
MITIGATING THE BUFFERBLOAT
PROBLEM TO REDUCE INTERNET

TRANSPORT LATENCY

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Sachin Dattatraya Patil

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575025

June 2020

National Institute of Technology Karnataka, Surathkal

–––-

DECLARATION
by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Mitigating The Bufferbloat
Problem To Reduce Internet Transport Latency which is being submitted to the
National Institute of Technology Karnataka, Surathkal in partial fulfilment of
the requirements for the award of the Degree of Doctor of Philosophy in Computer
Science and Engineering is a bonafide report of the research work carried out
by me. The material contained in this Research Thesis has not been submitted to any
University or Institution for the award of any degree.

(138039 CS13F07, Sachin Dattatraya Patil)
(Register Number, Name & Signature of Research Scholar)
Department of Computer Science and Engineering

Place: NITK, Surathkal.
Date: June 9, 2020

––-

National Institute of Technology Karnataka, Surathkal
–––-

CERTIFICATE

This is to certify that the Research Thesis entitled Mitigating The Bufferbloat

Problem To Reduce Internet Transport Latency submitted by Sachin Dattatraya

Patil, (Register Number: 138039 CS13F07) as the record of the research work carried

out by him, is accepted as the Research Thesis submission in partial fulfillment of the

requirements for the award of degree of Doctor of Philosophy.

Dr. Mohit P. Tahiliani

Research Supervisor

(Name and Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

––-

Acknowledgements

Firstly, I would like to express my sincere gratitude to my guide Dr. Mohit P. Tahiliani

(Assistant Professor, Department of CSE) for his continuous guidance and motivation,

because of which I have been able to learn in handling the issues in terms of technical,

personal and professional career during the journey of my PhD at NITK, Surathkal.

Besides my guide I would like to thank Prof K. Chandrasekharan (CSE Department

and my RPAC member) and Prof. K. V. Gangadharan (Mechanical Department and

another my RPAC member), who have been a continuous source of motivation and en-

couragement with their constructive suggestions to assist me during my PhD journey.

My sincere thanks also goes to Dr. Alwyn Roshan Pais (HoD CSE and chairman,

DRPC) who has been supported me all the time of my PhD.

Place: Surathkal Sachin Dattatraya Patil

Date: June 9, 2020

Abstract

There has been a proliferation of high capacity routers on the Internet to appropriately

utilize the high-speed data links. These routers typically consist of very large buffers

because the memory prices have fallen sharply. Due to surplus buffering, packets expe-

rience an excessive queuing delay which leads to a significant degradation in the overall

performance and largely reduces the quality of service for time-critical applications. The

above-mentioned problem is known as bufferbloat. Active Queue Management (AQM)

is a promising technique to minimize the impact of Bufferbloat and improve the quality

of service for time-critical applications. Several AQM algorithms have been designed to

monitor and limit the growth of the queue at routers. Controlled Delay (CoDel) and

Proportional Integral controller Enhanced (PIE) are two popular AQM algorithms which

are designed to address the problem of bufferbloat.

One of the vital characteristics of AQM algorithms is to maintain a proper trade-off

between queue delay and bottleneck link utilization. However, maintaining this trade-off

becomes challenging when unresponsive flows crossing the router do not respond to con-

gestion notifications, e.g., congestion agnostic UDP flows. Unresponsive flows increase

queue delay, affect the queue stability and lead to more packet losses. Additionally, AQM

algorithms do not provide adequate fairness when responsive flows and unresponsive flows

share the same bottleneck link. Unresponsive flows tend to dominate the bandwidth con-

sumption due to lack of congestion control. This leads to fairness problems and subse-

quently, the performance of responsive flows degrades significantly. One of the potential

approaches to resolve the problem of unfairness between responsive and unresponsive

flows is to provide flow protection by integrating AQM algorithms with packet scheduling

algorithms, such as Deficit Round Robin (DRR).

The main goal of this work is to enhance the robustness of AQM algorithms against

unresponsive traffic and provide fairness when responsive and unresponsive flows coex-

ist. Along these lines, this thesis makes the following contributions: we propose Modified

i

CoDel and Minstrel PIE as enhancements to CoDel and PIE, respectively to increase their

robustness against unresponsive flows. Subsequently, we propose Flow Queue Minstrel

PIE (FQ-Minstrel PIE) to address the concern of fairness among responsive and unre-

sponsive flows. Besides these primary contributions, we have developed a fluid model to

obtain an in-depth understanding of working of CoDel and Modified CoDel, aligned the

implementation of PIE in Linux kernel to RFC 8033 and implemented a new model for

Flow Queue PIE (FQ-PIE) in the Linux kernel.

Extensive evaluations conducted through mathematical modeling, simulations and

real-time experiments show that Modified CoDel achieves better performance against

unresponsive flows. However, we note that Modified CoDel is not scalable and fails to

perform due to inherent limitations in the design of CoDel. Conversely, it is observed that

Minstrel PIE, a minor enhancement of PIE, offers significant performance improvements

against unresponsive traffic, and FQ-Minstrel PIE resolves the fairness problem between

responsive and unresponsive flows. The work on aligning the PIE implementation in

Linux kernel with RFC 8033 is merged in the mainline of Linux kernel since v5.1 and the

FQ-PIE algorithm is merged in the mainline of Linux kernel since v5.5.

Keywords: Bufferbloat, Active Queue Management, CoDel, PIE.

ii

Table of Contents

Abstract i

Table of Contents iii

List of Figures vii

List of Tables xi

Abbreviations and Nomenclature xv

1 Introduction 1

1.1 The problem . 4

1.1.1 Issues with unresponsive traffic . 5

1.1.2 Fairness issues . 6

1.2 Contributions of this thesis . 6

1.2.1 Primary contributions . 6

1.2.2 Secondary contributions . 7

1.3 Outline of the thesis . 8

2 Literature Review 11

2.1 Background . 11

2.1.1 RED and Adaptive RED . 12

2.1.2 CoDel . 14

2.1.3 PIE . 15

2.1.4 Other solutions for bufferbloat . 17

2.2 Evaluation Methodologies . 20

2.2.1 ns-2 . 20

2.2.2 ns-3 . 21

iii

2.2.3 Fluid modeling . 21

2.2.4 Real time testbed . 21

2.2.5 Virtual Flent . 22

2.3 Related Work . 22

2.3.1 Uncontrolled Queue Delay . 23

2.3.2 Unfairness between Responsive and Unresponsive flows 24

3 Design and Evaluation of Modified CoDel 25

3.1 Fluid Modeling . 26

3.1.1 Genesis . 26

3.1.2 Proposed fluid model for CoDel . 27

3.1.3 Correctness of the proposed fluid model 28

3.2 Control Law Sensitivity of CoDel . 30

3.2.1 Impact of control law of CoDel . 31

3.2.2 Modified CoDel . 33

3.2.3 Case 1: CoDel with interval 30 ms 35

3.2.4 Case 2: CoDel with modified control law 36

3.2.5 Case 3: Original CoDel vs Modified CoDel 36

3.3 Evaluation using real-time test-bed . 38

3.4 Constraints of CoDel . 42

3.5 Inferences . 43

4 Minstrel PIE 45

4.1 Impact of fixed qdelay_ref . 45

4.2 Minstrel PIE . 47

4.2.1 Design . 47

4.2.2 Parameter Settings . 49

4.2.3 Support for Explicit Congestion Notification 50

4.2.4 Implementation . 50

4.3 Evaluation . 50

4.3.1 Preliminary Evaluation . 51

4.3.2 RFC 7928 based Evaluation . 57

4.3.3 Evaluation using Flent . 61

4.4 Inferences . 68

iv

5 Flow Queue Minstrel PIE 71

5.1 Flow Queuing . 71

5.2 FQ-PIE . 72

5.2.1 Design . 72

5.2.2 Implementation . 73

5.2.3 Evaluation . 76

5.3 FQ-Minstrel PIE . 83

5.3.1 Evaluation with Section 4.3.3 topology 83

5.3.2 Evaluation with Section 5.2.3 topology 85

5.4 Inferences . 90

6 Conclusions and Future Work 93

6.1 Conclusions . 93

6.2 Limitations and Future work . 94

Bibliography 97

List of Publications 104

v

vi

List of Figures

1.1 Classification of AQM mechanisms . 4

2.1 Example topology used for Virtual Flent 22

3.1 Analytical comparison of square root law and proposed fluid model intervals 29

3.2 Dumbbell Topology used for all experiments 30

3.3 CDF of queue delay with fluid model and ns-2 31

3.4 Performance of CoDel against varying number of TCP and UDP flows . . . 33

3.5 Performance of CoDel against varying number of TCP and UDP flows with

interval 30 ms and modified control law . 34

3.6 Case 1: CDF of Queue delay for Original CoDel vs CoDel with interval =

30 ms . 35

3.7 Case 2: CDF of Queue delay for Original CoDel vs CoDel with a modified

control law . 36

3.8 Case 3: CDF of Queue delay for Original CoDel vs Modified CoDel (com-

bined Case 1 and Case 2) . 37

3.9 Cont... Congestion window evolution with original and modified control law 39

3.10 Throughput for original and modified control law 40

3.10 Cont... Throughput for original and modified control law 41

3.11 Mix TCP and UDP with 0.5 Mbps bottleneck bandwidth 42

3.12 Mix TCP and UDP with 10 Mbps bottleneck bandwidth 42

4.1 Dumbbell Topology used in ns-2 experiments 46

4.2 Link Utilization and Queuing Delay with PIE 46

4.3 Link Utilization and Queuing Delay with Minstrel PIE 47

4.4 Queuing Delay for Light TCP traffic . 53

4.5 Link Utilization for Light TCP traffic . 53

vii

4.6 Queuing Delay for Heavy TCP traffic . 55

4.7 Link Utilization for Heavy TCP traffic . 55

4.8 Queuing Delay for Mix TCP and UDP traffic 55

4.9 Link Utilization for Mix TCP and UDP traffic 56

4.10 Representation of Figure 4 to Figure 9 as per RFC 7928 57

4.11 Results for Section 5.3 from RFC 7928 . 59

4.12 Results for Section 8.2.2 to 8.2.4 from RFC 7928 60

4.13 Light TCP Traffic . 62

4.14 Heavy TCP Traffic . 64

4.15 Mix TCP and UDP Traffic with tcp_1up 64

4.16 Mix TCP and UDP Traffic with tcp_1up 65

4.17 Mix TCP and UDP Traffic . 65

4.18 Mix TCP and UDP Traffic with ECN . 66

4.19 Light TCP Traffic with TCP CUBIC . 67

4.20 Heavy TCP Traffic with TCP CUBIC . 68

5.1 Flow Queue mechanism . 72

5.2 List of FQ-PIE flows . 74

5.3 Testbed topology . 76

5.4 TCP Throughput for tcp_1up test . 77

5.5 TCP Round Trip Time tcp_1up test . 78

5.6 TCP Throughput for tcp_4up test . 78

5.7 TCP Round Trip Time tcp_4up test . 79

5.8 TCP Throughput for tcp_12up test . 79

5.9 TCP Round Trip Time for tcp_12up test 80

5.10 TCP Throughput for cubic_bbr test . 80

5.11 TCP Round Trip Time for cubic_bbr test 80

5.12 Queuing Delay for VoIP test . 82

5.13 Jitter for VoIP test . 82

5.14 Mix TCP and UDP Traffic with tcp_1up 84

5.15 Mix TCP and UDP Traffic with tcp_5up 85

5.16 TCP Throughput for tcp_1up test with FQ-Minstrel PIE 85

5.17 TCP Round Trip Time tcp_1up test with FQ-Minstrel PIE 86

5.18 TCP Throughput for tcp_4up test with FQ-Minstrel PIE 86

viii

5.19 TCP Round Trip Time tcp_4up test with FQ-Minstrel PIE 87

5.20 TCP Throughput for tcp_12up test with FQ-Minstrel PIE 87

5.21 TCP Round Trip Time for tcp_12up test with FQ-Minstrel PIE 88

5.22 TCP Throughput for cubic_bbr test with FQ-Minstrel PIE 88

5.23 TCP Round Trip Time for cubic_bbr test with FQ-Minstrel PIE 88

5.24 Queuing Delay for VoIP test with FQ-Minstrel PIE 89

5.25 Jitter for VoIP test with FQ-Minstrel PIE 90

ix

x

List of Tables

1.1 Latency tolerance limits for different Internet applications 2

2.1 Soultions for bufferbloat . 18

3.1 Parameter settings for varying TCP and UDP flows experiments 32

3.2 Variance in cwnd with CoDel and modified CoDel 38

3.3 Throughput with CoDel and modified CoDel 38

3.4 Total number of packets dropped with CoDel and modified CoDel 40

4.1 Simulation Configuration for Preliminary Evaluation 52

4.2 Fairness for Light TCP traffic scenario . 52

4.3 Fairness for Heavy TCP traffic scenario . 54

4.4 Fairness for Mix TCP and UDP traffic scenario 56

4.5 Simulation Configuration for RFC 7928 based Evaluation 58

4.6 Scenarios mentioned in Section 5.3 of RFC 7928 58

4.7 Fairness for Section 5.3 traffic scenario from RFC 7928 59

4.8 Congestion scenarios mentioned in Section 8 of RFC 7928 60

4.9 Testbed Setup using ethtool, netem, tc and Flent 61

4.10 Fairness for Light TCP traffic scenario in testbed 62

4.11 Fairness for Heavy TCP traffic scenario in testbed 63

4.12 Fairness in tcp_1up test without ECN . 65

4.13 Fairness in tcp_1up test with ECN . 65

4.14 Fairness in tcp_5up test without ECN . 66

4.15 Fairness in tcp_5up test with ECN . 66

5.1 Calculation of Jain’s Fairness Index . 81

5.2 Packet loss for VoIP flows (%) . 83

5.3 Fairness in tcp_1up test . 84

xi

5.4 Fairness in tcp_5up test . 84

5.5 Calculation of Jain’s Fairness Index with FQ-Minstrel PIE 89

5.6 Packet loss for VoIP flows (%) with FQ-Minstrel PIE 90

xii

Abbreviations and Nomenclature

Abbreviations

AIMD Additive Increase Multiplicatve Decrease

AQM Active Queue Management

ARED Adaptive Random Early Detection

BDP Bandwidth Delay Product

CDF Cumulative Distribution Function

COBALT COntrolled Delay and Blue ALTernate

CoDel Controlled Delay

DRR Deficit Round Robin

ECN Explicit Congestion Notification

EWMA Exponential Weighted Moving Average

FQ Flow Queue

FQ-CoDel Flow Queue CoDel

FQ-PIE Flow Queue Proportional Integral controller Enhanced

Flent Flexible Network Tester

Flent Flexible network tester

IP Internet Protocol

xiii

MTU Maximum Transmission Unit

PDF Probability Distribution Function

PI Proportional Integral controller

PIE Proportional Integral controller Enhanced

QUIC Quick User Datagram Protocol Internet Connection

RED Random Early Detection

REM Random Exponential Marking

RFC Request For Comments

RTT Round Trip Time

SFB Stochastic Fair BLUE

SFQ Stochastic Fair Queuing

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

VoIP Voice over Internet Protocol

xiv

Nomenclature

avg_dq_rate average dequeue rate

cur_delay current delay

interval interval period

maxavg_dq_rate maximum average dequeue rate

ns-2 Network Simulator 2

ns-3 Network Simulator 3

old_delay previous inerval delay

p packet drop probability

p drop probability

pdrop drop probability in BLUE algorithm

qdelay_ref reference queue delay

qdisc queue discipline

target target queue delay

tupdate probability update period

↵ constant used in PIE algorithm

� constant used in PIE algorithm

PI2 Proportional Integral controller Square

avg average queue length in ARED

max_thr maximum threshold constant in ARED

min_thr minimum threshold constant in ARED

p(i) drop probability in the currrent interval

xv

p(i�1) drop probability in the previous interval

xvi

Chapter 1

Introduction

Internet has been experiencing a rapid growth in terms of penetration rate and diversity

of applications that range from huge file transfers and online gaming to remote health

monitoring. It has transformed from a communication system into a massive and de-

centralized source of information. According to 2018 study1, the average Internet speed

in wired networks is 46.12 Mbps and 22.44 Mbps for download and upload, respectively,

whereas the same for cellular networks is 22.82 Mbps and 9.19 Mbps for download and

upload, respectively. Although the Internet usage is rapidly increasing and enhancing the

connectivity worldwide, new applications have placed stringent performance requirements.

The primary needs of today’s Internet applications are low latency and high throughput.

High throughput can be achieved by provisioning more bandwidth, but reducing latency

is a significant challenge.

The present day Internet applications can be classified into three categories (Kennedy

et al., 2017): (i) latency sensitive applications such as web browsing, instant messag-

ing, remote monitoring, online gaming, Voice over IP (VoIP), video conferencing, DNS

queries, IoT applications and others, (ii) latency tolerant or elastic applications such as

photo and video sharing, emails with large attachments, peer to peer file transfer, offsite

backup systems, updates for operating systems and mobile apps, downloading movies and

TV shows, offline playback, messaging with multimedia attachments and (iii) streaming

content traffic such as Netflix, Amazon prime videos, Youtube and others. Table 1.1

presents different types of Internet traffic separated into three latency categories with

their tolerance time (Boerlage and Collom, 2016).

The performance of latency sensitive applications becomes worse when routers have

1https://www.speedtest.net/insights/blog/2018-internet-speeds-global/

1

Table 1.1: Latency tolerance limits for different Internet applications

Applications Latency Category Latency Tolerance

VoIP or video Sensitive 0 - 150 ms

Gaming applications Sensitive 0 - 200 ms

Web browsing Sensitive 1 - 2 s

Message applications Elastic 5 - 10 s

Bulk downloads Elastic >10 s

Cloud uploads

(e.g., photo)
Elastic >10 s

Media streaming Streaming 5 - 10 s

large buffering capacity and the default queuing mechanism is passive (e.g., droptail).

(Gettys and Nichols, 2011). Typically, the minimum buffer size required for fully utilizing

the bottleneck link to a particular bandwidth scenario is equal to the Bandwidth Delay

Product (BDP =
B ⇤RTTp

N
) where B is bottleneck bandwidth, RTT is average Round

Trip Time of a flow crossing through a router and N is the number of flows sharing the

bottleneck router (Appenzeller et al., 2004)). However, manufacturers tend to provide

high buffering capacity in routers due to lesser memory prices. Droptail with large buffer

capacity has the following drawbacks:

• Global synchronization: Routers that employ Passive Queue Management (PQM),

like droptail do not drop packets before the queue fills up. This leads to packets

getting dropped from all the TCP flows traversing through that router. Conse-

quently, all senders reduce their congestion window (cwnd) at the same time, and

subsequently, tend to gradually increase the cwnd. Thus, this phenomenon is called

global synchronization (Floyd and Jacobson, 1993). Global synchronization results

in alternate epochs of overutilization and underutilization of the bottleneck link

capacity, and it also adds jitter due to large oscillations in the queue occupancy.

• Lock out: PQM allows early comer flows to dominate the buffer space at the

router. This results in an unfair sharing of network resources among flows (Hassan

and Jain, 2003).

• Bufferbloat: Since memory costs reduced in the past, modern Internet routers are

designed with extremely large buffers. As a result, today’s Internet suffers from poor

2

network performance because TCP congestion control mechanisms implemented in

modern operating systems follow an end-to-end approach and hence do not reduce

the sending rate unless a packet drop is encountered. Since the packet drop occurs

only when these large buffers overflow, queuing delay experienced by each packet in-

creases significantly, consequently the Quality of Service (QoS) for latency sensitive

applications. This problem is known as bufferbloat. (Gettys and Nichols, 2011).

Active Queue Management (AQM) mechanisms have been extensively studied to moni-

tor and limit the growth of the queue at routers. Controlling queue length/delay at routers

plays a vital role to tackle the problems that occur with droptail. In this regard, several

AQM mechanisms have been designed: Random Early Detection (RED) (Floyd and Ja-

cobson, 1993), Random Exponential Marking (REM) (Athuraliya et al., 2001), Adaptive

RED (ARED) (Floyd et al., 2001), BLUE (Feng et al., 2002), Proportional Integral con-

troller (PI) (Hollot et al., 2001), Controlled Delay (CoDel) (Nichols and Jacobson, 2012),

Proportional Integral controller Enhanced (PIE) (Pan et al., 2013) and PI2 (De Schepper

et al., 2016) are some of the well-known AQM mechanisms.

The classification of AQM mechanisms is often based on congestion indicator(s) such

as: queue length (e.g., RED, PI, etc), input rate (e.g., BLUE, etc), queue delay (e.g.,

CoDel, PIE, etc) and the combination of input rate with queue length/delay. The ones

that use similar congestion indicator(s) differ in a way they arrive at a decision to en-

queue/drop packets e.g., in ARED, the packet drop probability to enqueue/drop packets

is a function of an average queue length whereas PI measures the packet drop probability

on the basis of instantaneous queue length. Figure 1.1 depicts the classification of AQM

mechanisms based on their congestion indicators.

This work focuses on the queuing mechanisms which are popularly known for solving

the bufferbloat problem, namely ARED, CoDel and PIE (Kuhn et al., 2014; Järvinen and

Kojo, 2014; Kuhn et al., 2017).

• ARED: ARED is one of the oldest and most popular AQM mechanisms which is a

variant of RED mechanism (Floyd and Jacobson, 1993; Floyd et al., 2001). Although

ARED predates bufferbloat, studies have sown that it is a promising mechanism to

address the bufferbloat problem (Kuhn et al., 2014; Khademi et al., 2013). ARED

works on the basis of average queue length which uses a low pass filter technique for

averaging. Depending on the average queue length, it calculates the drop probability

to decide to enqueue/drop the incoming packets.

3

AQM
mechanisms

Queue
Length

Input Rate

Queue Length
+ Input Rate

Queue Delay

Queue Delay
+ Input Rate

RED

GRED

ARED

BLUE

PI AVQ

YELLOW

REM ST-PI

CoDel

PIE

PI2

COBALT

PINK

Figure 1.1: Classification of AQM mechanisms

• CoDel: CoDel is designed to solve the problem of bufferbloat (Nichols and Jacob-

son, 2012). It is easy to implement and requires setting of two parameters namely

target and interval. During dequeuing, CoDel decides whether to drop/dequeue a

packet based on the time spent by that packet in the queue (sojourn time).

