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Abstract

Cloud computing has become more popular in recent years. Information Technol-

ogy industries and individual users are attracted towards cloud computing as they

can get required number of resources from it. Cloud computing basically provides

Infrastructure-as-a-Service (IaaS), Software-as-a-Service (SaaS) and Platform-as-a-

Service (PaaS). Companies such as Google, Microsoft and Amazon, host large data-

centers networked with high end computer systems and made available to users on

rent. These users may be an individual researcher, an organization or a company.

As datacenters are heavily used by many clients and workloads are of di�erent types

varies in length and consumption of the resources , allocation of underlying resources

is the most important issue for its e�cient utilization. In most of the large-scale

datacenters virtualization is the technology used for resource sharing among di�er-

ent applications running on Virtual Machines (VMs) created on the same Physical

Machine (PM). Virtual Machine Monitor (VMM) provides resource isolation among

co-located VMs. However, this resource isolation does not provide performance iso-

lation between VMs. Resource scaling is the important property of virtualization.

Elastic auto-scaling is the need of the day and studies show that most of the existing

data center infrastructure resulted in either over-provisioning or under-provisioning.

It necessitates, on-demand resource allocation to individual VMs from the physically

shared pool of resources as per their dynamic requirements to satisfy the Service Level

Agreements (SLA) between the customer and cloud provider.

Hence, it is necessary to predict the resource requirements periodically and well

in advance. Most of the prediction techniques presented in the literature are useful

with a particular type of workload. Hence, it is necessary to analyze which one should

be used depending on the type of workload. Most of the studies are concentrated on

local resource allocation. When resource de�ciency is present we can think of remote

i



allocation as most of the VMMs provide live VM migration facility. As VM migration

process itself is a resource consuming process, its e�ects on other running VMs have

to be studied and the VM for migration has to be selected accordingly.

This thesis presents an architecture for dynamic on-demand resource allocation

using statistical machine learning techniques. The resource allocation controller allo-

cates the resources locally on the same PM or remotely through a live VM migration

on another PM. The need for migration is determined in advance so that it triggers

the migration when, su�cient number of resources are available. The migration man-

ager selects VM for migration which produce less interference to other running VMs

at a less migration cost. This migration is done without a�ecting the performance

of the applications running on migrating VM. The prevalent approaches are manual

or automatic and all of these are reactive approaches where action will be taken af-

ter speci�c situation is detected. Hence it experiences the unavailability of required

number of resources until the action is taken. The proposed approach is proactive,

hence the su�cient number of resources are available even at peak time.

Experiments are carried out with synthetic and real application workloads. Predic-

tion of future requirement is done with fuzzy prediction system and Recurrent Neural

Networks (RNN) with Long-Short Term Memory (LSTM). The workload prediction

accuracy is received with Mean Absolute Error (MAE) of 0.056. The type of the

workload is identi�ed with the help of chaos indicator designed to decide which par-

ticular prediction technique is used. Scaling of the CPU and network resources is done

automatically in accordance with the dynamically changing workload at a minimum

granularity of 2 seconds with savings in the resources as compared to static allocation.

It has been found that the proposed scheme allocates resources as per their dynamic

requirements with minimum di�erence between actual requirements and allocation.

The resource saving with proposed method is around 30-50% as compared to static

allocations. The resource underestimation errors due to spikes in the workload are

minimized. The performance improvement in terms of response time of an application

is around 15-20% as compared to other methods because of proper selection of VM

for migration by the migration manager.
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Chapter 1

Introduction

1.1 Virtualized Environments

Cloud computing has become a major platform of technology adoption in recent years.

Its users vary from individual users to large organizations. Users utilize the term

�cloud� very commonly without knowing the con�gurations of computing machines

they are accessing, their placement in the data center, etc. Cloud Computing is an

example of distributed computing where applications run over multiple computing

systems connected by a speci�c network. This network is referred to as data center

network which has a tree-like topology, high transmission rates with low latencies.

Each physical machine (PM) in this network hosts many virtual machines (VMs)

which share the resources of the PM. Cloud Computing refers to both the applications

delivered as services over the Internet and the hardware and systems software in

the datacenters that provide those services. Fig.1.1 depicts the typical data center

environment.

As per NIST (National Institute of Standards and Technology) de�nition, �Cloud

Computing is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of con�gurable computing resources (e.g., networks, servers, storage,

applications and services) that can be rapidly provisioned and released with minimal

management e�ort or service provider interaction�. Typically, a cloud is owned and

managed by one large organization; companies such as Google, Amazon, Microsoft,

etc. The cloud infrastructure is used by a variety of customers ranging from individual

user such as common man using Gmail service; students or researchers from university

running their program codes on virtual machines; large organizations deploying their
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services across thousands of virtual machines (AWS, 2012a) (AWS, 2012b). These

users bene�t from the cloud, as they do not have to purchase or even manage their

own computing infrastructure of physical machines.

1.1.1 Cloud Computing Deployment

Cloud computing can be broadly deployed in three ways: public clouds, private clouds,

community and hybrid clouds.

Public clouds are the most commonly used cloud computing deployment methods.

The third party cloud service provider owns the cloud resource infrastructure like

servers and storage. These resources are delivered to remote users called customers

over the Internet. These resources are shared among the customers of di�erent or-

ganizations. Cloud providers use pay-as-you-Go model and customers pay for the

cloud resources as per their use. Public clouds examples include Amazon EC2 (EC2,

2012), Google Compute Engine (Google, 2012), HP Cloud (HP, 2012), Rackspace

(Rackspace, 2012), and Windows Azure (Azure, 2012).

Advantages of the public clouds:

1. Pay-as-you-Go: Pay only for the subscribed resources. No need to purchase

hardware or software resources.
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2. No maintenance: Service Providers takes care of cloud maintenance.

3. Near-unlimited scalability: Resources can be allocated and de-allocated on de-

mand. Hence elastic resource scaling is provided.

4. High reliability: As data centers contain thousands of servers it ensures avail-

ability of service 24 X 7 throughout the year, using replication.

In contrast, the private clouds consists of computing resource infrastructure used

exclusively by the organization for its speci�c business. The customer and the provider

are typically associated with the same organization, sharing the same goals. The

infrastructure is solely dedicated to the organization and services are provided on the

private network of the same organization or these services can be accessed from outside

using public network by the employees of the organizations. Thus organizations can

customize its resources to satisfy any speci�c IT resource requirements using private

clouds. Private clouds are often used by �nancial institutions (banks), government

agencies, and IT organizations with the speci�c business goals and control over the

infrastructure. Many companies maintain their own hardware infrastructure called

private cloud, which is used by di�erent departments of the companies where the

company itself is the provider of the cloud services and its employees are the customers

of the cloud services. Similarly, many universities maintain private cloud where users

are its faculty members and students.

Advantages of a private clouds:

1. More �exibility: Organizations establish their own infrastructure of resources

as a cloud and customize it to meet speci�c business requirements.

2. Improved security: Cloud resources are not shared with other organization or

public, hence higher levels of control and security can be established.

3. High scalability: Although private, these clouds still provide scalability as and

when required.

Hybrid clouds combine private and public clouds to get the bene�t of both. Or-

ganizations sometimes need some of their information to be private while the rest

can be on public cloud or private cloud. In this situation hybrid cloud is used. The
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organizations get the �exibility of moving its data and applications between private

and public cloud as per the business needs. For example, public cloud can be used

for high-volume but lower-security needs applications such as email service and the

private cloud can be used for con�dential, sensitive and business-critical functions .

Hybrid cloud supports �cloud bursting�. This application or service runs in the private

cloud until su�cient resources are present, but when the resource demands are not

satis�ed through private cloud the services can be moved to public cloud.

Hybrid clouds provides following advantages:

1. Control: Organizations can store sensitive information in private infrastructure

and use public cloud for other services.

2. Flexibility: Organizations can take bene�t of additional resources from the pub-

lic cloud when they are in need.

3. Cost e�ectiveness: When additional resources are needed than privately avail-

able for smaller time period, organizations can scale to public cloud instead of

purchasing the additional infrastructure.

4. Ease: Moving towards the cloud can be done gradually in phase.

Researchers at Berkeley in 2009 (Armbrust et al., 2010) outlined the problems

with cloud computing. For example, services or applications may not run at expected

speed. In public clouds, customers subscribe for some amount of resources and run

their service. But customers do not understand the exact resource requirement to be

subscribed to run the service at an expected speed. The cloud provider also does not

guide in this regard. The workloads/ applications of other customers in the cloud also

a�ect the performance of the application.

1.1.2 Cloud Computing Delivery Models

Cloud Services can be generally delivered as Infrastructure as a Service (IaaS), Plat-

form as a Service (PaaS) and Software as a Service (SaaS).

IaaS means housing dedicated hardware that is purchased or leased for running

speci�c application, and providing basic services necessary to run a cloud. Typi-

cal IaaS system provides services like scalability, pay as you go and best-of-breed
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technology and resources. In PaaS, the vendor o�ers a development platform and

solution stacks to application developers, who develop applications and o�er those

services through the provider's platform. PaaS is a variation of SaaS whereby the

development environment is o�ered as a service. PaaS platforms provide multi-tenant

development tools, multi-tenant deployment architecture, integrated management, in-

tegrated billing mechanisms. Software as a Service (SaaS) is an application software

distribution framework in which services or application programs are hosted by a

service provider and these are made available to customers over a private or public

network. The customer does not purchase the software, but rents it for use on a

subscription or pay-per-use model

1.2 Issues in IaaS

IaaS provides: (1) access to the shared infrastructure resources whenever required,

with access and location transparency (2) information about details of server images,

if demanded, storage and other resource information (3) �exible control of physical re-

source infrastructure, virtual machines instances and running applications on it. IaaS

faces following issues (1) support multiple tenants while supporting virtualization, (2)

managing of various resources and network infrastructure, data storage , (3) support

for APIs , etc.

Di�erent issues are discussed below.

(i) Support Virtualization with multiple tenants: Virtulization is the heart of cloud

computing which hides the internal hardware infrastructure complexity from the user

and enables enhanced �exibility (through routing, aggregation, routing , etc). In

a multi-tenant environment, multiple users share the same application on the same

hardware, with the same data-storage mechanism. The separation among the users

is taken care in the application design itself. Virtualization abstracts the physical

resources of the machine into separate virtual machines on which di�erent customers

applications are running.

Multi-tenancy brings in security issues in cloud computing like data protection

from multiple users in cloud.

Hardware with virtualization layer has many bene�ts but it does not provide
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scalability to o�er cost e�ective solution to very large number of customers. Multi-

tenancy with virtualization removes this

(ii) Dynamic Resource management: As the application workloads are �uctuating,

whenever there is a need to allocate additional resources, they have to be allocated

e�ectively in such a way that Service Level Agreements (SLA) have to be satis�ed.

The CPU and network resources are very limited as compared to others, and therefore

should be e�ciently shared among all the applications running on the VMs. Hence

there are many issues in resource management such as resource allocation, resource

provisioning, resource mapping, and resource adaptation. A fair amount of resource

management related work has been done by Urgaonkar et al. (2008) and Vaquero

et al. (2008) to examine present and future challenges of providers and users of cloud.

Chase et al. (2001) have presented the energy-e�cient way of homogeneous resource

management in Internet hosting data centers. Here the main problem is to estimate

the current resource request demand of an application and allocate these many in

an e�cient way. Metering of resource utilization and billing is needed for providing

elasticity in cloud computing .

(iii) Network infrastructure management: Administrators face problems in man-

aging huge network components such as switches, hubs, routers, bridges, etc. It adds

so much administrative cost. Hence there is need for automated management sys-

tem to monitor very huge amount of data size. Gupta and Singh (2003) suggested

to put resources like network interfaces, switches, links and routers into sleep mode

when they are in the idle condition. Chiaraviglio and Matta (2010) have proposed

cooperation between content providers and ISPs which e�cient allocates computing

resources and network routes which reduces energy consumption.

(iv)Security and Privacy: These are obviously required in all the systems which

deals with con�dential and sensitive data and code. In order to add security feature

in cloud computing, various security features such as authentication, con�dentiality,

integrity, and non-repudiation need to be provided.

(v) Storage/ Data management : This is the main work in cloud computing, specif-

ically for storage clouds which deliver storage as a service. Here data is distributed

across multiple resources at di�erent locations. The consistency is highly required

in replicated resources. It is necessary to know the data location when data is repli-
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cated across di�erent data centers. The latencies between di�erent locations and their

workload also needs to be considered.

(vi) Cloud platform features can be exploited by using cloud APIs and/or enhance-

ment in programming. Programming models for cloud requires that the scalability

in terms of resource allocation must be automatic and developer must take a note of

such things. The user must get only this feature through programming model.

1.2.1 IaaS Resource Management

The di�erent types of resource managment in IaaS cloud are given in Table 1.1.

1.3 Motivation

Virtualization (Barham et al., 2003) is the heart of cloud computing where resources

are provisioned to the hosted VMs as per their dynamic resource requirement requests.

