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Abstract

In a computer communication network, transport layer is responsible for reli-
able data delivery with guaranteed Quality of Service (QoS). Congestion con-
trol mechanism is one of the prime features of transport layer and predom-
inantly responsible for maintaining the performance of network. The main
contributions of this thesis are to modify the existing handshaking mechanism
of Quick UDP Internet Connections (QUIC) protocol, called modified QUIC
(ModQUIC) to reduce control overhead and Congestion Window (cwnd) size
update delay. The suggested modification fine tunes the window update mech-
anism with Acknowledgment (ACK), that results in smooth variation in cwnd

growth. Further, it regulates the network traffic which in turn helps to control
congestion.

In the first phase, we have suggested modification of the existing QUIC pro-
tocol called the ModQUIC protocol and its performance has been evaluated
with Chromium server-client model testbed. The results and analysis are pre-
sented in comparison to QUIC and TCP in terms of performance measures like
throughput and delay. Here, the performance has been tested for limited and
sufficient link bandwidth in presence of loss, whereas the validation of results
have been carried out with the help of linear regression model. In the result
analysis, it was evident that ModQUIC achieves a throughput improvement of
35.66% and 51.93% over QUIC and TCP respectively, whereas delay is also
reduced to 3% and 5% in comparison to QUIC and TCP. In the second phase,
ModQUIC performance is verified in emulated environment using the Mininet
for transport layer and browser network. The experimental results of Mod-
QUIC are compared with QUIC, TCP and TCP/HTTP2 based on throughput,
delay and fairness. It has been observed that ModQUIC outperforms through-
put with an increased speed by minimizing transmission delay and improvised
fairness. In addition, specifically for lossy link and low bandwidth, ModQUIC
performance is better compared to QUIC and TCP.

One of the QUIC features is inbuilt congestion control mechanism, which is
responsible for maintaining streaming data. If there is no congestion, regular
window size update is carried out as a step by step approach. In next phase
of research work, ModQUIC protocol is investigated with CUBIC and Bot-
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tleneck Bandwidth Round-trip-propagation (BBR) congestion control mecha-
nisms and suggested use of a decreased value for the factor β = βTCP/n for n

flows, which are competing to acquire bottleneck resources, where βTCP is the
decrease factor used in TCP. The Chromium server-client testbed experiment
results show that the ModQUIC with BBR giver better performance in terms
of throughput, delay and datarate. The result analysis actually gives an im-
provement of 6.8%, 19.06% and 27.9% for the ModQUIC/BBR as compared
to ModQUIC/CUBIC, QUIC/BBR and QUIC/CUBIC respectively in terms of
throughput. Furthermore, the delay is reduced by 8.02%, 6.56% and 14.38%
over ModQUIC/CUBIC, QUIC/BBR and QUIC/CUBIC respectively.

The QUIC protocol versions are updating faster and new versions of the same
are available for users. In the final contribution of the research work, the per-
formance of QUIC protocol has been tested with respect to congestion control
using India’s rapidly growing Internet Service Provider (ISP); Reliance Jio 4G
(JioFi) network. This experimental study investigated ModQUIC performance
for congestion control mechanisms CUBIC and BBR in JioFi. The experiment
is conducted using a testbed, developed with JioFi and Raspberry Pi-3 wireless
router along with network emulator; Netem. Furthermore, the QUIC perfor-
mance is verified with respect to Throughput and Retransmission Ratio (RTR)
in which it is observed that overall ModQUIC/BBR performance is better than
ModQUIC/CUBIC in the current Internet. We observed that Reliance Jio is
an economical solution for the highly populated country like India, but not a
contemporary solution to fulfill India’s newly launched digitization project.

Keywords: Handshaking mechanism; QUIC protocol; ModQUIC protocol;
Congestion control; Network performance; Internet protocol technology.
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Chapter 1

Introduction

The world wide success of Internet leads to a rapid adaptation of Internet protocol technol-
ogy, which facilitates creating various networks, such as private corporate network, military
communication enabling network, personal network and the rapidly growing cellular net-
work. In today’s world, more than trillions of devices are connected to the network via IP
enabled services such as Internet of Things (IoT) framework. The rapid development in the
field of IP enabled services presents performance challenges to network service providers
on Guarantee of Service (GoS) and Quality of Service (QoS). The central theme of this
thesis is to make aware of Internet users about current development in the field of transport
layer protocol technology and extend this contribution towards reducing network latency.

Transmission Control Protocol (TCP) is the predominant transport layer protocol used
by IP technology to support Internet services. This chapter begins with introduction of
transport layer with respect to development and deployment of current Internet transport
layer solutions followed by congestion control mechanisms and Quick UDP Internet Con-
nections (QUIC) protocol design, development and functionality rationales. The chapter
ends with the metrics used for performance analysis of transport layer solutions, motivation
and organization of the thesis.

1.1 Transport Layer

Transport layer is the fourth layer of TCP/IP model, which provides end-to-end connectiv-
ity; a point-to-point connection rather than hop-to-hop, between the source and destination
hosts, to deliver messages. The structure of transport layer is shown in Figure 1.1. The trans-
port layer encapsulates the application data into data units called segments. The prevailing
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protocols used by transport layer to enhance it’s capabilities are Transmission Control Proto-
col (TCP), User Datagram Protocol (UDP), Datagram Congestion Control Protocol (DCCP)

Application Layer
HTTP, FTP, DNS, SSH, SMTP etc.

Login Host

Transport Layer
TCP, UDP, QUIC etc.

Segment

Internet Layer
IPv4, IPv6

Datagram

Data Link Layer

Access Control (Frame)

Physical Layer

Frame

Sending Host Receiving Host

Physical Layer

Frame

Data Link Layer

Access Control (Frame)

Internet Layer
IPv4, IPv6

Datagram

Transport Layer
TCP, UDP, QUIC etc.

Segment

Application Layer
HTTP, FTP, DNS, SSH, SMTP etc.

Receive Request

Transmission Medium

Figure 1.1: Data path through TCP/IP stack from sending to receiving host

1.1.1 Transport Layer Functionalities

• Process to process delivery: There are multiple processes running on host and to
deliver segment to the addressed host similar to data link layer, needs the Media Ac-
cess Control (MAC) address1 of source and destination host to correctly deliver a
frame. However, network layer uses Internet Protocol (IP) address to route packet
correctly. In a similar way, transport layer requires a port number to correctly de-
liver the segments of data to the correct process. A port number is a 16 bit integer
used to identify processes based on application. This number is set automatically by
Operating System (OS) or set by user or default to popular applications.

148 bits address contained inside the Network Interface Card (NIC) of every host machine
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• End-to-end connection between hosts: Transport layer creates end to end con-
nection between client and server by using TCP or UDP. TCP is a reliable, secure,
connection-orientated protocol, which uses a handshake to establish a robust connec-
tion between two end users. UDP is a stateless and unreliable protocol which ensures
best-effort delivery. It is suitable for the applications which have concern about delay
require to send bulk of data such as video conferencing.

• Multiplexing and Demultiplexing: In transport layer, multiplexing allows simul-
taneous use of different applications over a network which are running on a host.
Multiplexing allows to send packets from diverse applications concurrently over a
network. As shown in Figure 1.1, transport layer accepts packets from application
layer identified by their port numbers and hands over to network layer by adding
proper header. Similarly demultiplexing is used to deliver received segment to proper
process running on the receiver’s machine.

• Congestion control: When more number of packets are sent than the capacity of the
network, then router buffer overflow event occurs and packets get dropped. This situa-
tion is called congestion, and it further increases due to packet retransmission. To con-
trol such situations, transport layer provides control over the congestion through vari-
ous congestion control algorithms [Afanasyev et al. (2010)]. The standard techniques
used for congestion control are Additive Increase Multiplicative Decrease (AIMD),
leaky bucket etc.

• Data integrity and Error correction: Transport layer uses error detection technique
to verify correctness of the message received from application layer by computing
checksums. In this Acknowledgment (ACK) and Not An ACK (NACK) control mes-
sages are used to inform sender about data reception status. Transport layer is also
responsible for the authenticity and integrity of data.

• Flow control: Transport layer provides a flow control mechanism between the ad-
jacent layers of the TCP/IP model to avoid packet loss due to a fast sender and a
slow receiver. A well known flow control mechanism used by TCP is sliding window,
in which receiver sends window back to the sender to inform size of the data it can
receive.

TCP is the predominant transport protocol used by IP technology to support popular
Internet services. The first reference of TCP was in 1973 by Cerf under title of ‘A Partial
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Specification of an International Transmission Protocol’ [Cerf (1973)]. This is the era when
networking, router and layering concepts were not in existence. Most of the tasks were
handled by network control protocol. In 1974, Cerf and Kahn discussed different design
specifications of TCP in ‘A Protocol for Packet Network Interconnection’ [Cerf and Kahn
(1974)]. The first official specification of TCP was declared in 1976, which was specified
by Cerf et al., whereas second version written in 1977 by Cerf. In January 1978, Cerf and
Postel splitted TCP into two parts: TCP and IP, in which TCP is responsible for packetiza-
tion, error control, retransmission and reassemble while IP is responsible for packet routing
[Cerf and Postel (1978)].

In February 1980, the department of defense, U.S. opted TCP/IP as an authorized pro-
tocol and declared every site connected to Advanced Research Project Agency (ARPA) net
should switch to TCP/IP by 1983. In and around 1980s, there were many other networking
protocol stacks competed with TCP/IP, such as Digital Equipment Corporation (DEC) net,
System Network Architecture (SNA), AppleTalk etc. Most of these protocols are vendor
specific or proprietary, whereas TCP is open source deployment.

1.1.2 TCP Protocol Applications

IP is the baseline protocol used for the Internet services, in which transport and application
protocols are used to build a service on top of IP. TCP and UDP are the two transport layer
protocols, of which TCP provides a reliable service to loss-sensitive applications, whereas
UDP supports a more lightweight transport without packet retransmission to assist delay-
sensitive applications. Most of the popular Internet applications are using TCP.

• Electronic mail (E-mail): This application allows users to send/receive mails elec-
tronically. Many employers run their own TCP/IP network and provide e-mail ac-
counts to their employees.

• World Wide Web (www): This protocol allows us to download images or other
objects from another web site using TCP service.

• File transfer: TCP/IP networks include a file transfer application that allows users to
send and receive arbitrarily large files. These files may contain text, program, image,
audio and video files.

• Remote login: Using the remote login application, user can open an interactive ses-
sion with a remote machine through the Internet.
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In addition to TCP, TCP/IP stack provides another transport protocol, UDP. Unlike TCP,
UDP is very simple and provides bare minimum services to application. UDP is connection-
less (connection establishment and termination procedure is not implemented), unreliable
(acknowledgment, retransmission, sequence number for datagram and flow control mecha-
nisms are not present) and datagram based protocol. The application is supposed to supply
segmented data to UDP for transportation as an independent datagram.

1.1.3 UDP Protocol Applications

• Multicasting: An application that sends same piece of data to many receivers e.g.
video conferencing, web casting.

• Network management: Use of short request/response messages using UDP, which
removes connection establishment and termination. e.g. Simple Network Manage-
ment Protocol (SNMP).

• Routing table update: The routing applications, reply on query-response type of
communications. e.g. Routing Information Protocol (RIP).

• Real-time multimedia: The real-time applications can tolerate occasional packet
losses but cannot tolerate long delays caused by retransmissions of lost packets. By
the time the retransmitted packet would arrive at the destination, it would become
useless and be discarded. For such scenario UDP is more suitable compared to TCP.

Table 1.1: Difference between TCP and UDP

TCP UDP
Connection-oriented service Connectionless service
Stream based protocol Datagram based protocol
Reliable service Unreliable service
Flow control mechanism present Flow control mechanism absent
Congestion control mechanism present Congestion control mechanism absent

IP used by both TCP and UDP to transfer segments and datagrams via payload of IP
datagram. The IP protocol provides a connectionless, unreliable service through network-
ing. IP encapsulates the higher layer protocol units within it’s datagram payload, creates
the IP header and forwards the complete IP datagram to the next hop router towards the
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destination. Each intermediate router processes the IP datagram header and forwards it to
the next router along the path until it reaches the destination. The connectionless service
provided by IP simplifies the router design as it does not need to maintain connection infor-
mation which scales well for large number of hosts. Routers also get flexibility of choosing
an appropriate path for each datagram based on link bandwidth available. Table 1.2 shows
list of protocols with features which commonly placed at transport layer.

1.2 Congestion Control

Congestion control is an artificial feedback mechanism to control buffer overflow and packet
dropping events in the networks. Congestion control is one of the key feature of TCP in
which four states, namely slow start, congestion avoidance, fast retransmit, and fast recovery
are convolved. These states are four different algorithms, which are devised in Jacobson
(1988) and Jacobson (1990) and standardized in Braden (1989).

The growth of data network depends on QoS provided to the users, in which conges-
tion control plays a very important role. When nodes in the network carry more data than
link can handle, the QoS gets deteriorated due to congestion in the network, which adds
delay and block new connections. To compensate packet loss due to congestion, normally
transport layer protocols use aggressive retransmission of packets. If offered load in an
uncontrolled distributed system exceeds system capacity in flow control mechanism (fluid
dynamics), the effective load goes to zero (collapse) as increase in load. In this case, sys-
tem experiences very low throughput almost equal to zero, which is termed as ‘congestion
collapse’.

1.2.1 Definitions

For better understanding and convenience of the reader, we define various terminologies
that will be used throughout the document.

• Segment: An accepted stream of data from application layer that TCP divides among
different chunks and adds a specific header is called segment.

• Datagram: Datagram is a basic transfer unit associated with a packet-switched (con-
nectionless service) network. This is an independent, self contained message whose
delivery, arrival time and order of arrival is not guaranteed.
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Figure 1.3: Congestion collapse

• Maximum Transmission Unit (MTU): MTU is the largest data size that can be
transfered within single network layer transaction. Larger the MTU, lesser is the
overhead, whereas smaller MTU values can reduce network delay.

• Sender Maximum Segment Size (SMSS): This is the maximum segment size with-
out TCP/IP header that sender can send. This is single non-fragmented piece of data
and its value is based on the MTU.

• Receiver Maximum Segment Size (RMSS): The largest segment size without TCP/IP
header that receiver can handle or accept is called RMS S . The value for S MS S is
need to specify in the MSS options during connection setup. If the MSS option is not
used, S MS S is set to 536 bytes.

• Receiver Window (rwnd): This is advertised by receiver, based on recently accepted
data.

• Congestion Window (cwnd): This TCP state variable represents the amount of data
a TCP can send. The size of cwnd increases exponentially or linearly for every suc-
cessful packet delivery. A cwnd is the sender side limit based on the amount of data
the sender can have in flight before receiving an acknowledgment. The cwnd is a
private variable, not advertised or exchanged between sender and receiver. At any
point of time, a TCP can not exceed data sending limit greater than sum of highest
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acknowledged sequence number and minimum of cwnd or rwnd. Maximum amount
of data in flight between client and server is minimum of rwnd and cwnd.

• Slow Start Threshold (ssthresh): This variable is the boundary between slow start
and congestion avoidance phase of TCP. If cwnd is less than or equal to ssthresh,
then TCP is in slow start phase (exponential growth), else congestion avoidance phase
(linear growth).

• Duplicate Acknowledgement: An acknowledgment is considered to be a ‘duplicate’
when (i) receiver of the ACK has outstanding data, (ii) empty acknowledgment, (iii)
SYN and FIN bits are zero. SYN, synchronizes sequence numbers to initiate a TCP
connection, whereas FIN indicates the end of data transmission to finish TCP con-
nection (iv) the acknowledgment number is equal to the greatest acknowledgment
received on the given connection and (v) current advertised window is equal to the
previous advertised window.

1.2.2 Congestion Control Algorithms

This section describes congestion control algorithms: slow start and congestion avoidance,
fast retransmit and fast recovery.
Slow Start (SS) and Congestion Avoidance (CA): The slow start and congestion avoid-
ance algorithms are control parameters, which shows the state of the TCP sender. These
algorithms are implemented by using two variables cwnd and rwnd, which decide data
probing limit into network buffer. The minimum of cwnd and rwnd regulates data trans-
mission rate. One more state variable, ssthresh is used to decide whether the slow start or
congestion avoidance algorithm is used to control data transmission. Every TCP connection
must go through the slow start phase. At the beginning, sender cannot use the full capacity
of the link immediately. Instead, it starts with a small cwnd size and double it for every
Round Trip Time (RTT), that is ‘exponential growth’ given in equation (1.1). The time (T )
required to reach cwnd size equal to N segments is given by

T = RTT ∗
[
Log2

(
N

cwndinitial

)]
(1.1)

Initially, data transmission starts with unknown network conditions and increases slowly
to probe the network learn about accessible link capacity to avoid congestion. At the start,
cwnd is set to one segment and gets doubled after every successful acknowledgment. This
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shows exponential growth in data transmission as seen in Figure 1.4. Unless this exponential
growth is checked at some level, it may quickly lead to congestion. To avoid congestion well
before, a threshold, ssthresh, a dynamic variable is set. Once data transmission rate reaches
to ssthresh, cwnd size grows linearly by incrementing cwnd with 1/cwnd per successful
acknowledgment.

The initial value of cwnd size calculated using Algorithm-1 as an upper bound.

Algorithm 1 : Initial Congestion Window Size Algorithm
1: Input: S MS S , cwndinitial,
2: if S MS S > 2190 bytes :
3: cwndinitial = 2 ∗ S MS S bytes and not more than 2 segments
4: if S MS S > 1095 bytes and S MS S <= 2190 bytes :
5: cwndinitial = 3 ∗ S MS S bytes and not more than 3 segments
6: if S MS S <= 1095 bytes :
7: cwndinitial = 4 ∗ S MS S bytes and not more than 4 segments

The cwnd size should not get increased with SYN/ACK or acknowledgment of the
SYN/ACK. To regulate traffic, at cwndinitial size more than one segment and MSS used
is large, cwnd is reduced for smaller segments. This reduction is done by the factor of
[(old segment size)/(new segment size)].