• PIE: PIE is a lightweight controller which is designed to solve the problem of

bufferbloat (Pan et al., 2013). PIE combines the benefits of both CoDel and RED

in PI controller (Hollot et al., 2001). It detects the congestion on the basis of queuing

delay like CoDel, and updates the drop probability during enqueue time like RED.

It efficiently controls the queuing delay around the reference queue delay.

1.1 The problem

Although many AQM mechanisms are available in the relevant literature to solve the

bufferbloat problem, they are not thoroughly tested and evaluated against the unrespon-

sive flows. This section highlights the performance problems that arise due to unresponsive

4

traffic.

1.1.1 Issues with unresponsive traffic

One of the vital characteristics of AQM mechanisms is to maintain a proper trade-off

between queue delay and bottleneck link utilization. But maintaining this trade-off is

challenging when some of the flows crossing the router do not respond to the congestion

feedback provided by AQM mechanisms, e.g., congestion agnostic UDP flows do not

respond to congestion notifications. The following are the major concerns in such cases:

• Tackling the problem of bufferbloat becomes challenging because unresponsive flows

affect the stability of the queue.

• Unresponsive behavior of congestion agnostic UDP flows defeats the purpose of

deploying AQM mechanisms and leads to excessive queuing delays.

• The problem further aggravates when unresponsive flows arrive in bursts, leading

to variations in RTT. The burst may also lead to bulk packet losses due to queue

overflow.

• The network resource allocation is unfair because TCP flows respond to congestion

signals whereas unresponsive flows do not. Hence, the major share of the bandwidth

gets utilized by unresponsive flows, leaving a negligible room for TCP flows.

Addressing these concerns is becoming significant due to the widespread adoption of

UDP as a primary transport protocol. Popular applications of UDP include: DNS, routing

updates, SNMP and NAT traversal techniques such as STUN (RFC 5389) and TURN

(RFC 5766). Emerging applications of UDP include: video streaming, online gaming,

peer to peer applications, Quick UDP Internet Connection (QUIC) (Langley et al., 2017)

and browser frameworks such as Web Real-Time Communication (WebRTC)2.

Although the emerging applications of UDP are obliged to implement congestion con-

trol at the application level and respond to congestion (e.g., QUIC and WebRTC), a

significant share of the UDP traffic comprises short-lived unresponsive flows. For exam-

ple, the recent analysis of 4G LTE traffic from a Tier-1 wireless carrier in the south-central

US reveals that DNS dominates UDP traffic in terms of the number of flows (39% of the
2WebRTC is a framework of protocols and JavaScript APIs that enables peer-to-peer audio, video,

and data sharing between browsers. It is supported by popular browsers such as Google Chrome and
Mozilla Firefox, and it uses UDP for data transfers (Bergkvist et al., 2012).

5

total flows captured in the network) (Li et al., 2018). Despite the fact that DNS traffic

is thin in terms of volume and might not lead to long-lasting congestion, studies have

shown that such a small fraction of unresponsive UDP flows can affect the queue stability

and deteriorate the performance of AQM mechanisms (Hollot et al., 2003; Li et al., 2005;

Cai et al., 2010). Consequently, some of the researchers have proposed AQM mechanisms

with dual functionality (e.g., COBALT uses CoDel and BLUE (Morton, 2016)) to control

the queue delay against unresponsive flows. However, these mechanisms do not guarantee

the fairness among the responsive and unresponsive flows. Through extensive evaluations

by means of simulation and real time experiments, this works confirms that controlling

queue occupancy is a non-trivial task when responsive and unresponsive flows coexist.

1.1.2 Fairness issues

Recently, there has been more emphasis on using multiple logical queues at a router for

mixed traffic to avoid the starvation of TCP flows against unresponsive UDP flows. To

accommodate this, many new hybrid AQM mechanisms are developed by researchers with

the help of Flow Queuing (FQ) schedulers that include: Stochastic Fair Queuing-CoDel

(SFQ-CoDel) (Jain et al., 2014), Flow Queue-CoDel (FQ-CoDel RFC 8290), Flow Queue-

PIE (FQ-PIE) (Al-Saadi and Armitage, 2016), etc. The results analysis of FQ-PIE and

FQ-Minstrel PIE presented in this work proves that the adequate fairness can be achieved

when responsive and unresponsive flows coexist.

1.2 Contributions of this thesis

1.2.1 Primary contributions

A Modified CoDel

The performance of CoDel is largely affected due to a fixed parameter called interval (100

ms), and the conservative adaptation of packet drop rate based on the square root law.

To overcome these limitations, it is proposed to reduce the interval value to 30 ms based

on the experimental observations and modify the control law of CoDel with harmonic

series instead square root law to adapt the packet drop rate quickly. This work proposes

both these modifications while considering the fact that the performance of CoDel should

remain unaffected for responsive flows.

6

B Minstrel PIE

This study proposes a variant of the PIE mechanism called Minstrel PIE to increase

its robustness when unresponsive flows coexist with TCP flows. It was decided to base

the work on PIE mechanism because: (i) it is a defacto AQM used by CableLabs since

DOCSIS 3.1 cable modems (RFC 8034), and (ii) studies have shown that PIE is likely

to provide better control on queue delay than other mechanisms in the case of extreme

overload (Järvinen and Kojo, 2014; Kuhn et al., 2017).

Minstrel PIE adapts itself and timely drops packets to control the queue delay when

the traffic load increases, otherwise operates similar to PIE. Minstrel PIE regulates the

reference queue delay (qdelay_ref) parameter of PIE to adjust the drop probability in

Minstrel PIE. Despite gaining significant attention, the implications of keeping qdelay_ref

fixed in PIE are not widely studied. This work highlights the need to adapt qdelay_ref

in PIE.

C FQ-Minstrel PIE

PIE and Minstrel PIE being AQM mechanisms do not provide flow protection. Combining

these mechanisms with flow queuing mechanism is a promising approach to solve the

problem of fairness. This work provides the insights of working of FQ-PIE and FQ-

Minstrel PIE. Subsequently, this work also evaluates the FQ-Minstrel PIE by comparing

its performance with PIE, FQ-PIE and FQ-CoDel.

1.2.2 Secondary contributions

A Fluid model for CoDel

The fluid models for ARED and PIE are exists but not for CoDel3. ARED and PIE

work on the basis of packet drop probability, hence, the model proposed in (Misra et al.,

2000) can be used directly with ARED and PIE. However, CoDel works on the basis of

deterministic drop strategy, thus, there is to modify the existing fluid model to work with

CoDel. To overcome this limitation, we designed the fluid model for CoDel. This work

has been verified by comparing the results obtained with to those obtained from ns-2.

3According to 2017 survey, when we proposed the fluid model for CoDel

7

B PIE alignment with RFC 8033

Internet Engineering Task Force (IETF) has described the working of PIE in RFC 8033

for deployment in the Internet. Although Linux kernel has a PIE queue discipline (qdisc),

its working is not same as described in RFC 8033 because the implementation of PIE

qdisc in Linux preceded the publication of RFC 8033. We align Linux PIE qdisc with

RFC 8033, and evaluated in the real time testbed. The evaluation shows that certain

features recommended in RFC 8033 offer significant benefits, whereas others are not

worth adopting in real systems. Consequently, only a few features are considered from

RFC 8033 to be implemented in the Linux PIE qdisc. The proposed modifications are

merged and published in the mainline of Linux kernel v5.1.

C Design and implementation of FQ-PIE

FQ-CoDel (RFC 8290) and FQ-PIE (Al-Saadi and Armitage, 2016) are two attempts

towards combining Flow queuing with AQM mechanisms. Although FQ-CoDel is available

in the latest versions of the Linux kernel, an implementation of FQ-PIE is missing. The

present study therefore implemented FQ-PIE because it forms the basis for FQ-Minstrel

PIE. Moreover, the researcher believed that adding the support of FQ-PIE in Linux kernel

would be useful because in our study it was shown that PIE, even without FQ, was likely

to provide better control on queue delay than CoDel when unresponsive flows existed.

This implementation is currently in the Linux kernel since v5.6.

1.3 Outline of the thesis

Chapter 2 discusses the relevant literature of all the popular AQM mechanisms which

are specifically designed to solve the problem of bufferbloat. Further, the open issues

existing in AQM mechanisms due to which they are not able to perform well in some

of the network scenarios are discussed. Specifically it highlights the problem of AQM

mechanisms against unresponsive flows and provides the background of flow queuing.

Chapter 3 first discusses the design of Modified CoDel. Subsequently, it presents the

design of the mathematical model for CoDel and verifies the implementation by comparing

it with ns-2 implementation of CoDel. The analysis of CoDel and Modified CoDel in fluid

model and real time testbed is presented in detail. Next, it highlights the limitations of

CoDel in terms of scalability and why the focus is shifted to PIE.

8

Chapter 4 presents the design of Minstrel PIE to improve the performance of PIE

against unresponsive flows. Originally, PIE has a better control against unresponsive flows

than CoDel mechanism in terms of controlling queuing delay. In addition to this, Minstrel

PIE gives optimized trade-off between bottleneck link utilization and queue delay than

PIE against unresponsive flows. The results show that Minstrel PIE reduces the queue

delay significantly against unresponsive flows without affecting link utilization.

The prerequisite to implement FQ-Minstrel PIE is FQ-PIE. But FQ-PIE is not avail-

able in the Linux kernel. Chapter 5 discusses about contributions made to the Linux kernel

by implementing FQ-PIE. Later, the analysis of FQ-PIE, FQ-CoDel and FQ-Minstrel PIE

is discussed in this chapter. The results show that FQ-Minstrel PIE achieves same fairness

with reduced queue delay than FQ-PIE and FQ-CoDel.

Chapter 6, summarizes the contribution made in this thesis and the potential limita-

tions of the work. The directions for future work are also discussed in this chapter.

9

10

Chapter 2

Literature Review

Although high-speed routers and switches are being used with high bandwidth links to

improve the overall network performance, latency continues to remain a big issue in today’s

Internet. It is believed that users tend to get frustrated when they perceive a delay of 300

milliseconds (Grigorik, 2013). There are four major components of delay: propagation

delay, queuing delay, transmission delay and processing delay. Besides others, the major

concern today is queuing delay due to bloated buffers. Recently, bufferbloat has received

a major attention from the research community. Along with increased queuing delay,

bufferbloat gives rise to problems such as variations in RTT and defeats the purpose of

TCP’s congestion control mechanisms (Groenewegen and Kleppe, 2011).

2.1 Background

RED (Floyd and Jacobson, 1993), REM (Athuraliya et al., 2001), ARED (Floyd et al.,

2001), BLUE (Feng et al., 2002), PI (Hollot et al., 2001), etc are some of the widely

studied AQM mechanisms. Recently, new AQM mechanisms have been designed to solve

the problem of bufferbloat: Controlled Delay (CoDel) (Nichols and Jacobson, 2012) and

Proportional Integral controller Enhanced (PIE) (Pan et al., 2013) are two popular ones.

AQM algorithms that predate bufferbloat do not use the queue delay as a congestion

indicator. Queue delay has a direct implication on the user’s perception of the applica-

tion behavior. CoDel and PIE have been designed to tackle the problem of queue delay

arising due to the bufferbloat problem, and thus, both use queue delay as an indicator

of congestion. This work considers to build on the success of CoDel and PIE in terms

of controlling queue delay. Despite the fact that ARED predates bufferbloat, some stud-

11

ies have shown that it has the potential to control queue delay within specified bound

(Järvinen and Kojo, 2014; Kuhn et al., 2014, 2017). However, we do not consider it for

further investigations because it depends on RED and suffers from the same limitations

that are highlighted in Misra et al. (2000). Nevertheless, we provide background of RED

and ARED in the next section for completeness.

2.1.1 RED and Adaptive RED

RED (Floyd and Jacobson, 1993) is one of the oldest and widely known AQM mechanisms.

It has been extensively studied and is known to have sensitivity to parameter settings.

Past work (Feng et al., 2001; Floyd et al., 2001; Misra et al., 2000) has shown that an

incorrectly configured RED gateway can deteriorate network performance. Adaptive RED

(ARED) (Floyd et al., 2001) addresses a few limitations of RED and eliminates the need

to manually configure some of its parameters. This section describes the working of RED

in brief, followed by ARED.

RED uses Exponential Weighted Moving Average (EWMA) to calculate the average

queue length (avg) on arrival of every packet. If avg exceeds maximum threshold (maxth),

the incoming packet is dropped and if it is lesser than minimum threshold (minth), the

packet is enqueued. Otherwise, if avg is in between maxth and minth, then the packet is

dropped/enqueued depending on the random drop probability (p). Eq. (2.1) and (2.2)

show equations for avg and p, respectively.

avg = cur_qlen⇥ wq + old_avg ⇥ (1� wq) (2.1)

p =

8
>>>>><

>>>>>:

1 if avg � maxth

maxp ⇥
avg �minth

maxth �minth
if maxth > avg � minth

0 if avg < minth

(2.2)

where

• old_avg is the average queue length during previous sample;

• cur_qlen is the current queue length;

12

• wq is EWMA constant;

• maxp is the maximum drop probability;

Algorithm 1: RED mechanism
Initialization: count = -1

avg = 0

On every packet arrival
Calculate new average queue length
if Queue is nonempty then

avg = cur_qlen⇥ wq + old_avg ⇥ (1� wq)

else
avg = (1� wq)

cur_time�old_time
s ⇥ avg

if avg � maxth then
Drop the packet
count = �1

else if maxth > avg � minth then
Increment count
pb = maxp ⇥

avg �minth

maxth �minth

pa =
pb

1� (count ⇤ pb)
Drop the packet with probability pa
count = 0

else
count = �1

When Queue becomes empty
old_time = cur_time

Parameters
R = Random variable
s = packet transmission time
pa = Actual packet drop probability

The detailed working of RED is shown in Algorithm 1. In Eq. (2.2) it can be noted

that drop probability becomes 1 after avg crosses above maxth. This sharp increase in

drop probability leads to aggressive dropping of incoming packets at the router and hence,

affects the throughput. To resolve this issue, a new variant of RED was proposed by Sally

Floyd, named Gentle RED (GRED). In GRED, when avg rises from maxth to 2⇥maxth,

GRED gradually increases drop probability from maxp to 1 so that large number of

packets are not dropped.

RED’s performance and effectiveness significantly depends on the appropriate setting

of the four parameters (Feng et al., 1999). To avoid manually setting these parameters,

Self Configuring RED (SCRED) (Feng et al., 1999) is proposed which adapt the maxp on

13

the basis of average queue length. The value of maxp is adapted in SCRED to keep the

avg in between minth and maxth.

ARED is in fact an extension to SCRED. ARED aims to maintain the avg within

the target range of minth and maxth. Moreover, ARED follows the Additive Increase

Multiplicative Decrease (AIMD) approach to adapt the value of maxp, so that it can

handle the rise in the traffic load gradually.

Several other variants of RED exist in the literature e.g., Stabilized ARED (SARED)

(Javam and Analoui, 2006), Self Tuning RED (STRED) (Chen et al., 2011), Refined

ARED (Re-ARED) (Kim and Lee, 2006) are a few. Although these mechanisms offer per-

formance improvements, they add new parameters which further complicates the design

of RED and hinders its deployment in the real network.

Misra et al. (2000) presented an analysis of RED with the help of a fluid model. The

authors show that the performance of RED largely depends on the appropriate setting

of wq. RED works on the basis of average queue length and for averaging, it uses the

parameter wq which affects its behavior against incipient congestion because wq is de-

pendent on the duration and size of the incoming burst at the queue. A large value of

wq suppresses the oscillations in the queue and shows the stability in the average queue

length, and in turn, reduces jitter. These oscillations depend on many factors, such as

packet size, bandwidth, and incoming traffic load. However, value of wq cannot be too

large, otherwise it affects the calculation of average queue length and leads to an increase

in the initial spikes in the instantaneous queue length.

To overcome this problem, (Hollot et al., 2001) present a new AQM mechanism called

Proportional Integral (PI), which works on the basis of instantaneous queue length. PIE

is a variant of the PI controller.

2.1.2 CoDel

CoDel is easy to implement and uses two important parameters namely target and interval

for managing buffers. It directly deals with queuing delay and is specially designed to

solve the bufferbloat problem. Further, based on per packet queue delay (sojourn time),

CoDel decides whether a packet should be dropped or sent out during dequeue. Algorithm

2 shows the brief skeleton of the CoDel mechanism. On every packet arrival in the queue,

CoDel marks the current timestamp to the packet header. Subsequently, while dequeuing

the packet from the queue, CoDel calculates the queuing delay (packet sojourn time)

14

Algorithm 2: CoDel mechanism
Initialization: target = 5ms

interval = 100ms
count = 0
Dropping = 0
next_drop_time = 0

On every packet arrival
pkt_timestamp = current_time
On every packet departure
sojourn_time = current_time� pkt_timestamp
if Dropping == 1 & next_drop_time � current_time then

if sojourn_time � target then
count+ = 1

next_drop_time = current_time+
intervalp
count

Drop the Packet
else if sojourn_time < target then

Dropping = 0
count = 0
Dequeue the packet

else if sojourn_time > target & Dropping == 0 then
Dropping = 1
count+ = 1

next_drop_time = current_time+
intervalp
count

Drop the packet

experienced by the packet by subtracting the timestamp from the current time. CoDel

uses this sojourn time to compare with target (5 ms) and decides whether to enter into

packet dropping state or not. Once CoDel enters into packet dropping state it sets control

law to calculate the next drop time at which CoDel decides to drop the next packet based

on the sojourn time.

2.1.3 PIE

The functionality of PIE is based on the original PI that attempts to control the queue

occupancy around a desired reference queue length. Unlike PI, PIE aims to control the

queue delay around a desired reference queue delay. The detailed working of PIE is

explained in the following sub-sections.

15

A Random dropping

PIE randomly drops or enqueues incoming packets based on the drop probability (p)

which is calculated PI. A random number generated between 0 and 1 is compared to p.

The incoming packet is enqueued if p is less than the random number, otherwise dropped.

However, the current implementation of PIE in the Linux kernel uses de-randomized

dropping as suggested in Section 5.4 of RFC 8033.

B Drop probability calculation

PIE uses the rate of change of queuing delay to calculate the drop probability, which

differentiates it from other mechanisms. Drop probability is calculated at regular tupdate

interval (16ms in the Linux kernel) as shown in Eq. (2.3)

p(i) = p(i� 1) + alpha ⇤ (qdelay � ref_qdelay) + beta ⇤ (qdelay � qdelay_old) (2.3)

where

• p(x) is the drop probability calculated at time x

• alpha and beta are control parameters that help in drop probability calculation

• ref_qdelay is the reference queuing delay (15ms in Linux kernel)

• qdelay is the current queuing delay

• qdelay_old is the queuing delay in the previous sample

C Queue latency calculation

The following two approaches are used to calculate queuing delay in PIE:

a) Little’s Law: This method calculates queuing latency from current queue length and

average dequeue rate (avg_dq_rate) (Little and Graves, 2008) as shown in Eq. (2.4)

qdelay =
qlen

avg_dq_rate
(2.4)

16

and avg_dq_rate is given by Eq. (2.5)

avg_dq_rate = 0.125 ⇤ count

dtime
+ 0.875 ⇤ avg_dq_rate (2.5)

where,

• qlen is instantaneous queue length

• dtime is the time difference between the current and previous sample

• count is the amount of data dequeued in dtime

• qlen is instantaneous queue length

• count is the size of data dequeued between two dequeue periods

• dtime is the time difference between the current and previous dequeue

b) Packet timestamping: This method uses timestamping of packets to calculate the

instantaneous per packet queuing latency at dequeue time. The current queuing delay

is given by the queuing delay experienced by the most recently dequeued packet and is

given by Eq. (2.6). This approach is adopted in the PIE implementation of FreeBSD.

qdelay = dequeue_time� enqueue_time (2.6)

D Burst Tolerance

Burst tolerance is a mechanism to detect transient congestion and ensure that short bursts

of packets are not subjected to random dropping behaviour of PIE. It sets a maximum

interval (max_burst) of time for which a burst of packets are permitted to pass without

dropping. When this interval is exceeded, packets may be subjected to random dropping.

2.1.4 Other solutions for bufferbloat

Table 2.1 shows the summary of the AQM mechanisms which are designed to solve the

problem of bufferbloat. The key points highlighted in this table are i) approaches adopted

to detect bufferbloat ii) advantages and iii) tools used.

17

Table 2.1: Soultions for bufferbloat

Author(s)

and Year
Publication title

Approach to detect bufferbloat
Advantages

Tools

usedAQM
abbre-
via-
tions

Bufferbloat mea-
sures

Francini

(2012)

Periodic early de-

tection for improved

TCP performance

and energy efficiency

PED Instantaneous and

average queue length

with periodic time

scale

Buffer size reduction up

to 95%, TCP throughput

and fairness

ns-2

Nichols

and Ja-

cobson

(2012)

Controlling Queue

Delay

CoDel Queuing delay Maintains less queuing

delay

ns-2

Chen et al.

(2012)

Statistical Adapting

RED in Dynamic

Networks

SARED Standard deviation

of instantaneous

queue length for

controlling RED

parameter

Controls the oscillation

of queue size for stability

of TCP/RED systems.

ns-2,

TCP

eval

suite.

Jiang

et al.

(2012)

Tackling Bufferbloat

in 3G/4G Mobile

Networks

DRWA Receiver window ad-

justment

Reduces delay by 25% in

cellular network and in-

crease TCP throughput

by 51%.

Real

time

analy-

sis in

mobile

net-

work.

Xue et al.

(2013)

AFCD:An

Approximated-Fair

and Controlled-

Delay Queuing for

High Speed Networks

AFCD Uses state infor-

mation of flows

to approximately

estimate the flow’s

sending rate when

packets are enqueued

Approximates fairness of

TCP flows and very low

queuing delay for high

speed networks

Network-

ing

testbed

CRON

Tahiliani

and Shet

(2013)

Analysis of Cau-

tious Adaptive RED

(CARED)

CARED average queue length Increases the through-

put, minimizes packet

drop and maintain queue

length

ns-2

Showail

et al.

(2014a)

An Empirical Evalu-

ation of Bufferbloat

in IEEE 802.11n

Wireless Networks

AMPDU Aggregate MAC Pro-

tocol Data Unit (A-

MPDU) MAC-layer

frame

Reduce RTT delays with

simultaneously increas-

ing network throughput.

Real

time

testbed

analysis

18

Palaniappan

et al.

