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Abstract

The ever increasing demand for cloud adoption is prompting researchers and

engineers around the world to make the cloud more efficient and beneficial for all

the stakeholders that include cloud service providers and cloud service users. Cloud

computing will bring profits for all when the cloud resources are used efficiently,

and its services are made affordable for businesses by reducing its cost. Managing

cloud data center incurs a high cost, which includes capital expenditure for procuring

necessary IT infrastructure at the beginning and recurring operational expenditures

for data center management which includes power, manpower and maintenance. Data

center owners need to reduce the data center management cost by employing efficient

resource provisioning techniques to save energy and reduce cost without affecting the

service level agreements.

Load balancing is one of the critical aspects of cloud data centers that can sig-

nificantly improve resource utilization, performance, and save energy by properly

assigning/reassigning computing resources to the incoming requests. Therefore, how

to schedule user tasks to virtual machines and virtual machines to physical servers

effectively by considering various dynamic parameters is an evolving research problem

in cloud computing.

The proposed work investigates contextual parameters such as physical ma-

chine characteristics, data center load conditions, and electricity prices in the geo-

distributed data center locations to propose energy and cost-efficient load balancing

technique for cloud data centers. The physical machine characteristics such as perfor-

mance to power consumption profile are utilized for virtual machine placement deci-

sions in data centers to optimize total energy consumption and improve throughput.

The context of peak and non-peak load conditions is used to avoid virtual machine
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placement optimization overheads and efficient utilization of power-efficient physical

servers. The electricity price varies according to geographical locations throughout

the globe. The electricity price, along with response times, is considered to distribute

data center loads optimally in geo-distributed data centers to save total power costs.

Proposed work also investigates current challenges for efficient graphical processing

units resource utilization in virtualized environments.

The work proposes a context-aware load balancing technique that ensures better

power-efficient resource utilization, enhances performance by avoiding overheads, and

also saves total power costs of the data centers. The experimental results indicated

that our proposed context-aware load balancer helps to save around 2-10% of power

for synthetic workloads and 1-3% for real workload traces in the data centers. The

experimental results also attested that our proposed cost-aware cloud service broker

load distribution technique for geo-distributed data centers can save around 15-23%

of power costs of the data centers.
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Chapter 1

Introduction

1.1 Cloud computing

Cloud computing, a long-held dream of offering computing as a utility, has the

potential to transform the way a major portion of IT businesses and internet services

work. It is an idea that enabled software, hardware, and other services to be rented to

a large base of customers with added flexibility. Now businesses with innovative ideas

for internet services need not invest large capital for computing hardware or software

at the beginning to deploy their services to end-users. This means cloud computing

benefits small scale businesses to start operations with minimum capital in setting up

IT infrastructure and with pay-as-you-go like model.

Cloud computing(Armbrust et al., 2009) eliminates the necessity to predict the

application load in advance for provisioning computing resources. The computing

resources in the cloud are scaled as per demand to save wastage of resources by over-

provisioning and loss of business by under-provisioning. The human effort to maintain

computing hardware and software is also avoided by offloading maintenance to cloud

providers. The term cloud computing refers to both software(platform software and

application software) offered as internet service along with computing hardware in

data centers.

It is estimated that enterprises will spend 33% more on cloud services or solutions

in 2019 and also it is predicted that 80% of IT businesses will rely on the cloud in-

stead of conventional infrastructure by 2025. Cloud computing is the fastest-growing

1



market with its investments expected to cross $214 bn in 2019(Jain, 2019).

1.1.1 Definition

The standard definition of cloud computing provided by NIST(Mell and Grance,

2011) is as below;

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction."

1.1.2 Characteristics

Cloud computing infrastructure is made up of powerful computing nodes (com-

posed of physical hardware and software entities) and large storage units which are

connected by a high-speed network. The cloud services are made available through

internet protocols for users located anywhere in the globe. The abstraction layer

called hypervisor(or VMM) sitting above the physical layer decouples user workloads

from underlying physical resources. The abstraction layer manifests the typical cloud

characteristics. The five important characteristics typical to any cloud computing

infrastructure are described briefly in this section.

1. On demand self-service - Consumers can provision resources from cloud uni-

laterally without the need for human intervention from cloud service providers.

2. Broad network access - Cloud computing capabilities are available over a net-

work and can be accessed using standard network protocols from heterogeneous

client devices.

3. Resource pooling - Cloud service providers pool resources to multiple cus-

tomers using a multi-tenant model, wherein different virtual and physical re-

sources are assigned and re-assigned dynamically as per the changing demands

2



from customers. Examples of resources are storage, memory, compute power,

and network bandwidth.

4. Elasticity - Cloud capabilities can be provisioned elastically and released au-

tomatically. The feature allows the application to scale up or down as per

current demand, often providing the user an illusion of provisioning capability

of unlimited resources.

5. Measured service - Cloud resources provisioned are monitored, controlled, and

reported providing transparency for both users and cloud providers to enable

fair costing as per terms and usage.

1.1.3 Service models

The cloud computing services are offered in three distinct service models(Mell

and Grance, 2011) to suit different customer requirements, as shown in figure 1.1.

1. Software as a Service (SaaS)

The applications deployed on the cloud are offered as service to customers.

Cloud users can access these applications using thin clients through web browsers

or software tools. Except for limited user-specific application configuration set-

tings, customers need not bother about managing or controlling application

software or underlying cloud infrastructure.

2. Platform as a Service (PaaS)

The development environment encapsulated into a software layer and is offered

as service, upon which other higher levels of service can be built by the cus-

tomers. Users have the freedom to build, configure, and run their applications

making use of the abstracted APIs provided by the platform. Customers need

not worry about managing the software platform offered as service by cloud

providers.

3. Infrastructure as a Service (IaaS)

In this model, fundamental resources such as compute power, memory, stor-

age, and network are provisioned to customers as a service. The customer can

3



typically deploy his or her software on the provisioned infrastructure to build

and offer any application services to their clients. Such provisioned resources

can be accessed through a simple command-line tool or a lightweight user in-

terface. Customers need not be bothered about managing the underlying cloud

infrastructure offered to them.

Figure 1.1: Cloud Service Models

With IaaS used to host, PaaS used to build, and SaaS used to consume, three of these

cloud computing models enable networked access to a pool of shared configurable

resources such as servers, networks, storage, applications and services on demand.

1.1.4 Deployment models

The cloud infrastructure is set up and accessed using one of the four deployment

models(Armbrust et al., 2009) as per the business needs. The cloud deployment model

represents a specific genre of cloud environment, distinguished primarily by size, type

of ownership, and access. The four popular deployment models are explained below.

1. Public clouds

The public clouds are publicly accessible cloud environment hosted by a third

party cloud providers. The cloud services are offered on demand for a defined

cost. Here cloud providers are responsible for the creation and management

of public clouds and its information technology(IT) resources. Public clouds

4



are characterized by elasticity and utility pricing in the provisioning of their

resources.

2. Community clouds

Community clouds are in a way similar to public clouds except that the access

to community clouds is restricted to a specific group of cloud users involved

in a shared goal. It can be owned, managed, and operated by one or more

organizations in the community or by a third party cloud provider.

3. Private clouds

The private clouds are provisioned and managed for the exclusive use of a single

organization and used by cloud consumers of different departments. The private

clouds are either owned and managed by a single organization or by a third party

cloud provider. The private cloud can exist on or off the company premises.

4. Hybrid clouds

The hybrid clouds are a composition of two or more of the deployment mod-

els governed by a set of business rules. The hybrid clouds can be complex

architectures for creation and management because of heterogeneous cloud en-

vironments and split cloud management responsibilities between public cloud

providers and private cloud owners. Hybrid clouds are used when organizations

restrict movement or storage of sensitive data into public clouds.

The cloud deployment models are shown in figure 1.2, and the differences between

each of the models(Jain, 2019) are presented in table 1.1.

Figure 1.2: Cloud Deployment Models
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Table 1.1: Comparison Of Cloud Deployment Models

Parameter Private Public Community Hybrid

Data security and
privacy High Low Comparatively

High High

Scalability and
Flexibility High High Fixed Capacity High

Ease of setup and
use

Requires IT ex-
pertise Easy Requires IT ex-

pertise
Requires IT ex-
pertise

Reliability High Vulnerable Comparatively
High High

Cost Effectiveness Most Expensive Cheapest
Cost is shared
among commu-
nity

Cheaper than pri-
vate but costlier
than public

1.1.5 Advantages

Some of the major benefits associated with using cloud computing services for

businesses are mentioned below,

1. Investment cost

The cloud computing services free businesses from high capital investments for

the hardware and software at the beginning. Lower initial investments help

smaller businesses to start operations with smaller capital.

2. Availability

Cloud providers ensure round the clock reliable services to the customers by

maintaining 99.9% uptime for servers.

3. Scalable capacity

The services provided by the cloud can be scaled both upwards and downwards

as per dynamically changing resource demands. The scalability helps businesses

rapidly increase service capacity with an increase in demand and optimize costs

by reducing capacity during non-peak seasons.

4. Carbon footprint

Cloud services help organizations to reduce carbon footprints by allocating com-

puting resources that are just sufficient to meet current demands and avoiding
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any over-provisioning.

5. Maintainability

Cloud computing exempts users from IT maintenance worries and provides sim-

plified ways to manage and control the rented services. The quality and conti-

nuity of user services are guaranteed by the SLA agreements.

1.2 Virtualization in cloud computing

Cloud computing can exist without virtualization, but it would be difficult and

inefficient. Cloud computing without virtualization can then be referred to as a situ-

ation in which computing resources, software, or platforms are delivered as a service

and on-demand over the Internet. Virtualization is a key enabler technology and a

vital factor in the success story of cloud computing. Virtualization(Vmware, 2019)

technology makes cloud infrastructure elastic, efficient and fault-tolerant.

Consider three cases shown in figure 1.3, though the peak load is accurately

determined and resource provisioning is done, there is a resource wastage in (a) case.

The cases (b) and (c) show how changing resource demands cause loss of business

through under-provisioning and also resource wastage. Virtualization helps companies

to mitigate mismatches caused by resource demands and allocation in run time.

1.2.1 Virtualization

Virtualization(Vmware, 2019) is the process of creating a software-based, or vir-

tual, representation of something, such as virtual servers, storage, and networks. Fig-

ure 1.4 shows a typical system stack of a virtualized physical host. The hypervisor(or

virtual machine manager) is a thin software layer that enables multiple virtual ma-

chines(VM), each running its own copy of the guest operating system(OS) to run

simultaneously on a single physical machine. The hypervisor provides an abstracted

hardware version to each of the running virtual machines and multiplexes underlying

hardware resources efficiently. OS running inside each virtual machine(VM) assumes

complete control of the underlying hardware and the virtualization framework through

a hypervisor layer provides this illusion to VMs. Each VM runs independently and in
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Figure 1.3: Instances Of Over And Under Provisioning

isolation, so that run time problems in one VM do not affect other co-located VMs

on the same physical host.

Figure 1.4: Virtualized Physical Machine

Virtualization is most effective in reducing IT expenses and helps improving

resource efficiency and agility in the business operations of all scales. Virtualization

enables data center providers to manage resource demands from users with a fewer

number of physical machines to save power and reduce cost.
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1.2.2 Characteristics of virtualization

The following are the key characteristics of virtualization(Vmware, 2019) tech-

nology.

A Partitioning

Virtualization enables multiple operating systems to run on the same physical

machine. The underlying system resources are divided between multiple virtual ma-

chines.

B Isolation

VMs run in isolation and failure of a VM have no impact on other co-located

VMs. Virtualization technology provides security and fault isolation at the hardware

level.

C Encapsulation

The state of the virtual machines can be saved to a file. It is also possible to

copy or move virtual machines as easily as moving and copying a file.

D Hardware independence

Virtual machines can be provisioned or migrated on to any physical host(server).

It helps in server consolidation and load balancing data center workload.

1.2.3 Benefits of virtualization

The following are some of the benefits of virtualizing resources in data centers.

1. Instant provisioning and on-demand scalability

2. Live migration support

3. Optimization of resource utilization

4. Server consolidation to save power and load balancing physical resources for

better response times.
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5. Ease of maintenance and low downtime

6. Security and fault isolation

7. Simplified data center management

Virtualization enables data centers to self manage computing infrastructure in ever-

changing load conditions using dynamic load balancing techniques.

1.3 Load balancing in cloud data centers

A distributed system such as cloud data centers can be viewed as a collection

of heterogeneous computing, storage, and network resources shared between active

users. The users of such a distributed system have different goals, specific objectives,

and business-driven strategies, and their behaviors are complex to characterize. In

such a complex system, the management of hardware resources and software plat-

forms /applications is a very intricate task. The goal of load balancing is to improve

the performance and efficiency of such a distributed system through uniform and fair

distribution of the application load across available computing nodes. Load balancing

is a critical aspect in the cloud computing environment that helps to improve resource

utilization, enhances performance, and saves energy by efficiently assigning/reassign-

ing computing resources to the user workloads/requests.

A general formulation(Grosu and Chronopoulos, 2004) of the load balancing

problem is, given a large number of tasks, find the allocation of tasks to computing

infrastructure optimizing a given objective function (e.g., total execution time). Load

Balancing in the cloud is a method(Geeta and Singh, 2014) to distribute workloads

across many servers, network interfaces, hard drives, or other computing resources.

Cloud data centers are composed of large, powerful (and expensive) computing servers,

storage and are connected by the network infrastructure. These resources are associ-

ated with usual risks of hardware failures, power interruptions, and resource overloads

during high demands.

Load balancing in cloud computing differs from classical thinking on load-balancing

architecture(S.Jyothsna, 2016). Load balancing virtualized resources in cloud data
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centers offers new opportunities and also a new set of unique challenges. Load bal-

ancing in cloud data centers is used to make sure none of your resources remain idle(or

underused) while others are being overused. To balance the load distribution, some

of the workloads may be migrated from overloaded source nodes to relatively lightly

loaded destination nodes. When resource demands are not high, the load balancing

technique may choose to power off some servers by migrating its workloads to other

nodes in the data center to save energy.

Load balancing algorithms(Nadeem and Mohammed, 2015) are broadly classified

into two types static and dynamic. When load distribution decisions are carried

out during runtime considering the current state of the system, the process is called

dynamic load balancing. If load variations are low in the systems, static load balancing

is usually employed. Static load balancing requires prior information about the system

resources to make load distribution decisions. The static load balancer does not

consider the dynamic state of the system into account for decision making.

The goals of load balancing mechanism in cloud data centers can be summarized

as below,

1. Improvement of the overall throughput substantially with optimal resource uti-

lization.

2. Save energy when the load on the data center is not high by server consolidation.

3. Backup plan in case the system fails even partially.

4. Maintain system stability by monitoring server overload conditions.

5. Accommodate run time changes in the data center’s load(demand) and resource

availability(capacity).

The load balancer technique used in the cloud data centers needs to be very sophis-

ticated and intelligent to consider various parameters to meet the given objective

function. Load balancing decisions in the cloud environment are carried out at three

different levels, as explained below.

1. Cloud broker

In geo-distributed data centers or in a multi-datacenter setup, the cloud bro-

ker is responsible for routing user requests to a particular data center(DC) for
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processing. Load balancing at cloud broker may need to consider parameters

such as proximity of DC, network latency to DC or any other business-related

constraint.

2. VM-PM mapping process

When the user requests new virtual machines(VMs) in a data center to meet

current business demand, system creates new VMs and places them on a suit-

able physical host. Multiple VMs are placed on a single physical host to share

underlying resources. The load balancer in the DC is responsible for physical

machine(PM) selection for initial VM placement and VM migration to another

PM during host overload or server consolidation process.

3. Task-VM mapping process

When user requests arrive at the data center, it has to be assigned to a VM

for processing. The selection of a particular VM for request(task) assignment

is done by the task load balancer in DC. The task load balancer may take into

account, the parameters such as VM state(idle, busy) or number of requests

assigned, etc. for making assignment decisions.

1.4 Background for research

Cloud computing is growing at an overwhelming rate, with many internet-based

applications being migrated to cloud data centers at an ever-increasing pace. The

companies like Amazon, Microsoft, Google are expanding their cloud data centers for

the services to their vast spread user bases across the globe. The setting up of cloud

data centers need lot of investments at the beginning for IT hardware and software

along with few non-IT expenses and later incur ongoing costs such as data center

administration costs and huge power costs to keep the data center up for the 24x7

operations.

