned matrices concept proposed by (Li et al. 2014b). Partitioned
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Figure 6.3: Keyword Dictionary Expansion

matrices help in incorporating the new values of added keywords in an already existing

document’s vector without re-encrypting the whole document vector.

To encrypt only the extended vector, the secret key Sk = {S,M1,M2} is required to

be extended, where the S is a inital random bit vector, matrices M1 and M2 correspond

to the initial invertible matrices that are suitable for encrypting the documents’ vectors

before modification, but not after the addition of new keywords. Hence, the random bit

vector and the matrices are extended as shown below so that the resulting matrices can

be used to encrypt only the extended vector information of newly added keywords.

S=SSnew, where Snew is the extended random bit vector, whose length is equal to the

new of newly added keywords (y), and the extended matrices are given below.

M′1T =

M1T 0

0 MyT

 M′2T =

M2T 0

0 M′yT


The transpose of newly created matrices M′1 and M′2 can be used for encrypting the new

document’s vectors and the matrices MyT, M′yT can be used for encrypting the extended

document vector. After encrypting only the extended document vector, incorporate the

same in the corresponding node u of the proposed indexing tree.

Heapifying after the modification of documents: The modify operation on any of

the existing documents may change their scores after incorporating the extended doc-

ument vector at a node u of the max-heap tree. Hence, it is required to keep maintain

the heapify property of the proposed max-heap based KBB tree based on the updated

document scoreDiscore. The procedure for heapifying the tree starting at a node u after
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incorporating the index information of modified document is provided in Algorithm 6.

This heapify procedure is called recursively in upward direction till the root of the node

to maintain the heapify property.

Retrieving relevant documents after modifying the documents: The length of

the document’s vector and query vector should be same for determining the relevance

score of the document correctly. With the incorporation of vector information of newly

added keywords, the length of document vector is extended. Hence, the query vector

also should be extended in order to perform the vector product operation correctly. The

extended query vector can contain any IDF value of other query keywords or random

values of random keywords. Then, the inverses of the invertible matrices can be used to

encrypt the new query vectors, which are given below.

M′1-1 =

M1-1 0

0 My-1

 M′2-1 =

M2-1 0

0 M′y-1


The extended inverses of the invertible matrices can be used to encrypt only the

extended query vector without re-encrypting the whole query vector. This encrypted

query vector after extension, i.e., the trapdoor can be sent to the cloud server, which de-

termines the scores of the documents using the secure inner product similarity measure

and sends the top-k relevant documents among them to the users.

6.5 THEORETICAL AND SECURITY ANALYSIS

In this section, time complexity, and security analysis of the proposed max-heap based

tree index are presented.

a) Time Complexity

The time complexity of the proposed Max-heap based tree index is analyzed with re-

spect to the index construction, search and dynamic updates.

Index construction: Each node in the proposed tree consists of a TF vector, which is

encrypted by using two invertible matrices of size m ×m and a Max vector, which is

also encrypted by using the same two invertible and Dscore, which is a document score

137



6. A Dynamic Index Structure

encrypted by using the proposed Enhanced one-to-Many OPE scheme. Therefore, the

total time complexity of index construction using the proposed Max-heap based tree

index structure is O(nm2), where n is the number of documents in the dataset and m is

the number of unique keywords in the dictionary of the dataset.

Search: The time complexity of searching for top-k relevant documents using the pro-

posed max-heap based tree index isO(mlogn), which is lesser than the time complexity

of searching using the KBB tree index is O(mlogn+m).

Dynamic updates: The time complexity of performing any dynamic update operation

(Insert, Delete and Modify) over existing encrypted index using the proposed tree index

structure isO(m2logn). As each node in the proposed tree index represents a document,

the time complexity for any update is O(m2logn). Where as in KBB tree, only the leaf

nodes represent the documents because of which all nodes along the path from the root

node to leaf node must be visited for performing any dynamic update operation. The

time complexity of performing each dynamic update using KBB tree index structure is

O(m2logn+m). Thus, proposed index structure is efficient.

b) Security

The objective of the proposed max-heap based tree index structure is to retrieve the top-

k relevant documents efficiently for a given trapdoor while supporting dynamic updates.