(2013)

Bufferfloat Mitiga-

tion for Real-time

Video Streaming

using Adaptive

Controlled Delay

Mechanism

Adaptive

CoDel

Queuing delay Mitigate bufferbloat and

improve the QoS param-

eters of real-time video

stream.

SITL

mod-

ule of

Opnet

Pan et al.

(2013)

PIE: A Lightweight

Control Scheme

to Address the,

Bufferbloat Problem

PIE Current queuing de-

lay and the trend

of queue delay varia-

tions

Ensure low latency un-

der various congestion

situations

ns-2

Showail

et al.

(2014b)

WQM: An

Aggregation-aware

Queue Manage-

ment Scheme,for

IEEE 802.11n based

Networks

WQM Network load, chan-

nel condition, and

frame aggregation

level

Achieves the lesser queu-

ing delay than CoDel

and default Linux AQM

pfifo in wireless network

Real

time

testbed

Ghoreishi

et al.

(2015)

Active Queue Man-

agement for Conges-

tion Avoidance, in

Multimedia Stream-

ing

DC

AQM

Distortion con-

strained in Video

Improves QoS for Video

and maintain queue

length in the buffer

Numerical

analysis

Kuhn

and Ros

(2016)

Improving PIE’s per-

formance over high-

delay paths

MAD-

PIE

Queuing Delay over

30 ms

Deterministic drops are

dominant when RTT in-

creases, which results in

lower queuing delays and

better performance for

VoIP traffic and small

file downloads, with no

major impact on bulk

transfers.

ns-2

Kobayashi

(2015)

LAWIN : a Latency-

AWare InterNet

Architecture for

Latency Support on

Best-Effort Networks

LAWIN Applications specify

latency itself

Advantages over other

QoS approaches because

it does not require any

flow state, more than one

queue, or any latency

target

Real-

time

testbed

De Schep-

per et al.

(2016)

PI2: A Linearized

AQM for both Clas-

sic and Scalable TCP

PI2 same as PIE 15ms

queue delay

It’s a variant of PIE

which auto-tunes and

scales the parameters of

PIE instead of heuristic

approach

ns-2 and

Real

time

testbed

19

Wang

et al.

(2017)

Active queue man-

agement algorithm

based on data-driven

predictive control

DATA-

AQM

Data-driven predic-

tive control

Superior than RED in

terms of stability and ro-

bustness.

Simulator

Casoni

et al.

(2017)

How to avoid TCP

congestion without

dropping packets:

An effective AQM

called PINK

PINK Number of active

flows, flow’s RTT

and bottleneck

bandwidth

Improves efficiency for

multiplexed channels

with low queue delay

and flow fairness and

without forced packet

drop

ns-3

Høiland-

Jørgensen

et al.

(2018)

Piece of CAKE:

A Comprehensive

Queue Management

Solution for Home

Gateways

CAKE

and

COBALT

Queuing delay Provides bandwidth

shaping based on

goodput instead of

throughput, handling

DiffServ reasonably,

improved flow hashing

and filtration of TCP

ACKs.

Real

time

testbed

These mechanisms are proposed by considering of responsive traffic only and very

few mechanisms discuss about the fairness problem within the responsive flows, except

COBALT and CAKE. However, none of the mechanisms deal with mixed traffic environ-

ment that consists of responsive and unresponsive flows together. Therefore, this literature

gives the motivation to base our work when responsive and unresponsive flows coexist.

Primarily, our focus is on two main issues i) excessive queue delay when unresponsive

flows exist, and ii) fairness between responsive and unresponsive flows.

2.2 Evaluation Methodologies

The following methodologies have been used in this thesis for evaluating the AQM mech-

anisms:

2.2.1 ns-2

ns-2 is one of the most popular open-source network simulators (McCanne and Floyd,

1997) and widely used for the analysis of AQM mechanisms due to the availability of all

AQM mechanisms. In our work, we have used ns-2 for the verification of the fluid model

for CoDel and for the preliminary analysis of Minstrel PIE.

20

2.2.2 ns-3

Recently, ns-3 has become popular due to the availability of a large number of proto-

cols. Additionally, ns-3 supports Direct Code Execution (DCE) to install and analyse the

protocols of Linux TCP/IP stack (Henderson et al., 2008).

Thorough evaluation of an AQM mechanism requires significant time and effort.

Hence, the AQM and Packet Scheduling Working Group at IETF published RFC 7928

which provides the guidelines to evaluate AQM mechanisms. An automated evaluation

framework complying with the guidelines of RFC 7928 has been recently developed for

ns-3 (Deepak et al., 2017). We use this evaluation suite to verify the desired behavior of

Minstrel PIE and its relative performance against PIE under various traffic conditions.

While RFC 7928 recommends several test scenarios to evaluate AQM mechanisms, we use

the ones that are most relevant to the objective of designing Minstrel PIE.

2.2.3 Fluid modeling

The fluid model helps to capture the interaction between TCP flows and the RED mecha-

nism (Misra et al., 2000). It forms the basis to analyze AQM mechanisms mathematically.

This in turn also helps to understand the stability of AQM mechanisms and TCP flows.

The basic fluid model presented in (Misra et al., 2000) highlights the sensitivity of the

parameters in the RED mechanism. This fluid model has a great ability to understand

and analyze the different congestion control mechanisms. Consequently, we have modified

the same fluid model to analyze the performance of the CoDel mechanism mathematically.

The mathematical analysis of the CoDel mechanism is discussed in Chapter 3.

2.2.4 Real time testbed

Network simulators give the abstract of the performance for the network protocols. The

network simulators like ns-2 and ns-3 do not use the TCP/IP stack similar to the Linux

kernel and traffic generators like iperf or netperf which might hides the real-time per-

formance of the protocols. Consequently, along with simulation studies, verifying the

effectiveness of the congestion control mechanisms in the real time environment is impor-

tant. To overcome these limitations we have setup the real-time testbed for the real-time

analysis of AQM mechanisms. Flexible Network Tester (Flent) (Høiland-Jørgensen, 2015)

tool has been used for the traffic generation and collecting the stats from the AQM mech-

21

Peer 1 Peer 2Router 1 Router 2

Stats Link 1
Stats Link 2

100 Mbps

5 ms

100 Mbps

5 ms

10 Mbps

40 ms

Figure 2.1: Example topology used for Virtual Flent

anisms.

2.2.5 Virtual Flent

AQM schemes need to be extensively evaluated before they can be deployed and used at

scale. However, such extensive evaluation requires a lot of physical resources which are

expensive, hard to maintain, and require a lot of time to set up correctly. Simulators such

as ns-2 and ns-3 do not require a lot of hardware but, they neither process real-world

network flows nor evaluate the code that actually processes them. Virtual machines and

containers can overcome the above issues but they use a lot of system resources, limiting

the scalability of the evaluation.

In order to accurately evaluate AQM mechanisms that are implemented in the Linux

kernel without using a lot of additional hardware, we have designed a lightweight virtual

testbed. The virtual testbed makes use of network namespaces, veth (virtual ethernet)

devices, and various qdiscs (queuing disciplines) to emulate a real-world network topology.

The iproute2 utility is used to set up and manages the virtual testbed. We further

integrate this testbed with the Flent tool to evaluate AQM mechanisms.

The virtual testbed can be set up and/or modified as needed with ease, allowing the

user to automate and run multiple tests over a long period of time. The following topology

is shown in Figure 2.1 has been used for the experimentation.

2.3 Related Work

The main focus of this work is to explore the performance of popular bufferbloat solutions

against unresponsive flows when they coexist with responsive flows. Very few studies have

shown the impact of unresponsive flows on the performance of AQM mechanisms, such as

CoDel and PIE. There are two major concerns in the AQM mechanisms when they face

the unresponsive flows: i) uncontrolled queuing delay ii) unfairness between responsive

22

and unresponsive flows. We discuss the related work for both the problems in the following

subsections.

2.3.1 Uncontrolled Queue Delay

Specifically, CoDel is more prone to unresponsive flows than PIE due to its inherent design

issues, and hence, latency-sensitive applications face the problem of excessive queuing

delay when they coexist with the unresponsive flows. To deal with this problem in the

case of CoDel, the researchers have developed a new variant of CoDel namely, CoDel

BLUE alternate (COBALT) (Morton, 2016).

A COBALT

Algorithm 3: Pseudocode of BLUE part in COBALT Queue Discipline

Initialization: freeze_time =100 ms,
Increment_in_pdrop = 0.0025,
Decrement_in_pdrop = 0.00025

1 Enqueue: if q_len > limit then
2 Drop the packets before enqueue if prev_pdrop_update >= freeze_time then
3 Increment pdrop

4

Dequeue: if queue is empty then
5 if prev_pdrop_update >= freeze_time then
6 Decrement pdrop

7 if pdrop > rand_number then
8 Drop this packet

Retry dequeue with the next packet
9 else

10 Deliver packet

CoDel mechanism faces the two main limitations against unresponsive traffic: a) Once

CoDel leaves dropping state after queue delay reaches below target, it resets the count

variable in control law to zero. Later, when router gets congested again, CoDel needs the

same amount of time to control the congestion as a previous congestion occurrence. This

limitation of control law allows CoDel to increase queue delay which is unsatisfactory

in real-time scenarios for latency-sensitive applications, and b) CoDel has no alternative

mechanism against unresponsive flows to adapt the queuing delay rapidly. It works only

23

on the basis of control law to increase the drop frequency linearly, which is not sufficient

to control queue delay against unresponsive traffic.

By considering the above design issue in the CoDel mechanism, COBALT gives an

alternative of the BLUE mechanism which can adapt easily against unresponsive traffic

by increasing packet drop probability periodically as mentioned in Algorithm 3.

COBALT uses two mechanisms CoDel and BLUE (Morton, 2016) that independently

operate on the basis of queue delay and packet loss, respectively. As discussed above in

Section 2.1.2, CoDel enters into the dropping state or non-dropping state depending on

the basis of comparison of queue delay and target whereas, BLUE operates independently

on the basis of packet loss and link utilization. The operation of BLUE is explained in

the Algorithm 3. BLUE mechanism updates its drop probability pdrop only during two

times if i) queue becomes full, and if ii) queue becomes empty, and these updates can

happen only after every 100 ms freeze_time interval. Subsequently, along with updating

pdrop, BLUE compare this pdrop with random number (rand_number) to decide whether

packet has to be dropped or not. In COBALT, the BLUE mechanism operates only if

CoDel fails to drop the packet.

2.3.2 Unfairness between Responsive and Unresponsive flows

The aggressiveness of unresponsive flows leaves very small space in the queue for respon-

sive flows, which results in the unfairness problem. To avoid such issues, new hybrid

AQM mechanisms are being designed by the researchers e.g., FlowQueue-CoDel (FQ-

CoDel), FlowQueue-PIE (FQ-PIE), Common Application Kept Enhanced (CAKE), etc.

The detailed working of Flow Queuing is explained in Chapter 5.

24

Chapter 3

Design and Evaluation of Modified

CoDel

Controlled Delay (CoDel) is a modern AQM mechanism designed to control the queuing

delay, and has some unique operating strategies when compared to other mechanisms like

RED, ARED, PIE, PI Improved with square (PI2) (De Schepper et al., 2016):

• It uses per packet queue delay as a measure of queue occupancy instead of instan-

taneous and average queue length measurements.

• It drops a packet during dequeue as opposed to other mechanisms that act during

enqueue.

• It employs deterministic packet drops at regulated intervals rather than random

drop probability measurements.

This chapter makes four contributions: first, we modify the fluid model presented in

(Misra et al., 2000) to study the queue dynamics of CoDel and verify the correctness of

this model by comparing its results with those obtained from ns-2 (McCanne and Floyd,

1997). Secondly, we use the modified fluid model to evaluate CoDel against the following

recommendations from IETF: Design of AQM mechanisms should be independent of the

transport protocol behavior, knob-free and easy to deploy. We choose fluid modeling for

evaluation since it is an effective and scalable means to capture the dynamics of AQM

mechanisms, and their interaction with TCP flows. Thirdly, based on our observations,

we confirm that the control law of CoDel requires tweaks to enhance its robustness against

varying network traffic load. Subsequently, the fourth contribution is evaluating the CoDel

25

and performance in the real-time testbed using Flent. The real-time analysis shows that

CoDel has limitations while performing in the low bandwidth scenarios. The source code

to reproduce the results presented in this chapter has been made openly available1.

3.1 Fluid Modeling

3.1.1 Genesis

The fluid model proposed in (Misra et al., 2000) captures the interactions between a set

of TCP flows and RED. Assuming N long flows traverse through a single RED enabled

router with transmission capacity C:

dWi

dt
=

1

Ri(q)
� (

Wi

2
)

Wi(t� ⌧)

Ri(q(t� ⌧))
p(x(t� ⌧)) (3.1)

dx

dt
=

loge(1� wq)

�
x(t)� loge(1� wq)

�
q(t) (3.2)

dq(t)

dt
⇡ �C +

NX

i=1

Wi

Ri(q)
(3.3)

where, Wi(t) and Ri(t) denote the cwnd and RTT at time t of flow i (1 i N),

respectively, q(t) denotes the instantaneous queue length at bottleneck router, ⌧ represents

the round trip delay for a loss notification to reach the sender, C represents the capacity of

the bottleneck router in packets, x represents the average queue length at a RED router,

p(x) represents the packet drop probability as a function of x, wq represents the smoothing

constant for exponential weighted moving average x, � represents the sampling interval of

x and Ri(t) is given by

Ri(t) = �i +
q(t)

C
(3.4)

where �i is the fixed propagation delay and q(t)
C models the queuing delay.

1https://github.com/steps-to-reproduce/codel-scripts

26

Eq. (3.1) models the Additive Increase Multiplicative Decrease (AIMD) behavior of

TCP, where cwnd increases by one in every RTT and decreases by half on arrival of a

loss notification. Eq. (3.2) and Eq. (3.3) provide an estimate of the average queue length

and instantaneous queue length at a RED router, respectively.

This aforementioned model cannot be applied to CoDel in its current form because

CoDel is significantly different than RED. Hence, we propose a modified fluid model to

capture the queue dynamics of CoDel mechanism.

3.1.2 Proposed fluid model for CoDel

CoDel is easy to implement and does not require configuration settings for managing

buffers. It directly deals with queuing delay, and is specially designed to solve the

bufferbloat problem. Further, based on per packet queue delay, CoDel decides whether a

packet should be dropped or sent out during dequeue.

If the per packet queue delay remains above 5 ms (target) consistently for a duration

of 100 ms (interval), CoDel mechanism enters into a dropping state and remains there

until the per packet queue delay reduces below the target. While in the dropping state, it

regulates the packet drop frequency by using the control law shown in Algorithm 4, where

t indicates the current time, ndt indicates the time when next packet should be dropped

and count indicates the number of packets dropped thus far:

Algorithm 4: Control law of CoDel
Initialization: interval 0.1 seconds

Control_Law (time_t t)

return t+
intervalp
count

Using the aforementioned control law, we can track the packet drop times as:

t+
intervalp

1
, t+

intervalp
2

, t+
intervalp

3
, ..., t+

intervalp
n

Thus, the drop time of nth packet (dn(t)) would be:

dn(t) =
nX

1

intervalp
count

= interval ⇥
nX

1

1p
count

(3.5)

27

It is known that:
nX

1

1p
count

<

Z n

1

count
�1
2

and Z n

1

count
�1
2 = 2⇥

p
count

So Eq. (3.5) can be rewritten as:

dn(t) ' interval ⇥ (2⇥
p
count+ k) (3.6)

where k is a constant used to represent the cumulative difference in the time values

obtained from CoDel’s control law and Eq. (3.6).

Thus, while in the dropping state, whether CoDel drops the packet at time t or not is

predictable:

pd(t) =

8
><

>:

1 if t = di(t),where, i = 1, 2, 3, ... , n

0 otherwise
(3.7)

where i represents the number of dropped packets, and pd(t) indicates whether packet

is dropped at time t. Thus, the fluid model for CoDel can be given by the following

equations:

dWi

dt
=

1

Ri(q)
� (

Wi

2
)

Wi(t� ⌧)

Ri(q(t� ⌧))
pd(t� ⌧) (3.8)

dq(t)

dt
⇡ �C +

NX

i=1

Wi

Ri(q)
(3.9)

3.1.3 Correctness of the proposed fluid model

We have verified the correctness of CoDel’s fluid model in two ways: (i) depending on

the experimental observations while varying count from 1 to 2000 packets, we note that

the cumulative difference between both time values is 43. Hence, we recommend k = -43

for our proposed fluid model. The analytical results show that the determined value of k

works well and gives same interval values as obtained from manual calculations of square

28

Time (ms)
0 2000 4000 6000 8000 10000 12000

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fluid Model Intervals
Square Root Law Intervals

Figure 3.1: Analytical comparison of square root law and proposed fluid model intervals

root law. (ii) we show that the proposed fluid model for CoDel works fine and yields same

results as the ns-2 implementation of CoDel.

We present the Cumulative Distribution Function (CDF) and Probability Density

Function (PDF) for the results discussed in this work. CDF provides the percentage

distribution of the obtained values in the range of 0 and 1. This helps in understanding

whether the mechanism is controlling the values strictly within the specified target. PDF

provides the probability distribution of the values obtained in the results and helps to

understand the variance in the values.

A Verifying the setting of k

In this section, we compare the values of interval obtained by manual calculation of square

root law and the ones obtained from the proposed fluid model. Figure 3.1 presents the

CDF for more than 2000 interval values for 12 seconds (CDF is generated by obtaining

several values of interval, counted in every 200 ms). We observe that the interval values

obtained from the proposed fluid model intervals closely follow the ones obtained from the

square root law with k=-43. We further confirm that our selected value of k (-43) works

well by comparing the results obtained from the proposed fluid model to those obtained

from ns-2 in the next section.

B Comparing with ns-2 results

In this section, we compare the results obtained from the proposed fluid model to those

obtained from ns-2. We simulate a simple dumbbell topology in MATLAB and ns-2

29

Flow 1

Flow 2

Flow n

Router 1 Router 2

Receiver 1

Receiver 2

Receiver n

Bottleneck Bandwidth 0.5Mbps

Figure 3.2: Dumbbell Topology used for all experiments

which consists of five long lasting TCP flows passing through a bottleneck bandwidth of

0.5 Mbps as shown in Figure 3.2. RTT is set to 100 ms. Default value of interval (100

ms) is used, but target is varied from 5 ms to 20 ms in steps of 5ms. The simulation

duration is 200 seconds.

Figure 3.3 presents the CDF of queuing delay obtained with our proposed fluid model

and ns-2 for different target values. We see that our proposed model tracks ns-2 results

very closely. The marginal performance gap between both is because the fluid model does

not consider TCP’s Slow Start phase. We also note that CoDel fails to control the queue

delay in all the scenarios and discuss about this issue later in the work. The results shown

in this section can be reproduced by using the source code provided2.

3.2 Control Law Sensitivity of CoDel

Studies have shown that CoDel has self-adaptation issues, and its performance is sen-

sitive to appropriate setting of target and interval (Kuhn and Ros, 2016; Järvinen and

Kojo, 2014; Raghuvanshi et al., 2013; Kulatunga et al., 2015). It has been also noted

that CoDel’s control law fails to adapt and control the queue length when large num-

2https://github.com/steps-to-reproduce/codel-scripts

30

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Fluid Model
 ns-2

- - - Target 5 ms

(a) target 5 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Fluid Model
 ns-2

- - - Target 10 ms

(b) target 10 ms

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Fluid Model
 ns-2

- - - Target 15 ms

(c) target 15 ms
Queuing Delay in Millieconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 1

 Fluid Model
 ns-2

- - - Target 20 ms

(d) target 20 ms

Figure 3.3: CDF of queue delay with fluid model and ns-2

ber of unresponsive UDP flows coexist with responsive TCP flows. To understand this,

we have performed the experiment in ns-2 against a varying numbers of responsive and

unresponsive flows.

3.2.1 Impact of control law of CoDel

We verify the functionality of CoDel through an exhaustive evaluation conducted by using

the ns-2 TCP Evaluation Suite (Hayes et al., 2007). ns-2 TCP Evaluation Suite is a test

suite developed to gain an initial insight into the working of new TCP extensions. We

extend this tool further to use it for evaluating the performance of AQM mechanisms.

To verify the robustness of CoDel against a large number of non-responsive flows, we

conducted a set of experiments with dumbbell topology as shown in Figure 3.2. In this

topology, sources and sinks are connected to routers through 20 Mbps links. Bottleneck

bandwidth between the routers is set to 10 Mbps. AQM mechanisms are deployed on the

sender side router. The bottleneck RTT is set to 80 ms and the buffer size used for these

simulations is 8 * BDP, which accounts to 1600 packets with an average packet size of

500 bytes.

The evaluation comprises two sets of experiments: the first set of experiments include

simulating TCP traffic by varying the number of FTP flows from 1 to 1000; and the

31

Table 3.1: Parameter settings for varying TCP and UDP flows experiments

Parameter name Traffic Type
Changing

FTP flows

Changing

Streaming flows

Number of Bottleneck

-

1 1

Bandwidth of

bottleneck (Mbps)
10 10

RTT (ms) 80 80

Number of forward

FTP flows TCP CUBIC
Changing from

1 to 1000
5

Number of reverse

FTP flows
5 5

HTTP connection

generation rate (/s)

UDP Traffic

15 15

Number of Voice flows 5 5

Number of forward

streaming flows
5

Changing from

1 to 1000

Number of reverse

streaming flows
5 5

Simulation time (sec) 100 100

second set of experiments include simulating UDP traffic by varying the number of video

streaming flows from 1 to 1000. Additionally, both experiments also contain: 5 voice

flows, 5 FTP flows in reverse direction (i.e., from right to left in Figure 3.2), 5 streaming

flows in reverse direction and HTTP traffic generated at a rate of 15 connections per

second. Table 3.1 provides further details about the simulation parameters.

Figure 3.4 depicts the performance of CoDel against TCP and UDP traffic with number

of respective flows varying from 1 to 1000. While the inferences from Figure 3.4(b) are

clear, Figure 3.4(a) provides a deeper insight into the working of CoDel. Figure 3.4(a)

shows that CoDel fails to maintain the mean queue length within the specified bounds

when there is an increase in the number of unresponsive flows.

We infer the following from these results: a value of 100 ms for interval turns out to

be quite large when there are more unresponsive flows in the network; and furthermore,

the square root law employed by CoDel takes more time to adapt the packet drop rate. In

32

summary, CoDel takes longer to reach a point where it aggressively reacts to the presence

of bursty unresponsive flows.