Table 1.2 lists the share of the costs of various components used in building cloud

data centers. The cost is amortized to obtain a common cost run-rate metric that

can be used for one-time costs(for purchase of servers etc.) and ongoing maintenance

expenses(for power costs). Though these cost shares may vary slightly with time and
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Table 1.2: Cost For Cloud Data Center Owners

Cost share in %
(Amortized)

Component
type sub-components

45% Servers Physical resource such as CPU,
Memory and storage

25% Infrastructure Power distribution lines and cooling

15% Power Consump-
tion Electrical utility costs

15% Network Links, transits and other equipment

geographical positions, these are the overall major costs involved for data center own-

ers. It can be noted from the table 1.2 that power consumption costs also contribute

to a significant share in the overall data center management or ongoing costs and any

saving in power costs can help reduce significant cost for data center owners in the

long run.

It is noted that 59% of the total power consumption in the data center is at-

tributed to servers and even small amount of decrease in power consumption of servers

will certainly have the largest impact in total power costs of data centers. Addition-

ally, it may save cooling costs.

According to the United States data center energy usage report(Berkeley, 2016),

in the year 2014 alone data centers in the U.S. consumed an estimated 70 billion kWh

which was equal to about 1.8% of total U.S. electricity consumption. The electricity

usage by U.S. data centers is expected to reach 73 billion KWh in 2020.

Electricity prices vary from one geographical location to another. The electricity

price depends on several factors and governed by the domestics rules of each geo-

graphic location. The factors that may have an impact on electricity price may be

the technology employed, raw materials used and output volume involved in the gen-

eration of the electricity. It can be noted that various cloud providers are building

data centers at geographically dispersed locations across globe to ensure availability

and performance for their user applications.
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It is vital for cloud providers to reduce data center management costs to offer

competitive pricing for users. Power costs are one of the significant portions of the

overall data center management costs, and it is going to be beneficial for both cloud

providers and users to optimize the cost of power consumption without violating

service level agreements of its customers.

1.5 Motivation

The following are the most important facts and observations that compelled us

to explore our curiosity in this direction.

1. Power efficiencies of heterogeneous physical servers

The data center is a server farm consisting of a large number of heterogeneous

physical machines connected by a high speed shared network. These physical

machines often tend to vary in terms of their computing capacity, composition,

and also in their power consumption characteristics at different load conditions.

Such heterogeneity in the composition of physical machines results in some of

these machines being more power-efficient than others during their operation in

the data center. It is feasible to optimize power consumption in the data cen-

ter by detecting and efficiently scheduling workloads to power-efficient physical

servers.

2. Non-uniform electricity costs across geographical locations

Electricity(power) price varies with geographical locations across the globe, and

many cloud providers are setting up data centers at multiple geographical lo-

cations to cater to their users. It is possible to optimize the cost of serving

each request by geo-distributed data center network by routing requests to the

cost-effective yet quickest data center among many geo-distributed data centers

available at that time.

3. Non-uniform load conditions(peak and non-peak) in data centers

The data centers experience varying load conditions at different times of the day.

One of the goals of the load balancer in virtualized environments like cloud data

centers is to adjust the workloads to available physical resources(VM placement
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optimization) as per changing load conditions to enhance resource utilization

and also to improve performance. It is usually done considering the load condi-

tions at each physical server(overload or underload). It is possible to improve

the load balancing algorithms to consider global(intra-DC) load conditions(load

context) to make optimal workload placement decisions.

4. Increase in demand for supporting efficient GPU computing in cloud

Many cloud providers have begun offering GPU-enabled services for their cus-

tomer applications where GPUs are essential or when high computational power

is needed to meet the desired QoS. Though virtualization solutions for CPU are

matured well to use in data centers, the same conventional virtualization tech-

niques do not apply for GPUs because of the inherent differences in architecture

and operations. There is a need to study various existing issues with GPU

enabled VM provisioning, replacement, and power optimizations from the per-

spectives of resource management and also investigate difficulties posed by ap-

plication developers to design their algorithm for efficiently utilizing virtualized

GPUs(vGPU) in the cloud.

1.6 Research contributions

The following contributions of this research work are available to the research

community in the form of journal and conference publications.

• Information of contextual parameters for power and cost-saving in

cloud environment: It provides information about various parameters that

can constitute the context of cloud DCs including physical machine power and

performance characteristics in heterogeneous DCs, varying electricity costs in

multi-DC set-up across the globe, and dynamic load conditions in DCs.

• Framework for detection of context in DCs: The context of the DC is

classified as the local and global context. The detection techniques of the local(at

each host) and global(overall load) contexts in DC are proposed.

• Physical machine characteristics and load conditions aware VM place-

ment optimization: A new VM placement optimization technique considering
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power and performance characteristics of each physical host and overall load

condition in the data centers is proposed.

• Electricity cost-aware request routing technique in geo-distributed

DCs: A cost optimizing request routing cloud broker technique considering

varying electricity costs across the globe in the geo-distributed multi data center

setup is proposed.

• Peak hour performance improvement of task load balancer(ESCE):

Modification to the existing ESCE algorithm is proposed to improve the peak

hour processing efficiency. The proposed method overcomes the over-allocation

problem in the algorithm to manage uniform allocations in the current state of

the system.

• Identifying research challenges for efficient GPU computing in the

cloud: Existing research challenges concerning resource management and pro-

gramming for GPUs in virtualized environments is discussed.

1.7 Outline of the thesis

This section briefly describes each chapter of this thesis, to give a brief overview

of the structure.

• Chapter 1, the current chapter introduces the general domain of cloud comput-

ing and motivates the need for new load balancing techniques that are capable

of considering contextual parameters for cost and energy saving for data center

owners.

• Chapter 2 describes the literature survey related to the problems and past

solutions for the objectives addressed in this thesis.

• Chapter 3 explains the proposed context-aware VM placement optimization

technique for power saving in cloud data centers.

16



• Chapter 4 describes our proposed cost-aware request routing technique in a

geo-distributed data center scenario.

• Chapter 5 explains our proposal for peak hour performance improvement for

Equally Spread Current Execution (ESCE) load balancing algorithm, a task to

VM load balancer used in data centers.

• Chapter 6 mentions our study of current infrastructure for supporting GPU

computing in cloud data centers and existing challenges concerning resource

provisioning and programming for virtual GPUs in a cloud setup.

• Chapter 7 concludes the thesis and summarizes the contributions in more

detail. Furthermore, the possible directions in which the proposed methods and

techniques that can be improved further are also briefly discussed.

1.8 Summary

The chapter covered the introduction to the concepts of cloud computing, vir-

tualization, and load balancing briefly. Then, the chapter presented the background

for the proposed research, motivation and contributions of the reported work. The

chapter concluded with the outline of the thesis.

In the next chapter, the important literature that is relevant to the research

problem addressed in this thesis is discussed along with the research gaps identified,

problem definition, and research objectives.
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Chapter 2

Literature Survey

In the previous chapter, we have introduced concepts of cloud computing, virtu-

alization, and load balancing in cloud environments. This chapter presents the set of

scientific literature we have referred to in this thesis. There are several contributions

done by researchers all over the world that have helped us in identifying the research

gaps and addressing them by proposing suitable solutions. The problem of reducing

the data center management costs is addressed in this thesis.

2.1 Overall data center management costs

The setting up of data center incurs huge capital investment at the beginning

and later cloud providers have to pay on-going operational expenses for power bills

and other maintenance tasks at regular intervals. It is noted by a study(Hamilton,

2019) that power consumption cost is the second most contributor to the overall data

center management costs after servers. It is also estimated that power costs are going

to dominate in maintenance costs of large scale modern data centers in the future.

A study(Greenberg et al., 2009) conducted for the cost estimation of cloud service

data centers observed that power costs contribute a share of about 15% in the overall

data center management costs and 59% of power consumption costs are attributed to

the power consumed by the data center servers. It is noted that any decrease in the

power consumption of servers will have the largest impact on the overall data center

power costs. Also any decrease in the power consumption by the data center servers

will lead to reduced cooling costs.
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Clearly, the data center management costs can be significantly reduced if power

costs are optimized in the data centers. Any reduction in data center management

costs will increase the return on investment(ROI) for data center owners and it will

benefit both cloud providers and also, in turn, can reduce costs for the cloud services

for users.

2.2 Power and cost optimization

The power and operation cost optimization in cloud data centers is an evolving

research area considering the problem of stochastic nature. The overall power cost

optimization can be addressed by any one or all of the following techniques.

1. Optimize the overall power consumption of servers.

2. Utilize resources from data centers where power is relatively cheap.

3. Improve resource utilization and throughput to avoid resource wastage in the

data center.

Many important techniques have been proposed to optimize the cost of data center

management by improving resource utilization and exploiting power-saving opportu-

nities. This section discusses some of the noted past works that have motivated our

research.

2.2.1 VM placement optimization

Although the notion of VMs and virtualization has been a game-changer for the

IT industry, the VM placement brings many challenges that need to be addressed in

cloud computing(Abdelsamea et al., 2014). VM placement needs to be optimal to

meet performance goals, optimize network usage, reduce resource costs, and also save

energy. The VM placement optimization strategy can be QoS-aware, power-aware,

cost-aware, network-aware, GPU-aware or a combination of these.

The VM placement schemes can be broadly classified into two types(Masdari

et al., 2016) as shown in figure 2.1.
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1. Static VM placement: The mapping between VMs and PMs are fixed through-

out the lifetime of the VMs based on the application-specific requirement. The

VM-PM mappings may not undergo changes for long time. Static VM place-

ment will not involve VM migrations. The static VM placement is generally not

power efficient as they do not adapt to changing conditions in the data center.

2. Dynamic VM placement: The initial mapping of VM and PM is changed

based on the state changes in the load of the system.

The dynamic VM placement schemes can be further classified into two types based

on when the VM placement is initiated.

1. Proactive VM placement: The initial mapping of VM to PM is changed

before the system reaches a certain condition.

2. Reactive VM placement: The initial mapping of VM to PM is changed after

the system reaches a certain condition. The change in mapping may be induced

by several factors such as performance, maintenance, power, or load situations.

Figure 2.1: Classification Of VM Placement Schemes

We are not interested in static VM placements in our reported work as they do not

help to save power in ever-changing load conditions in the data center. The reported

work focuses on the objective of power cost minimization by power saving through

dynamic VM placements and VM placement optimizations.
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A Power and cost-saving in data center

Some of the noted past work that deals with power consumption minimization

and energy saving are discussed in this section.

An adaptive heuristics-based performance efficient and energy-saving technique

(Beloglazov and Buyya, 2012) for dynamic consolidation of VMs in cloud data centers

is proposed. The authors presented a competitive analysis and proved competitive

ratios of optimal online deterministic algorithms. The authors addressed the problems

of VM migration and dynamic VM consolidation. Paper proposed a novel solution

for dynamic consolidation of VMs based on the analysis of historical data from the

resource usage by VMs and power consumption statistics of the host machines to

arrive at the VM placement decisions.

A novel technique(Chiang et al., 2014) to utilize server idle power in the data cen-

ter to minimize operational costs is proposed. The authors first studied the problem

of controlling service rates and optimizing the operational cost of data centers. The

authors then formulated a three-parameter cost function that takes into account the

costs of power consumption, system congestion, and server startup. A green control

algorithm was proposed to solve the constrained optimization problem of cost-saving

and to make costs versus performances tradeoffs in physical machines with different

power-saving policies without violating the performance SLAs promised to users.

A performance interference aware virtual machine placement strategy(Moreno

et al., 2013) to avoid performance bottlenecks caused by non-compatible VMs co-

hosted on the same servers is proposed. The paper proposes a novel technique for

workload allocation for energy efficiency by considering the VM workload character-

istics and host internal interference levels to select the suitable physical host for the

given workload.

A technique(Guo and Fang, 2013) to utilize energy storage available in data

centers to reduce the overall electricity costs in the wholesale electricity markets is

proposed. The authors considered the scenario where the price of electricity varies

both spatially and temporally. The technique proposed integrates center-level load

balancing with the server-level configuration, and battery management and also at the

same time ensures the quality-of-service(QoS) for users. The paper utilizes Lyapunov
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optimization to achieve a tradeoff between energy storage and cost-saving.

Energy and SLA-aware VM placement strategy(Mosa and Paton, 2016), which

dynamically assigns virtual machines to physical servers in a cloud environment is

proposed. The authors formulated the VM placement problem using utility functions

and proposed a genetic algorithm to search VM-PM assignments that maximize the

utility function formulated for the VM placement problem. The technique proposed

co-optimizes SLA violations and power consumption.

A evolutionary game theory based VM placement and optimization technique(Xiao

et al., 2014) for dynamic VM placement and server consolidations in the data center is

proposed. The proposed work addressed the challenges with VM placement for energy

saving by building a computational model for energy consumption in data center.

An energy-aware scheme for VM placement optimization is proposed for power

consumption reduction and improving load balance in the data centers. A technique

based on genetic algorithm and tabu search algorithm called GATA(Zhao et al., 2019)

is proposed. The goal of the proposed technique is to achieve optimal VM placements

and energy saving in the data centers.

A variant of Particle swarm optimization (PSO)(Dashti and Rahmani, 2015) to

address the problem of incompatibility between user requests and physical machine

specification causing the performance degradation and power wastage in data centers

is proposed. A modified PSO algorithm is proposed to migrate the VMs from the

overloaded hosts and also a dynamic server consolidation technique to save power

is presented. They demonstrated that the proposed solution can reduce power con-

sumption and improve performance.

The virtual machine placement problem with the goal of minimizing the power

consumption in the data center is addressed using the heuristics-based approach(Li

et al., 2013). Authors studied the wastage of resources in the physical machines

due to imbalance created in utilization of multi-dimensional resources of the host

machines. Authors proposed a multi-dimensional space partition model called EAGLE

to overcome the imbalance in resource utilization and reduce power consumption in

the data center.

A profit-maximizing technique(Toosi et al., 2014) for cloud service providers

by optimizing the allocation of data center capacity to each pricing plan utilizing
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Table 2.1: Summary Of Related Past Works In VM Placement And Optimization

Serial
No

Primary Mech-
anism Authors,Year Goal of proposed

work Limitations

1 Adaptive Heuris-
tics

Anton and Rajku-
mar,2012

Minimizing total energy
consumption of data-
center.

Does not consider Per-
formance characteristics
of physical hosts.

2 Green control Yi-Ju Chiang et.
al,2015

Optimizes operational
cost of datacenter and
ensures SLA guarantee.

Technique considers
only idle power in DC
to save cost.

3 Dynamic pro-
gramming

Adel Nadjaran
Toosi et.al,2015

Maximizing profit for
data center owners.

Does not consider en-
ergy saving.

4 PSO based

Seyed Ebrahim
Dashti and Amir
Masoud Rah-
mani,2015

Minimizing energy con-
sumption and ensures
QoS for users.

Technique does not con-
sider power efficiency of
PMs.

5 Heuristics based Li, X.et. al,2013 Minimizing total energy
consumption.

Does not consider power
efficiency of PMs and
does not guarantee QoS.

6 Best fit decreasing
Noumankhan
Sayeedkhan, P.
and S. Balaji,2014

Minimizing perfor-
mance degradation due
to interference.

Does not consider en-
ergy saving.

7 Graph theory
based

Xiao, Z., et al.,
2015

Minimizing energy con-
sumption.

Technique is not power
and Qos aware.

8 ACO based Dong, J.-k., et
al.,2014

Reduce communication
traffic in DC network.

Technique is not power-
aware.

9 Greedy algorithm
based

Kanagavelu, R.,
et al.,2014

Reduces inter-VM traf-
fic and network load.

Technique does not ad-
dress energy saving.

10 Integer program-
ming

Li, W., J. Tords-
son, and E. Elm-
roth,2012

Ensures QoS for users. Technique does not ad-
dress power saving.

11 Automata-based Liu, C., et al,2014
Maximize resource uti-
lization and minimize
communication traffic.

Technique does not con-
sider power efficiency of
PMs.

12 Lyapunov Opti-
mization

Yuanxiong Guo
and Yuguang
Fang,2013

Minimizing power costs
in the variable pricing
market.

Technique does not ad-
dress power consump-
tion reduction.

13 Genetic algorithm
based

Abdelkhalik
et.al,2015

Minimizing overall cost
and SLA violations.

Technique does not con-
sider power efficiency of
PMs.

14 Interference
aware algorithm

Ismail Solis
Moreno et.al,2013

Minimizing energy con-
sumption and perfor-
mance aberrations.

Technique does not con-
sider power efficiency of
PMs and QoS.

15 Affinity aware
VM placement

Sujesha and
Kulkarni, 2011

Minimizing network re-
source utilization.

The technique only con-
siders network latency.

16 power-aware VM
placement Zhao et.al, 2019 Minimizing power usage

by host shutdown.
Technique is not power
and QoS aware.
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admission control for resource reservations is proposed. The authors proposed an

optimization technique based on the formulation of stochastic dynamic programming

and two heuristics that consider trade-offs between computational complexity and

optimality. The proposed technique is evaluated using real workload traces of Google

to prove the effectiveness of the solution.

