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Abstract

Currently, smart devices like smartphones, laptops, tablets, etc., need human in-

tervention in the effective delivery of the services. They are capable of recognizing

stuff like speech, music, images, characters and so on. To make smart systems

behave as intelligent ones, we need to build a capacity in them, to understand and

respond to the surrounding situation accordingly, without human intervention.

Enabling the devices to sense the environment in which they are present through

analysis of sound is the main objective of the Acoustic Scene Classification. The

initial step in analyzing the surroundings is recognition of acoustic events present

in day-to-day environment. Such acoustic events are broadly categorized into two

types: monophonic and polyphonic. Monophonic acoustic events correspond to

the non-overlapped events; in other words, at most one acoustic event is active

in a given time. Polyphonic acoustic events correspond to the overlapped events;

in other words, multiple acoustic events occur at the same time instance. In this

work, we aim to develop the systems for automatic recognition of monophonic

and polyphonic acoustic events along with corresponding acoustic scene. Applica-

tions of this research work include context-aware mobile devices, robots, intelligent

monitoring systems, assistive technologies for hearing-aids and so on.

Some of the important issues in this research area are, identifying acoustic event

specific features for acoustic event characterization and recognition, optimization

of the existing algorithms, developing robust mechanisms for acoustic event recog-

nition in noisy environments, making the-state-of-the-art methods working on big

data, developing a joint model that recognizes both acoustic events followed by

corresponding scenes etc. Some of the existing approaches towards solutions have

major limitations of using known traditional speech features, that are sensitive

to noise, use of features from two-dimensional Time-Frequency Representations

(TFRs) for recognizing the acoustic events, that demand high computational time;



use of deep learning models, that require substantially huge amount of training

data.

Many novel approaches have been presented in this thesis for recognition of

monophonic acoustic events, polyphonic acoustic events and scenes. Two main

challenges associated with the real-time Acoustic Event Classification (AEC) are

addressed in this thesis. The first one is the effective recognition of acoustic events

in noisy environments, and the second one is the use of MapReduce programming

model on Hadoop distributed environment to reduce computational complexity.

In this thesis, the features are extracted from the spectrograms, which are robust

compared to the traditional speech features. Further, an improved Convolutional

Recurrent Neural Network (CRNN) and a Deep Neural Network-Driven feature

learning models are proposed for Polyphonic Acoustic Event Detection (AED) in

real-life recordings. Finally, binaural features are explored to train Kervolutional

Recurrent Neural Network (KRNN), which recognizes both acoustic events and a

respective scene of an audio signal. Detailed experimental evaluation is carried out

to compare the performance of each of the proposed approaches against baseline

and state-of-the-art systems.

Keywords : Monophonic Acoustic Event Classification (AEC), polyphonic

Acoustic Event Detection (AED), Acoustic Scene Classification (ASC), Time-

Frequency Representations (TFRs), MapReduce programming model, Convolu-

tional Recurrent Neural Network (CRNN), Kervolutional Recurrent Neural Net-

work (KRNN).
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CHAPTER 1

Introduction

Billions of people, throughout the world are using personal digital assistants

(PDAs). PDAs need human intervention in the effective delivery of services.

Presently, some of the smart devices are able to receive information from the

Global Positioning System (GPS) through satellites and then calculate the geo-

graphical location of a device/a person automatically. To make smart devices work

on many other intelligent applications similar to GPS, we need to build required

capacity in them, to understand the surroundings and respond to the situation

accordingly without human intervention. The initial step in understanding the

surroundings is capturing and processing general sound patterns prevailing in the

surrounding day-to-day environment. Enabling the devices to sense the environ-

ment in which they are present through analysis of sound pattern is the main

objective of Acoustic Scene Classification. Such property of intelligent devices is

known as context awareness (Schilit et al., 1994).

Humans have remarkable perception ability to identify the surrounding envi-

ronment based on sounds present. For instance, the sound generated from the

drawer, cupboard, dishes, cutlery, water tap running, tooth brushing belong to

the environment ’home’. Each sound present in an environment is known as an

acoustic event. The environment in which acoustic events are present is called as

an acoustic scene (Barchiesi et al., 2015). Acoustic events within an acoustic scene

are broadly classified into two types. The first one is monophonic acoustic event

and the other is polyphonic acoustic event. Monophonic acoustic events corre-

spond to the non-overlapped events; in other words, at most one acoustic event is
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1. Introduction

observed in a given time instance. Polyphonic acoustic events correspond to the

overlapped events; in other words, multiple acoustic events occur at a given time

in a mixed way. These acoustic events may be generated from human activity (for

example knocking door), natural activity (for example rain sound) or vehicle noise

(for example car horn).

Auditory perception capability of human beings is supported by audio-visual

cues of acoustic events while understanding the scenes. Vast experience, diver-

sified training examples, various contexts would help human beings effective and

efficient classification of acoustic scenes. Acoustic scenes like a home, a park and

a busy street sound are characterized by distinct acoustic characteristics, which

are easily identified by human beings. On the other hand, computers still are

not able to recognize the acoustic events/scenes with reliable accuracy. In this

thesis, we propose and develop methods that can be used for automatic Acoustic

Event Classification (AEC), Acoustic Event Detection (AED) and Acoustic Scene

Classification (ASC).

1.1 Monophonic Acoustic Event Classification

ASC is a process of assigning a semantic label to an audio file that represents

specific acoustic scene in the nature. AEC is a subproblem of ASC, which assigns

a semantic label to an audio file that represents the particular sound event in a

specific acoustic scene. The main aim of monophonic AEC is to recognize non-

overlapped acoustic events in the surrounding environment (scene). An overview

of monophonic AEC system is given in Figure 1.1. Digital signal processing,

feature extraction and classification are the three key steps in any AEC system.

’Signal processing’ phase prepares the raw acoustic signal for feature extraction.

Due to computation limitations, an acoustic signal is divided into smaller frames

of length, typically ranging from 10 to 30 ms before processing. Further, a window

function is used to smoothen it to the required level. Unlike the Automatic Speech

Recognition (ASR) system which uses the sampling frequency of 8000 Hz or lower,

the AEC systems use typically a signal with high sampling frequency. Frames are

2
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Audio 
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Signal
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Feature
Extraction Learning

Audio 
Signal

Signal
Preprocessing

Feature
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Label

Digital Signal Processing Feature 
Extraction Classification

Figure 1.1: Typical monophonic Acoustic Event Classification system. Detailed
descriptions are given in the text.

normally processed in overlapped manner, to avoid the loss of information around

the edges of the window.

During ’feature extraction’, we compress the acoustic event signal and charac-

terize to include only the significant information. A good feature should be able

to discriminate acoustic events of different classes being insensitive to surround-

ing noise. Generally, features are extracted from an acoustic signal frame-wise,

popularly known as sequential short-time windowed frames. Each frame is rep-

resented as a feature vector. These features are also known as frame-based fea-

tures. Frame-based features are commonly extracted either from the time-domain

(temporal features) or frequency-domain (spectral features) of the signal. These

features represent important information contained in the signal.

’Classifier’ is to classify the extracted features to generate a label, to an input

audio signal. The performance of the classifier is measured using recognition

accuracy, which is evaluated as the percentage of correctly classified acoustic event

signals to the total number of acoustic event signals present (Dennis et al., 2011;

Sharan and Moir, 2015; Foggia et al., 2015).

1.2 Polyphonic Acoustic Event Detection

Polyphonic Acoustic Event Detection (AED) systems deal with the task of identi-

fying overlapped multiple acoustic events in a continuous audio signal, in contrast
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to the AEC system that assigns an audio signal to one of the acoustic event classes.

Polyphonic AED is more challenging and complex than monophonic AED. In every

environment, an audio signal may contain both monophonic and polyphonic acous-

tic events in a sequence. In such situations, the detection of multiple monophonic

and polyphonic acoustic events is more appropriate than typical classification.

Audio 
Signal

Signal
Preprocessing

Feature
Extraction Learning

Annotation

Audio 
Signal

Signal
Preprocessing

Feature
Extraction Detection Label

Training

Testing

Label

Digital Signal Processing Feature 
Extraction Detection

Figure 1.2: Typical polyphonic Acoustic Event Detection system. Detailed de-
scriptions are given in the text.

car

horn

dog bark 

car

dog bark 

frame t

Time (t)

Figure 1.3: Acoustic Events in real life scenario. Events car sound and horn are
overlapped in frame t.

Polyphonic AED systems (shown in Figure 1.2) also work detects frame-by-frame.

Usually dataset is annotated to contain onsets, offsets and class labels associated
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with each event in an audio signal. A snippet of an annotation is shown in Figure

1.3, which shows the occurrences of acoustic events car, horn and dog barking

along the time domain. One can observe that acoustic events car and horn are

overlapped in frame ’t’. In fact polyphonic AED systems are expected to detect

both isolated and overlapped acoustic events in an audio signal. The training stage

of the system (shown in Figure 1.2) maps the labels taken from annotation to

particular acoustic event instances frame-by-frame. In this context, labels are also

known as acoustic event activity indicators. Unlike one-dimensional label vector in

the AEC system, here label vector is of dimension equal to the number of acoustic

events in the dataset. If the frame contains an event/events, then value/values of

label vector are set to 1 otherwise set to 0.

In the testing phase, the trained system decides a label for each frame of the

test audio signal. In the case of polyphonic AED, performance of the system is

evaluated by comparing the output with the reference annotation. There are no

universally accepted metrics for polyphonic AED. However, commonly used met-

rics for performance evaluation of polyphonic AED system are broadly classified

into two types: segment-based metrics and event-based metrics (Mesaros et al.,

2016a). Segment-based metrics compare the output of a system and correspond-

ing reference in a fixed length interval, known as a segment. Event-based metrics

compare the output of a system and reference event by event. Two segment-based

metrics popularly used for evaluation of the performance of polyphonic AED sys-

tem are F1-score and Error Rate (ER) (Mesaros et al., 2016a). The following

intermediate statistics are computed for evaluation of F1-score and Error Rate

(ER) per segment.

• True Positive (TP (p)): The total number of acoustic events detected cor-

rectly by the system from the test (reference) segment p.

• False Positive (FP (p)): The total number of wrongly detected acoustic

events by the system from the test segment p.

• False Negative (FN(p)): The total number of acoustic events present in the

test segment p but not detected by the system.
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F1 score is considered as the first metric and computed using intermediate statics

as given in equation (1.1),

F1 =
2×

∑P
p=1 TP (p)

2×
∑P

p=1 TP (p) +
∑P

p=1 FP (p) +
∑P

p=1 FN(p)
(1.1)

Where p is a specific segment and P is the total number of segments. Another set

of intermediate statics namely, Insertion (I), Deletion (D) and Substitution (S)

are computed for each segment p.

• I(p): The number of false positives, which are not considered as substitu-

tions.

• D(p): The number of false negatives, which are not considered as substitu-

tions.

• S(p): The number of events in the test (reference) segment for which system

detects wrong events.

The Error Rate (ER) is computed as the second metric using intermediate statis-

tics I, D and S as given in equation (1.2),

ER =

∑P
p=1 S(p) +

∑P
p=1D(p) +

∑P
p=1 I(p)∑P

p=1M(p)
(1.2)

Where M(p) is the number of acoustic events in the test segment p.

1.3 Acoustic Scene Classification

An ASC system assigns input audio signal to one of the acoustic scene classes in

the dataset and its general structure is the same as the monophonic AEC system.

However, in this thesis, acoustic scenes are characterized based on acoustic events

present in them. As we had mentioned earlier, each acoustic scene has its own

set of acoustic events. In this thesis, polyphonic AED system is used to detect

both acoustic events (either monophonic or polyphonic) and a corresponding scene

present in an input audio signal concurrently. This type of model is also known

as a joint polyphonic acoustic event detection and scene recognition system (joint

model).
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The joint model predicts acoustic events and respective scenes frame-by-frame

from the input audio. Acoustic scene label of an audio file represents an acoustic

scene present in the majority of the frames of an audio recording (majority voting).

The recognition performance of polyphonic AED and ASC of the joint model is

evaluated using F1-score, ER and majority voting accuracy (Bear et al., 2019)

1.4 Motivation

Research on AEC is still in its infancy compared to the other audio processing

tasks such as speech processing. Speech is different from acoustic events when

one considers the phonetic structure. The traditional frame-based speech features

such as Mel- frequency cepstral coefficients (MFCCs) are specifically obtained

for speech/speaker recognition tasks which may not be suitable for AEC because

of varying acoustic and phonetic properties. Unlike speech, acoustic events are

short in duration and have more distinct Time-Frequency Representations (TFRs)

(Dennis et al., 2011). This motivates to think of novel techniques for extraction

of acoustic event specific features.

Recently in the literature, features extracted from spectrogram are said to be

robust for AEC in noisy conditions. This motivates us to extract more reliable fea-

tures from the spectrograms for AEC using different methods. Feature extraction

from two-dimensional spectrograms of a large noisy audio event dataset demands

high computational time. In this context, parallelizing the feature extraction task

using MapReduce programming model on Hadoop setup improves the efficiency

of the overall system.

DNN (Deep Neural Networks) models are widely used for polyphonic AED in

the literature. However, these DNN models require a larger dataset for training.

If the dataset is not sufficiently large, then these models encounter a problem such

as overfitting. This motivates us to develop DNN-driven feature learning method

for polyphonic AED, that should consider smaller real-time datasets also.

AEC/AED is the subproblem of ASC. Majority of the approaches reported

in the literature either concentrated on AEC/AED or ASC and developed them
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as two independent systems. This motivates us to build a single system which

identifies/classifies both acoustic events and acoustic scenes. This system would

be more reliable and time-efficient than individual AEC/AED and ASC systems.

1.5 Applications

Some of the important applications of AEC/AED and ASC are: assistive technolo-

gies that would help the hearing impaired in their daily lives (Xiang et al., 2010);

intelligent healthcare systems such as identification of cough sounds of patients

(Peng et al., 2009)(Goetze et al., 2012); context-aware devices such as smartphones

that continuously sense their surroundings and take necessary actions like switch-

ing to silent mode every time a person enters a meeting room, robotic wheelchairs

that adjust their functioning based on the recognition of indoor or outdoor envi-

ronments; driver-less cars that adjust their speed based on recognition of acoustic

events in a city-center or a quiet street; recognition of the background environment

in the crime spot for forensics; and so on.

Recently, there are AEC systems reports of using for the purpose of audio-

based surveillance. Audio-based surveillance is an important aspect of safety,

security and monitoring applications such as human activities monitoring sys-

tem (Harma et al., 2005), Wildlife monitoring system (Somervuo et al., 2006),

smart homecare system(Chen et al., 2013), hazardous acoustic event recognition

in the elevator (Radhakrishnan et al., 2005), on the road recognition of acoustic

environment (Foggia et al., 2016) and so on. Early surveillance systems relied

solely on cameras (video sensors). These video cameras have poor performance in

darkness and are sensitive to weather conditions, shadow, reflection, illumination

etc(Crocco et al., 2016)(Räty, 2010). The visual information from the camera

has its own limitations. For instance, the dangerous event such as gunshot has

distinct acoustic characteristics, which is not easily identified and captured by ei-

ther video or an image. Nowadays, IP cameras are available with audio sensors

(microphones), which allows analyzing both audio and video streams for improved

security (Cristani et al., 2007). Unlike cameras, microphones can record sounds
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even in darkness and cover larger distances with a cheaper development cost.

1.6 Challenges

Research progress on ASC remained stagnant until recent years. This is due to

several challenges faced in a real-time scenarios as it is not possible to identify

all acoustic events with better accuracy. Some of the important challenges are

explained below in brief.

1.6.1 Intra-class variability

Acoustic event classes being broadly used for AEC/AED systems are defined such

as key jingling, a phone ringing, vehicle horn and so on, causing high rate of intra-

class variability. For instance, an acoustic event class ’horn’ represents all types of

vehicle horns, whose acoustic characteristics significantly vary among themselves.

An AEC system should be able to detect vehicle horns with higher specificity such

as bus and lorry.

1.6.2 Overlapping acoustic events

Earlier AEC/AED systems mainly focused on the recognition of acoustic events

that were non overlapped. However, in the real-time scenario, acoustic events of-

ten occur at the same time instances mostly in an overlapped way. For instance,

a recording from a home scene may include water-tap running, people speaking,

television sound and foot-steps; all occurring at the same time. To improve their

efficiency, the AED systems should be able to discriminate the acoustic character-

istics of each individual event available as the combined acoustic mixture.

1.6.3 Environmental noise and recording conditions

The scope of AEC is defined as the set of pre-identified acoustic event classes.

The acoustic events that are not in the scope of AEC, are obviously considered

as background noises. For instance, wind sound is a common noise present in the

real-time recordings and it reduces the signal-to-noise ratio (SNR) significantly.
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In addition, variations present in the recording conditions such as quality of the

recording devices and distance of the recording device from the sound sources

cause additional challenges.

1.6.4 Lack of structure

Other acoustic signals such as speech and music have a formal structure, which

is used to extract informative sound representations from a signal. For instance,

speech can be decomposed into phonemes and the properties of each phoneme can

be investigated. It is convenient to map phoneme to its language representation

and can be used in speech recognition. Similarly, music can be divided into notes

and be used as units of processing. On the other hand, it is highly difficult to

represent (divide) the acoustic events in a standard structure and characterize

them. This is due to the simple reasons that; Acoustic events simultaneously

contribute to the different acoustic scenes and are generally generated from various

sound sources. This makes AEC task more challenging than other audio processing

tasks.

1.6.5 Massive audio data

Thousands of audio sensors (recording devices) deployed in the different acoustic

scenes for environment monitoring, generate massive audio data. Processing this

big data high computational resources. State-of-the-art methods on AEC task

recognize acoustic events by extracting features from the smaller dataset and may

not be suitable for real world and real time applications.

1.7 Highlights of the Present Research Work

• A comprehensive analysis of the literature on the methods of monophonic

AEC, polyphonic AED and ASC including datasets.

• Proposing spectrogram and spectrogram image based features for mono-

phonic AEC.
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• Proposing two deep learning-based models; one is improved Convolutional

Recurrent Neural Network (CRNN) and the another is a DNN-driven feature

learning approach for polyphonic AED.

• Developing a joint model that recognizes both acoustic events and corre-

sponding scene.

• Proposing a combination of binaural features and Kervolutional Bidirec-

tional Recurrent Neural Network (KBRNN) for joint polyphonic AED and

ASC.

1.8 Brief Overview of Thesis Contributions

The major contributions of this thesis include exploring the acoustic event spe-

cific features from the spectrogram for monophonic AEC and polyphonic AED.

Two novel monophonic AEC methods and one novel polyphonic AED method are

proposed. The brief details are given in the following sub-sections.

1.8.1 Spectrogram features

Normally, acoustic events have distinct Time-Frequency (TF) representations. It

hints that visual information from spectrogram may be promising features for

AEC. High-energy spectral components of the acoustic events are extracted as

features from the spectrogram using Singular Vector Decomposition (SVD) (Muli-

mani and Koolagudi, 2019c) and MapReduce programming paradigm (Mulimani

and Koolagudi, 2019a); for monophonic AEC task. Experiments show that pro-

posed spectrogram features outperform traditional speech features.

1.8.2 Spectrogram image features

Spectrogram images represent visual information. In this work, spectrogram im-

age of an acoustic event is used as a fixed dimensional feature vector known as

Bag-of-Visual-Words (BoVWs). BoVWs along with Fisher kernel encoding meth-

ods are named as spectrogram image features (Mulimani and Koolagudi, 2018).
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Spectogram image based features are better compared to the spectrogram fea-

tures (explained in 1.8.1) extracted directly from spectrograms. The combination

of different feature representations is used to get robust features for AEC. Ex-

periments show that the proposed features are robust to noise and outperform

state-of-the-art methods in both clean and noisy conditions.

1.8.3 MapReduce-based features

Extraction of reliable, task specific information as features from spectrograms of

big noisy audio event dataset demands high computational resources. Parallelizing

the feature extraction using the MapReduce programming model on Hadoop im-

proves the time efficiency of the overall system. A parallel method is proposed for

extraction of significant information related to the event from a spectrogram us-

ing Google’s MapReduce programming model (Dean and Ghemawat, 2008). These

features are known as MapReduce-based features (MRFs).

1.8.4 A DNN-driven feature learning method

A series of layers including two projection layers, a CNN layer, two fully connected

layers and a sigmoid layer are stacked to construct the proposed DNN-driven

feature learning method for polyphonic AED. New projection layers and CNN

layer learn the discriminative spectral properties of multiple overlapped acoustic

events in the mixture effectively and outperform state-of-the-art methods.

1.8.5 Binaural features

Polyphonic acoustic events and a respective scene of an audio signal recognized

better with features from multi-channels. Different combinations of binaural fea-

tures are explored to train DNN models effectively.

1.8.6 Kervolutional Bidirectional Recurrent Neural Network

The performance of the CNN in CRNN may be further improved by generaliz-

ing the convolutional operation to non-linear operation using a polynomial kernel.
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This architecture is also known as a kervolutional Neural Network (KNN). A com-

bination of KNN and bidirectional Gated Recurrent Unit (GRU) forms KBRNN

for joint polyphonic AED and ASC.

1.9 Outline and Structure of the Thesis

The thesis is spread across 6 chapters. The following paragraphs broadly explain

the contents of each chapter.

• Chapter 1 : The Introduction covers introduction of the task of ASC.

Monophonic and polyphonic acoustic events in an acoustic scene are briefly

discussed. Motivation, applications, challenges during recognition of acous-

tic events and scenes are briefly discussed. Chapter ends with the clearly

articulated research contributions and thesis outline.

• Chapter 2 : Literature review mainly contains the list of available

datasets and their basic properties for monophonic AEC, polyphonic AED

and ASC. Further, this chapter contains information about primitive state-

of-the-art methods of monophonic AEC, polyphonic AED and ASC in the

context of features and classifiers. Research gaps are identified, enumer-

ated and discussed. The common datasets used in this research work are

introduced. Scope of the present work derived from the literature review is

presented.