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
ea

n
Q

ue
ue

 L
en

gt
h

(%
)

Flows Log Scale

% of Mean Queue Length with Forward Streaming FTP Flows Changes

CoDel-TCP
CoDel-UDP

(a) Queue Length

 70

 75

 80

 85

 90

 95

 100

 1 10 100 1000

Li
nk

 U
til

iz
at

io
n

(%
)

Flows Log Scale

Link Utilization with Forward Streaming FTP Flows Changes

CoDel-TCP
CoDel-UDP

(b) Utilization

Figure 3.4: Performance of CoDel against varying number of TCP and UDP flows

3.2.2 Modified CoDel

The performance of CoDel is largely affected due to an interval of 100 ms, and the con-

servative adaptation of packet drop rate based on the square root law. To overcome these

limitations, we propose to reduce the interval value to 30ms based on our experimental

observations, and modify the control law of CoDel, as shown below in Algorithm 5, to

adapt the packet drop rate quickly.

We propose both these modifications while considering the fact that the performance

of CoDel should remain unaffected for responsive TCP flows. To ensure that this holds

true, we repeat the set of experiments which were carried out in above in Figure 3.4 and

re-evaluate the performance of CoDel with proposed changes.

Figure 3.5 depicts the performance of CoDel with our proposed changes, against TCP

and UDP traffic with number of respective flows varying from 1 to 1000. Comparing

Figure 3.5(a) to Figure 3.4(a) indicates that our proposed modifications help CoDel to

maintain the mean queue length in the presence of unresponsive traffic, without hurting

the performance of responsive traffic. Although Figure 3.5(b) shows a slight reduction in

the link utilization for responsive flows initially, the utilization improves with a rise in the

number of TCP flows.

Our proposed fluid model does not require any modifications to account for changes

suggested for the new interval value. However, to account for changes suggested for

33

Algorithm 5: Proposed modifications to tune CoDel parameters
Initialization: interval 0.03 seconds

Control_Law (time_t t)

Return t+
interval

count

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
ea

n
Q

ue
ue

 L
en

gt
h

(%
)

Flows Log Scale

% of Mean Queue Length with Forward Streaming FTP Flows Changes

CoDel-TCP-new
CoDel-UDP-new

(a) Queue Length

 70

 75

 80

 85

 90

 95

 100

 1 10 100 1000
Li

nk
 U

til
iz

at
io

n
(%

)
Flows Log Scale

Link Utilization with Forward Streaming FTP Flows Changes

CoDel-TCP-new
CoDel-UDP-new

(b) Utilization

Figure 3.5: Performance of CoDel against varying number of TCP and UDP flows with
interval 30 ms and modified control law

control law, our fluid model requires minor modifications to consider the packet drop

times as a harmonic series as shown in Eq. (3.10):

dn(t) =
nX

1

interval

count
= interval ⇥

nX

1

1

count
(3.10)

where
nX

1

1

count
<

Z n

1

count�1

Z n

1

count�1 = ln(count) + � + �n

where � is a Euler-Mascheroni constant fixed at = 0.577, and �n ⇠
1

2n
.

Eq. (3.10) can be rewritten as:

dn(t) ' interval ⇥ (ln(count) + � + �n) (3.11)

Thus, for the modified CoDel, Eq. (3.11) can be used instead of Eq. (3.6) in Eq.

34

(3.8) and Eq. (3.9). We use Eq. (3.11) in our fluid model to verify the correctness of the

modified control law proposed in Eq. (3.10).

We compare the performance of original CoDel with modified CoDel using three dif-

ferent cases:

• Case 1: CoDel with interval = 30ms,

• Case 2: CoDel with a modified control law, and

• Case 3: original CoDel vs modified CoDel (i.e., interval = 30 ms and a modified

control law).

We consider the same simulation setup as explained in subsection B of Section 3.1.3 for

every case.

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

interval 100ms
interval 30ms
Target 5ms

(a) target 5 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 interval 100ms
 interval 30ms
 Target 10ms

(b) target 10 ms

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 interval 100ms
 interval 30ms
 Target 15ms

(c) target 15 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 interval 100ms
 inetrval 30 ms
 Target 20ms

(d) target 20 ms

Figure 3.6: Case 1: CDF of Queue delay for Original CoDel vs CoDel with interval = 30
ms

3.2.3 Case 1: CoDel with interval 30 ms

Figure 3.6 shows the CDF of queuing delay obtained from original CoDel and CoDel with

the new value of interval. Figure 3.6 (a) - (d) present the results for different target values

(5 ms to 20 ms). We see that with the new value of interval, CoDel has better control on

35

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 5ms

(a) target 5 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 10ms

(b) target 10 ms

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Original
Modified
Target 15ms

(c) target 15 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 20ms

(d) target 20 ms

Figure 3.7: Case 2: CDF of Queue delay for Original CoDel vs CoDel with a modified
control law

the queuing delay for all four target values. Reducing the value of interval increases the

frequency of proactive packet drops by CoDel, thus allowing it to maintain lower queuing

delays.

3.2.4 Case 2: CoDel with modified control law

Figure 3.7 shows the CDF of queuing delay obtained from original CoDel and CoDel with

a modified control law. Figure 3.7 (a) - (d) present the results for different target values

(5 ms to 20 ms). We observe that the modified mechanism performs better than the

original mechanism. Using the actual value of count in the control law instead of
p
count

implies shorter intervals between packet drop times and thus, provides a tighter grip on

the queuing delays. However, when compared to Case 1, we note that the magnitude of

improvements in Case 2 is less. Hence, in the next case, we highlight the benefits of com-

bining both approaches in the modified CoDel as discussed in Case 1 and 2, respectively.

3.2.5 Case 3: Original CoDel vs Modified CoDel

In this case, the main aim is to understand the benefits of applying two changes suggested

above to improve the performance of CoDel. Figure 3.8 shows the CDF of queuing delay

36

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 5ms

(a) target 5 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 10ms

(b) target 10 ms

Queuing Delay in Milliseconds
0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 15ms

(c) target 15 ms
Queuing Delay in Milliseconds

0 10 20 30 40 50 60 70 80 90 100

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Original
 Modified
 Target 20ms

(d) target 20 ms

Figure 3.8: Case 3: CDF of Queue delay for Original CoDel vs Modified CoDel
(combined Case 1 and Case 2)

obtained from the original CoDel and modified CoDel. Figure 3.8 (a) - (d) present the

results for different target values (5ms to 20ms). We see that the modified CoDel controls

the queue delay within target more often than the original mechanism. A collective change

made in the value of interval and control law yields more promising results than the

individual changes made in the previous two cases, which is in line with the observations

made in Figure 3.5.

However, to verify whether this performance improvement in queuing delay does not

reduce the link utilization, we capture the congestion window evolution (aggregate) for all

five senders in Figure 3.9. In the PDF plots3 shown in Figure 3.9, the width of the bar is

decided by choosing the bin size as 15 which is used more commonly (Forbes et al., 2011).

It is noted that PDF of both original and modified control law is similar, despite some

variations in the density. Thus, we confirm that the control law proposed in Algorithm 5

does not affect the performance when only TCP flows share the bottleneck link. From the

point of stability analysis, we observe that the original CoDel suffers from large variations

in the cwnd. On the other hand, we see that modified CoDel is more stable and suffers

from fewer variations. This is confirmed by Table 3.2 which depicts the variance of cwnd

observed with the original CoDel and modified CoDel. This type of behavior is desirable

3Unlike probability, PDF can have values greater than 1 (Abramowitz and Stegun, 1964)

37

for applications that demand minimal jitter and/or consistent throughput.

Table 3.2: Variance in cwnd with CoDel and modified CoDel

target

(in ms)
CoDel

Modified

CoDel

5 0.5808 0.4105

10 0.6384 0.4973

15 0.7574 0.6325

20 0.7280 0.7072

Table 3.3: Throughput with CoDel and modified CoDel

target

(in ms)

CoDel

(Mbps)

Modified

CoDel (Mbps)

5 0.3625 0.3697

10 0.4065 0.4005

15 0.3913 0.3844

20 0.4023 0.3928

To further analyze the performance of both algorithms, we plotted instantaneous

throughput as shown in Figure 3.10 and computed average throughput as shown in Table

3.3. Additionally, we also track the number of packets dropped by CoDel and modified

CoDel as shown in Table 3.4. It is observed from Figure 3.10 that modified CoDel pro-

vides similar throughput as original CoDel, but with significantly less number of packet

drops as shown in Table 3.4. The proactive behavior of modified CoDel provides timely

congestion signals to the TCP senders, thus reducing the number of packet drops at a

later stage.

3.3 Evaluation using real-time test-bed

To evaluate the performance of CoDel in real time environment we re-analyze it in a

Linux kernel testbed. We setup the testbed using three machines. Flexible network tester

(Flent) (Høiland-Jørgensen, 2015) tool has been used to generate the TCP traffic and to

38

Congestion window (bytes)
0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(a) Original control law with target 5 ms
Congestion window (bytes)

0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(b) Modified control law with target 5 ms

Congestion window (bytes)
0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(c) Original control law with target 10 ms
Congestion window (bytes)

0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(d) Modified control law with target 10 ms

Congestion window (bytes)
0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(e) Original control law with target 15 ms
Congestion window (bytes)

0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(f) Modified control law with target 15 ms

Congestion window (bytes)
0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(g) Original control law with target 20 ms
Congestion window (bytes)

0 500 1000 1500 2000 2500 3000

P
D

F

0

0.5

1

1.5

(h) Modified control law with target 20 ms

Figure 3.9: Cont... Congestion window evolution with original and modified control law

39

Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(a) Original control law with target 5 ms
Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(b) Modified control law with target 5 ms

Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(c) Original control law with target 10 ms Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(d) Modified control law with target 10 ms

Figure 3.10: Throughput for original and modified control law

Table 3.4: Total number of packets dropped with CoDel and modified CoDel

target

(in ms)
CoDel

Modified

CoDel

5 68875 47360

10 61980 50890

15 61205 40080

20 62110 50415

collect the stats, and iperf has been used to generate the UDP traffic. tcp_5up test has

been used which configures 5 TCP flows in upload direction along with one UDP flow.

The UDP flow is started at 26th second and stopped at 75th second. The total duration

of the experiment is 100 seconds.

Figure 3.11 (a) and (b) shows the queue delay and link utilization for the CoDel and

Modified CoDel with 0.5 Mbps bottleneck bandwidth. It can be observed from Figure

3.11 (a) that Modified CoDel maintains the queuing delay lower than CoDel along with

same link utilization as shown in Figure 3.11 (b). However, CoDel is not able to maintain

the queue delay under target in both the cases. These observations are in line with

40

Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(e) Original control law with target 15 ms
Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(f) Modified control law with target 15 ms

Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(g) Original control law with target 20 ms
Time (s)

0 50 100 150 200

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

(h) Modified control law with target 20 ms

Figure 3.10: Cont... Throughput for original and modified control law

those mentioned in the official website of bufferbloat community4, that CoDel does not

perform well under low bottleneck bandwidth scenarios (e.g., 0.5 Mbps) in real time

testbed whereas, it works fine in simulations (as seen in our results obtained from ns-2

and fluid model). The exact reason for this behavior of CoDel is still unknown, but it

has been identified that the value of target needs appropriate setting for CoDel to work

in such low bandwidth scenarios.

To verify that the problem indeed is only with low bandwidth scenarios, we re-evaluate

CoDel and Modified CoDel with 10Mbps bottleneck bandwidth, while using the same

experimental setup. Figure 3.12 (a) and (b) show the queue delay and link utilization

for CoDel and Modified CoDel, respectively. Figure 3.12 (a) shows that CoDel performs

well when only TCP traffic exists from 0 to 25 seconds, and 76 to 100 seconds. It is

unable to control the queue delay when UDP traffic is enabled from 26 seconds to 75

seconds. In contrast to CoDel’s behavior against UDP traffic, Modified CoDel maintains

better control on queue delay. Figure 3.12 (b) shows that both CoDel and Modified CoDel

achieve similar link utilization.

4https://www.bufferbloat.net/projects/codel/wiki/#known-issues

41

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

CoDel
Modified CoDel

(a) Queue Delay

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

CoDel
Modified CoDel

(b) TCP Throughput

Figure 3.11: Mix TCP and UDP with 0.5 Mbps bottleneck bandwidth

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

CoDel
Modified CoDel

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

CoDel
Modified CoDel

(b) TCP Throughput

Figure 3.12: Mix TCP and UDP with 10 Mbps bottleneck bandwidth

3.4 Constraints of CoDel

There are two fundamental concerns with the functionality of CoDel: (i) the transition

from a non-dropping state to a dropping state requires waiting for at least 100 ms. This

affects the behavior when queue delay falls below the desired value and then rises again

shortly afterwards, and (ii) in dropping state, the control law regulates the packet drop

frequency of CoDel. This control law increases the packet drop frequency based on in-

verse square root law, which controls the queue delay within the specified bound against

responsive flows only, and is not suitable against unresponsive flows (Morton, 2016).

Although we show that the modified CoDel successfully increases the packet drop

frequency by reducing the value of interval to 30 ms and applying a different control law,

it is apparent that this is not a reliable solution to address the concerns of CoDel with

42

unresponsive traffic. While this solution would work for a certain number of unresponsive

flows, its scalability is limited. Hence, instead of making any more attempts to improve

CoDel, we explored PIE with an aim to resolve the concerns with unresponsive traffic.

Unlike CoDel, PIE employs packet drop probability (p) to enqueue/drop the incom-

ing packets. p is calculated depending on (i) the difference between the current queue

delay and reference queue delay, and (ii) whether the current queue delay is increasing

or decreasing. PI controllers adjust the drop probability quick enough to react to sudden

changes in the queue delay. Hence, we decided to base our work on PIE. Moreover, it

is a defacto AQM used by CableLabs since DOCSIS 3.1 cable modems (RFC 8034), and

studies have shown that PIE is likely to provide better control on queue delay than other

mechanisms in case of extreme overload (Järvinen and Kojo, 2014; Kuhn et al., 2017).

3.5 Inferences

We have proposed a modified fluid model that can be used to obtain an in-depth working

of the CoDel mechanism and evaluate its parameter sensitivity. The proposed fluid model

has been verified by comparing its results with those obtained from ns-2. In addition, this

work discusses a potential use case where the modified fluid model is applied to verify the

robustness of a new control law designed for CoDel recently. The proposed fluid model

can be extended to provide support for modeling unresponsive UDP flows along with

responsive TCP flows, but how to measure the impact of the presence of unresponsive

flows on responsive flows remains a challenging work.

Further, we identify that CoDel has inherent design issues and it leads to limited

performance improvement with modified CoDel. Hence, we switched our focus from CoDel

to PIE mechanism because studies have shown that PIE is stable against unresponsive

flows.

43

44

Chapter 4

Minstrel PIE

This chapter discusses a simple and easy-to-deploy extension to the PIE mechanism, called

Minstrel PIE, to increase its robustness when unresponsive flows coexist with TCP flows.

Minstrel PIE adapts itself and timely drops (or marks1) packets to control the queue delay

when the traffic load increases, otherwise operates similar to PIE. The idea is to regulate

the reference queue delay (qdelay_ref)parameter of PIE to adjust the drop probability in

Minstrel PIE. Depending on the results obtained through simulations and real-time tests

it is observed that Minstrel PIE maintains a better trade-off between queue delay and

link utilization when unresponsive flows coexist with TCP flows. It performs similar to

PIE in other network settings.

4.1 Impact of fixed qdelay_ref

Despite gaining significant attention, the implications of keeping qdelay_ref fixed in PIE

are not widely studied. This section highlights the need to adapt qdelay_ref in PIE.

We configure a dumbbell topology as shown in Figure 4.1 in ns-2 with different traffic

loads to analyze the impact of having a fixed value of qdelay_ref. Three traffic loads are

configured in the simulation: (i) Light traffic (5 TCP flows), (ii) Heavy traffic (50 TCP

flows) and (iii) Mix traffic (5 TCP and 2 UDP flows). These configurations are identical

to the ones used by the authors of PIE (Pan et al., 2013) and PI2 (De Schepper et al.,

2016), except that we have used Compound TCP (Tan and Song, 2006; Tan et al., 2006)

for our simulations instead of TCP NewReno (RFC 6582). PIE has been configured with

1Marking refers to the setting of a bit in the packet header by using congestion signaling approaches
like Explicit Congestion Notification (ECN) (RFC 3168). The words ‘drops’ and ‘marks’ are used inter-
changeably in this chapter.

45

10 Mbps, 40 ms100 Mbps, 5 ms 100 Mbps, 5 ms

Sender 1

Sender 2

Sender 3

Sender n

Receiver 1

Receiver 2

Receiver 3

Receiver n

Droptail PIE /

Minstrel PIE

Figure 4.1: Dumbbell Topology used in ns-2 experiments

the values recommended in RFC 8033. In this paper, all the simulations are run for 100

seconds and the results presented in Figure 4.2 through Figure 4.12 depict the average

values obtained by repeating the simulation with 25 different random seed values.

Link Utilization (%)
0 1 2 3 4 5 6 7 8 9 10

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Light TCP

Heavy TCP

Mix TCP and UDP

(a) Link Utilization
Queue Delay (ms)

0 5 10 15 20 25 30 35 40 45 50

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Light TCP

Heavy TCP

Mix TCP and UDP

Reference Delay

(b) Queue Delay

Figure 4.2: Link Utilization and Queuing Delay with PIE

Figure 4.2 presents the CDF for link utilization and queue delay obtained with PIE.

Increasing the number of responsive flows did not largely impact the performance, but

adding a few unresponsive flows led to a significant rise in the queue delay. This happens

because PIE does not drop sufficient number of packets to keep the queue delay under

control. We believe that this concern can be addressed by adapting qdelay_ref (albeit

within acceptable bounds) and subsequently regulating the packet drop probability (p) to

drop appropriate number of packets. This approach forms the basis of Minstrel PIE.

We repeat the simulations described above with Minstrel PIE. Figure 4.3 presents the

CDF for link utilization and queue delay. As traffic load increases, Minstrel PIE increases

46

Link Utilization (%)
0 1 2 3 4 5 6 7 8 9 10

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Light TCP

Heavy TCP

Mix TCP and UDP

(a) Link Utilization
Queue Delay (ms)

0 10 20 30 40 50

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Light TCP

Heavy TCP

Mix TCP and UDP

Reference Delay

(b) Queue Delay

Figure 4.3: Link Utilization and Queuing Delay with Minstrel PIE

its packet drop probability based on qdelay_ref adjustments and achieves better control

on queue delay without hurting the link utilization. The next section describes the working

of Minstrel PIE in detail.

4.2 Minstrel PIE

4.2.1 Design

The design of Minstrel PIE is tailored to improve the tradeoff between queue delay and

link utilization when responsive and unresponsive flows coexist. It increases qdelay_ref

when the link is underutilized and decreases qdelay_ref when the link is over-utilized.

Average dequeue rate (avg_dq_rate) measurements in PIE serve as a good approximation

of the current link utilization. Minstrel PIE leverages these measurements and accordingly

adapts the qdelay_ref. The initial value of qdelay_ref is set to 15 ms which is a fixed

default value suggested in RFC 8033. Other components in Minstrel PIE are same as

PIE. Algorithm 6 presents the pseudo code of the proposed mechanism.

A new parameter called maximum average dequeue rate (maxavg_dq_rate) is intro-

duced in Minstrel PIE to keep track of the maximum link utilization observed so far.

At every t_update interval, avg_dq_rate is compared with maxavg_dq_rate to decide

whether qdelay_ref should be updated. Subsequently, the updated value of qdelay_ref

is used to calculate the new drop probability. maxavg_dq_rate is internally maintained

by Minstrel PIE and does not require settings from the user.

The following subsections provide a detailed insight into the working of Minstrel PIE:

47

Algorithm 6: Minstrel PIE
Input : avg_dq_rate
Initialization: qdelay_ref = 15ms, t_update = 16ms, maxavg_dq_rate = 0
Output : updated value of qdelay_ref

1 On every t_update interval
// Track the highest avg_dq_rate

2 if avg_dq_rate > maxavg_dq_rate then
3 maxavg_dq_rate = avg_dq_rate

4 if avg_dq_rate <= 0.9 ⇤maxavg_dq_rate then
// Increase qdelay_ref

5 qdelay_ref + =
|qdelay_ref � cur_delay|

2
6 else

// Decrease qdelay_ref
7 if cur_delay < qdelay_ref then
8 qdelay_ref = cur_delay

9 else

10 qdelay_ref � =
|qdelay_ref � cur_delay|

2

11 if qdelay_ref < 5ms then
12 qdelay_ref = 5ms

13 else if qdelay_ref > 15ms then
14 qdelay_ref = 15ms

15 Calculate Drop Probability p

A Increase qdelay_ref

Minstrel PIE keeps track of maxavg_dq_rate and increases the qdelay_ref when the link

is not adequately utilized. Specifically, it increases the qdelay_ref when the avg_dq_rate

 90% of the maxavg_dq_rate. A binary increment (as shown in Algorithm 6) is applied

to the value of qdelay_ref. This increment helps Minstrel PIE to adjust the difference

between cur_delay and qdelay_ref which is tracked by PIE’s control parameter ↵ during

the drop probability calculation. These adjustments ensure that the overall drop prob-

ability is decreased quickly, and subsequently, the link utilization increases. The upper

bound for qdelay_ref is set to 15 ms in Minstrel PIE. The design considerations for

choosing this setting and the above mentioned increase/decrease threshold (i.e., 90% of

maxavg_dq_rate) are discussed later in Section 4.2.2.

48

B Decrease qdelay_ref

Minstrel PIE decreases the qdelay_ref when the link is adequately utilized. Specifically,

it decreases the qdelay_ref when avg_dq_rate > 90% of the maxavg_dq_rate. However,

decreasing the value of qdelay_ref abruptly may hurt the link utilization; so the following

approach has been adopted to decrease the value of qdelay_ref smoothly:

If cur_delay < qdelay_ref, decreasing qdelay_ref and setting it to cur_delay is safe.

But if cur_delay > qdelay_ref, a binary decrement is applied to decrease the value of qde-

lay_ref smoothly. In the former case, Minstrel PIE attempts to stabilize the value of drop

probability by setting qdelay_ref to cur_delay whereas in the latter case, Minstrel PIE

attempts to gradually increase the drop probability by increasing the value of (cur_delay

- qdelay_ref). The motivation to use binary decrement is to ensure quick adaptation of

qdelay_ref to achieve the desired trade-off. The lower bound for qdelay_ref is set to 5 ms

in Minstrel PIE. Section 4.2.2 discusses the design considerations for choosing this value.