In this approach, both the content of indexes and queries are represented in vectors and

then encrypted using two randomized symmetric invertible matrices. As the matrices

are randomly generated and each element of the matrices are random, the privacy of

indexes and queries is guaranteed since they are not accessible to the cloud server. The

privacy of dynamic updates with respect to Insert, Delete and Modify operations over

encrypted documents is explained below.

Privacy of incorporating newly inserted documents: To incorporate the index in-

formation of new documents in an already existing tree index, the data owner needs

to communicate nodes corresponding to these new documents and each node contains

encrypted information, i.e., encrypted TFV ector, MaxV ector,Dscore and the point-
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ers Pl, Pr, Pp set to addresses of corresponding parent and child nodes based on the

plaintext tree index. The data owner also communicates MaxV ectorList along with

the nodes. The MaxV ectorList contains of list of identities of the nodes and the

corresponding encrypted MaxV ectors. The MaxV ectorList is useful for updating

the MaxV ector at the corresponding nodes after inserting the new nodes. The cloud

server then stores these nodes at appropriate positions in an already existing tree index

and calls the heapify procedure at each new node based on the encryptedDscores. Since

the cloud server does not have any access to plaintext information while incorporating

indexes of newly inserted documents, the cloud server cannot infer any information

while incorporating index information of newly inserted documents.

Privacy of deleting the existing documents: To delete the intended documents, the

data owner communicates only the list of document identities and MaxV ectorList to

the cloud server. The cloud server then deletes the nodes that contain these identities

and calls the heapify downward(.) procedure at the respective deleted nodes for heapi-

fying the tree with the help of MaxV ectorList. The cloud server cannot infer any

information with the deletion of documents since the cloud server knows only the list

of document identities as they cannot convey any information about the content of the

deleted documents.

Privacy of newly added keywords: Addition of new genuine keywords to the end of

existing keyword dictionary reduces the privacy as the positions of newly inserted key-

words are revealed to the cloud server. Though the vector information of newly added

keywords is in encrypted form, the positions of incorporating this information cannot

be prevented from the leakage. In our proposed dictionary expansion approach, the po-

sition of newly added genuine keyword is secured as the number of dummy keywords

inserted are always random. Along with this, the position of the genuine keyword is

randomly chosen on every subsequent addition. The probability of the cloud server

coming to know the position of newly added genuine keyword is 1/2y, where y-1 is

the number of dummy keywords added along with the genuine keyword. This deviates

the cloud server from knowing the positions of newly included keywords into the al-

ready vector. The privacy of newly added keywords is preserved since the cloud server
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cannot infer any pattern regarding the positions of the newly added keywords using the

proposed dictionary expansion approach.

6.6 EXPERIMENTAL STUDY AND ANALYSIS

In this section, implementation methodology, experimental results of the proposed tree

index, its efficiency, and usage are presented.

6.6.1 Implementation Methodology

The proposed approach has been implemented using Python 3.6 version, and the exper-

iments of the proposed approach are conducted on Intel Xeon 2.6 GHz processor. Re-

quest for Comments (RFC) (RFC 2016) dataset has been used to test the efficiency of

the proposed index structure. For evaluating the proposed approach, the time efficiency

of index construction, search operation, and dynamic updates have been considered.

6.6.2 Experimental Results

The performance details of the proposed index structure with respect to index construc-

tion, searching, and dynamic updates (Insert, Delete and Modify) are provided below.

Index Construction: As there exists only one Keyword Balanced Binary tree (KBB)

tree index structure that supports ranked search, we have compared the index construc-

tion time of the proposed tree with the KBB tree. The information in each node of the

proposed tree index consists of two vectors TFV ector, MaxV ector, and a DiScore,

while the information in each leaf node of the KBB tree index consists of TFvector of

the document and the each internal node consists of MaxV ector. The TFV ector and

DiScore are constant in each node of the tree while theMaxV ector content changes as

the new nodes are incorporated into the tree. Similarly, the TFV ector in all leaf nodes

constant while the MaxV ector changes, which takes maximum TF values of both left

and right child nodes. The comparison of index construction time is also performed us-

ing a different number of indexed documents and the results are shown in Figure 6.4a.