• Chapter 3 : Monophonic Acoustic Event Classification includes the

proposed spectrogram and spectrogram image based features for monophonic

AEC. Detailed experiments carried out to analyze the robustness of the

proposed methods in noisy conditions are presented. Results are discussed

with appropriate analysis and conclusions.

• Chapter 4 : Polyphonic Acoustic Event Detection includes the expla-

nation of improved CRNN and the DNN-driven feature learning approach

for polyphonic AED from real-life recordings. The significance of each of
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the models is discussed. The performance of the proposed approaches is

presented along with the necessary analysis and discussion.

• Chapter 5 : Acoustic Scene Classification includes binaural features for

improved CRNN and KBRNN models for joint polyphonic AED and ASC.

The performance of both models is presented with appropriate analysis and

discussion.

• Chapter 6 : Summary and conclusions chapter summarizes the contri-

butions of this thesis along with some important conclusions. This Chapter

also provides possibilities of the extensions to the present work and future

research directions for improving the performance of AEC/AED and ASC

models.
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CHAPTER 2

Literature Review

In chapter 1, an overview of monophonic Acoustic Event Classification (AEC),

polyphonic Acoustic Event Detection (AED) and Acoustic Scene Classification

(ASC) was provided, with a discussion on motivation, potential applications and

challenges faced in recognition of acoustic events present in an acoustic scene. The

aim of this chapter is to give deeper insight into the range of recent approaches

developed and reported in the literature specifically for monophonic AEC, poly-

phonic AED and ASC concerning datasets, features and classifiers. A list of the

research gap gaps is derived from the critical review of the available literature at

the end of the chapter.

2.1 Datasets: A Review

A suitable acoustic event/scene dataset is a necessary for acoustic event/scene

classification. The design and collection of acoustic event dataset mainly depend

on the research applications. For instance, a dataset with acoustic events such

as gunshot, glass breaking and person screaming are used in audio-based surveil-

lance. Similarly, a dataset with acoustic events applause, chair moving, laugh,

door knock, etc. are used to study/analyze the meeting room scene. The survey

presented in this section introduces the publicly available acoustic event and scene

datasets.

Popularly used monophonic acoustic event datasets are listed in the Table 2.1.

Each dataset is designed and developed for particular application. However, a
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good AEC system should be independent of the input dataset. In this thesis,

UPC-TALP dataset and Mivia audio event dataset are chosen for performance

evaluation of the proposed monophonic AEC approaches. However, any dataset

from Table 2.1 can be used for performance evaluation. UPC-TALP dataset is de-

veloped and released as a part of the CHIL (Computers in the Human Interaction

Loop) acoustic event detection challenge (Temko et al., 2006a). Mivia audio event

dataset is a real-time dataset, developed for audio-based surveillance.

Popularly used polyphonic acoustic event datasets are listed in Table 2.2. Ma-

jority of them are TUT sound event datasets, which are developed and released as

parts of different editions of DCASE challenge. In this thesis, TUT Sound Events

2016 dataset is used for performance evaluation of the proposed polyphonic AED

approach. TUT Sound Events 2016 dataset includes real-time acoustic events

from home and residential areas.

Widely used acoustic scene datasets are listed in Table 2.3. In this thesis, the

acoustic scene is recognized based on the acoustic events present in it. For this

task, joint sound scene and event dataset is considered as an input to the proposed

ASC system, which characterizes both acoustic events and scenes.

2.2 Monophonic Acoustic Event Classification: A
Review

AEC problem may be formulated as a machine learning problem that consists of

two main stages. One is the feature extraction and other is classification (shown

in Figure 1.1). As we had mentioned in chapter 1, in the feature extraction stage,

conventional systems extract the fixed-dimensional features from the acoustic sig-

nal mostly frame-by-frame. Such features are also known as frame-based features

and further they are used for classification. The most commonly used frame-based

features are Mel-Frequency Cepstral Coefficients (MFCCs). In the classification

stage, the classifier learns to recognize the acoustic events using extracted features.

The different types of classifiers are used for AEC.
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2.2. Monophonic Acoustic Event Classification: A Review

However, the performance of a classifier is dependent on the significance of the

features used for classification (Kons et al., 2013). It is to be noted here that,

identification and extraction of effective features for the development of AEC

system is really a challenging task.

2.2.1 Features

Majority of the feature extraction techniques reported in the literature depend

on the four broad domains of acoustic signal representation, namely: temporal,

spectral, cepstral and joint Time-Frequency representations. Most commonly used

temporal features for AEC are the signal energy and zero-crossing rates (Chu

et al., 2009; Temko and Nadeu, 2006), whereas commonly used spectral ones are

the spectral flux, spectral slope, spectral centroid, spectral flatness and spectral

rolloff (Perperis et al., 2011; Temko and Nadeu, 2006; Kim and Ko, 2011; Zhang

and Schuller, 2012; Lojka et al., 2016; Maxime et al., 2014). Temporal and spectral

features are mainly used as supplementary features to each other.

Cepstral features are also referred to as cepstral coefficients. Inverse Fourier

Transform (IFT) of the log of magnitude spectrum of a signal gives cepstrum.

Cepstrum represents variations of frequency components in a spectrum. Hence,

it is also known as spectrum of spectrum. Probably, Linear Prediction Cepstral

Coefficients (LPCCs) are the oldest cepstral domain features (Makhoul, 1975),

which are later replaced by the MFCCs (Davis and Mermelstein, 1980). Human

beings are able to identify even small frequency variations in lower ranges than

higher once. MFCCs closely resemble human perception system and are derived

from mel-filters, which equally space frequency bands as per the mel-scale (Stevens

et al., 1937). The first (∆) and second (∆∆) order derivatives of MFCCs are

concatenated with the MFCCs to improve the performance of AEC system (Young

et al., 2009).

Recently, Gammatone Cepstral Coefficients (GTCCs) are added to the family

of cepstral domain features. GTCCs are derived from Gammatone filters (Slaney

et al., 1993), which model the frequency selection property of human cochlea

(Patterson et al., 1992). Filters are equally spaced on the Equivalent Rectangular

23



2. Literature Review

Bandwidth (ERB) scale. GTCCs are effectively used for ASR (Cheng et al., 2005)

and AEC (Valero and Alias, 2012).

The feature or evidence level combination of temporal, spectral and cepstral

features is also used to implement the AEC system (Foggia et al., 2015; Kiktova-

Vozarikova et al., 2015; Zhuang et al., 2010; Foggia et al., 2016; Maxime et al.,

2014). Temporal, spectral and cepstral features are frame-based ones and specifi-

cally designed, computed and evolved for speech/speaker recognition tasks. These

features are designed to extract acoustic characteristics of speech, which are quite

different from that of acoustics event and may not be suitable for AEC.

Acoustic events have more distinct TF features (characteristics) than speech.

Such features are commonly extracted from the spectrograms of the acoustic sig-

nals. There are two different approaches widely used for this task. One is Non-

Negative Matrix Factorization (NMF), which first decomposes the spectrogram

(or equivalent TFRs) into the base and coefficient vectors followed by feature

extraction from the decomposed vectors (Ghoraani and Krishnan, 2011). Such

NMF-based features perform better than traditional frame-based features for AEC

(Ludeña-Choez and Gallardo-Antolín, 2016). However, we cannot control the

outcome of factorization (Heittola et al., 2011). Hence, the output of NMF is

not unique each time we run on real-time data (Ghoraani and Krishnan, 2011).

This is a serious issue. The other approach reported in (Dennis et al., 2013b),

directly extracts the features from the spectrograms region-by-region. These fea-

tures are more specific to the acoustic event. However, the extraction of features

from each individual region demands high computational time and impractical

on larger dataset. Biologically-inspired two-dimensional Gabor-filter functions are

used to capture spectro-temporal modulations of acoustic events (Schröder et al.,

2015), which are also computationally expensive. Recently, Deep Neural Networks

(DNNs) are used for AEC (Kong et al., 2016).

Generally, real-time acoustic events are available overlapped with high-background

noise. Traditional frame-based features are sensitive to noise and their perfor-

mance degrades as SNR decreases (Dennis et al., 2011). Recently, features from
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2.2. Monophonic Acoustic Event Classification: A Review

the spectrogram image are proved to be effective for robust AEC in noisy con-

ditions (Dennis et al., 2011; Sharan and Moir, 2018, 2015). A spectrogram is

computed using Short-Time Fourier Transform (STFT), where acoustic event sig-

nal is partitioned into frames of a specific length and Discrete Fourier Transform

(DFT) is applied to get spectra. These spectra of complex values are concatenated

side-by-side to form spectrogram. However, most of the classifiers are designed

to work only with real-valued input. Hence, less informative phase information is

discarded (Gerhard, 2003), and only the magnitudes of the spectrogram retained

to form magnitude spectrogram. Besides, the log is taken to reduce the dynamic

range of values of magnitude, resulting in log magnitude spectrogram. Differ-

ent variations of spectrograms are also reported in the literature (Hlawatsch and

Boudreaux-Bartels, 1992; Patterson et al., 1992; Heil and Walnut, 1989). Gamma-

tone spectrogram (also known as cochleagrams) is one of them, computed using

Gammatone filter. Gammatone spectrograms represent higher intensity values

of an acoustic event more clearly than a conventional STFT-based spectrogram.

Unlike STFT-based spectrogram narrow bandwidths at the lower frequency re-

gions and wider bandwidth at higher frequency regions are used for Gammatone

spectrogram construction (Sharan and Moir, 2015).

Dennis et al. (2011) converted the spectrogram into a pseudo-color spectro-

gram image. Monochrome images of the pseudo-color spectrograms are divided

into blocks. Second and third order central moments are evaluated from each

block and used as Spectrogram Image Features (SIFs). SIFs were shown to be

more robust and performed significantly better than MFCCs in different noisy

conditions. However, use of second central moments from image blocks leads to

the significant loss of information from the spectrogram image. In (Sharan and

Moir, 2018), the features are selected from Gammatone spectrogram images us-

ing Sequential Backward Feature Selection (SBFS) algorithm and used for AEC.

However, SBFS is a greedy algorithm, that demands high computational time and

impractical on the larger dataset.

From the available literature on features, it is fairly clear that frame-based
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speech related features may not be suitable for AEC. Hence there is a scope to

design and extract different features that can better capture the acoustic event in-

formation. The features from spectrogram are shown to be acoustic event specific

and robust to noisy conditions. The state-of-the-art methods to extract features

from the spectrograms demand high computational time and have their own dis-

advantages. There is a scope to develop a time-efficient approaches for feature

extraction from spectrograms, especially during the use of massive audio datasets

available noisy conditions.

2.2.2 Feature Representations

Due to variations in the length of the input acoustic event signals (audio clips),

frame-based feature extraction techniques give a different number of fixed-dimensional

feature vectors. If an acoustic event is represented by a sequence of feature vectors,

then the number of feature vectors in different acoustic events are different based

on the length of the given acoustic event. Such variable lengthed sequences are

effectively modeled using Gaussian Mixture Model (GMM) based Hidden Markov

Models (HMMs) (Dennis et al., 2013a). However, HMMs have two major issues.

One is, HMMs require huge training data to capture distinct variations among

acoustic events making them less fit for simple and compact applications of the

modern digital world. Other is HMMs map the feature vector frame-by-frame

from a speech signal into its intermediate semantic label such as phoneme, syl-

lable, etc., before mapping it to a corresponding utterance. Acoustic events do

not have such intermediate labels. Therefore, mapping of feature vectors to their

event classes directly may cause confusions in the models.

Recently, Support Vector Machine (SVM) classifier is shown to be highly ef-

fective for AEC (Temko et al., 2006b; Sharan and Moir, 2018). However, SVM

requires a fixed-dimensional sequence of feature vectors. Several feature represen-

tation (learning) methods are map the variable length sequences into fixed-length

ones. A most common method is use of features obtained by evaluating the statis-

tical parameters such as mean, standard deviation, mode and median of features

from every frame of an acoustic signal. This approach transforms the frame-based
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unequal lengthed feature vectors into a fixed length feature vector, causing un-

avoidable information loss (Guo and Li, 2003). Popular advanced representation

methods reported in the literature are the Bag-of-Audio-Words (BoAW) (Pan-

coast and Akbacak, 2012) and the Fisher kernel (Temko et al., 2006b) approaches.

BoAW approach represents the frame-based features into a fixed-dimensional his-

togram (’bag’) known as BoAW. This histogram is used as a feature vector to

SVM. Recently, it is reported that BoAW approach even outperforms the popular

Deep Neural Network (DNN) based classification (Schmitt et al., 2016)(Grzeszick

et al., 2017). Alternatively, Fisher kernel (Jaakkola and Haussler, 1999) is also

used to represent frame-based features into a fixed-dimensional feature vector,

known as the Fisher vector. A generalized Fisher kernel named as score-space

kernel is used for speech recognition (Smith and Gales, 2002), speaker verification

(Wan and Renals, 2005) and AEC (Temko et al., 2006b). As we had mentioned,

traditional frame-based features are speech specific and sensitive to noise, even

Fisher vector/BoAW representations of frame-based features may not be suitable

for AEC both in clean and noisy conditions.

2.2.3 Classifiers

Classifiers used for AEC are broadly classified into two types statistical models

and deep learning models. A summery of some of the classification models used

for monophonic AEC task are listed in the Table 2.4.

Statistical models such as Support Vector Machine (SVM) (Foggia et al.,

2015; Guo and Li, 2003; Dennis et al., 2011; Phan et al., 2016a; Jayalakshmi

et al., 2018), Gaussian Mixture Models (GMM), Hidden Markow Models (HMM)

(Maxime et al., 2014), K-Nearest Neighbor (KNN), Random Forest (RF) (Piczak,

2015b) etc., are used for monophonic AEC in the literature. Recently, deep learn-

ing methods such as Feed-Forward Neural Networks (FFNN) (McLoughlin et al.,

2015), Convolutional Neural Networks (CNN) (Piczak, 2015a)(Salamon and Bello,

2017), Recurrent Neural Networks (RNN) (Freitag et al., 2017) are successfully

applied for monophonic AEC.
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Performance of the DNN based models is reported to be better and treated as

state-of-the-art in the field of computer vision (Deng et al., 2019), speech process-

ing (Cauchi et al., 2019), speech enhancement (Pandey and Wang, 2019), machine

translation (Wang et al., 2018), music classification (Choi et al., 2017) and so on.

Information processing by DNNs is somewhat similar to that of human brain.

A series of interconnected neurons (layers) are stacked to construct DNN. The

parameters of each neuron (wigths and biases) are iteratively updated through

gradient descent optimization method, which minimizes the cost (error) between

actual and predicted outputs. A first layer that receives input is known as the

input layer. The last layer that predicts the output of a network is known as

the output layer. The intermediate layers between the first and last layers are

known as hidden layers. The network architecture and training procedure of a

DNN are defined by setting hyper-parameters such as number of layers, number

of hidden units in layers, regularization parameters, optimization parameters and

so on (Cakir et al., 2017).

Generally, Different variations of the spectrograms such as spectrogram im-

ages, mel-spectrograms etc., are used as input features to DNN models. These

models aim to learn higher-level feature representations through a hierarchy of in-

termediate representations generated from input spectrograms of acoustic events.

Mel-spectrogram is a matrix that contains mel band energy values obtained by

applying the mel filterbank to the magnitude spectrogram of the signal, frame-

by-frame. Further, the log is used to compress the dynamic range of the mel

spectrogram, resulting in the log mel spectrogram. Discrete Cosine Transform

(DCT) is applied over the log mel spectrogram to obtain MFCCs. Hence com-

putation steps of log mel spectrogram are same as MFCCs till DCT step (Davis

and Mermelstein, 1980). The combination of log mel spectrograms and CNNs are

widely used for AEC. However, it is hard to map the specific features learned by

DNNs to any known features. DNNs learn effectively when large training dataset

is used and may not perform well with limited sized training data.

From Table 2.4, it may be observed that SVM is a widely used statistical model
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for AEC. SVM supports both linear and non-linear kernel functions. Commonly

reported kernel functions for AEC in the literature are the linear (Dennis et al.,

2011), Radial Basis Function (RBF) (Sharan and Moir, 2015) and intersection ker-

nels (Pancoast and Akbacak, 2012). Linear kernel SVM is popular, simple and has

a low computational cost. However, linear SVM does not consider the non-linear

nature of input features. RBF kernel is widely used for various applications and it

is mainly used when nature of the input features is not fully known. Alternatively,

intersection kernel SVM is used to learn from the histogram (BoAW) features in

computer vision and it is evaluated by taking the inner product of feature vec-

tors. It is reported thta, intersection kernel SVM learns from nature of input

features and outperforms the linear and RBF kernels SVM for AEC (Pancoast

and Akbacak, 2012).

However, Computational complexity of non-linear SVM is O(n3) in training

and O(n) in testing, whereas computational complexity of linear SVM is O(n)

in both training and testing, where n is the number of support vectors (Yang

et al., 2009)(Wang et al., 2010). Linear SVMs learn better with sparse and more

discriminative feature vectors of acoustic events (Yang et al., 2009)(Wang et al.,

2010), whereas evaluation of kernel from dense feature vectors is more effective for

non-linear SVMs (Pancoast and Akbacak, 2012).

2.3 Polyphonic Acoustic Event Detection: A Re-
view

Polyphonic AED is a machine learning problem, that includes broadly two stages.

One is feature extraction or feature representation stage and the other is detection

or classification stage. During feature extraction, the acoustic features from audio

recordings can be represented as an input feature matrix X ∈ RN×T , this denotes

N acoustic features are extracted from T frames of audio recordings. The labels

are represented as target output matrix Y ∈ RC×T , where C denotes the number

of acoustic event classes in a dataset. The values of Y are binary values. If ith

acoustic event present in the jth frame, then Yi,j is set to 1 otherwise it is set to
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0 using reference annotation.

Detection stage is further involves two sub-stages. One is learning and the

other is the prediction. During learning, model f maps the inputX onto output Y .

During prediction, for a given feature vector of frame t, xt ∈ XN , f(x) outputs a

probability value that the acoustic event is present as p(yt|xt, θ), where θ represents

the model parameters. The predicted probabilities are then binarized using a

fixed threshold to obtain ŷt ∈ [0, 1]C . Model parameters are iteratively updated

to reduce the error between yt ∈ Y C and ŷt. Further, actual yt and predicted ŷt

are compared for performance evaluation.

2.3.1 Features

Features used for polyphonic AED are broadly classified into two types. One is

monaural and the other is binaural features. Monaural features are extracted from

the single channel of an audio recording, whereas binaural features are extracted

from both channels of an audio recording. Overlapped acoustic events can be rec-

ognized effectively using binaural features. This is similar to the human beings,

those use two ears (two channels) to recognize the sounds present in the surround-

ing environments. A summary of some of the monaural and binaural features are

listed in the Table 2.5.

Log mel band energies or log mel spectrograms are the popular features used in

most of the state-of-the-art methods of polyphonic AED. Log mel band energies are

computed either from monaural or from binaural channels. The Time Difference of

Arrival (TDOA) and dominant frequency features proposed by (Adavanne et al.,

2017) are specific binaural features. TDOA features are computed based on how

microphones (sound source) are spatially located in binaural scenario. The time

difference in the frequency bands of binaural channels is exploited for polyphonic

AED. In addition, dominant frequencies of the overlapped acoustic events in the

lower frequency region of the log mel spectrogram (100 to 400 Hz) from both

channels are considered for polyphonic AED.
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2.3.2 Classifiers

In the beginning, traditional statistical models such as NMF (Mesaros et al.,

2015), GMM-HMM (Heittola et al., 2010)(Mesaros et al., 2010) are reported for

polyphonic AED in the literature. Deep learning approaches are the state-of-

the-art methods for polyphonic AED. A summary of some of the DNN models

is given in the Table 2.5. Feed-Forward Neural Networks (FFNN) (Cakir et al.,

2015), Convolutional Neural Networks (CNN) (Cakir et al., 2016)(Gorin et al.,

2016), Bidirectional Recurrent Neural Networks (BRNN) (Parascandolo et al.,

2016) are successfully applied for polyphonic AED and reported significantly better

performance compared to traditional statistical classification methods. BRNN is

an extension of RNN that allows training in both positive and negative time

direction (Schuster and Paliwal, 1997).

Further, CNN and RNN architectures are combined to form Convolutional

Recurrent Neural Network (CRNN) model (Cakir et al., 2017), which took ad-

vantages of each architecture and performed better than the systems developed

using individual architectures. The CRNN consolidates the properties of CNN,

which extracts higher-level shift-invariant features and RNN learns long term tem-

poral information of the audio recordings. The CRNN may be considered as the

state-of-the-art for polyphonic AED as the approach has reported the best perfor-

mance. CRNN architecture is widely used to solve recent research challenges such

as Detection and Classification of Acoustic Scenes and Events (DCASE) (Virtanen

et al., 2016). However, CRNNs require a large dataset for training; if the dataset

is not sufficiently large, then this model encounters problem such as overfitting.

From available literature on input features and DNN models for polyphonic

AED, it is clear that still there is a scope to develop different feature representa-

tions apart from standard log mel band energies for polyphonic AED. As MFCCs,

log mel band energies are sensitive to noisy environments. Current state-of-the-art

DNN models may not be suitable for smaller sized datasets. Hence, there is scope

to design and develop a DNN model that is suitable even for smaller datasets.
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2.4 Acoustic Scene Classification: A Review

ASC systems reported in the literature are broadly classified into two types.

1. Individual ASC systems

2. Joint polyphonic AED and ASC systems (Joint model)

Individual ASC systems work in the same way as monophonic AEC systems do.

Temporal-spectral, cepstral (Eronen et al., 2006)(Malkin and Waibel, 2005) and

TF features (Rakotomamonjy and Gasso, 2015) are used for ASC. Both statistical

and DNN models widely used for this task (Geiger et al., 2013; Bae et al., 2016;

Mun et al., 2017).

Joint polyphonic AED and ASC system is a single system that recognizes the

events and respective scenes concurrently (Bear et al., 2019). Majority of the works

reported in the literature consider the polyphonic AED and ASC systems are two

different tasks (Stowell et al., 2015). However, the acoustic scene is recognized

based on information of acoustic events present in it. Accurate prediction of

acoustic events increases the accuracy of the ASC system (Barchiesi et al., 2015).