4.2.2 Parameter Settings

A Lower and Upper Bound for qdelay_ref

The inferences to set lower and upper bound for qdelay_ref in Minstrel PIE have been

derived from the simulation studies presented in (Kuhn et al., 2017) where the qdelay_ref

in PIE is set within a range of 5 ms to 20 ms. Hence, the lower bound for qdelay_ref in

Minstrel PIE is set to 5 ms, which is also the default value used by CoDel. The upper

bound for qdelay_ref in Minstrel is set to 15 ms instead of 20 ms. The primary reason is

that higher values of qdelay_ref exhibit more variations in the queue delay (See Figure

7(b) of (Kuhn et al., 2017)). Moreover, RFC 8033 recommends a default value of 15 ms

for qdelay_ref. Thus, Minstrel PIE does not deviate from the primary goals of PIE.

B Initial value of qdelay_ref

Initially, the buffers are empty and it takes a few RTTs for the queue to build up. Setting

a low initial value for qdelay_ref would be too restrictive and it might not allow the link

utilization to grow beyond a certain limit. Hence, we recommend that Minstrel PIE sets

the initial value of qdelay_ref to its upper bound, i.e., 15 ms.

49

C Setting the increase/decrease threshold

Quite a few prior works have demonstrated that PIE achieves more than 90% link uti-

lization in most of the scenarios (Kuhn et al., 2017; Kulatunga et al., 2015; Kuhn and

Ros, 2016). Based on the observations made in the literature, and our own evaluations,

we recommend 90% of maxavg_dq_rate to be used as a threshold for Minstrel PIE to

increase / decrease the value of qdelay_ref.

4.2.3 Support for Explicit Congestion Notification

Explicit Congestion Notification (ECN) (RFC 3168) mechanism marks packet headers

(TCP and IP) to notify endpoints of congestion that may be developing in a bottleneck

queue, without resorting to packet drops. Minstrel PIE does not require modifications

to support ECN style packet marking. It is recommended to use ECN marking with

Minstrel PIE to avoid any loss of throughput for TCP flows, especially when qdelay_ref

is decreased from 15 ms to 5 ms.

4.2.4 Implementation

To verify the correctness of the proposed idea, PIE code in ns-2.36.rc1, ns-3.27 and Linux

kernel 4.15 has been modified to support Minstrel PIE. It requires 18, 37 and 33 lines of

code change to PIE implementation in ns-2 (McCanne and Floyd, 1997), ns-3 (Henderson

et al., 2008) and Linux kernel, respectively. Moreover, Minstrel PIE does not add any

new parameter which requires explicit settings from the user.

In the Linux kernel, the net/sched/sch_pie.c is modified to implement Minstrel

PIE and to enable Minstrel PIE through the tc command, q_pie.c is modified in the

iproute2 package. To enable Minstrel PIE, passing ‘minstrel’ as a parameter in the tc-pie

command is sufficient2.

4.3 Evaluation

Our evaluations consisted of three sets of experiments that compare the performance of

Minstrel PIE with PIE using (i) preliminary set of simulation scenarios, same as the

2Example: sudo tc qdisc add dev eno1 parent 1:10 handle 1100: pie limit 200
target 15 ms tupdate 16 ms minstrel

50

ones used in (Nichols and Jacobson, 2012; Pan et al., 2013; De Schepper et al., 2016)

(ii) simulation scenarios described in RFC 7928 for comparing the performance of AQM

algorithms and (iii) real time tests provided in Flexible Network Tester (Flent) (Høiland-

Jørgensen, 2015) for evaluating AQM algorithms. Besides analyzing the trade-off between

latency and link utilization, we compare the fairness achieved with PIE and Minstrel PIE

to show that the latter does not deteriorate the fairness among the flows. Fairness with

respect to link utilization has been measured using a bounded measuring index called

Jain’s Fairness Index (Jain et al., 1998). It is defined as in Eq. (4.1):

f(x1, x2, ..., xn) =
(
Pn

i=1 xi)2Pn
i=1 x

2
i

(4.1)

where,

• xi is the bandwidth dedicated to flow i

• n is the number of flows sharing the bandwidth

Higher values indicate better fairness. An index of 0.4 means that the network is

unfair to 60% of the users sharing the link. The maximum value attainable by the index

is 1.

4.3.1 Preliminary Evaluation

The preliminary evaluation consisted of two types of scenarios: (i) simulations with differ-

ent number of responsive and unresponsive flows, and (ii) simulations in realistic network

conditions, with a proper mix of responsive and unresponsive flows. The scenarios men-

tioned in subsections A to C are same as the ones described in Section 4.1, except that we

represent the results in two additional forms: distribution of bottleneck link utilization and

queue delay over time, and goodput as a function of queue delay which is recommended

in RFC 7928. ns-2.36.rc1 has been used for these simulations.

A Light TCP traffic

This scenario consists of 5 TCP flows starting at the same time in a dumbbell topology

as shown in Figure 4.1. Table 4.1 presents the configuration of simulation parameters

for this scenario. Figure 4.4 shows the performance of PIE and Minstrel PIE in terms of

51

Table 4.1: Simulation Configuration for Preliminary Evaluation

Parameters Values Parameters Values

Bottleneck

Propagation Delay
80 ms

Traffic Flows

Direction
Forward Only

Non-bottleneck

Propagation Delay
20 ms

AQM enabled in

Forward path
PIE/Minstrel PIE

Bottleneck

Bandwidth
10 Mbps TCP Application Long-lived FTP

Non Bottleneck

Bandwidth
100 Mbps

UDP Application

with rate

Constant Bit Rate

at 10Mbps

Buffer Size 200 packets TCP enabled Compound

Packet Size 1000 Bytes Simulation Time 100 Seconds

queue delay and Figure 4.5 shows the performance of PIE and Minstrel PIE in terms of

bottleneck link utilization.

Table 4.2: Fairness for Light TCP traffic scenario

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 TCP 2 TCP 3 TCP 4 TCP 5

PIE 1.84 1.83 1.87 1.85 1.85 0.99

Minstrel PIE 1.83 1.84 1.80 1.80 1.83 0.99

The sharp rise in queue delay in Figure 4.4 and the sudden fall in the link utilization

in Figure 4.5 is because all flows start at the same time. This configuration provides

an insight into the capabilities of PIE and Minstrel PIE to handle the burst of traffic.

Both algorithms handle the burst appropriately and maintain the queue delay around the

reference values for the rest of the simulation. Minstrel PIE has marginally better control

over the queue delay with same link utilization (Figure 4.4(a) and Figure 4.4(b)) as that

of PIE. This is because Minstrel PIE tries to reduce the queue delay to the lower limit

(seen around 15 seconds in Figure 4.4(b)) since the link is sufficiently utilized, and allows

the queue delay to grow towards the upper limit (seen around 65 seconds in Figure 4.4(b))

when it senses that the link utilization is getting affected (15 seconds to 65 seconds in

Figure 4.5(b)). Furthermore, the results shown in Table 4.2 confirm that Minstrel PIE

52

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u

in
g
 D

e
la

y
(i
n
 m

s)

Time (in seconds)

PIE
qdelay_ref

(a) PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u

in
g
 D

e
la

y
(i
n
 m

s)

Time (in seconds)

MinstrelPIE
qdelay_ref (Upper limit)
qdelay_ref (Lower limit)

(b) Minstrel PIE

Figure 4.4: Queuing Delay for Light TCP traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p
s)

Time (in seconds)

(a) PIE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p
s)

Time (in seconds)

(b) Minstrel PIE

Figure 4.5: Link Utilization for Light TCP traffic

does not affect the fairness among the flows.

B Heavy TCP traffic

This scenario sets up 50 TCP flows in a dumbbell topology, but otherwise, it is same as

the previous scenario. Figure 4.6(a) and Figure 4.6(b) show the performance of PIE and

Minstrel PIE in terms of queue delay, respectively and Figure 4.7(a) and Figure 4.7(b)

show the performance of PIE and Minstrel PIE in terms of bottleneck link utilization.

Like Figure 4.4, there is a sharp rise in queue delay in Figure 4.6. Even though the

amount of burst in this scenario is much larger than the previous one, it is observed

that both algorithms successfully control the queue delay. After the burst period, PIE

maintains the queue delay around the qdelay_ref whereas Minstrel PIE maintains the

queue delay between the lower and upper limit. Since there are sufficient number of TCP

53

Table 4.3: Fairness for Heavy TCP traffic scenario

Flow

Number

Throughput (in Mbps) Fair-

nessTCP 1-10 TCP 11-20 TCP 21-30 TCP 31-40 TCP 41-50

PIE

0.19 0.19 0.19 0.19 0.18

0.98

0.19 0.18 0.18 0.18 0.19

0.19 0.19 0.19 0.19 0.19

0.18 0.18 0.19 0.19 0.19

0.18 0.19 0.19 0.19 0.19

0.19 0.18 0.19 0.19 0.19

0.18 0.19 0.18 0.19 0.19

0.19 0.19 0.19 0.19 0.19

0.18 0.19 0.19 0.19 0.19

0.19 0.19 0.19 0.19 0.19

Minstrel

PIE

0.18 0.19 0.17 0.19 0.18

0.99

0.19 0.18 0.19 0.18 0.19

0.17 0.19 0.18 0.19 0.18

0.19 0.19 0.19 0.19 0.19

0.18 0.19 0.19 0.19 0.19

0.18 0.18 0.19 0.18 0.19

0.18 0.19 0.18 0.19 0.19

0.19 0.18 0.19 0.18 0.19

0.18 0.19 0.18 0.19 0.18

0.19 0.19 0.18 0.19 0.19

flows to keep the link fully utilized, Minstrel PIE tries to maintain the queue delay near

to its lower bound of qdelay_ref. In terms of link utilization and fairness among the flows

(See Table 4.3), both algorithms have similar performance.

C Mix TCP and UDP traffic

This is an extension of the Light TCP traffic scenario, where 2 UDP flows are added to 5

TCP flows. The goal is to verify the ability of Minstrel PIE mechanism to control queue

delay in the presence of unresponsive flows. Figure 4.8(a) and Figure 4.8(b) show the

performance of PIE and Minstrel PIE in terms of queue delay, respectively and Figure

4.9(a) and Figure 4.9(b) show the performance of PIE and Minstrel PIE in terms of

bottleneck link utilization.

54

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u

in
g
 D

e
la

y
(i
n
 m

s)

Time (in seconds)

PIE
qdelay_ref

(a) PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u

in
g
 D

e
la

y
(i
n
 m

s)

Time (in seconds)

MinstrelPIE
qdelay_ref (Upper limit)
qdelay_ref (Lower limit)

(b) Minstrel PIE

Figure 4.6: Queuing Delay for Heavy TCP traffic

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p
s)

Time (in seconds)

(a) PIE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p
s)

Time (in seconds)

(b) Minstrel PIE

Figure 4.7: Link Utilization for Heavy TCP traffic

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u

e
u

in
g

 D
e

la
y

(i
n
 m

s)

Time (in seconds)

PIE
qdelay_ref

(a) PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
u

e
u

in
g

 D
e

la
y

(i
n
 m

s)

Time (in seconds)

MinstrelPIE
qdelay_ref (Upper limit)
qdelay_ref (Lower limit)

(b) Minstrel PIE

Figure 4.8: Queuing Delay for Mix TCP and UDP traffic

55

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p

s)

Time (in seconds)

(a) PIE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

L
in

k
U

til
iz

a
tio

n
 (

in
 M

b
p

s)

Time (in seconds)

(b) Minstrel PIE

Figure 4.9: Link Utilization for Mix TCP and UDP traffic

Table 4.4: Fairness for Mix TCP and UDP traffic scenario

Flow

Number

Throughput (in Mbps) Fair-

nessTCP 1 TCP 2 TCP 3 TCP 4 TCP 5 UDP 1 UDP 2

PIE 0.010 0.015 0.006 0.007 0.014 4.790 4.729 0.288

Minstrel

PIE
0.010 0.015 0.006 0.007 0.020 4.788 4.729 0.289

Although the initial burst of traffic is successfully handled by both algorithms, PIE is

unable to maintain the queue delay within its qdelay_ref for the rest of the simulation.

On the other hand, Minstrel PIE consistently maintains the queue delay around its lower

bound of qdelay_ref without hurting the link utilization. Since the link utilization con-

sistently remains at its peak (100%), Minstrel PIE senses an opportunity to minimize the

queue delay as much as possible. A low value in the ‘Fairness’ column in Table 4.4 for

both algorithms highlights the unfairness problem due to the unresponsive nature of UDP

flows. This problem can be addressed by combining flow queuing, without compromising

on the benefits offered by Minstrel PIE. Chapter 5 provides more details on flow queuing.

RFC 7928 recommends plotting the goodput as a function of queue delay to compare

the performance of AQM algorithms. Figure 4.10 depicts the results of above three

scenarios as per the RFC 7928 guidelines. An ellipse represents the contour with maximum

likelihood 2D Gaussian distribution of goodput and delay. The height and width of the

ellipse are a function of standard deviation of goodput and delay, respectively. The

orientation of an ellipse is based on the covariance between the two. Since the center of

56

 8

 8.5

 9

 9.5

 10

 10.5

 11

-10-5 0 5 10 15 20 25

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(a) Light TCP

 8

 8.5

 9

 9.5

 10

 10.5

 11

-10-5 0 5 10 15 20 25

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(b) Heavy TCP

 8

 8.5

 9

 9.5

 10

 10.5

 11

-10-5 0 5 10 15 20 25

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(c) Mix TCP and UDP

Figure 4.10: Representation of Figure 4 to Figure 9 as per RFC 7928

an ellipse represents the mean with equal extension of height and width on both sides, it is

possible to get part of the contour in the region with negative queue delay or with goodput

greater than bottleneck link capacity. The area inside an ellipse can be interpreted as

the variance in the values of goodput and delay. The more the variations, the larger

is the outline of an ellipse (Winstein and Balakrishnan, 2013). The results show that

Minstrel PIE maintains a better tradeoff, especially when responsive and unresponsive

traffic coexist.

4.3.2 RFC 7928 based Evaluation

Thorough evaluation of an AQM mechanism requires significant time and efforts. Hence,

the AQM and Packet Scheduling Working Group at IETF published RFC 7928 which

provides the guidelines to evaluate AQM algorithms. An automated evaluation framework

complying with the guidelines of RFC 7928 has been recently developed for ns-3 (Deepak

et al., 2017). We use this evaluation suite to verify the desired behavior of Minstrel PIE

57

Table 4.5: Simulation Configuration for RFC 7928 based Evaluation

Parameters Values Parameters Values

Bottleneck

Propagation Delay
80ms

Traffic Flows

Direction
Forward Only

Non-bottleneck

Propagation Delay
20ms

AQM enabled in

Forward path
PIE/Minstrel PIE

Bottleneck

Bandwidth
10 Mbps TCP Application Long-lived FTP

Non Bottleneck

Bandwidth
100 Mbps

UDP Application

with rate

Constant Bit Rate

at 10Mbps

Buffer Size 200 packets TCP enabled NewReno

Packet Size 1000 Bytes Simulation Time 300 Seconds

and its relative performance against PIE under various traffic conditions. While RFC 7928

recommends several test scenarios to evaluate AQM algorithms, we present the results

for the ones that are most relevant to the objective of designing Minstrel PIE. Table 4.5

presents the simulation configuration used by the AQM Evaluation Suite of ns-3. The

same has been used for the evaluation of Minstrel PIE.

A Unresponsive transport sender

Table 4.6: Scenarios mentioned in Section 5.3 of RFC 7928

Traffic Scenario Description

UDP

Transport

Sender

Mix TCP

and UDP

Consists of a long-lived UDP flow from an unresponsive

application with a single long-lived, non-application limited

TCP NewReno flow.

With single

UDP Sender

Consists of a non-application limited and long-lived, single

UDP flow with sending rate more than bottleneck capacity.

The scenarios mentioned in this section are identical to the ones mentioned in Section

5.3 of RFC 7928. The main idea is to evaluate the performance of AQM algorithms in

the presence of unresponsive transport. Table 4.6 presents a summary of the scenarios.

Figure 4.11 presents the results for the traffic scenarios mentioned in Table 4.6. Min-

58

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 4 6 8 10 12 14 16

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(a) UDP with TCP Mix

 8.4

 8.6

 8.8

 9

 9.2

 9.4

-5 0 5 10 15 20 25 30

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(b) Single UDP Sender

Figure 4.11: Results for Section 5.3 from RFC 7928

Table 4.7: Fairness for Section 5.3 traffic scenario from RFC 7928

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 UDP 1

PIE 0.063 8.983 0.50

Minstrel PIE 0.074 9.171 0.50

strel PIE shows a tight control on the queue delay in both the scenarios, more so in the

case of a single unresponsive flow. We observe that both algorithms provide a stable

performance (i.e., variations in queue delay and link utilization are negligible in Figure

4.11(b)) because a single UDP flow has been configured with Constant Bit Rate (CBR)

application, which sends the data at a constant rate. The utilization and fairness (See

Table 4.7) obtained with both the algorithms is similar. These results are in line with

those discussed in the previous section.

B Levels of network congestion

RFC 7928 specifies three scenarios with different levels of congestion varying from mild,

medium to heavy congestion, respectively. The main idea is to evaluate the performance

of AQM algorithms in different levels of network congestion. Table 4.8 resents a summary

of the scenarios. The details of each scenario configuration can be found in Section 8.2.2,

8.2.3 and 8.2.4 of RFC 7928, respectively.

Since these scenarios configure only responsive flows to vary the amount of congestion

in the network, Minstrel PIE and PIE are expected to provide similar performance. Figure

59

Table 4.8: Congestion scenarios mentioned in Section 8 of RFC 7928

Congestion Scenarios Description

1 Mild Congestion
Consists of bulk non-application limited TCP flow which can

generate packet drop rate of 0.1% at the router.

2 Medium Congestion
Consists of bulk non-application limited TCP flow which can

generate packet drop rate of 0.5% at the router.

3 Heavy Congestion
Consists of bulk non-application limited TCP flow which can

generate packet drop rate of 1% at the router.

 8.4

 8.6

 8.8

 9

 9.2

 9.4

-15-10-5 0 5 10 15 20 25 30

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(a) Mild Congestion

 8.4

 8.6

 8.8

 9

 9.2

 9.4

-15-10-5 0 5 10 15 20 25 30

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(b) Medium Congestion

 8.4

 8.6

 8.8

 9

 9.2

 9.4

-15-10-5 0 5 10 15 20 25 30

G
o
o
d
p
u
t
(M

b
p
s)

Queue Delay (ms)

PIE
MinstrelPIE

(c) Heavy Congestion

Figure 4.12: Results for Section 8.2.2 to 8.2.4 from RFC 7928

4.12(a), Figure 4.12(b) and Figure 4.12(c) depict the results for above mentioned scenarios,

respectively.

60

4.3.3 Evaluation using Flent

To verify the effectiveness of Minstrel PIE in a real network environment, we conducted

experiments on a testbed by using Flent. Flent is developed to overcome the problems of

coordination among different testing tools such as netperf (Jones et al., 1996) and iperf

(Tirumala et al., 2005), reproducing testbed results, managing testbed configuration,

and storing and analysing measurement data (Høiland-Jørgensen, 2015). It provides test

scenarios to evaluate the performance of AQM algorithms. Flent’s TCP upload (tcp_up)

test has been used to evaluate the performance of Minstrel PIE. The testbed comprises of

1 sender, 1 receiver and 1 AQM machine, all running Ubuntu 16.04 LTS with Linux kernel

4.15. Minstrel PIE is implemented only on the AQM machine. Flent specific parameters

settings and traffic loads are listed in Table 4.9. In addition to evaluating Minstrel PIE in

basic scenarios like light and heavy TCP traffic, we evaluate it in realistic scenarios like:

on-off unresponsive UDP flow, ECN enabled TCP flows and different bottleneck buffer

sizes.

Table 4.9: Testbed Setup using ethtool, netem, tc and Flent

Parameters Values Parameters Values

Bottleneck

Propagation Delay
80 ms

Traffic Flows

Direction
Forward Only

Non-bottleneck

Propagation Delay
20 ms

AQM enabled in

Forward path
PIE/Minstrel PIE

Bottleneck

Bandwidth
10 Mbps TCP Application Long-lived FTP

Non Bottleneck

Bandwidth
100 Mbps

UDP Application

with rate

Constant Bit Rate

at 10Mbps

Buffer Size 200 packets TCP enabled CUBIC (RFC 8312)

Packet Size 1000 Bytes Simulation Time 100 Seconds

A Light TCP traffic

This scenario is identical to the one discussed in subsection A of Section 4.3.1 and consists

of 5 TCP flows that start at the same time in a dumbbell topology. Figure 4.13 (a) and

Figure 4.13 (b) compare the performance of PIE and Minstrel PIE in terms of queue

61

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput

Figure 4.13: Light TCP Traffic

Table 4.10: Fairness for Light TCP traffic scenario in testbed

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 TCP 2 TCP 3 TCP 4 TCP 5

PIE 2.13 2.01 1.73 1.88 1.75 0.99

Minstrel PIE 1.94 1.94 1.93 1.84 1.83 0.99

delay and bottleneck link utilization, respectively. The slight rise initially in queue delay

in Figure 4.13 (a) is because all flows start at the same time. Both algorithms have similar

performance since all the flows are responsive flows and moreover, the number of flows

is less. Additionally, Table 4.10 shows that the fairness among flows remains same with

both the algorithms.