It tries to deliver the necessary performance to the application with isolation and

security among di�erent VMs. It also provides an interface to create, con�gure and

manage virtual machines. It allocates and deallocates the resources in an elastic

manner. Hence it can deliver pay-as-you-go service to the customers of the data

center. It monitors the applications and as per requirement it allocates the resources

to the VMs.

The reactive provisioning of resources sometimes degrades the performance of

applications as it involves initial delays in allocation. Hence, a proactive scheme

which can allocate the resources at proper time is required so that performance will not

be degraded. Data centers usually run business applications which require Quality-

of-Service requirements. While allocating enough resources to achieve performance

guarantees it is necessary to avoid over-provisioning of resources for making it cost

e�ective and allowing many concurrent applications that run on single physical server

in the data center. It is also required to resolve the situations where required number

of resources are not available for allocation. The following section presents research

objectives. The users may be an individual researcher, an organization or a company.

Their workload varies in the length and consumption of resources.

As datacenters are heavily used by many clients and workloads are of di�erent
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Table 1.1: Resource allocation schemes

Schemes De�nition

Resource Provisioning Allocating cloud provider's resources to a customer

Resource Allocation

It Allocates cloud infrastructure resources e�ectively

among all VMs such that it should be economical and the

desired SLA is satis�ed.

Resource Adaptation
Adjusting the cloud resources as per

the dynamic need to ful�ll de�ned SLA of the user

Resource Mapping
It Maps between required resources by the

customer and available resources with the cloud provider.

Resource Modeling

Model that describes the important resource

management properties to predict

resource need in the future.

Resource Estimation
Estimation of the resource requirement of an

application,to carry out the work with desired throughput.

Resource Discovery

and Selection

Identifying available resources to

which the job can be submitted and choosing the best

among these.

Resource Brokering

Resources are negotiated to ensure

that the su�cient resources are available

at the time of need

Resource Scheduling
It Schedules di�erent events with their required resources.

It determines when an event should start and stop.

types, allocation of the underlying resources is the most important issue for its e�cient

utilization. In most of the large-scale data centers virtualization is the technology

used for resource sharing among di�erent applications running on virtual machines

(VMs) created on the same physical machine (PM). The Virtual Machine Monitor

(VMM) provides resource isolation among co-located VMs. However, this resource

isolation does not provide performance isolation between VMs. Resource scaling is the

important property of the virtualization. Elastic auto-scaling is the need of the day
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as the studies shows that most of the existing data center infrastructure has resulted

in either over-provisioning or under-provisioning. It necessitates on-demand resource

allocation from the physically shared pool of resources to individual VM, as per their

dynamic requirements to satisfy the Service Level Agreements (SLA) between the

customer and cloud provider.

To allocate the resources as per the dynamic needs, it is necessary to predict

the resource requirements periodically and well in advance. Most of the prediction

techniques presented in the literature are useful with particular type of workload.

Hence it is necessary to analyze which one should be used depending on the type

of workload. Most of the studies have concentrated on local resource allocation.

When resource de�ciency is present we can think of remote allocation as most of

the VMMs provide live VM migration facility. As VM migration process itself is a

resource consuming process, its e�ects on other running VMs has to be studied and

accordingly select the most appropriate VM for migration.

1.3.1 The Problem

Cloud Computing service is also facing problems which were addressed by di�erent

researchers at Berkeley in 2009 . The applications running in the data centers do not

always run as per the expectations of the customers. Customers may not be knowing

the exact amount of resources needed by the application in advance. Also provider

is unaware of the application needs. Hence initially while subscribing the VMs for

running applications, the VMs are either over-provisioned or under-provisioned. Over-

provisioning leads to under-utilization of resources and under-provisioning leads to

application performance degradation. This lack of knowledge leads to non e�cient

utilization of cloud resources' performance degradation. Cloud provider also can not

give performance guarantees to their customers.

We will show in this thesis that by predicting the requirements of applications

running on VMs we can allocate the resources as per the real requirements. If de-

manded resources are not available then the VM can be replaced at some di�erent

place where su�cient number of resources are available. By doing this there can

be e�cient utilization of resources in addition to the performance improvements in

running application and performance guarantees given by the provider.
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1.3.2 Philosophy

The aim is to improve cloud performance and resource utilization such that, one

bene�ts from knowing the history of the application run; what is presently happening

with the application and what may happen in the near future. Instead of changing the

network topology or routing algorithms, the solution depends on simply knowing the

future workload or resource requirements of the application running on VM. Hence

this work focuses on resource measurement. What has happened in the past, what is

happening currently needs to be looked into, so that the future requirements can be

predicted.

It has been observed that, these measurements can be carried out in a fast and

light-weight manner, so that it can not a�ect the other running application's per-

formance. As seen, the workloads are of di�erent types, hence there must be some

indicator which can identify this and apply appropriate prediction technique. It is

also believed that there can be an error in the prediction process, hence prediction

error correction can be done after predicting the future requirements.

1.3.3 Content of the Thesis

This thesis focuses on design and analysis of a dynamic resource allocation technique

in virtualized environments. This solves two problems-

1. Cloud provider can determine the dynamic requirements of the running applica-

tion by making prediction about future resource requirements of application and

thus dynamically allocate the resources as per the requirement well in advance.

2. Determine the need for application VM migration in future and place the VM

on other PM, where enough resources are available.

1.3.4 Challenges

Application workload changes with time. These variations depend upon the running

applications. Thus customers are not expected to know the resource demand of appli-

cation in future. Hence the �rst problem is workload or resource demand prediction.

In order to solve this problem the system must overcome the following challenges-
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� To make predictions based on history, resource monitoring system which must

not incur overhead on the system is needed.

� While making predictions, the resource allocation system must �rst identify

whether the workload pattern is linear or non-linear, in variations with respect

to time and accordingly apply the prediction technique.

� The predictions may be wrong sometimes and underestimation errors are not

allowed. Hence the system must identify and make under-estimation error cor-

rections.

� The resource allocation system must be able to predict future resource demand

with a smaller amount of history data, as it is unlikely that a customer will

wait for a long time to make the �rst prediction. It is also important to make

predictions at multiple time steps ahead.

The second problem of placing the VM on other PM must overcome the following

challenges.

� If the predicted demand is not available for the application on PM then it or

any other VM must be placed on other PMs, in a way that migration overhead

and its interference on other running VMs is less.

� The VM live migration process consumes signi�cant amount of resources, like

CPU and Network bandwidth for iteratively copying work of the VM live image.

Hence the system must make predictions of resource unavailability and hence

the need for migration before it actually happens.

� The selection of VM for migration and the destination PM needs knowledge

about workloads of all VMs and also total workloads of all the PMs. Hence

there must be a procedure to gather this knowledge at the resource allocation

controller.

In addition to all these challenges, the system should address the issues without

making modi�cations in the resource infrastructure side and without any manual

interference. Thus the system has to be autonomous.
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1.3.5 Limitations of Prevalent Approaches

� The prior approaches considered speci�c type of workloads assuming the prior

knowledge about the characteristics of an application for future prediction.

� Few e�orts are made to predict the overload at the time of migration which is a

transient problem due to migration process itself. The real application overload

need to be addressed.

� The prior approaches are reactive in nature which takes actions after the over-

load is detected and hence it may results into SLA violations.

� The prediction error handling is not considered in prior approaches.

� The prior systems are not fully autonomous. Manual intervention is required to

monitor and take the action accordingly for resource allocation.

1.4 Problem Statement

Design a prediction based architecture for dynamic allocation of resources in virtual-

ized environments to improve resource utilization.

1.5 Research Objectives

1. Estimate the resource requirement of an application running on a VM by observ-

ing the past resource usage and accordingly allocate the resources nearer to real

dynamic needs to make resource allocation e�cient. Handle under-estimation

errors.

2. Model VM migration process to calculate the performance and cost metrics.

Empirically study the e�ects of live VM migration on other VMs running on

source and destination PMs. Model these interference e�ects.

3. Make e�cient migration strategy by leveraging above used prediction schemes

to predict the real application workload for early detection of overloads and then

trigger the migration using the parameters determined in objective 2.
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1.6 Research Contributions

1. Presents the resource allocation controller which resides in every VM. It de-

termines the future resource needs by observing past resource usage, using

fuzzy prediction system or prediction with weighted majority of experts. It

uses Kalman �lter based prediction when workload is very non-linear. Adap-

tive padding scheme is applied on predicted values to remove under-estimation

errors. If under-estimation errors are still detected, then these are corrected by

immediately raising resource cap with some value. This value is estimated by

observing the pressure on the resource at that time.

2. A live migration procedure model is presented by considering all the parameters

which are responsible for performance of live migration. The interference e�ects

caused by the migration procedure itself on other running VMs on PM are

studied and a model is presented to calculate CPU and Network interference

e�ects.

3. Presents the migration manager which detects when to trigger migration, select

the VM for migration so that interference e�ects are reduced and select the

destination PM where selected VM is to be migrated.

The proposed architecture is shown in Fig.1.2. The resource management archi-

tecture comprises of fuzzy logic based prediction system per VM, to predict the

future resource needs by observing past resource usage. The prediction system

contains resource monitoring module which records the resource usages seen in

the past. The predicted resource values are given to the resource allocator of

the PM. The resource allocator decides whether the required resources can be

allocated locally or migration is required. It can also predict the need for mi-

gration in the future time. If migration is required then it signals this to the

migration manager. The migration manager selects the best VM for migration

and the best PM as a destination for the migrating VM.
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Figure 1.2: Dynamic Resource Allocation System

1.7 Outline of the Thesis

Chapter 2 describes the preliminaries required to understand further chapters. Chap-

ter 3 describes the literature survey done. Further it summarizes and de�nes the

problem statement of the research work. It describes the research objectives. Chap-

ter 4 describes the fuzzy prediction system and Kalman Filter. Further it shows

how to handle under-estimation errors. Chapter 5 describes the model for estimating

performance parameters of live VM migration method. It also describes a model to

estimate interference e�ects of a migrating VM on other VMs. Chapter 6 describes

the resource allocation controller and migration manager.
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Chapter 2

Preliminaries

2.1 Types of Resources

Any physical or virtual component with limited availability is a resource in a cloud

system. The main computing resource is the Central Processing Unit (CPU), commu-

nication resource is the network bandwidth; task execution is the memory resource.

The Operating System (OS) is also one of the important resources which is required

to run the application on the hardware. These resources can be broadly categorized

as physical resources and logical resources. Di�erent cloud infrastructure resources

and their impact on its performance is discussed below.

2.1.1 Cloud Physical Resources

The Cloud data center physical resources mainly includes CPU, memory, storage and

peripheral devices.

(i) CPU : It executes instructions of the program and thus does most of the work

inside a computer system. Its utilization is very important as many clients work par-

allel of the cloud infrastructure. CPU utilization is the usage of the CPU to carry

out execution of any application on a computer system. In cloud CPU utilization

depends on how many applications are running and the type of applications. Certain

applications are CPU intensive, while others are not because of non-CPU resource

requirements. Hence required amount of CPU allocation as per the application re-

quirement is necessary in cloud for e�cient utilization of CPU resource in cloud.

(ii) Memory: In a cloud computing environment, di�erent types of applications are

running static memory allocation are not useful. Rather dynamic memory allocation
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is strongly required. Memory resource in the form of virtual entities is required in the

cloud architecture as the cloud data center servers consist of many number of CPU

cores and since the virtualization platform requests huge amount of memory resource.

(iii) Storage: In a cloud environment storage generally means, storing the data to

some data server which may belong to a third-party. It is a remote database server,

called storage server. Using Internet, this data can be accessed. Cloud computing

storage service includes hundreds of data/storage servers. Many a times, data is

replicated at many locations with redundancy. This cloud storage provides reliability

and security. Clients may not trust storing their data in these data storages without

a guarantee that they can access their data whenever they need it and no one else has

an access to this data. Thus cloud storage provides Stoarage-as-a-Service.

(iv) Workstations: Powerful workstations with large CPU, RAM and network

resources are treated as workstations. These machines are mainly used to do a lot

more local processing. But if more resources are required to carry out the processing

and the required resources are not available, then help is taken from cloud computing

technology. These workstations can be used to generate High Performance Computing

(HPC) facilities for the clients connected through Internet . Then user can run his

application on local workstation and shift it on the cloud resources when there is

insu�cient number of resources in order to get the work done. This must be done

automatically and hence resource usage monitoring is required.

(v) Network elements: Administrators face a lot of problems in managing millions

of network elements such as switches, hubs, bridges, routers, etc. The administrative

cost is very high, hence an automated method, for management of these network

elements, is required. This automated method should be capable of handling sizes

of monitored data which is several orders of magnitude than the traditional systems.

Thus cloud provides communication-as-a-service.

2.1.2 Cloud Logical Resources

These are the abstractions of cloud physical resources which have temporary control

over it. These are useful in carrying out execution of an application over a cloud

system and also in communication protocols required for carrying out communication

between the client and the cloud provider. The importance of cloud logical resources
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are described as follows.