This is similar to human beings use a prior knowledge on presence of likely acoustic

events in a scene to recognize the acoustic scene.

Joint model proposed by (Bear et al., 2019), works in the same way as poly-

phonic AED system does. Feature representation stage of a joint model is ex-

plained below in brief. Acoustic features from audio recordings can be represented

as input feature matrix X ∈ RN×T , this denotes N acoustic features are extracted

from T frames of audio recordings. The labels are represented as target output

matrix Y ∈ R(C+Ĉ)×T , where C and Ĉ denote the number of acoustic event classes

and respective scenes respectively. The values of Y are binary values. If ith acous-

tic event present the jth frame, then Yi,j is set to 1 otherwise it is set to 0. Similarly,

if jth frame is a part of kth acoustic scene (audio recording), then Yk,j is set to 1

otherwise it is set to 0 using reference annotation.

Combination of monaural log mel band energies and CRNN is used for joint

polyphonic AED and ASC. Since there is only one work reported in the literature
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2.5. Research Gaps

on a joint model, there is a lot of scope for the design and development of novel

features and models to improve the recognition performance of joint model.

2.5 Research Gaps

Some important research gaps are identified from the above review and are listed

below.

• Frame-based speech features may not be suitable for AEC. Hence there is

a necessity to develop suitable features that can better capture the acoustic

event specific information.

• Real-time acoustic events are normally overlapped with high background

noise. Frame-based speech features are sensitive to noise. Fisher vector or

BoAW representations of frame-based features may not be suitable for AEC

especially in noisy conditions. There is a necessity to identify and represent

robust features for AEC in highly noisy environments.

• The features from spectrogram are proved to be robust to noisy backgrounds.

Feature extraction from two-dimensional spectrograms of large noisy audio

event dataset demands high computational time. There is a necessity to

develop a time-efficient method for feature extraction from spectrograms.

• DNNmodels used for monophonic AEC and polyphonic AED require a larger

dataset for training. Design and development of a novel DNN model that

efficiently works even for smaller datasets is an important research issue.

• There is a necessity to develop an effective system that performs both event

detection and ASC. Majority of papers available in the literature addresses

these issues as independent problems.

• A standard input to a polyphonic AED is log mel spectrogram. Different

varieties of spectrograms can be explored for evaluating the performance of

DNN models.
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• Polyphonic acoustic events and respective scenes may be recognized better

with features from multi channels. Hence, multi-channel features may be

explored for improving the performance of joint AED and ASC system.

• In conclusion, research on acoustic event and scene processing is still in its

infancy compared to the other audio related speech tasks. Novel features,

classifiers and datasets for different applications can be explored further in

this regard.

2.6 Problem Statement

Classification of acoustic scenes from large audio recordings by characterization

and identification of various acoustic events present. This problem is further

elaborated into the following objectives.

1. Characterization and recognition of monophonic acoustic events.

2. Characterization and recognition of polyphonic acoustic events.

3. Recognition of acoustic scenes based on the presence of acoustic events in

the audio file.

The defined research problem is elaborated with little insights below. The first

objective aims to identify robust acoustic event specific features for classification of

monophonic acoustic events in clean and noisy environments. The second objective

is to develop an effective model for detection of polyphonic acoustic events. Aim

of a third objective is to develop a useful joint model that recognizes both the

acoustic events and scene.

2.7 Common Resources used in this Work

Common resources such as datasets, classifiers and baseline systems used for mono-

phonic AEC, polyphonic AED and ASC are explained below in brief.
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2.7.1 Common Resources used for Monophonic Acoustic
Event Classification

There are two datasets used for evaluation of proposed monophonic AEC systems.

One is UPC-TALP dataset (Temko and Nadeu, 2009), used for robust acoustic

event specific feature computation and the other is Mivia audio event dataset

(Foggia et al., 2015), used to develop time efficient monophonic AEC system.

A UPC-TALP Dataset

Twelve different isolated meeting room acoustic events, namely: applause (ap), cup

jingle (cl), chair moving (cm), cough (co), door slam (ds), key jingle (kj), knock

(kn), keyboard typing (kt), laugh (la), phone ring (pr), paper wrapping (pw) and

walking sounds of steps (st) are selected for monophonic AEC. Approximately 60

acoustic events per class are recorded using 84 microphones. An array of 64 Mark

III microphones, 12 T-shape cluster microphones, 8 table top and omni-directional

microphones are used for recording. In this work, only the third channel of Mark

III array is considered for evaluation. Acoustic events are trimmed to the length of

given annotations and resulting data is divided into five disjoint folds to perform

five-fold cross-validation. Each fold has equal number of acoustic event clips per

class.

To compare the robustness of the proposed approach, ’speech babble’ noise

from NOISEX’92 database (Varga and Steeneken, 1993) is added to the acoustic

events at 20, 10 and 0dB SNRs. All acoustic event clips are available with 44100

Hz sampling rate.

B Mivia Audio Event Dataset

Three classes of acoustic events of interest namely glass breaking, gunshot and hu-

man screaming are considered from Mivia acoustic event dataset for surveillance

applications. The acoustic events of interest are overlapped with highly noisy

background sounds at 5dB, 10dB, 15dB, 20dB, 25dB and 30dB SNR. The back-

ground noise includes both indoor and outdoor noises, such as Gaussian noise,

crowded ambiance, whistles, rain, bells, household appliances, vehicles, claps, and
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applauses. It is observed from the dataset that acoustic event like human scream-

ing is similar to the crowded ambiance. Hence, recognition of acoustic events is

more challenging. The dataset contains 396 and 184 continuous audio streams

of length about three minutes for training and testing respectively. Each audio

stream contains three acoustic events overlapped with background noise and only

background noise at specific SNR in sequence. The events are trimmed to the

length of given annotation. Out of 6000 events of each class, 4200 are used for

training and 1800 for testing making 20 hours training data and 9 hours of testing

one. All acoustic events are processed at 32000 Hz sampling rate.

C Classifiers

Linear, intersection and Chi-square kernels on SVM classifiers are used for mono-

phonic AEC system. Linear and intersection kernels are computed as given in

(Pancoast and Akbacak, 2012). Chi-square distance kernel is computed for SVM

as follows. Chi-square distance between any two normalized feature vectors h1

and h2 is given in (2.1).

χ2(h1, h2) =
1

2

M∑
i=1

(h1i − h2i)2

h1i + h2i
(2.1)

Where M is the number of features. The Chi-square distance of feature vectors

is computed using (2.1) in a pairwise manner and then, it is converted into the

kernel using (2.2) for SVM classification.

Kχ2(h1, h2) = e−αχ
2(h1,h2) (2.2)

Where α is a constant scaling factor, which is computed as the mean of Chi-square

distance between all training features. Lower the Chi-square distance higher the

match between features.

D Baseline systems

Two common baseline systems are used for monophonic AEC system evaluation.

1. Mean and standard deviation representations of 13 MFCCs and their first

and second-order derivatives are taken over each frame, resulting in 39 × 2

dimensional feature vector.
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2. Mean and standard deviation representations of 13 GTCCs and their first

and second-order derivatives are taken over each frame Valero and Alias

(2012), resulting in 39× 2 dimensional feature vector.

2.7.2 Common Resources used for Polyphonic Acoustic Event
Detection

The common datasets used for polyphonic AED is explained below in brief.

A TUT-SED 2016 development dataset

TUT-SED 2016 development dataset is developed and released as a part of the

DCASE-2016 challenge. It includes manually annotated 22 real-life recordings

from two acoustic scenes namely, home (an indoor scene) and residential area (an

outdoor scene). Each audio recording is of 3-5 minutes long, resulting in a total

of 78 minutes of audio data. The home scene includes eleven annotated acoustic

events spread over ten recordings and the residential area includes seven annotated

acoustic events spread over twelve recordings. The acoustic events present in home

and residential area scenes are given in Table 2.6. All acoustic event clips are

recorded with 44100 Hz sampling rate.

2.7.3 Common Resources used for the Joint Model

The common dataset used in this study for polyphonic AED and ASC is explained

below in brief.

A Joint Sound Event and Scene Dataset

Joint sound event and scene dataset includes manually annotated 32 acoustic

events from ten acoustic scenes. Each scene includes 300 audio recordings of 30

seconds length, resulting in total of 25 hours of audio data. Polyphony level of

acoustic events is 3 in any acoustic scene. That means a maximum of three acoustic

events are overlapped in any scene. Number of acoustic events in a scene ranges

from 1 to number of events in a scene + 1 × polyphony level. The acoustic events
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Table 2.6: Acoustic events present in Home and Residential area scenes of ’TUT-
SED 2016’ development dataset.

Home Residential area
Acoustic event

classes
Number of

acoustic events
Acoustic event

classes
Number of

acoustic events

rustling 41 banging 15

snapping 42 bird singing 162

cupboard 27 car passing by 74

dishes 94 children shouting 23

drawer 23 people speaking 41

glass jingling 26 people walking 32

object impact 155 wind blowing 22

people walking 24

washing dishes 60

water tap running 37

present in the ten acoustic scenes are listed in Table 2.7. All acoustic event clips

are recorded with 44100 Hz sampling rate.

2.8 Summary

This chapter highlighted the available datasets and critically reviewed the fea-

tures and classifiers used in monophonic AEC, DNN models in polyphonic AED

and little work done in joint AED and ASC model. Database section lists differ-

ent datasets used for monophonic AEC, polyphonic AED and ASC. Monophonic

and polyphonic datasets are developed with different intentions and for different

applications. A list of developers (universities), size of datasets in terms of num-

ber of recordings, number of acoustic events, number of acoustic scenes, length of

datasets along with proper references has been given. The features and classifiers

for monophonic AEC are reviewed with their success and failures performance for

monophonic AEC. DNN models with their strengths and shortfalls are discussed
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Table 2.7: Acoustic events present in ten different acoustic scenes of ’joint sound
event and scene’ dataset.

Acoustic
scenes

Acoustic
events

Range of number
of acoustic events

bus clear throat, cough, keys, laughter,
phone, speech. 1-21

busy street
bus pass by, door close, footsteps,

key lock, knock, laughter, motorbike,
speech, running, wind.

1-33

office
chairs moving, door slam, drawer,

keys, knock, laughter,
switch, phone.

1-27

open air market
bag rustle, bus pass by, cooking,

footsteps, footsteps on grass, light rain,
money, speech, wind.

1-30

park

bus pass by, birdsong,
footsteps on grass, gate, laughter,

light rain, phone, push bike,
speech, wind.

1-33

quiet street birdsong, footsteps, key lock,
light rain, push bike, wind. 1-21

restaurant chairs moving, cooking, door close,
footsteps, laughter, speech. 1-21

supermarket bag rustle, checkout beeps, footsteps,
money, switch, trolley. 1-21

tube announcement, bag rustle, footsteps,
phone, sliding door close, speech, train. 1-24

tube station announcement, footsteps, running,
sliding door close, speech, train. 1-24

in the context of polyphonic AED review. A single joint AED and ASC system

with its future improvements in terms of features and DNN models is highlighted

in ASC review. The research gaps are listed and problem statement of the current

work is done at the end of the chapter. Details of the common resources used in

the current work are also given.
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CHAPTER 3

Monophonic Acoustic Event
Classification

In this chapter, we present three acoustic event specific features: Spectrogram

Features (SFs), Spectrogram Image Features (SIFs), MapReduce based Features

(MRFs), extracted from spectrograms for monophonic AEC.

3.1 Monophonic Acoustic Event Classification us-
ing Spectrogram Features

In this section, the features are extracted from spectrograms through Singular

Value Decomposition (SVD). SVD is a popular linear algebra technique introduced

by Beltrami and Jordan in 1870’s on square matrices (Klema and Laub, 1980).

SVD decomposes the matrix into singular values and vectors. Singular values

are real positive numbers. Singular vectors are orthogonal in nature (Van Loan,

1976). SVD identifies the dominant variations in the matrix. Higher singular

values and respective vectors of a matrix have significant information about the

pattern present in the matrix (Boashash et al., 2015). Hence, SVD can be used

for object identification in videos (Cernekova et al., 2003) and images (Shi and

Malik, 2000). However, to the best of our knowledge, SVD is not explored for

AEC tasks.

The main motivation behind this work is, unlike speech with its phonetic rep-

resentation, acoustic events are short in duration and have distinct TFRs. Hence,

the visual information of spectrograms may produce good features for AEC. The
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detailed method is explained below in brief.

3.1.1 Spectrogram Feature Extraction using Singular Value
Decomposition

The steps involved are listed below.

• Generation of logarithmic spectrograms using Short Time Fourier Transform

(STFT).

• Resizing the spectrogram to 50 × 50 TF matrix to reduce computational

complexity.

• Increasing the magnitude of the spectral components of a TF matrix by

squaring the samples, which enhances the separation between event and

non-event parts of the spectrogram.

• Generation of one-dimensional graph signal of size 1×2500 from two-dimensional

TF matrix of size 50× 50.

• Generation of Laplacian matrix using weight matrix of a graph signal.

• Decomposition of symmetric Laplacian matrix into singular values and vec-

tors.

• Estimation of a threshold from the second smallest singular vector and it

divides the singular vector into two parts. One part extracts the high energy

spectral components of an acoustic event from the spectrogram.

• High energy spectral components of an acoustic event are considered as

feature vectors to SVM for AEC.

These steps are explained below in brief.
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A Logarithmic spectrogram generation

The spectrogram is generated using Short Time Fourier Transform (STFT) for-

mulation given in (3.1) (Oppenheim, 1970).

X(k, t) =
N−1∑
n=0

x(n)ω(n)e
−2knπ
N , k = 0, ..., N − 1 (3.1)

Where ω(n) is a Hamming window function, x(n) is nth sample of a signal in time

domain, X(k, t) is the harmonic of k corresponding to the frequency fk = fsk
N

for

frame t, f s = 44100 Hz is a sampling rate. The window length (N) of 256 samples

with 50% overlap is considered for spectrogram generation.

The STFT of an acoustic event gives spectrum with a complex values which in-

cludes real and imaginary parts. The magnitude of a STFT yields linear spectro-

gram and the log is taken to get logarithmic spectrogram using formulations (3.2)

and (3.3).

S(k, t) = |X(k, t)| (3.2)

SL(k, t) = log(S(k, t)) (3.3)

Where log is used to reduce the dynamic range of spectrogram energies and this ap-

proach enhances the spectral components belonging to an acoustic event. SL(k,t)

is a Time-Frequency (TF) matrix, k is a frequency bin of range between 1 to 129

and t is a time frame. Frequency bins kmin=1 and kmax=129 corresponding to the

zero and 22050 Hz respectively.

Logarithmic spectrogram represents the energy distribution of an acoustic

event over time and frequency domains. Majority of the acoustic event energy

is concentrated in lower frequencies ( see spectrogram of an acoustic event chair

moving in Figure 3.1b). The spectrogram SL(k, t) is resized to 50 × 50 square

time-frequency matrix to reduce the computational complexity, at the cost of min-

imal information loss which is not significant for the work undertaken. The resize

operation reduces the resolution of a spectrogram image. However, the high en-

ergy spectral components belonging to the event are still unaffected and visible.

The logarithmic spectrogram varies along time (t). The resized spectrogram is
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Figure 3.1: Acoustic event spectrograms. (a) acoustic event chair moving ; (b)
logarithmic spectrogram (SL) of chair moving ; (c) resized (50× 50) spectrogram
of chair moving ; (d) squared values of resized spectrogram of chair moving.

invariant to time and resolves the dimensionality ambiguity during feature vector

construction. One can differentiate high energy spectral components of an acous-

tic event in the spectrogram image based on their colors. Blue color corresponds

to the low energy, yellow and green correspond to intermediate energy and high

energy is reflected through red colored spectral components. High energy spec-

tral components belonging to acoustic events have higher values in SL(k, t), and

these are represented by red color in spectrogram image. As the energy of a signal

reduces, the spectral components gradually reduce towards low negative values

in SL(k, t) and correspondingly color changes from red to yellow, to green and

finally to blue in spectrogram images as shown in Figure 3.1c. To enhance the

separation of event and non-event spectral components from TF matrix SL(k, t)

and to convert logarithmic spectrogram into a graph signal, magnitude of each
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3.1. Monophonic Acoustic Event Classification using Spectrogram Features

spectral component is squared as shown in the formulation (3.4).

SE(k, t) = (SL(k, t))2 (3.4)

This operation suppresses the magnitude of spectral components belonging to an

acoustic event compared to those of non-event. For instance, spectral components

of ’plate-sorting’ range from -12.535,...,0,...2.0667 in SL(k, t). The smaller positive

values from zero onwards belong to the event, smaller negative values from zero

downwards belong to the non-event. Squaring of each component transforms the

low negative values of non-events to the higher strata compared to the spectral

components of the events. Hence, the color of non-event spectral components

changes from blue to green, to yellow, to red and color of spectral components

belonging to event changes from red to yellow, to green, to blue in spectrogram

images as shown in Figure 3.1d.

B Mapping a spectrogram onto a graph

SVD is performed on symmetric Laplacian matrix, which is obtained from the

weight matrix of a graph. Hence, one-dimensional graph signal is generated from

two-dimensional SE(k, t) matrix as described below.

A graph is defined as G = (V,W ), where V = {v1, ..., vN} is the set of N

vertices, W is an undirected weight matrix. First, two-dimensional SE(k,t) matrix

is converted into a one-dimensional row vector e of size 1 × 2500 by appending

columns of TF matrix SE(k, t) one after the other as given in the formulation

(3.5).

e = [e1....eN ]T ε RN (3.5)

The e in (3.5) is a one-dimensional vector known as a graph signal (Sandryhaila

and Moura, 2014; Mulimani et al., 2017). The graph signal e is defined from

SE(k, t) by mapping set of vertices onto the set of real numbers as shown below.

e : V → R

vn → en

Where, R is set of real numbers of length N = 50× 50
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3. Monophonic Acoustic Event Classification

The vector e is normalized to [0-1] scale using the formulation (3.6)

e =
e

max(e)
(3.6)

The spectral component en of e given in (3.5) is situated at vertex vn in a

graph, in other words, en is indexed by vn.

C Weight matrix W i,j

Graph signal is an undirected one. The weight of an edge between i and j is

defined by the thresholded Gaussian kernel weight function (Shuman et al., 2013)

given by (3.7) and (3.8). The weight matrix of a graph signal is computed using

(3.9).

P i,j =


exp

(
− [dist(vi,vj)]

2

θ2

)
, if dist(vi, vj) ≤ h

1, i = j

0, otherwise

(3.7)

Qi,j =


exp

(
− [dist(ei,ej)]

2

ω2

)
, if dist(ei, ej) ≤ h

1, i = j

0, otherwise

(3.8)

W i,j = P i,j ×Qi,j (3.9)

Where dist(vi, vj) corresponds to the Euclidean distance between vertices in graph

signal, vi and vj; dist(ei, ej) represents the physical distance between the spectral

components ei and ej of graph signal e indexed by vi and vj, values of the param-

eters h, θ and ω are empirically chosen to be 5, 0.1 and 0.3 respectively. A weight

matrix W i,j ε RM×N (M = 2500, N = 2500) represents the presence of an undi-

rected edge from vi to vj with specific weight that indicates the similarity between

ei and ej, the spectral components of a graph signal. The spectral components

belonging to event and non-event are dissimilar components connected by an edge

with higher weight.
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D Degree matrix D

Degree matrix D is a diagonal matrix whose diagonal element di is the sum of

weights of all edges incident on vertex i (Spielman, 2010) and is computed based

on (3.10).

D(i, i) =
∑
j

W (i, j) (3.10)

E Laplacian matrix L

Laplacian matrix L is defined (Merris, 1994) as (3.11).

L = D −W (3.11)

Where D is degree matrix, W is weight matrix.

F Singular Value Decomposition

The symmetric matrix LP = L + LT is decomposed into singular values and

singular vectors using (3.12),

LP = U
∑
V T (3.12)

Where U and V T are M × N orthogonal matrices,
∑

is M × N diagonal matrix

which has non negative real numbers σ1 ≥ σ2 ≥ ... ≥ σN as its diagonal elements.

The diagonal elements σi of
∑

are called as the singular values, Each column of

U and V is known as left singular vector and right singular vector respectively

(Golub and Reinsch, 1970; Wall et al., 2003). Each column of U or V is associated

with the corresponding singular value. The first column (first singular vector)

is associated with the larger singular value (σ1), whereas last singular vector is

associated with the smallest singular value (σN).

In this work, left singular vectors are considered for feature extraction from

spectrograms. The number of sign transitions from positive to negative (zero

crossings) is called as the frequency of singular vectors (Shuman et al., 2013). The

number of zero crossings of the singular vectors corresponding to higher singular

values is higher compared to the singular vectors corresponding to lower singular
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Figure 3.2: Zero crossings in left singular vectors U of chair moving after Singular
Value Decomposition.
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Figure 3.3: Singular vectors of chair moving obtained after Singular Value Decom-
position. (a) singular vector u1; (b) singular vector uN−1 (last but one).

values. For instance, the number of zero crossings of chair moving reduces from

the first singular vector (u1 = 1) towards higher singular vectors (uN = 2500)

gradually (see Figure 3.2). The left singular vectors u2, uN−1 of an acoustic event

chair moving are shown in Figure 3.3. The singular vector uN is a constant,

and its corresponding singular value is zero (Shuman et al., 2013). As singular

values monotonically decrease, and the corresponding singular vectors have similar

appearances of sinusoids in the time domain (see uN − 1 in Figure 3.3b). The

high positive and corresponding low negative values in u2 generate visible spikes.

These spikes represent the significant information about the energy variation in

the signal. The second singular vector u2 alone effectively characterizes the energy

variations in the graph signals due to their unique properties (Mohar et al., 1991;
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Figure 3.4: Acoustic event chair moving. (a) singular vector u2 (b) high zero
crossings observed in u2 ; (c) visible spikes seen in u2; (d) singular vector u2
without spikes.

Kim and Mesbahi, 2006). Hence u2 is considered as the acoustic event specific

feature from spectrogram.