Figure 6.4b depicts the construction time of these two structures for a fixed number of

documents with a varied number of dictionary keywords (different number of keywords
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in each document vector). It can be observed from these results that the index con-

struction time of the proposed index structure is slightly efficient than the KBB based

index construction time due to the reduction in size of the tree index, i.e., the height and

breadth of the tree index. The number of nodes in the last level of the KBB tree index is

equal to the number of nodes in all levels of the proposed tree index. This reduces the

height and breadth of the tree and thus, improves the index construction time.
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Figure 6.4: Index construction time for (a) constant size of dictionary, m = 4000 and for
various cardinalities of document collections, and (b) for fixed document collection, n
= 1000 and with varied number of keywords in dictionary.

Searching: Search is performed on both KBB tree and proposed tree for a given trap-

door using a greedy depth first search approach. At each node u in the proposed tree

index, two scores are determined, i.e., Rscore and Maxscore. The Rscore of a node

and its document identity id(Di) is added to the top-k list only if the Rscore is greater

than the kth score in the top-k list. It stops searching the left and right subtrees when

the maxScore at a parent node u is not greater than the kth score in the top-k list.

While in KBB tree, only one score is determined, i.e., maxscore at the internal nodes

and Rscore of a document only at the leaf nodes of the KBB tree index. Therefore, to

determine top-k relevant documents for a given trapdoor, it must visit leaf nodes of the

tree in the KBB tree index but not necessary in the proposed max-heap based tree index.

The comparison of proposed tree index and the KBB tree index in terms of search time

is given in Figure 6.5. It can be observed that searching time of the proposed max-heap

based tree index is better than the KBB tree index. This is due to the less number of

nodes in the proposed tree. Though the two scores are determined at each node in the
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proposed tree index compared to only one score either maxscore or Rscore in KBB

tree, the searching time of the proposed tree index is still efficient. The less number

of nodes in tree reduces the height and breadth of the proposed tree index and thereby

avoids computing Rscore and maxscore on many nodes. The searching process using

the proposed tree index also avoids visiting left and right child nodes if the maxscore

at node u is not greater than the kth score of the element in the top-k list. Thus, the

search time of the proposed tree index is efficient than the search time of the KBB tree

index. This is achieved by reducing the size of the tree and by avoiding many internal

nodes that are not relevant while processing the given trapdoor.
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Figure 6.5: Search time for various document collection sizes with constant dictionary
size, m = 4000

Dynamic Updates: The time of performing dynamic updates includes the time for

performing update operations and also the time required for accommodating the up-

dated content in an already existing tree index. We have compared the time of perform-

ing dynamic updates on the proposed tree index and the KBB tree index.

Inserting new documents: When a set of new documents are to be inserted, it is

required to accommodate the index content of the newly inserted documents in an ex-

isting tree index. The time of accommodating the index content of new documents in-

cludes the time of generating new of nodes containing index information (TFV ector,

MaxV ector and Discore) in encrypted for for each of the new documents, followed

by the time of incorporating each new node as the last node from the left to right in the

last level of the existing tree and finally the time required for heapifying the tree based

on the encrypted Discore of newly inserted node.
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While in KBB tree, the time required for accommodating the index content of new

documents includes the time of generating leaf nodes that contain index information

(TFV ector) in encrypted form for each of the new documents, followed by the time

of generating internal nodes containing encrypted MaxV ectors , which are generated

based on the leaf nodes’ plaintext TFV ector and also includes the time of adjusting

the MaxV ectors of some other internal nodes that were already existing. The time re-

quired for inserting a new document using both the tree index structures over a different

number of already indexed documents is shown in Figure 6.6. It can be noted from

the results that the proposed tree index structure is comparatively better than the exist-

ing KBB tree index for incorporating the index content of newly inserted documents.

This efficiency is due to the reduction in height and breadth of the proposed tree index

and thereby reduction in the number of times the MaxV ectors of nodes get affected in

the proposed tree index. Thus, the proposed max-heap based tree index is efficient in

inserting new documents.
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Figure 6.6: Time for inserting a new document over the different number of indexed
documents.