B Heavy TCP traffic

This scenario is identical to the one discussed in subsection B of Section 4.3.1 and sets up

50 TCP flows in a dumbbell topology, but otherwise, it is same as the previous scenario.

Figure 4.14 (a) and Figure 4.14 (b) compare the performance of PIE and Minstrel PIE in

terms of queue delay and bottleneck link utilization, respectively. Queue delay is initially

higher than the previous scenario because the number of flows is increased to 50 and all

start at the same time. Both algorithms control queue delay appropriately for the rest

of the experiment. PIE maintains the queue delay around its qdelay_ref and Minstrel

PIE maintains it between the lower and upper limits of qdelay_ref. The bottleneck link

remains fully utilized in Figure 4.14 (b) due to a large number of TCP flows, and both

62

Table 4.11: Fairness for Heavy TCP traffic scenario in testbed

Flow

Number

Throughput (in Mbps) Fair-

nessTCP 1-10 TCP 11-20 TCP 21-30 TCP 31-40 TCP 41-50

PIE

0.18 0.18 0.21 0.17 0.21

0.99

0.18 0.21 0.18 0.17 0.16

0.18 0.20 0.18 0.18 0.19

0.19 0.21 0.20 0.18 0.22

0.19 0.19 0.19 0.18 0.18

0.19 0.21 0.18 0.19 0.20

0.20 0.18 0.22 0.18 0.21

0.18 0.16 0.20 0.19 0.19

0.18 0.20 0.20 0.17 0.21

0.19 0.21 0.19 0.20 0.21

Minstrel

PIE

0.21 0.21 0.18 0.2 0.19

0.99

0.16 0.17 0.22 0.18 0.18

0.18 0.19 0.21 0.20 0.21

0.19 0.18 0.20 0.19 0.20

0.21 0.17 0.21 0.21 0.19

0.19 0.16 0.17 0.19 0.19

0.19 0.18 0.20 0.19 0.19

0.22 0.19 0.17 0.19 0.19

0.20 0.18 0.18 0.20 0.20

0.19 0.18 0.20 0.17 0.19

algorithms have a similar performance. Furthermore, Table 4.11 confirms that Minstrel

PIE does not deteriorate the fairness among flows.

C Benefits of ECN

This section highlights the benefits of using ECN with Minstrel PIE. The experiments

consist of two traffic configurations: 1-TCP-1-UDP (a single TCP flow with a single UDP

flow), and 5-TCP-1-UDP (five TCP flows with a single UDP flow). TCP flows start at 1

second and run until the end of the experiment. UDP flow starts at 25 seconds and stops

at 75 seconds. These configurations help us to evaluate the performance of Minstrel PIE

when unresponsive flows join and leave the network.

Figure 4.15 (a) and Figure 4.15 (b) compare PIE and Minstrel PIE in terms of queue

63

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput

Figure 4.14: Heavy TCP Traffic

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput

Figure 4.15: Mix TCP and UDP Traffic with tcp_1up

delay and TCP throughput without enabling ECN in a 1-TCP-1-UDP configuration,

respectively. Large oscillation in queue delay around 25 seconds is due to the start of UDP

flow. Minstrel PIE observes the increase in the avg_dq_rate and accordingly reduces the

qdelay_ref to achieve a tight control on queue delay. Later, when UDP flow leaves the

network at 75 seconds, Minstrel PIE increases the qdelay_ref. Figure 4.15 (b) shows the

impact on the throughput of TCP flow when UDP flow starts. TCP throughput reduces

significantly when UDP flow starts, and gets back to normal when UDP flow stops. The

results in Table 4.12 show the throughput share obtained by TCP and UDP flows. We

repeat this experiment by enabling PIE and Minstrel PIE to use ECN, and the results

are depicted in Figure 4.16 (a) and Figure 4.16 (b). It is observed that TCP throughput

improves marginally (See Table 4.13), but still gets largely affected when UDP flow is on.

64

Table 4.12: Fairness in tcp_1up test without ECN

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 UDP 1

PIE 0.083 9.60 0.50

Minstrel PIE 0.064 9.61 0.50

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay with ECN

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100
T

C
P

 T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput with ECN

Figure 4.16: Mix TCP and UDP Traffic with tcp_1up

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput

Figure 4.17: Mix TCP and UDP Traffic

Table 4.13: Fairness in tcp_1up test with ECN

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 UDP 1

PIE 0.13 9.54 0.51

Minstrel PIE 0.11 9.56 0.51

65

Table 4.14: Fairness in tcp_5up test without ECN

Flow

Number

Throughput (in Mbps)
Fairness

TCP 1 TCP 2 TCP 3 TCP 4 TCP 5 UDP 1

PIE 0.19 0.16 0.18 0.18 0.22 8.50 0.24

Minstrel

PIE
0.17 0.17 0.18 0.16 0.17 8.60 0.24

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

PIE
MinstrelPIE

(a) Queue Delay with ECN

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

PIE
MinstrelPIE

(b) TCP Throughput with ECN

Figure 4.18: Mix TCP and UDP Traffic with ECN

Table 4.15: Fairness in tcp_5up test with ECN

Flow

Number

Throughput (in Mbps)
Fairness

TCP 1 TCP 2 TCP 3 TCP 4 TCP 5 UDP 1

PIE 0.32 0.29 0.30 0.34 0.31 8.30 0.28

Minstrel

PIE
0.31 0.30 0.31 0.32 0.32 8.32 0.28

66

by ECN can be observed by comparing the results shown in Table 4.14 and 4.15.

D Evaluation with different buffer sizes

4

5

6

7

8

9

10

0
E

Lt
s/

s

8ploDd /Dtency (Ps)
0LnstUel3I(-15

3I(-15

DUop7DLl-15

100

110

120

130

140

P
s

(a) Buffer 15

6

7

8

9

10

0
E

Lt
s/

s

8ploDd /Dtency (Ps)
0LnstUel3I(-100

3I(-100

DUop7DLl-100

100

150

200

250

300

P
s

(b) Buffer 100

2

4

6

8

10

0
E

Lt
s/

s

8ploDd /Dtency (Ps)
0LnstUelPI(-1000

PI(-1000

DUopTDLl-1000

500

1000

1500

2000

P
s

(c) Buffer 1000

Figure 4.19: Light TCP Traffic with TCP CUBIC

A significant amount of work has been done to study the impact of bottleneck buffer

size on queue delay and link utilization (Wischik and McKeown, 2005; Raina et al., 2005;

Enachescu et al., 2005). In this scenario, we repeat the experiments described in Section

4.3.1 and 4.3.2 by configuring different buffer sizes at the bottleneck. We use the standard

buffer size of 15, 100 and 1000 packets (Raina and Wischik, 2005; Raina et al., 2016) in

both the cases. In addition, we also compare the results of PIE and Minstrel PIE with

the traditional tail drop queues. Figure 4.19 and Figure 4.20 depict the results obtained

with light TCP traffic and heavy TCP traffic, respectively.

When the buffer size is 15 packets, it is observed that the RTT is marginally lesser

with PIE and Minstrel PIE than tail drop queues. As the buffer size increases to 100 and

1000 packets, PIE and Minstrel PIE offer significant advantage over tail drop queues in

terms of RTT.

The link utilization is similar for all three algorithms when the buffer size is 15 packets

67

4

5

6

7

8

9

10
0

E
Lt

s/
s

8ploDd /Dtency (Ps)
0LnstUel3I(-15

3I(-15

DUop7DLl-15

105

110

115

120

125

130

P
s

(a) Buffer 15

2

4

6

8

10

0
E

Lt
s/

s

8ploDd /Dtency (Ps)
0LnstUelPI(-100

PI(-100

DUopTDLl-100

100

150

200

250

P
s

(b) Buffer 100

2

4

6

8

10

0
E

Lt
s/

s

8ploDd /Dtency (Ps)
0LnstUelPI(-1000

PI(-1000

DUopTDLl-1000

500

1000

1500

2000

P
s

(c) Buffer 1000

Figure 4.20: Heavy TCP Traffic with TCP CUBIC

and the traffic is light. However, the link utilization is marginally affected with tail drop

queues when heavy traffic is used with a buffer size of 15 packets. This happens because

the tail drop queues cause the large number of TCP flows passing through this small

buffer to synchronize. The impact of global synchronization on the overall link utilization

is also visible in the cases where buffer size is 100, more so with 1000 packets because

the congestion window of TCP flows grow to a large value. The link utilization with PIE

and Minstrel PIE is better in all the cases. In general, Minstrel PIE provides a better

performance trade-off than PIE and tail drop queues.

4.4 Inferences

This chapter proposed an extension to the PIE AQM mechanism, called Minstrel PIE.

It adapts the qdelay_ref to achieve a better trade-off between queue delay and link

utilization. The results obtained from the simulation studies and real time experiments

validate the effectiveness and robustness of Minstrel PIE against unresponsive traffic.

Minstrel PIE can be incrementally deployed in a real network setup as it is a minor

modification of PIE, and does not require the user to configure any parameter explicitly.

68

Furthermore, to maintain the fairness between responsive and unresponsive flows there

is a need of FQ-Minstrel PIE. The detailed implementation and evaluation of FQ-Minstrel

PIE is described in Chapter 5.

69

70

Chapter 5

Flow Queue Minstrel PIE

Typically, AQM mechanisms are expected to avoid congestion and minimize the impact of

bufferbloat, whereas, protecting the fair share of responsive flows when they coexist with

unresponsive flows is the responsibility of packet scheduling mechanisms (e.g., Stochastic

Fair Queuing (SFQ) (McKenney, 1990), Deficit Round Robin (DRR) (Shreedhar and

Varghese, 1996)). Minstrel PIE, being an AQM mechanism, is mainly designed to avoid

network congestion and minimize the impact of bufferbloat. Recently, there has been

an interest in designing hybrid packet scheduler and AQM mechanisms to collectively

address the problems of congestion, bufferbloat and flow protection by giving each flow

its own queue. Flow Queue CoDel (FQ-CoDel) (RFC 8290) and Flow Queue PIE (FQ-

PIE) (Al-Saadi and Armitage, 2016) are two attempts in this direction. Along similar

lines, we combine Minstrel PIE with flow queuing to provide flow protection and name

the resulting mechanism as Flow Queue Minstrel PIE (FQ-Minstrel PIE). This chapter

first provides the implementation details of FQ-PIE for the Linux kernel. Subsequently,

the design and implementation of FQ-Minstrel PIE is discussed followed by results and

analysis.

5.1 Flow Queuing

Flow Queuing (FQ) is intended to provide each flow with its own queue. The advantage

of such a mechanism is that it protects responsive TCP flows from the impact of non-

responsive flows such as Constant Bit Rate (CBR) multimedia traffic and also protects

the thin streams e.g., interactive multimedia in presence of bulk TCP traffic (Khademi

et al., 2013).

71

Hashing
mechanism

DRR
Mechanism

Hash bucket

Hash bucket

Hash bucket

Hash bucket

Figure 5.1: Flow Queue mechanism

Ideally, each flow is intended to have a separate queue. However, in practice, a hashing

based scheme is used where flows are hashed into buckets. The Jenkin’s hash function

(Yamaguchi and Nishi, 2013) is used to calculate the hash value of a flow and hashing is

dependent on 5-tuples: source IP address, destination IP addresses, source port number,

destination port number and protocol number (RFC 8290).

Deficit Round Robin (DRR) (Shreedhar and Varghese, 1996) is a popular packet

scheduling mechanism used for flow queuing. Each bucket is assigned a certain num-

ber of ‘byte credits’. When a packet is dequeued from a bucket, the byte credits reduces

by the packet size. This process is repeated until the byte credits reach zero, after which

byte credits for the bucket is reset and the dequeue process is stopped for that bucket.

5.2 FQ-PIE

The pre-requisite to design and implement FQ-Minstrel PIE is to evaluate the performance

of FQ-PIE. However, a model to evaluate FQ-PIE is missing in network simulators and

the Linux kernel. Hence, this work initially focused on implementing FQ-PIE in the Linux

kernel.

5.2.1 Design

FQ-PIE is implemented as a queue discipline (qdisc) in the Linux kernel. A qdisc defines

how a packet has to be enqueued and dequeued from the buffers. The qdisc structure

contains a queue along with references to the queue discipline methods. Our implemen-

tation is motivated by the design of the FQ-CoDel mechanism in the Linux kernel. Linux

v5.1-rc1 has been used for implementing FQ-PIE.

72

5.2.2 Implementation

A flow is implemented by the fq_pie_flow struct as shown in Figure 5.2. The imple-

mentation uses the Jenkins hash function as the hashing mechanism, which is available

in the Linux kernel. By default, 1024 hash buckets are created. This can be modified by

changing the flows variable through the tc command of the iproute2 package.

Unlike plain DRR, FQ-PIE implements two sets of flows known as new_flows and

old_flows. This is done so that new flows get priority over existing flows. When an

empty bucket is enqueued with a packet, it is added to the end of new_flows list and

given a QUANTUM set of credits. When a bucket is chosen for dequeue, packets are dequeued

from the head of the bucket. The value of credits for the particular bucket is decreased

by the size of the packet which is being dequeued. This process is continued until the

credits for the bucket becomes zero or negative. After the credits are exhausted by the

DRR mechanism, the dequeue mechanism ends for that bucket and it is added to the

end of old_flows list. When a flow is exhausted of all it’s packets, it is removed from

the old_flows list. To protect against overload of packets, there is a configurable limit

(LIMIT) to the total number of packets that can be enqueued across all flows.

The list_head flowchain enables the creation of a list of flows. This is needed for the

DRR scheduling of the flows. When a bucket is exhausted of all its credits, that bucket is

removed from the head of the flowchain and appended to the end of the flowchain. The

qdisc stores two list_head data members which hold the list of flows for old_flows and

new_flows. The list_head flowchain can be attached to either of these structures.

This scheme of using new_flows list and old_flows list along with DRR is based on

the implementation of FQ-CoDel in the Linux kernel1.

A Enqueue

The PIE and hence, FQ-PIE mechanisms are proactive during the enqueue phase. This

function decides whether a packet must be dropped or enqueued. In FQ-PIE, the mech-

anism has an additional responsibility of classifying incoming packets into appropriate

buckets. The classification is done by fq_pie_classify() as shown in line 2 of Algo-

rithm 7 which uses the Jenkins Hash function.

In each bucket, the PIE mechanism is run independently. If the selected bucket is not

in the list of old flows or new flows, that bucket is added to the end of list of new flows
1https://github.com/torvalds/linux/blob/master/net/sched/sch_fq_codel.c

73

fq_pie_flow
*head: struct sk_buff

*tail: struct sk_buff

flowchain: struct list_head

deficit: int

backlog: u32

vars: struct pie_vars

stats: struct pie_stats

fq_pie_flow
*head: struct sk_buff

*tail: struct sk_buff

flowchain: struct list_head

deficit: int

backlog: u32

vars: struct pie_vars

stats: struct pie_stats

Figure 5.2: List of FQ-PIE flows

Algorithm 7: Enqueue packet algorithm
1: procedure Enqueue()
2: idx fq_pie_classify()

if total_packets > LIMIT then
Drop packet

3: drop drop_early(flows[idx])
if drop = 0 then
if empty(flows[idx]) then

new_flows_add(flows[idx])
4: flow_queue_add(flows[idx], skb)
5: end procedure

and is assigned a certain number of byte credits.

B Dequeue

During the dequeue process, as shown in Algorithm 8, the two round robin lists, new_flows

and old_flows are accessed in a multilevel queue manner. The DRR scheme as mentioned

in Section 5.1 is used. The default initial byte credit value is 1 MTU (Maximum Trans-

mission Unit). If the new_flows are not empty, a packet from the head of new_flows is

dequeued. A number of credits equal to the size of the dequeued packet is subtracted

from the total credits of that flow. If the selected flow is empty or has exhausted its byte

credits, it is appended to the end of old_flows. If the new_flows are empty, the first flow

in old_flows is accessed. In the case where the flow exhausts its byte credits, that flow’s

credits are reinitialized with the default value.

74

Algorithm 8: Dequeue packet algorithm
1: procedure Dequeue()
2: sel_flow head(new_flows)

if empty(sel_flow) then
3: sel_flow head(old_flows)

if empty(sel_flow) then
4: return NULL

else
5: deficit credits(sel_flow)

if deficit < 0 then
6: add_credits(sel_flow)
7: add_to_tail(old_flows, sel_flow)

8: skb head(sel_flow) if skb = NULL then
if sel_flow in new_flows then

9: add_to_tail(old_flows, sel_flow)
else

10: remove_flow(old_flows, sel_flow)

11: end procedure

C Timer

In PIE, the timer function is used to call the calculate_probability() function at

regular intervals. In FQ-PIE, it has an additional responsibility of performing the same

action for all the queues. The Linux kernel defines a structure called timer_list, which

can be made to call a function after a selected number of ‘jiffies’ (a unit of time). It is

necessary to lock the qdisc structure when the timer’s function is called. This is required

because the callback function invoked by the timer object is issued as an asynchronous

software interrupt and hence, there is a necessity for atomicity and the whole qdisc is

locked from any modification2. The locking is done by a spinlock. Every qdisc has its

own spinlock_t variable, which is used to lock the qdisc structure.

D Implementation challenges

One of the major implementation challenges faced was to implement packet timestamping

approach in PIE for calculating the queuing delay. Although this is one of the optional

approaches suggested in RFC 8033, details of incorporating this approach in PIE are

missing. The problem is that timestamping approach calculates queuing delay at the

dequeue time whereas PIE mechanism runs at the enqueue time. Moreover, timestamping

approach provides per packet queuing delay whereas the drop probability (which needs

2https://www.kernel.org/doc/htmldocs/kernel-locking/locks.html

75

queuing delay information) is calculated once in 16 ms (default value of tupdate in Linux).

Hence, the per packet queuing delay might not necessarily represent the exact state of

the network during the calculation of drop probability. We noticed that the FreeBSD

implementation of PIE did implement the timestamp based queuing delay calculation

approach. We have used the FreeBSD code as a reference to implement timestamp based

approach in FQ-PIE for Linux.

5.2.3 Evaluation

A Experimental Setup

This setup consider three real-time scenarios using Flent (Høiland-Jørgensen, 2015) to

compare FQ-PIE with PIE and FQ-CoDel. The default parameter values of the mecha-

nisms are considered. Flent’s TCP upload test (tcp_nup - where n represents the number

of TCP flows) is used to evaluate the performance. The tests are carried out with multiple

TCP CUBIC (Ha et al., 2008) flows and a single on-off UDP flow to check the existence of

a fair share between responsive and unresponsive flows. UDP flow is enabled and disabled

every 50 seconds starting at the 25th second (i.e UDP traffic starts at the 25th second,

stops at the 75th second, is reinitialized at the 125th second and so on). The complete

simulation lasts for 300 seconds. Subsequently, in another test (cubic_bbr), we consider

two flows each of CUBIC and BBR (Cardwell et al., 2016). This test enables us to deter-

mine the fairness of an AQM in the presence of different TCP congestion control variants.

Finally, to test the performance of thin, latency sensitive applications, we run a VoIP

G.711 standard stream in the presence of 4 bidirectional TCP CUBIC flows. VoIP G.711

uses 64 Kbit/s UDP streams. Flent allows us to emulate the VoIP traffic and collect the

necessary statistics such as queuing delay, jitter and packet loss. These tests are run on

the testbed shown in Figure 5.3 where all machines run Ubuntu 16.04 LTS with Linux

kernel v5.1-rc1.

100Mbps 1000Mbps1000Mbps
R1 R2

Source Sink

AQM enabled router AQM enabled router

Figure 5.3: Testbed topology

The source node uses netperf to generate TCP traffic along with an iperf (Tirumala

76

et al., 2006) client to generate UDP traffic in all the UDP mix traffic tests. The link

between the source and its adjacent router (R1) has a bandwidth of 1000 Mbps and a

latency of 5 ms. The two routers share the bottleneck link of 100 Mbps, delay of 32.5 ms

and have AQM mechanisms running on them. The link between the second router (R2)

and the sink has a 5 ms latency and a 1000 Mbps bandwidth.

B Results and Discussions

The three metrics used for evaluation are TCP throughput, RTT and fairness. TCP

throughput helps us to analyse the extent of fair sharing amongst multiple flows, whereas

RTT gives us an insight into the impact of queuing delay in router buffers. Our evaluation

consists of two scenarios which evaluate fairness between responsive and unresponsive

flows, and among responsive flows.

 0

 20

 40

 60

 80

 100

 120

 25 125 225

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

Flow 01

(a) PIE

 0

 20

 40

 60

 80

 100

 120

 25 125 225

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

Flow 01

(b) FQ-PIE

Figure 5.4: TCP Throughput for tcp_1up test

C Responsive vs Unresponsive Flows

Initially, for the tcp_1up test, PIE and FQ-PIE results are obtained for the verification of

flow queuing. Figure 5.4 represents the TCP throughput and and Figure 5.5) represents

the RTT. Figure 5.4 (b) ensures the fairness for the TCP flow compared to Figure 5.4

(a) when UDP traffic is enabled. FQ-PIE achieves the similar TCP throughput whereas,

Figure 5.5 shows the lowering density pattern for the RTT values from the PIE mechanism

to the FQ-PIE mechanism.

We confirm this by the results obtained from the tcp_4up test. PIE and FQ-PIE

exhibit similar behaviour in this scenario (Figure 5.6 and Figure 5.7).

77

 100

 150

 200

 250

 300

 25 125 225

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01

(a) PIE

 100

 150

 200

 250

 300

 25 125 225

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01

(b) FQ-PIE

Figure 5.5: TCP Round Trip Time tcp_1up test

 0

 10

 20

 30

 40

 50

 60

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(a) PIE

 0

 10

 20

 30

 40

 50

 60

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(b) FQ-PIE

Figure 5.6: TCP Throughput for tcp_4up test

For the additional evaluation of TCP flow protection in the presence of unresponsive

traffic, we observe the effect of an unresponsive, heavy flow on 12 TCP flows. This

scenario gives a good estimate of fairness among the multiple TCP flows and the fairness

with respect to the unresponsive traffic. Figure 5.8 and Figure 5.9 compare PIE, FQ-PIE

and FQ-CoDel in terms of TCP throughput and RTT. As shown in Figure 5.8 (a), there

is a sharp decline in TCP throughput with PIE each time the UDP flow starts. When

the UDP flow stops, TCP throughput is restored. There is also a momentary spike in

RTT each time the UDP flow starts. This observation can be attributed to the fact that

unlike TCP, the UDP sender is congestion-agnostic and keeps sending packets irrespective

of the network congestion state. This decreases the bandwidth available to TCP flows.

Additionally, we observe that there is an uneven share of bandwidth among existing TCP

flows due to lack of flow isolation in PIE.

78

 100

 150

 200

 250

 300

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(a) PIE

 100

 150

 200

 250

 300

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(b) FQ-PIE

Figure 5.7: TCP Round Trip Time tcp_4up test

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25 75 125 175 225 275

T
h
ro

u
g
h
p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(a) PIE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25 75 125 175 225 275

T
h
ro

u
g
h
p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(b) FQ-PIE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25 75 125 175 225 275

T
h
ro

u
g
h
p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(c) FQ-CoDel

Figure 5.8: TCP Throughput for tcp_12up test

As observed in Figure 5.8 (b), there is a momentary decline in TCP throughput with

FQ-PIE each time the UDP flow starts. However, unlike PIE, it recovers quickly and

maintains a stable TCP throughput. The momentary drop in TCP bandwidth is due to

the saturation of the qdisc by the UDP flow. However, due to the isolation of flows in

FQ-PIE with the response of PIE to the UDP traffic, the qdisc de-saturates. Although

there is a spike in RTT each time the UDP flow starts, it is more controlled than that of

PIE. Figure 5.8 (b) and Table 5.1 shows that FQ-PIE ensures TCP flows get their fair

share of bandwidth. This is due to the isolation of flows, solving the unfairness problem.