G Feature Extraction from Spectrograms using Singular Vector (u2)

First, we need to identify a threshold Et that divides the singular vector u2 of

length N into two parts. One part represents the event (high energy spectral

components of an event) and the other belongs to the non-event. To perform

this, a three-stage approach is proposed. The first one is to preprocess u2 for

identification of threshold Et, the second one is to define the threshold Et using

the preprocessed singular vector u2 and the third one is to divide the singular

vector u2 into two parts using chosen threshold Et. Each stage is explained below

in brief.
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Preprocessing: By general observation it may be noted that, the values in u2

are distributed between very high to too small values ranging from ±v× 10−01 to

±v×10−28 in any acoustic event. The values with exponent greater than −03 (such

as −01,−02) generate visible spikes and their number depends on the duration

and energy variations in the signal ( shown in Figure 3.4b). Clear appearance of

visible spikes in u2 likely represents the events in the spectrogram. Based on this,

two empirical assumptions are made. The first one is, the values greater than 10−03

and smaller than −10−03 generate spikes belonging to the event. These values are

identified ( shown in Figure 3.4c) and excluded from u2. There are no clear spikes

in the remaining values of u2. The magnitudes of the majority of values are too

small, roughly equal to zero (see Figure 3.4d) and closely distributed on either

side of zero line. Further, we need to identify the positive and corresponding

negative values (zero crossings) to understand whether they belong to the event

or not. The negative values in u2 are approximately equal to the corresponding

positive values of zero crossings (see y-axis of Figure 3.4d). Hence, only negative

values are considered. The second assumption is that the values lesser than 10−17

and greater than −10−17 belonging to the non-event. Hence, too small values near

to zero and falling above −v × 10−17 are excluded. Further, it is necessary to

analyze the variations in the values from −v× 10−04 to −v× 10−17 and define the

threshold, which divides u2 into two parts namely event and non-event.

Identification of threshold Et: The absolute values from u2 with exponents

from -04 to -17 obtained from previous preprocessing step are used for threshold

identification. The numbers with each exponent (order of magnitude) are named

as a sequence. For instance, the sequence with exponent -10 of chair moving

are given in Table 3.1. It is observed that, generally values v in a sequence,

monotonically decrease from nine to one. The values in a sequence beginning with

the same value are grouped together and named as the sub-sequence. Few sub-

sequences of a sequence with exponent -10 of chair moving are given in Table 3.1.

Nature of remaining sequences with different exponents remains similar. It is

observed that the numbers (v) in the sequences vary by a small margin. Hence,
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3.1. Monophonic Acoustic Event Classification using Spectrogram Features

Table 3.1: Sub-sequences of a sequence of values with ex-
ponent -10, chosen from singular vector u2; Event: chair
moving

Exponent Values (v) Difference
vi−1 − vi

Remarks

-10 9.8450 - sub-sequence starts with 9

9.7721 0.0729

... ...

9.3594 -

9.0515 0.3079

8.5219 0.5296 sub-sequence starts with 8

8.5087 0.0132

... ...

8.1512 -

8.0013 0.1499

... ... ...

1.8582 - sub-sequence starts with 1

1.6527 0.2055

... ...

1.2463 -

1.1714 0.0749

the difference between any two consecutive numbers is less than one. If there are

bigger variations in the sequences, then they are the potential points for thresholds

for distinguishing the event and non-event. Observation of Table 3.1, 3.2 and 3.3

hint that,

1. Sometimes sub-sequence may not start with nine.

2. Some sub-sequences may be absent.

In observation 2, the difference between two particular consecutive numbers in

’u2’ is more than one. For instance, the values in the sequence with exponent -10

of chair moving are closely varying and the difference between any two consecutive

values (vi−1 and vi) in the sequence is less than one (see Table 3.1). If the difference

between vi−1 and vi is less than one, then in this approach, we ignore the change

and treat it as no variation. Therefore, there are no variations in the sequence
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Table 3.2: Sub-sequences of a sequence of values with ex-
ponent -09, chosen from singular vector u2; Event: chair
moving

Exponent Values (v) Difference
vi−1 − vi

Remarks

-09 9.2755 - sub-sequence starts with 9

9.2629 0.0126

... ...
8.8344 - sub-sequence starts with 8

8.5386 0.2958

8.5168 0.0218

8.0145 0.5023

6.5388 1.4757 sub-sequence starts with 6
Threshold (Et) is equal to

6.5388× 10−09

which is the last variation

... ... ...

Table 3.3: Sub-sequence of a sequence of values with ex-
ponent -04, chosen from singular vector u2; Event: chair
moving

Exponent Values (v) Difference
vi−1 − vi

Remarks

-04 9.9012 - sub-sequence starts with 9

9.1450 0.7562

7.9494 1.1956 sub-sequence starts with 7
Variation Th is equal to

7.9494× 10−04

4.9434 3.0060 sub-sequence starts with 4
Variation (Th) is equal to

4.9434× 10−04

2.9197 2.0237 sub-sequence starts with 2

2.5720 0.3477 Variation (Th) is equal to
2.9197× 10−04

1.8992 0.6728 sub-sequence starts with 1

... ...
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Figure 3.5: Parts of singular vector u2 of chair moving. (a) values selected by
threshold ±Et; (b) values of u2 not selected by threshold ±Et.

with exponent -10. However, in the case of, the sequence with exponent -04, the

sub-sequence starting with three, five, six and eight are not present. Hence, the

differences between the consecutive v values at this point are higher than one (see

Table 3.3) and those are considered as variations (Th). Similarly, in ’u2’ of some

acoustic events, sub-sequence may not begin with nine. This is an instance of the

first case. In such situation, the first number of sub-sequence starting with next

number is considered as the variation.

Further, the threshold (Et) is selected from the list of variations (Th), that

divides u2 into two parts. One is with variations and other is without variations.

For instance, in the case of chair moving, last variation is observed in the sequence

of exponent -09 (see Table 3.2) and it is considered as the threshold (Et).

Extraction of features from spectrogram: Threshold Et which is derived

in the previous step, divides u2 into two parts. One part represents the high-

energy spectral components of an acoustic event (spectral shape of an event) in

the corresponding spectrogram. The values greater than +Et and lesser than

−Et of u2 (in the range ±Et) belong to one part, and the other values belong to

the other part. For instance, the values of u2 of chair moving selected by ±Et
and values not selected by threshold ±Et are shown in Figure 3.5a and 3.5b

respectively. The visible spikes are present in both figures (the one, selected by

±Et and the other not selected by ±Et) of u2. However, the absolute magnitude of
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Figure 3.6: Types of spikes. (a) Individual spikes observed in singular vector u2;
(b) Continuous multiple spikes observed in singular vector u2.
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Figure 3.7: Properties of spikes present in u2. (a) high positive value followed by a
low negative extension; (b) high negative value followed by low positive extension;
(c) low negative value followed by high positive extension; (d) low positive value
followed by high negative extension.
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the spikes chosen by ±Et is much higher than the spikes not selected by ±Et (see

y-axis scale difference in the cases Figure 3.5a and 3.5b). As already discussed,

majority of values of u2 are approximately equal to zero with few exceptions. The

high magnitude spikes represent the sudden energy variation in the signal. There

are two types of such spikes, namely,

• Well separated individual spikes (see Figure 3.6a).

• Continuous spikes (see Figure 3.6b).

Further, spikes present in the values of u2, not selected by the threshold ±Et, are

analyzed. ’u2’ contains both single and continuous spikes. From the preliminary

experiments it is observed that, if values of u2 (not selected by the threshold range

±Et) contain more number of single spikes with higher positive values followed by

lower (absolute) negative extensions (see Figure 3.7a) or higher negative (abso-

lute) values followed by lower positive extensions (Figure 3.7b), like the one shown

in Figure 3.6a, then part of ’u2’ not selected by the threshold ±Et represents non-

event spectral components. Part of ’u2’ selected by the threshold ±Et represents

high-energy spectral components belonging to ’event’ of a logarithmic TF matrix

SL given in (3.9). If u2 (not selected by threshold range ±Et) contains more num-

ber of continuous spikes starting with low (absolute) negative values followed by

high positive extensions (see Figure 3.7c), or low positive values followed by high

negative (absolute) extensions (see Figure 3.7d), like the ones shown in Figure

3.6b, then part of ’u2’ not selected by the threshold ±Et represents ’event’ spec-

tral components. Part of ’u2’ selected by the threshold ±Et represents non-event

spectral components of a logarithmic TF matrix SL. The large energy variation in

a signal generally causes sign transition (either from positive to negative or from

negative to positive) in the values of u2 and the magnitude changes from lower to

higher.

High energy spectral components of an acoustic event chair moving are ex-

tracted using a part of u2 selected by a threshold ±Et (see Figure 3.8b1). In

the case of key jingle, due to frequent and abrupt energy change from low to high,
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Figure 3.8: Spectrogram feature extraction using singular vector u2 (a1) logarith-
mic spectrogram of chair moving ; (b1) spectrogram features of chair moving ; (a2)
logarithmic spectrogram of key jingling ; (b2) spectrogram features of key jingling.

values of u2 ( not selected by threshold ±Et) include more number of spikes begin-

ning with lesser value (absolute, Figure 3.7c and Figure 3.7d) and they represent

high energy spectral components of a key jingle (Figure 3.8b2).

3.1.2 Evaluation

The proposed method is evaluated on UPC-TALP dataset. Recognition accu-

racy is considered as an evaluation metric. Linear SVM is chosen as a classifier

and its optimal parameters are selected using five-fold cross-validation. The pro-

posed method is compared with the method developed using MFCCs as a baseline

method.

The high energy spectral components of an acoustic event matrix of size 50×

50 (For instance, see Figure 3.8b1 or Figure 3.8b2) is converted into the one-
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Table 3.4: Performance comparison of monophonic acoustic event recognition (in
%) of the proposed Spectrogram Features with baseline system using SVM classi-
fier.

Features Accuracy (%)

MFCCs 74.79

Spectrogram Features (SFs) 80.09

dimensional feature vector Y of size 1× 2500 by appending its columns one after

the other in a row. The third (µ3) and fourth (µ4) order central moments are

calculated using equation (3.13) from Y and appended to it, that gives 1 × 2502

dimensional feature vector.

µr = E(Y − E(Y ))r (3.13)

where µr is the rth central moment about the mean µ of the probability distribution

Y, E is statistical expectation. High energy spectral components of an acoustic

event from a spectrogram and its central moments together are called in this

work as a Spectrogram Features (SFs). Further, SFs are normalized between 0

and 1. The average recognition performance of monophonic AEC system with

proposed SFs and MFCCs (baseline system) are given in Table 3.4. Results show

that proposed SFs recognize acoustic events with an accuracy of 80.09%. The

important spectral information of an acoustic event is lost in mean and standard

deviation over each frame of MFCCs. Acoustic events have distinct spectral shapes

in spectrograms, which are adequately captured by the proposed approach. Hence,

the proposed SFs outperform the baseline system through the improvement in

marginal.

3.1.3 Contributions and Limitations

To the author’s knowledge, this is the first work that has proposed SVD for spec-

trogram feature extraction. The proposed approach automatically extracts the

distinct spectral shape in an acoustic event from a spectrogram without any prior

knowledge about the event. The proposed SFs outperform conventional MFCCs

and contribute to acoustic event specific features used for AEC tasks.
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Figure 3.9: Acoustic event Chair moving with speech babble noise at 0dB SNR. (a)
logarithmic spectrogram of chair moving at 0dB SNR; (b) spectrogram features
of chair moving at 0dB SNR.

The main limitation of the proposed approach is an issue of sensitivity to

the noisy conditions. In a real-time scenario, acoustic events are generally over-

lapped with high background noise. In such situation, the singular vector fails to

discriminate the spectral components belonging to the acoustic event and noise

in a spectrogram (see Figure 3.9b, part of a singular vector u2 selects spectral

components belonging to the event and speech babble noise at 0dB SNR). Hence,

proposed approach may not be suitable during noisy conditions.

3.2 Robust Monophonic Acoustic Event Classifi-
cation using Spectrogram Image Features

In this work, three different features are evaluated from the spectrogram image

for robust AEC; those are listed below and named as Spectrogram Image Features

(SIFs).

1. Bag-of-Visual-Words (BoVWs).

2. Fusion Fisher Vector (FFV) Features.

3. Fusion-based Bag-of-Features (FBoFs).

The features extracted from spectrogram images and discussed in the second chap-

ter are robust to noise. However such features are computationally expensive and
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their statistical representation leads to the considerable loss of information. In this

section, different higher-level feature encoding methods such as BoVWs, Fisher

vectors are discussed. Generally these are also robust to noise.

BoVWs are widely used in the literature for object recognition in the field of

computer vision (Yang et al., 2007). In this work, BoVWs are explored for AEC.

Generally, Scale Invariant Feature Transform (SIFT) feature vectors are commonly

represented as BoVWs (Lowe, 2004). However, SIFT descriptors effectively recog-

nize objects appear at a different scale, location and poses. An acoustic event in

the spectrogram is mostly free from such variations, except variation along time.

Hence, SIFT descriptors may not be suitable for AEC. Intensity values of the

spectrogram image are considered as features. A combination of BoAWs (repre-

sentation of speech features) and BoVWs, resulting in FBoFs is also explored for

effective AEC.

3.2.1 Robust Acoustic Event Classification using Bag-of-
Visual-Words
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Figure 3.10: Overview of the proposed Bag-of-Visual-Words features. (a) Acous-
tic events; (b) grayscale spectrogram images of acoustic events; (c) transposed
grayscale spectrogram images; (d) visual codebook; (e) and (f) vector quantiza-
tion; (g) BoVW (histogram) representation

Overview of the proposed approach is given in Figure 3.10. Initially, the
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3. Monophonic Acoustic Event Classification

grayscale spectrogram is generated from an acoustic event. Visual words are gen-

erated from the grayscale spectrogram using k-means clustering. Finally, rows of

spectrograms are quantized to get BoVWs as the feature vectors to SVM.

A Grayscale Spectrogram Image Generation

A grayscale intensity spectrogram image is generated (see grayscale spectrogram

in Figure 3.10b) by normalizing the values of linear spectrogram S(k, t) (computed

using Eq. 3.2) between [0, 1] as given in equation (3.14).

GI(k, t) =
S(k, t)−min(S)

max(S)−min(S)
(3.14)

Acoustic events are changing rapidly concerning time, which may cause dimen-

sional variations. Hence, grayscale spectrogram image GI(k, t) is transposed as

given in formulation (3.15) to get fixed 129-dimensional row vectors (transposed

grayscale spectrogram is shown in Figure 3.10c).

G(t, k) = GI(k, t)T (3.15)

Each row of G(t, k) is considered as a 129-dimensional feature vector of intensity

values for BoVW representations.

B BoVW Representations

Given a training partition P , containing n randomly selected acoustic events per

class represented by P = p1, p2, ..., pn, where pn = y1, y2, ..., yT is the set of feature

vectors (rows) of a nth grayscale spectrogram of an acoustic event, where T is

the number of time frames. In this work, five grayscale spectrograms per class

are randomly selected and those are sufficient enough to generate discriminative

BoVWs. Hence n = 5 × q, where q is the number of acoustic event classes. The

BoVW model includes two steps: dictionary learning and vector quantization,

which are explained below in brief.

Dictionary learning: The K-means clustering algorithm is used to group

P into the fixed number of mutually exclusive clusters. The centroids of these

clusters are referred to as visual words. All visual words together constitute a
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vocabulary or a dictionary (shown in Figure 3.10d). There is no known best way

to select the size of the vocabulary, i.e., the number of visual words. In this work,

the size of the vocabulary ranging from 64 to 512 is considered and its impact on

the performance of AEC is analyzed.

Vector quantization: Once the visual vocabulary with M visual words is

generated, feature vectors (rows) of a grayscale spectrogram (G(t, f)) are quan-

tized to the visual words, i.e., assigned to the nearest visual word in the vocabulary

using Euclidean distance (shown in Figure 3.10e and 3.10f). At this point, each

feature vector (extracted per time frame) is replaced by the single index, which

represents the nearest visual word to that feature vector and this process is known

as vector quantization. Further, the histogram or bag (Bag-of-Visual-Words) is

generated which gives the number of occurrences of the words in a spectrogram.

Finally, normalized (using `1 normalization ) BoVWs are considered as feature

vectors to train a classifier.

3.2.2 Robust AEC using Fusion Fisher Vector Features

Pseudo-color
spectrogram 
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Fisher vector

Fisher vector

Fisher vector 

F
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io
n

PCA

PCA

PCA

Fusion Fisher
Vector 

Figure 3.11: Overview of the proposed Fusion Fisher Vector feature extraction.

After generating the pseudo-color spectrogram of an acoustic event, monochrome

images are obtained from it and represented them as Fisher vectors. Application

of PCA removes the irrelevant features from the Fisher vectors. These are fused

to get FFV features later.
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Figure 3.12: HSV pseudo-color mapped spectrograms of an acoustic event at clean
and 0dB SNR. (a) acoustic event chair moving; (b) pseudo-color spectrogram at
clean condition; (c) pseudo-color spectrogram at 0dB SNR; (d) HSV colormap.

A Pseudo-color spectrogram generation

In this step, first, an acoustic event is represented as Gammatone spectrogram

S(k, t), where k (ranging from 1 to F ) is the center frequency of the Gammatone

filter and t is the time frame obtained by windowing the signal into frames using the

hamming window of length 20ms with 50% overlap. The sampling rate is 44100

Hz and F = 64. Along time axis, filters are equally spaced on the Equivalent

Rectangular Bandwidth (ERB) scale. The logarithmic Gammatone spectrogram

is obtained from S(k, t) using the equation (3.16).

S(k, t) = log(S(k, t)) (3.16)

Further, values of Time-Frequency matrix S(f, t) are normalized between [0, 1] us-

ing the formulation (3.14) to get grayscale intensity spectrogram image. Grayscale
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spectrogram image is transposed (3.15) to get fixed 64-dimensional row vectors.

Grayscale spectrogram (G(t, k)) is quantized and mapped onto different monochrome

images (3.17) and this process is called as pseudo-color mapping (Dennis et al.,

2011).

Xq(t, k) = fq(G(t, k)) ∀q ∈ (q1, ..., qN) (3.17)

where Xq is the Red (R), Green (G) or Blue (B) monochrome image, f is the

nonlinear mapping function, q is the quantization region (three regions : R, G,

and B). In this work, popular HSV colormap is used to map the intensity values

of G(t, k) onto RGB monochrome components, resulting spectrogram image is

known as pseudo-color spectrogram image (shown in Figure 3.12b) (Dennis et al.,

2011).

B Fisher Vector Representations

In this step, each monochrome image of the pseudo-color mapped spectrogram

image is represented as a Fisher vector (see Figure 3.11).

Let X = {xt, t = 1, 2, ..., T} be the set of 64-dimensional T row vectors (fea-

ture descriptors) of a monochrome image. Where T is the number of time frames.

Generally, Fisher vector is derived from the Fisher kernel. The process of gener-

ation of Fisher vector includes two stages, the first one is to build the generative

model of local descriptors and then obtain feature’s coding vector (Fisher vec-

tor) by computing gradients of the likelihood of local descriptors concerning the

model parameters. In this work, the generative model is Gaussian Mixture Model

(GMM), which is trained using the local descriptors of five randomly selected

monochrome images per class (small training partition). It is to be noted that,

five randomly selected monochrome images per class are sufficient enough to train

GMM within a short time. The set of parameters of the trained GMM are denoted

as λ :

λ = {wj, µj,
∑

j}Kj=1 (3.18)

Where wj, µj,
∑

j are the weight, mean vector and covariance matrix respectively

of a Gaussian j. K is the total number of Gaussians. Each Gaussian is also known
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as a visual word. All visual words together constitute the visual vocabulary. We

assume that
∑

j is a diagonal matrix and diagonal of
∑

j is denoted by σ2
j , a

variance vector of the Gaussian j.

Once the GMM is trained, a monochrome image X is represented as a Fisher

vector by assigning its row vector xt, to the Gaussians.

Let γt(j) is the soft assignment of xt to Gaussian j, then

γt(j) =
exp

[
−1

2
(xt − µj)TΣ−1j (xt − µj)

]∑K
i=1 exp

[
−1

2
(xt − µi)TΣ−1j (xt − µi)

] (3.19)

γt(j) is also known as posterior probability of the Gaussian j (Sánchez et al.,

2013).

V X
µ,j and V X

σ,j are the gradients concerning µj and σj of Gaussian j. They are

computed using derivations (3.20) and (3.21).

V X
µ,j =

1

T
√
wj

T∑
t=1

γt(j)

(
xt − µj
σj

)
(3.20)

V X
σ,j =

1

T
√

2wj

T∑
t=1

γt(j)

[(
xt − µj
σj

)2

− 1

]
(3.21)

Final Fisher vector V is the concatenation of 64-dimensional gradient vectors V X
µ,j

and V X
σ,j of all K Gaussians, resulting in 2×D×K dimensional vector. Where D

is the dimension of local descriptors, i.e., 64.

In this work, the value of K ranging from 8 to 256 is considered and its impact

on the final AEC accuracy is analyzed. Further, Principal Component Analysis

(PCA) is applied to reduce the dimension of a Fisher vector from 2 × 64 ×K to

M using ’percentage of cumulative variance’, which is set to 99% (Jolliffe, 1986).

There is no general best practice for selection of the ’percentage of cumulative

variance’. 99% of cumulative variance retains the maximum variation among

the discriminative features in the M -dimensional Fisher vector with minimal loss

of information; hence this approach is chosen for our work. To avoid feature

biasing, Fisher vectors are normalized using Signed Square Root (SSR), computed

as V = sign(V )
√
|V |, which is also known as power normalization. Further, Fisher

vectors are normalized using `2 norm (Perronnin et al., 2010). Normalized Fisher
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vectors of three monochrome images of an acoustic event are concatenated (fused)

to generate Fusion Fisher Vector (FFV) features.

3.2.3 Robust Acoustic Event Classification using Fusion-
based Bag-of-Features

The BoVW representations from grayscale spectrograms obtained in 3.2.1 and

BoAW representations from GTCCs of acoustic events are fused to get FBoF

representations.