The problem of performance degradation due to resource contention with disk i/o

when two or more disk intensive VMs are co-hosted on a physical server is discussed.

Authors(Sayeedkhan et al., 2014) proposed a best fit decreasing(BFD) allocation tech-

nique based on the static disk threshold-based migration scheme for disk-intensive task

scheduling in a cloud computing environment to overcome the problem.

Some of the past works also attempted to solve VM placement optimization

for network traffic minimization in the data center using techniques such as Ant

colony optimization(Dong et al., 2014), network affinity aware scheme(Sudevalayam

and Kulkarni, 2011) and greedy based schemes(Kanagavelu et al., 2014). The VM

placement optimization problem is also addressed for ensuring QoS for users at all

times by using Integer programming(Li et al., 2011) technique and to also meet hybrid

objectives such as maximizing resource utilization and reduce communication traffic

using automata-based schemes(Liu et al., 2014).

The problem of VM placement optimization has been addressed in the past

using different approaches/algorithms to achieve different desired objectives as dis-

cussed above. Table 2.1 summarizes these important related works with their primary

mechanism and goals achieved by each one of them.

2.2.2 Load balancing in geo-distributed data centers

Many cloud providers are setting up geographically dispersed data centers to

cater to increased computing demands from user applications and also reduce re-

sponse times. When multiple DCs are serving user requests, it is vital to determine

which DC and which PM to assign to fulfill the request for computation. It is also

important to meet additional constraints like minimum cost, optimal power, etc. We

have investigated the issue of load distribution among available geographically dis-

tributed data centers considering the operational expenses involved. Some of the
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noted literature that is relevant to our study are discussed in this section.

A study(Ashikur et al., 2014) of power management problem of data center

operations and various aspects that influence the power costs is reported. The authors

discussed the current state of art technologies and proposed methods to improve the

power management in the data centers. The paper also proposes to utilize smart grid

environment to ensure efficient and dynamic power management solution for the data

centers.

A priority-based round-robin(Mishra et al., 2014) is proposed to schedule the

requests from the user bases to the data center when there are multiple data centers

are available in the same region. The data centers are assigned a priority and requests

are assigned based on round-robin strategy to improve the performance compared to

proximity-based routing service broker algorithm(Wickremasinghe et al., 2010).

A DVFS based operational cost optimization solution(Gu et al., 2015) is proposed

for the geo-distributed data center scenario. The proposed technique exploits the

dynamic frequency scaling technique for power consumption management and an

optimization problem is formulated and solved that reduces the operational expenses

of the data center without affecting the quality-of-service for the user tasks.

A game theory based algorithm(Tripathi et al., 2017) for load balancing is pro-

posed to optimize the operating cost in the geo-distributed data centers. Authors

modeled the load balancing problem as a non-cooperative game and operating expen-

ditures are modeled as a linear combination of power and latency costs. The proposed

technique models the load balancing as a cost optimization game and obtains a nash

equilibrium structure. Based on the obtained structure a novel algorithm is proposed

to minimize operating expenses.

The cloud service broker is responsible for routing requests from users to one

of the cloud data centers in the geographically dispersed data centers. A proximity-

based request routing technique(Wickremasinghe et al., 2010) is proposed that routes

users to the nearest available data center in terms of transmission delay. The authors

also proposed a best response time service routing policy that estimates the response

times for all the available data centers for the current request and DC with smallest

estimated response time is allocated for the user request.

A framework(Nadjaran Toosi et al., 2017) for reactive load balancing to distribute
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requests for web application among multiple available data centers is proposed. The

load balancing algorithm routes the user requests based on the renewable energy

source available in the location of the data centers. The authors suggest that the

proposed technique can reduce power costs by reduced utilization of brown energy.

A response time-sensitive load balancing solution is proposed for distributed,

heterogeneous data centers scenario. The offline solution is proposed based on force-

directed scheduling technique(Goudarzi and Pedram, 2013) that can determine the

application placement on a particular DC over a long period of time. The offline

algorithm is further extended to support online application placement in a distributed

DC with migrations. A prediction about application lifetimes, workload volumes,

renewable energy sources are considered for decision making.

The authors proposed a fuzzy-based algorithm(Toosi and Buyya, 2015) to exploit

the temporal variations of power costs, renewable energy available to reduce power

costs and increase utilization of renewable energy. The proposed algorithm is tested

with real workload traces of National Renewable Energy Laboratory and Energy In-

formation Administration and found to improve the reduction in cost to a significant

extent.

2.2.3 VM level load balancing policies in CloudAnalyst

The scheduling of user requests in the cloud data centers is an NP-hard opti-

mization problem. Load balancing of tasks on VMs is an important aspect in cloud

computing to meet several objectives like uniform utilization, power and cost-saving.

Effective load balancing strategies can avoid conditions like overload, underload of

VM resources causing system failures or wastage of power. There is lot of literature is

available for load balancing on VM in cloud computing domain, we will discuss some

of these algorithms which are relevant to our work.

CloudAnalyst(Wickremasinghe et al., 2010) is an open-source, graphical user

interface(GUI) based simulator for the cloud environment. The CloudAnalyst offers

simulation and modeling of all important entities in cloud and offers flexibility to add

and evaluate a new resource provisioning policy in cloud before being deployed on to

real cloud. The CloudAnalyst provides 3 different VM level load balancing strategies
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Table 2.2: Important Past Work Related To Geo-distributed Data Center Load
Balancing

Authors,year Primary
Mechanism

Problem Ad-
dressed Limitations

(Wickremasinghe
et al., 2010) Proximity based Distribution of load

based on DC location

Dynamic electricity
pricing is not used for
request routing.

(Nadjaran Toosi
et al., 2017)

Renewable en-
ergy utilization

Reduce power cost
data centers through
renewable energy

Response times for
users is not consid-
ered.

(Le et al., 2017)

Advance energy
procurement in
multi-timescale
electricity mar-
ket

To reduce power pro-
curement costs

Technique does not
consider response time
for users.

(Wickremasinghe
et al., 2010)

Response time
based

To improve response
time for users

Dynamic electric-
ity pricing is not
considered.

(Goudarzi and
Pedram, 2013)

Force-directed
scheduling

To improve response
time for online service
applications

Dynamic electric-
ity pricing is not
considered.

(Gu et al., 2015) DVFS based
Operational cost min-
imization but ensure
QoS

Technique does not
consider electricity
cost for processing.

(Toosi and
Buyya, 2015)

Fuzzy logic-
based

Reduce power cost
and carbon footprint

Response times for
users is not consid-
ered.

(Tripathi et al.,
2017)

Game theory
based

To minimize the oper-
ating cost and obtain
the structure of Nash
equilibrium

Work does not con-
sider dynamic electric-
ity cost and QoS.

(Mishra et al.,
2014)

Priority-based
round-robin

To address request
routing in multi-DC
situation in same
region

Technique does not
consider electricity
cost for routing.

(Ashikur et al.,
2014)

Global load bal-
ancing technique

Power and cost man-
agement in the smart
grid environment

Technique does not
consider response time
for users.
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for users. A round-robin policy allocates user requests to available VMs in a circular

fashion. The algorithm starts request allocation with a random VM in the data center

at the beginning. The round-robin load balancer has a simple implementation with

less computational overhead. However, the round-robin policy does not consider the

current load on the VM for allocation.

Throttled load balancing policy considers the state of the VMs to assign new

requests from users. A VM is associated with two states idle and busy, when a new

request arrives at the data center, an idle VM is searched for allocation, if VM with

the idle state is found, the request is assigned. If none of the VMs are idle, the request

is moved to the waiting queue. Though throttled load balancing policy considers the

state of the VM, the requests may need to wait for long time in the single waiting

queue.

Equally spread current execution load balancing policy(ESCE) offers a minimum

waiting time for the requests by allocating a VM with the least number of assigned

requests/tasks. The ESCE ensures uniform request allocation to the VMs in the

data center. The ESCE load balancer maintains an allocation table to keep track

of requests and state of the allocation table is updated with notifications from data

center controller about request allocations and de-allocations to VMs. However the

ESCE load balancer does not ensure uniform request allocations to VM when request

frequency is very high(peak load situation). Our proposed work offers a solution to

the problem of non-uniform request allocation during peak load conditions for ESCE

load balancer in this thesis.

A detailed analysis of contemporary VM load balancing algorithms in Cloud-

Analyst is presented. Further a Weighted Signature-based load balancing (WSLB)

algorithm(Ajit and Vidya, 2013) is proposed to reduce response time for the requests.

WSLB calculates the load assignment factor for each host and assigns the VMs based

on the factor value.

A comprehensive survey of important VM level load balancing algorithms is

discussed in (Mishra et al., 2018). Authors present a taxonomy of load balancing

schemes and cover most of the important work done in the domain of VM level task

scheduling in the cloud. An evaluation of the heuristic-based algorithms for some of

the vital performance metrics is carried out using Cloudsim(Calheiros et al., 2011)
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and a systematic comparative study of evaluation results is presented.

2.3 GPU enabled computing resource management

The GPU computing in the cloud is an emerging trend as more and more

compute-intensive, HPC, graphics applications are hosted on the cloud datacenters.

Though enough research has been done on CPU virtualization and their efficient

resource management techniques, the GPU virtualization and issues with the man-

agement of GPU resources in the cloud is still a growing research area. In this section,

we would mention some noted past works in GPU provisioning that are in line with

our research direction.

A disengaged scheduling technique(Menychtas et al., 2014) for the provisioning

of GPU to vGPUs is proposed. The authors utilize disengaged timeslice with an

overuse control mechanism that ensures fairness in the allocation and disengaged fair

queuing is used to limit resource idle states, but the method used is probabilistic.

Schedulers ensure a fair share of GPU among all application even when applications

are non-cooperative and adverse to each other.

A GVim(Gupta et al., 2009) scheme is proposed that utilizes both round-robin(RR)

and Xeno credit-based scheduling(XC) techniques of the Xen hypervisor for task

scheduling on GPU. RR scheduling sequentially selects a vGPU for every fixed times-

lice and monitors the call buffer of the vGPUs during this period. XC uses a credit

concept, which is time allocated for each vGPU. XC processes call buffer of vGPU for

a variable time, which is proportional to the credit amount to ensure weighted fair

sharing between guest vGPUs.

A Rain(Sengupta et al., 2013) framework is proposed for load balancing GPU

requests across GPUs fitted on distributed machines. The work suggests a two-level

hierarchical scheduling policy. The top-level module of the framework distributes the

load across all GPU equipped server machines. The bottom level module is responsible

for GPU device level scheduling of vGPUs.

A GPUvm(Suzuki et al., 2014) scheme that uses a BAND scheduler and solves

the issue with a credit-based scheduling scheme is proposed. The proposed technique

solves the miscalculation of credit when GPU idle time is included in credit amount,
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Table 2.3: Important Past Work Related To GPU Provisioning Policies

Authors, year GPU provisioning
policy Limitation

Menychtas et al.
2014

Fair Queueing and
Round robin

Framework does not consider
GPU memory transfers.

Gupta et al. 2009 Round Robin and
Credit-based

Technique includes GPU idle
time for credit calculation.

Sengupta et al.
2013

Priority-based and
Credit-based

Framework does not support
heterogeneous GPUs.

Suzuki et al. 2014 Credit-based
Technique induce unnecessary
context switches due to credit
value.

Farooqui et al.
2016 Affinity-based

Technique cannot be applied
to applications with device-
specific codes.

Gupta et al. 2011 FCFS Technique does not address
virtual environments.

Zhang et al. 2014 SLA based
Framework is specific to a
mixture of time-constrained
applications.

Siavashi and
Momtazpour,
2018

Fair-share based
Technique does not consider
memory transfer during a con-
text switch.

which may lead to inappropriate GPU share for certain vGPUs. GPUvm solves this

issue by first transforming the CPU time of GPU scheduler into credit value and then

subtracts the total credit value from the current vGPU.

Investigation(Farooqui et al., 2016) of current work-stealing algorithms is con-

ducted and observations are reported. Existing algorithms are found to be unaware of

the CPU and GPU characteristics, and such a situation results in degradation of per-

formance in OpenCL like applications that are capable of running on both CPU and

GPU platforms. To overcome this issue, the authors proposed a framework named

Libra, which first derives the device affinity scores for applications. Application is

assigned to the device with the highest affinity score.
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A new Pegasus(Gupta et al., 2011) framework that addressed one of the chal-

lenges in GPU scheduling is proposed. GPU virtualization technique has no access to

impose scheduling policy because the multiplexing of GPU is integrated into the device

drivers. Pegasus proposed a concept called VCPU with which GPUs are made basic

scheduling entities. The Pegasus includes proportional fair share, FCFS, credit-based

scheme, and SLA feedback based schedulers. The objective of Pegasus is to meet the

different requirements set forth by applications using different GPU schedulers.

A framework VGASA(Zhang et al., 2014) including adaptive scheduling poli-

cies is proposed. These adaptive algorithms include a dynamic feedback control

loop. VGASA consists of three scheduling policies, SLA-aware algorithm receives

FPS(frame per second) information and adjusts the sleep time per frame time. Fair

SLA-aware algorithm take away GPU from fast running applications and allocates to

slow running ones, and enhanced SLA-aware algorithm allows all VMs to possess the

same frame rate under 100% GPU utilization.

A fair-share GPU provisioning policy is proposed by GPUCloudSim(Siavashi and

Momtazpour, 2018) to share physical GPU among multiple vGPUs. The technique

allows all competing vGPUs to receive a slice of time on GPU. If the overall processing

power of co-located vGPUs exceed that of physical GPU, then the processing power

of vGPUs is scaled.

2.4 Research gaps identified

After the study of past work in the domain of resource management in cloud

computing, we have found following research gaps, and an honest attempt is made to

address these research gaps in our reported work in this thesis.

1. Consideration of performance to power ratio of physical machines for

power saving in DC

Though Power consumption profile is considered for physical machines in past

work, performance to power ratio is the most appropriate indicator of power

efficiency of physical machines. The performance to power ratio calculated from

the SPECPower benchmark(SPEC, 2011), an industry-standard benchmark is

considered to denote the power efficiency of PMs in DC. The optimal utilization
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of power-efficient machines is proposed in our reported work to save power in

data centers.

2. DC load conditions in the data center to improve underutilized hosts

management

The overall load conditions(context) in data centers can be considered to im-

prove the underutilized host management in DC. The DC load(peak and non-

peak) condition can be used to avoid overheads and resource wastage caused

due to host power off sequence and VM migrations during peak load conditions

in DC.

3. Response times and electricity price for power cost optimization in

geo-distributed data centers

Some of the past literature proposed solutions for renewable energy usage, elec-

tricity procurement in non-peak price duration, etc to reduce the power costs for

the data center owners. The varying electricity price across geographical loca-

tions is also suggested for request routing but estimated response time from the

data center to the user request is a vital parameter to minimize SLA violations.

4. Problem with ESCE algorithm during Peak load situation in DC

A performance problem regarding uniform VM utilization for ESCE load bal-

ancer is observed when the request frequency is high in the data center. The

state information related to request allocations to each VM is incorrectly up-

dated and used in peak load conditions causing non-uniformity in user task

allocation to available VMs in DC.

5. Scope for further investigation of efficient resource management and

programming challenges for GPU computing in cloud

Conventional techniques of virtualization do not hold good for GPUs because

of the inherent differences in terms of architectures, driver software, and dis-

tributed program/memory models. These differences make GPU provisioning

in the virtualized environment more complex and can cause inefficiency in re-

source utilization. There is scope for further investigation of underlying resource

challenges for efficient GPU processing in the cloud.
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2.5 Problem statement

Design a context-aware load balancing strategy for the cloud to opti-

mize energy consumption/cost, performance and resource utilization using

physical machine, cost and load characteristics.

2.6 Research objectives

Our research work attempts for power consumption and cost optimization based

on contextual parameters such as physical machine characteristics, data center load

conditions, and electricity pricing at that point in time. Our proposed work also pro-

poses peak hour performance improvement for data centers by an additional modifica-

tion to existing solutions and investigates efficient GPU enabled computing problems

in cloud from resource management perspective.

Figure 2.2: Overview Of The Proposed Work
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The overview of the proposed work is presented in figure 2.2.

1. Power and performance characteristics aware energy saving

Analyze the power consumption Vs system throughput ratio for the physical

machines in the data center to prioritize PMs for VM placements and also to

switch-off machines during non-peak hours.

2. Electricity cost-aware request routing

Analyze electricity cost in various geographical locations and response time for

routing of user requests/tasks in the multi-datacenter scenario for power cost

savings.

3. Peak hour performance improvement

Detecting peak hours, non-peak hours in data centers, and suitably change

the goal of load balancing to match the current situation. Also to propose

modifications to existing algorithms to improve their performance during high

load situations.

4. GPU enabled computing in cloud

Investigate current gaps in resource management policies and programming with

respect to virtualized GPUs.