Deleting existing documents: In the proposed max-heap based tree index, deleting a

set of documents involves sending a list of document identities to the cloud server. The

cloud server then first deletes the nodes that contain the given document identities from

an existing index tree and then deletes the corresponding encrypted documents. The

143



6. A Dynamic Index Structure

time required for deleting a document includes the time required for identifying a node

within the tree, replacing it with the last node of the tree index and then heapifying

the tree index starting from the replaced node towards the leaf nodes of the tree for

updating the MaxV ector information in the corresponding nodes. While in the KBB

tree index, the time of deleting a node involves the time for identifying a leaf node for

deletion and then setting the TFV ector of that node to null value, followed by updating

the MaxV ectors of parent nodes starting from the deleted node to root node. The

comparison of deleting an existing document over different number of already indexed

documents is shown in Figure 6.7. It is to be noted that deleting a document using

the proposed max-heap based tree index is efficient than deleting a document using the

KBB tree index due to less number of nodes and the information in nodes. This helps in

avoid visiting many nodes. It is also not required to update the content of MaxV ector

in each parent node along the path from the deleted node towards the root node. Thus,

the proposed max-heap based tree index is efficient than the KBB tree index in deleting

the existing documents.
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Figure 6.7: Time of deleting an existing document over the different number of indexed
documents.

Modifying existing documents Modification of a document implies either adding

new keywords or deleting existing keywords. In this research work, addition of new

keywords to the existing documents is done securely using the proposed privacy pre-
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serving keyword dictionary expansion approach, which is explained in Section 6.4.3.1.

Addition of new keywords means adding the new keywords to the dictionary first and

then incorporating the vector information of added keywords in each document’s index

of node u in an already existing tree index. Therefore, the time needed for incorporating

the index content of the addition of new keywords includes the time taken to reflect the

vector information of newly added keywords in the already existing dictionary. In the

proposed approach, (y - 1) number of dummy keywords are added for every genuine

keyword that also needs to be inserted.

In general, addition of new keywords to the already existing dictionary requires the

re-creation of unencrypted tree idnex followed by the re-encrypting the content of the

entire tree index. This incurs a huge cost because of having to re-encrypt the content

of updated vectors in each node by using the new invertible random matrices. To avoid

this, the proposed approach uses the partitioned based matrices approach by which only

the updated vector information of added keywords can be incorporated in the already

existing vectors at each node of the tree index. Since, the addition of keywords to ex-

isting dictionary securely is not done using the KBB tree index approach, the proposed

privacy preserving dictionary expansion approach is compared with the re-encryption

method for incorporating the index information of newly added keywords. Figure 6.8

demonstrates the time taken to add 100 genuine keywords over existing dictionary of

different sizes using the proposed approach and re-encryption method. It can be noted

that the proposed keyword dictionary expansion approach based on the partitioned ma-

trices is more efficient than the re-encryption approach because the re-encryption in-

volves re-computing the whole vectors again due to the addition of new keywords.

Efficiency The efficiency of the proposed approaches are analyzed with respect to the

index construction and search time of the trapdoor and dynamic updates.

Index construction: It can be observed from the Figure 6.4 that the index construc-

tion time of our proposed max-heap based tree index is slightly efficient since the size

of the tree is less in terms of number of nodes, height, and breadth. It is to be noted that

the index construction is to be done only once by the data owner.
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Figure 6.8: Modification time for newly added keywords to various dictionary sizes
with fixed document collection, n = 1000 using proposed method and re-encryption
method.

Search: From the Figure 6.5, it can be observed that time of searching using the

proposed index structure is much efficient than searching using the KBB tree. This

efficiency is due to the reduction of the proposed tree index size in terms of height

and breadth compared to the size of KBB tree-based index structure. This reduction

is achieved by merging the MaxV ector information along with TFV ector in each

node of the tree instead of storing MaxV ector exclusively in internal nodes for guid-

ing the search process to determine top-k relevant documents. Thus, searching can be

efficiently performed using the proposed max-heap based tree index than the KBB tree

index.

Dynamic updates: It can be observed from the Figures 6.6, 6.7 and 6.8 that the effi-

ciency of dynamic updates, i.e., Insert, Delete and Modify using the proposed max-heap

based tree index is efficient than performing dynamic updates using KBB tree index.

This efficiency is due to reduction in height and breadth of the tree thereby helps in

performing dynamic updates efficiently. Thus, proposed index structure is efficient.

6.6.3 Usage of the proposed tree indexing structure

As the proposed Max-heap based tree index is efficient in retrieving and performing

update operations over the existing index, it could be used in the following use cases of

retrieving encrypted data.

• All encrypted query and answering applications, where queries would be in the
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form of like, finding out the best student of the year, extracting top-10 bidders

information from a list of all the people who filed their bids for allocation of a

government project and identifying the best suitable place for living in a country.