The value for ssthreshinitial is usually set equal to the size of largest possible advertised
window and reduces in response to congestion. As shown in Figure 1.4, the slow start algo-
rithm is used when cwnd is less than ssthresh, while the congestion avoidance algorithm is
used when cwnd is greater than ssthresh. When cwnd is equal to ssthresh, the sender may
use either slow start or congestion avoidance. During slow start, TCP increments size of
cwnd by maximum equal to S MS S bytes for every acknowledgment. The slow start ends
when cwnd size exceeds ssthresh or when congestion is detected. While in simple practice,
TCP implementations have increased cwnd size by precisely S MS S bytes upon receipt of
an ACK. The recommended increase in cwnd is,
cwnd+ = min(M, S MS S )
where, M is the number of unacknowledged bytes acknowledged in the incoming ACK.

During congestion avoidance phase, cwnd is incremented by roughly one full-sized seg-
ment per RTT and congestion avoidance continues until congestion is detected. The basic
guidelines for incrementing cwnd during congestion avoidance is cwnd+ = min(N, S MS S ),
but not more than S MS S bytes. Another way to update cwnd size in congestion avoidance
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phase is given by

cwnd+ = S MS S ∗
(S MS S

cwnd

)
(1.2)

Equation (1.2) provides an acceptable approximation to the underlying principle of increas-
ing cwnd size by one full-sized segment per RTT.

When a TCP sender detects segment loss according to the retransmission timer and the
given segment has not yet been resent by way of the retransmission timer, the value of
ssthresh set as

ssthresh = max
(

FlightS ize
2

, 2 ∗ S MS S
)

(1.3)

where, FlightS ize is the amount of outstanding data in the network.

However, when TCP sender detects segment loss according to the retransmission timer
and the given segment has already been retransmitted at least once by way of the retrans-
mission timer, the value of ssthresh is kept constant. Basically, slow start and congestion
avoidance mechanisms are the dynamic resource management problems that can be formu-
lated as system control problems, in which system senses its state and feedback to those
users who are adjusting their controls.
Fast Retransmit/Fast Recovery: A duplicate ACK is used by TCP to inform sender about
dropped segment, out of order delivery, reordering of segment etc. This mechanism is useful
for sender to recover from a loss. A TCP receiver sends an immediate duplicate ACK, when
an out-of-order segment arrives. The purpose of this ACK is to inform the sender that a seg-
ment was received out-of-order and which sequence number is expected. From the sender’s
perspective, duplicate ACKs can be caused by numerous reasons such as dropped segments,
reordering of data segments and replication of ACK or data segments by the network. In
addition, TCP receiver sends an immediate ACK when the incoming segment fills in all or
part of gap in the sequence space. This will generate more timely information for a sender
recovering from the loss through a retransmission timeout, fast retransmit or advanced loss
recovery algorithm.

The ‘fast retransmit’ is an algorithm used by TCP sender to detect and repair loss, which
depends on the number of duplicate ACKs received. In fast retransmit, the receipt of three
duplicate ACKs indicates segment has been lost. On receipt of three duplicate ACKs, TCP
performs retransmission of missing segment without waiting for expiry of retransmission
timer. After fast retransmit, the ‘fast recovery’ algorithm governs the transmission of new
data until a non-duplicate ACK arrives. The duplicate ACKs also indicate that most likely
segments are leaving network and those are present in the receiver’s buffer and not consum-
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ing network resources. Furthermore, since the ACK ‘clock’ is preserved, the TCP sender
can continue to transmit new segments. The fast retransmit and fast recovery algorithms are
implemented together as per the following steps:

1. On receipt of the first and second duplicate ACK, sender sends a segment of previ-
ously unsent data provided that the receiver’s advertised window allows the
[FlightS izetotal <= cwnd + (2 ∗ S MS S )] and that new data is available for transmis-
sion. Note that a sender using SACK need not send new data unless the incoming
duplicate acknowledgment contains new SACK information.

2. When the third duplicate ACK is received, TCP sets ssthresh to less than or equal to,
[max ( FlightS ize

2 , 2 ∗ S MS S )].

3. The lost segment is retransmitted and cwnd is set to [ssthresh + (3 ∗ S MS S )]. This
artificially ‘inflates’ the cwnd by the number of segments (three) that have left the
network and which the receiver has buffered.

4. For each additional duplicate ACK received (after the third), the cwnd incremented
by S MS S . This artificially inflates the cwnd in order to reflect the additional segment
that has left the network.

5. When previously unsent data is available and the new value of cwnd and the receiver’s
advertised window allow, then TCP sends [1∗S MS S ] bytes of previously unsent data.

6. When the next ACK arrives that acknowledges previously unacknowledged data, TCP
sets cwnd to ssthresh, the value set in step-2, called window ‘deflating’.

Figure 1.4 shows one of the approaches, AIMD, to control congestion. In slow start
phase, cwnd growth is exponential due to after every successful acknowledgment of packets
cwnd size gets doubled. The exponential growth of the cwnd against RTT may quickly lead
to congestion. To avoid congestion before it happens, the congestion avoidance algorithm is
implemented after it reaches to ssthresh. The linear increase during congestion avoidance
is achieved by incrementing the cwnd by [1/cwnd] each time an ACK received. In this way
the cwnd is effectively increased by one every RTT. Transition from slow start to congestion
avoidance phase is controlled by the variable ssthresh. Multiplicative Decrease (MD) is the
algorithm that controls this variable. With MD, TCP sets ssthresh to half of the current
cwnd each time a timeout occurs. Therefore, if there are consecutive timeouts, MD reduces
the sending rate exponentially.
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Figure 1.4: Congestion control algorithm: AIMD

1.3 QUIC Protocol

QUIC is an experimental transport layer accompanying application layer protocol, which
has been designed and developed by Google group in 2012 [Willis (2013)]. The main
motive for this initiative is to enhance existing estimated performance of TCP. QUIC’s sub-
sidiary goals are to reduce connection establishment latency and congestion control using
bandwidth estimation. Unlike TCP, QUIC extended congestion control scope to applica-
tion space instead of restricting to kernel space. This will empower congestion avoidance
algorithms and faster upgradation.

To achieve prime motive, QUIC reduces overhead during connection establishment
phase. In TCP, most of the HTTP connections are using Transport Layer Security (TLS)
with compression, whereas QUIC uses key exchange as initial handshake and part of pro-
tocol. Once a client starts connection, the response packet inserts the useful data required
for encryption to the future packets. This setup information is used in future to setup new
or repeated connection [Bright (2018)].

As shown in Figure 1.5, QUIC is built on top of UDP and has not used error correction
at the bottom space. However, every QUIC request is multiplexed and error corrected sep-
arately by QUIC driver, instead of underlying transmission protocol. In QUIC, control data
includes packet routing information, which helps to continue serving streams independently
other than error detection. This mechanism of QUIC assists to improve performance of er-
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ror, prone links. In TCP, prior to identifying link error, considerable amount of data may be
received and this data will be blocked or get flushed during error correction. However, in
QUIC, received data after error occurs is free to be processed while the single multiplexed
stream is repaired [Behr and Swett (2018)].

HTTP/2

TLS 2.1

HTTP/2 
API

QUIC 
Crypto, Reduce handshake,

Multiplex stream, Congestion control

UDPTCP

IP

Transport layer
Application layer

Figure 1.5: QUIC placement in protocol stack

To improve overall throughput and reduce latency of the network, QUIC protocol struc-
ture has been designed. For example, packet sizes are selected in such a way that it will
sprawl at the boundaries of the encryption protocol used, which results in encrypted data,
not to wait for partial packets. However, as TCP is unaware about underlying support-
ing protocols, ‘one size fits all’ approach is used. Even though packet selection procedure
needs to negotiate with layers running on top, QUIC finishes off the procedure within a
single handshake [Roskind (2013)].

The QUIC supports connection migration (Figure 1.6e) in which during call, user can
move out from one network to another network (network switch event) without call break.
However, in TCP, existing connection is completely torn and need to be re-established with
new network to continue the call. To support for connection migration, QUIC has intro-
duced 64 bit connection identifier, which holds both multiplexing data and unique network-
wide ID. This mechanism re-establishes connection only by sending a packet carrying con-
nection ID even if the user’s IP address changes. As QUIC is implemented in application
space, this invokes additional overhead due to the data moving between applications (con-
text switching). This issue is resolved by hosting each application on separate connection
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on top of UDP, which is similar to TCP with HTTP/2.

The structure of QUIC allows future updates on the fly, as it does not require changes
at kernel level. To improve congestion control performance at initial stage of development,
QUIC comes with Forward Error Correction (FEC) functionality. But due to failure, this is
kept as longer-term goal. At present, QUIC uses HTTP/2 header compression and header
frames suffers from Head Of Line (HOL) blocking. By adopting FEC mechanism, HOL
blocking issue will get resolved as source errors can be eliminated before they reach to the
application layer.

The important fret to switch to QUIC is wide deployment of TCP in the existing net-
work infrastructure, as well as many of the ‘middle-boxes’ are tuned for TCP and may even
block UDP to control packet flooding. Google carried out a number of experimental inves-
tigations to justify QUIC presence by proving very few connections which were blocked
in this manner. In addition, QUIC made provision for a quick fallback-to-TCP structure.
The chromium’s network stack opens both QUIC and TCP connections concurrently, which
allows QUIC to fallback with zero latency [Kuehlewind and Trammell (2017)].

1.3.1 QUIC Protocol Features

The basic features of QUIC protocol is described in [Hamilton et al. (2016)].

1. Multiplexed streaming: As shown in Figure 1.6a, QUIC multiplexes different streams
over same UDP connection. QUIC is on top of UDP, hence out of order delivery is
possible, which helps in solving HOL blocking as shown in Figure 1.6d.

2. Less connection establishment latency: The time taken to set-up connection by
QUIC is at most one RTT and if in case the client has already communicated with
the server, then it takes zero-RTT as shown in Figure 1.6b. This reduces connection
establishment latency as compared to traditional TCP. Even in authentic and secure
connection, QUIC (QUIC-Crypto) will take one-RTT, in contrast TCP+TLS need
three-RTTs.

3. Authenticated and encrypted header and payload: To secure data delivery by
avoiding third-party manipulation, QUIC packets are authenticated and payload part
is encrypted. However, if the payload is partially encrypted, it still gets authenticated
by the receiver.
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4. Stream and connection level flow control: QUIC consists of connection level (like
TCP) and stream level (within connection multiple streams are present) flow control
mechanisms. Based on QUIC receiver capacity, it will advertise the absolute bytes of
data within each stream or connection (aggregate stream data).

5. Flexible congestion control: QUIC has flexible/pluggable congestion control mech-
anism. At present, QUIC has CUBIC [Ha et al. (2008)] and BBR [Cardwell et al.
(2017)] functionalities. Out of these, as a default, CUBIC congestion control with
packet pacing mechanism is used to handle network traffic. The packet pacing mech-
anism, shown in Figure 1.6c, is useful to manage busty data. In QUIC, ACK frame
supports up to 256, NACK (duplicate ACK in TCP) ranges, so that QUIC withstands
more effectively in the reordering situation than TCP with Selective-ACK (SACK).

6. Connection migration: QUIC connections are identified by a 64 bit connection ID
(instead of four-tuple in TCP) randomly generated by the client. As shown in Fig-
ure 1.6e, in case of connection migration, QUIC connection identification number
remains the same throughout the communication time so that it can survive for IP ad-
dress changes and Network Address Translation (NAT) re-bindings. Also, the same
session key has been used for automatic authentication and cryptographic verification
of migrating client.

1.3.2 Challenges with QUIC Protocol

Following are the key challenges while working with QUIC protocol:

• Within past few years, due to growth rate of web technology, there is a demand in
higher speed of operation and faster data rate requested by the users. Faster data rate
leads to better user satisfaction, which results in user retention.

• To evaluate performance, the protocol specification and working model need to un-
derstand.

• To identify parameters that fairly compare performance with other transport layer
protocols.

• QUIC protocol has been developed to compete with TCP, which is the most dominant
and worldwide deployed transport layer protocol.
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(a) Multiplexed transport

(b) Reduced handshake
(c) Packet pacing

(d) Solution to head of line blocking

(e) Connection migration

Figure 1.6: QUIC protocol features
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• QUIC protocol source code is publicly available, for experimental investigations, but
there maybe possibility that there is a gap between publicly available and actually
deployed on Google client.

• QUIC source code is a complicated structure. To locate, modify and compile code is
a tedious task.

• QUIC protocol is under rapid development since 2013, 43! stable versions are re-
leased. Limited literature and experimental studies are available which became obso-
lete before publication.

1.4 Transport Layer Performance Metrics

Following are the metrics used to evaluate performance of the protocol:

1.4.1 Throughput

The amount of data that can be transferred by the network from a sender to receiver during
a period of time expressed in Kilo or Mega bits per second, as given in equation (1.4). In
case of multiple flows, throughput is the sum of throughput of all flows.

Throughput =
cwnd
RTT

(1.4)

1.4.2 Delay

A period of time required for a packet to reach receiving end. In networks total delay given
in equation (1.5) is the sum of transmission delay, propagation delay, processing delay, and
queuing delay, expressed in mili-seconds (ms).

Delay = Transmission delay + Propagation delay + Processing delay + Queuing delay

(1.5)
where
Transmission delay: Amount of time required to push all the packet bits into the link, which
is a function of the packet’s length and data rate of the link.
Propagation delay: Amount of time required for a message to travel from the sender to
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receiver, which is a function of distance over speed with which the signal propagates. This
is the function of physical distance between the two entities and speed of light.
Processing delay: Amount of time required to process the packet header, check for bit-level
errors and determine the packet’s destination.
Queuing delay: Amount of time the packet is waiting in the queue until it can be processed.

1.4.3 Fairness

A fairness is represented in terms of fairness index, which varies between 0 to 1. Fairness
index is a measure when two or more applications compete to acquire network resources
such as bandwidth, throughput, buffer space, in which, when all are getting equal share of
resource, then fairness index is 1. One of the popular method used to measure fairness index
is Jain‘s fairness index given in [Hassan and Jain (2003)] and expressed as in equation (1.6).

F( f1, f2, ...., fn) =
(
∑n

i=1 fi)2

n.
∑n

i=1 f 2
i

(1.6)

where,
n = number of flows sharing the resource,
fi = resource allocation for ith flow
Jain’s fairness index is a predominant fairness measure for TCP flows. This fairness index
ranges from 1/n to 1. The value of this index tends to 1, only if each flow has an equal
share, and tends to 1/n, if a single flow acquires all network resources.

The phase plot in Figure 1.7 shows fairness and efficiency of the network. Each axis
represents a particular user or sender allocation. In this case, there are two users and their
allocations are represented by x1 and x2. If the capacity of the network is C, then an optimal
operating line is at (x1 + x2 = C).

In general, AIMD converges to fairness and efficiency. Suppose, if at any point 1, TCP
window size of both senders Additive Increase (AI) their sending rates, AI results moving
line parallel to x1 and x2 towards efficiency line, since both senders increase their rates
by the same amount. AI continues until network becomes overloaded that is touching to
efficiency line. At this point of time, both senders decrease their sending rates by a MD
fashion with a specific factor, in this case, half of previous. The lines drawn parallel to x1
and x2 cross at new operating point 2. Then senders increase their sending rates in additive
increase fashion and once again hits efficiency line towards optimal point. In this way,
sender’s rate converges towards optimal operating point [Molnár et al. (2009)]. This means,
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Figure 1.7: Phase plot shows relation of fairness with efficiency

AI increases efficiency, whereas MD improves fairness.

1.4.4 Transmit Time

A cwnd size is one of the important parameters and decides time required for sender to
transfer available data to receiver. Equation (1.7) is used to calculate time (T ) in second,
which is required for sender to send data.

T = RTT ∗ log2

[
N

cwndinitial

]
(1.7)

where,
RTT = round trip time in second,
N = number of segments,
cwndinitial = initial congestion window size in segments
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whereas, 1segment = 1520 − 40 (TCP header size) = 1480 byte.

1.5 Motivation and Organization of the Thesis

In today’s fast paced world, the rate and quality of information transfer has ascended to
paramount importance. By 2021, Cisco Visual Networking Index estimates that annual
global IP traffic will hit 3.3 ZB, of which 63% will be shared by wireless and mobile traffic.
Furthermore, the report states that video traffic will make up 83% of all consumer IP traffic,
of which 13% will be live streaming video. As mobile and IP enabled devices grow into an
IoT driven by 5G technology, IP traffic is bound to increase even faster in the forthcoming
years [Cisco (2018)].

In this scenario, it becomes ever more relevant to establish networking protocols to han-
dle the rapid growth in IP traffic usage. The popular Hypertext Transfer Protocol (HTTP),
published in RFC2616 in 1999, has become outdated with the changes in Internet usage and
traffic. To overcome this, Google developed its SPDY web transfer protocol [Elkhatib et al.
(2014)], using multiplexed TCP streams and header compressions on top of HTTP1.1 with
the aim of improvement in Page Load Time (PLT). In 2015 the Internet Engineering Task
Force (IETF) released the largely SPDY based HTTP/2 protocol in RFC7540 [Belshe et al.
(2015)] as a successor to the HTTP 1.1 protocol.