2.7 Summary

The chapter presented the literature review for the problem of data center man-

agement cost minimization. The chapter discussed the details of the overall data

center management costs, the impact of power consumption cost on the operating

expenses is investigated. Then a literature review involving some of the relevant

past work for VM placement optimization, load balancing geologically dispersed data

centers setup, task-level load balancing algorithms in CloudAnalyst, and GPU pro-

visioning in cloud are discussed. Finally, the chapter presented the research gaps

identified, problem definition and research objectives addressed in this thesis.

In the next chapter, a novel context-aware VM placement optimization technique

for heterogeneous cloud data centers is proposed with an objective of power-saving.
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Chapter 3

VM Placement Optimization

The rapid expansion of cloud adoption by businesses of all scales has created

the necessity of making the cloud more efficient and beneficial for both cloud service

providers and their clients. Managing a cloud data center incurs a huge capital at the

beginning and also a high maintenance cost for keeping it running at all times. The

power cost forms a major share in the maintenance cost and any reduction in power

usage will benefit to a great extent to cloud data center owners in the long run.

It is noted that 59% of total power consumption of the data center is attributed

to the power consumed by computing servers(Greenberg et al., 2009). Any decrease in

power consumption of physical servers in data centers will certainly have the largest

impact on the data center maintenance cost. Data centers usually house a large

number of servers connected by a high-speed network and provided with massive

storage units. The servers(physical hosts) used in DC are heterogeneous in type,

purchased from different vendors, and offer a distinct compute capability. These

heterogeneous physical servers often exhibit variability in their power consumption

and performance characteristics making some servers more power-efficient than others.

Many existing VM placement optimization techniques(Masdari et al., 2016) do

not consider the power efficiency of heterogeneous physical hosts and current pre-

vailing load conditions in data centers for VM provisioning and server consolidation

process. The power efficiency can be described by variability in power consumption

and throughput of two distinct machines at the same load levels. The data center will

experience changing load conditions through its 24x7 operation, and it is also vital to
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optimize the task of VM placement to adapt to the current load conditions.

In this chapter, we propose a VM placement optimization technique for the

reduction in total power consumption of the data center by considering the power ef-

ficiency of heterogeneous physical servers and dynamically changing load conditions.

The rest of the chapter is organized as follows. Section 3.1 introduces the task of

VM placement optimization briefly, section 3.2 presents the objective of our pro-

posed technique. The system architecture of proposed VM placement optimization

is described in section 3.3. The mechanism to model the power efficiency of physical

machines is described in 3.4, and the technique for data center load condition based

adaptation is explained in 3.5. Section 3.6 describes proposed algorithms for the VM

placement optimization technique, and finally, the experimental setup, configurations,

and discussion on results obtained are presented in 3.7.

3.1 Background study

The VM placement optimization is a vital step in data center(DC) operations

to re-adjust the VM to PM mappings according to changing resource demands of

applications and the physical resource availability in data centers. VM placement

optimization is also helpful for server consolidation to save power during non-peak

situations in DC. The goal of VM placement optimization is to ensure that, resource

demands of user VMs are met with an optimal number of physical resources. The

task of dynamic VM placement optimization can be generally split into 4 sub-tasks,

1. Host overload detection: It is the process of detecting physical server overuse

where the performance of one or more VMs residing on it starts getting affected.

Hence it requires one or more VMs to be migrated out of it.

2. Host underload detection: It is the process of detecting physical server under-

utilization. Host under-utilization causes power wastage because of idle re-

sources in the system. The situation requires the consolidation of servers by mi-

grating VMs to other appropriate physical hosts(PMs), which enables switching

off of some of the servers to save power.
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3. VM selection: VM selection is a process of selecting a VM to be migrated from

a set of VMs residing on an overloaded host for VM migration.

4. VM re-placement: VM re-placement is a process of searching a new suitable

host(PM) for migrating a VM from an overloaded host.

The task of VM placement optimization is invoked at fixed scheduled intervals in the

data center. The scheduling interval of 5 minutes is used in the distributed resource

scheduler (DRS) of VMware(Mosa and Paton, 2016).

3.2 Research objective

The proposed work in this chapter investigated vital contextual parameters that

can constitute the overall context of the data center. The following contextual pa-

rameters are considered.

1. Physical machine’s performance and power characteristics.

2. Prevailing load conditions in the data center.

With the help of these contextual parameters, we proposed an efficient VM to PM

load balancing technique to optimize the overall power consumption in the data center.

The objective of our proposed solution is shown as a block diagram in figure 3.1.

The proposed solution considers physical machines performance to power ratio,

which signifies the power efficiency of physical hosts and load conditions(peak and non-

peak) in data center for VM provisioning and server consolidation. We formulated

the power consumption optimization problem as follows.

Ptotal(t) =
N∑
i=0

Po(t)(i)(l) (3.1)

Where,

Ptotal(t) denotes the total power consumption of cloud datacenter at time t.

N represents the number of physical machines at the data center.

Po(t)(i)(l) corresponds to power consumption of ith machine having CPU load of l%

at time t.
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Figure 3.1: System Block Diagram For Proposed VM Placement Optimization

The objective of the proposed technique is to optimize the value of Ptotal without

affecting the response time of user applications and meet SLAs.

3.3 Proposed system architecture

The target environment of our proposed system in this chapter is a cloud IaaS

service model in a large scale data center with N heterogeneous machines. Each node

is composed of major system resources such as CPU, main memory, network, and

connected to network-attached storage(NAS) for storage. The proposed system has

no prior knowledge of user application workloads and VM placement details. The

geographically distributed users of such a cloud system can submit their VM place-

ment requests, which may comprise a dynamic mix of distinct application workloads.

These dynamic mixes of application workloads wrapped in VMs may be co-located

on a single physical server in the cloud data center. The software architecture for the

proposed solution consists of two distributed modules. These modules help to capture

context information of the data center at both the physical machine level(local) and

also at the data center level(global) for efficient VM provisioning and re-placements.
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3.3.1 Local context manager

The local context manager(LCM) is designed to work at every physical host and

at the same layer of software where hypervisor(VMM) is placed. The block diagram

of the LCM is shown in figure 3.2. The LCM is responsible for the collection of

information related to physical hosts and all co-located VMs residing on it.

Figure 3.2: Local Context Manager Architecture

The following information is collected by the LCM at each physical host and is

regarded as the local context at each physical host in the data center.

1. Resource utilization details of all VMs( CPU, network, and memory).

2. Physical machine remaining resource capacity at run time.

3. Run time power consumption information.

Each host maintains the information about the performance and power characteris-

tics obtained by the SPEC power benchmark(SPEC, 2011). The resource utilization

details of VMs are used in determining the overall resource utilization statistics of the

physical host and in the determination of overload/underload conditions. The phys-

ical resource remaining capacity is needed to check the feasibility of the placement

of new VMs on the physical host. The run-time power consumption of the physical

host is needed to compute overall power consumption details of the data center at

any point in time. The local context manager shares details(local context) with the

global workload scheduler(GWS) for optimal VM provisioning decisions.
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3.3.2 Global workload scheduler

The global workload scheduler(GWS) is designed to work at a central resource

management server or a central load balancing server in each data center. The GWS

module works in tandem with LCMs at each physical host to derive the current global

context and local context for dynamic VM load balancing in the data center. The

block diagram of the GWS module is shown in figure 3.3.

The following are the functions of the GWS module in the data center,

1. Detection of load conditions (peak or non-peak) in the data center(called load-

/global context)

2. Invoking VM placement optimization at regular intervals in the data centers to

re-adjust the VM-PM mappings to achieve power and performance efficiency.

Figure 3.3: Global Workload Scheduler Architecture

3.4 Power efficiency of physical machines

One of the objectives of our work reported in this thesis is to consider the power

efficiency of physical machines for VM provisioning and server consolidation decisions
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of VM load balancer in data centers. The power consumption of a physical machine

in nothing but the collective sum of the power consumption of its sub-components

such as CPU, memory, disk, power supply unit, and cooling equipment. But some

past studies(Fan et al., 2007)(Kusic et al., 2008) have noted that there exists a linear

relationship between power consumption and CPU utilization. However, because of

evolving modern servers containing multi-core CPUs and support for virtualization,

servers are fitted with large RAMs. These large RAMs start to consume a signifi-

cant share of power in the total power consumption of physical servers. Also, the

difficulties in modeling power consumption of multi-core CPUs makes building an

accurate analytical model for power consumption analysis a complex research prob-

lem(Beloglazov and Buyya, 2012). So instead of relying on an analytical model for

power consumption, proposed work reported in this thesis uses real benchmark re-

sults for power consumption and performance metrics provided by the SPECpower

benchmark(SPEC, 2011).

The data centers consist of physical machines(servers) of varying configurations

and from different vendors. These physical machines will not exhibit homogeneity

in their power consumption and throughput profiles. We can measure the power

efficiency of a physical machine by taking a ratio of throughput(NumOps) to the

power consumed(Pc) at different defined load levels. An average of the values noted

at different load levels is considered as performance to power ratio of the physical

machine.

PerfToPowerR(Load%) = NumOps(Load%)/Pc(Load%) (3.2)

The ratio of performance to power consumption at different load levels of CPU uti-

lization for a given physical machine is represented by equation (3.2).

Where, Load % is calculated as a ratio of current CPU utilization of the physical ma-

chine to the total CPU capacity in MIPS and then multiplying the CPU utilization

fraction obtained by 100 as indicated in following equation (3.3),

Load% = (cpuUtilizationMIPS(PM)/TotalCpuMips(PM)) ∗ 100 (3.3)

43



Then using data of different load levels of PerfToPowerR ratio, an average PerfToPow-

erR can be calculated as in (3.4), where N indicates total number of distinct load levels

considered and PerfToPowerR(Li) specifies the performance to power ratio of physical

host at specific load level of CPU at instance i calculated from (3.2).

AverPerf2Pow = 1/N
N∑
i=0

PerfToPowerR(Li) (3.4)

The AverPerf2Pow is considered as a metric for power efficiency of the correspond-

ing physical machine; a higher value of AverPerf2Pow indicates higher power effi-

ciency of the physical machine. The reported work in this thesis relies on the Spec

Figure 3.4: Proposed Host Selection Technique For VM Placement And Host
Shutdown.

Benchmark(SPEC, 2011) data published for several types of servers for calculation of

the power efficiency of physical machines. The SPEC power benchmark is the first

industry-standard benchmark that evaluates the power and performance character-

istics of the single server and multi-node servers. It can be used to compare power

and performance among different servers and serves as a toolset for bringing about

improvements in servers usage and efficiency.

Table 3.1 lists a set of server’s power and performance metrics reported in Spec

Power Benchmark(SPEC, 2011). These server configurations(types) are used for eval-
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uation of our proposed work reported in this thesis.

The P and P2P in table 3.1 represents power consumption and performance to

power ratios at different load levels. The Avg P2P indicates average performance to

power ratio(AverPerf2Pow) of the corresponding physical machine(server) type. The

proposed technique prioritizes physical machines with higher AverPerf2Pow for phys-

ical host provisioning during VM allocation/re-allocation requests. During non-peak

hours, physical machines with lesser AverPerf2Pow are prioritized for power-off to

ensure power-efficient machines are used most to save power. Figure 3.4 describes

the prioritizing process of physical hosts based on their power efficiency for new VM

placement requests and also when host shutdown requests for power saving are pro-

cessed.

3.5 Load condition based adaptations

The VM placement optimization process has to check each physical machine(server)

for load conditions (overload and underload) at regular intervals in the data center.

It is done to re-map VMs to PMs as per prevailing load conditions to ensure perfor-

mance SLAs for user applications and also to save power. In the process of achieving

its goals, the VM placement optimization algorithm also consumes significant comput-

ing power and time of the CPU of the servers involved. It is essential to improve the

algorithm for VM placement optimization to consider overall load conditions(context)

of the data center to eliminate some of the VM placement optimization sub-tasks to

optimize power consumption in the data center. The host power off and power on

sequences will consume significant power and also CPU time. Also, VM migrations

arising out of host power off sequence will place demands for additional resources from

both source and destination physical machines.

The work reported in this thesis proposes modifications to the VM placement

optimization algorithm to skip acting on host underload conditions for PMs when the

data center is experiencing peak traffic(high load) situation. The proposed modifica-

tions avoid unnecessary host power-offs and VMmigrations during high load situations

to help the data center save significant amount of power and CPU time. Figure 3.5

illustrates the modifications proposed to the VM placement optimization technique in
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the data center. The data center load context is calculated based on the average CPU

utilization of all active physical hosts. The load context parameter is configured to

take two states called peak and non-peak states based on a static threshold technique.

The powering off sequence and migrating VMs residing on the underloaded host are

skipped in the data center when load context is set to peak situation to save power.

Figure 3.5: Load Context Aware VM Placement Optimization Process.

3.6 Proposed context-aware VM placement optimiza-

tion

In this section, a context-aware VM placement optimization technique is de-

scribed. The objective of the proposed solution is to reduce the overall power con-

sumption of the data center without any performance penalty for user applications.

In our reported work, the global workload scheduler(GWS) is responsible for initi-
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ating the VM placement optimization process. The proposed technique regularly

checks for host utilization(load) conditions by communicating with local context man-

agers(LCM) of each physical machine. The proposed work defines the VM optimiza-

tion scheduling interval as 5 minutes, which is a similar interval used in distributed

resource scheduler (DRS) of VMware(Mosa and Paton, 2016).

The proposed work considers the power efficiency of physical machines for VM

placement and server consolidation decisions. Also, the technique for detecting the

load context of the data center and based on the load context, an alternative method

to handle host underload conditions, is defined.

3.6.1 VM placement optimization process

The algorithm 3.1 presented in this section describes the steps of the proposed

context-aware VM placement optimization process. In our reported work, the VM

placement optimization algorithm is invoked by the global workload scheduler(GWS)

module at fixed regular intervals in the data center(invocation interval is set as 5

minutes in the proposed work).

The proposed algorithm for VM placement optimization at first handles the host

overload condition for all the active physical machines in the data center. The host

load detection process checks each physical host for overload condition and selects

one or more VMs from each of the overloaded hosts that need to be migrated out of

it to reduce its load. A new suitable destination physical host is searched for one or

more VMs that need to be migrated out of an overutilized host. The new (VM,PM)

pair for VM migration is added into the migrationList. The context-aware algorithm

queries the current load context in the data center. If the data center is experiencing

peak load situation, the steps to handle the host underload condition for each physical

host is skipped to avoid unnecessary power-offs and VM migrations as these physical

hosts may need to be powered on again to meet surging resource demands. If the

data center load condition is non-peak, the underutilized hosts are switched off after

migrating all VMs residing on it to save power. The time complexity of the algorithm

3.1 is O(n2).
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Algorithm 3.1: Context-aware VM placement optimization
Input : pmList
Output: migrationList

1 vmsForMigration = 0;//initialize list of migrating VMs
2 foreach pm ∈ pmList do

/* Identify VMs to be migrated from Overloaded Hosts */
3 if isHostOverutilized(pm) then
4 Include VMs from overutilized host into the list of VMs considered for

migration
5 Find suitable destination host for VM migration
6 Add (VM, destination PM) pair into migrationList
7 end

/* Query current DC load context */
8 if isNonPeakSituationInDc() then

/* select VMs from underloaded Hosts for migration */
9 foreach pm ∈ pmList do

10 if isHostInUnderloadedCondition(pm) then
11 Include all VMs residing on underloaded host into list of VMs

considered for migration
12 Find suitable destination host for migrating all VMs
13 Add (VM, destination PM) pairs for all VMs into migrationList
14 end
15 end

16 end
17 end
18 return migrationList;

3.6.2 VM placement algorithm(PPABFD)

The algorithm for VM placement called power and performance-aware best fit

decreasing VM placement technique, a modified version of the power-aware best fit de-

creasing (PABFD) algorithm (Beloglazov and Buyya, 2012) is presented in algorithm

3.2.

The proposed algorithm first sorts the list of VMs for migration in descending

order of CPU utilization and also the list containing all physical hosts in the data

center are sorted in descending order of their average performance to power ratios.

This is done to consider the average performance to power ratio AverPerf2Pow of

physical hosts(PM) for prioritizing PMs for VM placement requests. For each VM

in the migration list, the physical hosts are checked for placement suitability and the

estimated power consumption after VM placement is calculated for all the suitable

physical hosts. The energy and performance efficient physical machine among all the
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Algorithm 3.2: Power and performance aware BFD(PPABFD)
Input : pmList,vmList
Output: VMAllocationList

1 Sort vmList in the descending order of CPU utilization
2 Sort pmList in descending order of their average performance to power ratios
3 foreach vm ∈ vmList do
4 minPower = MAX_VALUE;
5 PMAssigned = NULL;
6 foreach pm ∈ pmList do
7 if isSuitablePM(pm,vm) then
8 power = estimatedPower(pm,vm);
9 if power < minPower then

10 PMAssigned = pm;
11 minPower = power;
12 end
13 end
14 end
15 if PMAssigned != NULL then
16 VMAllocationList.add(vm, PMAssigned);
17 end

18 end
19 return VMAllocationList;

suitable physical hosts is selected.