• Health care applications, where the proposed tree index would help in identify-

ing patients who have been in a hospital for long, finding out which doctor has

served more patients in a day, identifying underperforming doctors and seriously

ill patients.

In spite of various advantages using the proposed tree index in different applications,

the only concern with this approach is that the data owner has to store and maintain the

plaintext version of uploaded encrypted index in order to perform the update operations

correctly in an existing encrypted index. Therefore, the usage of the proposed approach

is subjected to the storage capacity of the data owner.

6.7 SUMMARY

In this work, a max-heap based binary tree index structure is proposed to retrieves

top-k relevant documents efficiently for a given trapdoor. It also supports dynamic

update operations over encrypted documents efficiently. With the support of dynamic

updates in the proposed tree index structure, it helps in returning the latest top-k relevant

documents for a given trapdoor. The proposed tree index structure reduces both the

height and breadth of the tree by storing MaxV ector along with the TFV ector in

each node instead of storing MaxV ector exclusively in internal nodes for guiding the

search operation to leaf nodes that contain TFV ector of actual documents. Thus, the

proposed index structure performs search and dynamic updates efficiently. A secure

keyword dictionary expansion approach is also proposed to allow the data owner to

add a set of new keywords to the existing dictionary securely without re-encrypting the

index. It preserves the privacy of newly added keywords by preventing the cloud server

from knowing the locations of newly added encrypted keywords. The experimental

results confirm that the proposed index structure is efficient than the existing KBB tree

index with respect to the retrieval of top-k relevant documents and performing dynamic

updates, and it also incorporates the updates securely in an already existing index.
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CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

This dissertation has focused on addressing the issues of privacy concerns and sup-

porting dynamic updates efficiently in order to enable the users to get the latest top-k

relevant documents for their trapdoors. An Enhanced One-to-Many order preserving

encryption scheme is developed to address the problem of mitigating the frequency

leakage in searchable indexes. It mitigates the frequency leakage due to the improved

randomness of a seed value because of which the repetition of same plaintext TF values

in index would be mapped to different ciphertext values. Thus, it mitigates the fre-

quency leakage of same ciphertext values in searchable index. The experimental results

confirm that the proposed scheme reduces not only the frequency leakage of individual

keywords but also the co-occurring keywords. The proposed scheme can be used for

encrypting sensitive information that is moderately distributed.

A pseudo-ranking approach is developed to address the problem of preventing the

leakages of both rank information and search pattern to the cloud server while retriev-

ing top-k relevant documents for the given trapdoors. The search pattern leakage is

prevented by including more random keywords in a trapdoor. The rank-order infor-

mation leakage is also prevented by assigning perturbed random values to the random

keywords in searchable indexes. The experimental results confirm that the proposed ap-

proach guarantees higher precision and higher privacy without affecting precision with

the help of the intermediate server.
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A max-heap based binary tree index structure has been developed to address the

issue of supporting dynamic updates efficiently. The accommodation of updates in an

already existing index enables the users to get the latest top-k relevant documents for

their trapdoors. The experimental results demonstrate that the proposed indexing struc-

ture is efficient in performing dynamic updates and retrieving top-k relevant documents

by reducing the size of the tree. A secure keyword dictionary expansion approach has

also been developed to securely add a set of new keywords to the existing dictionary.

The experimental results demonstrate that this approach supports modify operation ef-

ficiently without leaking the locations of the newly added keywords to the cloud server.

FUTURE SCOPE

This research work can be extended in the following directions to improve their appli-

cability in diverse applications and further to improve precision, privacy, and efficiency.

• The Enhanced One-to-Many OPE scheme mitigates the frequency leakage of

phrases and keywords than the existing order preserving encryption schemes.

However, this scheme returns a large ciphertext values. These values impact effi-

ciency while applying similarity measures on such large ciphertext values. Hence,

it can be focused on improving the size of ciphertext values while preventing the

frequency leakage.

• The Pseudo-Ranking approach can be extended to support a multi-owner and

multi-user architecture model, where any user can search over encrypted data

of multiple owners instead of a single owner’s document. The main challenge

involved in this model is to generate a common searchable index that represents

the documents of all the data owners and allowing any user to search over this

index securely and efficiently.

• The proposed max-heap based binary tree index can be extended to meet forward

privacy and backward privacy.

• The proposed secure keyword dictionary expansion approach can be extended to

handle deletion of existing keywords without affecting the existing indexes.
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