(i) Operating system: Operating System provides an environment to the user to

execute an application on the hardware. It is also possible for the user to manage

physical resources and it gives mechanisms to control of resources. Usually operating

systems do all the management work like resource management, �le management,

performance management with e�cient utilization of resources, security, device man-

agement, etc.

(ii) Energy: In cloud, the main aim is to minimize the energy consumed by re-

sources. For this, the server consolidation approach is applied, where the entire work-

load is concentrated on the minimum number of physical servers, by shifting the

workloads to these servers and switching o� the idle physical servers. Thus energy

consumption is reduced, but it is energy/performance trade-o�, as throughput of an

application may degrade due to this.

(iii) Network throughput: Higher network throughput is desired and hence there

should be mechanisms to control the network bandwidth allocated to a particular

application. Congestion is prevented using network bandwidth management proto-

cols. The main issue here is the bandwidth allocation problem which depends on

integration network link capacities through di�erent services.

2.2 Resource Management Techniques

Cloud resource management consists of provisioning of a cloud provider's resources

to a customer. When customers request a cloud provider for computer resources,

the cloud provider has to create suitable number of VMs with proper allocation of

resources to them. This resource provisioning can be of di�erent types: advance pro-

visioning, dynamic provisioning and user self-provisioning. In advance provisioning,

the customer requests for the service and the cloud provider provision the requested

resources in advance to the user. Cloud provider charge customer for all the resources

provisioned at once or on monthly basis. In dynamic provisioning, the provider allo-

cates required resources as per the need. Whenever customer wants more resources

than provisioned, provider will provide it and when customer don't want the resources

at that time these will be taken back. Hence customer will be billed as per the use
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of the resources. In user self-provisioning, the customer purchases resources from the

cloud provider using Internet for a speci�c time period. Customer creates an account

with provider and subscribe the resources as per the need. These resources customer

can use for the speci�ed time. Customer will be billed as per the charges for the used

resources for that time period.

Live migration of virtual machine is useful tool for hot-spot mitigation, server

consolidation and load balancing. It avoids di�culties faced related to dependen-

cies with operating system by process level migration as it migrate entire OS and all

its applications running on it to the destination physical machine. It is extremely

powerful tool for cloud administrators, allowing server consolidation, load balancing,

improving cloud resource usage, taking the server for maintenance on which VM is

running. Thus In combination of resource virtualization and VM migration signi�-

cantly improves manageability of the cloud.

Figure 2.1: Resource hot-spot mitigation using vertical and horizontal scaling up
operation

2.3 Dynamic Resource Provisioning

Dynamic resource provisioning of physical machine resources to virtual machines in

virtualized data center can be achieved by two ways (i) vertical scaling i.e. adding/re-
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Figure 2.2: A Server Consolidation Example

moving attached resources from existing virtual machine and (ii) horizontal scaling

i.e. adding a new virtual machine with additional resources. There are two general

scenarios that appears in data centers i.e. Hot-spot-when a virtual machine load level

increases, it requires additional amount of resources, additional allocation should be

done to satisfy the required performance level and server consolidation- when a vir-

tual machine load level decreases, it results in under-utilization of allocated resources.

Hence, the extra resources can be removed and VMs can be consolidated onto a fewer

number of physical machines to reduce power usage and maintenance cost, if possible.

Resource hot-spot mitigation: When a virtual machine faces a resource hot-spot (due

to increased load level of an application instance hosted on this virtual machine), it

can be resolved using the following two techniques-

1. Vertical Scaling Up: add more resources to the VM facing the hot-spot.

2. Horizontal Scaling Up: host an additional instance of the application on a new

VM with required resources. It results in multiple VMs executing the same

application, with a load balancer used to distribute the incoming workload pro-

portionally to each VM (assuming that one virtual machine can host only one

instance of an application).

2.3.1 Hot-spot Mitigation

If the physical machine has adequate free resources to allocate to an overloaded vir-

tual machine hosted on it, the resource hot-spot can be mitigated instantaneously

and e�ciently by using vertical scaling-up tools such as xm schedcredit or cpulimit

provided by existing virtualization software, (Barham et al., 2003). We term this

operation as add-resource with the help of a. If the physical machine does not have

enough free resources, hot-spot can be mitigated by employing vertical scaling-up
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process with the aid of virtual machine live migration (Clark et al., 2005), which is

a process of moving an executing virtual machine from one physical machine to an-

other with minimal downtime of application. Here, one way to perform add-resource

is by migrating either the overloaded virtual machine to a physical machine where

adequate free resources are available, i.e., migrate-loaded & add-resource, or by mi-

grating other virtual machines to make free resources such that the resource hot-spot

can be mitigated, i.e. migrate-other & allocate-resource. Another way to resolve this

hot-spot situation by employing horizontal scaling process in which we add one more

virtual machine hosting the same application with additional required resources. We

call this operation as add- instance. When the resource requirement of an applica-

tion is more than the physical machine resource capacity, the only way to solve this

resource hot-spot is by employing horizontal scaling operation on another PM, i.e.,

add-instance. An example of resource hot-spot mitigation is given in Fig. 2.1. Two

unrelated applications, A1 and A2, are hosted on a physical machine PM1. Suppose,

virtual machine VM1 hosting application A1 requires additional amount of physical

machine resources. However, PM1 does not have adequate free resources to resolve

the resource hot-spot. This resource hot-spot can be mitigated in two ways. One

way is to migrate out either VM1 or VM2 to physical machine say PM2 and allocate

additional resources to VM1. Another way is to create a new virtual machine instance

VM3 on another PM where su�cient resources required by VM1 are free and host

the application A1 along with a load balancer as shown in part (c) of Fig. 2.1.

2.3.2 Server Consolidation

When multiple physical machines are underutilized due to inactive or underloaded

virtual machines, consolidation of these virtual machines onto a fewer number of

physical machines is better idea in conserving energy and in turn reduce operational

expenditure. This can be achieved by reducing the allocated resources and migrating

all VMs hosted on a underutilized physical machine to other physical machines (i.e.,

remove-resource & migrate operations). This can also be achieved by creating new

virtual machines on other physical machines, for each VM hosted on the underutilized

PM, and hosting the respective application (i.e., add-instance operation). Once the

old virtual machine processes all its on-going requests, it can be shutdown. We term
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this operation as add-instance & remove-instance. An example of server consolida-

tion is given in Fig 2.2., where the physical machine PM1 is underutilized as all three

applications A1, A2 and A3 are under-utilizing the resources allocated to them. The

consolidation can be achieved by removing unused resources from virtual machines

VM1,VM2 and VM3, and migrating these VMs to physical machine PM2 where su�-

cient capacity is available to host VM1, VM2 and VM3. Once the applications hosted

on virtual machines VM1, VM2 and VM3 process all their on-going requests, these

virtual machines can be removed.

2.3.3 Load Balancing

Applications running on VMs changes their resource requirements during their run-

time. This dynamic change imbalance the resource utilization pf PMs. This results

in some PMs become heavily loaded and some becomes underloaded. For e�cient

utilization of the data center the workload should be distributed equally among all

the running PMs i.e. balance the load. This can be achieved using live VM migration

facility of VMMs. This is shown in Fig. 2.3.

Figure 2.3: Load Balancing

2.4 VMware Distributed Resource Management Sys-

tem

Distributed Resource Scheduler (DRS) is a resource management System in WMware

vCenter Server Management software for the cloud environment. It applies the re-

source management policies to utilize the resources in the cloud e�ciently. It allo-

cates physical to the VMs running on the cluster of VMware ESX servers as shown in

Fig.2.4. DRS de�nes a resource model that consists of resource controls, hierarchically

organized resource pool and resource pool divvying process. It de�nes three resource
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controls, Reservation, Limit and Shares. Reservation speci�es minimum guaranteed

amount of a certain resource. Limit on resource speci�es the upper limit on its con-

sumption. Shares specify that, a VM is allowed to utilize the resources proportional to

its shares. DRS manages the cluster of ESX servers by carrying out resource divvying.

DRS performance follows major resource management operations-

Figure 2.4: VMware DRS Overview

1. Computing the runtime resource demands of each VM running in the cluster.

2. Computing each VM's physical resource entitlement based on runtime demand,

reservation, limit and share values.

3. Load balancing using live VM migration (vMotion)

4. Initial placement of VMs on the cluster.

5. Reduces power consumption by extending DRS with VMware Distributed Power

Management(DPM).

DRS is a reactive resource management system. The proposed system is proactive.

Although the reactive resource management scheme is very useful in minimizing the
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operating cost of the cloud environment, it adds an additional responsibility on system

administrator or cloud provider to ensure that spikes in the resource demand can be

handled in a timely manner. On the other hand this system proactively handles the

spikes in resource demand by predicting the future resource usage and allocating the

required resources or carrying out the required migrations before hand.

2.5 Live VM Migration over LAN

Live Migration can be over LAN which is most popular or over WAN across di�erent

geographical locations (Wood et al., 2015). In LAN based migrations the disk image

of the VMs are stored on some shared storage like NFS for which disks never need

relocation in the course of VM movement. These involve transfer of memory state

of the VM alone. Also since, the VM is moved on a new destination physical ma-

chine(PM) on the same LAN network recon�gurations are not needed. But network

con�gurations and disk transfer are both needed in for WAN based migrations as

these are across widespread regions making it more challenging.

Live VM migration process can consist of following three phases (Clark et al.,

2005).

1. Push Phase : The memory pages of the VM to be migrated are transferred

to the destination PM in multiple iterations. In �rst iteration all the memory

pages are transferred and in later iterations the memory pages which are dirtied

in the previous iteration are transferred. This is required as application on the

VM is running, hence memory pages getting dirtied again and again. The VM

to be migrated continues to run on the source PM during this phase.

2. Stop-and-copy phase: When one of the parameters crosses the de�ned threshold

(given in section 5.1) the VM to be migrated is suspended on the source PM.

The remaining memory pages and the hardware state is copied at once to the

destination PM. and the VM is resumed on the

3. Pull phase: The VM to be migrated is resumed on the destination PM. If the

page accessed by the application on that VM caused page fault, then this page

is taken from the source PM using the network.
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In general live VM migration strategies consists of either one or two of the

above described phases. Xen's pre-copy mechanism combines push with stop-and-copy

phases, the post-copy mechanism combines pull with stop-and-copy phases.

Figure 2.5: Live Virtual Machine Migration- Precopy

2.6 Live Migration Strategies

Following are the di�erent Migration Strategies.

1. Pre-copy-

It uses Push phase and Stop-and-copy phase. The detailed steps involved in pre-

copy migration are shown in Fig. 2.5. It consist of �ve stages- Pre-migration,

Reservation, Iterative Pre-copy, Stop and Copy, Commitment and Activation.

It iteratively transfers memory pages of a VM as shown in Fig. 2.6 . The

�rst iteration transfer all memory pages, and the next iterations transfers pages

which are dirtied during the previous iteration. The VM execution is suspended
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Figure 2.6: Iterative transfer of memory pages in Precopy

when one of the parameters crosses the threshold. At this time, the hardware

state and remaining memory pages and the are transfered to the destination

machine. This technique is used in Xen for live VM migration. An additional

optimization technique is implemented in Xen, called page skip, which minimizes

the amount of transfer.

2. Post-Copy-

It uses pull phase for memory page transfer. It copies the VM's hardware state

to the destination PM and VM is resumed there. The request to the application

are handled by the migrated VM at the destination. It fetches the memory

pages from source PM as and when required. There are many variants present

for fetching the VM's memory from the source PM. Here the memory pages are

transferred once hence the avoiding duplicate transmission.

Post-Copy has three di�erent ways of memory page transfer.

(1)Post-Copy via Demand Paging: The target VM is resumed at the destination

PM and page faults are handled by demanding the page from source PM over the

network. But the total migration time is unacceptable and performance of application

running on it will be degraded as every time the page faults are handled over the

network.

(2)Post-Copy via Active Pushing: This is proactively pushing the memory pages

from source PM to destination PM while the target VM is resumed and running

at destination PM. If page faults occurs it will be solved by considering this demand

transfer from source PM on high priority. This gives better performance than previous
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one.

(3)Post-Copy via Pre-Paging: This is an extension to active pushing. It estimates

the memory access pattern to determine the locality of the memory pages to be

accessed, thus eliminating page faults that are going to occur otherwise. This gives

better performance than other two.

2.7 Issues and Tradeo�s

Issues and tradeo�s involved in live LAN migration are-

1. Minimize total migration time

2. Minimize downtime during which services are totally unavailable to the cus-

tomer.

3. Ensure that migration process does not unnecessarily disrupt active services

through resource contention (e.g. CPU, n/w bandwidth) with migrating oper-

ating system.

The workload increase can be handled by increasing the resources available on the

physical server, otherwise simply by migrating the virtual machine to a less loaded

physical server. The resource requirements of VM changes dynamically. The wrong

placement of VM may lead to performance degradation and hence SLO violation,

hence it is necessary to carry out proper placement of VM. It is necessary to �nd out

when to trigger the migration, which VM should be selected for migration and choose

the destination PM for this migrating VM.