The algorithm ensures that the host machines(PM) with higher AverPerf2Pow

are prioritized for VM allocation to maximize utilization of the power-efficient physical

machines for power saving in DC. The algorithm PPABFD returns new VMs to PMs

allocations, which are efficient in terms of power and performance efficiency. The time

complexity of the algorithm 3.2 is O(n2).

3.6.3 Host underload condition

The host underload detection and switch off process is essential in data centers

to save power when the data center is not experiencing a heavy load. The host

underload detection process detects physical hosts with CPU utilization lesser than

a defined static threshold and selects underutilized physical hosts for power off. The

VMs residing on these selected underloaded hosts are migrated out before the host

power-off. However, the underloaded host selection technique should also consider the

power efficiency of the underutilized physical hosts for selecting a particular host for

power off.
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When the data center is experiencing lesser workload requests, the proposed

VM placement optimization algorithm considers switching off the host machines with

lower power efficiency to maximize power saving benefit. The algorithm 3.3 presents

our proposed host underload detection and underutilized host selection technique for

power off. The proposed technique takes into account the performance to power

ratio AverPerf2Pow of the underutilized host machines for host selection to power

off. Algorithm 3.3 ensures that the physical host(PM) with CPU utilization lesser

than minUtilization and which is least power-efficient is switched off, thereby saving

power in a non-peak duration in the data center. The power-off of the physical host

is performed only after all the VMs residing on it are migrated out successfully. The

time complexity of the algorithm 3.3 is O(n).

Algorithm 3.3: Underloaded host detection algorithm
Input : pmList
Output: underUtilizedHost
/* Initialize to static threshold value for under utilization

check */
1 minP2PRatio = MAX_VAL;
2 minUtilization = LOWER_TRESHOLD;
/* Select power inefficient Host with lower than threshold CPU

utilization */
3 foreach pm ∈ pmList do
4 utilization = getCurrentUtilizationOfCpu(pm);
5 if (utilization > 0) && (utilization < minUtilization) then
6 power2PerfRatio = getPerf2PowerRatio(pm);
7 if power2PerfRatio < minP2PRatio then
8 underUtilizedHost = pm;
9 minP2PRatio = power2PerfRatio;

10 end
11 end
12 end
13 return underUtilizedHost;
14

3.6.4 Load context detection in datacenter

One of the objectives of the reported work in this thesis is to consider the global

data center load conditions for the VM placement optimization process. We present

a load context detection algorithm in algorithm 3.4 with a defined static threshold
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utilization. The algorithm accesses the information stored by a local context man-

ager (LCM) at each physical host such as VMs running on hosts and their MIPS

utilization to arrive at the overall host CPU utilization. Once host utilization data

is summed up for all hosts in the data center, the proposed solution calculates the

average CPU utilization of data center servers. If the data center has an average

CPU utilization of over MAX_UTIL_THR_DC then the proposed algorithm desig-

nates the current load context as peak load duration. Otherwise, it is considered as

the normal/non-peak duration in the data center. The time complexity of the algo-

rithm 3.4 is O(n2). The total host utilization(TotalHostUtilization) is calculated by

summing up all VMs MIPS utilization stored at LCM at each physical host and To-

talHostUtilization for all hosts is used to calculate the average host utilization in the

data center (AverageHostUtilizationsInDc). The average host utilization in the data

center(AverageHostUtilizationsInDc) is compared against a defined threshold value of

CPU utilization to trigger the peak load condition(to set isPeakSituationFlag). The

algorithm 3.4 is invoked in algorithm 3.1 to get the current load context in DC.

Algorithm 3.4: DC load context detection algorithm
Input : pmList
Output: isPeakSituationFlag

1 TotalHostUtilizationsInDc= 0;
2 AverageHostUtilizationsInDc =0;
3 isPeakSituationFlag = FALSE;
/* Measure total DC MIPS utilization */

4 foreach pm ∈ pmList do
5 utilization = 0;
6 foreach vm ∈ VMListOf(pm) do
7 utilization = utilization + getMipsUtilization(vm);
8 end
9 TotalHostUtilization = TotalHostUtilization + utilization;

10 end
11 AverageHostUtilizationsInDc =
12 TotalHostUtilization / NumHostsInDc;
13 if AverageHostUtilizationsInDc > MAX_UTIL_THR_DC then
14 isPeakSituationFlag= TRUE;
15 end
16 return isPeakSituationFlag;
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3.7 Experimental evaluation

The experimental evaluation of proposed context-aware VM placement optimiza-

tion technique for power saving has been carried out against another well known

adaptive heuristics-based technique for dynamic consolidation of VMs(Beloglazov and

Buyya, 2012).

3.7.1 Performance metrics

Various performance metrics used in the evaluation of the proposed solution are

described in this section.

1. Energy consumption

The metric denotes the total power consumption of all the physical hosts oper-

ating in the data center. Any decrease in the total power consumption in the

data center implies reduced power costs for the data center owners.

2. Overall SLA violations

SLA Violations occur because of the performance degradation caused by non-

optimal mappings of VMs-PMs. Performance degradation is due to the resource

shortages for co-located VMs often caused by server over-utilization and also

because of frequent migrations involving the same VM.

3. Total VM migrations

Total VM migrations denote the number of re-mappings of VMs to available

physical machines(PM) done during the given time. A very high number of VM

migration may mean performance degradation and wastage of network band-

width, computing resources on the source and destination nodes. A small num-

ber of VM migration may mean non-adaptability to dynamical situations in the

data center.

4. Total host(PM) shutdowns

The metric denotes the number of times the host machines(PM) are shut down in

a given duration. The physical machines(PM) are switched off for power saving

or any maintenance in data centers. Though PM shutdowns save power for

53



the data center, frequent shutdowns may mean additional power consumption

because of PM start-up or shutdown procedures and may also lead to hardware

component failures in the physical machines over time.

3.7.2 Experimental setup

The CloudSim(Calheiros et al., 2011) is used for the evaluation of the proposed

context-aware technique of VM placement optimization for power and cost-saving.

CloudSim is a popular toolkit for simulation and modeling of the cloud environment

and its applications among the research community. CloudSim provides both behav-

ioral and system modeling of cloud components. Simulation can help to evaluate

the performance of proposed architectures, algorithms, and applications prior to their

deployment in a highly dynamic, scalable and distributed environment like cloud.

CloudSim helps cloud developers to test the accuracy and performance of their

resource management and provisioning policies in a highly repeatable and controlled

environment without any cost burden. CloudSim also helps to overcome any bot-

tlenecks and any issues in runtime before deployment on the real cloud. CloudSim

provides essential classes for modeling of data centers, service brokers, computing

resources(CPU, RAM, network, etc), virtual machines, users, applications, and also

policies for management of various system-level components such as resource schedul-

ing and provisioning. Using the simulated cloud components, it is possible to evaluate

new techniques governing the use of cloud resources by utilizing existing or adding

new scheduling policies, load balancing algorithms, etc. It can also be used to testify

the competence of proposed techniques from various perspectives such as cost, power

consumption, and execution time. The layered architecture of CloudSim toolkit is

shown in figure 3.6.

For the evaluation of our proposed solution, the heterogeneous data center is

simulated using a composition of six different types of physical hosts(PM) with con-

figurations listed in table 3.2.

The experiments are conducted on an HP Probook computer with a compute

capability of Core i5 CPU and 8 GB RAM. The computer is driven by the Windows 7

operating system. The duration of the simulation is set to one day, which is a similar
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Figure 3.6: CloudSim Layered Architecture

duration used in the evaluation of another heuristic-based solution(Beloglazov and

Buyya, 2012). The proposed context-aware VM placement optimization technique

is invoked every 5 minutes once in the data center, which is a duration used in the

VMWare distributed resource scheduler(Mosa and Paton, 2016) called DRS to adjust

the VM-PM mappings.

The proposed solution is evaluated using two experiments carried out with two

different natures of workloads and multiple distinct resource configurations in the

data center. The objective of the first experiment is to testify the competence of

Table 3.3: Virtual Machines(VM) Configurations Used In DC

Serial
No VM Type [CPU_MIPS,num_cores, RAM_in_MBs,

VM_Size_in_GBs]

1 Type 1 [Extra Big] [2500,1,870,2.5]

2 Type 2 [Big] [2000,1,1740,2.5]

3 Type 3 [Small] [1000,1,1740,2.5]

4 Type 4 [Extra-Small] [500,1,613,2.5]
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our proposed solution against synthetic workloads with a variable number of VMs to

simulate a lightly loaded scenario to heavily loaded scenarios in the data center. The

experimental configuration is chosen to ensure that our proposed solution is useful

in different load conditions. The aim of the second experiment is to appraise the

competence of our proposed context-aware solution against a real PlanetLab workload

traces(PlanetLab, 2011) containing CPU utilization data of 1033 VMs. The data

center configuration composing 400 PMs of six different host types is used.

3.7.3 Experiment 1: Synthetic workload with a variable num-

ber of VMs

The objective of the experiment is to testify the proposed VM placement op-

timization technique at different load conditions(lightly to heavily loaded) in a data

center. The lightly loaded and heavily loaded situations indicate the overall load

on the PMs considering available physical resource capacity of hosts and resource

demands of co-located VMs. Five different configurations are chosen for testifying

different load conditions.

• Configuration 1.1: 100 VMs to be allocated to 100 PMs

• Configuration 1.2: 200 VMs to be allocated to 100 PMs

• Configuration 1.3: 250 VMs to be allocated to 100 PMs

• Configuration 1.4: 300 VMs to be allocated to 100 PMs

• Configuration 1.5: 400 VMs to be allocated to 100 PMs

The simulation of the cloud data center is done composing of two physical ma-

chine types of HP ProLiant ML110 G4 and IBM server x3250 with configurations

shown in table 3.2 and all types of VM configurations shown in table 3.3 are used

to create VMs. Cloudlets are programmed to create utilization data every 5 minutes

based on the stochastic model(Calheiros et al., 2011). The energy consumption re-

sults of the proposed solution, along with a heuristic-based solution(Beloglazov and

Buyya, 2012) for five configurations of the synthetic workload are plotted in Figure

3.7.
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Figure 3.7: Comparison Of Power Consumption Results For Synthetic Workload

Results suggest that the proposed solution saves approximately 8-10% energy

during lightly and heavily loaded cases and 2-6% during moderately loaded cases in

the data center. The power-saving achieved can be attributed to the power efficiency

aware VM placement and load context-based optimizations of VM placement. The

results of all of the performance metrics for the experiment 1 are tabulated in table 3.4.

The total VM migrations plotted in a graph in figure 3.8 for experiment 1(synthetic

workload) indicate an high increase with lightly loaded to heavily loaded scenarios

with heuristics based technique(Beloglazov and Buyya, 2012) due high number of

host shutdowns and non-optimal VM-PM mappings. However, with the proposed

solution, the number of VM migrations witness a small increase with lightly loaded to

heavily loaded scenarios. This indicates that the proposed context-aware technique is

able to generate better allocation strategy because of power efficient prioritization of

hosts for VM allocation and DC load aware server consolidation strategy.

Figure 3.9 and figure 3.10 indicate that the overall SLA violations and total

host shutdowns recorded for experiment 1 are much smaller in case of the proposed

solution when compared with the heuristic-based past work for all the configurations.

The proposed technique can avoid unnecessary host shutdowns and VM migrations

by considering load context in the data center.
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Figure 3.8: VM Migrations Results For Synthetic Workload

3.7.4 Experiment 2: Real-world workload with multiple PM

types

The objective of experiment 2 is to evaluate the competence of the proposed

VM placement optimization solution using a real-world workload in the data center.

Three configurations are chosen for testifying different levels of heterogeneity with

host machine types of varying power and performance characteristics.

• Configuration 2.1: DC with 2 host machine types

• Configuration 2.2: DC with 4 host machine types

• Configuration 2.3: DC with 6 host machine types

The cloud data center is simulated for experiment 2 using six types of physical

machines with configurations listed in table 3.2 consisting of 400 PMs. The exper-

iment utilizes a real-world workload consisting of resource utilization data of 1033

VMs(PlanetLab, 2011) captured in PlanetLab servers. The physical machine(PM)

types used in all the three configurations are tabulated in table 3.5, and their config-

urations can be found in table 3.2.

Figure 3.11 shows the power consumption details of the proposed solution and

adaptive heuristics-based technique(Beloglazov and Buyya, 2012). It can be noted

from the figure that our proposed solution saves approximately 1-3% power compared

to the heuristics-based technique.
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Figure 3.9: Overall SLA Violations Results For Synthetic Workload

The results of all the performance metrics for real world workload(experiment

2) are tabulated in table 3.6.

The graphs plotted for total VM migrations in figure 3.12 indicates that the

VM migrations for the proposed context-aware technique are much smaller in number

compared to the heuristics-based method for all configurations. The overall SLA

violations and total host shutdowns recorded during experiment 2 are also much

smaller in the case of the proposed solution for experiment 2 as shown in figure

3.13 and figure 3.14. The proposed technique can avoid a higher number of VM

migrations by providing the near-optimal VM placement and by adopting a load

aware underutilized host management technique than the adaptive heuristics-based

technique proposed earlier(Beloglazov and Buyya, 2012).

Performance evaluation results suggest that the proposed context-aware VM

placement optimization solution performs better than the heuristics-based technique

for power consumption minimization and improves the efficiency of the operation by

reducing VM migrations, host shutdowns, and SLA violations in both the experiments

conducted. The proposed context-aware VM placement optimization technique can

reduce power consumption by 2-10% for synthetic workloads and 1-3% for real work-

load traces in the data centers.

The key differentiating factors between proposed context-aware solution and heuristics-

based technique are, using the performance and power characteristics of physical ma-

61



Figure 3.10: Number Of Host Shutdowns For Synthetic Workload

chines and detecting the global load context of the data center to improve the VM

placement optimization efficiency.
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Table 3.5: Physical Machines Types Used In Experiment 2

Configuration name Host(PM) types

Configuration 2.1
HP ProLiant ML110 G4

IBM server x3250

Configuration 2.2

HP ProLiant ML110 G4

IBM server x3250

HP ProLiant ML110 G5

IBM server x3550 [XeonX5675]

Configuration 2.3

HP ProLiant ML110 G4

IBM server x3250

HP ProLiant ML110 G5

IBM server x3550 [XeonX5675]

HP ProLiant ML110 G3

IBM server x3550 [Xeon X5670]

Figure 3.11: Power Consumption Results For Real Workload
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Figure 3.12: VM Migrations Results For Real Workload

Figure 3.13: Overall SLA Violations For Real Workload
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Figure 3.14: Number Of Host Shutdowns Reported For Real Workload
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3.8 Summary

The chapter first introduced the technique of VM placement optimization and

its sub-tasks. Then the chapter presented the research objective for the overall power

saving in the data center, described the physical machine characteristics and its ap-

plication to power saving, load condition detection and its consideration for under-

utilized host management. The proposed algorithms for VM placement optimiza-

tion, VM placement, underutilized host selection, and DC load context detection are

presented.Finally, the evaluation of the proposed technique with both synthetic and

real-world workloads is described. The results obtained for proposed technique sug-

gested that power saving of 2-10% for synthetic workloads and 1-3% with real-world

workloads is achieved.

In the next chapter, an electricity cost-aware request routing(load distribution)

algorithm for cloud service broker is presented for the power cost optimization in the

geographically distributed data centers scenario.
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Chapter 4

Electricity cost-aware load balancing

in geo-distributed data centers

The adoption of cloud services by businesses across the globe is overgrowing,

and many new services and customers consuming these services are added at an ever-

increasing pace. Because of this growth, cloud providers like Amazon, Microsoft,

and Google have set up many geographically dispersed data centers, and they are

continuing to build more to support computing demands of their user bases. In the

arena of internet applications like those hosted on cloud, the speed and latency are

of utmost importance. The necessity creates a motivation for building geographically

distributed data centers around the world to reduce speed-of-light delays for user

applications hosted on cloud and accessed around the globe. But such a distributed set

up of data centers over various geo-locations create a new set of research problems and

opportunities. One such research problem addressed in this chapter is determining

how to distribute the user application traffic(load) across geographically dispersed

data centers to minimize the cost for data center providers.

The data centers need huge capital investments at the beginning of setting up IT

and non-IT infrastructure and later incur management costs for data center mainte-

nance and power(electricity) consumption to keep data center up for 24x7 operations.