A Gammatone Cepstral Coefficients

The biologically inspired Gammatone Cepstral Coefficients (GTCCs) are derived

from the ERB (Equivalent Rectangular Bandwidth) spaced Gammatone filter-

banks. The Mel frequency filterbanks are replaced with the Gammatone filters

(Valero and Alias, 2012) for obtaining GTCCs. The Gammatone approximation

(Unoki and Akagi, 1999) given in (3.22) is used to define the filters in the spectral

domain.

M b(k) = (1 + j(k − kb)/ωb)−04 (3.22)

Where kb is the center frequency of the bth Gammatone filter (M), ωb is the Glas-

berg Moore bandwidth and j indicates the imaginary unit. The GTCCs and their

first and second order derivatives are evaluated over each frame, resulting in a 39-

dimensional feature vector for BoAW representation. The BoAW representations

of GTCCs are computed in the same way as BoVWs are computed.

B FBoF Representations

The grayscale spectrogram and GTCCs are combined using proposed early or late

fusion methods at different levels to obtain FBoFs for AEC.

Early fusion: It is also named as fusion at feature level (shown in Figure

3.13a). A grayscale spectrogram and GTCCs are fused to get (129 + 39) dimen-

sional feature vector per frame for BoF representation. The resulting representa-

tion is referred as early FBoF.
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Figure 3.13: Extraction of Fusion-based Bag-of-Features. (a) early fusion at fea-
ture level; (b) late fusion at representation level.

Late fusion: It is also named as fusion at the representation level (shown

in Figure 3.13b). Each M dimensional BoVW representation from the grayscale

spectrogram and BoAW representation from the GTCCs are fused to get 2 ×M

dimensional late FBoFs.

3.2.4 Evaluation

Performance of proposed spectrogram image features is evaluated on UPC-TALP

dataset. Recognition accuracy is considered as an evaluation metric. Linear,

intersection, Chi-square SVMs are considered as classifiers. Optimal parameters

of SVMs are selected. The proposed methods are compared with the MFCC based

baseline method and the following state-of-the-art methods.

1. Pancoast and Akbacak (2012) considered MFCCs and their first and second

order derivatives with their log energies are represented as BoAW.

2. Grzeszick et al. (2017) considered combined 13 GTCCs, MFCCs and a loud-

ness over each frame for BoAW representations.

3. SIFs: Concatenating second and third order central moments over 9 × 9

blocks of monochrome spectrogram images gave Spectrogram Image Features

(SIFs) (Dennis et al., 2011).

4. DNNs: Mel band energies are used as features to DNNs, which has three fully
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Figure 3.14: Average recognition accuracy of the proposed Bag-of-Visual-Words
and other methods using linear, intersection and Chi-square kernels of SVM.

connected layers followed by a softmax output. Each layer uses 500 units

with ReLU activation function and 10% dropout. Categorical cross-entropy

used as a loss function (Kong et al., 2016).

5. CNNs: 60-dimensional log Mel features are used as input features to Convo-

lutional Neural Networks (CNN). The network had two CNN’s of 32, 64 and

128 filters. Each CNN is followed by batch-normalization, Rectified Linear

Unit (ReLU) and max pooling. A softmax activation function is used at the

output layer (Li et al., 2017).

Performance of the proposed approach is compared with that of the state-of-the-

art approaches using UPC-TALP dataset. All considered features are normalized

to zero mean and unit variance. The performance comparison of proposed spec-

trogram features with other methods at clean and noisy conditions on UPC-TALP

dataset is given in Table 3.5, 3.6 and 3.8.

A summary of evaluation results of BoVWs is shown in Figure 3.14. Detailed re-

sults at different SNR conditions are given in Table 3.5. The results (Figure 3.1a)

show that the Chi-square SVM for AEC, slightly outperforms the Intersection

and reasonably outperforms Linear SVM in all the methods. Chi-square and in-

tersection kernel SVMs learn from the nature of input features and achieve high

recognition rate, unlike linear SVM. Chi-square and intersection kernel SVMs are
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Table 3.5: Performance comparison of monophonic event recognition (in %) of the
proposed BoVWs with other methods using Chi-square SVM at clean and different
SNR.

Method Reference Clean 20dB 10dB 0dB Average

Baseline - 83. 76 80.01 71.71 51.67 71.78

Pancoast et al. (Pancoast and Akbacak, 2012) 88.97 86.88 80.42 57.30 78.39

Grzeszick et al. (Grzeszick et al., 2017) 89.07 86.97 81.47 59.38 79.22

SIFs (Dennis et al., 2011) 76.67 75.84 70.17 56.84 69.88

DNNs (Kong et al., 2016) 70.42 69.38 58.55 35.63 58.49

CNNs (Li et al., 2017) 86.33 84.05 80.17 65.97 79.13

BoVW Proposed 93.54 92.51 88.76 79.54 88.58

commonly used to learn the histogram patterns as features in computer vision.

Surprisingly, Chi-square SVM with non-histogram MFCC features outperformed

the linear and intersection kernels. Therefore, we consider Chi-square SVM as a

competitive classifier in this work. Proposed BoVWs with Chi-square SVM out-

perform all the existing methods in clean and noise conditions (see Table 3.5).

As we had mentioned earlier, the maximum energy of the speech babble noise

is concentrated at lower frequencies and MFCCs are sensitive to noise at lower

frequencies. Hence, the performance of MFCC based baseline system significantly

drops at 0dB SNR. The values of mean and standard deviation computed over each

frame lead to the inevitable loss of the useful information. BoAW representations

(Pancoast and Akbacak, 2012)(Grzeszick et al., 2017) of frame-based features ef-

fectively capture the vital information of the acoustic events and outperform the

baseline system. However, it is still inferior to the proposed BoVWs. The mag-

nitude of the spectral components of the acoustic event in the linear spectrogram

S(k, t) is much higher than that of the noise. Same phenomenon is observed in

grayscale spectrograms as the intensity values of acoustic events are much higher

compared to noise. However, noise is commonly more diffuse than the events and

maximum energy is spread over lower regions of spectrogram image. Hence, strong

peaks of the acoustic events are unaffected by the noise (see Figure 3.15) and are

effectively discriminated by BoVW features.

Audio words that are in vocabulary are from the low-level speech features

which are sensitive to noise. This reduces the performance of BoAW model at
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(a) (b)

Figure 3.15: Acoustic event cup jingle. (a) grayscale spectrogram at clean condi-
tion; (b) grayscale spectrogram at 0dB SNR.

noisy conditions. Grayscale spectrogram images effectively localize the strongest

peaks of acoustic events at 0dB SNR. Hence, visual words of acoustic events are

more robust than audio words even in noisy conditions.

Proposed BoVWs fully capture the high-energy intensity values of an acoustic

event by considering the entire grayscale spectrogram as a set of feature vectors.

SIFs from two central moments over each image block leads to the loss of im-

portant information. Hence SIFs are outperformed by the BoVW approach in all

conditions.

The performance of the proposed BoVWs using Chi-square SVM is also com-

pared with that of the emerging DNNs and CNNs. The recognition accuracy of

the DNNs/CNNs is highly inferior compared to proposed approach. This is be-

cause the DNNs/CNNs require huge training data to learn effectively and hence

the present dataset is not sufficient for training DNNs/CNNs.

The relative improvement in the recognition accuracy of BoVWs approach with

Chi-square SVM vis-a-vis the number of visual words in clean condition is shown

in Figure 3.16. One can observe that recognition accuracy improves as there is an

increase in the number of visual words. The smaller vocabulary groups the dis-

similar acoustic events to the same visual word. Hence, the smaller vocabulary is

not discriminative and gives poor performance. On the other hand, the larger vo-

cabulary is more discriminative. However, as the size of the vocabulary increases
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Figure 3.16: Recognition accuracy of proposed Bag-of-Visual-Words for different
number of visual words.

Table 3.6: Performance comparison of monophonic event recognition (in %) of
the proposed FFV features with other methods using linear SVM at clean and
different SNRs.

Method Reference Clean 20dB 10dB 0dB Average

MFCCs - 74.79 66.46 58.55 46.88 61.67

Pancoast et. al Pancoast and Akbacak (2012) 88.97 86.88 80.42 57.30 78.39

Grzeszick et. al Grzeszick et al. (2017) 89.07 86.97 81.47 59.38 79.22

SIFs Dennis et al. (2011) 75.42 74.01 72.16 55.31 69.22

DNNs Kong et al. (2016) 70.42 69.38 58.55 35.63 58.49

CNNs Li et al. (2017) 86.33 84.05 80.17 65.97 79.13

BoVW Mulimani and Koolagudi (2018) 93.54 92.51 88.76 79.54 88.58

FFV Proposed 97.29 96.23 94.18 89.59 94.32

computational complexity also increases. Experimentally we found that 512 visual

words (i.e., size of the vocabulary) generate 512-dimensional BoVW representa-

tions for AEC with higher recognition accuracy. In this work, results of consistent

512-dimensional representations are reported for all other BoAW experiments and

also for proposed BoVWs.

The results given in Table 3.6 demonstrate that proposed combination of FFV-

linear SVM outperforms all other known approaches in both clean and noisy condi-

tions with the average recognition accuracy of 94.32%. The proposed FFV features

are robust to noise and achieve recognition accuracy of 89.59% at 0dB SNR, which
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is only 4.73% lesser than average accuracy (94.32%) and 10.05% higher than the

next best approach using BoVWs (79.54%).

BoVW representations of the grayscale spectrogram images effectively discrim-

inate acoustic events from the noise and perform better than BoAW representa-

tions. However, BoVWs perform well with non-linear kernel classifiers such as

Intersection and Chi-square kernel SVMs, which demand higher computational

time than the simple linear SVM. Advantages of using the Fisher kernel over

BoVW are mainly from two aspects: Fisher vectors can be evaluated from much

smaller vocabularies with lower computational time and perform well with linear

SVMs (Sánchez et al., 2013). Unlike BoVWs approach, that considers a single

nearest visual word for quantization, Fisher vectors consider the probability of

event present in each Gaussian (visual word). The dimension of a Fisher vector

from each monochrome image is 2×D ×K while the dimension of a BoVW rep-

resentation is only K. Hence, the Fisher vector contains significantly much more

information about the acoustic events by including gradients concerning mean and

standard deviation. Thus, FFV-SVM outperforms the BoVW representations in

clean and different noisy conditions.

As we had earlier mentioned that, higher intensity values (stronger peaks)

pertaining to the acoustic events are unaffected by noise (see Figure 3.12c), which

effectively are captured and discriminated by the Fisher vector from the noise and

achieve higher recognition accuracy in all conditions compared to other methods.

The Fisher vectors are evaluated from the intensity distribution (normalized

spectral energy distribution) in the monochrome images. For instance, the in-

tensity distribution of acoustic events ’chair moving ’ and ’laugh’ at clean and

0dB SNR are given in Figure 3.17. In this context, the intensity distribution of

a monochrome image is computed as the mean of intensity values (normalized

spectral values) of each frequency bin (a total of 64 frequency bins are consid-

ered). It is clear evidence from Figure 3.17 that, red, green and blue monochrome

images of pseudo-color spectrogram and grayscale spectrogram image (grayscale
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Figure 3.17: Intensity distribution of acoustic events chair moving and laugh at
clean and 0dB SNR. (a1) & (b1) spectral energy distribution of red monochrome
images; (a2) & (b2) spectral energy distribution of green monochrome images;
(a3) & (b3) spectral energy distribution of blue monochrome images; (a4) & (b4)
spectral energy distribution of grayscale spectrogram images.

spectrogram is generated using equation (3.14)) of acoustic events have distinct

distributions, which are effectively clustered by GMM and quantized by posterior

probability. Resulting Fisher vectors recognize the acoustic events with the better

recognition rate.

To verify the robustness of individual distribution, Euclidean distance between
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Table 3.7: Intensity distribution distances between acoustic events at clean and
0dB noise.

Acoustic Events Red Green Blue Grayscale

chair moving 0.487 0. 648 0.293 0.659

laugh 0.609 0.835 0.432 0.851
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Figure 3.18: Acoustic event recognition accuracy of Red, Green, Blue and Fusion
Fisher Vectors at clean and 0dB SNR.

the clean and noisy (0dB SNR) distribution of the same acoustic events (shown in

Figure 3.17) are calculated and given in Table 3.7. The similar distributions have

smaller distance, indicating that distributions are robust and less affected by the

noise. One can observe from Figure 3.17 that, the green and grayscale spectrogram

images have more low-intensity values, which are affected by ’speech babble’ noise

(distributed over the lower regions of spectrograms). Hence, distribution distances

of green and grayscale images are high compared to distribution distances of blue

and red monochrome images. The higher intensity values have minimal or no

effect of noise on them. It is worth to point out that, the intensity distribution

of red, green and blue monochrome images of pseudo-color spectrogram are more

robust than grayscale spectrogram images. This observation gives us motivation

that, Fisher vector representations of red, green and blue monochrome images

generate more discriminative and robust FFV features for AEC. Fisher vectors

from red, green, and blue monochrome images are evaluated and named as RFV,
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Figure 3.19: Average recognition accuracy of proposed early and late Fusion-based
Bag-of-Features at clean and different noisy conditions.

GFV and BFV respectively. A summary of recognition performance of RFV, GFV

and BFV along with FFV at clean and 0dB SNR is shown in Figure 3.18. As we

had mentioned earlier, Green monochrome image represents the acoustic event in

TF dimension with more lower intensity values, which are susceptible to noise as

compared to red and blue monochrome images. Hence, RFV and BFV perform

significantly better than GFV in both clean and 0dB SNR conditions.

The values with maximum variations in the Fisher vector represent the higher

intensity values of the acoustic events in the monochrome images. These significant

values are chosen from the Fisher vector using PCA and fused to get FFV. FFV is

the combination of selected prominent features from RFV, GFV and BFV. Hence,

FFV features exhibit the highest recognition accuracy, which outperforms the

Fisher vectors from individual monochrome images, baseline and state-of-the-art

methods. The recognition accuracy of Fisher vector representation of grayscale

spectrograms is less than BFV and RFV, hence, it is not considered for comparison.

Recognition accuracy of FFV-linear SVM concerning the number of Gaussians

(K) at clean condition is shown in Figure 3.20. One can observe that recognition

accuracy improves by increasing number of Gaussians in the beginning and slowly

decreases after 64 Gaussians. Acoustic events are brief and present in the sparse

frequency spectrum. Hence, we set number of Gaussians to 64 (K = 64), which are

efficient enough to recognize acoustic events with a good trade off between accuracy
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Figure 3.20: Recognition accuracy of Fusion Fisher Vector based features versus
number of Gaussians.

and computational cost. Reducing the dimension of PCA may lead to loss of

some vital information. Computation of the Fisher vector from each monochrome

images of the pseudo-color spectrogram is expensive. Hence, alternative GTCCs

are computed from audio recordings using the same Gammatone filterbanks, used

to generate Gammatone spectrograms. BoAW representations of GTCCs are fused

with BoVWs to get FBoFs for robust AEC.

Performance of the proposed early and late fusion methods to obtain FBoF

are shown in Figure 3.19. It may be seen that late fusion outperforms the early

fusion in both clean and different noisy conditions. Hence, hereafter, we consider

late Fusion-based Bag-of-Features (FBoF) in further experiments. Performance of

the proposed FBoF is compared with different approaches at different noisy con-

ditions in Table 3.8. These results demonstrate that proposed FBoFs significantly

outperform all other approaches at both clean and noisy conditions.

As we had mentioned earlier, the AEC performance of MFCC baseline system

significantly drops at 0dB SNR. Alternatively, GTCCs and their Gammatone fil-

terbank resolution is much higher at lower frequencies with ERB scale than Mel

filterbanks with Mel scale. Hence, GTCCs discriminate the spectral components

at lower frequencies belonging to the acoustic event and noise more precisely and

perform better than MFCC based baseline system.

As expected, BoAW representations of MFCCs and GTCCs outperform the
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Table 3.8: Performance comparison of monophonic event recognition (in %) of
the proposed FBoF representations using SVM with other methods at clean and
varied SNRs.

Method Reference Clean 20dB 10dB 0dB Average

MFCCs - 83. 76 80.01 71.71 51.67 71.78

GTCCs - 81. 88 79.42 77.21 65.84 76.08

GTCCs-BoAW - 92.09 89.38 86.09 77.13 86.17

Pancoast et al. (Pancoast and Akbacak, 2012) 88.97 86.88 80.42 57.30 78.39

Grzeszick et al. (Grzeszick et al., 2017) 89.07 86.97 81.47 59.38 79.22

SIFs (Dennis et al., 2011) 76.67 75.84 70.17 56.84 69.88

DNNs (Kong et al., 2016) 70.42 69.38 58.55 35.63 58.49

CNNs (Li et al., 2017) 86.33 84.05 80.17 65.97 79.13

BoVWs (Mulimani and Koolagudi, 2018) 93.54 92.51 88.76 79.54 88.58

FFV (Mulimani and Koolagudi, 2019b) 97.29 96.23 94.18 89.59 94.32

FBoFs Proposed 99.17 97.79 94.93 89.89 95.44

Table 3.9: Performance comparison of monophonic event recognition (in %) of
the contribution of BoVWs with MFCCs and GTCCs using SVM at clean and
different SNR on UPC-TALP dataset.

Method Clean 20dB 10dB 0dB Average

BoVW+MFCCs 96.46 94.18 89.17 77.92 89.43

BoVW+GTCCs 99.17 97.79 94.93 89.89 95.44

baseline system. The combined GTCCs, MFCCs and loudness as BoAWs (as

done in (Grzeszick et al., 2017)) further reduce the performance of GTCCs as

BoAWs. Hence, it is not considered further.

Proposed FBoFs are slightly better than FVF features due to information loss

during dimensionality reduction of Fisher vectors. However, none of the other

methods performed alone as expected. Hence, late fusion method is proposed

which concatenates the BoVW representations with GTCC-based BoAWs to get

FBoFs. FBoF representations are the combination of features from BoVWs and

GTCCs-based BoAWs. They are observed to outperform all other approaches in

clean and noisy conditions.

At this point, the fusion of BoVW representation is explored with both MFCC

and GTCC based BoAW representations separately. The results are given in

Table 3.9. As expected, the combination of MFCC-based BoAW and BoVW

representations perform poor, especially during noisy conditions. Hence, GTCCs-
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Table 3.10: Performance comparison of monophonic acoustic event recognition (in
%) of the proposed FFV features and FBoFs with state-of-the-art method at clean
condition on UPC-TALP dataset.

Method Reference Accuracy

BoAW - SVM (Phan et al., 2016b) 96.80
Proposed

FFV features - SVM Proposed approach 97.29

Proposed
FBoFs - SVM Improved proposed approach 99.17

based BoAW representations are considered as effective BoAWs and fused with

BoVWs to get the proposed FBoFs.

The overall recognition accuracy of the FFV features and FBoFs at clean con-

dition is also compared with the state-of-the-art methods on UPC-TALP dataset

reported in the literature (see Table 3.9). The traditional speech features are

represented as BoAWs (Phan et al., 2016b) and achieve 96.80% of acoustic event

recognition accuracy, which is less than using proposed FFV features (i.e., 97.29%)

and FBoFs (i.e., 99.17%) in clean condition, on UPC-TALP dataset. However,

these speech features are sensitive to noise and performance of their BoAW rep-

resentations is expected to reduce in noisy conditions.

3.2.5 Contributions and Limitations

BoVWs, FFV features and FBoFs are computed and used as a SIFs for robust AEC.

Unlike frame-based speech features, SIFs are computed from visual information of

an acoustic event available in a spectrogram. Strongest peaks of an acoustic event

in spectrogram are unaffected by the noise; those are effectively identified and

used by the proposed SIFs. Results show that SIFs have a significant contribution

to robust AEC. Limitations of a proposed SIFs are listed below.

• Rows of a spectrogram as BoVW/Fisher vector representation contain both

event and non-event spectral components.

• Representation of an entire spectrogram into a vector of indices of nearest

visual words may lead to loss of information.

• Reducing the dimension of PCA may lead to loss of some vital information.
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3.3 Extraction of MapReduce-based features from
spectrograms for Acoustic Event Classification

In this section, a novel parallel method is proposed for extraction of significant

information of the event from spectrogram termed as MapReduce-based features

(MRFs), using Google’s MapReduce programming model (Dean and Ghemawat,

2008). Extraction of reliable information as features from spectrograms of big

noisy audio event dataset demands high computational time. Parallelizing the

feature extraction using MapReduce programming model on Hadoop improves

the efficiency of the overall system.

The MapReduce model provides the parallel computing environment across

the distributed computational nodes of the cluster using Distributed File System

(DFS) (Zhang and Chen, 2014). The MapReduce programming paradigm is al-

ready implemented in many popular frameworks such as Apache Hadoop with

its Hadoop Distributed File System (HDFS) (Shvachko et al., 2010). Hadoop

is scalable infrastructure for massive data, which automatically performs data

partition, task scheduling and inter-node communication across nodes of the clus-

ter (White, 2012). MapReduce algorithm (job) divides the tasks into the user-

defined ’map’ and ’reduce’ functions. Opensource Python module mrjob (Zhang

and Chen, 2014) developed by Yelp is used to implement one or more map and

reduce functions (steps) of MapReduce algorithm (job), which is also called as

the multi-step MapReduce job. The mrjob runs the steps of MapReduce job on

multiple sub-processes of the local system (single system) or on Hadoop cluster,

which performs distributed computing on massive data (Manoochehri, 2013). In

the current study, the proposed MapReduce job on Hadoop extracts the strongest

peaks of the events from the spectrograms in parallel and these are considered as

features to train Ensemble Random Forest (ERF) classifier. Further, the runtime

of proposed MapReduce job on Hadoop, local system and sequential program for

information extraction from spectrograms is compared. Robustness of features

from spectrogram are tested in different noisy conditions. The results obtained

using the proposed approach are compared with the state-of-the-art methods to
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establish their significance.

In the recent years, MapReduce model on Hadoop is used for big data process-

ing in different application domains such as data mining (Bhuiyan and Al Hasan,

2015) (Wu et al., 2014), image-video processing (Almeer, 2012)(Heikkinen et al.,

2013), social network analysis (Tang et al., 2009) and so on. To the best of our

knowledge, this is the first work, that reports the use MapReduce on Hadoop

framework for information extraction from large-scale spectrogram TF matrices

for AEC, particularly for audio-based surveillance.