To maximize bandwidth utilization and data delivery rate, UDP protocol can be one of
the options, whereas on the contrary TCP protocol limits data rate by adding reliability as
the key feature. Till today, numerous modifications in TCP have been proposed and pre-
sented as the TCP variants. These variants have limitations to enhance data rates, desired for
video streaming which is responsible for congestion in the network. This ultimately affects
QoS by reducing packet delivery ratio. The encryption technique, TLS, used in TCP causes
jitter effects, which degrade the performance of TCP and modifies TCP connections. QUIC
protocol developed by Google overcome limitations of TCP such as connection migration,
reduced handshake, crypto security and streaming based on on HTTP/2 services. Internet
draft of QUIC protocol mentioned that the congestion control being introduced and needs
improvement as per application demand [Hamilton et al. (2016)].

Chapter 2 presents literature survey based on study of existing contributions related to
dissertation topic. Mainly survey is based on three subtopics transport layer, congestion
control and QUIC protocol. This includes existing theories, both generic and specific arti-
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cles written on the topic, research done in the field in order of oldest to latest and challenges
being faced in ongoing work.

Chapter 3 elaborates proposed modified QUIC protocol and mathematical illustration of
congestion window growth. To reduce transport latency window update frame is attached
to acknowledgment frame instead of being sent separately, which reduces delay to update
cwnd size. To test the performance of proposed modification two different testing environ-
ments are created. The results are compared with existing mechanism of QUIC and TCP
with respect to throughput and delay.

Chapter 4 addresses congestion control issues of ModQUIC and QUIC protocol and
provides a solution to resolve those. ModQUIC and QUIC protocols by default equipped
with CUBIC congestion control mechanism and analysis shows that performance limita-
tions are due to high BDP and cubic functionality. To improve performance in this, BBR,
an alternative congestion control mechanism to CUBIC, is suggested. However, to improve
performance with respect to cubic function, decrease factor β = 0.3/n, is suggested in-
stead of 0.3 as in CUBIC for n, number of flows. The experimentation section verifies the
ModQUIC performance with CUBIC and BBR congestion control mechanisms.

Chapter 5 presents a case study, to verify the performance of the protocol in public
domain, since in previous chapters, the performance of protocol is verified by using institute
campus reliable network. For conducting the case study,a testbed setup has been developed
using Reliance Jio along with Raspberry-Pi as a router.

Chapter 6 presents the conclusions driven by this research and the possible future work.
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Chapter 2

Literature Survey and Research
Objectives

2.1 Introduction

In recent days almost all computing, communication and control are carried out through
TCP/IP services. Many of us access some form of TCP/IP networks several times a day,
either from fixed locations or while moving and through wired or wireless medium. The
present day network services range from traditional information gathering to critical busi-
ness transactions. As an example, in online business, if PLT is high, users are irritated
and this results in low profit. To maximize the benefits of online services, it is absolutely
important to enhance the performance of TCP/IP network.

The emergence of high-speed network is not covered by deployed popular TCP variants
like Reno, NewReno, SACK etc. The data transmission speed of the network normally de-
pends on increase in cwnd size along with RTT. The growing demand for wireless network
technologies highlighted the need of transport layer protocol modification. As most of the
TCP variants are designed and developed for wired networks, these variants blindly decide
that congestion is the only cause of packet loss. But packet loss may also occur due to
non-congestion related issues such as short term radio frequency interference, bit errors or
random losses. This indicates that there is no congestion as buffer overflow is not a cause
of packet loss. To handle such non-congestion packet losses, there is a demand to develop
a loss recovery mechanism rather than simply halving cwnd size.

To resolve congestion collapse, many of the proposals were submitted by researchers
from all over the world. Most of them suggested solution as network aware rate control
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with receiver driven flow control. A cwnd size is the estimation of number of data packets
that network can accept without any congestion. To calculate bound on the number of data
packets present in the network for a particular situation is the bound for outstanding packets
in the network, e.g. rwnd (flow control limit), is less than cwnd (congestion control limit).
This is the real definition for TCP rate bound, but in most of the proposals, only cwnd

is considered as a rate controlling parameter. Usually, it is assumed that data processing
capacity of the end nodes are much greater than the data transfer rate of the network.

To replace or, as an alternative to complex structure of TCP, Google has developed a
QUIC protocol. Initially, developed TCP variants were designed to avoid overflow at input
buffers to the receiver end. This mechanism was developed based on the rwnd size, where
a sender transmits a prepared data packet. This must not increase receiver’s capacity (rwnd

size) and receiver may not be able to process data as fast as sender sends. This results in
buffer overflow and to avoid this, receiver reports by reducing sliding window size. That is,
the whole transmission will eventually synchronize with receiver’s processing rate.

To avoid unnecessary packet drops, precaution must be taken by the end nodes. A Floyd
(1994), suggested solution to this by sending congestion notification to the sender. When
bulk data is considered, data arriving time of last packet is only important and there is no
need to take care of individual packets. For delay sensitive traffic such as mice traffic which
exists for a very little time in the network, for example, pressing like button in facebook or
telnet traffic need to take care. If unnecessary packet drops or packet retransmissions take
place, this results in very high throughput degradation for such low bandwidth network.
To solve this, Sally Floyd designed Explicit Congestion Notification (ECN) mechanism,
which was investigated by Kwon and Fahmy (2004) and further extended by Ramani and
Karandikar (2000) for wireless and lossy links.

However, nowadays, due to digitization more digital documents are generated by nu-
merous applications. These digital documents come under the category of elastic traffic,
and the network performance depends on number of connections currently sharing links
of the network, which varies based on start and end of the flows. To analyze flow level
performance of the network, a flow based network state traffic model shown in Figure 2.1
was suggested by Sukhov et al. (2011). The flow level congestion control protocol stan-
dards sometimes remain unaware of network resources available, which creates unexpected
effects on the Internet.
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Figure 2.1: Flow based traffic model for uncongested backbone links

2.2 Literature Survey on Congestion Control

To estimate congestion state in the network, most of the congestion control mechanisms are
divided into three groups: Reactive (Loss-based), Proactive (Delay-based) and Flow level.
The popularity of TCP brought many approaches into existence based on fine tune con-
gestion state impairments. The congestion control is an intelligent network resource aware
mechanism with effective use of resources available in packet-switched network. Conges-
tion control is a one of the largely studied areas in the Internet research conducted over the
last 25 years. A number of proposals were submitted targeting to improve various aspects
of the congestion-responsive data flows. Several surveys were prepared by researchers tar-
geting specific requirement of interest like congestion control in adhoc networks by Hanbali
et al. (2005), congestion control for mobile adhoc networks for single and multiple flow by
Lochert et al. (2005), and Dong et al. (2015), congestion control for non-TCP protocols by
Widmer et al. (2001), congestion control for networks with high levels of packet reorder-
ing by Leung et al. (2007), fairness issues in congestion control by Hasegawa and Murata
(2001), Host-to-host congestion control for TCP by Afanasyev et al. (2010), congestion
control for wireless networks by Balakrishnan et al. (1997). This section presents a survey
on congestion control schemes for high-speed data networks and QUIC protocol develop-
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ment1. Table 2.2 summarises information of standard TCP variants with their services and
limitations.

2.2.1 Congestion Control Challenges

In literature, congestion control mechanisms are presented as an artificial feedback system
and are deployed in all routers. The Internet features are continuously growing in size, di-
versity and applicability. These features play the most significant role to integrate many net-
works such as trading and banking. A firm understanding of how this fundamental resource
(Internet) is controlled becomes even more decisive. Following are the key challenges in
front of researchers working to reduce congestion in the networks [Hassan and Jain (2003),
Peterson and Davie (2007)].

1. High speed: In recent years, the growth rate of web technology and performance
optimization industry indicates an increasing importance and demand for speed of
operation. The results show that speed is not a psychological need in accelerating
and connecting world. Through online business, within a click, items are available at
our door step. But the performance of this business is decided by how fast the online
traders are compared to their competitors. More speed leads to faster sites and better
user satisfaction, user satisfaction leads to user retention and retention leads to higher
conversions.

The high speed networking demand needs to understand many factors and analysis
of fundamental limitations. Latency and bandwidth are the critical parameters, which
play very important role in analyzing performance of the network along with speed.

2. High packet delivery ratio: This is the ratio of number of correctly received packets
at the receiver to the total number of packets transmitted by the sender. The major
sources of packet loss are buffer overflow at the intermediate routers and packet cor-
ruption caused by transmission errors. A high packet loss rate can severely degrade
the performance of data and multimedia applications.

3. Effective throughput: Effective throughput is defined as the number of application
bytes transferred within a second. For large file transfers, the effective throughput

1Prashant Kharat and Muralidhar Kulkarni (2019). Congestion controlling schemes for high-speed data
networks: A survey, Journal of High Speed Networks, 25(2019), 41-60
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of the application is a key performance measure. An inefficient transport layer algo-
rithm can significantly reduce the effective throughput even if the underlying network
provides a very high-speed communication channel.

4. Less throughput variation: Throughput variation is a metric to measure the vari-
ability in the received bandwidth over a given time scale. In general, larger the time
scale is, lower the throughput variability. For a given context, it is important to define
a time scale over which throughput variability should be measured.

5. Fairness: Fairness is the property of transport layer, which plays an important role
when two or more applications compete for resources in a congested router. Fairness
can be defined over long term or short term. Long term fairness refers to the fair
allocation of resources in the long run, whereas short-term fairness is defined in much
smaller time scales. A deployed network algorithm may allocate bandwidth fairly in
the long run yet exhibit unfairness in the short-term.

6. Short-term radio frequency interference: Gradually the demand of the wireless
network is fattening and the traditional TCP variants are basically designed to serve
wired network demands. This needs modifications as per the demand of wireless
network. If we think of transport layer design in wired network, congestion is the
primary cause of packet loss. Hence, traditional TCP variants do not respond to non-
congestion packet loss. For example, if packet loss is due to interference caused
by short term radio frequencies in which there is no router overflow event but still
TCP reaction is to reduce transmission rate by reducing cwnd size. This reduction in
transmission rate results in poor network throughput.

2.2.2 Random and Link Loss Based Congestion Control

The growing demand for mobile and wireless network technologies such as Cellular Com-
munication and Wireless Local Area Network (WLAN) is shown in Figure 2.3 [Ludwig
et al. (2002)], highlighting the need of transport layer protocol modification. It is seen
through different surveys that most of the TCP variants are designed and developed for
wired networks. These variants blindly decide that congestion is the only cause of packet
loss [Acharya et al. (2010)]. If packet loss is due to short term radio frequency interference
or bit errors or random losses, these are non-congestion events and buffer overflow is not a
cause of packet loss. To handle this non-congestion packet loss, there is a need to develop
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Figure 2.3: Typical network scenario with lossy links

a loss recovery mechanism rather than simply halving cwnd size. Figure 2.3 shows typical
hybrid network with lossy links in which link losses are mainly due to interference and ran-
dom bit errors. Table 2.5 summarizes the proposals which contribute towards random and
link loss.

First time in 1999, congestion control policies applied to wireless multimedia Code Di-
vision Multiple Access (CDMA) network by Liu and Silvester (1999) in which they applied
burst level congestion control approach. In this they studied reverse link and issues related
to multimedia traffic in wireless network. Balakrishnan et al. (1997) compared different
mechanisms for improving TCP performance over wireless links and tested in Local Area
Network (LAN) and Wide Area Network (WAN) environments using throughput and good-
put as the metrics. It has been observed that in traditional wired networks, congestion is the
primary cause of packet loss. The networks with wireless and other lossy links also suffer
from significant losses due to bit errors and handoffs. The selective acknowledgments and
explicit loss notification techniques are quite effective and show significant performance
improvement in lossy link especially when losses occur in bursts. Ratnam and Matta (1998)
in their Wireless-TCP (WTCP) handle loss due to wireless link and mobility by using lo-
cal retransmission strategy. Samaraweera (1999) suggested Non-Congestion Packet Loss
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Detection (NCPLD) algorithm, which differentiates loss due to congestion from loss due
to link noise. If there is packet loss due to any reason, recovery is the reaction. For this,
retransmission of the packet is one of the solutions. But as soon as packet drop takes place,
reduction in the rate of the transmission is also a reaction assuming that there is congestion.
To identify loss is due to non-congestion type, which may be due to link noise, a RTT based
calculations are used to identify network utilization and if it shows underutilized fast re-
transmission takes place assuming that loss is due to non-congestion. As we come to know
that loss is due to non-congestion event and continues transmission with the same rate as no
further reduction in cwnd size.

Parsa and Garcia-Luna-Aceves (1999) proposed TCP SantaCruz to improve TCP con-
gestion control performance in heterogeneous network scenario. This protocol addressed
issues such as asymmetrical paths, out of order delivery, lossy links, less bandwidth and de-
lay variation. In this protocol, only forward path delay is measured instead of RTT. To avoid
congestion, a specific threshold is assigned to the number of packets present in the bottle-
neck link. Here, there is no need to count acknowledgments to set next limit for cwnd. The
simulation results show that, TCP-SantaCruz achieves higher throughput, smaller delays,
and smaller delay variances than Reno and Vegas. Ma et al. (2000) developed TCP-Fast for
IP network with a wireless link. The basic idea of the TCP-Fast algorithm is to delay the
ACKs, being transferred from the TCP destination towards the TCP source. TCP-Fast can
speed up TCP flow control time, reduce buffer oscillation, increase bandwidth utilization,
increase throughput, and reduce packet losses in the IP networks.

Ramani and Karandikar (2000) suggested modified ECN mechanism for wireless and
lossy links in this sender aware mechanism was developed, which reports some of the packet
losses are not because of congestion. This was done through explicit feedbacks from the
network as a congestion notification about the link status. Mascolo et al. (2001) in TCP-
Westwood rely on end-to-end bandwidth estimation to differentiate whether the cause of
packet loss is either congestion or wireless channel effect, which is a major problem in
TCP-Reno. Unlike TCP-Reno, Westwood used ssthresh and cwnd parameters to control
congestion rather than three duplicate ACKs concept to control cwnd size. In Westwood,
random losses over radio link are differentiated from congestion and cause of random loss
is radio interference and avoids unnecessary cwnd reduction. TCP-Westwood is extremely
effective in hybrid (wired and wireless) networks where they claimed throughput improve-
ments up to 550% as per their observations [Wang et al. (2002), Wang et al. (2002)].

Fu and Liew (2003) in TCP-Veno, monitored the network congestion level and used
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that information to decide whether packet losses are likely to be due to congestion or ran-
dom bit errors. TCP-Veno modified multiplicative decrease to improve its applicability by
using ssthresh adjustment based on the level of congestion rather than fix factor. Veno
tried to mention connections in the operating point region for longer or full time so that
whole bandwidth of the network gets utilized. One of the salient features of Veno was it’s
only sender side modification. Xu et al. (2004) developed TCP-Jersey which is capable
to distinguish the packet loss due to wireless effects like radio interface, bit error, random
errors from the congestion effect and decisions are made. TCP-Jersey was divided into two
parts: Available Bandwidth Estimation (ABE) algorithm and routers with congestion warn-
ing mechanism. The ABE is a sender side modification which contentiously monitors and
estimates bandwidth available to the application and based on ABE’s estimation, sender
will adjust the rate of transmission. A congestion warning is the router configuration for a
network through which routers generate and send an alert message to end nodes by marking
all packets as soon as incipient (beginning to develop) congestion is detected. Based on
packet marking, sender comes to know whether packet loss is due to congestion or due to
wireless link errors [Shi et al. (2010)].

Biaz and Vaidya (2005) proposed de-randomization to distinguish congestion losses and
random losses. As described in the introduction part, most of the variants were designed
basically by assuming packet loss is due to congestion. To mitigate this misconception
de-randomization is one of the solutions in which bias is used to differentiate congestion
and wireless link loss. Mainly this concept is used in heterogeneous wireless error prone
links. Through simulation results, accurate boundaries were found out to differentiate con-
gestion loss and wireless link loss. This technique produced 95% accuracy in congestion
loss detection, whereas 75% accuracy in case of wireless link loss detection.

Rath et al. (2006), proposed a cross layer based congestion control technique called
Reno-2 to the wireless networks. In this, both transport layer and physical layer were
working hand in hand to control congestion. In Reno-2, as per channel conditions and
interference level, physical layer controls the power of transmission signal and transport
layer controls congestion by controlling flow. MATLAB simulation results showed that
the cross layer congestion control technique provides performance improvement in terms
of throughput and cwnd variations. The data transmission using wireless network suffers
from insufficient bandwidth, transmit latency and high interference. The standard TCP con-
gestion control mechanisms fail to identify available bandwidth or buffer size and blindly
halves cwnd after receiving three duplicate ACKs. Chang and Li (2012) proposed cross
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layer messages to identify bottleneck link status as a access or shared. The cwnd size is
adjusted based on the link location and packet loss and differentiated as network conges-
tion or random loss. The cross-layer messages based on Adaptive Modulation and Coding
(AMC) were used to adjust cwnd size. In this, the numerical results proved that the pro-
posed approach significantly improved the Goodput with precise packet loss identification
at various loss rates. As an example, for wireless link with 4% packet loss rate, the proposed
approach increases Goodput up to 77.25%, compared to NewReno. Figure 2.4 shows two
cross-layer design approaches; (a) for small amount of information exchange, direct com-
munication between each other is possible, normally defined as a non-manager method. (b)
in this, indirect communication takes place between layers through vertical plane (shared
information), normally defined as a manager method [Fu et al. (2014), Pham and Hwang
(2017)].

van den Berg et al. (2015) proposed a complete distributed algorithm, which creates pri-
oritized TCP flows to allocate network resources like bandwidth within flows. This enables
autonomous conversions to loss of network resources due to cyber attack or failures by en-
suring that users receive prioritized utility from available network resources. This approach
is fully-distributed, self-adaptive to prioritization of mission-critical TCP with a weighted
Nash bargaining solution to distribute network bandwidth among the flows.