It is noted that 15% of overall data center amortized costs(Greenberg et al., 2009)

corresponds to power/electricity cost.

Electricity is generated using various methods across the world, and its availabil-
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ity and volume are not uniformly distributed. The cost of electricity at a geographical

location depends on various factors like availability of natural resources, technology

involved for generation, and cost of infrastructure needed for generation. Electricity

costs also found to vary based on the time of the day, total units consumed, etc based

on the domestic rules of each country.

It is essential to minimize data center management costs for the cloud providers

to help reduce the cost of ownership of a large scale computing facility like cloud data

centers. The distributed data centers provide an opportunity to utilize the electricity

price variability across the globe to optimize power costs. The rest of the contents

in this chapter is organized as follows, section 4.1 introduce the functions of the

cloud service broker briefly; section 4.2 presents the objective of our proposed work.

The power cost-aware technique to load balance user requests among geographically

dispersed data centers is described in 4.3, the experimental setup and configurations

are presented in section 4.4, and experimental results are discussed in section 4.5.

4.1 Background study

Cloud service broker is responsible for controlling traffic routing between users

and data centers in a geographically distributed data center set up. Cloud service

broker distributes the user requests for cloud applications across multiple available

DCs based on a load balancing algorithm/policy. The figure 4.1 shows the functions

of service broker module in a cloud computing environment.

The cloud service broker routing policies(Wickremasinghe et al., 2010) that are

commonly used are listed below.

• Proximity based routing - The closest data center in terms of transmission

delay is considered for routing.

• Performance optimized routing - The performance of all data centers is

monitored, and traffic is routed to the data center which is estimated to give

the best response time to the user.

• Dynamically re-configuring routing - It is very similar to proximity-based

routing, but it has an additional responsibility of scaling a load of a data cen-
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Figure 4.1: Cloud Application Service Broker

ter by increasing or decreasing VM allocation based on current performance

comparing against best performance ever achieved with that data center.

The proposed work in this chapter describes a new task/request distribution algorithm

for the service broker to optimize the cost of power consumption for data center owners

without affecting the performance of user applications.

4.2 Research objective

The objective of the proposed work is to distribute more requests(load) on data

centers where electricity/power cost is cheaper at that point of time to optimize the

total power cost and also ensuring the response time is the same as or better than

the closely located data center. The proposed power cost optimization problem can

be mathematically presented as follows,

EC(N) =
N∑
i=0

n(i)E(it)Pc (4.1)

In equation 4.1,

EC(N) denotes the total cost of electricity(power) for N data centers,

n(i) represents the number of user requests processed by i-th data center,

E(it) is the electricity cost at i-th data center location at time t,

Pc denotes electricity consumed by server per unit request which can be considered
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as a constant value.

The objective of the proposed work is to minimize the value of EC(N).

4.3 Electricity cost-aware cloud service broker policy

The proposed technique aims to leverage the varying electricity price around the

world to optimize the power costs for data center owners. The proposed technique

for cloud service broker distributes user compute workload(requests) among available

data centers by incorporating electricity prices prevailing in the DC regions as a deci-

sion parameter. The electricity price is modelled as a two dimensional context variable

that varies with both place and time or amount of consumption. The 2-D table used

to represent electricity price is referred to as Electricity cost matrix(or EC matrix)

in this report and can be represented as shown in table 4.1. This EC matrix will

Table 4.1: Electricity Cost Matrix Representation

Geo Location 00:00-5:00 5:01-9:00 9:01-19:00 19:01-
23:59

DC Location X x1 x2 x3 x4

DC Location Y y1 y2 y3 y4

DC Location Z z1 z2 z3 z4

... ... ... ... ...

DC Location N n1 n2 n3 n4

have one row for each of the data centers and each of the columns indicating another

parameter with which electricity cost varies for that geo-location, for example time of

the day as shown in table 4.1. The EC Matrix should be updated by administrator

based on domestic rules and made available to the cloud service broker at all the

time. The proposed cost-aware algorithm placed at the cloud service broker accesses
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the following details about all the available geographically dispersed data centers.

1. The closest data center available to the request in terms of its transmission delay

and its estimated response time.

2. The updated EC Matrix containing the electricity price of all DC locations.

3. The estimate of response times for all data centers for the current request.

The criteria of the proposed cost-aware service broker algorithm for allocating requests

to a cheaper data center in terms of electricity prices are as follows.

1. The data center should have a response time lower than the closest data center.

2. The electricity cost of the selected data center should be lesser than other avail-

able data centers that satisfy the first criteria.

The algorithm for the cost-aware algorithm in the cloud service broker is presented

in algorithm 4.1.

The proposed algorithm 4.1 accesses the details of available geo-distributed data

centers(allDataCenters) and the updated EC matrix(allDccosts) during initialization

process. The algorithm accepts user base location of the incoming request as input

and finds the closest DC(closestDc) located to the corresponding user base location us-

ing the transmission delay matrix. The algorithm then calculates estimated response

times for all the available data centers(allDcEstTime) for the current request using the

network delay and last recorded response time(bestRecordedresponseTime) from the

corresponding DC. The estimated response time for closest DC(closestEstResponseTime)

for current request is also calculated. Once required parameters such as estimated

response time for all candidate DCs including closest DC(allDcEstTime), electricity

cost matrix(allDccosts) for processing current request are recorded, the cost-aware

algorithm finds the data center Id(dest) for which the estimated response time is

smaller than closest DC estimated response time(closestEstResponseTime) and elec-

tricity price(per unit price for power) is lesser than closer DC. The selected data center

ID(dest) for which there exists an estimated response time(leastEstRespTime) lower

than closest DC and having the electricity price advantage is returned for request

assignment otherwise closest data center Id(closestDc) is returned for the incoming
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Algorithm 4.1: Electricity cost-aware request routing technique
Result: Finds cheaper DC with best response times
Input : src- Source location of request
Output: dest- Datacenter id for request routing
/* Initialization */

1 allDataCenters= getlAvailableDatacenterIds();
2 allDccosts =getECCostsforDCs(allDataCenters);
3 allDcEstTime = MAXTIME;
4 closestDc= findClosestDc();
/* Calculate estimated response times for all DCs */

5 foreach DataCenterId ∈ allDataCenters do
6 nwDelay = getNetworkDelay(src,DataCenterId);
7 bestRecordedresponseTime = getBestResponseTime(src,DataCenterId);
8 currEstResponseTime = nwDelay + bestRecordedresponseTime;
9 allDcEstTime[DataCenterId] =currEstResponseTime;

10 if DataCenterId == closestDc then
11 closestEstResponseTime = currEstResponseTime;
12 end
13 end
14 dest = closestDc;
15 leastEstRespTime = closestEstResponseTime;

/* Find fastest and cheapest DC */
16 foreach DataCenterId ∈ allDataCenters do
17 if EstResponseTime(DataCenterId) < leastEstRespTime then
18 if (getECCost(DataCenterId) < getECCost(dest)) then
19 dest = DataCenterId;
20 leastEstRespTime = EstResponseTime(DataCenterId);
21 end
22 end
23 end
24 return dest;
25

request. The time complexity of the algorithm 4.1 is O(n). The proposed cost-aware

technique ensures that response time for the request processing is optimal than closely

located DC with no degradation of service quality and also geo-distributed data center

owners will save power cost.

4.4 Experimental setup

The proposed technique is evaluated using the CloudAnalyst(Wickremasinghe

et al., 2010) toolkit widely used by researchers as a simulation tool for evaluating the
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competence of the cloud computing resource management policies and applications.

The section provides a brief introduction of the CloudAnalyst tool and experimental

configuration parameter settings used for our evaluation.

4.4.1 CloudAnalyst

CloudAnalyst(Wickremasinghe et al., 2010) is a GUI based open source cloud

simulation tool to support simulation and visual modeling of large scale cloud ap-

plications. CloudAnalyst is built on top of CloudSim and provides many additional

extended features to describe application workloads, geographically dispersed data

centers, distributed user bases, and also supports configuring numbers and settings of

hardware/software resources in data centers. With CloudAnalyst, application devel-

opers and researchers can develop and evaluate resource provisioning, scheduling and

application deployment strategies for distributed data centers and users.

The block diagram of CloudAnalyst is shown in figure 4.2. It is built on the Cloudsim

framework and extends some of its classes to model complex internet and application

parameters. The CloudAnalyst provides a GUI layer to aid in conducting quick and

complex experiments with high degrees of flexibility and ease. Because CloudAnalyst

is an open-source simulator and built using a modular design, it is easy to extend the

tool to support a new feature or modify its behavior to support a new perspective

like cost of service.

Figure 4.2: Block Diagram Of CloudAnalyst
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4.4.2 Experimental configurations

The section explains the experimental configurations used for the evaluation of

the proposed cost-aware technique for request routing in a geo-dispersed data center

setup.

A Electricity price for all DC locations

The price of electricity at various geo-regions where data centers are set up is

mentioned in table 4.2. The sample electricity cost/price values used in the exper-

iments are based on Wikipedia source(Wikipedia, 2017) available on the web. The

table 4.2 is referred to as EC Matrix. The EC Matrix considered for the evaluation

shows variability based on geo-locations but does not change with any other parameter

like time of day, units consumed, etc for the experiments.

Table 4.2: Electricity Cost Table

Data center Name (Location) Electricity Cost (in $/kWh)

DC1(USA) 0.17

DC2(Brazil) 0.25

DC3(UK) 0.21

DC4(China) 0.24

DC5(Africa) 0.13

DC6(Australia) 0.22

B Data centers and user bases

The evaluation of the proposed technique is done considering users of six differ-

ent geographical locations accessing cloud services from data centers located at six

geographic locations around the world. The data centers have configurations shown

in table 4.3 for the experiments.

Table 4.4 lists the user base configurations of six geographical regions used for

the experiments. The rest of the settings like hypervisor, OS, memory, hardware
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Table 4.3: Data Center Configurations

DC Name Region Number of VMs Bandwidth(in mbps)

DC1 USA 500 1000

DC2 Brazil 500 1000

DC3 UK 500 1000

DC4 China 500 1000

DC5 Africa 500 1000

DC6 Australia 500 1000

configuration are considered uniform for all DCs. The experiment duration is set as

60 hours.

Table 4.4: User Base Configurations

DC Name Region Req/Hr Req Size Avg Peak Users Avg Non-Peak Users

UG1 USA 60 100 1000 100

UG2 Brazil 60 100 1000 100

UG3 UK 60 100 1000 100

UG4 China 60 100 1000 100

UG5 Africa 60 100 1000 100

UG6 Australia 60 100 1000 100

The transmission delay matrix is given in table 4.5 is used in the experiments to

search the closest located data center for any request received from user bases at the

cloud broker for DC assignment.

4.5 Experimental results and analysis

The experiments are conducted using multiple combinations of the user bases,

and data centers and results are presented in this section. The experiments are per-

formed for five different categories of user groups and the data centers. The format

used to represent each category is as follows.
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Table 4.5: Transmission Delay Matrix Between Regions(in msec)

Regions USA Brazil UK China Africa Australia

USA 25 100 150 250 250 100

Brazil 100 25 250 500 350 200

UK 150 250 25 150 150 200

China 250 500 150 25 500 500

Africa 250 350 150 500 25 500

Australia 100 200 200 500 500 25

(Usergroups), (geo− distributedDatacenters)

For example,

(UG1), (DC3, DC4, DC5, DC6)

implies user group 1 located in the USA region can access the services from data

centers located in the United Kingdom(U.K), China, Africa and Australia for this

category of the experiment.

Table 4.6 tabulates the request assignments for the closest data center and cheap-

est data center corresponding to five categories of experiments. It can be observed

from table 4.6 that for experiments E4 and E5, the proposed technique is able to find

cheaper data center with estimated response time smaller than closest data center

and assign significant number of incoming requests.

Table 4.7 summarizes the total power costs for closer DC and cheaper DC as-

signments for proposed cost-aware technique and also power costs of closest DC

only(proximity based routing technique) assignments for five categories of experi-

ments. The power consumed per unit request is considered as a constant(Pc) of

0.1KWh for the experiments and power costs are calculated using EC Matrix per

geo-location as shown in equation 4.1. It can be noted from table 4.7 that the request

assignment to cheaper data centers in case of experiments E4 and E5 has reduced the

power costs by 15-23%.

78



Ta
bl
e
4.
6:

P
ro
po

se
d
Se
rv
ic
e
B
ro
ke
r
R
eq
ue
st

A
ss
ig
nm

en
ts

E
xp

N
am

e
E
xp

er
im

en
ta
l
C
om

b
in
a-

ti
on

T
ot
al

re
qu

es
ts

re
ce
iv
ed

A
ss
ig
n
m
en
ts

to
C
lo
se
st

D
C

A
ss
ig
n
m
en
ts

to
C
h
ea
p
es
t
D
C

E
1

(U
G
1)
,(
D
C
3,
D
C
4,
D
C
5,
D
C
6)

69
42

5
69

10
9

31
6

E
2

(U
G
2)
,(
D
C
3,
D
C
4,
D
C
5,
D
C
6)

69
42

5
65

34
0

40
85

E
3

(U
G
1,
U
G
2)
,

(D
C
3,
D
C
4,
D
C
5,
D
C
6)

13
90

63
13

48
20

42
43

E
4

(U
G
4)
,(
D
C
2,
D
C
5,
D
C
6)

69
36

5
35

52
4

33
90

1

E
5

(U
B
3,
U
B
4)
,(
D
C
2,
D
C
5,
D
C
6)

13
90

63
10

50
40

34
02

3

79



Table
4.7:

Sum
m
ary

O
fP

ow
er

C
osts

For
P
roposed

Technique

E
xp

erim
ent

C
losestD

C
C
ost

C
h
eap

erD
C

C
ost

T
otalC

ost
(C

ost-aw
are)

T
otalC

ost
(C

losestD
c

on
ly)

C
ost

S
av-

in
g

E
1

$1520.39
$6.63

$1527.03
$1527.34

0.02%

E
2

$1437.47
$85.68

$1523.16
$1527.34

0.27%

E
3

$2966.03
$88.99

$3055.03
$3059.38

0.14%

E
4

$888.09
$440.71

$1328.81
$1735.62

23.43%

E
5

$1790.34
$442.29

$2232.64
$2640.91

15.45%

80



Figure 4.3 summarizes the percentage-wise assignment of proposed technique

for load(request) distribution to available data centers. The data center selection

Figure 4.3: Request Assignment Percentage

criterion of the proposed cost-aware algorithm is to find a cheaper data center with

better response time than the closely located data center. It can be observed from

the results that the E1 category has fewer assignments(0.4%) for cheaper data centers

because the data center DC6, which is located close(in terms of transmission delay)

to the user base of requests is also having estimated response time smaller than other

competing data centers for most of the requests. The E2 and E3 categories have 3-6%

request assignments for cheaper data centers whenever closely located data center

DC6 has higher estimated response time for request than cheaper data center DC3.

It can be noted from experiment categories E4 and E5 that cost-aware service broker

technique is able to allocate 24-49% of requests to cheaper data centers with significant

power cost-saving for data center owners.

Figure 4.4 presents the power costs for both proposed cost-aware technique and

closest DC only allocations to indicate the total power cost saving achieved. It can be

noted from experiment categories E4 and E5 that, the proposed cost-aware technique

for cloud service broker can save 15-23% of power cost for cloud data center owners.

It is evident from the evaluation results that the proposed cost-aware request

routing algorithm saves power cost of 15-23% for data center owners when there
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Figure 4.4: Comparison Of Power Costs

exists an opportunity of routing the requests(processing load) to cheaper data centers

with no degradation in response times for user requests.

4.6 Summary

The chapter proposed an electricity cost-aware request routing technique to dis-

tribute tasks to data centers in a geographically distributed data center setup. The

chapter introduced the cloud service broker module and three of the well-known re-

quest routing techniques employed by the cloud service broker. Then, the chapter

presented the research objective addressed, described the proposed cost-aware re-

quest routing algorithm in detail. The experimental setup and a discussion on results

are presented to prove the effectiveness of the proposed solution for power cost saving.

The next chapter describes the equally spread current execution(ESCE) load bal-

ancing algorithm and then a problem observed with it during the peak load condition

is discussed. The chapter proposes a resolution to the problem and the experimental

evaluation of the proposed solution is presented at the end.
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Chapter 5

Peak hour Performance Improvement

for ESCE Algorithm

In recent years, cloud computing has witnessed explosive growth because of the

advancement of networking technology and ease with which the cloud services(computing

hardware and software) can be rented and operated. Cloud computing has finally

made the idea of offering computing as a utility a reality, and since then cloud has

been embraced by millions of users across the world and also by giant IT compa-

nies like Amazon, HP, IBM, Microsoft, Apple, Google, Oracle, and others. The

scalability and efficiency features of the cloud can only be achieved by proper man-

agement(utilization) of cloud resources. The essential characteristic of the cloud is

the ability to manage and access the cloud resources in virtual form. The users

access the cloud resources by submitting their work requests to virtual entities of

computing called virtual machines(VMs) on rental basis. It is vital to balance the

work requests(load) from users across available virtual machines to achieve resource

efficiency through optimal utilization of underlying computing resources.