FQ-CoDel is as fair as FQ-PIE in terms of throughput as observed in Table 5.1.

However, the momentary drop in throughput when a UDP flow starts, as observed in

FQ-PIE (Figure 5.8 (b)) does not occur in FQ-CoDel. This is because FQ-CoDel follows

an aggressive dropping strategy when the qdisc is completely saturated where up to 64

packets may be dropped from the largest flow as mentioned in Section 4.1 of RFC 8290.

This allows for TCP packets to be enqueued, preventing the drop in TCP throughput.

79

 100

 125

 150

 175

 200

 225

 250

 25 75 125 175 225 275

R
o

u
n
d

 T
ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(a) PIE

 100

 125

 150

 175

 200

 225

 250

 25 75 125 175 225 275

R
o

u
n
d

 T
ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(b) FQ-PIE

 100

 125

 150

 175

 200

 225

 250

 25 75 125 175 225 275

R
o

u
n
d

 T
ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(c) FQ-CoDel

Figure 5.9: TCP Round Trip Time for tcp_12up test

 0

 10

 20

 30

 40

 50

 60

 70

 25 75 125 175 225 275

T
h
ro

u
g
h

p
u

t
(M

b
p

s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(a) PIE

 0

 10

 20

 30

 40

 50

 60

 70

 25 75 125 175 225 275

T
h
ro

u
g
h

p
u

t
(M

b
p

s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(b) FQ-PIE

 0

 10

 20

 30

 40

 50

 60

 70

 25 75 125 175 225 275

T
h
ro

u
g
h

p
u

t
(M

b
p

s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(c) FQ-CoDel

Figure 5.10: TCP Throughput for cubic_bbr test

D Fairness among Responsive Flows

CUBIC and BBR are two TCP congestion control variants being studied actively. CU-

BIC TCP is the default congestion control mechanism used in the Linux kernel and is

an aggressive, loss based congestion control variant. BBR is a new congestion control

variant proposed by Google. BBR provides congestion control by building a model of the

network path and attempts to attain an ideal operating point with maximum bandwidth

utilization. We evaluate the fairness among two CUBIC TCP and two TCP BBR flows

by using PIE, FQ-PIE and FQ-CoDel. When PIE is used, we observe that BBR flows

grab a greater share of bandwidth than CUBIC flows. This behaviour of TCP BBR can

 100

 150

 200

 250

 300

 350

 25 75 125 175 225 275

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(a) PIE

 100

 150

 200

 250

 300

 350

 25 75 125 175 225 275

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(b) FQ-PIE

 100

 150

 200

 250

 300

 350

 25 75 125 175 225 275

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(c) FQ-CoDel

Figure 5.11: TCP Round Trip Time for cubic_bbr test

80

Table 5.1: Calculation of Jain’s Fairness Index

Test

conducted

AQM used

PIE FQ-PIE FQ-CoDel

tcp_1up 0.94 0.98 0.96

tcp_4up 0.96 0.99 0.99

tcp_8up 0.74 0.99 0.99

tcp_12up 0.62 0.96 0.97

cubic_bbr 0.56 0.99 0.93

be attributed to its aggressive probing strategy which leads to higher throughput (Figure

5.10 (a)). As a consequence, CUBIC flows decrease their sending rates, thus failing to

achieve their fair share of utilization. These observations are inline with those mentioned

in (Scholz et al., 2018). When FQ-PIE is used, the problem of unfairness between BBR

and CUBIC flows is resolved (Figure 5.10 (b)); both TCP flavors achieve a fair share of

bandwidth and similar RTT.

We note that BBR flows grab more bandwidth than CUBIC flows even when FQ-

CoDel is used (ref. Figure 5.10 (c) and Table 5.1), whereas this is not the case with

FQ-PIE. The main reason is that CoDel uses a linear-over-time packet drop schedule,

whereas PIE uses a probability-based packet drop strategy. CoDel’s packet drop policy is

gentle, due to which the aggressive behaviour of BBR has more backlog. Consequently,

BBR flows buffer more packets (and hence, occupy more bandwidth) than CUBIC flows

which is confirmed by Figure 5.11 wherein it is observed that BBR flows have more RTT

than CUBIC flows. Nevertheless, we believe that deeper investigations are required to

understand the interactions of TCP BBR with modern queue management mechanisms

such as FQ-CoDel and FQ-PIE.

E Protection for latency sensitive traffic

On Wide Area Networks (WANs), many real-time applications, such as DNS traffic, net-

work management applications based on Simple Network Management Protocol (SNMP),

audio and video transmissions share the bandwidth with non real-time applications. Real-

time applications have unacceptable performances if queuing delays are incurred, and are

referred to as latency sensitive traffic. The performance of these applications is measured

81

by Quality of Experience (QoE) which indicates how well the service is performing for the

end user. When latency sensitive traffic and latency tolerant traffic share a bottleneck

link, congestion in the link induces delay. This affects the Quality of Service (QoS), and

subsequently the QoE of latency sensitive traffic. Hence, there is a need for providing

protection for latency sensitive traffic when it co-exists with thick latency tolerant traffic.

VoIP is the transmission of Voice over Internet Protocol. It uses UDP as its underlying

transport layer protocol. We evaluate the performance of FQ-PIE on protection of VoIP

traffic from bulk TCP traffic. The test consists of 4 bi-directional TCP streams which run

for 100 seconds. A single VoIP stream is tested for its one way delay, jitter and packet

losses when it shares the same bottleneck link with the TCP streams.

 0

 50

 100

 150

 20 40 60 80

Q
u

e
u

in
g

 D
e

la
y

(m
s)

Time (s)

VoIP traffic

(a) PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Q
u

e
u

in
g

 D
e

la
y

(m
s)

Time (s)

VoIP traffic

(b) FQ-PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Q
u

e
u

in
g

 D
e

la
y

(m
s)

Time (s)

VoIP traffic

(c) FQ-CoDel

Figure 5.12: Queuing Delay for VoIP test

 0

 50

 100

 150

 20 40 60 80

Ji
tt

e
r

(m
s)

Time (s)

VoIP traffic

(a) PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Ji
tt

e
r

(m
s)

Time (s)

VoIP traffic

(b) FQ-PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Ji
tt

e
r

(m
s)

Time (s)

VoIP traffic

(c) FQ-CoDel

Figure 5.13: Jitter for VoIP test

Note that the y-axis scale used for the queuing delay and jitter plots are different for PIE
compared to the FQ* plots due to a varied difference in performance.

We observe that the VoIP stream performs well with low queuing delay, jitter and

packet drops when FQ-PIE or FQ-CoDel is deployed (See Figure 5.12 (b) and (c), and

(Figure 5.13 (b) and (c)). The flow protection mechanism in these AQM’s ensures that the

VoIP stream receives its fair share of bandwidth even in presence of thick TCP streams.

82

As the VoIP stream is thin, it does not experience a large queuing delay because the

bandwidth of the stream is lesser than its obtained share of bandwidth from the AQM

mechanism. Low queuing delay reduces the number of packet drops as observed in Table

5.2. This ensures that QoE is not degraded due to coexisting thick TCP traffic.

Table 5.2: Packet loss for VoIP flows (%)

AQM mechanism Packet loss(%)

PIE 0.62%

FQ-PIE 0.00%

FQ-CoDel 0.00%

When PIE is used, the queuing delay and jitter is significantly higher compared to FQ-

PIE and FQ-CoDel (Figure 5.12 (a)) and (Figure 5.13 (a)). Due to lack of flow protection

in PIE, the queuing delay of the VoIP stream is dependent on the coexisting TCP flows.

Additionally, as PIE does not differentiate between various flows during dropping stage,

it is possible that VoIP packets are dropped due to the action of PIE, leading to packet

losses as observed in Table 5.2. This severely impacts QoE for the end user.

Deriving motivation from the results obtained from FQ-PIE this work extends Minstrel

PIE to support flow queuing.

5.3 FQ-Minstrel PIE

There are no significant changes in the design and implementation of FQ-Minstrel PIE

because the existing flow queuing features available in the kernel are leveraged to work

with Minstrel PIE.

FQ-Minstrel PIE is evaluated in two different topologies i) the topology discussed in

the Section 4.3.3, and ii) the topology discussed in the Section 5.2.3.

5.3.1 Evaluation with Section 4.3.3 topology

Both PIE and Minstrel PIE being AQM mechanisms do not provide flow protection. As

discussed earlier, combining these mechanisms with flow queuing is a promising approach.

We provide some preliminary insights into the benefits offered by combining Minstrel

PIE with flow queuing and comparing its performance with FQ-PIE by using the same

83

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

FQ-PIE
FQ-MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

FQ-PIE
FQ-MinstrelPIE

(b) TCP Throughput

Figure 5.14: Mix TCP and UDP Traffic with tcp_1up

Table 5.3: Fairness in tcp_1up test

Flow Number
Throughput (in Mbps)

Fairness
TCP 1 UDP 1

FQ-PIE 4.70 4.80 0.99

FQ-Minstrel PIE 4.61 4.90 0.99

two configurations described in Section 4.3.3. The bottleneck bandwidth used for these

experiments is 10Mbps as discussed in Section 4.3.3. Figure 5.14 (a) and (b) presents

the queue delay averaged for active queues and TCP throughput for FQ-PIE and FQ-

Minstrel PIE, respectively for 1-TCP-1-UDP configuration. Figure 5.14 (a) shows that

FQ-Minstrel PIE has lesser queue delay averaged for active queues when UDP flow is on

between 25 seconds to 75 seconds and Figure 5.14 (b) shows that using flow queuing offers

significant advantage in providing fair share to the TCP flow. Table 5.3 confirms that

TCP flow achieves its fair share of throughput.

Table 5.4: Fairness in tcp_5up test

Flow

Number

Throughput (in Mbps)
Fairness

TCP 1 TCP 2 TCP 3 TCP 4 TCP 5 UDP 1

FQ-PIE 1.58 1.60 1.58 1.60 1.60 1.62 0.99

FQ-Minstrel

PIE
1.60 1.59 1.60 1.58 1.57 1.64 0.99

Figure 5.15(a) and 5.15(b) presents the queue delay averaged for active queues and

84

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

Q
u
e
u
e
 D

e
la

y
(m

s)

Time (s)

FQ-PIE
FQ-MinstrelPIE

(a) Queue Delay

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
C

P
 T

h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

FQ-PIE
FQ-MinstrelPIE

(b) TCP Throughput

Figure 5.15: Mix TCP and UDP Traffic with tcp_5up

TCP throughput for FQ-PIE and FQ-Minstrel PIE, respectively for 5-TCP-1-UDP con-

figuration. Since the number of TCP flows are more in this configuration, the aggregate

TCP throughput achieved by PIE and Minstrel PIE is around 8 Mbps when UDP flow is

on. Table 5.4 confirms that TCP flows get a fair share with flow queuing.

5.3.2 Evaluation with Section 5.2.3 topology

This subsection highlights the performance of FQ-Minstrel PIE in the same topology that

are described in 5.2.3 with compare to FQ-PIE. The results for FQ-PIE are repeated from

the subsection 5.2.3 for the performance comparison.

A Responsive vs Unresponsive Flows:

 0

 20

 40

 60

 80

 100

 120

 25 125 225

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

Flow 01

(a) FQ-PIE

 0

 20

 40

 60

 80

 100

 120

 25

T
h
ro

u
g
h
p
u
t
(M

b
p
s)

Time (s)

Flow 01

(b) FQ-Minstrel PIE

Figure 5.16: TCP Throughput for tcp_1up test with FQ-Minstrel PIE

85

 100

 150

 200

 250

 300

 25 125 225

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01

(a) FQ-PIE

 100

 150

 200

 250

 300

 25

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Time (s)

Flow 01

(b) FQ-Minstrel PIE

Figure 5.17: TCP Round Trip Time tcp_1up test with FQ-Minstrel PIE

 0

 10

 20

 30

 40

 50

 60

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(a) FQ-PIE

 0

 10

 20

 30

 40

 50

 60

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(b) FQ-Minstrel PIE

Figure 5.18: TCP Throughput for tcp_4up test with FQ-Minstrel PIE

Initially, for the tcp_1up FQ-PIE and FQ-Minstrel PIE results are obtained for the

verification of flow queuing in FQ-Minstrel PIE. Figure 5.16 represents the TCP through-

put and Figure 5.17 represents RTT. Figure 5.16 (a) and Figure 5.16 (b) ensures the

fairness for the TCP flow compared to PIE mechanism in Figure 5.4 (a) when UDP

traffic is enabled. FQ-PIE and FQ-Minstrel PIE achieves the similar TCP throughput

whereas, FQ-Minstrel PIE in Figure 5.17 (b) shows the lowering density pattern for the

RTT values from the FQ-PIE mechanism in Figure 5.17 (a).

Although FQ-Minstrel PIE ((Figure 5.18 (b)) maintains the similar TCP throughput

compared to FQ-PIE ((Figure 5.18 (a)) it controls the spikes in RTT slightly better as

compared to FQ-PIE (Figure 5.19 (a)).

Figure 5.20 represents the TCP throughput and Figure 5.21 represents RTT for

tcp_12up test. Figure 5.20 depicts that TCP throughput is more consistent with FQ-

86

 100

 150

 200

 250

 300

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(a) FQ-PIE

 100

 150

 200

 250

 300

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02

Flow 03
Flow 04

(b) FQ-Minstrel PIE

Figure 5.19: TCP Round Trip Time tcp_4up test with FQ-Minstrel PIE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(a) FQ-PIE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(b) FQ-Minstrel PIE

Figure 5.20: TCP Throughput for tcp_12up test with FQ-Minstrel PIE

Minstrel PIE than FQ-PIE, and FQ-Minstrel PIE has better control on RTT which is

depicted in Figure 5.21. This inline with our goals to achieve proper trade-off between

link utilization and RTT. Table 5.5 confirms that FQ-Minstrel PIE does not affect the

fairness of FQ-PIE for the responsive flows.

B Fairness among Responsive Flows:

Figure 5.22 represents the TCP throughput and Figure 5.23 represents RTT for cubic_bbr

test. Figure 5.22 and Figure 5.23. The oscillations in throughput are minimal with

CUBIC since, it adopts a multiplicative decrease of 30% whereas BBR does not follow

this approach. BBR adjusts its pacing rate depending on an estimate of BDP. Hence,

the decrease factor is not fixed in BBR, which eventually causes more oscillations in the

throughput.

87

 100

 125

 150

 175

 200

 225

 250

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(a) FQ-PIE

 100

 125

 150

 175

 200

 225

 250

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

Flow 01
Flow 02
Flow 03
Flow 04

Flow 05
Flow 06
Flow 07
Flow 08

Flow 09
Flow 10
Flow 11
Flow 12

(b) FQ-Minstrel PIE

Figure 5.21: TCP Round Trip Time for tcp_12up test with FQ-Minstrel PIE

 0

 10

 20

 30

 40

 50

 60

 70

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(a) FQ-PIE

 0

 10

 20

 30

 40

 50

 60

 70

 25 75 125 175 225 275

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(b) FQ-Minstrel PIE

Figure 5.22: TCP Throughput for cubic_bbr test with FQ-Minstrel PIE

 100

 150

 200

 250

 300

 350

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(a) FQ-PIE

 100

 150

 200

 250

 300

 350

 25 75 125 175 225 275

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
s)

Time (s)

 BBR 01
 BBR 02

 CUBIC 01
 CUBIC 02

(b) FQ-Minstrel PIE

Figure 5.23: TCP Round Trip Time for cubic_bbr test with FQ-Minstrel PIE

88

Table 5.5: Calculation of Jain’s Fairness Index with FQ-Minstrel PIE

Test

conducted

AQM used

FQ-PIE FQ-Minstrel
PIE

tcp_1up 0.98 0.97

tcp_4up 0.99 0.99

tcp_8up 0.99 0.99

tcp_12up 0.96 0.96

cubic_bbr 0.99 0.99

 0

 5

 10

 15

 20

 25

 20 40 60 80

Q
u
e
u
in

g
 D

e
la

y
(m

s)

Time (s)

VoIP traffic

(a) FQ-PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Q
u
e
u
in

g
 D

e
la

y
(m

s)

Time (s)

VoIP traffic

(b) FQ-Minstrel PIE

Figure 5.24: Queuing Delay for VoIP test with FQ-Minstrel PIE

C Protection for latency sensitive traffic

We already noted the performance of FQ-PIE against latency sensitive traffic and it is

shown that FQ-PIE performs better against the same. Therefore, this subsection analyzes

whether the aggressiveness of Minstrel PIE affects the latency sensitive traffic or not with

compare to FQ-PIE.

Figure 5.24 (a) and (b) shows the queuing delay for FQ-PIE and FQ-Minstrel PIE,

respectively. FQ-PIE in Figure 5.24 (a) shows more spikes queuing delay than FQ-Minstrel

PIE in Figure 5.24 (b). This is because FQ-Minstrel PIE always guarantees lesser queue

delay for all kind of traffic than FQ-PIE due to its adaptive nature. Hence, we can see

that optimized queue delay for FQ-Minstrel PIE than FQ-PIE. On the other hand, FQ-

Minstrel PIE does not guaranty about the variations in the RTT which leads to follow

89

 0

 5

 10

 15

 20

 25

 20 40 60 80

Ji
tt
e
r

(m
s)

Time (s)

VoIP traffic

(a) FQ-PIE

 0

 5

 10

 15

 20

 25

 20 40 60 80

Ji
tt
e
r

(m
s)

Time (s)

VoIP traffic

(b) FQ-Minstrel PIE

Figure 5.25: Jitter for VoIP test with FQ-Minstrel PIE

the same jitter as of FQ-PIE which can be observed in Figure 5.25 (a) and (b). On the

same note Table 5.6 shows the packet loss 0% for FQ-PIE and Fq-Minstrel.

Table 5.6: Packet loss for VoIP flows (%) with FQ-Minstrel PIE

AQM mechanism Packet loss(%)

FQ-PIE 0.00%

FQ-Minstrel PIE 0.00%

Figure 5.25 (a) and (b) presents the jitter results for FQ-PIE and FQ-Minstrel PIE,

respectively. Both AQM mechanisms performing similarly while controlling the jitter.

Subsequently, Table 5.6 shows that FQ-PIE and FQ-Minstrel PIE behaving similarly and

do not disturb the latency sensitive traffic. Hence, FQ-Minstrel PIE also helps to optimize

the performance of FQ-PIE as similar to Minstrel PIE do it for PIE.

5.4 Inferences

This chapter discusses the design and implementation of FQ-PIE and FQ-Minstrel PIE

in the Linux kernel. First, the performance of FQ-PIE is evaluated against PIE and FQ-

CoDel in a real testbed for the verification of flow queuing and later, the performance

of FQ-Minstrel PIE is evaluated against FQ-PIE. The results indicate that FQ-PIE and

FQ-Minstrel PIE both resolve the issue of fairness in PIE and Minstrel PIE, respectively

when unresponsive flows share the bottleneck link with responsive flows. FQ-PIE performs

better than FQ-CoDel when BBR flows coexist with CUBIC flows. We also demonstrate

90

that FQ-PIE performs better than PIE in protecting thin, latency-sensitive traffic from

coexisting thick TCP flows. Whenever FQ-Minstrel PIE gets a chance to improve the

trade-off between TCP throughput and queue delay than FQ-PIE, it does so in all the tests

(tcp_1up, tcp_5up, tcp_12up, cubic_bbr and VoIP tests). FQ-PIE implementation has

been made publicly available3 and it has been submitted for review to Linux developers.

FQ-PIE model is already merged into the mainline of the Linux kernel, and the addition

of FQ-PIE module has been listed among the best features of Linux 5.6 by Phoronix.

3https://github.com/gautamramk/FQ-PIE-for-Linux-Kernel

91

92

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work proposes three algorithms called Modified CoDel, Minstrel PIE and FQ-Minstrel

PIE. These algorithms are designed to optimize the trade-off between bottleneck link uti-

lization and queue delay when unresponsive flows coexist with responsive flows. It was

observed that the CoDel algorithm has limited queue control when the traffic is unre-

sponsive. To overcome this limitation, we proposed a new variant called Modified CoDel

with minor modifications to the control law of CoDel. Initially, from the simulation stud-

ies, we observed that Modified CoDel has better queue control than CoDel in terms of

handling the unresponsive traffic. However, on deeper investigations in real test-beds, we

observed that CoDel has limitations while operating in low bandwidth scenarios and we

found that our observations were inline with the bufferbloat community. Depending on

this analysis, it was understood that Modified CoDel will have limited scalability due to

CoDel’s inherent limitation, and hence the thesis focus shifted to the PIE.

PIE is known to have better queue control compared to CoDel algorithm, particularly

when the unresponsive traffic coexists. We noted that the PIE algorithm has a parameter

called average queue rate which could be leveraged to make the algorithm to quickly adjust

its packet drop probability depending on the presence and absence of unresponsive traffic.

Minstrel PIE described in this thesis is an outcome of efforts in this direction. The results

obtained from simulation studies and real-time experiments validate the effectiveness and

robustness of Minstrel PIE against unresponsive traffic. Minstrel PIE can be incrementally

deployed in a real network setup as it is a minor modification of PIE, and does not require

the user to configure any parameter explicitly.

93

Furthermore, it is known that a single queue AQM algorithm like PIE or Minstrel PIE

cannot provide flow isolation between responsive and unresponsive flows, which in turn

results in unfair bandwidth allocation. To overcome this problem, FQ-Minstrel PIE is

designed to provide fairness against unresponsive flows. FQ-Minstrel PIE ensures a fair

allocation of resources to responsive flows when they coexist with unresponsive flows. We

recommend that FQ-Minstrel PIE is a suitable and effective algorithm to be investigated

further for real-time deployment.