Application 

Transport

Network

Link Layer

Physical

Application

Transport

Network

Link Layer

Physical

Vertical plane

(a) Non-manager method (b) Manager method

Figure 2.4: Cross layer approach
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2.2.3 Improving Efficiency in High-speed and Long-delay Networks

The problem of improving efficiency in high-speed and long-delay networks sometimes
referred as a Bandwidth Delay Product (BDP) problem. To discover network resources,
minimum time required is [D ∗ (W/RTT )], where D is maximum size of the data packet
and W is the cwnd size. A network with Giga bit capacity takes almost hours of time to
deliver all packets that depend on the time required to discover network resources. This
section deals with congestion control algorithms for high speed links, use of network re-
sources, quick response to network changes and fairness [Labovitz et al. (2010), Briscoe et

al. (2016)].

The convergence time is the speed with which system reaches its stable state. It is
the most important parameter. However, because of binary nature of feedback used in the
network to control congestion, the system generally does not converge to a single steady
state. As shown in Figure 2.6, the time to reach target load determines responsiveness
and size of oscillation determine smoothness. Ideally, time and oscillations are to be small
[RFC3649 (2003), Floyd (2003)].

Time

To
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l L
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d 
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 N
et
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or

k

Target Load

Smoothness

Responsiveness

Figure 2.6: Network convergence response

Standard TCP variants are suitable to solve pure congestion problems and not efficient
for high speed networks such as optical or satellite network in which reaction time is very
less. To handle congestion and to improve efficiency in high-speed networks, High Speed
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TCP (HS-TCP) has been proposed by [Floyd (2003)]. In this experimental approach, effi-
ciency improvement in high BDP networks and fairness in the lossy environment are the set
objectives. To achieve set objectives in HS-TCP standard, NewReno protocol is modified
by replacing increase factor α as a function of W, α(W), in congestion avoidance phase and
decrease factor β by β(W) after loss detection. When cwnd size is more, that is no loss situa-
tion, HS-TCP grab network resources aggressively, whereas vice-versa after loss detection.
This opportunistic behavior improves the efficiency of high-speed and long-delay networks.
But this aggressive and conservative behavior causes significant packet loss and occurs fre-
quently. Table 2.7, summarizes proposals which are contributed towards high-speed and
long-delay networks.

The researchers claim that traditional AIMD congestion control approach is not suitable
for high-speed and long-delay networks. Kelly (2003) says that, AIMD is not effective and
proposed Scalable-TCP (STCP) as an alternative to HS-TCP. In AIMD, complicated task
is to calculate increase and decrease rate coefficients in STCP. This is simplified by intro-
ducing Multiplicative Increase Multiplicative Decrease (MIMD) approach. The increase
and decrease approaches used in STCP are very aggressive, which result in sharpening the
characteristic graph. But because of this aggressiveness, it creates intra-fairness congestion
and it leads further to the congestion collapse. Particularly for higher RTT values due to
MIMD policy STCP flows are completely unfair with both STCP (intra-fairness) and other
TCP flows (inter-fairness) [Radhakrishnan et al. (2011)].

Leith and Shorten (2004), Leith (2008) suggested H-TCP to cope up with fairness (inter,
intra and RTT based) for competing flows with different RTT value and to improve the
efficiency of TCP. The previous studies proved that flows with greater RTT always lose to
flows with shorter RTT. In H-TCP, cwnd size increase function, α in congestion avoidance
phase is a non-decreasing function of elapsed time, t since last congestion event, whereas
H-TCP increase cwnd size by α(t) for any reference RTT instead of per RTT to resolve
fairness issue.

Caini and Firrincieli (2004), claimed that standard TCP-NewReno gives lower through-
put for long-delay networks. Normally in long delay networks, RTTs are differing largely
causing terrible unfair resource distribution. To resolve this issue TCP-Hybla algorithm
suggested modification in slow start and congestion avoidance phases, which makes it
semi-independent on RTT value. In TCP-Hybla, scaling factor, ρ is calculated as, ρ =

RTT/RTTre f . That is higher RTT value and higher scaling factor result into fast cwnd

growth and W increases with each received ACK. Increase factor in each phase is as: in
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slow start phase, W = W + 2ρ − 1 and in congestion avoidance phase, W = W + ρ2/W. In
addition to this TCP-Hybla supports: i) to calculate initial slow start threshold by estimating
network capacity, which helps to improve convergence speed. ii) to smooth busty nature of
transmission by setting the minimum delay between consecutive two packets using pacing.

In Binary Increase Congestion-control (BIC) TCP proposal, Xu et al. (2004) suggested
a solution for RTT unfairness when the loss is detected simultaneously by two competing
flows. In such situation in HS-TCP flow having RTT, x times smaller will get network share
x4.56 times more and in STCP for similar situation flow with larger RTT will get nothing.
Basically, BIC is a modification in NewReno by adding rapid convergence phase. In rapid
convergence phase, optimal cwnd size based on available network resources is discovered
by binary search approach on detection of packet loss. There are two limits Wmin and Wmax,
which are set to search cwnd size for successful packet delivery. On every achievement
of Wmax, Wmin raises by setting to previous cwnd size. As soon as packet loss is detected,
Wmax is set to current cwnd size and enters into the fast recovery phase of NewReno. Also,
BIC uses a different strategy for low loss network environment by reducing multiplicative
decrease factor from 0.5 to 0.125 when cwnd size is more than 38 (value drawn from HS-
TCP, W = 1.2/

√
p where, p is loss rate 10−3 packet/s). To avoid uncontrolled growth of

cwnd size as binary (logarithmic) search is used, precaution is taken by BIC. A BIC uses
limited slow start and puts a limit on rapid convergence when search range is too high (high-
BDP). There are two threshold values to control growth factor by S max to limit maximum
cwnd size growth value and S min to increase cwnd size minimum by this factor in rapid
convergence stage. In BIC cwnd probing decreases as window size approaches to set target
value.

Ha et al. (2008), proposed an enhanced version of BIC known as CUBIC, in which they
introduced RTT independent cwnd growth function. To achieve this, CUBIC picked up
H-TCP approach of cwnd size calculation as a cubic function of elapsed time, t since last
congestion event.

WCUBIC = C

t − 3

√
β.Wmax

C

3

+ Wmax (2.1)

where,
WCUBIC is cwnd size,
Wmax is a cwnd just before last window reduction,
C is predefined constant (scaling factor), which preserves BIC properties RTT fairness,
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limited slow start and rapid convergence.
β is decrease factor.
Window size reduction at the time of loss event is W(t) = W(t∗) ∗ (1− β), where W(t∗) is the
cwnd size at the time t∗ of packet loss i.e. Wmax.

As an additional precaution, CUBIC has a mechanism to ensure performance must not
be worse than standard TCP-Reno by checking simultaneously by calculating Wreno. With
other experimental studies, it shows that performance and fairness property of CUBIC is
very good. Also as CUBIC is available in Linux TCP suite (kernel version 2.6.16), currently
this is most used congestion control algorithm.

Jin et al. (2005), proposed TCP-FAST, which is similar to Vegas with few modifi-
cations in cwnd estimation. In TCP-FAST, cwnd (W) is updated with fixed-rate, where
W = Wcurrent ∗ (RTTmin/RTTcurrent) + α, in which α need to select based on scalability and
stability. When α is very high that will scale, W to any value, which results in wrong esti-
mation of queuing delay. However, if α is small it stabilizes; but is not scalable. To avoid
parameter fluctuations in the TCP-FAST exponential smoothing is used to calculate cwnd

size. Results with different experiments show that TCP-FAST is not friendly with standard
TCP variants like Reno, NewReno or SACK [Wei et al. (2006)].

NewVegas is an extended version of Vegas suggested by Sing and Soh (2005). NewVe-
gas scheme defines a new phase called, rapid window convergence by retaining original
benefits of Vegas and standard NewReno. In particular, delay based congestion control
approach is more beneficial for high BDP networks due to sufficient time to converge net-
work for different conditions. In rapid window convergence phase, slow-start state of the
network is extended when buffering is more or it exceeds a certain threshold value. But,
as a precaution, resource probing must be under control which means it is exponential like
Vegas but with reduced intensity. In this phase for every RTT, cwnd size is increased by
number of packets, x as; x = (Wr)(−23+n) where, Wr is cwnd size when window convergence
moves from normal to rapid state and n number of times early congestion indicator triggers
in rapid window convergence phase. If n crosses a certain value (suggested is > 3) it ter-
minates rapid window convergence phase to normal Vegas congestion avoidance phase. In
NewVegas, if packet loss occurs, it switches to fast recovery mode, whereas, when time out
(RTO) occurs, it will switch to slow start phase by resetting cwnd size. To avoid busty traffic
at the initial phase of transmission because of rapid growth, packet pacing technique like
Hybla is used. In pacing technique, a minimum delay is set between consecutive packets.
To improve efficiency, NewVegas holds transmission till cwnd size increased to required
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cwnd size to transmit the available packet, which resolves RTT estimation problem.

To improve TCP performance and preserve friendliness to standard TCP in high-speed
networks, the Shimonishi and Murase (2005), suggested a solution as the adaptive Reno.
In this proposal, a combination of constant increase and scalable increase techniques based
on congestion state are used. When the network is congestion free (queuing delay = 0),
a scalable window update function is used which supports a rapid growth of cwnd size,
whereas, when network experience congestion (queuing delay = max), a scalable function
approaching to zero. In this way, it gets adapted by switching from normal growth to rapid
growth of cwnd size based on congestion state. Adaptive Reno improves network utilization
up to a certain extent with a few of limitations, but it fails for high BDP.

A Modified Linear Quadratic Guass (MLQG) is proposed to control over long range de-
pendence network and compared with standard LQG algorithm [Vernersson (2015)]. Here,
congestion issue is solved with a stochastic optimal control problem. Kaneko et al. (2007)
combine some useful characteristics of the Westwood, DUAL and Vegas to develop TCP-
Fusion. Normally in Fusion technique, to achieve expected objectives, useful properties
of different variants were collected and used. In Fusion algorithm, author suggested three
different levels of queuing delay in second to set threshold, those are:
i) If the current queuing delay is less than the threshold, then cwnd size increased very fast
per RTT with Westwood’s scalable increase factor.
ii) If queuing delay is greater than three times of threshold value, then cwnd decreased by a
number of packets in the buffer at that time (similar to Vegas estimation).
iii) If queuing delay lies in between one to three times of threshold value, cwnd size remain
unchanged.

To take a precaution for optimum performance, Fusion must be equal to standard Reno.
If Fusion cwnd size (W f ) is less than Reno cwnd size (Wr), then W f is reset to Wr. As well as
cwnd reduction factor in fast recovery phase is also modified to β = max(0.5,RTTmin/RTT ).
But in Fusion, defining threshold is a big challenge and it makes Fusion more complex and
undesirable. As our discussion is related to speed and latency issue, Radhakrishnan et al.

(2011) and Grigorik (2018) addressed web traffic latency in their TCP Fast Open (TFO)
proposal and book High-Performance Browser Networking respectively. While taking care
of congestion control care must be taken for over all latency issues due to any reason. To
address congestion control verses latency issue, in web application, latency and PLT are im-
portant factors that influence user satisfaction with a website. Even small improvements in
latency lead to noticeable increases in site visits and user satisfaction, which result in higher
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revenue generation. To achieve the 50% PLT improvement, SPDY (one of the application
layer protocol) is aimed to make more efficient use of the underlying TCP connection. The
SPDY has introduced a new binary framing layer to enable request and response multiplex-
ing, prioritization and header compression. The loading of web page often requires fetching
hundreds of resources from dozens of different hosts. In turn, this might require the browser
to establish many new TCP connections, each of which will have to incur the overhead of
the TCP handshake. Needless to say, this can be a significant source of web browsing la-
tency, especially on slower mobile networks. TFO is a mechanism that aims to eliminate the
latency penalty imposed on new TCP connections by allowing data transfer within the SYN
packet. However, it does have its own set of limitations such as i) there are limits on the
maximum size of the data payload within the SYN packet, ii) only certain types of HTTP
requests can be sent, and iii) it works only for repeat connections due to a requirement for
the cryptographic cookie [Briscoe et al. (2016), De Cicco et al. (2013)].

In similar fashion to contribute towards congestion control and reduce latency Google
suggested QUIC protocol. Google released Internet drafts Chromium (2016) and Hamilton
et al. (2016) in 2015-16 with full specifications of the protocol. QUIC protocol is a new mul-
tiplexed and secure transport with reduced handshake atop UDP. In both TFO and QUIC,
once connection gets established between sender and receiver, for every next transmission,
direct data transmission takes place within a time out. To improve bandwidth utilization and
fast data delivery, UDP protocol is the option. For reliable service, TCP uses handshake for
connection establishment, which slows down the network due to overhead. To overcome
TCP disadvantage by preserving reliability property, QUIC is a new multiplexed and se-
cure transport layer protocol1 designed by Google group. QUIC is on top of UDP based
protocol designed from the ground up and optimized for HTTP/2 semantics [Gizis (2016),
Chromium (2016), Hamilton et al. (2016), Wei and Swaminathan (2014)]. The experimen-
tal performance analysis survey of QUIC protocol is separately discussed in the section 2.3.

2.2.4 Flow Level Congestion Control

In flow level congestion, when the number of flows with mean size σ arrive to a link with
capacity C and mean transmission rate λ, where link load is ρ > 1. When number of flows in
progress are increases then throughput tends to zero due to arrival rate, λ is greater than the

1there is a difference of opinions about QUIC location in the protocol stack in some of the literature it
appears as an application layer protocol
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average rate of flow completion. Figure 2.8 illustrate the behavior of flow level congestion
control.
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Figure 2.8: Network throughput performance for shared bandwidth during transient overload
in terms of number of flows

There is limited literature available for flow level congestion control. However, it is
worth to present survey on flow level congestion control as it is an important aspect in net-
work performance and QoS. Barakat et al. (2003) designed traffic model for uncongested IP
backbone links. They modeled traffic at flow level by using Poisson shot-noise process. This
model shows very good approximation with respect to real backbone traffic. The applicabil-
ity of this model is investigated with network dimensioning and provisioning, prediction of
the total rate and generation of backbone traffic. Oueslati and Roberts (2005) proposed Flow
Aware Networking (FAN) in this admission control [Kortebi et al. (2004)] and scheduling
is applied on user defined flows. They claimed QoS and performance guarantee with cost
effective solution as FAN. The FAN supports only for the cross-protect enabled routers,
which improves performance very slow for network with flooded links.

A study of congestion at flow level using statstical bandwidth sharing is carried out by
Fred et al. (2001), in which packet level simulations are used to extract the properties of
TCP, whereas theory of stochastic network was proposed to trace the observations. They
observed that if the sessions are appearing as per Poisson process then the throughput is
insensitive to both the flow size distribution and the flow arrival process. In this author
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has demonstrated that fluid flow statistical bandwidth sharing models can accurately predict
the results of ns packet-level simulations. They claimed that, in fair network distribution,
number of flows in progress and the expected flow have very simple relation which is valid
for wide range real traffic. Sukhov et al. (2011) used Gaussian approximation to locate the
working area of a link based on its utilization and vigilant operators indicating overload
points. They used indicators to upgrade capacity, which avoids congestion at flow level. To
validate hypothesis, they prepared testbed using border gateway routers and tested for wide
range of link utilization.

2.3 Literature Survey on QUIC Protocol

The sufficient literature is available based on the transport layer performance analysis. But
most of the attention is given to TCP [Claeys et al. (2016), Hassan and Jain (2003), Dong
et al. (2015), Wang et al. (2014), Elkhatib et al. (2014)]. To improve further performance
of the transport layer, Google proposed QUIC protocol. Before this, there was one attempt
made by Vernersson (2015) with UDP based reliable transport.

The studies and developments on QUIC protocol are mostly available in the form of
Internet drafts proposed by researchers from Google such as, secure connection with QUIC-
Crypto [Langley et al. (2017)], loss recovery and congestion control [Iyengar and Swett
(2015), Swett (2015)], QUIC contribution in Internet transport [Swett (2016)], QUIC used
as test drive application [Gizis (2016)] and QUIC Internet draft for HTTP2 [Hamilton et al.
(2016), Iyengar and Thomson (2017)].

As the proposed work needs an experimental study with comparative analysis of the
ModQUIC protocol, this section presents survey on experimental investigation of QUIC
protocol. In one of the experimental investigation, Google claimed 3% improvement with
QUIC in mean PLT compared to TCP [Chromiumblog (2015)]. In Langley et al. (2017)
Google claimed that QUIC reduces search latency by 8% and 3% for stable and mobile
users respectively. However, it reduces buffering time by 18% for stable and 15.3% for
mobile users. In addition to this, Google highlighted features like reduced HOL blocking,
improved congestion control and loss recovery.

Other than Google, many researchers have explored QUIC performance for various sce-
narios. Carlucci et al. (2015), prepared two different experimental setups to investigate
congestion control dynamics and web PLT. They observed goodput2 performance of QUIC

2The ratio of the amount of application-level data to the total time taken until the completion of its delivery.
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with FEC and noticed that for multiple objects in presence of loss, QUIC underperformed
compared to TCP/HTTP. Megyesi et al. (2016) and Biswal and Gnawali (2016), tested
QUIC performance in an emulated environment with QUIC enabled desktop client and
Google server. In both studies, author observed TCP/HTTP outperform for high BDP and
more number of large objects, but there are controversial comments on performance by both
studies in presence of packet loss.

Das (2014), in his M.S. work evaluated QUIC performance in Mahimahi, a web perfor-
mance measurement toolkit. He found QUIC performance was very good for low bandwidth
and high RTT links. Cook et al. (2017), used local and remote testbeds and tested QUIC
performance for, which scenario is most efficient. They have investigated QUIC perfor-
mance with respect to the type of access network with packet loss and added delay. They
concluded that QUIC outperforms over TCP/TLS with HTTP/2 in unstable networks such
as wireless and mobile, but in case of a stable and reliable network there is no significant
contribution.