The parameters for evaluating the performance of live virtual machine migration

process are as follows-

1. Total migration time - It is the time between initiation of successful completion

of migration process, and

2. Downtime- the time during which the services provided by the VM are not

available, i.e. time taken by stop and copy phase of memory transfer.

Performance of the migration process is evaluated based on following parameters.

These are the resources which are consumed during the migration process.
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1. VM memory size.

2. CPU availability at source and destination PM.

3. Network bandwidth availability

4. The application page dirty rate.

The live virtual machine migration cost evaluated as :

1. CPU utilization for sending memory pages at source PM and CPU utilization

for receiving the same at destination PM,

2. Network tra�c generated during migration,

3. Migration rate at which pages are transferred.

The strengths and weaknesses of the proposed system are-

1. The resource monitoring system is implemented in Dom-0 of the PM and hence

not incurs costs on individual VM.

2. It identi�es the workload pattern is linear or non-linear with the help of chaos

indicator. It should also handle the non-stationarity of workloads.

3. It detects and handles underestimation errors, hence avoids SLA violations dur-

ing the peaks in workload usage.

4. Apart from �nding VM for migration it identi�es the need for migration in

advance.

5. It does not discuss the security implications of usage monitoring, which will be

addressed in the future work.

6. The system is fully autonomous and needs no manual intervention.
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2.8 E�ects of Live VMMigration on Application Per-

formance Running on Di�erent VMs on the same

Physical Machine

The e�ects of a live VM migration in cloud environment, on the performance of

applications running on same VM as well as other VMs on the same physical machine

are discussed here. The performance is observed in terms of response time. The

response time is observed during migration of one Apache Server VM. The experiment

setup contains three PMs and �ve VMs (�rst two VMs on �rst PM, later two on second

PM and last one on third PM). All VMs run Apache Webserver application serving

dynamic PHP web pages. The request to webserver are generated using �httperf�.

This mimics the requests from 400 di�erent clients. The PHP scripts written are

CPU intensive. This will create heavy CPU load on the server PM without much

memory and network utilization while serving the requests.

Figure 2.7: E�ects on response time of an application running on migrating VM due
to migration

The e�ect of VM mkigration process on response time of an application running

on VM to be migrated is shown in Fig. 2.7 and the e�ects on respose time of other

application running on other VM is shown in Fig. 2.8. The readings are taken every

4 sec interval. The total migration time required for migration was 45 Sec. and

downtime experience was 2 Sec. Response time shows highest peak immediately after

28



Figure 2.8: E�ects on response time of an application running on di�erent VM due
to migration

the migrating VM resumed at destination PM as all the requests are queued and

remain to be served due to downtime. Then the response time gradually decreases as

the requests gets served from the VM.

Dynamic resource provisioning in cloud creates following challenges -

1. How to make resource allocation to the VM elastic so that resource scaling for

dynamic need of application can be economical and the de�ned SLA can be

satis�ed.

2. How do predictive models to estimate the future resource demands for proac-

tively allocating resources so that the applications performance will not be de-

graded at the peak demands.

3. How to provision resources to the application mix in the data center in a way

with which SLA of all such applications will be met.

2.9 Summary

This Chapter explained the preliminaries required to understand the domain of the

work, followed by challenges in dynamic resource provisioning on which the thesis

work is carried out.
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Chapter 3

Literature Survey

3.1 Resource Allocation Schemes

The resource allocation schemes can be broadly classi�ed into categories like o�-

line/ on-line pro�ling, rule based, model Driven, control theory based, trace-driven,

reinforcement learning based and fuzzy logic based.

3.1.1 O�ine/ Online pro�ling

Initial work related to resource management used o�ine and online pro�ling to deter-

mine application requirements using real application workloads or benchmarks. This

takes longer time to determine the resources and needs extra computing machines as

well. Hence it takes longer time. Urgaonkar et al. (2002) derived accurate estimate of

application resource needs by pro�ling applications on dedicated nodes and then used

these pro�les to place the applications on shared nodes. Govindan et al. (2009) used

measurement driven pro�ling and prediction framework to characterize key statistical

properties of the power needs of hosted workloads and their aggregates. (Wood et al.,

2008) used set of microbenchmarks on a given platform to pro�le the di�erent types

of virtualization overhead. He also used a regression-based model that maps the na-

tive system usage pro�le into a virtualized one. In (Zheng et al., 2009) a sandboxed

environment created by the the infrastructure where experiments can be run on a

very small number of machines using real system state and real workloads. Auto-

mated management systems or the system administrator exploits the infrastructure

parameters to perform management tasks on the on-line system.
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3.1.2 Rule based Resource Allocation

This scheme uses a set of rules, expressed as "event-condition-action" rules which are

taken into action when given condition is satis�ed. These rules are de�ned by system

experts. For example, the HP-UXWorkload Manager (HPUX, 2012) allows relatively

controlled CPU utilization within the user speci�ed limits. Rolia et al. (2006b) moni-

tors resource utilization of an application on VM and uses some prede�ned thresholds

to evaluate the current allocation is suitable for the workload at hand. But due to

the mix of applications and the complexity of the cloud, it is di�cult to decide these

thresholds and take appropriate corrective actions for all possible states of the system.

3.1.3 Model Driven Resource Allocation

There were attempts to propose model-driven resource allocation schemes. These

schemes mostly use statistical leaning methods or queueing theory to build models to

evaluate the impact of di�erent resource allocation schemes on the application perfor-

mance running on VM. Shivam et al. (2006b) proposed an machine learning approach

which analyses frequently used application performance histories to build predictive

performance models which can evaluate their future performance. These models are

used to decide the task placement. The histories collected consist of readings from

previous runs which include the readings of cpu, network, storage resources. It used

linear regression to predict application performance and the completion time with

allocated resources. Shivam et al. (2006a) presented NIMO (NonInvasive Modeling

for Optimization) that automatically learns cost models for predicting task execution

time on a heterogeneous environment such as computational grids consisting of large

scale networked utilities. It does active sampling of resource assignments. To build

accurate cost models NIMO generates appropriate training samples by monitoring

the application under varying conditions and used statistical learning techniques for

learning. Accurate cost models are required for selecting e�cient plans to carry out

execution of these applications on the grid.

Stewart et al. (2008) presented an approach which is driven by a performance

model and used for guiding cross-platform management for real-world Internet ser-

vices. It predicts the application performance when there is a change in resource al-
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location. The model is created with several empirically observed sub-models. It does

the platform-aware load balancing in heterogeneous cluster in the cloud. Ganapathi

et al. (2009) designed a system using machine learning which predicts the performance

metrics such as execution time of the database queries. Thus it gives the performance

of the query before it is actually executed in the environment. This helps to schedule

it at appropriate time for execution and capacity planning. For training and testing,

several queries are ran on an HP Neoview four processor system and multiple con�g-

urations of a Neoview 32 processor system. It actually �nds multivariate correlations

among the query properties and query performance metrics. It then uses this relation-

ship to predict performance metrics of queries varying in execution time. Doyle et al.

(2003) also used model based approach to predict the amount of resources(memory

and storage) to be allocated under changing load. It creates a models capturing ap-

plication workload and its running behavior with which the system is able to predict

the e�ects of changes to the workload intensity or resource allotment.

Chandra et al. (2003) captured a transient behaviour of the application workloads.

The model is created which relates dynamically changing workload characteristics to

their application resource requirements. The parameters of the model are continuously

updated by continuous monitoring and learning. The expected workload characteris-

tics are predicted with measures system metrics. Prediction is carried out with time

series analysis. Then the server resources allocated based on estimated application re-

quirements. This is basically designed for allocating resources to web services running

on the web-server.

In Sha et al. (2002) timing performance of a network server(Apache Server) is

controlled and kept close to the service level speci�cation using queueing model based

feedback control. Combining feedback control with queueing models gave better track-

ing of quality of service speci�cations than with alone. Urgaonkar et al. (2005a) an-

alytically modeled the behaviour of multi-tier applications. He developed a model

using network of queues. The queues are the representations of di�erent tier of an

application. It captures the behaviours of the tiers of application with signi�cantly

di�erent performance characteristics. It can also capture session based workloads and

also used for tier replication ,identi�cation of load imbalances across replicas. Xu

et al. (2006) presented predictive controller model using three di�erent prediction
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algorithms. Machine learning models used in these are autoregressive(AR), a com-

bined ANOVA(Analysis of Variance)-AR. He compared adaptive control models with

predictive models for managing resource utilization. These control models are eval-

uated with CPU traces in hypothetical virtual server environment. N. Bennani and

A. Menasce (2005) proposed a solution for dynamically redeploying servers among

various applications environments in the data center where workload intensity varies

widely and unpredictably. The solution addressed the scalability limitations of previ-

ous approaches. His solution is based on the use of multiclass open queues which forms

analytical queuing network models combined with combinatorial search techniques.

Liu et al. (2005)

All these resource allocation models incurs overhead and needs to prior knowledge

about the characteristics of the virtualization platform and the applications running

on it. (e.g., cpu speed, input data size) which is practically not possible in cloud

environment. On the other hand, our proposed system completely free from such

requirement i.e. platform and application agnostic.

3.1.4 Control Theory based Resource Allocation

Zhu et al. (2008) designed dynamic resource management architecture which can

satisfy SLA in changing data center conditions. It hides the complexity between

application owner and data center operator. Thus application owner can concentrate

on the SLA for their applications. Control theory based resource controller is designed.

Individual interfaces are given to coordinate individual controller so that their cannot

be duplicate policy among controllers. Advantage is taken by combining these three

controllers.

Kalyvianaki et al. (2009) presented a resource allocation scheme that combines

Kalman Filters and feedback controller. Kalman Filter is used for state estimation to

track CPU utilizations and update the resource allocations accordingly, thus guiding

the resource allocation.

Padala et al. (2007) designed feedback-driven resource control system that dynam-

ically allocates the CPU resource shares to individual tiers of an application running

on VMs. It allocates the CPU resources in order to meet the respective application

level QoS and there will be e�cient CPU resource allocation. Parekh et al. (2002)
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used statistical ARIMA model to �t historical measurements of the target being con-

trolled. The controller will achieve service level objectives. Padala et al. (2009)

presented AutoControl, a resource controller which adapts to the dynamic resource

requirement changes to met the de�ned SLA . It is a combination of a multi-output

(MIMO) resource controller and online model estimator. The model estimator �nds

out the relation between resource allocation and application performance. The re-

quired amount of required resources are allocated by MIMO controller to met the

SLAs.

Thus previous work has applied control theory for �ne grained resource allocations

based on SLA feedbacks. However, these approaches need their parameters to be

speci�ed and tuned before hand. In contrast, our system are application and platform

agnostic and prior tuning is not required.

3.1.5 Trace Driven Resource Allocation

Rolia et al. (2006a) build the workload manager which monitors its workload demand

and accordingly adjust the CPU allocation to the workloads with a aim of allocating

each with the capacity it needs. It performs this dynamic allocation using burst fac-

tor times the most recent estimated resource demands. The burst factor is calculated

o�-line based on di�erent QoS levels. Chandra et al. (2003) captured a transient

behaviour of the application workloads. The model is created which extracts the

relationship in application resource requirements and workload change. Online moni-

toring is used to update the model parameters. The expected workload characteristics

are predicted with measures system metrics. Prediction is carried out with time se-

ries analysis using auto-regression and histogram based methods. Then the server

resources allocated based on estimated application requirements. This is basically

designed for allocating resources to web services running on the web-server. These

methods are time consuming.

Gmach et al. (2007) gave a trace driven approach to capacity management that

relies on auto-correlation and Fourier transform to perform o�ine extraction of cyclic

patterns in the workload. Our work does not assume whether the workload is cyclic

or acyclic. It predicts the resource demands for both cyclic and acyclic patterns. This

approach is suitable for long periodic intervals and assumes that repeating periods
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are known in advance. AR requires more computation time hence it is not suitable

for short-term resource scaling.

Gmach et al. (2008) proposed an integrated approach for VM placement using

fuzzy feedback controller and peak demand prediction. Two separate fuzzy logic

controllers are build to identify overloaded and underloaded situations.

Gong et al. (2010a) proposed PRESS that identi�es dynamic patterns in applica-

tion resource demands and allocates the resource accordingly. It used Fourier Trans-

form and Markov Chains to achieve this. It handles both cyclic and non-cyclic types

of workloads. In contrast, our approach e�ciently handles under-estimation errors

speci�cally due to spikes in the workload and concurrent scaling con�icts due to in-

su�cient resources.

3.1.6 Reinforcement Learning based Resource Allocation

Tesauro (2005) used reinforcement learning for automatic allocation of resources. Re-

inforcement learning generally prepares a table to store the information it receives

through training and used it to look into. Its size grow rapidly as the number of state

parameters increases. Reinforcement learning consumes more time for training as it

does not have the domain knowledge base. Whereas, fuzzy prediction system stores

the knowledge base in terms of fuzzy rules which requires less space. Fuzzy predic-

tion system training takes less time.In Tesauro et al. (2007), proposed a combination

reinforcement learning and queuing models, where reinforcement learning trains on

data collected o�ine and a queuing model based policy control mechanism improves

training time.