Besides, this thesis makes three additional contributions; a fluid model is proposed for

CoDel, PIE implementation in the Linux kernel is aligned to RFC 8033 and a new module

for FQ-PIE has been implemented in the Linux kernel. The proposed fluid model gives

better insights into CoDel’s control law and the contributions related to PIE and FQ-PIE

in the Linux kernel would assist the research community to deploy these algorithms in

the real environment and perform deeper investigations into its advantages. Both these

contributions are merged into the mainline of the Linux kernel, and the addition of FQ-

PIE module has been listed among the best features of Linux 5.6 by Phoronix.

6.2 Limitations and Future work

Although there are two approaches to calculate queue delay in PIE, the limitation of Min-

strel PIE is that it works only with Little’s law. This is because Minstrel PIE depends

on average dequeue rate (avg_dq_rate). One possible way to resolve this problem is to

extend the design of Minstrel PIE to extract the current dequeue rate from the times-

tamping approach. This would require deeper investigations and we intend to continue

our work in this direction.

The additional avenues which can be explored to expand the work in this thesis are

listed below:

• An important aspect to consider during the deployment of the AQM algorithms into

operational networks is the impact of multiple bottleneck links on the performance

of the network and the QoS perceived by the user. This aspect is important from a

modelling perspective and has not received due attention in the literature. Although

some work exists on analysing Compound TCP (deployed in Microsoft Windows

OS) with drop tail queues in an environment with multiple bottlenecks, much more

remains unexplored. In fact, there is an opportunity to analyse the proposed queue

94

management policies in this thesis in such a setting in the future.

• Moreover, it would be interesting to study the impact of different TCP variants

on the queue management algorithms proposed in this thesis, e.g, Compound TCP

(which is a delay and a loss based protocol) and Reno (a classical, but a quite

effective protocol that uses loss as the primary indicator of congestion). In addition

to the above, this thesis has covered PIE, which is an extension of the PI algorithm,

so this work can be extended to perform a comparative study in terms of stability

and performance analysis of PIE and Minstrel PIE, with other TCP variants like

Compound TCP or Reno TCP, or other popular variants of TCP.

• Another approach would be to approximate the buffer size with an infinite buffer

system for which queueing models such as M/M/1, M/G/1 etc., are available and

some closed form expressions for queuing delay etc. are available. The results

obtained from these delay models can be then compared to the results presented

in this thesis. Additionally, there is the scope to perform statistical analysis of

the queue management policies proposed in this work with different buffer sizing

regimes. Chapter 4, for example, makes a case for the small buffer regime with

drop tail queues. It will be interesting to observe the results obtained from these

analytical studies.

• Nowadays, the Internet is witnessing the problem of starvation for time-sensitive

applications. One of the goals of this thesis is to improve the overall QoS that the

application perceives. Thus, one of the potential approaches to extend the work

done in this thesis is to provide differentiated services depending on the application

requirements. This needs an intelligent traffic segregation interface at the applica-

tion layer with the machine learning (artificial intelligence) approach or a database

which comprises all the types of applications with their protocol identifiers. In-

ternet of Things (IoT) applications have tight requirements in terms of QoS. By

considering the importance of IoT traffic, it would be interesting to evaluate the

performance of the algorithms proposed in this thesis in IoT environments.

95

96

Bibliography

Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,

tenth gpo printing edition.

Al-Saadi, R. and Armitage, G. (2016). Dummynet AQM v0. 2–CoDel, FQ-CoDel, PIE

and FQ-PIE for FreeBSD’s ipfw/dummynet framework. Centre for Advanced Internet

Architectures, Swinburne University of Technology, Melbourne, Australia, Tech. Rep.

A, 160418:18.

Appenzeller, G., Keslassy, I., and McKeown, N. (2004). Sizing router buffers, volume 34.

ACM.

Athuraliya, S., Li, V., Low, S., and Yin, Q. (2001). REM: Active Queue Management. In

Teletraffic Engineering in the Internet Era, volume 4 of Teletraffic Science and Engi-

neering, pages 817–828. Elsevier.

Bergkvist, A., Burnett, D. C., Jennings, C., Narayanan, A., and Aboba, B. (2012). We-

bRTC 1.0: Real-time communication between browsers. Working draft, W3C, 91, 2012.

Boerlage, J. and Collom, R. (2016). Implementing Active Queue Management at the

home to reduce NBN speed demands. Technical Report 161107A, Centre for Advanced

Internet Architectures, Swinburne University of Technology, Melbourne, Australia.

Cai, J., Zhang, Z., and Song, X. (2010). An analysis of UDP traffic classification. In 12th

IEEE International Conference on Communication Technology (ICCT), pages 116–119.

IEEE.

Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V. (2016). BBR:

Congestion-Based Congestion Control. ACM Queue, 14, September-October:20–53.

97

Casoni, M., Grazia, C. A., Klapez, M., and Patriciello, N. (2017). How to avoid tcp

congestion without dropping packets: An effective aqm called pink. Computer Com-

munications, 103:49–60.

Chen, J., Hu, C., and Ji, Z. (2011). Self-tuning random early detection algorithm to

improve performance of network transmission. Mathematical Problems in Engineering,

2011:1–17.

Chen, W., Min, G., and Zhang, H. (2012). Statistical adapting RED in dynamic networks.

In Global Communications Conference (GLOBECOM), 2012 IEEE, pages 2560–2565.

IEEE.

De Schepper, K., Bondarenko, O., Tsang, I., and Briscoe, B. (2016). PI 2: A Linearized

AQM for both Classic and Scalable TCP. In Proceedings of the 12th International

on Conference on emerging Networking EXperiments and Technologies, pages 105–119.

ACM.

Deepak, A., Shravya, K. S., and Tahiliani, M. P. (2017). Design and Implementation of

AQM Evaluation Suite for ns-3. In Proceedings of the Workshop on ns-3, WNS3 ’17,

pages 87–94, New York, NY, USA. ACM.

Enachescu, M., Ganjali, Y., Goel, A., McKeown, N., and Roughgarden, T. (2005). Part

III: Routers with Very Small Buffers. Computer Communication Review, 35:83–90.

Feng, W. ., Kandlur, D. D., Saha, D., and Shin, K. G. (1999). A self-configuring RED

gateway. In IEEE INFOCOM ’99. Conference on Computer Communications. Proceed-

ings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies. The Future is Now (Cat. No.99CH36320), volume 3, pages 1320–1328 vol.3.

Feng, W., Shin, K. G., Kandlur, D. D., and Saha, D. (2002). The BLUE Active Queue

Management Algorithms. IEEE/ACM Transactions on Networking (ToN), 10(4):513–

528.

Feng, W.-c., Kandlur, D. D., Saha, D., and Shin, K. G. (2001). Stochastic fair blue:

A queue management algorithm for enforcing fairness. In INFOCOM 2001. Twenti-

eth Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings. IEEE, volume 3, pages 1520–1529. IEEE.

98

Floyd, S., Gummadi, R., and Shenker, S. (2001). Adaptive RED: An algorithm for

increasing the robustness of RED’s active queue management. Technical report, ICSI.

Floyd, S. and Jacobson, V. (1993). Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413.

Forbes, C., Evans, M., Hastings, N., and Peacock, B. (2011). Statistical Distributions, 4th

Edition. John Wiley & Sons, NJ, USA.

Francini, A. (2012). Periodic early detection for improved TCP performance and energy

efficiency. Computer Networks, 56(13):3076–3086.

Gettys, J. and Nichols, K. (2011). Bufferbloat: Dark buffers in the Internet. Communi-

cations of the ACM, 55(1):57–65.

Ghoreishi, S. E., Aghvami, A. H., and Saki, H. (2015). Active queue management for con-

gestion avoidance in multimedia streaming. In 2015 European Conference on Networks

and Communications (EuCNC), pages 487–491. IEEE.

Grigorik, I. (2013). High Performance Browser Networking: What every web developer

should know about networking and web performance. O’Reilly Media, Inc.

Groenewegen, D. and Kleppe, H. (2011). Detecting and quantifying bufferbloat in network

paths. Technical report, www.Bufferbloat.net.

Ha, S., Rhee, I., and Xu, L. (2008). CUBIC: A New TCP-friendly High-speed TCP

Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74.

Hassan, M. and Jain, R. (2003). High Performance TCP/IP Networking. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA.

Hayes, D., Ros, D., Andrew, L., and Floyd, S. (2007). TCP Evaluation Suite.

Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., and Kopena, J. (2008). Network

simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14):527–527.

Høiland-Jørgensen, T. (2015). Flent: The FLExible Network Tester. In The 11th Swedish

National Computer Networking Workshop (SNCNW), Karlstad, Sweden, May 28–29.

99

Høiland-Jørgensen, T., Täht, D., and Morton, J. (2018). Piece of CAKE: A Compre-

hensive Queue Management Solution for Home Gateways. In 2018 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN), pages 37–42.

Hollot, C., Liu, Y., Misra, V., and Towsley, D. (2003). Unresponsive flows and AQM

performance. In INFOCOM, volume 1, pages 85–95. IEEE.

Hollot, C. V., Misra, V., Towsley, D., and Gong, W. (2001). On designing improved

controllers for AQM routers supporting TCP flows. In INFOCOM, Twentieth Annual

Joint Conference of the IEEE Computer and Communications Societies Proceedings,

volume 3, pages 1726–1734. IEEE.

Jain, R., Chiu, D. M., and WR, H. (1998). A quantitative measure of fairness and dis-

crimination for resource allocation in shared computer systems. CoRR, cs.NI/9809099.

Jain, T., Annappa, B., and Tahiliani, M. P. (2014). Performance Evaluation of CoDel for

Active Queue Management in Wired-Cum-Wireless Networks. In Advanced Computing

& Communication Technologies (ACCT), 2014 Fourth International Conference on,

pages 381–385. IEEE.

Järvinen, I. and Kojo, M. (2014). Evaluating CoDel, PIE, and HRED AQM techniques

with load transients. In IEEE 39th Conference on Local Computer Networks (LCN),

pages 159–167. IEEE.

Javam, H. and Analoui, M. (2006). Sared: Stabilized ared. In 2006 International Con-

ference on Communication Technology, pages 1–4.

Jiang, H., Wang, Y., Lee, K., and Rhee, I. (2012). Tackling bufferbloat in 3G/4G networks.

In Proceedings of the 2012 ACM conference on Internet measurement conference, pages

329–342. ACM.

Jones, R. et al. (1996). NetPerf: a Network Performance Benchmark. Information Net-

works Division, Hewlett-Packard Company, (1996).

Kennedy, J., Armitage, G., and Thomas, J. (2017). Household bandwidth and the ‘need

for speed’: Evaluating the impact of active queue management for home internet traffic.

Australian Journal of Telecommunications and the Digital Economy, 5(2):113–130.

100

Khademi, N., Ros, D., and Welzl, M. (2013). The New AQM Kids on the Block: Much

Ado About Nothing? Research report http://urn.nb.no/URN:NBN:no-35645.

Kim, T.-H. and Lee, K.-H. (2006). Refined adaptive RED in TCP/IP networks. In 2006

SICE-ICASE International Joint Conference, pages 3722–3725. IEEE.

Kobayashi, K. (2015). Lawin: A latency-aware internet architecture for latency support on

best-effort networks. In 2015 IEEE 16th International Conference on High Performance

Switching and Routing (HPSR), pages 1–8. IEEE.

Kuhn, N., Lochin, E., and Mehani, O. (2014). Revisiting old friends: is CoDel really

achieving what RED cannot? In Proceedings of the 2014 ACM SIGCOMM workshop

on Capacity sharing workshop, pages 3–8. ACM.

Kuhn, N. and Ros, D. (2016). Improving PIE’s performance over high-delay paths. CoRR,

abs/1602.00569, 2016.

Kuhn, N., Ros, D., Bagayoko, A. B., Kulatunga, C., Fairhurst, G., and Khademi, N.

(2017). Operating ranges, tunability and performance of CoDel and PIE. Computer

Communications, 103:74–82.

Kulatunga, C., Kuhn, N., Fairhurst, G., and Ros, D. (2015). Tackling Bufferbloat in

capacity-limited networks. In European Conference on Networks and Communications

(EuCNC), pages 381–385. IEEE.

Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F., Koura-

nov, F., Swett, I., Iyengar, J., Bailey, J., Dorfman, J., Roskind, J., Kulik, J., Westin,

P., Tenneti, R., Shade, R., Hamilton, R., Vasiliev, V., Chang, W., and Shi, Z. (2017).

The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceed-

ings of the Conference of the ACM Special Interest Group on Data Communication,

SIGCOMM ’17, pages 183–196, New York, NY, USA. ACM.

Li, F., Jiang, X., Chung, J. W., and Claypool, M. (2018). Who is the King of the Hill?

Traffic Analysis over a 4G Network. In IEEE International Conference on Communi-

cations (ICC), pages 1–6.

Li, W., Zeng-zhi, L., Yan-ping, C., and Ke, X. (2005). Fluid-based stability analysis

of mixed TCP and UDP traffic under RED. In 10th IEEE International Conference

101

on Engineering of Complex Computer Systems, ICECCS Proceedings, pages 341–348.

IEEE.

Little, J. D. C. and Graves, S. C. (2008). Little’s Law, pages 81–100. Springer US, Boston,

MA.

McCanne, S. and Floyd, S. (1997). The LBNL network simulator (ns-2).

McKenney, P. E. (1990). Stochastic fairness queueing. In Proceedings. IEEE INFOCOM

’90: Ninth Annual Joint Conference of the IEEE Computer and Communications So-

cieties The Multiple Facets of Integration, volume 2, pages 733–740.

Misra, V., Gong, W.-B., and Towsley, D. (2000). Fluid-based analysis of a network of

AQM routers supporting TCP flows with an application to RED. In ACM SIGCOMM

Computer Communication Review, volume 30, pages 151–160. ACM.

Morton, J. (2016). [Cake] Proposing COBALT, Online available at:

https://lists.bufferbloat.net/pipermail/cake/2016-May/001925.html.

Nichols, K. and Jacobson, V. (2012). Controlling Queue Delay. Communications of the

ACM, 55(7):42–50.

Palaniappan, B. et al. (2013). Bufferfloat Mitigation for Real-time Video Streaming using

Adaptive Controlled Delay Mechanism. International Journal of Computer Applica-

tions, 63(20):1–6.

Pan, R., Natarajan, P., Piglione, C., Prabhu, M. S., Subramanian, V., Baker, F., and

VerSteeg, B. (2013). PIE: A lightweight control scheme to address the bufferbloat

problem. In IEEE 14th International Conference on High Performance Switching and

Routing (HPSR), pages 148–155. IEEE.

Raghuvanshi, D. M., Annappa, B., and Tahiliani, M. P. (2013). On the effectiveness

of CoDel for active queue management. In Advanced Computing and Communication

Technologies (ACCT), 2013 Third International Conference on, pages 107–114. IEEE.

Raina, G., Manjunath, S., Prasad, S., and Giridhar, K. (2016). Stability and Performance

Analysis of Compound TCP with REM and Drop-Tail Queue Management. IEEE/ACM

Transactions on Networking, 24(4):1961–1974.

102

Raina, G., Towsley, D., and Wischik, D. (2005). Part II: Control Theory for Buffer Sizing.

SIGCOMM Comput. Commun. Rev., 35(3):79–82.

Raina, G. and Wischik, D. (2005). Buffer sizes for large multiplexers: TCP queueing

theory and instability analysis. In Next Generation Internet Networks, pages 173–180.

Scholz, D., Jaeger, B., Schwaighofer, L., Raumer, D., Geyer, F., and Carle, G. (2018).

Towards a Deeper Understanding of TCP BBR Congestion Control. In IFIP Networking

2018, Zurich, Switzerland.

Showail, A., Jamshaid, K., and Shihada, B. (2014a). An empirical evaluation of bufferbloat

in IEEE 802.11 n wireless networks. In Wireless Communications and Networking

Conference (WCNC), 2014 IEEE, pages 3088–3093. IEEE.

Showail, A., Jamshaid, K., and Shihada, B. (2014b). WQM: An aggregation-aware queue

management scheme for IEEE 802.11n based networks. In Proceedings of the 2014 ACM

SIGCOMM workshop on Capacity sharing, pages 15–20. ACM.

Shreedhar, M. and Varghese, G. (1996). Efficient fair queuing using Deficit Round-Robin.

IEEE/ACM Transactions on Networking, 4(3):375–385.

Tahiliani, M. P. and Shet, K. (2013). Analysis of cautious adaptive RED (CARED). In

Advances in Computing, Communications and Informatics (ICACCI), 2013 Interna-

tional Conference on, pages 1029–1034. IEEE.

Tan, K. and Song, J. (2006). Compound TCP: A Scalable and TCP-friendly Congestion

Control for High-speed Networks. In 4th International workshop on Protocols for Fast

Long-Distance Networks (PFLDNet).

Tan, K., Song, J., Zhang, Q., and Sridharan, M. (2006). A Compound TCP Approach

for High-Speed and Long Distance Networks. In 25th IEEE International Conference

on Computer Communications, Proceedings IEEE INFOCOM, pages 1–12.

Tirumala, A., Qin, F., Dugan, J., Ferguson, J., and Gibbs, K. (2005). Iperf: The tcp/udp

bandwidth measurement tool. htt p. dast. nlanr. net/Projects, page 38.

Tirumala, A., Qin, F., Dugan, J., Ferguson, J., and Gibbs, K. (2006). Iperf, (2006),.

Wang, P., Zhu, D., and Lu, X. (2017). Active queue management algorithm based on

data-driven predictive control. Telecommunication Systems, 64(1):103–111.

103

Winstein, K. and Balakrishnan, H. (2013). TCP Ex Machina: Computer-generated Con-

gestion Control. In Proceedings of the ACM, SIGCOMM ’13, pages 123–134, New York,

NY, USA. ACM.

Wischik, D. and McKeown, N. (2005). Part I: Buffer sizes for core routers. Computer

Communication Review, 35:75–78.

Xue, L., Kumar, S., Cui, C., Kondikoppa, P., Chiu, C.-H., and Park, S.-J. (2013). Afcd:

An approximated-fair and controlled-delay queuing for high speed networks. In Com-

puter Communications and Networks (ICCCN), 2013 22nd International Conference

on, pages 1–7. IEEE.

Yamaguchi, F. and Nishi, H. (2013). Hardware-based hash functions for network appli-

cations. In 2013 19th IEEE International Conference on Networks (ICON), pages 1–6.

IEEE.

104

Journals

• Sachin D. Patil and Mohit P. Tahiliani. “Minstrel PIE: Curtailing Queue Delay in

Unresponsive Traffic Environments” Computer Communications, Volume 139, 2019,

Pages 16–31. [SCI Indexed journal, Impact Factor: 2.613]

• Sachin D. Patil and Mohit P. Tahiliani. “Towards a better understanding and anal-

ysis of controlled delay (CoDel) algorithm by using fluid modelling” IET Networks,

Volume 8, Issue 1, 2018, Pages 59–66. [Scopus Indexed journal, CiteScore: 2.01]

Conferences

• Sachin D. Patil and Mohit P. Tahiliani. “On the robustness of AQM mechanisms

against non-responsive traffic” In 10th IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS), 2016, pp. 1-6.

• Ramakrishnan G., V.Saicharan, Bhasi M, Monis L., Sachin D. Patil and Mohit P.

Tahiliani, “FQ-PIE Queue Discipline in the Linux Kernel: Design, Implementation

and Challenges”, In 44th IEEE international Conference on Local Computer Net-

works (LCN 2019).

Under progress

• Sumukha PK, Prajval M, Ishaan R Dharamdas, Sachin D. Patil and Mohit P. Tahil-

iani, “Implementation, validation and evaluation of FQ-PIE in ns-3”, to be submit-

ted.

• Manish Kumar B, Hrishikesh Hiraskar, Dhaval Khandla, Leslie Monis, Sachin D.

Patil and Mohit P. Tahiliani, “Alignment of PIE algorithm implementation with

RFC 8033 and evaluation in the Linux kernel”, to be submitted.

Open Source Contributions

• Alignment of PIE algorithm with RFC 8033 in the Linux kernel

Source code is merged in the Linux kernel since version 5.1

• Implementation of FQ-PIE algorithm in the Linux Kernel

Source code is merged in the Linux kernel sicnce version 5.5

105

• Implementation of FQ-PIE algorithm in the ns-3

The source code is being submitted in ns-3 for review.

106

Brief Bio-Data

Sachin Dattatraya Patil

Research Scholar

Department of Computer Science and Engineering

National Institute of Technology Karnataka, Surathkal

P.O. Srinivasnagar

Mangalore - 575025

Phone: +91 7276076720

Email: sdp.sachin@gmail.com

Permanent Address

Sachin Dattatraya Patil

Gajanan Colony, Mali Plot

Near Sangli Railway Station

Sangli - 416416

Maharashtra, INDIA

Qualification

M. Tech. in Computer Science and Engineering, VJTI, Mumbai, Maharashtra, 2012.

B. E. in Information Technology, Government College of Engineering, Karad, Maharash-

tra, 2008.

107

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations and Nomenclature
	Introduction
	The problem
	Issues with unresponsive traffic
	Fairness issues

	Contributions of this thesis
	Primary contributions
	Secondary contributions

	Outline of the thesis

	Literature Review
	Background
	RED and Adaptive RED
	CoDel
	PIE
	Other solutions for bufferbloat

	Evaluation Methodologies
	ns-2
	ns-3
	Fluid modeling
	Real time testbed
	Virtual Flent

	Related Work
	Uncontrolled Queue Delay
	Unfairness between Responsive and Unresponsive flows

	Design and Evaluation of Modified CoDel
	Fluid Modeling
	Genesis
	Proposed fluid model for CoDel
	Correctness of the proposed fluid model

	Control Law Sensitivity of CoDel
	Impact of control law of CoDel
	Modified CoDel
	Case 1: CoDel with interval 30 ms
	Case 2: CoDel with modified control law
	Case 3: Original CoDel vs Modified CoDel

	Evaluation using real-time test-bed
	Constraints of CoDel
	Inferences

	Minstrel PIE
	Impact of fixed qdelay_ref
	Minstrel PIE
	Design
	Parameter Settings
	Support for Explicit Congestion Notification
	Implementation

	Evaluation
	Preliminary Evaluation
	RFC 7928 based Evaluation
	Evaluation using Flent

	Inferences

	Flow Queue Minstrel PIE
	Flow Queuing
	FQ-PIE
	Design
	Implementation
	Evaluation

	FQ-Minstrel PIE
	Evaluation with Section 4.3.3 topology
	Evaluation with Section 5.2.3 topology

	Inferences

	Conclusions and Future Work
	Conclusions
	Limitations and Future work

	Bibliography
	List of Publications