Srivastava (2017), in his M.Sc. thesis has compared QUIC and TCP performance with
respect to throughput, delay and fairness. He found that, for an added delay and loss, QUIC
outperform and in case of competing flows QUIC was unfair compared to TCP. Kakhki
et al. (2017), carried out extensive experimentation for a variety of network conditions.
They found that QUIC outperforms TCP/HTTP in nearly every scenario, and QUIC is very
sensitive with out of order delivery and shows very poor performance. They found that
QUIC is unfair when competing with TCP flows.

Duan et al. (2017), proposed Intel DPDK based cQUIC: a scalable QUIC transport
protocol implemented in Click. They have introduced a modular L2-L3 network stack.
They claimed performance is improved over the Google QUIC server by analyzing real
traffic. They observed that 18% of QUIC based connections are using 2-RTT handshake
by limiting scalability. De Coninck and Bonaventure (2017), motivated by the success
of Multipath-TCP (MPTCP) and proposed Multipath-QUIC (MPQUIC). They succeeded
in enabling the QUIC connection to use different paths. They presented a comparative
analysis of MPQUIC with MPTCP and observed that in lossy link scenarios, MPQUIC
performance seen to be better than MPTCP. Hussein et al. (2018), integrated QUIC and
Software Defined Networks (SDN) for improved resource utilization and network security.
They implemented QUIC enabled SDN architecture to maximize bandwidth utilization and
to secure data services.

Our work added new and extended contribution in terms of ModQUIC, a modified hand-
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shaking mechanism to improve overall throughput and reduce congestion window update
delay compared to others which have been summarized in Table 2.1.

Table 2.1: Comparative contribution analysis of QUIC protocol

Contributor QUIC
Version

Performance Analysis Testing
Environment

Added
ContributionThroughput Loss Delay Fairness PLT Link B/W

Megyesi et al. 20 N Y N Y Y N Wired N
Carlucci et al. 21 Y Y N N Y Y Wired N
Das 23 N N N N Y N Wired N
Biswal &
Gnawali 23 Y N N N Y Y Wired N

Cook et al. 25 N Y Y N Y N Wire/Wireless N
Srivastva 25 to 36 Y Y Y Y N Y Wired N
Kakhki et al. 25 to 37 N Y N Y Y Y Wire/Cellular N

Duan et al.
Not

Mentioned Connection setup rate (c/s) Wired cQUIC

Coninck &
Bonaventure

Not
Mentioned Y Y Y N N N Wired MPQUIC

Hussein et al.
Not

Mentioned Security analysis Y Wire/Cellular N

This work 25 to 39 Y Y Y Y N Y Wired ModQUIC

2.4 Research Gaps

Research gaps were identified within literature survey and while working with existing ex-
perimental studies on TCP and QUIC protocol.

• To satisfy current customer demand of fast and reliable data delivery, there is a need
to design reliable network with improved response time.

• Application based transport layer protocol, such as in HD video streaming packet loss
rate is considerable.

• QUIC protocol may be one of the alternative to improve transport layer performance.
QUIC protocol is built on top of UDP in which reduced handsahking mechanism is
introduced.

• In the QUIC protocol window update is based on reception time analysis, which con-
sumes more time to generate window update signal.

• The congestion control schemes used in transport layer are to be more efficient.
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• Congestion control mechanism plays an important role to improve network.

• A dynamic data fragmentation based on available link bandwidth.

• There is a necessity of designing suitable network infrastructure based on available
resources needs, which supports for connection migration.

2.5 Research Objectives

This is the world of ubiquitous and pervasive computing and communication, where there is
a need to build congestion free network to experience high speed (low latency) data delivery.

Following are the objectives proposed to achieve prescribed goal.

1. To develop a modified handshaking mechanism to enhanced congestion control per-
formance of the transport layer protocol considering QUIC as a base protocol.

2. To test the performance of developed protocol (ModQUIC) with respect to CUBIC
and BBR congestion control mechanisms.

3. To test the developed protocol for heterogeneous network scenario, which may con-
stitute combination of wired and wireless networks (A case study).

2.6 Summary

The data networks are scalable and accommodate plenty of users in wide spread. Inter-
net users are generating huge data traffic, which makes network administrator responsible
to furnish congestion free network services. Numerous congestion controlling proposals
which were discussed in this survey are limited to standard, lossy network and high-speed
& long-delay data network. The congestion control at flow level is another focused area of
research, which is helpful to improve overall network performance and QoS. There is no
universal solution available to address all issues, so we need to contribute based on situ-
ation. IoT is a technological development in which all devices (things) are connected via
network, which provides scope to contribute towards congestion control. In this survey,
large (elephant), medium (cat) and small (mice) size live traffic handling situations are not
addressed separately. In most of the contributions, all were treated similarly, which may
lead to HOL blocking. Fairness of the algorithm is measured with Jain’s fairness index,
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which is very simple control system model of n flows sharing the same link and receiving
the same feedback signal. It can well describe the static properties of competing flows.
However, the characteristics of new network architectures and environments were dynamic
in which heterogeneity is more if new or different traffic characteristic cannot be well cap-
tured in all aspects by that model. Bufferbloat problem is not completely solved in which
processing delay is more than the connection establishment time. In bufferbloat, queuing
delay is more than RTT and packets get delayed shows congestion in the network. To solve
this an active and passive queue management techniques are suggested. The standard buffer
size suggested is equal to BDP but in long-delay networks this is not the feasible solution.
QUIC is the alternate solution to the TCP, which we decided to use as a base protocol. Fur-
ther, at the end we confer about few research gaps and based on that research objectives are
set.
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Chapter 3

Modified Handshaking Mechanism using
QUIC Protocol

3.1 Introduction

Today’s fast paced world demands data transfer with almost zero latency. Online business is
an example wherein vendor’s website suffers high PLT, which results in poor customer sat-
isfaction. TCP/IP is the most popularly used protocol to access Internet data using wired or
wireless technology. To maximize the customer satisfaction in traditional information gath-
ering or online services, it is necessary to monitor TCP/IP network parameters to improve
performance [Grigorik (2018), Hassan and Jain (2003)]. TCP/IP has contributed extensively
to the networking industry by delivering remarkable results. Google has a detailed analysis
of TCP/IP performance, where 30% to 35% of all Internet traffic passes through its servers.
In addition to this, Google’s Chrome is the most popular browser with approximately 40%
of market share [Flach et al. (2016)]. Based on the experience in 2013, Google developed
a new protocol using UDP, known as Quick UDP Internet Connections protocol. QUIC
protocol is simple and is present on the top of UDP in protocol stack, thereby making it
suitable for supporting application protocols for booting (Figure 1.5).

As per the estimation of the Cisco Visual Networking Index, Annual Global IP traffic
will hit 3.3 ZB by 2021. The report states that up to 83% of consumers IP traffic is consumed
by streaming video and 13% by live streaming [Cisco (2018)]. In this scenario, it becomes
even more relevant to establish networking protocols to handle the rapid growth in IP traffic
usage. The popular HTTP published with RFC2616 in 1999 has become outdated with the
changes in Internet usage and data traffic. Google has also developed SPDY web transfer
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protocol using multiplexed TCP streams [Elkhatib et al. (2014)], consisting of a header
compression technique on top of HTTP/1.1 to improve PLT.

1This chapter deals with the performance verification of QUIC protocol and contributes
to the modification of existing handshaking mechanism. The modified QUIC protocol is
renamed as ModQUIC, which is a transport layer solution to improve network performance
by reducing both control overhead and window update delay. In ModQUIC, window up-
date frame is attached with ACK frame instead of being sent separately. This modification
avoids the control signal required to trigger window update, which helps in reducing trans-
port latency along with fine-tuning of cwnd growth with every ACK. This results in smooth
variation in cwnd growth, which prevents consecutive packet dropping and consequently
reduces timeout events. Hence, improvement in throughput and reduction in transport la-
tency are achieved. A CUBIC congestion control mechanism is fair to manage resources
in multiple flow scenario. 2To evaluate the performance of ModQUIC, two testbed setups
were prepared using OpenFlow Mininet platform and Chromium server-client model. Test
cases were created by varying load in terms of number of packets, bandwidth and loss
rate. Comparative analysis shows that in critical situations, ModQUIC performance is very
good in terms of throughput and speedup (by a reduction in delay) over QUIC, TCP and
TCP/HTTP2 with maintained fairness property.

3.2 Congestion Window Growth Analysis

This section deals with congestion window growth analysis with the aid of mathematical
illustration.

3.2.1 Mathematical Illustration

To determine the flow rate of a node, the probabilities of both collision and number of
packets in the system are calculated. To model the system, birth-death process is used to
handle arrival and departure rates [Ross et al. (2016)]. However, to analyze system behavior,
the Poisson Distribution Function is used. The queuing model based on pure birth-death
process is shown in Figure 3.1.

1Prashant Kharat and Muralidhar Kulkarni (March, 2019), “Modified QUIC protocol for improved network
performance and comparison with QUIC and TCP”, International Journal of Internet Protocol Technology,
Vol. 12, No. 1, pp. 35-43

2Prashant Kharat and Muralidhar Kulkarni (under review), “ModQUIC: A Modified QUIC Protocol to
Improve Network Performance”, IEEE/ACM Transactions on Networking.

50



Let n is the number of packets in the network, λn is the arrival rate, µn is the departure
rate and Pn is the steady state probability of n packets, where Pn is a function of λn and µn.
These variables are used to determine system performance. Under steady state condition
(i.e. n > 0), the expected flow rate into and out of the state are equal.
If (n − 1) to (n + 1) is the change in the state then,

Expected rate Re of flow into state n = λn−1.Pn−1 + µn+1.Pn+1 (3.1)

Actual rate Ra of flow out of state n = (λn + µn).Pn (3.2)

To achieve maximum matching for expected rates with assumption of steady state, RHSs of
equations (3.1) and (3.2) are equated. Hence,

λn−1.Pn−1 + µn+1.Pn+1 = (λn + µn).Pn (3.3)

Using state transition diagram (Figure 3.1) for n = 0, 1, 2, ...

Figure 3.1: Poisson queue transition state

For n = 0, equation (3.3) becomes

λ0−1.P0−1 + µ1.P1 = (λ0 + µ0).P0 (3.4)

As, (−1) state is absent, λ0−1, P0−1 and µ0 will be zero. Therefore, equation (3.4) becomes,

µ1.P1 = λ0.P0 (3.5)

therefore,
P1 =

λ0

µ1
.P0 (3.6)

for n = 1,
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λ0.P0 + µ2.P2 = (λ1 + µ1).P1 (3.7)

using P1 from equation (3.6) in equation (3.7),

P2 =
(λ1.λ0)
(µ2.µ1)

.P0 (3.8)

hence,

Pn =
(λn−1.λn−2.....λ0)
(µn.µn−1.....µ1)

.P0 (3.9)

for n = 0, 1, 2........

∞∑
n=0

P(n) = 1 (3.10)

To estimate congestion, packet emission probability based on the previous state is used.
Packet emission probability is calculated based on window update information sent by re-
ceiver node. To control packet transmission rate, three state window update strategy is used
at the source end.
Let the window update information be Wu :

Wu = 0, if Pn = Pn−1 (3.11a)

Wu = 1, if Pn > Pn−1 (3.11b)

Wu = −1, if Pn < Pn−1 (3.11c)

The above conditions lead to the following observations or window update strategies:

1. By decreasing the packet size, the number of packets in the network are increased
to send the same amount of data. This will result in increase in the probability of
collision, and hence reduction in window size, leading to control congestion.

2. The packet size depends on the available bandwidth (allowed rate to send the data),
which ultimately depends on the window size.

3. The window update information contains state to decrease the window size and to
control the rate if congestion is detected.
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4. If flow control is achieved, packet size simultaneously decreases which will lead to
an increment in number of packets as per the state-1, to insure that the probability of
packets emitted is less, the rate has to be controlled.

5. The outcome of this approach is to control the congestion, which results in an im-
provement of the throughput performance and reduction in the transport latency.

3.3 Proposed Handshaking Mechanism

ModQUIC is a modification in the existing handshaking mechanism of QUIC protocol.
In this modification, as shown in Figure 3.4, window update frame is attached with ACK
frame. Initially, ModQUIC establishes a connection between server and client by sending
QUIC-Crypto request message. In the initial handshake, both server and clients negotiate
in cwnd size. This modification helps to reduce control overhead and packet transmission
delay which improves the overall throughput and reduce the latency in the network. The
size of cwnd varies with respect to cubic function given in equation (2.1).

3.3.1 QUIC-ACK Frame Structure

The ACK frame is used by the receiver to inform the server about received and missing
packets. The structure of QUIC-ACK frame is different from TCP-ACK frame as shown
in Figure 3.2 [Hamilton et al. (2016)]. In QUIC, NACK indicates gaps in the received
packets, which in turn are detected as missing packets. The server periodically sends Stop-
waiting frames to inform the receiver to stop waiting for packets below a particular sequence
number. The fields in ACK frame structure are as follows:

• Frame Type (8 bit): This field contains ‘01ntllmmB’ flags. In which first two bits
are set to ‘01’ indicates that this is an ACK frame, ‘n’ bit shows presence of NACK
ranges, ‘t’ bit shows truncated ACK frame; truncation can happen when the complete
ACK frame does not fit within a single QUIC Packet, or when the number of NACK
ranges exceeds the maximum range (255). The bits ‘ll’ and ‘mm’ encodes the length
of the Largest Observed field and Missing Packet Sequence Number Delta field as 1,
2, 4, or 6 bytes long.

• Received Entropy (8 bit): Unsigned integer specifies the cumulative hash of entropy
in all received packets.
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• Largest Observed (variable): Unsigned integer represents the largest packet number
the peer has observed.

• ACK Delay Time (16 bit): Unsigned float, in which 11 bits are used for mantissa
and 5 bits for exponent, which specifies the time elapsed in microseconds from when
largest observed was received until this ACK frame was sent.

• Timestamp Section: Num Timestamp (8 bit): Unsigned integer indicates the number
of timestamps that are included in this ack frame. Delta Largest Observed (8 bit):
Unsigned integer specifies the packet number delta from the first timestamp to the
largest observed. First Timestamp (32 bit): Unsigned integer specified by Largest
Observed minus Delta Largest Observed. Time Since Previous Timestamp (16 bit):
Unsigned integer specifies delta from the previous timestamp.

• Missing Packet Section: Num Ranges (8 bit): An optional field indicates the number
of missing packet ranges between largest observed and least unacked. Missing Packet
Sequence Number Delta (variable): This delta value indicates the number of packets
received between successive NACK ranges. Range Length (8 bit): Unsigned integer
specifies one less than the number of sequential NACKs in the range.

• Revived Packet Section: Num Revived (8 bit): Unsigned integer specifies the number
of recovered packets. Revived Packet Sequence Number (variable): Unsigned integer
representing a packet the peer has recovered.

3.3.2 QUIC Window Update Frame Structure

The window update frame, as shown in Figure 3.3, has been used to inform the peer of
an increase in end point’s flow control receive window [Hamilton et al. (2016)]. Window
update can be applied for connection level or stream level flow control. Violating flow
control by sending more bytes than the prescribed limit will result in the closure of the
connection by receiving endpoint. The default window size available in QUIC is 16 KB,
which gradually increases during handshaking by exchanging window control parameters.

Following are the fields of window update frame:

• Frame Type (8 bit): This field must be set to 0X004 to indicate a window update
frame.
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Figure 3.2: ACK frame structure

Figure 3.3: Window update frame structure

• Stream ID (32 bit): Integer value greater than 0 in this field indicates the stream ID
whose flow control window is being updated, otherwise it indicates connection-level
flow control.

• Byte offset (64 bit): An unsigned integer used to represent maximum amount of data
can be sent on the open stream. However, in connection level flow control stream,
cumulative data bytes from all open streams are to be considered.

3.3.3 Proposed ACK Frame Structure for ModQUIC

A proposed ACK frame structure is shown in Figure 3.4. As per the working mechanism of
QUIC, there is a specific sequence of work-flow in which, window update state appears af-
ter packet gets acknowledged. In execution of work-flow, ACK and window update frames
arrive separately one after another. The window update has been carried out based on anal-
ysis of ACK reception time. In the proposed scheme, window update frame is attached to
the ACK frame instead of being sent separately. This modification reduces control overhead
and window update delay, which results in improvement of packet transmission. In the pro-
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posed structure, maximum size of the window update is 32 bytes, which is fixed, but can be
made adaptive according to the network condition and application demand.

Figure 3.4: Proposed frame structure

3.3.4 Proposed Handshaking Mechanism

In line with the proposed frame structure, a modified handshaking mechanism for initial
and repeated connection is shown in Figure 3.5.

Following steps are the flow of execution for the proposed handshaking mechanism.

• After creating QUIC based server-client model, first connection establishment process
is carried out. It takes 0 or 1 RTT based on initial or repeated connection request.

• On receiving a data packet, the receiver sends ACK to the sender. In case the receiver
is disconnected, the sender stops receiving the ACK and assumes that the receiver is
temporarily disconnected. Then sender controls the rate of transmission and freezes
timers by sending back-off persist packet to the receiver till it receives ACK. As soon
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Figure 3.5: Proposed handshaking mechanism

as the congestion is under control, it restarts frozen timers. This results in transmis-
sion with full rate by the sender.

• If, sent data is lost, the sender re-sends data and updates window size by sending ACK
+ window update.