3.1.7 Fuzzy Control based Resource Allocation

Diao et al. (2002) presented feedback control mechanism based on pro�t to improve

SLA attainments in webserver system. It uses fuzzy control atomizing admission

control decisions so that it balances loss due to rejected work and penalties due to

more response time.

3.1.8 Other Methods for Resource Allocation

Bonvin et al. (2011) proposed adaptive adjustment of cloud resource allocation in
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order to satisfy application response time and SLA. This adaptive adjustment is

achieved through detection and removal of stale cloud resources, component replica-

tion and migration for accommodating load variations and to support load balancing.

It does cost-e�ective resource allocation and component placement for minimizing

operational cost of cloud application. The load prediction is absent here. Sladescu

et al. (2012) explained how workload burst are associated with important events. He

proposed event aware prediction that can leverage this association. But basically it

needs the knowledge of upcoming events.

Islam et al. (2012) used neural networks and linear regression model with sliding

window techniques for workload prediction. But linear regression is not suitable for all

types of workload. Generally for workloads which varies non-linearly this technique

is not useful.

Roy et al. (2011)and Calheiros et al. (2015) used Auto-Regressive Moving Average

method (ARMA) for workload prediction. Hu et al. (2016) Kalman Filter model for

prediction purpose. Yang et al. (2013) proposed prediction using linear regression

model and ARMA model. Auto-scaling methods are divided into three categories-

self-healing scaling, resource-level scaling and VM-level scaling. First two are vertical

scaling and later is horizontal scaling.

Morais et al. (2013) proposed multilayer controller and each layer use di�erent

predictors like auto-correlation (AC), Linear Regression (LR), Auto-Regression (AR),

Auto-Regression with Moving Average (ARMA) and Ensemble (EN). Reig and Gui-

tart (2012) proposed a method to anticipate CPU demands for web application. This

combines statistical and machine learning techniques to predict CPU requirements.

Bankole and Ajila (2013), Nikravesh et al. (2015) used Support Vector Machine,

Neural Networks and Linear Regression methods for workload predictions. SVM

found suitable for periodic and growing workloads. NN found suitable for forecasting

unpredicted workload patterns. Li et al. (2012) identi�ed daily workload patterns by

applying Predictive Bayesian Network Model. He has given algorithm for consolidat-

ing heterogeneous applications into smaller number of servers. Jheng et al. (2014)

proposed Grey Interval Forecasting based on Grey System Theory. proposed load

prediction algorithm by combining linear programming with improved Knuth-Morris-

Pratt(KMP) string matching model. The system was able to predict the uncertain
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facts, estimates/judges the future tendency of undecided case in the system. Liu

et al. (2016) proposed novel Ensemble Workload Prediction system for predicting Job

Submission Number in Google Cluster Trace.

Automatic resource management in virtualized environments applied control the-

ory like fuzzy logic to deal with time-varying workloads the build models are automat-

ically updated to the current changes done. Our works adds Kalman Filter based on

Chaos indicator by analyzing the pattern in workload. PRedictive Elastic Resource

Scaling (PRESS) by Gong et al. (2010b) for cloud systems achieved online prediction.

Signal processing techniques are used to discover signature. We have used Hurst Ex-

ponent based chaos indicator to decide a speci�c controller to be used. In CloudScale

(Shen et al., 2011) predicts online resource demands. It also handles prediction er-

rors although it does not assume any prior knowledge about application. Rolia et al.

(2006b) derives a burst factor o�ine and multiplies it with estimated resource usage

to dynamically decide resource allocation. Ganapathi (2009) used queueing theory

and statistical methods for building models of prediction. But these methods assume

prior knowledge about applications.

Xu et al. (2016) proposed a double auction-based model for resource allocation

algorithm in cloud environment and a model for pricing mechanism. They considered

the pro�t of the middle auctioneer. The model adds reliability by determining the

the price for the CSPs based on the price of the resource and the reliability index.

Bose et al. (2011) proposed VM image replication mechanism and scheduling for

optimizing live VM migration over wide area networks. Replication of VM image

is based on the cost of storage and computation units at di�erent cloud apart from

the latency requirement of the end user. It chooses the replica of a VM image as a

primary copy and propagate any changes in the primary to the other replicas. They

proposed to reduce the extra storage requirements due to replication by �nding out

common features in VMs using de-duplication techniques.

Pillai and Rao (2016) used principles of coalition formation and the uncertainty

principle of game theory and proposed a resource allocation mechanism in cloud en-

vironments. The knowledge of type of requesting VM is used to form coalitions of

machines. According to this coalition it is hosting the VMs besides having availability

of actual request. It gives higher payo�s to that machines that are close in proximity
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while forming coalition. It is more advantages in running hadoop applications. It

gives better resource utilization with higher request satisfaction.

Ma et al. (2014) presented �ve major topics in resource allocation and scheduling,

namely locality-aware task scheduling; reliability-aware scheduling; energy-aware re-

source allocation and scheduling (RAS); Software as a Service (SaaS) layer for resource

allocation and scheduling; and work�ow scheduling.

Ganesh S et al. (2016) presented challenges in implementing proactive resource

management in data centers. It suggested analytics engines to collect resource usage

readings, apply statistical learning methods for future resource demand prediction.

This work mainly presented the issue of dealing with mis predictions. It also suggested

load balancing in the data center.

Hoyer et al. (2011a) addressed the challenges of estimating the resource future

demands of VM in order to reduce delays in VM migration and need of the scheduling

algorithm based on current distribution of VMs to server and provides guarantee of

�nding steps to resolve the resource shortage if the actual resource demand of the

VMs meets the expected one.

Mahdhi and Mezni (2018) proposed a VM consolidation approach based on future

estimation of requested resources and VM migration tra�c. He used Kernel Density

Estimation technique (KDE) as a powerful mean to forecast the future resource us-

age of each VM. Migration tra�c between PMs is modeled with a weighted-graph

representation

Dabbagh et al. (2015) proposed framework: i) predicts the number of virtual

machine (VM) requests, to be arriving at cloud data centers in the near future, along

with the amount of CPU and memory resources associated with each of these requests,

ii) provides accurate estimations of the number of physical machines (PMs) that cloud

data centers need in order to serve their clients, and iii) reduces energy consumption

of cloud data centers by putting to sleep unneeded PMs.

Chou et al. (2018) presented the dynamic power-saving resource allocation (DPRA)

mechanism based on a particle swarm optimization algorithm. It used the least

squares regression method for predicting PMâ��s resource utilization for allocating

VM and avoiding VM migrations.

Adami et al. (2015) proposed two Fuzzy Inference Systems for data center resource
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allocation. These are based on Mamdani and Sugeno inference processes. It has taken

the advantage of heuristic rules for e�cient virtual machines allocation.

Li et al. (2017) proposed monitoring data in the data center. It used deep reinforce-

ment learning (DRL) framework to design cooling control policy into an energy cost

minimization problem with temperature constraints. They proposed an end-to-end

cooling control algorithm (CCA).

Tang et al. (2019) proposed the dynamic resource allocation scheme for cloud

environment which consists of the resource scheduling algorithm and the resource

matching algorithm. In resource scheduling algorithm following points are considered-

penalty of scheduling contents, the value of scheduling contents and the transmission

cost of scheduling contents. In the resource matching algorithm following points are

considered- the resource location, the task priorities and the network transmission

cost. For optimal matching problem complete bipartite graph is used.

Tseng et al. (2018) proposed a multiobjective genetic algorithm (GA) to predict

the future resource utilization and energy consumption in cloud data center. This is

designed as a multiobjective optimization problem of resource allocation. It considers

CPU andd memory resource utilization of PM and VMs on it. It also consider the

energy consumption of data center.

Yang et al. (2016) modeled the problem of minimizing energy consumption as a

Stackelberg game using game theoretic approaches. The pro�t can be maximized by

adjusting resource provisioning. They gave a model to minimize average response

time of tasks as a non-cooperative game among agents.
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The proposed work contrasts with the earlier work described in the literature

survey.

(1)Resource allocation controller is present in every PM and central migration

manager is present to take the decision about resource scaling using VM live migration

This makes the design more �exible. The central migration manager takes the resource

utilization information from all other and take the decision of migration. (2) Fuzzy-

prediction system used in our approach represents the relationship between system

variables so that multi-step ahead prediction can be achieved . (3) It is not assuming

any type of prior knowledge about characteristics of the application. It learns the

relationship between input-output parameters very fast. Hence this can be applicable

to any type of application hosted on virtual machines. Fuzzy prediction system can

e�ectively model the non-linearity with dynamically changing workload. (3) It is fully

automatic as the fuzzy rules are generated automatically from the data monitored

from the system. Rule base is continuously updated when the new relationship found.

Virtual machine migration (Clark et al., 2005) is widely used for dynamic resource

provisioning. Sandpiper (Wood et al., 2007) system automates the process of moni-

toring resource demands and detecting hot-spots, decides the new placement for the

VM to resolve it. This new placement decision is achieved using live VM migration.

It uses the VM resource usage readings (blackbox approach) and the readings from

the operating system and DomU (graybox approach) to decide the resource alloca-

tion decisions. The migration is initiated when certain load exceeds threshold for a

sustained prede�ned time and new predicted value of the resources also exceeds the

threshold. The proposed system does the long-term prediction to predict the future

requirement of VM migration and does this proactively before the actual need. Also

it handles underestimation errors.

3.2 Modeling Live VM Migration

Data-center management includes several several management works such as mitigat-

ing resource hot-spots (Wood et al., 2007), load balancing in the data center Gong

et al. (2010a), consolidation of VMs for saving resources and intern energy Varasteh

and Goudarzi (2017), moving virtual machines across cloud locations for cloud burst-
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Figure 3.2: Taxonomy of prediction methods

ing (Guo et al., 2014) and moving the portions of the data center to other location

because of maintenance purpose (Singh et al., 2013). These tasks involve migration

of VMs from one PM to another. They live migration technique explained in (Clark

et al., 2005) performs this live VM migration. An optimized technique called the

page skip (Nathan et al., 2013), skips transfer of pages which are dirtied frequently.

This avoids unnecessary data transfer. There are many models exists for calculat-

ing performance and cost of VM migration which can be used to e�ectively manage

the data center. There are several models de�ned to predict VM migration time for

KVM (Aldhalaan and Menascé, 2013) (Deng et al., 2013) (Li et al., 2014) (Liu and

He, 2015a) (Mann et al., 2012) (Nguyen et al., 2013) (Xu et al., 2014) (Zhang et al.,

2014) (Zheng et al., 2013) and Xen (Akoush et al., 2010) (Aldhalaan and Menascé,

2013) (Liu et al., 2011) (Wu and Zhao, 2011). In all these proposed models of VM

live migration, some or all the performance(total migration time, downtime) and cost

parameters(amount of network tra�c generated) are taken into consideration, but the
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cost of interference with other running VMs is not considered. The addition of cpu

and network interference during the migration process itself is considered in the our

proposed model.

Migration time estimation model for cloud bursting are given by (Guo et al., 2014)

Williams et al. (2012) Liu and He (2015b) Shrivastava et al. (2011) Sonnek et al. (2010)

Sudevalayam and Kulkarni (2013)

Hence we would like to propose an accurate model for estimating VM migration

time.

3.3 Resource Allocation using live VM Migration

Dynamic resource provisioning techniques (Bila et al., 2012) Choi et al. (2008) (Das

et al., 2010) (Heo et al., 2009) (Jeong et al., 2013) (Kumar et al., 2009) (Mishra et al.,

2012) (Padala et al., 2009) (Salomie et al., 2013) (Williams et al., 2011) (Wood et al.,

2007) (Xu et al., 2008b) allocate resources dynamically to a VM based on changing

load levels.

3.4 Summary of Literature Survey

It has been found that the prediction methods are used to determine future resource

demand but type of workload need to be considered while applying the technique.

Also if migration is triggered then its interference is need to be considered which

will a�ect the performance of other running VMs. The proposed work uses fuzzy rule

based prediction and Kalman Filter which can e�ectively model nonlinear system with

dynamically changing workload. It takes the decision of applying fuzzy or kalman

�lter base prediction based on Chaotic indicator determined using hurst exponent

which represents the index of dependence of CPU variations. It additionally does

underestimation error corrections which improves accuracy of the system. Most of

the performance and cost parameters are considered while selecting VM for migration.