The load balancing in cloud data centers is done over both physical hosts or VMs.

In the case of VMs, the load balancing algorithm distributes the cloud users dynamic

workload equally among all the VMs. The performance of load balancing mechanism

is critical during peak hours in data centers to meet stringent performance SLAs

through optimal utilization of computing resources in the data centers. The over

and under allocation of load to even few VMs can cause performance degradation
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and cause SLA violations. Our work reported in this chapter investigates the Equally

spread current execution load(ESCE) algorithm for a problem with managing uniform

resource utilization during high traffic situations and proposes a solution to address

the problem.

5.1 Background study

The section explains the user task scheduling model in cloud data centers and

briefly describes the ESCE algorithm for task load balancing.

5.1.1 Task scheduling in cloud data centers

The model used for task scheduling in the cloud data center is shown in figure

5.1. The cloud system contains N hosts and each running more than one VMs. The

load balancing is required in a system where there is a huge number of inputs tasks

submitted to cloud need to be assigned to a finite set of virtual machines. The VM

manager(Mishra et al., 2018) receives the input tasks submitted to cloud system from

the task queue. The VM manager has the information about the active VMs available

in the cloud data centers and available resources with different hosts. If available

resources are enough to complete the submitted tasks, the tasks are forwarded to

the task scheduler called task load balancer. If enough resources are not available to

process input tasks, new VMs are created in the data center to cater to additional

resource demands. The task scheduler acts as a load balancer to map each task to

the available VMs based on the resource requirements of each task and current load

on each active VM.

5.1.2 Equally spread current execution load algorithm(ESCE)

Equally spread current execution (ESCE) load algorithm(Mali and Vidya, 2013)

also known as active VM load balancer is a tasks-to-VM load balancer. The objective

of the ESCE algorithm is to equally spread the execution load on different VMs

in a data center to achieve uniform resource utilization. Active VM load balancer

maintains a VM table with VM id and the number of requests currently allocated to
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Figure 5.1: Task Scheduling Model In Cloud

each VM id. If a task(request) is submitted to the data center task queue for execution,

the load balancer will search the VM table for least loaded VM(VM with least number

of request assignments). If more than one VM is found with equal number of task

assignments, first identified VM is selected and mapped for the task execution. The

load balancer updates the VM table by increasing the allocation count of identified

VM. When VM finishes the execution of allotted task, load balancer again update the

VM table by decreasing the allocation count for identified VM by one. The steps of

VM identification and VM allocation count update are done based on event triggers

by the data center controller.

Table 5.1: Example Of VM Allocation By ESCE Algorithm

Task ID VM ID 0 VM ID 1 VM ID 2

Init 0 0 0

0 1 0 0

1 1 1 0

2 1 1 1

3 2 1 1

The example of VM allocations by the ESCE algorithm is shown in table 5.1.

The table shows a scenario where tasks are allocated to 3 VMs in the data center using

the ESCE VM allocation algorithm. Initially, all VM Ids contain zero allocations as

indicated in the first row in table 5.1. It can be noted that the ESCE algorithm found
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VM Id with the minimum allocation(Zero in this case) in case of task ids 0,1 and 2.

When task id 3 is requested for allocation, all VM IDs are having an equal number

of allocations. Hence in case of task id 3, the VM Id 0 is allocated to the task.

The problem in uniform utilization of VMs is observed with active VM(ESCE)

algorithm during the high traffic situations. The VM table update process in ESCE is

invoked by the data center controller(DCC) task allocation and de-allocation events.

When the data center controller requests ESCE algorithm for the least loaded VM

id for allocation, the VM id is found and returned to DCC. However, the VM table

update process is deferred until the VM id is mapped to the task by the data center

controller and notification for the allocation is sent to ESCE(active VM load balancer).

During the VM identification, VM allocation, and VM table allocation process, if any

new requests for VM identification for tasks are received by ESCE algorithm, the VM

table does not reflect the current state of the system and causes state inconsistency.

The VM table state inconsistency problem is frequently observed during peak hours

when huge number of tasks are submitted to the cloud system for processing. The

work discussed in this chapter offers a resolution to this problem.

5.2 Research objective

The objective of the proposed work in this chapter is to achieve uniform resource

utilization of all VMs at all times in the data center for the ESCE task load balancing

algorithm. The proposed work investigates the problem of over-allocation of VMs with

ESCE algorithm during high traffic situations and proposes a solution to overcome

the problem.

5.3 Proposed VM load balancer

The proposed VM load balancer is a modified version of the ESCE algorithm(Mali

and Vidya, 2013) to solve the problem of over-allocation of VMs in peak hour situa-

tions. The proposed algorithm uses an intermediate VM reservation table to record

identified VM recommendations to the data center controller until the identified VM

is allocated to the input task by data center controller and notification is received by
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the proposed VM load balancer. The proposed load balancer takes into account both

VM table and reservation table entries for the identification of least loaded VM in the

set of available VMs in the data center. The proposed VM load balancer algorithm

is presented in algorithm 5.1.

Algorithm 5.1: Modified active VM(ESCE) algorithm
Result: Finds a least loaded VM for the given request
Input : VMList- List of active VMs
Output: VMid- Datacenter id for request routing
/* Initialization */

1 VMAllocTable= getVMAllocTable();
2 VMReserveTable =getVMReserveTable();
3 LeastLoadedVMid = INVALIDID;
4 minVMCount = MAXVALUE;
/* Find a VM with zero request allocations */

5 foreach VMid ∈ VMList do
6 if VMAllocTable[VMid] == 0 then
7 VMReserveTable[VMid] +=1;
8 return VMid;
9 end

10 end
/* Find a VM with least request allocations */

11 foreach VMid ∈ VMList do
12 currVMCount = VMAllocTable[VMid] + VMReserveTable[VMid];
13 if currVMCount < minVMCount then
14 LeastLoadedVMid = VMid;
15 minVMCount = currVMCount;
16 end
17 end
18 VMReserveTable[LeastLoadedVMid] +=1;
19 return LeastLoadedVMid;
20

The proposed load balancer returns the VM id for allocation to the data center

controller, and once task is allocated to suggested VM id, a notification is sent to the

proposed load balancer to increment the VM table entry meant for allocations and

decrement the count of reservation table of the allocated VM id as shown in the call

flow diagram in figure 5.2.

The proposed VM load balancer unlike the ESCE algorithm maintains an internal

reservation table(VMReserveTable) to maintain the information of VM reservations

suggested by the load balancer to the data center controller but not updated in allo-
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cation table until the notification arrives of allocation. The proposed load balancer

takes into consideration both reservations table entry(VMReserveTable) and alloca-

tion statistics table entry(VMAllocTable) for particular VM id by the load balancer

for VM selection for the next request. The line numbers 2, 7 and 11-17 in algorithm

5.1 represent the modifications done to the ESCE algorithm by our proposed load

balancer. The modifications proposed to the ESCE algorithm avoids overloading of

VMs during peak hours and also help reduce response time for tasks waiting on an

overloaded VM. The time complexity of the algorithm 5.1 is O(n). The experimen-

tal results with the proposed load balancer indicating uniform resource utilization is

shown in table 5.3 and table 5.4 with description provided in next section.

Figure 5.2: Call Flow Diagram For Proposed Load Balancer

5.4 Experimental setup

The experimental evaluation of the proposed VM load balancing algorithm has

been carried out on a well-known simulator called CloudAnalyst(Wickremasinghe

et al., 2010). CloudAnalyst is a simulation tool based on cloudsim library, developed

using java and provides a GUI interface to configure various user and data center
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parameters to perform the experimental work with ease. The experiments to evaluate

the competence of the proposed algorithm have been carried out using the configura-

tion of internet users at four different continents, i.e. four user bases along with peak

and non-peak users configurations used are given in the table 5.2. The requests(tasks)

of having unit length are considered for simplicity. Data center hosts homogeneous

physical machines having hardware resources with configurations of 100GB of storage,

4 GB of RAM with each physical machine(PM) equipped with 4 core CPU having

10K total MIPS(million instruction per second).

Table 5.2: User Bases: Regionwise Statistics Of Users

Region No Region Name
Peak
Time
Users

Off-Peak
Users

0 North America 35000 3500

1 South America 25000 2500

2 Europe 15000 1500

3 Asia 5000 500

5.5 Experimental results and analysis

The experiments are conducted with two simple configurations of 5 VMs hosted

on two physical machines and 25 VMs hosted on 10 physical machines having con-

figurations described in the previous section. The results are analyzed with uniform

resource utilization criterion as the primary focus to check for non-uniform requests

assignment conditions with any of the virtual machines in the data centers. The re-

quest(task) allocations for each VM for both current active VM(ESCE) algorithm and

proposed VM Load balancer are tabulated in table 5.3 and plotted in the figure 5.3

for the case of the data center with the configuration of 5 VMs. It can be observed

from the experimental results that initial VM ids are allocated with higher number of

requests in case of ESCE algorithm because of the inconsistent VM allocation table

data during allocation request processing. However it can be noted that proposed

89



load balancer is able to allocate requests to the VMs uniformly.

Figure 5.3: Comparison Results For 5 VMs In DC

Table 5.3: Comparison Results For 5 VMs Case

VM Id Number of allo-
cations (ESCE)

Number of al-
locations (Pro-
posed LB)

0 39554 18502

1 19112 18507

2 14902 18503

3 10097 18504

4 8855 18504

Figure 5.4 plots the task assignments for 25 VMs for both the active VM(ESCE)

algorithm and the proposed VM Load balancer. The task assignment numbers for

ESCE and proposed VM load balancer are also tabulated in table 5.4. It can be

observed from the experimental results that, for 25 VM case also ESCE algorithm

does non-uniform allocation of requests to VMs and the proposed load balancer is

able to distribute requests uniformly over 25 VMs.

It can be noted from the results that the ESCE(active VM) algorithm allocates

tasks to VMs unevenly by over-allocating initial VM ids and under allocating remain-

ing VMs because algorithm refers to the inconsistent VM table during VM allocation
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Figure 5.4: Comparison Results For 25 VMs In DC

for requests. The results also suggest that the proposed VM load balancer allocated

the requests(tasks) to VMs evenly by overcoming the problem of ESCE(active VM)

load balancer in all load conditions.
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Table 5.4: Comparison Results For 25 VMs Case

VM Id Number of allo-
cations (ESCE)

Number of al-
locations (Pro-
posed LB)

0 42374 3680

1 17324 3705

2 10477 3703

3 6783 3704

4 4683 3705

5 3249 3703

6 2229 3705

7 1613 3702

8 1191 3702

9 835 3702

10 609 3699

11 424 3703

12 299 3703

13 195 3700

14 120 3703

15 59 3702

16 36 3702

17 17 3703

18 8 3703

19 3 3700

20 3 3703

21 5 3702

22 1 3702

23 1 3702

24 2 3702
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5.6 Summary

The chapter introduced the task scheduling in the cloud system and explained

the ESCE load balancing algorithm and its problem with uniform VM task alloca-

tions during peak load situations. Then the chapter presented the research objective,

proposed load balancing algorithm to overcome the problem with ESCE. The experi-

mental set up used to evaluate the proposed load balancer for uniform VM allocations

is described. It can be noted from the experimental results that the proposed load

balancer is able to solve the VM over-allocation problem observed in ESCE load

balancer.

In the next chapter, the existing solutions available to access GPU computing in

the cloud are described. Then, the chapter discusses the existing research challenges

and opportunities with load balancing in GPU enabled cloud. The chapter also de-

scribes the current hurdles to efficient utilization of GPU under the virtualization

layer.
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Chapter 6

Load balancing in GPU enabled

Cloud: Challenges and Opportunities

In recent years graphical processing units(GPUs) are gaining importance for

their massively parallel computing capability. The popularity is so much so that most

of the commercial computing platforms(devices) sold in the market have a variant

of GPU installed in it. Though GPUs were initially used only for graphics appli-

cations like gaming, display, etc., from past few years, GPUs are regarded as a high

throughput parallel computing platforms suitable for general purpose computing such

as high-performance computing(HPC), machine learning, medical imaging, inference

generation and to support computing for smart cities and infrastructure development.

The neural network (machine learning) extensions for deep learning and artificial in-

telligence built inside GPU hardware have only added to its growing popularity.

The ever increasing demand for GPUs has compelled cloud providers to en-

able GPU processing inside data centers to support hosting complex HPCs, real-time

applications, and virtual desktop applications for its users. Today, almost all main-

stream cloud providers like Amazon, Microsoft, Google have one, or many types of

GPU enabled instances to offer. The GPU enabled VM instances can accelerate user

applications significantly by offloading compute-intensive part of application logic

onto the block of parallel threads in GPU. However, conventional techniques of vir-

tualization do not hold good for GPUs because of the inherent differences in terms

of architectures, control software, and distributed program/memory models. These
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differences make GPU provisioning in the virtualized environment and also GPU en-

abled VMs(gVMs) placement more complex and can cause inefficiency in resource

utilization.

The reported work in this chapter examines the current infrastructure(software

and hardware) available to support GPU inside cloud data centers and investigates ex-

isting challenges concerning efficient workload allocation(involving GPU computing)

and provisioning techniques of virtualized GPUs. The reported work also examines

the issues/challenges related to the effective utilization of GPU resources from appli-

cations when accessed from the virtualization layer.

6.1 Background study

6.1.1 GPUs and cloud datacenters

The typical block diagram of a GPU is shown in Figure 6.1(a). The GPUs con-

sist of several thousands of single instruction multiple data(SIMD) cores packaged

into streaming multiprocessors(SMs). SMs are responsible for executing GPU tasks.

Each GPU has its own local memory called GDDRAM (graphics double data rate)

and has two copy engines that can transfer data from GDDRAM to the main memory

of the server in both directions simultaneously. The Giga Thread Engine is responsi-

ble for scheduling GPU threads onto streaming multiprocessors(SMs) for execution.

The GPU tasks are usually submitted as a group of threads called blocks to GPU for

execution. GPUs are usually fitted inside Video cards, and each video card can host

multiple GPUs inside it. The GPUs are interconnected inside a video card using a

PCIe(peripheral component interconnect express) switch, and the video card is con-

nected to the host machine using PCIe connector. The PCIe connector is connected

to system bus using which data flow between GPU and Main memory is carried out,

as shown in figure 6.1(b).

The threads are distributed and scheduled inside SMs for execution. GPUs

employ cooperative multitasking based on a leftover policy(Siavashi and Momtazpour,

2018) for the scheduling of thread blocks onto SMs. The steps followed in GPU task

execution in an application is represented in figure 6.2.

96



Figure 6.1: Block Diagram Of Typical GPU And Video Card

Figure 6.2: Typical Flow Of GPU Task Execution In An Application

Initially, the data required for GPU tasks are transferred from main memory

(RAM) to GPU device memory (GDDRAM). Once the data transfer is complete, the

GPU tasks are bundled into blocks of threads and launched onto GPU for execution.

After the execution of all threads is completed, results are copied back to the main

memory from GPU memory(GDDRAM).

6.1.2 GPU virtualization in cloud

Virtualization is employed with GPU to share the same GPU device with mul-

tiple user applications residing inside separate VMs. Virtualization helps to use re-

sources efficiently by sharing unused computing power among different tasks.
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Figure 6.3: System View Of GPU Enabled Virtualized Server And User VM With
GPU And CPU Tasks

The servers fitted with GPUs are offered by multiple vendors such as NVIDIA,

AMD, Intel, etc. Due to the unavailability of GPU virtualization support from the

vendor side in earlier days, user VMs were given direct pass through to GPU de-

vice(using vendor driver inside VM) for executing GPU tasks. However, in recent

years, vendors have begun to offer virtualization support to GPUs for use inside

cloud data centers such as NVIDIA Grid technology(NVidia, 2019). Figure 6.3(a)

shows a virtualized view of a GPU enabled server inside the data center, and figure

6.3(b) depicts a typical user VM containing GPU tasks. There are multiple virtual-

ization methods used for supporting GPU access inside cloud data centers with each

having its pros and cons. Following is a brief discussion of some of the prominent

GPU virtualization techniques.

i API remoting: The approach virtualizes GPU at API level where calls to GPU

are intercepted at the API level in the host and are forwarded to a remote machine

with GPU device for processing.

ii Full virtualization: The approach virtualizes GPUs at the device driver level

where a GPU driver is installed inside user VM to communicate with virtual GPU.