• If the same situation is repeated, the receiver sends ACK (with NACK) to the sender
continuously with zero window update until congestion is under control. Once con-
gestion is under control, receiver updates the window size to sender and resends the
lost data to the receiver.
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3.4 Performance of Modified Handshaking Mechanism

The performance investigation of the modified handshaking mechanism using QUIC as a
base protocol is discussed in this section. The two different environments and testbed sets
were developed to test the performance of the ModQUIC protocol.

3.4.1 Evaluation Metrics

Performance evaluation of ModQUIC, QUIC and TCP is carried out with respect to through-
put, delay and fairness as given in section 1.4 for different bandwidth and loss rate.

3.4.2 Experiment Setup using QUIC Server-client Model

3.4.2.1 Server-client configuration

Performance of the suggested modification is tested by using the dummy QUIC server-client
model present in the Chromium browser code-base available at https://code.google.com/p/

chromium/. Figure 3.6 shows testbed environment with QUIC version 33. The data genera-
tion is performed by using Google certified www.example.org. For this investigation, TCP
server application with TCP-CUBIC functionality is used. QUIC source code is modified
to add ModQUIC functionality and logged relevant variables. On client side, three differ-
ent configurations ModQUIC enabled, QUIC enabled and TCP enabled (QUIC disabled) of
Chromium are deployed. Experimentation is carried out multiple times by using loopback
technique to increase the traffic and create logs of almost ten thousand packets with payload
size of 270 bytes.

3.4.2.2 System configuration

Intel R© CoreT M i5-2400 CPU @ 3.10 GHz X 4, 8 GB RAM, Ubuntu 14.04 LTS, 64 bit op-
erating system. Chrome version 63.0.3239.132. Linux Kernel Version 4.4.0-93 generic.

3.4.2.3 Internet connectivity

1.9 Gbps across 4 lease lines with (2:1:1) load balancing with core switch 2X VDX8770-
8, 1 X VDX6740-T and router configuration of 2 X 2 MIMO, 433Mbps/client on 5 GHz,
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Figure 3.6: Testbed environment

72Mbps/client on 2.4 GHz.

3.4.2.4 Analysis and traffic shaping tools

iPerf, a network performance measurement tool, is run on the client machine to measure
an amount of data transferred and bandwidth available for server-client. The wondershaper
tool deployed on the client is used for managing traffic, to manipulate bandwidth, to fix
packet loss and to set the propagation delay.

3.4.2.5 Result analysis

The results are presented in the form of comparative performance analysis of ModQUIC,
QUIC and TCP protocols. In the experiment, base RTT value considered is 20 ms and queue
size is equal to BDP with drop-tail policy.

In QUIC, congestion is detected based on analysis of ACK reception time and window
update sent from the client only when there is a congestion. However, in ModQUIC, every
ACK is associated with window update instead of based on ACK reception time, which
provides sufficient ground to increase window size to specified level. The results observed
are given in the Table 3.1/Figure 3.7a, which shows average throughput improvement of
39.10% over QUIC and 51.93% over TCP.

In ACK reception time analysis, if new ACK reception time is greater than previous
ACK reception time, then there is no window update. This is the threat in updating con-
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Table 3.1: Throughput and Delay performance comparison

No. of
Packets

Throughput (Mbps) Average Delay (ms)

ModQUIC QUIC TCP
%Improvement

ModQUIC QUIC TCP
%Improvement

QUIC TCP QUIC TCP
1000 2.99 2.43 2.12 23.41 41.46 2.11 2.15 2.14 1.86 1.40
2000 3.89 2.78 2.48 40.09 57.09 3.21 3.27 3.38 1.83 5.09
5000 4.13 3.20 3.10 29.51 33.16 2.55 2.64 2.89 3.40 11.76
8000 6.58 4.32 3.98 52.26 69.18 2.60 2.71 2.92 4.06 10.96
10000 8.54 5.87 5.38 50.24 58.75 2.42 2.45 2.78 1.22 12.94

(a) Throughput (b) Delay

Figure 3.7: Throughput and Delay performance comparison

gestion window size in QUIC. Further, if QUIC is sporadic, additional time is required to
analyze the ACK reception time and to send window update frame. In proposed mecha-
nism, this threat and window update delay is abolished by attaching window update frame
to ACK frame. This improves the overall performance of ModQUIC compared to QUIC
and TCP resulting in maximum bandwidth utilization.

Updating window size dynamically for every ACK reception ensures delivery of data
within optimum time resulting in bandwidth optimization. This reduces number of retrans-
missions, as minimal loss of data is observed. The data loss check reduce on redundancy in
packet delivery, which results into more number of packets delivered within time compared
to existing system. By this way average end to end packet transmission delay is reduced as
seen in Figure 3.7b.
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Loss
Rate (%)

ACKs Generated (%)
ModQUIC QUIC TCP

0 91.40 89.30 98.23
1 90.32 88.67 93.57
2 85.12 82.34 85.36
5 97.76 93.82 85.47
8 99.56 98.26 81.88

10 97.98 96.71 80.19

Table 3.2: Performance with loss Figure 3.8: Performance with loss

In ModQUIC and QUIC, a loss based congestion control mechanism, CUBIC, is em-
ployed to serve for congestion. In which, response to loss is a cubic function, which is
slowly but exponentially growing. This results in improving performance of ModQUIC
and QUIC in the presence of loss compared to TCP. However, it is observed that greater
bandwidth has been occupied by ModQUIC and QUIC compared to TCP, which is unfair.
The percentage of ACK generated signifies that, higher the percentage of ACKs gener-
ated, more are the number of packets received. Validation of above mentioned analysis
has been presented in Table 3.2/Figure 3.8. When the loss is 0%, TCP outperforms due
to it’s initial aggressiveness, whereas ModQUIC and QUIC performance is almost similar.
The performance of TCP gradually decreases with increase in loss rate, whereas in Mod-
QUIC and QUIC, due to multiplexed streams and out of order delivery, even for lossy links,
the performance is superior. The performance of ModQUIC is better than QUIC due to
bandwidth occupancy limitation, which in turn depends upon the window size used. Even
though slow start is avoided in QUIC, its default window size is updated only with refer-
ence to an analysis of previously sent packet’s success and their rate of transmission. This
improves reception of ACKs and the graph shows that ModQUIC outperforms QUIC and
TCP. In ModQUIC, maximum bandwidth utilization is observed due to successful reception
of ACK which is responsible for window update.

Table 3.3/Figure 3.9a shows that for lossless bottleneck link of 2 Mbps, all three flows
are closely competing with each other, whereas as loss rate increases link becomes conges-
tive and on every ACK, as a reaction, TCP reduces data rate gradually. But for ModQUIC
and QUIC, base protocol is UDP. Hence their performance is better. However, for ideal
condition, such as sufficient bandwidth (10 Mbps) and lossless link, TCP is dominating,
as packet pacing becomes overhead for ModQUIC and QUIC. Once loss rate increases,
TCP performance suddenly drops down below ModQUIC and QUIC as observed in Table
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Table 3.3: Data rate achieved for 2 Mbps and 10 Mbps link with loss

Loss
Rate
(%)

Average Data Rate (Mbps)
2 Mbps Link 10 Mbps Link

ModQUIC QUIC TCP ModQUIC QUIC TCP
0 1.891 1.842 1.920 7.920 7.640 9.870
1 1.853 1.815 1.913 7.817 7.623 9.654
2 1.836 1.794 1.851 7.644 7.452 9.588
3 1.815 1.776 1.785 7.324 7.218 8.822
4 1.772 1.732 1.708 7.111 7.088 6.876
5 1.725 1.681 1.643 7.100 6.977 6.720

(a) 2 Mbps link (b) 10 Mbps link

Figure 3.9: Data rate achieved for 2 Mbps and 10 Mbps link with loss

3.3/Figure 3.9b.

3.4.3 ModQUIC Performance with One-hop and Browser Network

To verify the performance of ModQUIC protocol, this section presents an experimental
setup in which client is one hop away from the server. In this experimental investigation,
live data with higher video file sizes and bandwidth varying from limited to sufficient are
used.

3.4.3.1 Window size update algorithm

A strategy suggested to update window size is given in Section 3.2.1 by using Algorithm-
2. The available bandwidth estimation is carried out with the help of a MAC layer. If the
present estimated bandwidth is less than the previous bandwidth, the window size needs
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to be reduced with a step size of S T . If present bandwidth is greater than the previous
bandwidth, window size is increased by step size of S T , where default step size S T is equal
to 1. The data rate is automatically adjusted according to the updated window size. This
fine-tuned mechanism along with ACK frame results in smooth variation of cwnd size and
shows stable system performance.

Algorithm 2 : Window Update Algorithm
1: Input: Packetrate, Bandwidth,WindowS ize
2: if Bandwidthnew < Bandwidthold

3: WindowS izenew = WindowS izeold − S T
4: if Bandwidthnew > Bandwidthold

5: WindowS izenew = WindowS izeold + S T
6: if Bandwidthnew > Bandwidthold

7: WindowS izenew = WindowS izeold

8: if WindowS izeold == WindowS izenew

9: Packetratenew = Packetrateold

10: if WindowS izeold < WindowS izenew

11: Packetratenew = Packetrateold + S T
12: if WindowS izeold == WindowS izenew

13: Packetratenew = Packetrateold − S T
14: end

3.4.3.2 Proposed handshaking mechanism for one-hop network

According to the suggested modification in the ACK frame structure, the modified hand-
shaking flow is shown in Figure 3.10.

• Create a QUIC based server-client model. To establish a connection for the first time,
it takes single RTT, whereas for repeated connection zero-RTT (refer Figure 1.6b).

• Once link has been established, a sender (SH) sends a data packet to the receiver
(RH). When the RH receives a data packet, it sends ACK to the SH. In case the RH
is disconnected or if timeout takes place, the SH stops receiving the ACK with an
assumption that RH is temporarily disconnected. Therefore SH controls the rate of
transmission and freezes its timers. For this period, SH sends back-off persist packet
to the RH until it receives ACK. As soon as the congestion is under control, it restarts
frozen timers and starts transmitting packets with full rate.
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Figure 3.10: Proposed handshaking mechanism

• The rate control mechanism can be achieved by an indication of window size in the
ACK frame. If data sent by the router (SN) is lost, the SN re-sends data and update
window size towards SH by sending ACK+Window-update.

• If the same situation is observed repeatedly, it will result in congestion notification.
The RH sends ACK (with NACK) to SH continuously with zero window size (no
window update) and waits until congestion is under control. Once congestion is under
control, it updates the window size to the SH and resends the lost data to the RH.
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3.4.4 Performance verification with one-hop network

ModQUIC performance is verified with respect to evaluation metrics such as throughput,
delay, speedup and fairness by creating testbed environment.

3.4.4.1 Parameter space and testbed environment

The testbed environment and assembled setup are shown in Figure 3.11a and 3.12a which
are utilized to carry out the experimental evaluation of ModQUIC, QUIC, and TCP perfor-
mance. However, Figure 3.11b and 3.12b are used to carry out evaluation of ModQUIC and
TCP/HTTP2 for browser network.

The testbed shown in Figure 3.12a has been set up using OpenFlow Mininet platform,
which creates a network of virtual hosts. Mininet hosts run standard Linux network software
and support OpenFlow for highly flexible custom routing and software defined networking.
The libquic library with ‘golang’ programming language created by Google is used as plat-
form package to analyze the performance. The results are obtained by libquic analysis script
written in python. The QUIC toy-server-client program is used to analyze the performance.
The client tries to establish a connection with the server for FTP via the external host ma-
chine. To perform experimentation, hosts are at one hop distance away from server. The
performance is observed by changing the loss rate and link bandwidth given in Table 3.4
using wondershaper, a traffic shaping tool.

The testbed shown in Figure 3.12b has been set up with a dummy QUIC server-client
model available in the Chromium browser code-base (https://code. google.com/p/chromium/).
For the experimentation TCP server application with TCP-CUBIC functionality is used with
a modified source code of QUIC to add ModQUIC functionality and logged relevant vari-
ables. On the client side, two different configurations of Chromium, ModQUIC and TCP
are enabled (QUIC disabled) and deployed. This implementation of a ModQUIC server has
been used to test results from a MacBook Pro laptop (running chromium browser built from
source) which has been used to carry out measurements1. It has been noted that implemen-
tation is meant for integration testing and not to test performance at the scale.

1Intel Core i5 CPU @2.5 GHz with 4 GB RAM running MacOS Sierra 10.12.6 (64 bit). With chromium
version of 63.0.3229.0 (64 bit) and Darwin kernel version 16.7.0.
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Figure 3.11: Testbed environment

Table 3.4: Parameter space used for experimentation

Category Parameters Values

Network parameters

Bandwidth 5 Mbps, 10 Mbps, 50 Mbps

Link capacity
72Mbps/client for 2.4 GHz and
433Mbps/client for 5 GHz

RTT 20 ms, 50 ms
Packet loss 0%, 2%, 5%, 10%

Server side Video file size 10 MB, 30 MB, 50 MB
No. of Clients 3 (with virtual node), 3 (with browser)
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Figure 3.12: Assembled testbed

3.4.4.2 System configuration

• Server-client configuration: Intel CoreT M i5-2400 CPU @ 3.10 GHz X 4, 8 GB RAM,
Ubuntu 14.04 LTS, 64 bit operating system.

• Hop configuration: Intel CoreT M i5 CPU M560@2.67GHz X 4, 4 GB RAM, Ubuntu
14.04 LTS, 64 bit operating system.

• Internet connectivity: 1.9 Gbps across 4 lease lines with (2:1:1) load balancing with
core switch 2 X VDX8770-8, 1 X VDX6740-T and router configuration of 2 X 2
MIMO, 433Mbps/client on 5 GHz, 72Mbps/client on 2.4 GHz.

3.4.4.3 Analysis and traffic shaping tools

iPerf tool running on a client machine is used to measure link bandwidth available between
server and client. A wondershaper tool is used to manage traffic, to fix packet loss and to
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allow propagation delays to be set on a client machine. It can also be used for setting up
packet loss rate, while downloading data in the browser in order to create loss effect.

3.4.4.4 Result analysis

The comparative performance analysis of ModQUIC, QUIC and TCP has been carried out
on the basis of throughput and delay, which is based on average datarate achieved and the
packet sent per RTT respectively. However, fairness analysis is used to verify fair resource
allocation.
a) Throughput and Delay analysis
Figures 3.13a, 3.13b and 3.13c shows performance comparison of ModQUIC, QUIC and

TCP with respect to loss rate for different link bandwidths. This has been accomplished
based on the achieved average data rate using generated ACKs. At a loss of 0% and when
sufficient link bandwidth is available, TCP outperforms due to its initial aggressiveness,
whereas ModQUIC and QUIC performance are almost similar. The TCP performance grad-
ually decreases at the rate of 0.21 Mbps per percent of loss rate. In ModQUIC and QUIC due
to multiplexed streams and out of order delivery, better performance compared to TCP has
been observed in the lossy link. However, ModQUIC is better than QUIC due to bandwidth
occupancy limitation which in turn depends on the used window size. Even though the slow
start is avoided in QUIC, its default window size is updated only with respect to an analysis
of a previously sent packet’s success rate and rate of transmission. In ModQUIC, maxi-
mum bandwidth utilization is observed, which in turn is responsible for window update.
This fine-tuned window update mechanism per ACK reception results in reception of more
number of packets within specified time and hence, as a whole ModQUIC outperforms.

For lossless bottleneck link of 5 Mbps and 10 Mbps, all three flows were closely com-
peting with each other. As loss rate increases, the link becomes congestive and as a reaction,
TCP reduces data rate gradually. However, it has been observed that performance of Mod-
QUIC is improved by 21% over TCP and 3.43% over QUIC, due to built on top of UDP
and fine-tuned window update mechanism. For sufficient bandwidth (50 Mbps) and lossless
link, TCP dominates as packet pacing becomes an overhead for ModQUIC and QUIC. Once
loss rate is increased, the performance of TCP suddenly drops down below ModQUIC and
QUIC.

The delay is measured in terms of time required to send packets per RTT for different
link bandwidth and loss rate (e.g. TCP0, QUIC0 and ModQUIC0 indicates performance of
TCP, QUIC and ModQUIC for 0% loss, a similar representation is considered for 1% and
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(a) 5 Mbps link

(b) 10 Mbps link

(c) 50 Mbps link

Figure 3.13: ModQUIC performance for different link bandwidth and loss rate
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(a) 5 Mbps link

(b) 10 Mbps link

(c) 50 Mbps link

Figure 3.14: Time required based on RTT (20 ms) against number of packets sent in terms of
link bandwidth and loss rate
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5%) as shown in Figure 3.14a, 3.14b and 3.14c.

(a) 5 Mbps link with 2% loss (b) 50 Mbps link with 2% loss

Figure 3.15: cwnd growth in KB against Time in second for ModQUIC, QUIC and TCP (RTT
= 20 ms, buffer size = BDP)

Experimental results shown in Figure 3.15a and 3.15b investigate the cwnd growth with
respect to time. To extract cwnd variation, ModQUIC and QUIC source codes are equipped,
whereas tcpprobe [Persson et al. (2005)] is used for TCP. Figures 3.15a and 3.15b shows
cwnd growth for link bandwidth of 5 Mbps and 50 Mbps with 2% loss, this shows smooth
cwnd variation as well as maximum bandwidth utilization in ModQUIC compared to QUIC
and TCP. As compared to TCP and QUIC, ModQUIC is able to achieve a greater share of
the bandwidth. It is observed that even though all three protocols are using CUBIC conges-
tion control mechanism, ModQUIC and QUIC increase their window more aggressively,
observed both in terms of slope, and in terms of more frequent window size increases. As
a result, ModQUIC and QUIC are able to snatch bandwidth faster than TCP, leaving TCP
unable to acquire its fair share of the bandwidth. This unfairness is observed at the early
stage of data transfer and fairness gets improved with time and file size, which is discussed
in the Section 3.4.4.4(b).