The CPU and Network interference e�ects are evaluated and taken into the decision of

migration. The need for migration is predicted beforehand and accordingly resources

are allocated hence it improves the e�ciency of the proposed system. The prediction

depends on incoming online workload which makes system fully autonomous.
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Chapter 4

Virtual Machine Resource Demand

Prediction

Tremendous increase in web services and on-line information exchange has increased

the number of enterprise data centers. Virtualization in data centers provides resource

sharing among many applications. Applications of di�erent vendors are running on

virtual machines. Data centers acting as resource provider for the applications to run

on VMs, should provide performance guarantees as per SLA, while optimizing utiliza-

tion of cloud resource to reduce the cost. Resource requirement of the applications

running in cloud is changing dynamically. Hence it necessitates dynamic resource

allocation to the running applications so as to achieve desirable performance with

e�cient utilization of resources. To allocate the resources to the application as per

their dynamic needs, it is necessary to determine the amount of resources needed by

the application and accordingly request for these resources. If future needs are pre-

dicted based on recent resource utilization, the resource allocation can be prompt and

e�ective. This chapter proposes local resource allocation controller which dynamically

allocates system resources to the VM as per the dynamically changing requirement of

the application to run. It uses fuzzy prediction system to determine future resource

requirements of an application base on the observation of recent resource utilization.

4.1 Introduction

The �rst component of the resource allocation controller is the application workload

prediction module. Data centers host many di�erent types of application. Sometimes

the workload is measured in terms of request rate. But it is very di�cult to de�ne
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workload of an application as it does not give information about how much resources

each request is consuming. Hence, in general, it is better to directly measure the

resource consumption by monitoring system level metrics which gives exact utilization

of hardware resources like cpu, network, and memory. The basic idea is to predict

future resource needs by observing past resource usage. The prediction approach

does not make any assumption about the application behavior or it does not have

any prior knowledge about the same. The contributions in chapter are Monitoring

system, prediction algorithm, and a trace-based analyses of the proposed approach to

show how well it works.

The monitoring system monitors three di�erent resources viz. CPU, Network, and

Memory. The fuzzy system is designed to predict the future resource requirements

based on the observations of the past history resource usage. Later the algorithm is

analyzed using real workload traces to show how e�cient the the predicted results

are.

4.2 Resource Monitoring

The management domain, i.e. Dom-0 of every Xen hypervisor, contains the resource

monitoring system, which captures CPU, Memory and Network bandwidth utilized.

This system collects and sends reports to Resource Usage Collector in the time interval

of 10 Sec. In the proposed work 300 such values of every resources have been stored.

4.2.1 CPU Monitoring

Dom-0 of Xen Virtual Machine Monitor (VMM) captures the CPU scheduling

events. It tracks the time, when the VM is scheduled to get CPU and when it

is released from the CPU. With this, the CPU resource utilization of all the VMs

running on the physical machine is captured.

Dom-0 processes the I/O and Networking requests on behalf of VMs. The

CPU requirement for this is charged on individual VM depending on how many re-

quests are served for the particular VM. This CPU monitoring is done with a 10sec

time interval. Xenmon tool, which comes along with Xen, works on the above speci�ed

principal. Xenmon is modi�ed to get the required results.
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4.2.2 Network Monitoring

Dom-0 in Xen implements Virtual Firewall Interface (VFR) (Clark et al., 2005) in-

terface, which other domains access through clean device abstraction. Each VM

attaches one or more virtual interfaces to VFR. The networking statistics is gathered

in, /proc/net/dev �le which can be accessed and the network utilization is captured

in the speci�ed time interval which is con�gured to 10sec in proposed case.

4.2.3 Memory Monitoring

Xen maintains shadow page tables (Clark et al., 2005) to track memory accesses of the

guest VMs. It is translated from the guest page table, on demand. It is speci�cally

used by virtual machine migration algorithm to determine which pages are dirtied

during migration. But trapping each memory access adds signi�cant overhead. Hence,

the memory usage is inferred as memory pressure exists or does not exists, by tracking

number of read/write to swap partitions on NFS disk. This work has used xentop

tool to get the memory usage at 10sec interval.

These readings are stored in two ways. First is the time series of individual

resource usage of individual VM; collective load of individual resource of all VMs

on one PM. Second is the probability distribution of usage, in which histogram of

all observed usage of individual resource within a speci�c interval, is computed and

normalized to get this distribution.

4.3 Fuzzy Prediction System

Fuzzy logic based prediction system gives a basic way of representing the relationship

between di�erent variables of the system. This only relates the variables without need

for the knowledge of application characteristics. The system is shown in Fig. 4.1. The

fuzzy rules are generated by observing the monitored data. The monitored data is

divided into input space and output space. The fuzzy rules draw the mapping from

input space to output space.
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Figure 4.1: Fuzzy Prediction System

4.3.1 Fuzzy Rule Construction

The important block in the system is fuzzy rule construction. The fuzzy rule is

created on-line using monitored data. The input-output data pair is extracted from

the monitored data. One component is input sequence of monitored data pair followed

by output subsequence as shown in Fig. 4.2. Let Ci,t (where t = 1,2,3,....) be the

Figure 4.2: Fuzzy rule construction with 3-input, 2-output data sequence

CPU resource usage at time t of VM i. The input to the fuzzy prediction system is the

recent m CPU usage measured Ci,t, Ci,t−1,....,Ct−m+1. Then fuzzy prediction system

predicts future resource needs as Ci,t+1,Ci,t+2,.....,Ci,t+n, where m are the number of

48



inputs and n are number of outputs of a fuzzy rule. A fuzzy rule is created using

input-output data pair. Fig. 4.2 shows fuzzy rules with three input and two output.

Assuming that the cpu usage readings are normalized between 0 to 1, each space is

divided into 2N+1 fuzzy sets, denoted by F1,F2, ....,F2N+1 whereN is total number of

inputs and outputs. Each fuzzy set is assigned with fuzzy membership function with

N=5 where the membership function is the triangular membership function. The

given CPU reading data points are mapped to fuzzy set with highest membership

degree. e.g. input I1 is in fuzzy set F6 and output O1 is fuzzy sete F10. The fuzzy

rule is constructed from input-output data. The rule i represented as :

IF I1 is FI1 and I2 is FI2,......,Im is FIm

THEN O1 is FO1 and O2 is FO2,......,Om is FOm

At every sampling instance of monitoring a new rule is constructed with m input

and n output. It is compared with the already stored rules. If it matches with anyone,

its count is incremented, otherwise stored in the rule base. If newly constructed rule

has the same IF part but di�erent THEN part, then the rule, whose count is greater,

is activated, the others are then deactivated in the rule base. Thus the total number

of rules are limited by the number of fuzzy sets. The �rst rule is constructed after

initial m + n resource usage measurements.

The fuzzy inference block of the system takes latest resource measurements as

shown in Fig. 4.1; looks into the rule base and gives output for future resource usage.

In fuzzi�cation block, the input data points are mapped to fuzzy sets with fuzzy

membership functions. The defuzzi�cation block aggregates the fuzzy outputs and

gives a numeric value.

4.3.2 Updating Fuzzy Rule

At every sampling time a fuzzy rule is generated and if each of these is stored in the

rule base, the memory required for storage is more. The rules have m inputs and

n outputs. There may me con�icting rules generated. The con�icting rule have the

same IF part and di�erent THEN part. The input-output space is partitioned into

(m+n) domains and there is, at most one rule for every domain. Hence the total

number of rules in the rule base does not cross the total number of domains available.

To handle the con�icting rule problem, the a reliability index is de�ned for each
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rule denoted as Ri = the number of occurrences of rule i. When a rule is generated by

the fuzzy system, it is compared with existing rules. If it matches with the existing

one, its reliability index is incremented by one, else, a new generated rule is added in

the rule base with reliability index one. If con�icting rule exist in the rule base then

the rule with a higher reliability index is taken for action. If con�icting rules have

same reliability, then the most recent one is taken for action.

4.3.3 Fuzzy Inference Engine

When latest resource usage is given as an input the fuzzy inference engine looks

into the rule base to activate a matching fuzzy rule. Output of the activated rules

determines the output, which is a future resource demand. Initially the rule base is

empty. The �rst rule is generated after the �rst (m+n) resource measurements and

subsequently a rule is generated at every sampling point. The decision of keeping the

rule 'in rule base' is taken based on the above criteria. Thus rule update procedure

is automated and self learning.

4.4 Kalman Filter based Prediction

If a very noisy and chaotic signal is seen as indicated by an chaos indicator, it switches

to Kalman Filter based prediction, otherwise switches to Proactive Resource Demand

Prediction. The SISO Kalman Basic Controller (KBC) as described in Gong et al.

(2010b) is implemented in this work. This controller is based on Kalman �ltering

technique as shown in Fig. 4.3. Kalman �lter is used as utilization tracking controller

and not for estimating the parameters of the application performance model.

4.5 RNN with LSTM based Prediction

Over the past few years deep learning has become very prevalent and it found to

be applicable in a wide range of areas such as, speech processing, computer vision,

natural language processing, etc. A speci�c type of neural network called Recurrent

Neural Networks (RNNs) is found to be applicable in the areas where there is need to

deal with sequences. Sequences in NLP are sentences made up of words; sequences in

speech processing are sequence of phonemes; video is the sequence of images. When
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Figure 4.3: Basic Kalman Controller

there is need to deal with sequential data and to do various things on it such as

classi�cation, sequence prediction the recurrent neural network (RNN) is required.

The resource usage prediction in this work is also a problem related to sequence

of resource usage. Hence RNN can be utilized for future resource prediction. To

overcome the challenges faced during training of RNN, a special kind of RNN, which

is Long Short Term Memory networks (LSTM) and Gated Recurrent Units(GRUs)

is used. The inspiration to use RNN-LSTM network is to predict the future resource

usage in the data center environment.

4.5.1 The Model : LSTM Network

The LSTM network model consist of several memory cells which include internal state

variables and internal gates. The gates operates on internal state to do selective read,

selective write and selective forget operations. The basic schematic digram of LSTM

unit is shown in Fig. 4.4. The state Si of RNN record information from all previous

time steps.The state variables of previous cell are transformed to state variables of

next cell by using gate operations. There are three operation gates.

(1) Forget Gate:

It does the linear transformation of the previous output i.e. ht−1 at time t−1 and

current input (xt) at time t with the learned parameters Wf , Uf and bf of this gate.

Then sigmoid activation function is applied on it to calculate the forget gate output.

This gate value is applied on the previous state (St−1) at time t− 1 to calculate the
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state St at time t. This operation is given by-

ft = σ(Wfxt + Ufht−1 + bf ) (4.1)

Figure 4.4: LSTM Cell Structure

(2) Input Gate:

It does the linear transformation of the previous output i.e. ht−1 at time t−1 and

current input (xt) at time t with the learned parameters Wi, Ui and bi of this gate.

Then sigmoid activation function is applied on it to calculate the input gate output.

The value of the input gate is given by

it = σ(Wixt + Uiht−1 + bi) (4.2)

The intermediate cell output is multiplied with this gate output to estimate the �nal

state at time t. The intermediate cell output at time t is given by-

zt = g(Wzxt + Uzht−1 + bz) (4.3)
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The internal state of the cell at time t is calculated as:

st = it � zt + ft � st−1 (4.4)

(3) Output Gate:

Output gates decides how much of the internal state is passed to the output of the

cell. It does the linear transformation of the previous output i.e. ht−1 at time t − 1

and current input (xt) at time t with the learned parameters Wo, Uo and bo of this

gate. Then sigmoid activation function is applied on it to calculate the input gate

output. It is given by equation-

ot = σ(Woxt + Uoht−1 + bo) (4.5)

The �nal output state is calculated as follows-

ht = ot � h(st) (4.6)

Here ht−1 and st−1 are the output vector and cell state at time t− 1. Wi, Wf ,Wo,

Wz, Ui, Uf ,Uo, Uz,bi, bo,bf ,bz are learning parameters weights and biases at the respec-

tive gates. Thus RNN learns with LSTM, how much the past output to be considered,

how much of the input to passed and how much from the previous state to allowed

to the next state after forgetting. The � mark means pointwise multiplication. The

σ(x), g(x), and h(x) functions are the activation functions of every part in LSTM,

which determine the amount of information that can be passed. We used sigmoid as

the activation function of three gates (σ(x) in the formulas) and g(x). The recti�ed

linear units (ReLUs) function is used as the function for h(x). ReLU function is a

very popular new nonlinear activation function and it is de�ned as follows:

h(x) = max(0, x) (4.7)

The ReLU activation function can make the training faster than using equivalents

with saturating neurons like tanh and sigmoid. It is hard to train only RNN because

of problem of exploding and vanishing gradient. With addition of LSTM networks

it solves the problem of exploding and vanishing gradient. Hence RNN with LSTM

can able to learn long-term dependencies faster and very well. This avoids making
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hand-generated features.

LSTM is used to capture the sequential information of resource usage. LSTM

layers generate highly abstract features which then used to predict the future resource

usage.

Figure 4.5: RNN with LSTM Prediction System

Model for Resource Prediction

The RNN-LSTM network model for future resource usage prediction is shown in Fig.

4.5. It consist of two layers of RNN-LSTM, which can capture the features of the

physical resource usage sequence. The input to the LSTM network is last n − 1

resource usage readings. The output is the nth predicted value. Then the input

window is shifted by one position to the right to form second training example. The

generation of input and output training vectors is shown in Fig. 4.6.