3.3.1 Background of MapReduce on Hadoop

MapReduce is a programming model for distributed computation of massive data

on different nodes (data nodes) of the cluster. MapReduce algorithm divides the

computation problem (job) into two phases namely Map and Reduce. Each phase

contains one or more respective user-specified map and reduce functions, which

have a key-value pair as input and output (refer to the general structure of MapRe-

duce algorithm in Figure 3.21). In a <key, value> pair, <value> represents the

specific data and <key> uniquely identifies the <value>. ’MapReduce’ program-

ming paradigm is implemented in popular opensource framework ’Hadoop’. The

overview of MapReduce programming model on Hadoop is shown in Figure 3.22.

Hadoop divides the input data (here, spectrograms) into fixed sized disjoint sub-

sets called splits. Hadoop forks one map task (Mapper) for each split which runs

the user-specified map function. Likewise, several map tasks run on several nodes

of the cluster to process splits in parallel. Time taken to process small splits on

each node is much less compared to that on whole data set on a single node. Once

all map tasks complete their execution, Hadoop forks reduce tasks (Reducers) on

different nodes of the cluster, which are responsible for the execution of reduce

function on the intermediate key-value pair from map tasks. Map tasks divide

their output key-value pair into partitions. One partition is for one reducer. The

values of partitions are sorted by their key and transferred across the network to

the nodes where the Reducers are running (White, 2012).
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/* Map phase */
1 method map(key, value)
2 Perform computation
3 Emit intermediate (key, value)
/* Reduce phase */

4 method reduce(key, value)
5 Perform computation
6 Emit final-output (key, value)

Figure 3.21: General structure of MapReduce algorithm.

Figure 3.22: Overview of MapReduce programming model on Hadoop framework.

3.3.2 Extraction of MapReduce-based features (MRFs) from
spectrogram

In this step, the proposed MRFs extraction from spectrograms for acoustic event

recognition is presented. First, a logarithmic spectrogram is generated from an

acoustic event. Then, MRFs are extracted from the generated logarithmic spectro-

gram and used as a feature vector to ERF. The proposed approach characterizes

the spectrograms of acoustic events using MapReduce-based features. The algo-

rithm for extracting MRFs from spectrogram is given in Figure 3.23, which is also

known as ’MapReduce job’, or simply a ’job’ and its block diagram is shown in Fig-

ure 3.24. The job detects the keypoints (high energy spectral components), which

locate the spectral shape or glimpse (Cooke, 2006) of the acoustic event in the spec-

trogram. Keypoints have rich information about the spectral peaks and ridges in

a spectrogram of an acoustic event. The MRFs are obtained from these detected

keypoints. Detection of keypoints from spectrogram either row-wise (spectral di-
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Algorithm 1: MapReduce-based feature extraction
1 method mapper-one(_ , row)
2 key ← row(1);
3 value← row(2 : k + 1) ; /* k ← 129 */
4 fileName← get_filename();
5 emit ((fileName, integer key), real value)
6 end method

7 method mapper-two(key, value)
8 maxima← 0, η ← 0, frame← 0
9 fileName← key[1]; /* filename is stored into fileName and

deleted from key */
10 for i← 1 to k do
11 for j ← −L to L do
12 if i+ j <= k and i+ j > 0 then
13 block ← block.append(value(i+ j))
14 else
15 block ← block.append(0)

16 maxima← maxima.append(max(block))
17 η ← η.append( 1

M

∑
block)

18 block ← 0

19 for p← 1 to k do
20 for q ← 1 to length(maxima) do
21 if value(p) ≥ maxima(q) and value(p) ≥ η(q) then
22 key_new ← (fileName, (key, p))
23 value_new ← value(p)
24 emit (key_new, value_new)

25 end method

26 method reducer(key_new, value_new)
27 fileName← key_new[1]; /* filename is stored into fileName and

deleted from key_new */
28 emit (fileName, (key_new, unique(value_new)))
29 end method

Figure 3.23: Algorithm for identification of keypoints in large-scale logarithmic
spectrograms.

mensions) or column-wise (temporal dimensions) using blocks/frames expects high

computation time. Parallelizing the keypoint detection using MapReduce would

improve the time efficiency. The MapReduce job given in Figure 3.23 (or Figure

3.24) includes two phases namely, Map and Reduce. Map phase contains two steps

(methods), namely mapper-one(_, row) which generates the proper <key, value>
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Figure 3.24: Block diagram for identification of keypoints in large-scale logarithmic
spectrograms.

1 method local_MapReduce()
2 foreach spectrogram do
3 Generate CSV file
4 Execute MapReduce job for keypoint detection (given in Figure 3.4b)
5 Write results to local file system

6 end method

Figure 3.25: Local MapReduce algorithm for identification of keypoints in a given
spectrogram.

pair from logarithmic spectrogram and mapper-two(key, value), which detects the

keypoints in the logarithmic spectrogram. Reduce phase has a reducer(key_new,

value_new) step, which selects the unique keypoints by eliminating the duplicates.
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A Data preparation

Map and reduce tasks accept a <key, value> pair as input and emit the processed

<key, value> pair as an output. A row vector of a transposed STFT spectrogram

ST (t, k) is considered as <value> and its index (t) is a <key>. A new TF matrix

D(t, k) is formed by appending each row vector of ST (t, k) to its index. Hence, the

first value of a row in D(t, k) is <key> and remaining values represent <value>.

MapReduce system (like Hadoop) operates well on textual data, hence, D(t, k)

matrices of the spectrograms are converted into plain-text CSV files.

Further, the CSV data files of the spectrograms are copied to HDFS for dis-

tributed computation on Hadoop cluster. Unlike local MapReduce job (shown in

Figure 3.25), which extracts the keypoints, spectrogram-by-spectrogram in se-

quence; Hadoop divides the input spectrograms (CSV data files) into fixed-sized

disjoint partitions (subsets) called splits (HDFS blocks). Several splits are dis-

tributed among nodes of a cluster for parallel processing. Hadoop forks one map

task (on different nodes) to each split which in turn runs the method mapper-

one(_, row) of MapReduce job on each row (row-by-row) of input splits in parallel

(see block diagram of MapReduce job in Figure 3.25).

B Map phase

Map phase includes two steps/methods namely, mapper-one(_, row) and mapper-

two(key, value). Method mapper-one(_, row) is yet another data preparation

phase, which reads split row-by-row as an input <value> (input <key> is ignored)

and generates proper <key, value> pair for next subsequent method. The first

value of the input row (index of row or time frame, t) is considered as <key> and

remaining values as <value> to mapper-two(key, value). Further, the pathname

of CSV file is combined with the <key> (index of row), which helps to keep track

of rows of splits in the distributed environment (refer Line 1 to 6 of algorithm

given in Figure 3.23). Finally, <key, value> pair is emitted as an input to the

mapper-two(key, value) (see output of mapper-one(_, row) in Figure 3.24).

In mapper-two(key, value), <value> represents the 129-dimensional row vector
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of ST (t, k) and <key> is its index (t, time frame) with pathname. A row vector

<value> is divided into rectangular blocks as block(q) = value(k±j), j = [1, ..., L]

for keypoint detection. Where k = [1, ..., 129] is a frequency bin, q = [1, ..., 2L+ 1]

is index of a block. Empirically, the value of L is decided to be 3, which is sufficient

enough to detect keypoints in <value>. From each block, first, the local maxima

is evaluated and appended to a list ’maxima’ as maxima(b) = max(block), b =

[1, ..., NB], where NB is the number of blocks and then, noise is estimated and

appended to a list ’η’ by assuming the noise is stationary across the block (refer

Line 7 to 21 of the algorithm given in Figure 3.23) as given in the formulation

(3.23).

η(b) =
1

M

2L+1∑
q=1

block(q) (3.23)

In this work, different values of M are considered from 10 to 80 and their im-

pact on the recognition rate is analysed. Experimentally, we found that M = 40

recognizes the acoustic events in the noisy environments more with better ac-

curacy. It is worth to note here that, the value of M is independent of the

SNR. A significant information from <value_new> is selected from <value> as

value_new = value(k), if value(k) ≥ maxima & η (refer Line 22 to 30 of the

algorithm given in Figure 3.23). A <value_new> is a keypoint which represents

the strongest spectral component of an acoustic event in a logarithmic spectro-

gram. Further, <value_new> and its indices with CSV pathname as <key_new>

emitted to reducer(key_new, value_new) as input (see output of mapper-two(key,

value) in Figure 3.24). A <key_new> consists of CSV pathname, row (t, time

frame) and column (k, frequency bin) indices of interested keypoint <value_new>.

C Reduce phase

A proposed rectangular block moves over a <value> (129-dimensional row vector)

in a single step. Hence, the mapper-two(key, value) may emit the same keypoint

(<value_new>) with a unique key (<key_new>) more than once. At this point,

Map phase completes its execution on different input splits of all spectrograms and

generates intermediate output. MapReduce framework shuffles and sorts the inter-
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mediate keypoints (<value_new>) by its unique key (indices of keypoint) before

being sent to the reducer(key_new, value_new). By default, Hadoop forks single

reducer task on a node in a cluster after completion of Map phase, which runs the

reducer(key_new, value_new) method on sorted <key_new, value_new> pair

(see Reduce phase in Figure 3.24). The reducer(key_new, value_new) outputs

the single unique keypoint and its key by discarding duplicates of a keypoint (Line

32 to 35 of the algorithm given in Figure 3.23.

A single reducer task writes the final output (key-value pairs) of the reducer(key_new,

value_new) into a file, named as ’part file’ (default output format of Hadoop, see

output of reducer(key_new, value_new) in Figure 3.24). Part file includes the

significant keypoints and their indices (time frame t and frequency bin k) from all

spectrograms (input splits) of different events.

Identification of a key-value pair from a particular spectrogram of an event, among

all key-value pairs in part file is a tedious task. The question may arise that which

key-value pair belongs to which spectrogram. To keep track of data, mrjob accepts

different output formats from various external libraries with Hadoop. One such

library is NickNack library used with reducer task. Unlike writing all key-value

pair into a single part file, NickNack writes one part file for each spectrogram into

HDFS using CSV pathname, which is emitted from Map phase.
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Figure 3.26: Keypoint extraction using MapReduce job. (a) logarithmic spectro-
gram of a gunshot, which is input to the MapReduce job; (b) identified keypoints
as output from MapReduce job.
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D Feature vector construction

Part files of respective spectrograms of events are copied from HDFS to the local

file system in the form of text files. Each line in a text file composes indices

of time frame (t) and frequency bins (k), followed by keypoint belonging to the

event in the spectrogram. Reliable spectrogram P r (shown in Figure 3.26b) of

the same size of original spectrogram S (shown in Figure 3.26a) is formed using

its respective text file as follows:

P r(k, t) =

{
real keypoint, if t, k and keypoint exist in text file
0, otherwise

(3.24)

The P r is a Time-Frequency (TF) matrix which includes most of the zeros rep-

resenting the non-event subspace ( (Cooke et al., 2001)(Raj and Stern, 2005)) of

the spectrogram S and few sparsely spaced strongest peaks; those represent the

spectral structure of the event.

P r is resized into 50 × 50 TF matrix to avoid dimensionality ambiguity and

computational complexity. The linearized 2500 dimensional feature vector, named

MapReduce-based Features (MRFs), is obtained from each acoustic event by ap-

pending columns of P r one after the other to form a single row.

3.3.3 Evaluation

In this work, MapReduce programming job is designed for extraction of features

from massive audio data. UPC-TALP dataset used in our previous works is too

small to use in distributed environments. Hence, in this work, Mivia audio event

dataset is used and is sufficiently large for evaluation of proposed MRFs. Mivia

dataset is specifically developed for audio-based surveillance application. Chi-

square SVM is considered as a classifier, which outperforms linear and intersection

kernel SVMs even on non-histogram features.

Performance of the proposed MRFs is evaluated based on the two main metrics,

namely, the average recognition rate (accuracy) of acoustic events and False alarm

rate (FAR). False alarms are the rate of misclassification of background noise as

one of the events of interest. The false alarm occurs due to detection of an acoustic
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event of interest when only background sound is present. Further, the miss rate

and error are also considered as evaluation metrics for performance comparison.

Miss rate is the rate of misclassification of acoustic events as background noises.

Hence, it is precisely opposite to FAR. Error is the rate of misclassification of one

of the acoustic events as the other one.

Two sets of experiments we are performed to evaluate the performance of the

proposed MRFs. The first set of experiments compares the run time of proposed

MapReduce job on Hadoop, on the local system and sequential program for key-

point detection. The following systems are developed and evaluated.

1. Proposed MapReduce job on Hadoop for keypoint detection: the mrjob runs

the proposed MapReduce job on Hadoop cluster with eight nodes (comput-

ers). Hadoop divides these eight nodes into a jobtracker (master) and num-

ber of tasktrackers (slaves). The jobtracker tracks the progress of MapRe-

duce job by scheduling the tasks (map and reduce) to run on tasktrackers.

Tasktrackers run tasks and send progress reports to the jobtracker. This

way the jobtracker maintains the overall progress report of the MapReduce

job. If the task fails on a particular tasktracker, then jobtracker reschedules

it on the other tasktracker. The cluster is equipped with Intel Xeon octo-

core dual-processor with 2.6 GHz speed, 64 GB RAM and 64 bit Ubuntu

16.04 operating system. Network interface between nodes is through dual

Gbit ethernet. The cluster is configured with mrjob 0.5.10, Hadoop 2.8.3,

Python 2.7.5 and Java 1.7.0. Further, HDFS replication factor is set to 3,

block size is set to 64 MB, the number of reducers is set to maximum 10

and MapReduce intermediate compression is enabled with Googles Snappy

compression/decompression technique (Rattanaopas and Kaewkeeree, 2017).

2. Proposed MapReduce job on a Local system for keypoint detection: mrjob

runs the steps on multiple subprocesses locally (local file system) in parallel

which mimics the Distributed File System (DFS) of several nodes, which is

not a replacement to a Hadoop.

3. Sequential program for keypoint detection: we implement the proposed
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Figure 3.27: Comparison of runtime of MapReduce job on Hadoop and local
system with sequential program for keypoint detection. (a) training phase and (b)
testing phase using Mivia dataset.

MapReduce job for keypoint detection as a sequential program (see Figure

3.25), which runs on the single system (computer) without mrjob (MapRe-

duce).

The second set of experiments compares the recognition performance of proposed

MapReduce based features against state-of-the-art methods.

1. Proposed MRFs and Chi-square SVM classifier.

2. (Conte et al., 2012) use traditional speech features such as spectral, temporal,

energy, perceptual features to LVQ (Learning Vector Quantization).

3. (Foggia et al., 2015) use spectral, temporal, energy features as a bag-of-

audio-words to SVM.

A Runtime of MapReduce job versus sequential program for keypoint
detection

The sequential program runs on a single process and consumes the vast amount of

computation time for keypoint detection (see runtime of the sequential program

in Figure 3.27 on both training and testing datasets), which is expensive for large-

scale audio event datasets. Alternate solution is to use the proposed MapReduce
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Figure 3.28: Execution time of a MapReduce job with respect to the number of
data nodes: (a) line plot shows the runtime concerning number of data nodes; (b)
speedup of overall system concerning two data nodes.

job for information extraction from spectrograms (algorithm in Figure 3.23). mr-

job runs the steps of MapReduce job locally (on the local file system of a node) and

on distributed Hadoop cluster separately. One can observe from Figure 3.27 that,

the runtime of MapReduce job on local system drastically reduces as compared to

the sequential program. The reason for this is, mrjob runs the steps of MapRe-

duce job on multiple local subprocesses, whereas sequential program runs on a

single process. Both sequential program and MapReduce job on local system de-

tect keypoints from spectrograms one by one, unlike Hadoop. Hadoop divides the

spectrograms of the whole dataset into 64 MB splits, and automatically schedules

the MapReduce tasks on for these splits across nodes of the cluster for keypoint

detection in parallel. Hence, the runtime of distributed MapReduce job on Hadoop

gets significantly reduced as compared to MapReduce job on the local system and

sequential program. Hereafter, we only use MapReduce job on Hadoop with input

training data for further analysis of runtime in different conditions.

B Runtime of MapReduce job for varying number of data nodes

Here, we show how runtime of MapReduce job varies with the change in the

number of data nodes. For each configuration, the runtime is recorded and shown

in Figure 3.28a. We can see that runtime significantly reduces as data nodes

increase in number. One can observe from Figure 3.28b that, the overall system

speedup sublinearly (almost linear except the last point) increases as more data
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Figure 3.29: Comparison of runtime of map and reduce phases for keypoint de-
tection.

nodes are added. We can observe from Figure 3.28a, after 6th node there is no

much reduction in runtime, which is hinted us to have a 8 data nodes are sufficient

enough for the given training data set.

C Runtime of MapReduce job for varying number of Reducers

In this experiment, first, runtimes of the map and reduce tasks are analyzed and

then, shown how runtime of Reduce phase of MapReduce job (given in Figure

3.23) varies with varying number of reducers (reduce tasks). Hadoop forks two

Mappers (dual-processor) on each data node (total of eight data nodes), yielding

16 Mappers (map tasks). The mapper-one(_, row) of MapReduce job simply

generates proper key-value pairs for mapper-two(key, value). Hence, map tasks

take less time to execute mapper-one(_, row) on input splits of spectrograms (see

runtime of mapper-one(_, row) in Figure 3.29). The mapper-two (key, value)

extracts information from each block over a row of a split (spectrogram) and hence

needs high execution time compared to mapper-one(_, row). The processing time

of reducer(new_key, new_value) depends on the number of reduce tasks. By

default, Hadoop forks single reduce task to a node in a cluster. Reduce task waits

until the completion of all map tasks with all input splits. The sorted output

of map tasks is transferred over the network to the node, where the reduce task

is running. Later output of map tasks are grouped by the key and then fed as
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Figure 3.30: Execution time of reduce phase vis-a-vis number of reduce tasks.

Table 3.11: Performance comparison of confusion matrices (in %) for monophonic
acoustic event recognition on Mivia dataset using two popular and the proposed
MRF-SVM approaches.

Conte et al. (2012) Foggia et al. (2015) Proposed MRF-ERF
GB GS S M GB GS S M GB GS S M

GB 91.3 5.3 1.4 1.9 94.4 0.2 0.2 5.2 98.0 0.5 0.0 1.5
GS 2.1 80.6 3.9 3.4 3.5 84.9 0.5 11.1 0.0 96.9 0.0 3.1
S 7.6 7.9 79.8 4.7 2.6 0.9 80.8 15.7 0.1 1.1 94.5 4.3

GB: Glass breaking; GS: Gunshot; S:Screaming; M: Miss rate

input to the reducer (new_key, new_value) method. The output of all map tasks

to a single reduce task creates burden over the network. The reducer(new_key,

new_value) keeps on waiting for the sorted key-value pair of all input splits,

then starts which expects more execution time. The solution for this would be

to increase the number of reduce tasks. There were 16 reducer slots (processing

units) available from eight data nodes. Ten units were used for reducer task by

keeping other six units for system use. Where there are more reducer tasks, the

map task divides their output into different partitions. Each partition is for a

reduce task (number of partitions is equal to the number of reducer tasks), which

reduces the burden of single reduce task. Overall runtime of reducer(new_key,

new_value) task reduces as the number reduce tasks increases (see Figure 3.30).
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Table 3.12: Performance comparison of detailed results of monophonic acoustic
event recognition (in %) of two popular and the proposed MRF-SVM approaches
at different SNRs.

SNR
(dB)

Conte et al. (2012) Foggia et al. (2015) Proposed MRF-SVM
R M E F R M E F R M E F

5 71.4 0.1 28.4 27.9 81.1 12 6.9 11.5 90.3 7.6 2.1 2.2
10 81.2 1.8 17 21.1 85 12.1 2.9 2.4 95.5 4.1 0.4 0.9
15 86.2 3.6 10.2 9.7 87 10.9 2.1 1.3 96.4 3.2 0.4 0.8
20 87.6 4.7 7.8 9.3 88.4 9.9 1.7 1.2 98.4 1.3 0.3 0.7
25 88.2 5.1 6.7 7.2 88.7 9.9 1.4 1.2 98.9 0.8 0.3 0.7
30 88.9 4.9 6.2 7.6 90 9.2 0.8 1 99.3 0.5 0.2 0.7

Avg 83.9 3.4 12.7 13.8 86.7 10.7 2.3 2.6 96.5 2.9 0.6 1

R: Recognition rate; M: Miss rate; E: Error; F: False alarms

D Performance comparison

The recognition performance of the proposed MRF-SVM is compared with the

state-of-the-art methods. Confusion matrices of (Conte et al., 2012), (Foggia et al.,

2015) and proposed MRF-SVM are shown in the Table 3.11. The detailed results

including average recognition rate, miss rate, error, false alarm rates are given in

the Table 3.12 at different SNRs. We can observe from the table that bag-of-audio-

words with SVM perform well over LVQ. Hence, the approached in (Foggia et al.,

2015) accurately detects anomalous events than that mentioned in (Conte et al.,

2012). Hence, hereafter, the results reported in (Foggia et al., 2015) are considered

as the competitive method for comparison with proposed MRF-SVM. The average

recognition rate of the proposed MapReduce-based features with SVM is 96.5%,

which outperforms the (Foggia et al., 2015) method. As SNR increases the recog-

nition rate also improves and miss rate reduces. It may be noted that, majority of

the errors are due to prediction of the acoustic event as background noise (miss)

than misclassification with the other acoustic events (error). As expected, miss

rate in the case of human screaming is more than that of the gunshot and glass

breaking. This is because person screaming is more similar to the background

noise crowded ambiance. However, the magnitude of keypoints belonging to the

acoustic events is much higher than that of the noise. The proposed MRF-SVM

method effectively discriminates the keypoints belonging to the screaming and

other background noises and achieves 94.5% recognition rate with only 4.3% of
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miss rate, which outperforms the (Foggia et al., 2015). The short acoustic event

gunshot is more sensitive to the noise but has unique spectral shape leading to the

proper identification of keypoints by the proposed MapReduce job during MRFs

extraction. The vector quantization method using low-level features, such as spec-

tral features, energy features and temporal features (Foggia et al., 2015)(Carletti

et al., 2013) fails to discriminate the gunshot with background noises; resulting in

a low accuracy compared to proposed MRF-SVM. The proposed MRFs are robust

and achieve average 90.3% recognition rate at 5 dB noise condition, which is only

6.2% lesser than average recognition rate (96.5%) of the test dataset. Further,

the low-level features are sensitive to the noise and generate more false alarms;

hence, FAR of (Foggia et al., 2015) is higher in the case 5dB SNR compared to the

proposed MRF-ERF method. Overall the proposed MRF-ERF performs well in

the cases of wide range of real-time background noises and recognizes the acoustic

events with better accuracy.