Table 3.5 shows ModQUIC performance over TCP/HTTP2 in terms of throughput and
speedup for single and multiple flows. The throughput characteristics drastically vary when
ModQUIC and TCP are competing for flows as opposed to none at all. With extensive
experimentation in a live network; results show that ModQUIC throughput outperforms
TCP/HTTP2, especially for single dominant flow. In case of multiple streams (flows), two
from each ModQUIC and TCP/HTTP2, HTTP2 creates multiple dedicated connections to
serve each flow. However, ModQUIC uses multiplexed UDP streams in addition to dedi-
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Table 3.5: Throughput and Speedup for ModQUIC against TCP/HTTP2 for various video file
sizes

No. of
Packets

Parameters
File Size

10 MB 30 MB 50 MB

1
ModQUIC Throughput (Mbps) 0.82 0.88 0.68
TCP/HTTP2 Throughput (Mbps) 0.69 0.73 0.52
Speedup (ModQUIC over TCP/HTTP2) 1.18 1.21 1.31

4
ModQUIC Throughput (Mbps) 0.61 0.78 0.91
TCP/HTTP2 Throughput (Mbps) 0.57 0.71 0.79
Speedup (ModQUIC over TCP/HTTP2) 1.07 1.09 1.16

cated connections which multiplexes TCP streams. This causes a fall in TCP packet trans-
mission rate that results in throughput improvement of ModQUIC over TCP.
b) Fairness analysis
ModQUIC, QUIC and TCP flows are competing for bottleneck links of 5 Mbps, 10 Mbps
and 50 Mbps for different RTT values and loss rates. The observations reveal that Mod-
QUIC is a fair solution to serve multiple streams sharing bottleneck link.

The procedure has been carried out to test competing flows serviced by ModQUIC,
QUIC, TCP and TCP/HTTP2. ModQUIC, QUIC and TCP flows were created with virtual
nodes using OpenFlow Mininet platform, whereas separate browsers are opted to create
TCP/HTTP2 flows. The TCP/HTTP2 flows are generated using Mozilla Firefox and Opera.
The multiplexing nature of TCP/HTTP2 causes the use of a single TCP/IP connection which
limits to test durability under multiple flows. The video files of size 10 MB, 30 MB and 50
MB were used and serviced by any or all flows. In a similar way, the same size files were
used and serviced by TCP/HTTP2 using browser network.

The available bandwidth and ping (RTT) were tested during each epoch with Speedtest
network monitoring tool [Speedtest (2016)], and each corresponds to the video file (for
example, 18 Mbps bandwidth and 54 ms RTT for the 1 MB file download). The parameter
space used for experimental analysis is given in Table 3.4.

Figure 3.16a and 3.16b shows fairness performance calculated based on Jain’s fairness
index. In this fairness, values considered to plot graphs are average values of 5 Mbps,
10 Mbps and 50 Mbps used links. Fairness index increases with respect to file size, and
mostly for long live traffic, it is at higher side. The requests serviced via TCP/IP reserved
large segment of the bandwidth, for smaller size files and were the primary contributor, the
relatively more unfairness is observed.
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(a) Fairness index (b) Average fairness index

Figure 3.16: Fairness analysis

3.4.5 Validation of Results

To validate and check consistency of the obtained results, linear regression model, R2 (R-
squared) has been employed. Regression is a statistical analysis indicating percentage of
variance, given in equation (3.12). Regression analysis is a set of statistical processes for
estimating the relationships among variables. To be specific, regression analysis helps us
to understand how the typical value of the dependent variable changes when any one of the
independent variables is varied, while the other independent variables are fixed.

R2 =
Variance explained by the model

Total Variance
× 100 (3.12)

where, R2 value ranges between 0% to 100%.

Table 3.6: R2 values for ModQUIC performance validation

Parameters
R2 Value (%)

ModQUIC v/s QUIC ModQUIC v/s TCP
Throughput 97 92
Delay 96 70
Loss rate 96 33
Data rate (2 Mbps link with Loss) 99 96
Data rate (10 Mbps link with Loss) 98 89

A 0% R2 value indicates that the suggested model is not consistent with respect to per-
formance parameters, whereas 100% indicates model is perfect with respect to performance
parameters. Larger the R2 value, better is the regression model that fits for observations. Ta-
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ble 3.6 shows R2 values for performance comparison of ModQUIC protocol with QUIC
and TCP. Overall observations are seen to fit the regression model. However, the values
70% and 33% are lower with respect to the desired output. It may be noted that, the lower
R2 value indicates that ModQUIC performance is improving significantly as compared to
TCP. In delay and loss result analysis, ModQUIC and QUIC are almost following similar
patterns, whereas ModQUIC and TCP are seen to drift from each other. In ModQUIC, there
is a higher reduction in delay compared to TCP with respect to number of packets in flight.
TCP performance is seen to be very poor in presence of loss compared to ModQUIC.

3.5 Summary

ModQUIC is a transport and application layer solution, which enhances the throughput,
reduces latency and is easily deployable in an existing network. To determine the rate of
transmission, a birth-death process based queuing model is used and window update infor-
mation is set using steady state probability. The performance of the proposed modification
in QUIC protocol is verified by using two different testing environments. The results are
presented in the form of comparative analysis of ModQUIC, QUIC and TCP with the help of
throughput, delay and behavior in presence of loss for limited and sufficient bandwidth for
the prescribed parametric space. The observed improvement for ModQUIC in throughput
over QUIC and TCP are 35.66% and 51.93% respectively. A marginal reduction in de-
lay is observed with ModQUIC compared to QUIC, whereas delay reduction is significant
over TCP. It has been observed that, for lossy link, TCP shows poor performance compared
to ModQUIC and QUIC. However, the performance of ModQUIC and QUIC is found to
be better and stable with time. It has been observed that for high-speed link, QUIC and
ModQUIC act as a performance bottleneck. It has been observed that the performance of
ModQUIC and QUIC is better in high BDP network and for large file sizes. The fairness
analysis shows that fairness index improves with respect to file size and BDP. In this experi-
mental analysis, it has been observed that the limitations of the ModQUIC are mainly due to
cubic functionality. To overcome high BDP performance limitations, alternative congestion
control mechanism to CUBIC, which is more aggressive in slow start phase (NewReno)
or adaptive with respect to bottleneck bandwidth (BBR), may be useful solutions. Results
were validated with the help of R2 regression model.
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Chapter 4

ModQUIC Protocol Performance with
CUBIC and BBR Congestion Control
Mechanisms

4.1 Introduction

A simultaneous investigation of network performance is carried out with situation based
congestion by conducting experiments on customized testbed. This is an extension to Mod-
QUIC protocol performance investigation, which has been contributed to congestion control
dynamics of the protocol1. This work adds one more dimension to congestion control by
using Bottleneck Bandwidth Round-trip-propagation-time (BBR) and suggested a CUBIC
decrease factor β = βTCP/n, for n flows, which are competing to acquire bottleneck re-
sources, where βTCP = 0.3 which is the decrease factor used in the TCP. A testbed has been
prepared with Chromium server-client model and traffic monitoring tool. Results show
that ModQUIC with BBR outperform ModQUIC with CUBIC and QUIC with CUBIC and
BBR.

1Prashant Kharat and Muralidhar Kulkarni (communicated), “ModQUIC Protocol Performance Verifica-
tion with CUBIC and BBR Congestion Control Mechanisms”, International Journal of Internet Protocol
Technology, Inderscience.
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4.2 Congestion Control Mechanisms

There are various congestion control techniques presented in Afanasyev et al. (2010), Kharat
and Kulkarni (2018), of which CUBIC has been deployed in QUIC protocol. At present,
CUBIC is available by default in the QUIC stack, which is more stable, whereas QUIC with
BBR is still experimental.

4.2.1 CUBIC Congestion Control

CUBIC is an enhanced version of BIC [Xu et al. (2004)] proposed by Ha et al. (2008), in
which RTT independent cwnd growth function has been introduced. Basically, CUBIC is
using H-TCP [Leith (2008)] approach to calculate cwnd size, which is a cubic function of
elapsed time, t, since last congestion event.

WCUBIC = C

t − 3

√
β.Wmax

C

3

+ Wmax (4.1)

where,
WCUBIC is cwnd size,
Wmax is a cwnd size just before last window size reduction,
C is predefined constant used as a scaling factor,
β is decrease factor.
Window size reduction at the time of loss event is W(t) = W(t∗) ∗ (1− β), where W(t∗) is the
cwnd size at the time t∗ of packet loss i.e. Wmax.

Figure 4.1 shows the behavior of CUBIC with respect to the cubic function against time,

in which K =
3
√

β.Wmax
C and whenever packet dropping event occurs, the cwnd is reduced by

a decrease factor β, otherwise increased by α for every successful ACK. For TCP with CU-
BIC, β = 0.3, whereas in QUIC with CUBIC, β = 0.3/2 = 0.15.
This work suggested, β = βTCP/n for QUIC with CUBIC and ModQUIC with CUBIC,
where n are the number of flows competing to acquire bottleneck resource and βTCP is the
decrease factor used in TCP.
Every new epoch starts at t = 0 and α is set to some predefined value. In our experimental
analysis we set it to 4, whereas in Cisco it has been set to 10. Wmax is the initial cwnd size
(cwnd(0)), where packet loss occurred previously. However, equation (4.1) preserve proper-
ties of BIC such as RTT fairness, limited slow start and rapid convergence. As an additional
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Figure 4.1: Congestion window growth with respect to cubic function against time

precaution CUBIC has a mechanism to ensure that the performance isn’t worse than stan-
dard Reno with simultaneous checking and calculation of Wreno parameter. Based on other
experimental studies, it has been observed that the performance and fairness properties of
CUBIC are better than other congestion control mechanisms. Also, as this is available in
the Linux TCP suite (kernel version 2.6.16), currently it is the most widely used congestion
control mechanism.

4.2.2 BBR Congestion Control

In our previous studies, it has been observed that loss-based congestion control, such as
CUBIC is the primary cause of major delay in modern fast networks, especially over large
distances. This is due to CUBIC interpreting packet loss as congestion, an equivalence
which was more or less valid at the time of the algorithm’s conception. In modern days,
Internet speed is transitioning from Kbps to Gbps, the equivalence of packet loss with con-
gestion is not quite so straightforward.

The slowest link of Internet Explorer is the rate-determining factor for information trans-
fer, which acts as a bottleneck for QUIC connection. A bottleneck often goes hand in hand
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with a queue formed due to arrival rate exceeding departure rate. Thus solving the problem
of the bottleneck will go a long way towards increasing throughput and minimizing delay
during information transfer. In the current CUBIC implementation, when bottleneck buffers
are large, the loss-based nature of CUBIC keeps them full, causing bufferbloat. When bot-
tleneck buffers are small, CUBIC misinterprets loss as a signal of congestion as per its
design, which leads to the low throughput.

To overcome these demerits of CUBIC, Google suggested BBR, a distributed congestion-
control mechanism which reacts to actual congestion and not to the packet loss or transient
queue delay. Also BBR is converges to an optimal operating point. This distributed ap-
proach to control congestion based on measuring the two parameters that characterize a
path: Round-Trip-time-propagation (RTprop) and Bottleneck-Bandwidth (BtlBw), which
are shown in Figure 4.2 [Cardwell et al. (2017)].
The key features of BBR are as follows:

• Considers RTprop and BtlBw as constraints for transport performance.

• This can be thought of as length (RTprop) and minimum diameter (BtlBw) of network
pipe.

• Fewer data in a pipe: BBR measures RTprop and BtlBw parameters to accurately
react to congestion, not loss or queuing effects.

A connection has maximum throughput and minimum delay when

• Rate Balance: Bottleneck packet arrival rate = BtlBw

• Full Pipe: Total Data in Flight = BDP = BtlBw * RT prop

In the Figure 4.2 constraint lines intersect at [in f light = BtlBw * RT prop], as good as
the pipe’s BDP. Since the pipe is full before this point, the [in f light - BDPexcess] creates
a queue at the bottleneck. Certainly, packets have been dropped once they exceed buffer
capacity. As seen in Figure 4.2 congestion is carried by the right side of BDP line. How-
ever, congestion control is a mechanism, which holds a connection to operate at an average
level of bandwidth limited region. A loss-based congestion control, CUBIC, operates at
the right side edge of the bandwidth-limited region. This provides full BtlBw at the cost of
high delay and frequent packet loss. At the time when memory chip was quite expensive,
buffer size was slightly greater than the BDP, which minimized congestion control’s excess
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Figure 4.2: BBR response with respect to delivery rate and round trip time v/s amount of data
in flight

delay. Larger buffer sizes create bufferbloat, which converts RTT value from milliseconds
to seconds.

Thus, CUBIC assumes loss and buffer occupancy to capture the behavior of congestion,
which is not realistic. However, BBR characterizes congestion based on how it occurs
through RTT based BtlBw and RTprop estimation. BBR maintains a small queue size and
optimum network utilization through distributed control loop with the help of packet pacing
and control over sending rate.

4.3 Performance Verification with Congestion Control

To verify ModQUIC protocol performance with CUBIC and BBR congestion control mech-
anisms, an experiment setup has been developed and performance evaluated in terms of
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throughput, delay and datarate achieved.

4.3.1 Experiment Setup

To carry out experimental performance evaluation, a testbed with Google certified, QUIC
server-client model is developed using Chromium browser code-base [QUIC test server
(2016)]. The Figure 4.3 shows a testbed environment with QUIC version 39 and the data
has been generated by using www.example.org. By instrumenting QUIC source code as
per the proposed mechanism presented in Section 3.3, ModQUIC functionality is integrated
and logged relevant variables. There are two different configurations: ModQUIC enabled
and QUIC enabled (default is TCP enabled) of Chromium, were deployed. The experiment
is carried out multiple times by using loopback technique to verify the performance of
both configurations with CUBIC and BBR. In ModQUIC and QUIC, by default loss based
congestion control mechanism; CUBIC is present and BBR functionality was enabled by
modifying a file which has a flag available at: chromium/src/net/quic/core/quic flags list.h
is set to true. The logs of almost ten thousand packets with a payload size of 270 bytes have
been recorded.

QUIC  
Server

ModQUIC
Server

Wonder  
Shaper

QUIC  
Client

ModQUIC  
Client

Measurement 
Point

Server Host Client Host

Packets

Figure 4.3: Testbed environment

System configuration used is Intel R© CoreT M i5-2400 CPU @ 3.10 GHz X 4, 8 GB
RAM, Ubuntu 14.04 LTS, 64 bit operating system. Chrome version 63.0.3239.132. Linux
Kernel Version 4.4.0-93 generic. To monitor network performance, an iPerf tool is run
on the client machine to measure the amount of data transferred and bandwidth available.
However, wondershaper tool is deployed to manage traffic, to manipulate bandwidth, to fix
packet loss and to set propagation delay.
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4.3.2 Metrics and Parameter Space

The performance of ModQUIC and QUIC is measured in terms of throughput, delay and
datarate achieved.
The parameter hyperspace used for the experiment is specified in the Table 4.1.

Table 4.1: Parameter hyperspace

Parameter Values
Number of Packets 0 to 10000
Link Capacity 2 Mbps and 10 Mbps
Loss Rate 0%, 2%, 5% and 10%
Round Trip Time 20 ms

4.3.3 Performance Evaluation

This section presents comparative analysis based on experimental results in terms of through-
put, delay and achieved datarate by ModQUIC with CUBIC and BBR. A dumbbell shape
network topology has been created by adding 8% background traffic and with 20 ms base
RTT to verify protocol performance. A buffer with size equal to BDP with a drop-tail pol-
icy is used. In this experiment, the total network utilization is around 92%, of which four
flows ModQUIC/BBR, ModQUIC/CUBIC, QUIC/BBR and QUIC/CUBIC utilized 28%,
25%, 21% and 18% respectively, whereas background traffic contributed 8%. It has been
observed that BBR performance is better and more stable compared to CUBIC. However,
overall ModQUIC/BBR performance is better in all aspects.

Table 4.2: Throughput performance comparison of ModQUIC/BBR, ModQUIC/CUBIC,
QUIC/BBR and QUIC/CUBIC by varying number of packets over 2 Mbps link

No. of
Packets

Throughput (Mbps)
ModQUIC/BBR ModQUIC/CUBIC QUIC/BBR QUIC/CUBIC

1000 3.213 2.924 2.740 2.431
2000 3.919 3.781 3.417 2.812
5000 4.723 4.223 3.928 3.301
8000 7.248 6.923 5.029 5.119

10000 9.112 8.529 7.223 6.512

In QUIC, window update is sent from the client only when if there is no congestion.
The congestion situation is detected based on analysis of ACK reception time. However,
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in ModQUIC, every ACK is associated with window update instead of depending on ACK
reception time, which provides sufficient ground to increase the window size to a specified
level. This results in ModQUIC throughput improvement over QUIC, which is observed
in Table 4.2. Window size is dynamically updated for every ACK to ensure data delivery
within optimum time. This reduces the number of retransmissions, which indicates minimal
loss of data and results in more number of packets delivered within time, compared to the
existing system. By this way, average end to end packet transmission delay is reduced.
Even further improvement is observed with ModQUIC/BBR by reducing queuing delay
(bufferbloat) as shown in Table 4.3.