A dense layer which is a linear function is used as a output layer because it is

a many-to-one mapping. The loss function used for training is squared error loss

function between actual and predicted values. If the predicted value is represented

by ŷi and the true value is represented as yi, then the loss function is given by

L(θ) =
1

N

N∑
i=1

(ŷi − yi)2 (4.8)

where θ are the parameters of the network.
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For multi-step ahead prediction recursive version of the above model is used to

predict the next values, when previously predicted value is taken as input. The other

method is also applied to do multi-step ahead prediction. The input and the output

is formed in terms of window of sequence values. Input window size of m and output

window size of n is used as training vector. First row(vector) in the data set is �rst m

data points in the sequence as a input and next n data points are used as a output.

Thus total window size for creating training vectors is m+n. The next training vector

is formed by moving the window of size m+n to the right, and so on. Fig. 4.7 shows

the generation of training vectors with m = 7 and n =3.

Figure 4.6: Generation of Training Vectors

The RNN-LSTM prediction model is tested with three di�erent workload viz.

Google Cluster Trace, OLTP, and Hadoop Workload Trace. Fig. 4.8 4.9 and 4.10

shows prediction error comparison with fuzzy prediction system. The prediction ac-

curacy increased 10%- 20% when compared with our Fuzzy Prediction System.
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Figure 4.7: Generation of Training Vectors for Multi-step Ahead Output

Figure 4.8: Google Cluster Trace

4.6 Resource Allocation using Combined Approach

(Local Allocation)

4.6.1 Chaos Indicator

This module uses the Hurst exponent (Exponent, 2019) which represents the index of

the dependence of the CPU variations in the measured time series of CPU usage. It

extracts the relative behavior in a time series data. The value of H in the range 0.5

< H < 1 indicates a time series with long-term positive autocorrelation. This means

the probability that a high value may be followed by a high value, is very high and

56



Figure 4.9: OLTP Trace

Figure 4.10: Hadoop Workload Trace

this may continue to be high for a long time. This represents patterns in the time

series. The value of H; the range 0 < H < 0.5 indicates a time series, with long-term

switching between high and low values in adjacent pairs. This means that a single

high value is probably be followed by a low value and that the values after that tend

to be high, with the tendency to switch between high and low values lasting a long

time into the future. A value of H=0.5 can indicate a completely uncorrelated series.

But in fact it is the value applicable to the series for which the autocorrelations at

small time lags can be positive or negative, but instead the absolute values of the

autocorrelations decay exponentially to zero.
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4.6.2 Combined Approach with Fuzzy Prediction and Kalman
Filter based Prediction

The CPU Usage prediction system has been improvised using the �ndings in the

recent literature survey. The system now consist of two modules: one including the

base allocation prediction system and the reactive allocator which is used when a

dominant pattern is seen in the workload data of the server, the other with Kalman

�lter controller. There is a chaos indicator which indicates the non linearity of the

pattern and switches between the former module and the latter depending on whether

the usage data has a pattern or is chaotic respectively. This improved controller is

shown in Fig. 4.11. Related algorithm is shown in Algorithm 1. Line 1 determines

the Hurst Exponent. Line 2 takes the decision of applying Kalman Filter or directly

fuzzy prediction system based on the value of H. Line 3 predicts the future at various

steps.

Figure 4.11: Combined Controller Approach with Fuzzy Logic and Kalman Filter

Various time series graphs have been analysed and found a threshold to switch

between the two modules namely the Kalman �lter and proactive module. A value

higher than this indicates high autocorrelation between the values in the time-series

which means a more linear-pattern can be seen in the time series and we can hence

use regression and other such pattern �nding proactive measure(moving average pre-
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Algorithm 1: Prediction System for every VM
Input: Observed resource usage time series from a VM,
Output: Predicted Resource needs of a VM

1 Determine the Hurst Exponent (Chaos Indicator) from the time series data;
2 if H < 0.5 then
3 Apply Kalman Filter based prediction;
4 end
5 else
6 Apply Fuzzy prediction;
7 end
8 Predict one step, two step and three step ahead prediction;

diction system in our case) for good predictions of base pattern of workload. A lower

value would imply that the time series is more chaotic/non-linear and hence a noise

reducing base pattern estimator such as Kalman �lter (used in our case) can be used.

If the resource readings are beyond some range, then it may a�ect the leaning. Hence

such things are also detected and corrected to maximum limit of that particular re-

source.

4.7 Other Prediction Methods used for Hot/Spot De-

tection

Time series prediction (Sapankevych and Sankar, 2009) can be mathematically stated

as -

x̂(t+ ∆t) = f(x(t− a), x(t− b), x(t− c), ....) (4.9)

where x(t+∆t) is predicted value of discrete tie series x value. The objective of

time series prediction is to �nd a function f(x) such that the predicted value at a

future point at time t is unbiased and consistent. By using the regression analysis

following equations de�nes prediction function for linear and non-linear data.

f(x) = (w.x) + b (4.10)

f(x) = (w.φ(x)) + b. (4.11)

If the data is non-linear in its input space, it is necessary to map the data x(t) to a

higher dimension "feature" space via this kernel function given in equation 3.3 and

then perform a linear regression in high dimensional mapped values. The goal is to
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�nd optimal weights w and threshold b.

4.7.1 Autoregressive Modelling and Prediction

Mathematically the Auto Regressive AR(p) model (Sapankevych and Sankar, 2009)

can be expressed as-

x(n) =

p∑
i=1

a(i) ∗ x(n− i) + e(n) (4.12)

where x(n) is predicted linearly from its past p values x(n-1), x(n-2),......,x(n-p). The

variable p is called as order of prediction and model is called as p-order AR model.

Prediction coe�cients or model parameters a(i)s are calculated with the help of Yule-

Walker method in (Sapankevych and Sankar, 2009) where e(n) is the mean error term.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.12: Arti�cial Neural Network Architecture

4.7.2 Arti�cial Neural Network

ANN is a powerful tool for self-learning, and it can generalize the characteristics of load

by proper training. It is inherently a distributed architecture with high robustness and

has been used in resources state prediction in the past. The structure of a standard

multilayer feedforward neural network is in Fig. 4.12. It consists of an input layer

with input neurons [xt−p , xt−p+1 , . . . , xt−1], a hidden layer with hidden neurons

[h1 , h2 , . . . , hk], and an output layer with one output neuron x̂t. Every node in

a layer is connected to every other node in the neighboring layer. These connections

are known as synapses. Each synapse is associated with a weight which is to be
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determined during training. During the training phase, the network is fed with input

vectors, and random weights are assigned to the synapses. After presentation of each

input vector, the network generates a predicted output x̂t . The generated output is

then compared with the actual output x̂t. The di�erence between the two is known

as the error term.

The Back Propagation Neural Network (BPNN) algorithm is the most popular

and the oldest supervised learning feed forward neural network algorithm proposed

(Rumelhart et al., 1986). The Back Propogation Neural Network (BPNN) learns by

calculating the errors of the output layer and back propogate the errors to the hidden

layers. This algorithms is very suitable where the relationship between input and

output does not exist. It is �exible and capable of learning nonlinear things. It has

been used for the comparison with the presently proposed system. It is empirically

con�gured it with six input neurons, one hidden layer with ten hidden neurons and two

output neurons. The inputs are mean CPU request at time t, Mean memory request at

time t, Mean CPU usage, Mean memory usage, CPU capacity and Memory Capacity

at time t. The outputs are Mean CPU usage and Memory usage at time t + stepsize.

The system needs to learn the weights (wij)
l to minimize

J(W ) =
N∑
s=1

1

2
(

nL∑
j=1

(yLj (Xs,W )− djs)2) (4.13)

where, (Xs, ds), s = 1, ...., N is the training set. (wij)
l is the weight on the edge

that connects node i in layer l to the node j in layer l + 1. yLj is the jth node output

of the network. nL are number of nodes in the output layer. The iterative Gradient

Descent method is used for minimization.

Computation of Network is as follows-

� For i/p layer y1i = xSi , i= 1,.....,n1

� For l=2,....,L compute,

nlj =

nl−1∑
i=1

wl−1
ij yl−1

i (4.14)

ylj = f(nlj) (4.15)

� Once the output of the network is obtained, errors δlj need to be computed.
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� At the o/p layer

δLj = (yLj − dSj )f
′
(nLj ) (4.16)

� Now for the layers l = (L-1),.......,2 compute

δlj = (

nl+1∑
s=1

δl+1
s wlij)f

′
(nlj) (4.17)

� Once all δlj are available, the weight is updated by

wlij(t− 1) = wij(t)− λδl+1
j yli (4.18)

This is training the neural network by minimization of empirical risk under squared

error loss. The network is empirically con�gured with six input neurons, one hidden

layer with 10 hidden neurons and two output neurons. The inputs are mean CPU

request at time t, Mean memory request at time t, Mean CPU usage, Mean memory

usage, CPU and Memory capacity at time t. The outputs are Mean CPU usage and

Memory usage at time t. The outputs are Mean CPU usage and memory usage at

time t+ stepsize. stepsize is taken as 60 sec.

4.7.3 Prediction with Weighted Majority of Experts

The previously observed resource usage is called as experts (Haider et al., 2009).

To predict the resource requirements at time t + 1 these experts are used at time t

i.e. usage readings from time t to t − N assuming the use of N experts. Following

Algorithm 2 is used to determine resource requirement at time t.

Algorithm 2: Prediction with Weighted Majority of Experts
Input: C1, C2,.......,Ct be the experts at time t
w1, w2,.......,wN be the respective weights of the N experts
Output: Resource Requirements at time t+ 1

1 for i← 1 to N do
2 wi = wi.exp(−η.l(Ci, Ct))
3 end

4 Ĉt+1 =
∑N

i=1wi.Ct /
∑N

i=1wi

Here the goal is to minimize the regret which is the di�erence between cumulative

loss of player and cumulative minimum loss of expert. The initial weights are given
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such that sum of all the weights is zero. The prediction is given by following equation

Ĉt =

∑N
i=1wi.Ct−1∑N

i=1wi
(4.19)

The predicted value is calculated in line 4. Once the true output is known and the

losses l(Ci, Ct) of every expert are calculated. Weights are updated as follows-

wi = wi.exp(−η.l(Ci, Ct)) (4.20)

where η is the learning rate used which is shown in lines from 1 to 3 of the Algorithm

2.

A multi-step-ahead future prediction is implemented by exploiting one-step-ahead

prediction iteratively. Suppose time series data with m step ahead prediction is rep-

resented as {....,xt−2, xt−1, x̂t, x̂t+1,x̂t+2,.......,x̂t+m−1}. The prediction of x̂t+m−1 is

based on the series {....,xt−2, xt−1, x̂t, x̂t+1,x̂t+2,.......,x̂t+m−2} where only {....,xt−2,

xt−1 } are the measured data and { x̂t,x̂t+1,x̂t+2,... ....,x̂t+m−2} are all estimated with

prediction. This is based on the assumption that the predicted data is the same as

the measured data. But, due to dynamic nature of the cloud, this assumption is very

di�cult to hold. Hence each one step ahead prediction, may be with an error. This

error is propagated in the further predictions and errors are accumulated next.

It is observed that, during multi-step-ahead load prediction of cloud, the impor-

tance of input data series gradually increases and then decreases. The di�erentiating

point is between last measured data and �rst predicted data. This importance of the

training data points can be implemented by placing di�erent weight on the ε - insensi-

tive errors based on the importance of the training data. So, an importance coe�cient

impi is added to regularization constant. Then the risk function is translated to-

1

2
‖w‖2 + C

m∑
i=1

impi(ξi + ξ∗i ) (4.21)

under constraints speci�ed previously and impi is the increasing function for measured

data and decreasing for predicted data. ξi and ξ∗i are the slack variables.
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4.8 Handling Errors in Predictions

Better performance and high availability are the two primary goals of organizations

running Web Services. Once this web service is deployed on cloud environment it

has to be monitored by the data center administrator. If any performance issues are

found while monitoring, then it must be quickly resolved. Service unavailability may

cause losses in millions of dollars to the companies. Hence operators must respond

quickly to such issues.

To maintain a better performance and high availability, dynamic resource provi-

sioning through workload prediction has been looked at. But it has been observed

that these prediction results are incorrect during the spikes in the workload. Due

to these spikes, the underestimation errors exists in predicted values. Hence there

are performance degradation and violation of application SLAs. Hence it is required

to work on the identi�cation of these spikes and accordingly allocate the amount of

resources required.

The data center operators need to understand the patterns in the workload and

long-term trends. The data center operators must handle the unexpected spikes in

the workload. Most web services are highly predictable, as they show daily, weekly or

yearly changing patterns. This can be used for long-term and short-term scheduling.

Sometimes, millions of users can create unexpected workload spikes in the data center

and creates hotspots. e.g. During Michael Jackson's death the aggregate workload

increase on wikipedia.org was 5%, but 15% of the total requests had been for Jackson's

document. Hence it is necessary to understand properties of spikes. Hence workload

modeling and synthesis is important to stress-test the application.