3.3.4 Contributions and Limitations

To the best of our knowledge, this is the first work, which uses MapReduce on

Hadoop framework for information extraction from spectrograms of massive audio

data for AEC. Proposed MapReduce job executes on distributed nodes of a cluster

simultaneously, resulting in reduced computational time. The proposed MRF-

SVM approach achieved 96.5% recognition rate with 1% FAR. It indicates that

proposed MRFs have a significant contribution towards the characterization of

acoustic events. The results also show that MRFs are robust to noise and achieve

90.3% AEC recognition rate even at 5dB SNR.

MapReduce programming approach is designed for processing a massive audio

data. If the size of the data is not sufficiently large, then benefit of using clusters

may reduce accordingly. It is because small data creates system overhead (such

as initial setup of communication among nodes, task scheduling and so on) and

demands high computational time at the cost of actual throughput.
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3.4 Summary

In this chapter, SFs, SIFs and MRFs are explored for characterization of mono-

phonic acoustic events. SFs are acoustic event specific. However, they are not

robust to noise. Hence, SIFs such as BoVWs, FFV features, FBoFs are explored.

FBoFs are found to exhibit a robust acoustic event discriminative characteris-

tics. SIFs are basically computed from spectral components belonging to an event

and non-event parts of a spectrogram. Extraction of high-energy spectral com-

ponents belonging to events from spectrograms of big noisy audio event dataset

demands high computational time. Parallelizing the feature extraction task using

the MapReduce programming model on Hadoop improves the efficiency of the

overall system. A novel parallel method is proposed for the extraction of signif-

icant information of the events from spectrogram as MapReduce-based features

(MRFs) using Google’s MapReduce programming model.
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CHAPTER 4

Polyphonic Acoustic Event
Detection

In chapter 3, SFs, SIFs and MRFs were extracted from the spectrograms and

used to train the SVM model for the monophoic AEC. It recognizes at most

one acoustic event at a given instance of time. In a real-time scenario, more

than one acoustic events may overlap at any given instance of time. If the task

is to detect multiple acoustic events at a particular time then the monophonic

AEC model fails. To overcome this drawback of monophonic AEC, polyphonic

AED models are presented in this chapter for the detection of overlapped acoustic

events. The major advantage of the polyphonic AED model over the monophonic

AEC model is as follows. The polyphonic AED system detects both monophonic

and polyphonic acoustic events in a continuous audio signal, in contrast to the

monophonic AEC system that assigns an audio signal to one of the acoustic event

classes. Currently, deep learning-based polyphonic AED models used in the state-

of-the-art and reported in the literature. In this chapter, we present two deep

learning models; one is Convolutional Recurrent Neural Network (CRNN) and

the another is a DNN-driven feature learning approach for polyphonic AED.
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4.1 Polyphonic Sound Event Detection using mel
IFgram Features and Convolutional Recurrent
Neural Network

CRNN may be considered as the state-of-the-art approach for polyphonic AED as

the approach has reported the best recognition performance in the literature (Cakir

et al., 2017). CRNN captures both spectral (by CNN) and temporal (by RNN)

information from acoustic events. In this work, the performance of the CRNN is

further improved by using the bidirectional Gated Recurrent Unit (GRU) and mel

IFgram (Instantaneous Frequency gram) features as input features for polyphonic

AED rather than using common log mel band energies.

The proposed methodology involves two stages. The first one is the extraction

of mel IFgram features and the other is the development of the CRNN model for

polyphonic SED. Each stage is explained below in brief.

4.1.1 Extraction of mel IFgram features

An audio signal is represented using its sinusoidal components which can be writ-

ten as a function (4.1).

s(t) = r(t) · cos (θ(t)). (4.1)

where s denotes the signal, θ(t) denotes the phase, r denotes the amplitude and t

denotes the time instance (Abe et al., 1995). Instantaneous Frequency (IF) φ(t)

is defined as the derivative of the phase of an audio signal with respect to time as

given in (4.2).

φ(t) =
dθ(t)

dt
(4.2)

IF features are computed using (4.2) from 40 ms frames with 50% overlap from

an acoustic event signal. A dot product between IF features and mel filter banks

with specific range of frequencies generate mel IFgram features.

A proposed F -dimensional feature vectors of mel IFgram features, each from T

frames in a sequence form a feature matrixX ∈ RT×F . Further, feature matrices of

the multiple acoustic events normalized using zero mean and unit variance scaling

and considered as input data to the CRNN for training.
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4.1.2 Architecture of Convolutional Recurrent Neural Net-
work

256 3x3 filters, 2D CNN, ReLU
Batch normalization

1x3 max pooling 
25% dropout

256 3x3 filters, 2D CNN, ReLU
Batch normalization

1x3 max pooling 
25% dropout

256 3x3 filters, 2D CNN, ReLU
Batch normalization

1x3 max pooling 
25% dropout

32, GRU, tanh 
25% dropout

32, GRU, tanh 
25% dropout

output, sigmoid

Prediction

Layer 1:

Layer 2:

Layer 3:

Layer 4:

Layer 5:

Layer 6:

Input features, X

Figure 4.1: Overview of proposed framework of Convolutional Recurrent Neural
Network for polyphonic Acoustic Event Detection.

The architecture of the proposed CRNN model is shown in Figure 4.1, it

includes three 2D convolution layers, each followed by Relu activation, batch nor-

malization, max pooling and a dropout layer. The output of CNN is fed as input

to the first layer of two bidirectional GRU layers. Further, the second bidirectional

GRU layer is followed by a fully connected output layer with a sigmoid activation

function for polyphonic AED. Each layer of the CRNN is explained below in brief.
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A CNN layer

The CNN layer processes a small local region of the input using the group of

filters followed by the max-pooling layer. These filters slide over the input feature

matrix step by step from left to right. During convolution, some filters may get a

stronger response from some local regions of the input feature matrix, while the

other regions are suppressed. Hence, convolutional operation effectively captures

the high energy spectral components of the acoustic events from the input feature

matrix.

Generally, CNN gives the higher-level feature vectors from the input feature

matrices, of size defined in equation (4.3) as output.

o = (i− k) + 2p+ 1 (4.3)

where o refers to the output size, i represents the input size and k represents the

filter size and p represents the padding of zeros to the input feature matrix X.

In other words, convolutional operation downsamples the input feature matrix of

size i to o.

In this work, CNN maps the input feature matrix of size i to o using (4.4).

o = i− 2n− 1 + 2n+ 1 (4.4)

where 2n+ 1, n ∈ N, is the k filter size when it is odd and p =
⌊
k
2

⌋
= n represents

the padding, which is also known as half padding. It is to be noted that, size of

the output generated by convolution layer is equal to its input size (refer 4.4) and

it helps to maintain the alignment between the output of hidden units of CNN

and a target vector y.

The feature map of a CNN layer is an output through ReLU (Rectified Linear

Unit) activation function, batch normalization (Ioffe and Szegedy, 2015), max-

pooling and dropout (Srivastava et al., 2014). Activation functions such as Relu,

tanh (tangent hyperbolic), sigmoid and so on are responsible for transforming

the dot product between input and filter from a hidden unit of a network into

the activation of the unit or output of the unit (Karlik and Olgac, 2011). ReLU
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activation function is defined as given (4.5).

a = max{0, z} (4.5)

Where z is the dot product between input and filter of a hidden unit, which is

also referred as weighted sum. ReLU offers a higher gradient when z is positive

than sigmoid activation function (Cakir et al., 2017). Hence, ReLUs are the most

commonly used activation functions for the hidden layers of CNN for polyphonic

AED.

Batch normalization and dropout are also known as network regularizers, which

are explained below in brief. Batch normalization generalizes the unseen data and

improves the performance of a CNN. It normalizes the output (activation) of a

previous layer using zero mean and unit standard deviation. Dropout reduces

the overfitting by ignoring the output of randomly selected hidden units with a

specific probability. Hence, there is no significant effect of ignored hidden units

on the output of a CNN.

The max-pooling layer reduces the dimension of the output of a CNN and

makes the network more robust to frequency variations. The max-pooling opera-

tion is applied to the filtered results of CNN only along F dimension to keeping

the temporal information along T dimension unaffected.

B Bidirectional Gated Recurrent Unit (GRU) and output layers

Bidirectional GRUs are the bidirectional RNNs which include two hidden layers

side-by-side. The input sequence (forward) and its reverse (backward) are con-

sidered as input to the first and second units respectively. It provides additional

information to the network to learn effectively. Hereafter, this approach is referred

to as CBRNN (Convolutional Bi-directional Recurrent Neural Network). The out-

put layer is the fully connected time distributed dense layer, which obtains the

output (presence of events) for each time frame. The number of hidden units in

the output layer is the same as the number of acoustic event classes in the dataset.

A sigmoid activation function is used in the output layer to predict active acoustic

events in each time frame. The output of a sigmoid is bounded between [0, 1] and
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it can be considered as probabilities of an acoustic event being present in a frame.

4.1.3 Evaluation

The performance of the proposed approach is evaluated using real-life dataset :

TUT Sound Event 2016 (TUT-SED 2016) development set. This TUT-SED 2016

dataset defines four-fold cross-validation set-up for training and testing. In this

work, twenty percent of the training data is used for validation. In this work,

a segment-based evaluation metrics: F1 score and error rate (ER) are used for

polyphonic AED (Mesaros et al., 2016a). An audio segment of one-second is

considered for performance evaluation.

The dataset used in this work is developed for DCASE challenge. Each chal-

lenge task is associated with the baseline system. Participants of the challenge have

to consider respective baseline system as reference for developing their systems.

Similarly, the baseline system mentioned in DCASE challenge for polyphonic AED

task and most recent approaches as the state-of-the-art are considered to compare

the performance of our proposed approach.

• Baseline system: Multiple GMM-based classifiers are trained with MFCC

features for polyphonic AED (Mesaros et al., 2016b).

• CNN: 40 monaural log mel band energies are considered as features in the

CNN approach (Cakir et al., 2017). The CNN network employed is composed

of three CNN layers with 96 filters each, followed by a max-pooling applied

over frequency dimension. The output of CNN acts as input to the fully

connected layer with number of hidden units equal to the number of acoustic

event classes in the acoustic scene.

• RNN: 40 monaural log mel band energies are considered as features in the

RNN approach (Cakir et al., 2017). The RNN network employed is com-

posed of three Long Short Term Memory (LSTMs) units each one of which

comprises 256 units. The output of the LSTM acts as an input to the fully

connected layer with the number of hidden units equal to the number of

acoustic event classes in the acoustic scene.
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• CRNN: It is a combination of above defined CNN and RNN. The same 40

monaural log mel band energies are considered as features to the CRNN

approach (Cakir et al., 2017). The CRNN network employed in this work

is composed of three CNN layers with 96 filters each, followed by a max-

pooling one applied over frequency dimension. The output of CNN (feature

map) was fed as input to the three Long Short Term Memory (LSTMs) units

each one comprising 256 units. The output of LSTM acts as an input to the

fully connected layer with number of hidden units equal to the number of

acoustic event classes in the acoustic scene.

• CBRNN: The CBRNN is an extension of CRNN, that can handle more

than one feature types (Adavanne et al., 2017). The 40 binaural log mel

band energies are considered as features to the three CNN layers with each

one containing 100 filters, followed by max-pooling applied over frequency

dimension. The Time Difference Of Arrival (TDOA) features are used as an

input to the single CNN layer with 100 filters without max-pooling. Features

obtained from CNNs are concatenated and fed as an input to the two bi-

directional LSTMs, each of them containing 100 units. The output of LSTM

is considered as an input to the fully connected layer with number of hidden

units equal to the number of acoustic event classes in the acoustic scene.

Hyperparameters of a proposed CBRNN architecture are selected by executing

several experiments over predefined ranges using grid search. We chose hyperpa-

rameters of a CBRNN architecture, those leads to the best results on the validation

set and the same architecture is used to get the results on the test set.

The 40 mel IFgram features are extracted frame-wise from audio recordings

and divided into the sequences of length 61, giving rise to the feature matrices

of size 61 × 40. We also experimented with 20, 60 and 80 mel IFgram features

but the best results were obtained with 40 mel IFgram features. 61 frames in a

sequence are found to be helpful during experiments. Hyperparameters that give

the best results are selected from the set of values given in Table 4.1, using grid

search.
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Table 4.1: Predefined set of hyperparameters for a CBRNN architecture.

Hyperparameters Values

# CNN layers {1, 2, 3, 4}

# Bidirectional GRU layers {1, 2, 3}

# Hidden units in CNN layer {32, 64, 128, 256}

# Hidden units in Bidirectional GRU layer {32, 64, 128, 256}

Size of max-pooling layer {(1, 2), (1, 3), (1, 5)}

Size of filters in CNN layer {(3, 3), (5, 5), (7, 7)}

Batch size {32, 64, 128}

Dropout {0.10, 0.25, 0.50}

(*,*) represents the operation over Time (T ) and Frequency (F ) dimensions.

Table 4.2: Performance comparison of polyphonic acoustic event detection using
F1 score and error rate of the proposed mel IFgram + CBRNN method with other
popular methods on the TUT-SED 2016 dataset.

Method Reference Error Rate F1 score

Baseline system (Mesaros et al., 2016b) 0.91 23.7

CNN (Cakir et al., 2017) 1.09 26.4

RNN (Cakir et al., 2017) 1.10 29.7

CRNN (Cakir et al., 2017) 0.93 31.3

CBRNN (Adavanne et al., 2017) 0.95 35.8

Proposed mel IFgram + CBRNN Proposed 0.92 38.7

The proposed CBRNN framework is decided using the best choice of hyper-

parameters as follows. The numbers of hidden units in three CNN and two bidi-

rectional GRU are set to 256 and 32 respectively. Each CNN layer is followed by

a max-pooling layer along F dimension of size 1 × 3. The dropout rate is set to

0.25. The size of filters in each CNN layer is set to 3× 3. Batch size is set to 32.

The loss function is set as binary cross-entropy and Adam is used as the gradient

descent optimizer to estimate presence or absence of events in a frame. The pro-

posed network is trained using backpropagation algorithm according to the values

of the loss function obtained through processing iterations. During testing, the

output of the sigmoid layer are chosen using the fixed threshold value of 0.5 as

mentioned in (Cakir et al., 2017). This framework is implemented in Python using

the Tensorflow library (Abadi et al., 2016) and features are extracted using the

Librosa library (McFee et al., 2015).

The experimental results on TUT-SED 2016 dataset are tabulated in Table 4.2.
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The proposed approach had given an average F1 score equal to 38.7%, which is

an improvement of an absolute 15.0%, 12.3%, 9.0%, 7.4% and 2.9% compared

to baseline system, CNN, RNN, CRNN and CBRNN approaches reported in the

literature respectively. Furthermore, the average ER of the proposed approach

is equal to 0.92, which is considerably lesser than the CNN (-0.17), RNN (-0.18),

CRNN (-0.01) and CBRNN (-0.03). However, ER of the baseline system is little

lesser than that of the proposed approach (-0.01).

Proposed mel IFgram features + CBRNN approach improves the performance

of log mel band energies + CBRNN approach reported in (Adavanne et al., 2017).

Our approach uses bidirectional GRUs, which regulate the flow of information with

the help of its internal mechanisms known as gates. A number of gates in GRU

are less and computationally efficient than bidirectional LSTMs. One can refer to

(Dey and Salemt, 2017) for more information about the internal architecture of

GRU and LSTM. Proposed mel IFgram features for polyphonic AED incorporate

information regarding the rate of change of spectrum rather than just the frequency

variation with respect to the time. Mel IFgram features discriminate polyphonic

acoustic events more effectively than log mel band energies. Hence the proposed

combination of mel IFgram features + CBRNN, outperforms all other approaches

with improved F1 score.

4.1.4 Contributions and Limitations

Performance of the CRNN is improved using bidirectional GRU and mel IFgram

features. Results show that the proposed approach has a significant contribution

towards polyphonic AED. However, proposed CBRNN is composed of a consid-

erable number of layers and parameters (more than 1M) and requires a larger

dataset for training; if the dataset is not sufficiently large, then this model may

be affected by the problem of overfitting. Hence, the proposed approach may not

be suitable for smaller datasets.
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4. Polyphonic Acoustic Event Detection

4.2 A Deep Neural Network-driven feature learn-
ing method for polyphonic Acoustic Event De-
tection from real-life recordings

Recently, DNN-driven feature learning approach was investigated and applied for

multi-view Facial Expression Recognition (FER) (Zhang et al., 2016). The authors

claim that the DNN-driven feature learning method learns effectively on a smaller

dataset and outperforms CNN during FER without overfitting.

In this work, DNN-driven feature learning approach for polyphonic AED is

proposed and it is based on the DNN architecture presented in (Zhang et al.,

2016). A series of layers including two projection layers, one CNN, two fully

connected layers and a sigmoid layer are stacked to construct the proposed DNN

model for polyphonic AED. A new projection layer of the proposed DNN model

learns the discriminative spectral properties of multiple acoustic events in the

mixture with multi channel projection matrices. Further, CNN extracts high-level

features, which improves the performance of polyphonic AED.
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Figure 4.2: Architecture of the proposed DNN-driven feature learning framework
for polyphonic Acoustic Event Detection.

4.2.1 Deep Neural Network based framework for polyphonic
Acoustic Event Detection

Proposed DNN-driven feature learning model includes two projection layers, one

CNN, two fully connected and one sigmoid layers (see Figure 4.2). An F -

dimensional feature vectors of log mel band energies (frequency bands) each from
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T frames in a sequence forms a feature matrix X ∈ RT×F . Feature matrices of

the acoustic events are used as input data to train the proposed DNN. Each layer

of our DNN is explained below in brief.

A Projection layers

The projection layers are broadly classified into two types as left and right ones.

The left projection layer projects the left (temporal, T) dimension of an input

feature matrix from one space to another space (see the dimension of the output

of the left projection layer in Figure 4.2). This is achieved by taking the dot prod-

uct between projection matrices, also referred to as left multiplication projection

matrices and input feature matrix. The left multiplication projection matrices

are integrate the log mel band energies of all sequences (X) of acoustic events to

generate more discriminative features for polyphonic AED. Similarly, The right

projection layer projects the right (frequency, F) dimension of the feature map

(generated by CNN) from one space to another space. Besides, the right multi-

plication projection matrices are used to extract more significant features further

from higher-level feature maps. Projection layers work in the same way as spatial

filtering in computer vision (Griffith, 2013) and highlight the energy variations of

the acoustic events before and after CNN. The weights of the projection matrices

are initialized randomly using uniform distribution as done in (Cakir et al., 2016).

Let Hk = {H(l)
k,i|i = 1, ...,Ml} (k = 1, ..., Nl) represent the kth set of Ml channels

(multi-channel) of the projection matrices. Where, H(l)
k,i is the ith channel pro-

jection matrix of Hk, Ml is the number of channels in Hk and Nl is the number

of sets of multi-channel projection matrices. Further, left projection layer can be

formulated as

Ok =

Ml∑
i=1

H
(l)
k,iXi, (k = 1, ..., Nl) (4.6)

Where Ok is the matrix in the kth output channel, Xi is the input matrices of the

ith channel. Likewise, right multiplication projection layer can be formulated as

Ok =
Mr∑
i=1

XiH
(r)
k,i , (k = 1, ..., Nr) (4.7)
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Projection layers project input feature matrix X from one space to the another

and reduce the dimension of the outcome simultaneously.

B CNN layer

The output of the left multiplication projection layer is fed as an input to the CNN

layer. CNN layer processes a small local regions of the input using the group of

filters followed by the max-pooling layer. Unlike well-known CNN approaches used

for polyphonic AED, the filters used in this work are one-dimensional sequences,

convolved only along F dimension of the input feature matrix. These filters may

get a stronger response from some local regions of the input feature matrix, while

other regions are suppressed. This phenomenon captures the high energy spectral

components of the acoustic events from the input feature matrix.

CNN outputs the higher level feature maps from the matrices of left multipli-

cation projection layer. It is to be noted here that, left and right multiplication

projection layers reduce the number of connections (layers) compared to the classic

two-dimensional CNN to avoid overfitting problem (Mobahi et al., 2009).

The feature maps from CNN pass through tanh activation function before fed

as input to the max-pooling layer, which reduces the dimension and makes the

network robust to frequency variations. The max-pooling operation is applied to

the filtered results of CNN only along F dimension.

The output of the right multiplication projection layer is represented as P =

[Pc,t,f ]C × T × F ′, where C, T , F ′ are the number of channels, rows and columns

respectively, available after right multiplication projection.

C Fully connected and sigmoid layers

The fully connected and sigmoid layers are used as they were used in classical

CNN. The inputs from the previous layer are combined with the fully connected

layer and sigmoid layer predicts several active acoustic events simultaneously. The

binary cross-entropy is used as a loss function (Bulat and Tzimiropoulos, 2016).

The proposed network is trained using backpropagation algorithm based on the
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Table 4.3: Performance comparison of polyphonic acoustic event detection using
the proposed DNN framework with other methods on the TUT-SED 2016 dataset.