It will incur a penalty in performance. The hypervisor is responsible for scheduling

virtualized GPUs(vGPUs).

iii Paravirtualization: The approach is similar to full virtualization. However, the

guest OS driver is modified to avoid performance degradation to some extent.
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The hypervisor is responsible for scheduling virtualized GPUs(vGPUs) in this

approach too.

iv Hardware-assisted virtualization: The approach is supported by special hard-

ware extensions provided by hardware vendors. These hardware extensions are

responsible for VM to GPU mappings and parallel (multiplexing) executions of

multiple VMs over GPU. The hypervisor may be involved to a minimal extent.

6.2 Research objective

The objective of the reported work in this chapter is to investigate current re-

search gaps in GPU resource management policies and also study the challenges re-

lated to programming for GPUs in virtualized environments.

6.3 GPU resource provisioning techniques in cloud

The GPU provisioning to vGPU enabled VMs in cloud data centers is done at

four different levels.

A Video card allocation

The video card allocation technique is responsible for allocating a GPU to a

vGPU in the physical server. GPUs are housed in video cards, and the selection

of video cards to be allocated for the given vGPU is taken care of by the video

card allocation technique. There are three video card allocation techniques that are

suggested(Siavashi and Momtazpour, 2018). The simple allocation policy follows first-

fit policy wherein the first found video card with GPU that satisfies vGPU resource

needs is selected. Breadth-first policy sorts available video cards in the ascending

order of their GPU loads and returns lightly loaded video card and depth-first policy

sorts the video card in descending order of GPU loads and returns the video card

which is just enough to satisfy the vGPU resource needs.
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B GPU allocation

The GPU allocation technique is responsible for allocating a GPU in a video

card(with multi-GPUs) to a requested vGPU. Three allocation techniques, simple

first Fit, breadth-first, and depth-first, employed in video card allocation are also

used for GPU allocation.

C GPU enabled VM placement

VM placement policy for the VMs(with vGPU attached) is responsible for allo-

cating a physical server in a data center. There are two types of placement policies

proposed.

i First fit Policy: The technique used in VMware Horizon(VMware, 2019), where

all the hosts are iterated until VM in question is accepted by a physical host

considering VMs resource requirements.

ii First fit increasing: The technique(Siavashi and Momtazpour, 2018), first finds

the bottleneck resource between each host-VM pairs. Then sorting of all VMs in

ascending order is done based on their resource requirements and allocation to

physical hosts is done using the first-fit policy.

D GPU provisioning

The GPU provisioning technique is responsible for defining the sharing policy

of a physical GPU among multiple vGPUs. Some of the most commonly used GPU

provisioning schemes (Siavashi and Momtazpour, 2018)(Hong et al., 2017) are listed

below.

i Space shared: one vGPU occupies physical GPU till completion. The second

vGPU is allocated only once the first vGPU is completed.

ii Time shared: The vGPUs share a physical GPU until co-executing vGPU does

not exceed the total MIPS of a given GPU.

iii FCFS: First-come, first-serve policy allocates vGPUs in the order that they arrive.
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iv Round-robin: Round-robin is similar to FCFS but assigns a fixed time slice to

vGPU. This policy is also called a fair share scheme.

v Priority-based: Priority-based provisioning assigns a priority to every vGPU,

and the provisioning logic executes vGPUs in the order of their priority.

vi Fair queuing: Fair queuing assigns a start tag to every vGPU and schedules

them for execution in increasing order of the start tags. The accumulated usage

time of a GPU is determined by the start tag value.

vii Credit-based: The algorithm periodically distributes credits to vGPUs, and each

vGPU consumes credits when it is executed on the CPU for exploiting the physical

GPU. The policy selects a vGPU with a positive credit value.

viii Affinity-based: The algorithm generates affinity scores for a vGPU to estimate

the performance impact when it is allocated on a specific resource.

ix SLA-based: SLA (Service Level Agreement) is an agreement between a cloud

service provider and a user about the quality of service(QoS) requirement and the

price to be charged. The objective of the SLA based policy is to meet the SLA

requirement while allocating GPU resources.

E Memory and PCIe bandwidth

The GPU device memory and PCIe bandwidth are two resources inside the

GPU device that needs to be shared by co-running vGPUs. Each GPU can transfer

data in two opposite directions simultaneously. PCIe bandwidth is provisioned on an

equal share basis to all co-executing vGPUs. Device memory is one of the essential

bottleneck resources inside GPU, which may have an impact on the performance of

co-executing vGPUs.
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6.4 Current challenges with GPU computing in the

cloud

Virtualization is a crucial technology for the efficient utilization of server(PM)

resources in cloud data centers. The virtualization solutions for CPU, memory, and

network have attained sufficient maturity to be used in data centers for the benefit of

both cloud providers and users. However, the same conventional technologies in CPU

virtualization do not apply for the GPU virtualization because of inherent differences

in architecture, programming models, and vendor-specific device driver software.

The reported work in this chapter investigates various research challenges/issues

concerning efficient physical GPU utilization by current resource management and

provisioning techniques in the cloud environment and also examines several problems

with existing frameworks and technologies that limit user applications or VMs ability

to exploit the real power of GPUs wrapped under the virtualization layer.

6.4.1 Challenges with GPU resource management in cloud

The section discusses various system-level issues that prevent efficient resource

management of GPUs and GPU attached servers inside cloud data centers.

A GPU enabled VM migration

VM migration process is the re-placement of VM from the source physical host to

a destination physical host in the data centers. The VM migrations are usually done

for performance optimization, avoiding resource contentions, and to perform server

consolidation during non-peak load situations inside cloud data centers. Though there

are many proven algorithms(Choudhary et al., 2017) existing for the VM migration

process, the VM migration becomes complicated when GPU enabled VM is to be

migrated. The vGPU attached to the VM will have its process state and data inside

GPU memory. The VM migration process has to wait till application finishes its GPU

tasks or the ongoing GPU tasks need to be aborted in source machine and resumed in

the destination machine. The extra computation or the extra delay caused by vGPU

computation causes inefficiency in the VM migration process.
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When GPUs in cloud servers are virtualized using hardware-assisted virtualiza-

tion technology like NVIDIA Grid(NVidia, 2019), such a virtualization technology

bypasses the core virtualization layer in the server for creating and managing virtual

images of GPU. When vGPU has to be live migrated from such hardware-assisted vir-

tualized GPU, retrieving GPU task states and restoring it on remote GPU is a complex

task. There is a need to establish novel mechanisms to live migrate hardware-assisted

virtualized GPU images from one GPU to another remote GPU efficiently.

B Power modeling of GPUs

Various vendors manufacture the GPUs, the components and architecture of

GPUs are inherently different from one another. Because of their hardware compo-

sition, the power consumption and performance characteristics will vary from one

another. Unlike CPUs, the power consumption and performance benchmarks(SPEC,

2011) for server scale GPUs are not available yet. The power-aware resource provi-

sioning policies for GPUs have to rely only on the mathematical model for power con-

sumption estimation. The mathematical equation(Siavashi and Momtazpour, 2018)

for power consumption analysis is given by equation 6.1.

P (f, U) = a3.f.U + a2.f + a1.U + a0 (6.1)

It is suggested that there is a linear correlation between power consumption and fre-

quency and utilization of SMs in GPU. In equation 6.1, the frequency f and utilization

U determine the power consumption approximation where a1,a2 and a3s are constants.

Because the power consumption approximation is based on a mathematical model, the

inherent physical composition of GPUs contributing to the power consumption factor

is not considered. The factor may impact the efficiency of the resource provisioning

algorithms.

C Power saving strategies involving GPUs

The power-saving in the data center is carried out by shutting down some of the

servers with lower CPU utilization during non-peak hours of data center operations.

However, when a physical server is equipped with one or more GPUs, the power
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saving strategy that selects a physical host has to consider additional parameters

such as GPU utilization and state of GPU tasks to make host power-off decisions.

The performance and power characteristics of both CPU and GPU can be considered

for the selection of an underutilized host for power-off. The underutilized servers with

relatively less power efficient GPUs can be prioritized for power-off to maximize the

utilization of power-efficient GPUs.

D DC load aware GPU allocation policies

The current video card allocations, GPU allocation policies do not consider the

DC load conditions. The GPU allocation schemes have to adapt to changing load

conditions in data centers. The allocation techniques employed have to be aware

of data center load (peak or non-peak conditions) state to make optimal decisions

for allocations. During peak hours, the allocation policy can follow the breadth-

first scheme or first fit technique for GPU allocations. During non-peak hours, the

allocation technique can employ a depth-first strategy for the video card or GPU

allocations. Such adaptive schemes can make GPU allocation models more responsive

to the goal of power-saving during non-peak hours and also enables high performance

during peak hours in the data centers.

E GPU memory pollution with fair-share policy for GPU provisioning

The fair share policy for GPU provisioning allocates a time slice of physical

GPU to many vGPUs in round-robin fashion. GPU provisioning policies like fair

share will have to make many hosts to device and device to host data transactions. If

vGPU memory footprint(size) is not small, the vGPUs switching makes the process-

ing very inefficient because of multiple data transfers involving the main memory and

GPU device. Memory transfers are considered as major bottlenecks to achieve high

throughput, and GPU device memory size limits the level of multitasking on GPU if

data associated with GPU tasks is large. It is vital to consider data/memory trans-

actions between host and GPU for GPU provisioning decisions and also GDDRAM

memory size for scheduling GPU tasks on vGPUs.
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6.4.2 Challenges with programming vGPUs

The section describes various user/programmer side issues that prevent exploit-

ing the true power of GPUs by accessing them from the top of the virtualization

layer.

A Target GPU generations

The GPUs available in the market possess different computing capabilities and

support a varying degree of features because of the generation and type. If applications

are ignorant of the target GPU generation, type or version, the program design may

not be able to truly exploit the power of physical GPU. For instance, the device

memory sizes, shared memory size, and the number of SIMD cores will vary between

generations of GPU, and such details will impact the design of data structures and

thread block sizes in algorithms. To overcome performance issues, the GPU allocation

and provisioning techniques can prioritize higher generations of GPUs over lower

generations for allocation decisions.

B Heterogeneity in GPUs and multiple frameworks

Multiple vendors manufacture data center-class GPUs in the market, and they

possess different hardware extensions to support various features such as deep learn-

ing, AI solutions. Such heterogeneity in GPUs makes VM re-placement a complicated

process. If VMs with GPU Tasks include demands for such additional features sup-

ported inside GPU, then such additional constraints need to be considered for VM

placement. The GPGPU programs use different frameworks (CUDA, OpenCL, Vul-

can, etc.) for accessing and computing on GPUs. Application using the CUDA

framework for their GPU Tasks inside VMs can only be allocated to NVIDIA GPUs

inside data centers. The resource management module for GPU provisioning needs to

consider such hardware and software related constraints for making VM placements.

C Security aspects

Some cross-platform GPU frameworks like OpenCL delay the GPU specific logic

(source code) compilations and GPU executable binary generation till run time if
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target GPU device makes, version or generation is not known beforehand. Such VMs

with delayed compilation process should be placed in secured environments to avoid

cross VM attacks because application logic may be prone to leakage and may be used

with malicious intent. The GPU allocation and provisioning policy have to consider

such constraints for VM placements.

Some VM applications(Hong et al., 2017) may pose a denial of service attack for GPU

by submitting a massive number of GPU tasks to underlying GPU devices and deny

GPU resources for other co-allocated VMs. There is a need for a novel control mech-

anism in GPU virtualization layer to detect and control such VMs from overusing the

GPU device.

The current research challenges and opportunities with GPU computing in vir-

tualized environments discussed in this chapter can be addressed for designing an

efficient GPU resource management framework in cloud data centers to improve per-

formance and efficient GPU resource utilization.

6.5 Summary

The chapter describes the underlying architecture of GPU, current GPU virtu-

alization software, and hardware infrastructure available in cloud data centers and

then discusses various challenges investigated from GPU resource management and

programming virtual GPUs(vGPU) perspectives to motivate further research in the

load balancing techniques in GPU enabled cloud. Further research is needed to fo-

cus on solving some of the resource management issues discussed in this chapter to

improve GPU enabled VM placement, GPU resource provisioning, and power/cost

optimization algorithms.

In the next chapter, we summarize our research contributions and provide direc-

tions for future work.

106



Chapter 7

Conclusions and Future Work

To conclude this thesis, we first summarize the research contributions of the work

reported in this thesis. Although the techniques and concepts presented in this thesis

take a step forward in addressing some of these factors, several challenges remain to

be addressed to improve the existing resource management techniques used for the

cloud data centers in general. We list some of these extensions to our reported work

in this thesis and provide some directions for future work.

7.1 Summary of contributions

The techniques proposed in this thesis for leveraging the contextual parameters

to improve the load balancing decisions at multiple levels can be used as standalone

concepts. These techniques can be thought of as of-the-shelf entities for enhancing

already available and upcoming load balancing algorithms in the cloud. Following are

the brief descriptions of the contributions through this thesis,

• The very first problem addressed in this thesis is to consider physical ma-

chine performance to power characteristics(power efficiency) and data center

load characteristics for the VM placement optimization process. We have pre-

sented a framework for the collection and sharing of contextual information in

data centers. Further, algorithms are presented for load context detection, VM

placement, host consolidation and VM optimization tasks for power saving. It

can be noted from the experimental results that our proposed context-aware VM
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placement optimization framework can save approximately 8-10% of power dur-

ing lightly and heavily loaded cases and 2-6% during moderately loaded cases

for synthetic workloads. With real-world workload traces, a power-saving of

1-3% is achieved by the proposed solution.

• The electricity prices vary with different geographical locations across the globe.

We have addressed the problem of cost-saving in geographically dispersed data

centers by considering electricity price and response time as parameters. We

have presented a novel algorithm in cloud broker for load balancing user traffic

among available geo-distributed data centers. The experimental results suggest

that our proposed technique is able to distribute the load to cheaper data centers

ranging from 3-6%(in case of experiment category E2 and E3) to about 50% (in

case of experiment category E4) when there exists a cheaper data center(with

lower electricity price) with relatively smaller estimated response times to closer

data center.

• The peak hour performance is critical for data centers to meet the high demands

of computing resources. The over-allocation and under-allocation of user tasks

to VMs can cause performance degradation for cloud applications. We have in-

vestigated an existing ESCE(active VM) load balancing algorithm for uniform

resource utilization and proposed a solution to solve the performance ineffi-

ciency in ESCE(active VM) load balancer during peak load situations. The

experimental results attested that proposed VM load balancer allocated the

tasks to available VMs evenly by overcoming the limitation of ESCE VM load

balancer.

• GPU computing in cloud data centers is gaining momentum swiftly because of

the massive parallel computing demands from applications like HPC, deep learn-

ing, and VDI applications. Though CPU virtualization techniques are matured

enough, GPU virtualization and resource management is still a budding area of

research. The VM placement techniques involving GPU allocation and provi-

sioning needs further consideration for additional parameters and constraints.

We have presented a summary of current GPU resource management techniques
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available in cloud data centers. Further, we have presented the remaining chal-

lenges/issues concerning GPU resource management and programming virtual

GPUs(vGPU) to motivate further research in the related domain.

7.2 Directions for future work

Though the techniques and concepts presented in this thesis take a step forward

in addressing some of the relevant factors in the domain of resource management in

cloud computing, there are few extensions to our reported work possible to further

improve the load balancing process in the cloud environment. In this section, we

present some extensions and future directions as below.

• The co-located VMs on host machines can cause performance degradation due

to conflicting resource demands. This can have an impact on the overall power

consumption of the data center. There is a thorough investigation needed to

understand the impact of interference and affinity of co-located VMs on the host

resources from the perspective of power consumption. The affinity and interfer-

ence can be modeled as an additional contextual parameter for VM placement

decisions.

• The framework proposed for VM placement optimization has two modules,

GWS(Global workload scheduler) at a master node and LCM(Local context

manager) at each physical host to achieve context-aware VM placement op-

timization in the data centers. The proposed framework can be extended to

hierarchical GWS to support a multi-DC setup or to support logical scaling of

the resource management framework.

• VM placement optimization process can consider the user geo-locations in a

geographically dispersed multi data center scenarios for VM placement decision

to improve performance and overall power cost.

• The GPU enabled computing in the cloud is a relatively new area in cloud

computing. The resource management techniques are yet to attain maturity to

be used with GPUs wrapped in the virtualization layer efficiently. The research

challenges reported in our reported work can be considered for further work.
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On a closing note, the domain of cloud computing had a remarkable journey so far.

The benefits of cloud computing have to lead more and more organizations to look

up to cloud computing as a solution for deploying their applications ranging from a

simple webserver to complex HPC applications. The contributions made in this thesis

extends the journey by enabling contextual parameters like power efficiency, varying

electricity price and load situations for load balancing at multiple levels in cloud

data centers. Nonetheless, there are many evolving challenges for cloud computing

researchers to address making the journey ahead one of discovery.
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