Table 4.3: Performance comparison of ModQUIC/BBR, ModQUIC/CUBIC, QUIC/BBR and
QUIC/CUBIC by varying number of packets over 2 Mbps link in terms of delay

No. of
Packets

Average Delay (ms)
ModQUIC/BBR ModQUIC/CUBIC QUIC/BBR QUIC/CUBIC

1000 2.053 2.118 2.132 2.153
2000 2.134 2.716 2.214 3.271
5000 2.482 2.554 2.583 2.648
8000 2.531 2.463 2.752 2.716

10000 2.466 2.357 2.778 2.450

Table 4.4: Performance comparison of ModQUIC/BBR, ModQUIC/CUBIC, QUIC/BBR and
QUIC/CUBIC by varying number of packets over 2 Mbps link with respect to loss

Loss (%)
ACKs Generated (%)

ModQUIC/BBR ModQUIC/CUBIC QUIC/BBR QUIC/CUBIC
0 96.20 94.40 93.00 92.34
2 94.13 92.76 92.11 89.62
5 97.25 88.45 94.25 80.21

10 83.45 81.64 71.58 74.55

In CUBIC, response to the loss is a cubic function, in which growth is slow at the be-
ginning and exponential later, whereas BBR operates near to optimal region. So no queue
builtup is observed and shows consistent and stable performance. This results in the per-
formance improvement of ModQUIC and QUIC with respect to loss. However, aggressive
nature of ModQUIC to acquire resource occupies greater share of bandwidth compared to
QUIC, which is unfair. Table 4.4 shows percentage ACK generated, which indicates re-
ceived packets, higher the percentage of ACKs generated, more are the packets received.
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Figure 4.4: Performance comparison of ModQUIC with QUIC for a 10Mbps/20ms link with
buffer size equal to BDP in presence of 3% loss

Table 4.4 shows that ModQUIC/BBR performance is better compared to others and over-
all ModQUIC outperforms. Figure 4.4 shows a case study in which it has been observed
that ModQUIC performance in presence of 3% loss is equal to TCP raw connection. In
ModQUIC and QUIC, due to multiplexed streams and out of order delivery, even in lossy
links, the performance is superior. The performance of ModQUIC is better than QUIC due
to bandwidth occupancy limitation which in turn depends upon the window size used. Even
though the slow start is avoided in QUIC, its default window size is updated only with ref-
erence to an analysis of previously sent packet’s success and their rate of transmission. This
improves the reception of ACKs and the graph shows that ModQUIC outperforms QUIC.
In ModQUIC, maximum bandwidth utilization is observed due to successful reception of
ACK which is responsible for window update.

Table 4.5 shows that for lossless bottleneck link of 2 Mbps, all four flows are closely
competing with each other to acquire bottleneck resource. An increase in loss results into
congested link and in such situation ModQUIC performance is seen to be better than QUIC,
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Table 4.5: Datarate achieved for 2 Mbps link in presence of loss

Loss (%)
Average Datarate Achieved (Mbps)

ModQUIC/BBR ModQUIC/CUBIC QUIC/BBR QUIC/CUBIC
0 1.983 1.961 1.911 1.823
2 1.978 1.922 1.910 1.852
3 1.973 1.883 1.902 1.728
5 1.907 1.732 1.872 1.672
8 1.810 1.703 1.825 1.622

10 1.662 1.600 1.681 1.537

Table 4.6: Datarate achieved for 10 Mbps link in presence of loss

Loss (%)
Average Datarate Achieved (Mbps)

ModQUIC/BBR ModQUIC/CUBIC QUIC/BBR QUIC/CUBIC
0 8.112 7.920 8.101 7.640
2 8.152 7.523 8.107 7.181
3 8.137 7.421 7.941 6.923
5 7.918 6.302 7.121 6.419
8 6.587 6.780 6.259 6.065

10 5.129 5.341 5.180 5.240

as window update is faster than QUIC. However, in the ideal condition, where sufficient
bandwidth and lossless link is available, packet pacing creates overhead for ModQUIC and
QUIC, which shows overall bandwidth utilization is less and further increases with loss as
given in Table 4.6.

In fairness analysis, bottleneck link of 2Mbps/20ms and buffer size equal to BDP is con-
sidered as a resource for performance measurement. Table 4.7 shows average throughput for
five iterations, in which it has been observed that when competing flows with similar trans-
port layer protocol and congestion control strategy (Sl. No. 1) achieves equal throughput,
due to fair share of resource allocation. However, competing flows with different transport
layer protocol or congestion control strategy (Sl. Nos. 2 to 4) achieve unequal through-
put, due to unfair share of resource allocation. The cwnd growth analysis shown in Figure
4.5 indicates that flows with different transport layer protocol or congestion control strate-
gies show an unfairness, whereas flows with similar transport layer and congestion control
strategies show friendliness and fair resource sharing.
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Table 4.7: Average throughput with standard deviation of ModQUIC/BBR, ModQUIC/CUBIC,
QUIC/BBR and QUIC/CUBIC competing flows for bottleneck link of 2Mbps/20ms and buffer
size of BDP

Sl. No. Competing Flows Number of Flows
Average Throughput
(Standard Deviation)

1
ModQUIC/BBR v/s
ModQUIC/BBR

ModQUIC/BBR-1
ModQUIC/BBR-2
ModQUIC/BBR-3

0.62 (0.51)
0.61 (0.53)
0.64 (0.49)

2
ModQUIC/BBR v/s
ModQUIC/CUBIC

ModQUIC/BBR-1
ModQUIC/CUBIC-1
ModQUIC/CUBIC-2

0.67 (1.02)
0.59 (0.43)
0.61 (0.81)

3
ModQUIC/BBR
v/s QUIC/BBR

ModQUIC/BBR-1
QUIC/BBR-1
QUIC/BBR-2

0.92 (0.77)
0.54 (0.61)
0.51 (1.1)

4
ModQUIC/BBR
v/s QUIC/CUBIC

ModQUIC/BBR-1
QUIC/CUBIC-1
QUIC/CUBIC-2

0.98 (0.46)
0.49 (0.23)
0.46 (0.39)

Figure 4.5: Congestion window growth of ModQUIC/BBR, ModQUIC/CUBIC, QUIC/BBR
and QUIC/CUBIC competing flows in 2Mbps/20ms bottleneck link with buffer size equal to
BDP
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4.4 Summary

The performance of ModQUIC has been investigated with CUBIC and BBR congestion
control mechanisms and the results were presented in the form of comparative analysis
of ModQUIC/BBR, ModQUIC/CUBIC, QUIC/BBR and QUIC/CUBIC. The overall Mod-
QUIC/BBR performance is better and stable for varied scenarios compare to other combi-
nations. The improvement of ModQUIC/BBR throughput is 6.8%, 19.06% and 27.9% and
delay reduction of 8.02%, 6.56% and 14.38% over ModQUIC/CUBIC, QUIC/BBR and
QUIC/CUBIC respectively has been observed. It has been noticed that in lossy link, Mod-
QUIC/BBR is more stable and outperform ModQUIC/CUBIC, QUIC/BBR and QUIC/CUBIC.
For high-speed link, both ModQUIC and QUIC act as performance bottlenecks, whereas
unfairness is observed when multiple flows are competing for bottleneck resource.
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Chapter 5

Congestion Control Performance
Investigation of ModQUIC Protocol
using Jio-Fi Network: A Case Study

5.1 Introduction

Recently, Government of India promoted digitization of government services. This de-
mands an improvement in online infrastructure and Internet connectivity to empower India
digitally. Reliance Jio (JioFi) has brought digital empowerment to all Indians through con-
nectivity with affordable data connection. The Reliance Jio as of now captured 16.02% of
market share for a total of 160.09 million of subscribers [Gupta and Mukherjee (2018)]. 1In
this experimental study, the performance has been evaluated using emulated network condi-
tions, against servers deployed with ModQUIC. The ModQUIC performance is tested with
CUBIC and BBR congestion control mechanisms with respect to Throughput and packet
Retransmission Ratio (RTR).

5.2 Experimental Investigation

To verify the performance of the ModQUIC protocol a testbed setup shown in the Figure
5.1 has been prepared and the performance is tested for parameter space given in Table

1Prashant Kharat and Muralidhar Kulkarni (under review), “Congestion Control Performance Investigation
of ModQUIC Protocol using Jio-Fi Network: A Case Study”, Journal of High Speed Networks.
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5.1. The BBR functionality is enabled by modifying the flag bit in the Chromium source
code available at chromium/src/net/quic/core/quic flags list.h [Chromiumblog (2015)]. The
default status of this flag is set to false enables CUBIC as the default congestion control
mechanism. The video files were uploaded on Google drive with sizes of 1 MB, 3 MB,
and 5 MB. The net-internals tool of Chromium was used to monitor all network activities.
This tool records network parameters like protocol used, packets sent, packets lost, packets
received, throughput for all live connections serviced by ModQUIC.

5.2.1 Testbed Setup and Parameter Space

During experimental analysis, the main objectives are to examine the performance of Mod-
QUIC in real network congestion for a live streaming. As shown in the Figure 5.1, JioFi1 is
used as an Internet Service Provider (ISP), whereas wireless router has been prepared with
network emulator (Netem) enabled Raspberry Pi-3 board. A MacBook Pro laptop running
chromium browser built from source is used to carry out measurements2.

The following tools and packages were used to setup the testbed:

• Raspberry Pi-3 running Ubuntu MATE with Netem installed,

• The dnsmasq and hostapd packages for DHCP allocation of incoming WLAN,

• NAT input forwarding to WLAN for wireless broadcast.

To the server side, Google drive has been used to serve requests from the client due to
the relative rarity of live ModQUIC enabled server. The Google services, such as Drive and
YouTube, use ModQUIC as a native protocol, as opposed to other web servers where QUIC
has limited deployment. It is also possible to build a ModQUIC server-client topology from
the chromium code base as given in QUIC test server (2016). This implementation of a
ModQUIC server has been used to test results from the laptop specified.

The Netem’s Traffic Control (Tc) was used to introduce latencies, packet loss, and
packet reordering to all outgoing packets according to the parameter space in Table 5.1.
This wireless router served the ModQUIC enabled Chromium Client3 from a Google drive
storing video files of different sizes, as seen in Table 5.1.

1WAN: LTE (2300/1800/850MHz) IEEE 802.11b/g/n 2.4 G
2Intel Core i5 CPU @ 2.5 GHz with 4 GB RAM running MacOS Sierra 10.12.6 (64 bit) and Chromium

version was 63.0.3229.0 (64 bit), whereas Darwin kernel version was 16.7.0
3Intel Core i5 CPU @ 2.5 GHz with 4 GB RAM running MacOS Sierra 10.12.6 (64 bit). A Chromium

version is 63.0.3229.0 (64 bit) and Darwin kernel version is 16.7.0
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Figure 5.1: Testbed setup built with ModQUIC server provided as part of Chromium source
code, Netem enabled Raspberry-Pi wireless router with Jio as a source with RTT of 20 ms

Table 5.1: Parameter hyperspace

Category Parameter Values
Server Side (Google Drive) File Size 1 MB, 3 MB, 5 MB

Netem Router (Network)

Link Capacity 500 Kbit
Loss 0%, 2%, 5%
RTT 20 ms
Packet Reorder 10%, 25% correlation

The variation of data speeds observed through the Jio network during the experimen-
tation process was noted using a Python script and graphically shown in the Figure 5.2 to
reflect the real behavior.

5.2.2 Result Analysis

Two parameters, RTR and Throughput has been analyzed across varying link capacity and
loss for different file sizes, whereas calculated by using equations (5.1) and (5.2).

RTR =
Number o f Packets Received

Number o f Packets Transmitted
(5.1)

Throughput =
Flie S ize

Downloaded Time
(5.2)

The performance of ModQUIC with CUBIC and BBR in presence of loss for various
file sizes has been presented in Table 5.3, 5.4 and 5.5. The RTR and Throughput values
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Figure 5.2: 24-hour time series analysis of Jio data rate variations

presented across 5 epochs for all file sizes. The values for packets transmitted, packet lost,
packet received, packet retransmitted, retransmit ratio, download time and throughput are
logged.

The net-internals tool is used to calculate RTR and Throughput over all permutations
of the hyperspace detailed in Table 5.1. The Figure 5.6 shows trend of the Throughput
and packet retransmission. For small video files, BBR throughput suffers with increase
in loss, as seen in the Figure 5.6a. This is due to insufficient time for BBR to calculate
estimates of BtlBw and RTprop and converge preemptively to react for congestion. In
this case, loss based congestion control reacts to the loss, faster than BBR can build the
model. However, as file sizes increases, BBR shows a clear improvement in throughput
over CUBIC in all scenarios, as seen in the Figure 5.6b. Even as the loss increases, due to
increase in convergence time BBR is able to accurately prevent congestion by modifying
the transmission data rate. This effect is amplified for the large file size of 5 MB, where
CUBIC throughput drops significantly for higher loss, whereas BBR reacts preemptively to
prevent bufferbloat, as seen in the Figure 5.6c.

The RTR analysis was relatively straightforward as the trends were consistent across
all scenarios. For a given file size, as shown in the Figure 5.6, it is observed that there
is a direct correlation between loss and RTR in all cases with increase in loss the RTR
decreases for both BBR and CUBIC. For smaller file size in the Figure 5.6d, BBR has less
transmissions than it does for higher file sizes as seen in the Figure 5.6e and 5.6f, as it has
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Figure 5.6: Throughput and RTR performance of ModQUIC with CUBIC and BBR for differ-
ent loss rates and file sizes

not had the convergence time necessary to correct the congestion. This behavior manifests
itself in larger file sizes due to corrective measures being applied by BBR. A CUBIC shows
constant behavior in its loss-based retransmission system for all file sizes, with a decrease
from a higher starting RTR for the smallest file size, as seen in the Figure 5.6d.

There is a substantial improvement in BBR congestion control over CUBIC as BBR is
not using loss as an indicator to congestion. To utilize full bandwidth, currently existing
loss-based congestion control schemes such as CUBIC require the loss rate to be less than
the inverse square of the BDP [Mathis et al. (1997)]. The performance with varying loss is
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examined by Google for 60 second flow on 100Mbps/100ms link with 0.001% to 50% of
random loss serviced by HTTP/2 over TCP/IP [Cardwell et al. (2017)]. A Google observed
CUBIC’s throughput to decrease tenfold at 0.1% loss and totally stall above 1%. The max-
imum theoretical possible throughput for a network is the link rate times fraction delivered
(= 1 − LossRate). Google observed BBR to meet this limit asymptotically up to a 5% loss
and reasonably close up to 15% loss. This performance has been verified on a live wireless
500Kbps/20ms link with 1% to 5% random loss serviced by QUIC protocol.

5.3 Summary

As the experimental analysis was carried out in a wireless environment, it was realized that
packet loss becomes an incredibly significant measure of importance for quality of a con-
nection. The FEC feature would aid in minimizing local loss due to bit error. However,
due to inconclusive results as to its efficiency [Langley and Chang (2013)], the FEC func-
tionality of QUIC was removed from Chromium by Google in 2016. This is the reason that
focus has been shifted to a more efficient congestion control to correct losses, as is reflected
in our attempts to analyze BBR. The result analysis shows a clear advantage in terms of
Throughput, and was verified by RTR for BBR over CUBIC in situations of congestion in
live wireless networks. This study recommends the use of BBR in ModQUIC as a measure,
to more accurately model and predict congestion in middle boxes as opposed to react to
packet loss, once there is buffer overflow. However, there were limitations in JioFi, like
limited data rate else the results would have been far better analyzed as reported here.
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Chapter 6

Concluding Remarks and Future Work

The research work presented in this thesis started with a complete study of transport layer
protocols and congestion control mechanisms. During the study, we became familiar with
the role of transport layer with congestion control dynamics in network performance. Here,
the congestion window is a crucial entity while evaluating the performance of the network,
whereas to analyze full functionality of the congestion window, we applied birth-death pro-
cess and evaluated the congestion window growth. The QUIC protocol is the new transport
layer solution to compete with TCP’s dominance. Throughout from the literature survey on
congestion control and QUIC protocol, we have suggested modification in the existing hand-
shaking mechanism of QUIC protocol, called ModQUIC to improve network performance.
This modification aid improvement in QUIC protocol performance in terms of throughput
and delay.

For rigorous performance analysis of the developed protocol, three different testbeds
were created. In first contribution (Chapter-3), the developed protocol is tested with Chromium
server-client model testbed and simulation environment in Mininet. However, browser net-
work environment is created by generating flows using Chrome, Opera and Mozila Firefox
to test the fairness. The result analysis shows that the network performance has been im-
proved significantly with ModQUIC.

In ModQUIC performance analysis, it has been noticed that the limitations of the proto-
col are mainly due to CUBIC congestion control mechanism. In Chapter 4, to improve
CUBIC performance, we suggested a decrease factor β = βTCP/2 for single flow and
β = βTCP/n for n number of concurrent flows, whereas we suggested BBR as an alternate
congestion control mechanism, which resolves limitations of CUBIC upto certain extent.
To verify above claims, an experimental setup has been created and performance of the
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ModQUIC was tested with CUBIC and BBR. The result analysis shows that overall per-
formance of the network is better with BBR compared to CUBIC. We have extended Mod-
QUIC performance with CUBIC and BBR with Reliance Jio wireless network in Chapter 5
and observed clear advantage with BBR.

Future Work

The present work can be extended to future research. The following could be implemented
to contribute further to this area of research.

• An adaptive congestion window growth is a suitable candidate in which based on
available bandwidth and type of traffic can help in further performance improvement
of the transport layer.

• Fair allocation of available resources to competing flows is a simple form of QoS
that can be provided to customers in packet-switched networks. The complexity of
existing algorithms prevents a high-speed network implementation with the current
state of router technique like Active Queue Management (AQM).

• In wireless environment, both TCP and Physical layer jointly control the congestion.
The physical layer can control transmission power as per the channel condition, in-
terference received and congestion in the network, whereas the TCP layer controls
congestion.

• Dynamic packet fragmentation and packet size selection procedure based on available
bandwidth or delivery window size for a particular link.
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