Method Reference Error Rate F1 score

Baseline system (Mesaros et al., 2016b) 0.91 23.7

CNN (Cakir et al., 2017) 1.09 26.4

RNN (Cakir et al., 2017) 1.10 29.7

CRNN (Cakir et al., 2017) 0.93 31.3

CBRNN (Adavanne et al., 2017) 0.95 35.8

mel IFgram + CBRNN Mulimani & Koolagudi:
previous approach 0.92 38.7

Proposed DNN Proposed 0.71 44.7

values of the loss function obtained through successive iterations. During testing,

outputs of the sigmoid layer are chosen using the fixed threshold value of 0.5.

4.2.2 Evaluation

The parameters which give the best results on the validation set are selected using

the grid search as explained in our previous CBRNN approach. The proposed

DNN framework with its best parameters is organized as follows. 60 monaural

(one channel) log mel band energies, their deltas and acceleration features are

extracted frame-by-frame from audio recordings and divided into the sequences of

length 61, giving rise to the feature matrices of size 61× 180. The left projection

layer contains projection matrices of size 5 × 30 × 61 × 1, indicating that there

are 5 single channel matrices with 30 rows and 61 columns. Size of the filter in

CNN layer is 5× 1× 3× 5, which has the number of channels equal to the number

of single channel matrices in the left projection layer. The right projection layer

contains projection matrices of size 5 × 89 × 30 × 5. The output of the right

projection layer is converted into a long vector and is fed as an input to the first

fully connected layer, which has the transformation matrix of size 4500 × 40 (40

is the batch size). This transforms the dimension of the feature vectors from 4500

to 40. The second fully connected layer has the transformation matrix of size

40× C, where C denotes the number of classes in the acoustic scene. This DNN

framework is implemented in Python using the Tensorflow library (Abadi et al.,

2016) and features are extracted using the Librosa library (McFee et al., 2015).
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The experimental results on TUT-SED 2016 dataset are tabulated in Table 4.3.

Proposed DNN framework achieves an average F1 score equal to 44.7%, which is

an improvement of an absolute 20.8%, 18.1%, 14.8%, 13.2%, 8.7% and 5.8% com-

pared to the baseline system, CNN, RNN, CRNN, CBRNN and improved CBRNN

(mel IFgram + CBRNN) approaches respectively. Furthermore, the average ER

of the proposed DNN framework is equal to 0.71, which is considerably lesser than

the baseline system (-0.2), CNN (-0.38), RNN (-0.39), CRNN (-0.22), CBRNN (-

0.24) and improved CBRNN (-0.21). The TUT-SED 2016 dataset contains a small

amount of real-time audio recordings and acoustic events occur sparsely (a maxi-

mum portion of the audio recordings is silent). Normally, the CRNN, CBRNN and

improved CBRNN are said to learn effectively with a larger dataset and present

dataset may not be sufficient for their training. This may be the reason for poor

performance of those approaches compared to the proposed method. However,

the combination of projection layers and CNN layer extracts more discriminative

spectral features from multiple acoustic events in a mixture and exhibits improved

performance over the traditional CNN and CBRNN. Better results also convey the

suitability of the proposed DNN for smaller datasets.

4.2.3 Contributions and Limitations

The main contributions of this work are summarized below.

• A new projection layer is introduced with the CNN for polyphonic AED and

it is helpful to learn the discriminative spectral characteristics of polyphonic

acoustic events. Notably, significant features per frame associated with mul-

tiple overlapped acoustic events in the mixture are integrated to produce

ensemble set of more discriminative features.

• Unlike two-dimensional CNN layers used for polyphonic AED, in this work,

the one-dimensional CNN layer is employed to extract high-level features

from the input. It is empirically observed that the proposed projection and

CNN layers for polyphonic AED significantly reduce the complexity of the

DNN model and alleviate the overfitting.
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A main limitation of the proposed DNN model is that CNNs fail to model the long

term temporal information prevailing in the acoustic events; this is problematic

especially during modeling of long events, such as rain, baby crying, crowd cheering

and so on.

4.3 Summary

In this chapter, an attempt to detect the overlapped (polyphonic) acoustic events

at a given time instance was undertaken. There were two deep learning mod-

els presented for polyphonic AED. One was CRNN and the other was a DNN-

driven feature learning approach. Proposed CRNN was a combination of CNN

and bidirectional GRU, also referred to as CBRNN, which captured both spec-

tral and temporal information from the polyphonic acoustic events. Further, mel

IFgram features were explored and used as input to the CBRNN. It is seen that

the combination of mel IFgram features and CBRNN outperforms other popular

state-of-the-art approaches.

Two projection layers before (left) and after (right) 1-D CNN were explored

in a DNN-driven feature learning approach. A combination of projection layers

and CNN extracted more discriminative features from polyphonic acoustic events

than traditional CNN alone. It is seen that the proposed approach outperforms

the CBRNN approach proposed earlier. The advantage of the DNN-driven feature

learning approach over CBRNN is that the DNN-driven feature learning approach

achieves better performance with lesser number of layers and parameters. The

disadvantage is that the DNN-driven feature learning approach fails to capture

temporal information.
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CHAPTER 5

Acoustic Scene Classification

In chapter 4, two deep learning models: CBRNN and DNN-driven feature learning

methods were presented for polyphonic AED. Features extracted from the single

channel of an audio signal are used as input features to the deep learning models.

In this chapter, the task is to recognize polyphonic acoustic events and the cor-

responding scene from a continuous audio signal. This is also referred to as joint

polyphonic AED and ASC. The CBRNN proposed in a previous chapter is used

for joint polyphonic AED and ASC. CBRNN captures both spectral and temporal

information from an audio signal. It requires a larger dataset and dataset used in

the present studies is sufficient enough to train CBRNN.

Polyphonic acoustic events and respective scenes may be recognized better with

features from multi-channels. Hence, in this chapter binaural features (features

from two channels) are also explored. An attempt is made to further improve the

performance of CBRNN by replacing CNN in CBRNN by Kervolutional Neural

Network (KNN) and resulting architecture is referred to as Kervolutional Bidirec-

tional Recurrent Neural Network (KBRNN).
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5.1 Design of Convolutional Bidirectional Recur-
rent Neural Network for joint polyphonic Acous-
tic Event Detection and Acoustic Scene Clas-
sification

The same architecture of CBRNN, proposed in our previous chapter (see Fig-

ure 4.1) is used for joint polyphonic AED and ASC. Target label matrix Y ∈

R(C+Ĉ)×T of the CBRNN network for joint polyphonic AED and ASC is a combi-

nation of both acoustic events C and corresponding scenes Ĉ, in contrast to the

label matrix used in polyphonic AED approach, which represents only acoustic

events present in a time frame, t. Input features to the CBRNN are broadly cat-

egorized into two types. One is monaural features, which are extracted from a

single channel and another is binaural features, which are extracted from binaural

channels of an audio signal. In this work, Log mel band energies and mel IFgram

features are extracted as monaural and binaural features to the CBRNN approach

for the joint polyphonic AED and ASC.

5.1.1 Evaluation

The performance of the proposed approach is evaluated using joint sound event

and scene dataset. This dataset defines a five-fold cross-validation set-up for train-

ing and testing. In this work, a quarter of the training data is used for validation

during training. A segment-based evaluation metrics: F1 score and ER are used

for polyphonic AED (Mesaros et al., 2016a). Majority voting based accuracy is

used as a metric for ASC. Majority voting represents the acoustic scene identi-

fied in the majority of the frames of an audio signal. A segment of one-second is

considered for performance evaluation. During testing, the outputs of the sigmoid

layer are chosen using the fixed threshold value of 0.9 as in (Bear et al., 2019). Per-

formance of our proposed approach is compared with the state-of-the-art CRNN

approach (Bear et al., 2019) and its architecture is detailed in the previous chapter.

128 mel band energies are considered as input features to the CRNN as reported

in the literature for joint polyphonic AED and AEC. In this work, 40 log mel
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band energies and mel IFgram features are extracted and used as input features

to the CBRNN. We also had experimented with 20, 60 and 80 features but the

best results were obtained with 40 features. The experimental results of the pro-

Table 5.1: Performance comparison of joint polyphonic AED and ASC using a
combination of monaural and binaural features + CBRNN with state-of-the-art
CRNN method.

Polyphonic AED ASC

Type of features Method Reference Error Rate F1 score Acc.

Log mel band energies + CRNN (Bear et al., 2019) 1.00 13.8 98.0

Monaural Log mel band energies + CBRNN - 0.98 14.2 98.0

mel IFgram + CBRNN - 0.83 18.9 98.3

Log mel band energies and
log mel band energies + CBRNN - 0.97 15.1 98.0

Binaural mel IFgram and
mel IFgram + CBRNN - 0.81 19.2 98.3

mel IFgram and
log mel band energies + CBRNN - 0.78 21.3 98.5

posed approach are tabulated in Table 5.1. A combination of monaural/binaural

features + CBRNN outperforms state-of-the-art CRNN. Binaural features are a

combination (concatenation) of significant information from both the channels of

the audio signals which improves the performance of CBRNN over that of the

monaural features.

One can observe from Table 5.1 that, different combinations of binaural fea-

tures are considered to improve the performance of both polyphonic AED and

ASC. As mentioned in our previous chapter, mel IFgram features perform bet-

ter over log mel band energies. Monaural mel IFgram features outperform both

monaural and binaural log mel band energies. Binaural mel IFgram features im-

prove F1 score and ER of a polyphonic AED task compared to monaural mel

IFgram features. However, the recognition accuracy (98%) of the ASC task is

unchanged.

Further, we concatenate mel IFgram features from the first channel and log

mel band energies from the second channel of an audio signal. These binaural

features combine both magnitude (log mel band energies) and phase (mel IFgram)
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information. Combining mel IFgram features with log mel band energies provides

an absolute improvement in F1 score by 2.4%, lesser ER (-0.05) and improved

accuracy by 0.2% as compared to the performance of mel IFgram features alone.

Hence, the combination of mel IFgram features with log mel band energies suits

well for joint polyphonic AED and ASC.

Bidirectional GRU provides additional significant information to the network

using forward and backward sequences as compared to unidirectional LSTM.

Hence, the proposed combination of mel IFgram features and log mel band en-

ergies with CBRNN detects acoustic events with an average F1 score equal to

21.3%, which is a significant improvement of an absolute 7.5% over the state-of-

the-art CRNN approach reported in the literature. Furthermore, the average ER

of the proposed approach is equal to 0.78, which is considerably lesser than the

CRNN (-0.22). The proposed approach also recognizes the acoustic events with

a recognition accuracy of 98.5% which is slightly better than that of the CRNN

(0.5%).

5.1.2 Contributions and Limitations

In this work, binaural features are explored for joint polyphonic AED and ASC.

Binaural mel IFgram features and log mel band energies improve the performance

of CBRNN as compared to monaural and other binaural features. However, CNN

layers in CBRNN are linear and their convolutional operations may be generalized

to non-linear operations for better performance.

5.2 Design of Kervolutional Bidirectional Recur-
rent Neural Network for joint polyphonic Acous-
tic Event Detection and Acoustic Scene Clas-
sification

Convolutional layers are linear and non-linearity is added to them by activation

functions, such as ReLU. However, activation functions provide point-wise non-

linearity only. Performance of the CNN may be further improved by generalizing
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the convolutional operation to patch-wise (region-wise) non-linear operation using

kernel trick. This operation is also known as kervolutional (kernel convolutional)

(Wang et al., 2019).

5.2.1 Architecture of proposed Kervolutional Recurrent Neu-
ral Network

The architecture of the proposed Kervolutional Bidirectional Recurrent Neural

Network (KBRNN) is the same as that of the architecture of CBRNN proposed

in our previous chapter (shown in Figure 4.1) except KBRNN uses Kervolutional

Neural Network (KNN) than simple CNN.

A KNN layer

Convolutional operation is denoted using the notation given in (5.1).

Z = X
⊕

f (5.1)

Where X ∈ RF×T is a feature matrix, f is a filter and
⊕

is the convolutional

operation. The output of an ith element of a convolutional operation is denoted

below in (5.2).

zi = (xi, f) (5.2)

Where (∗, ∗) denotes the inner product between two vectors. In the similar way,

Kervolutional operation is denoted using notation given in (5.3).

Z = X
⊗

f (5.3)

Where
⊗

is the kervolutional operation. The output of an ith element of a kervo-

lutional operation is denoted as given in (5.4).

zi = (ψ(xi), ψ(f)) (5.4)

Where ψ is a non-linear function and it is computed using kernel trick given in

(5.5).

(ψ(xi), ψ(f)) =
∑
j

cj(x
T
i f)j = κ(xi, f) (5.5)
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Where cj is the coefficient, which balances the order of non-linearity and κ is the

kernel function. In this work, the linearity of CNN is replaced with the polynomial

kernel and its formulation is given in (5.6).

κp(x, f) = (xTf + cp)
dp =

dp∑
j=0

cdp−jp (xTf)j (5.6)

Where dp denotes the order of polynomial and it converts the dimension of features

from one space to the other. We only replace the CNN layers of CBRNN by the

kervolutional layer using the polynomial kernel and the resulting architecture is

referred to as KBRNN.

5.2.2 Evaluation

Values of parameters, dp and cp of polynomial kernel that give the best results are

selected from the sets dp = {2, 3, 5, 7} and cp = {0.5, 1} using grid search. Best

results were obtained with dp = 3 and cp = 0.5. Binaural mel IFgram features

and log mel band energies have shown to be significant and suitable features for

joint polyphonic AED and ASC in our previous approach. Hence, they are again

considered as input features to the proposed KBRNN approach.

Table 5.2: Performance comparison of joint polyphonic AED and ASC using bin-
aural mel IFgram and log mel band energies with KBRNN and CBRNN approach.

Polyphonic AED ASC

Method Reference Error Rate F1 score Acc.

mel IFgram and
log mel band energies + CBRNN

Mulimani & Koolagudi:
previous approach 0.78 21.3 98.5

mel IFgram and
log mel band energies + KBRNN Proposed 0.75 24.2 99.0

The experimental results of the proposed approach are tabulated in Table 5.2.

The replacement of CNN by KNN significantly improves the performance of CBRNN

for joint polyphonic AED and ASC. The proposed KBRNN approach achieves an

average F1 score equal to 24.2%, which is an absolute improvement of 2.9% com-

pared to our CBRNN approach. Furthermore, the average ER of the proposed
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KBRNN approach is equal to 0.75, which is lesser than the CBRNN (-0.03). The

proposed KBRNN also recognizes the corresponding acoustic scenes with an av-

erage accuracy of 99%, which is slightly higher than the CBRNN (0.5%). KNN

using polynomial kernel captures higher-order interactions of the binaural features

and performs better than CNN. Hence, the proposed KBRNN is more suitable for

joint polyphonic AED and ASC.

5.2.3 Contributions and Limitations

In this work, KNN is explored for joint polyphonic AED and ASC. The traditional

linear convolutional operation is generalized using the non-linear polynomial ker-

nel. Binaural features + combination of KNN and bidirectional GRU (KBRNN)

have significant contribution towards joint polyphonic AED and ASC. However,

in this work, only one non-linear polynomial kernel is used for the computation of

KNN. Other non-linear functions may be explored for further investigation.

5.3 Summary

In this chapter, an attempt for the recognition of polyphonic acoustic events and a

related scene from a continuous audio signal is undertaken. Different combinations

of binaural features are explored and considered as input features to the CBRNN

for joint polyphonic AED and ASC. A combination of mel IFgram features and

log mel band energies improves the performance of CBRNN as compared to other

binaural and monaural features.

Linear convolutional operations of CNN layers in CBRNN are generalized to

non-linear operations using the polynomial kernel and the resulting layers are

known as KNN layers. CNN in CBRNN is replaced by KNN and resulting KBRNN

is used for joint polyphonic AED and ASC. The polynomial kernel in KNN per-

forms better than traditional CNN. A combination of KNN and bidirectional GRU,

outperforms CBRNN.
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CHAPTER 6

Summary and Conclusions

The thesis is organized into 6 chapters. The first chapter introduces monophonic

Acoustic Event Classification (AEC), polyphonic Acoustic Event Detection (AED)

and joint model (polyphonic AED and ASC) with their applications and challenges

in brief. The second chapter critically reviews the research work done in the area

of monophonic AEC, polyphonic AED and joint model concerning different fea-

tures and classifiers. At the end of this chapter, research gaps are analyzed and

problem statement is identified. In the third chapter, Spectrogram Features (SFs),

Spectrogram Image Features (SIFs) and MapReduce-based Features (MRFs) are

proposed for monophonic AEC. The chapter four, presents two deep learning mod-

els: one is Convolutional Bidirectional Recurrent Neural Network (CBRNN) and

the other is the DNN-driven feature learning approach for polyphonic AED. Chap-

ter five explores binaural features and Kervolutional Neural Network (KNN) to

improve the performance of CBRNN for joint polyphonic AED and ASC. Chapter

six concludes the present work and opens up the path for further research.

6.1 Summary of the Present Work

In this thesis, effective methods for monophonic AEC, polyphonic AED and joint

model (polyphonic AED and ASC) are investigated. Frame-based speech features

are specifically designed and developed for speech/speaker recognition tasks. This

research proposes acoustic event specific features such as SFs, SIFs and MRFs for

monophonic AEC. SIFs such as Bag-of-Visual-Words (BoVWs), Fusion Fisher Vec-
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tor (FFV) features and Fusion-based Bag-of-Features (FBoFs) are robust to noise

and outperform both baseline and state-of-the-art methods. Results show that

FBoFs achieve a relatively higher performance than BoVWs and FFV features.

MRFs are specially designed and developed from more massive audio datasets.

Even MRFs outperform state-of-the-art methods.

A combination of mel IFgram features and CBRNN is proposed for polyphonic

AED and it outperforms the popular state-of-the-art approaches. CBRNN requires

a larger dataset for effective training. The present TUT-SED 2016 development

dataset may not be sufficient to train CBRNN. In this thesis, a DNN-driven feature

learning method is proposed for polyphonic AED, which is well suitable for smaller

datasets and outperforms state-of-the-art methods. CBRNN is also used for joint

polyphonic AED and ASC. The dataset used for this task is sufficiently large

enough to train CBRNN effectively. Further, the performance CBRNN is improved

by computing and using binaural features as input. Binaural features outperform

the monaural features. CNN in CBRNN is replaced by KNN to get Kervolutional

Bidirectional Recurrent Neural Network (KBRNN). The proposed KBRNN for

joint polyphonic AED and ASC outperforms the CBRNN.

6.2 Conclusions

• The strongest peaks of acoustic event signals are unaffected by noise and

their properties are effectively discriminated by BoVWs, FFV features, FBoFs

and MRFs. Hence, the proposed SIFs and MRFs are robust in nature.

• GTCCs and their BoAW representations outperform MFCCs. However,

BoAW representations of GTCCs do not perform alone as expected. A fu-

sion of BoAW representations of GTCCs and the proposed BoVWs generates

more robust features for monophonic AEC, in noisy conditions as compared

to BoVWs alone and FFV features.

• MapReduce job for feature extraction, which has been especially designed for

more massive audio datasets and may not be suitable for smaller datasets.

122



6.2. Conclusions

• Chi-square kernel of SVM classifier is computed from nature of the input

features, hence, Chi-square SVM effectively classifies the histogram (bag)

features than linear SVM. However, the computation of Chi-square demands

higher computational time as compared to the linear kernel. FFV features

perform well with a linear classifier and include much more information as

compared to BoVWs.

• The proposed SFs, SIFs and MRFs have shown considerably good recognition

accuracy in classifying monophonic AEC. It indicates that proposed features

have a significant contribution towards the AEC.

• CBRNN is a combination of CNN and bidirectional GRU. Bidirectional GRU

learns from both the input sequence and its reverse. Hence, CBRNN learns

from additional information and perform better than state-of-the-art CRNN.

• It is observed that projection layers of proposed DNN framework have more

discriminative ability while detecting overlapped acoustic events.

• A DNN-driven feature learning method effectively recognizes the overlapped

acoustic events from smaller datasets but fails to capture temporal infor-

mation from the acoustic signals. Acoustic events with long term temporal

context such as baby crying, rain sound may not be recognized effectively.

• Polyphonic acoustic events and corresponding scenes are effectively recog-

nized with binaural features. Binaural features are computed by concate-

nating the significant information from both the channels. Hence, binaural

features outperform monaural features.

• Replacement of CNN in CBRNN by KNN effectively recognizes polyphonic

acoustic events and corresponding scenes. Non-linear operations, using a

polynomial kernel, are more effective than linear convolutional operations.
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6.3 Scope for Future Works

• In the current research, a left singular vector is divided into two parts using

an identified threshold. One part represents spectral components belonging

to an event and the other represents the spectral components belonging to a

non-event. In future, a more effective threshold may be defined, that divides

singular vector into two parts. One part represents spectral components

belonging to an event and the other represents the spectral components

belonging to noise and non-event. This extension may generate noise robust

SFs.

• Current BoVWs are computed using hard quantization. A GMMs may be

used for soft quantization in place of K-means clustering; this may further

improve the recognition accuracy.

• BoVWs representation is an unordered histogram representation, which does

not include temporal information. Temporal information is an important

cue for acoustic event characterization. Loss of temporal information can be

avoided using temporal pyramid or feature augmentation (Grzeszick et al.,

2017).

• In the future, the Fisher vector may be computed from another Fisher vector

of a monochrome image hierarchically for more discriminative FFV features

for robust AEC. The computation of the Fisher vector from another Fisher

vector may be referred to as deep Fisher network.

• Combination of the Fisher vectors from monochrome images of different

colormaps may improve the performance of the AEC system.

• The advanced dimension reduction approaches, such as Linear Discriminant

Analysis (LDA) and max-margin learning, may be explored in the place of

traditional PCA for selection of significant features from Fisher vectors.

• Proposed DNN for polyphonic AED fails to model long term temporal infor-

mation. In the future, RNN may be added to the proposed DNN framework
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in order to consider temporal information.

• CBRNN/KBRNN learns effectively on larger datasets. In the future, Gen-

erative Adversarial Networks (GAN) and Variational Auto Encoders (VAE)

may be considered to create additional training examples (data augmenta-

tion) in smaller datasets, such as, TUT-SED 2016 development set.

• Different combinations of binaural features and different non-linear kernel

tricks may improve the overall performance of KBRNN for joint polyphonic

AED and ASC.
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