In the case of stateless webservers the spikes can be resolved by adding more

servers, switches, DNS servers, etc. But in the case of data-intensive social networking

sites such as Google, Amazon, Wikipedia, etc. sudden increase in speci�c resource

demand must be dealt with, properly. Due to the dynamic nature of the data center

environment, sudden spikes may arise, which can a�ect the predicted value. The

predicted value may not be correct one. Hence errors due to sudden spikes needs to

be handled correctly.
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4.8.1 Underestimation Error Correction

Algorithm 3 explains the calculation of padding values. As todays application work-

load is very dynamic, data usage sequence may contain spikes due to burst in the

workload tra�c. Hence there may me under-estimation error to occur. To avoid such

errors it is better to pad the predicted values with some small amount of resource. If

it is a �xed value, it may lead to over or under provisioning. Hence proper padding

has to be added to predicted values. Otherwise such underestimation errors can be

corrected immediately by raising CPU cap.

4.8.2 Padding

Algorithm 3 gives the procedure to calculate padding values. A windowW = [Ct−l,......,Ct−1]

of resource usage time series is observed at time t. A signal processing technique

speci�cally Fast Fourier Transform (FFT) is applied on the observed window W and

it is stated in line 2 of the Algorithm . It gives the coe�cients, which represents the

amplitude of each frequency component. Higher frequency components show burst

pattern in the tra�c. An inverse FFT is applied on the top higher frequencies in

the spectrum to synthesize the burst pattern to values which is shown in line 3 and

4 of the Algorithm. Out of these values only positive values are considered so as to

avoid underestimation errors. The count of such positive values gives the frequency

of occurrence of the burst. If for extracted burst pattern, this count is high (more

than 50%), then maximum count value among all the observed burst patterns is set

as padding value. Otherwise a smaller count value is set as a padding value. This is

stated in lines 5 to 10 of the Algorithm 3.

The system observes the prediction errors. Let e1, e2,....,ek be all prediction errors.

The weighted average of all negative errors is calculated. The system sets a larger

value out of this average and previously decided padding value as a padding value.

These steps are shown in lines 13-17 of the Algorithm.

4.8.3 Immediately Rising Resource Caps

The detected underestimation errors are corrected by raising the CPU cap value. The

CPU cap value are multiplied by some ratio α, until these errors vanish or there is no
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more remaining cpu capacity of the physical server.

If CPU cap of the current step is x, then CPU cap after k steps is given by x *

αk. If no more CPU capacity exists, then migration is triggered.

To determine the value of α the resource pressure is considered. The resource

pressure is the ratio of resource usage to the resource cap. It is denoted by P varies

in between 0 and 1. The value of α is determined on this pressure value as shown

below.

α =
P − Punder
1− Punder

(4.22)

where Punder is the thresholds set for the resource pressure e.g. raise resource cap

when Punder crosses 0.9.

Algorithm 3: Function for evaluating the padding value
Input: W = {Ct−l,.....,Ct−1}, P = {Pt−l,.....,Pt−1}
Output: Padding value at time t

1 Function EvaluatePadVal(W , P );
2 A = FFT(W);
// Consider only high frequency components

3 A = Select top 80% from A;
4 B = ReverseFFT(A);
5 f = Percentage of +ve values in B;
6 If f > 50% then ;
// workload contains bursts

7 btemp1 = Maximum value from B;
8 else ;
9 btemp1 = 80th percentile value from B;
10 endif ;
11 {et−l,.....,et−1} = P - A;

// Take weighted moving average of all the errors

12 btemp2 = ‖ WMA({et−l,.....,et−1}) ‖;
13 If btemp1 > btemp2 then ;
14 PadV al = btemp1;
15 else ;
16 PadV al = btemp2;
17 endif ;
18 Return PadV al;

4.9 Resource Allocation Controller of each PM

The working of Resource allocation controller for each PM is shown in Algorithm 4.

Once the predicted resource needs of every VM is received by PM then it estimates
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Algorithm 4: Resource Allocation Controller of each Physical Machine
Input: W = {Ct−l,.....,Ct−1}, P = W/CapV al, CapTotal
Output: Padding values, value of α to raise the CPU cap, Allocation of

additional resources as per the predicted needs,
1 PadV al = EvaluatePadVal(W , P ) ;
2 {et−l,.....,et−1} = P - A;
3 if Any of the e component is negative then
4 α = (P -Punder)/(1-Punder) ;
5 end
6 repeat
7 CapV al = CapV al * αk;

// kth step

8 {et−l,.....,et−1} = P - A;
9 CapTotal = CapTotal - CapV al;
10 until All the e's become positive OR CapV al < CapTotal;
11 if CapV al > CapTotal then
12 Trigger migration ;
13 end

the padding values for the predicted resource demands. This is shown in line 1 of

an Algorithm. The system observes the prediction errors. Let e1, e2,....,ek be all

prediction errors. These are calculated in line 2 of an Algorithm. The weighted

average of all negative errors is calculated. Prediction errors are calculated as shown

in line 2of the algorithm. If underestimation errors are observed then the value of α

is calculated as per the resource pressure P by using Equation 4.22 as shown in line 3

and 4 of the algorithm. The resource cap value is raised as described in section 4.8.1

which is shown in step 7 of the algorithm. The total capacity of individual resource

is updated in line 9 of an Algorithm. This continues until underestimation errors

are resolved or no resource is available. If no resources are available with PM, then

migration is triggered and shown in steps 6 to 13 of the algorithm.

4.10 Results and Discussion

Experiments have been conducted with benchmark workloads of the datacenters. A

mix of workloads, such as network intensive, CPU intensive and memory intensive

workloads on VMs are used.
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Figure 4.13: Google Cluster Trace

Figure 4.14: OLTP Benchmark

4.10.1 Actual resource usage and Predicted requirements with
di�erent workloads

Time series prediction is done with both AR-p model prediction algorithm, Back

Propagation Neural Network (BPNN) model and prediction with Weighted Majority

of Experts (WME). The implementation of these is carried out with machine leaning

Python Library (scikit-learn). The time series values for all resources are given to

the prediction module and future values, at an interval of 60,120,180,240 and 300

sec, are predicted. Three real time workload traces are used for experimentation viz.

Google Cluster Trace (Wilkes, 2011), OLTP database System trace (OLTP, 2008)

and Hadoop Map Reduce (hadoop, 2012). The actual values and predicted values
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Figure 4.15: Hadoop Workload Trace

are compared. The prediction performance for these intervals is found suitable with

WME and Fuzzy Prediction System. The Figure 4.6 shows the MAE values for AR,

ANN, WME and Fuzzy prediction algorithms at di�erent time intervals. The stepsize

of prediction is 60 Sec. The values shows that it has got decent average MAE of 0.0658

for Google trace data, 0.053 for OLTP data and 0.9987 for Hadoop Map Reduce data.

The prediction accuracy is shown upto 300 Sec which is found to be suitable for the

proposed work.

Fuzzy prediction system gives accuracy on average as MAE of 0.056. Figures

4.13 to 4.15 speci�cally shows the MAE of di�erent machine learning algorithms on

di�erent workload traces taken from Internet.

4.10.2 Comparison with Kalman Filter Prediction

When the workload is very non-linear in nature, the prediction accuracy with Fuzzy

as well as Weighted Majority of Experts is less. Hence, the proposed has applied

Kalman �lter under such situations. This has resulted in better prediction accuracy

with Kalman, as it is best suited for non-linear data. The errors received with very

non-lineaar data traces, like ClarkNet data trace (ClarkNet, 2012), CAIDA data trace

(CAIDA, 2016) and synthetic workload created with RuBiS (RUBiS, 2012) , are rep-

resented with MAE in the Figures 4.16 to 4.18. Kalman �ltering gives more accuracy

compared to all other prediction techniques. It �lters out random variations and

noise to �nd dominant patterns in the time. Hence accuracy received with Kalman is
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comparatively well than others.

Figure 4.16: ClarkNet Workload Trace

Figure 4.17: CAIDA Workload Trace

4.10.3 Analysis of Resource Allocation Controller

The resource allocation with the proposed method is validated by experimenting with

real time workloads and synthetic workloads. Wikimedia http trace has been simu-

lated using logreplayer (Logreplayer, 2011) on VM1 and ClarkNet (ClarkNet, 2012)

HTTP trace has been simulated on VM2 using two httperf (Httperf, 2015) clients.

RUBiS (RUBiS, 2012) is used to implement e-commerce site on both VMs to which

http requests can be issued. It is found that the allocations done by our proposed
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Figure 4.18: Synthetic Workload Trace

method is in line with actual resource (CPU) usage. The CPU usage and allocations

from our proposed method are shown in Fig. 4.19 and Fig. 4.20. The di�erence

between allocation and actual usage is less than 1% on average. At spikes, the al-

locations are slightly more but below 5-10%, which is better than other methods in

the literature. This is due to the underestimation error handling. Without underes-

timation error handling, the cpu allocation at spikes are below actual requirement as

shown on Fig. 4.21 and Fig. 4.22.

Figure 4.19: CPU Usage Prediction on VM1 with Under Estimation Error
Correction

Thus under-estimation error handling is very important for dynamic resource man-

agement with predictions. The proposed techniques use the dynamics of the system
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Figure 4.20: CPU Usage Prediction on VM2 with Under Estimation Error
Correction

for validating the next observation. The results shows that it dynamically adapts to

the variations in the workload and is able to di�erentiate between important workload

changes or small variations.

Figure 4.21: CPU Usage Prediction on VM1 Without Under Estimation Error
Correction

4.11 Summary

This chapter presents the resource allocation controller which resides in every VM.

It determines the future resource needs by observing past resource usage using fuzzy

prediction system or prediction with weighted majority of experts. It uses Kalman
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Figure 4.22: CPU Usage Prediction on VM2 Without Under Estimation Error
Correction

�lter based prediction when workload is very non-linear. Adaptive padding scheme

is applied on predicted values to remove under-estimation errors. If under-estimation

errors are still detected, they are corrected by immediately raising resource cap with

some value. This value is estimated by observing the pressure on the resource at that

time. Finally it is observed that resource allocation with our scheme is parallel to

the actual usage. Also, at the time of workload spikes also the allocation is free from

underestimation errors. When the workload is very non-linear, the Kalman �lter suits

well. Hence combined approach has given satisfactory results.
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Chapter 5

Live VM Migration Performance

Modeling

Data-center management consist of several tasks like load balancing, hot-spot mitiga-

tion, server consolidation, moving virtual machines across di�erent physical machines

of di�erent data centers during cloud bursting, etc. Many of these task require move-

ment of VM from one server in the data center to another. It consists of transfer

of hardware state and memory pages on the VM. Live migration of virtual machine

can be carried out by pre-copy and post-copy method as described in chapter 2. The

pre-copy or post-copy live migration technique performs this migration when VM is

running. As the VM is in running state, memory pages get dirtied multiple times,

which requires iterative transfer of these; the condition for stopping VM and �nally

transferring remaining memory pages.

5.1 VM Live Migration using Pre-Copy Technique

Clark et al. (2005) have de�ned pre-copy mechanism for iterative transfer of memory

pages. All the memory pages are transferred during the �rst iteration and subsequent

iterations transfers the memory pages which are getting dirtied during the previous

one. When one of the stop-and-copy conditions given by Nathan et al. (2013) is met,

the execution of VM is suspended and all the remaining memory pages, on the source

and the hardware state are transferred to destination in one �nal iteration. Xen and

KVM use this iterative pre-copy technique. Xen optimizes this method by skipping the

memory pages which are frequently dirtying, to reduce the amount of data transfer.

This optimization technique is called pageskip. In this research work, Xen is used
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as a virtualization platform and hence the pre-copy live migration technique. The

pageskip technique is explained below.

The page skip technique : It identi�es the dirtied pages during the transfer

of every k pages in an iteration. It skips transferring these dirtied pages in the

current iteration, in view of getting dirtied again in the current iteration. In pre-

copy mechanism the pages which get modi�ed in the prior iteration, are selected for

transferring to destination in present iteration. Thus, the pages which are skipped

are those which are dirtied in current as well as previous iteration. In case of the �rst

iteration, all the pages which are dirtied are eligible for skipping.

5.2 Parameters A�ecting the Performance

The performance of the live VM migration depends on total migration time and

downtime. These performance parameters are a�ected by (i) memory size - Vsize, (ii)

transfer rate of memory page - Rpage, (iii) count of unique pages dirtied - Di, and (iv)

count skipped pages - Si.

The �rst two parameters are con�gured by the user and others depends on the

characteristics of the application running on the VM. It is clear that the memory page

dirtying characteristics of an application gives the unique number of pages dirtied in

one iteration. Similarly the pages which are to be skipped in the current iteration also

a�ects the migration time. Hence these are two important parameters in estimating

VM total migration time and it's downtime.

5.3 Proposed Model for Live VM Migration Perfor-

mance

The performance of live VM migration could be estimated by total migration time

, and downtime during which the VM's execution on the source PM is suspended.

Similarly, the cost of VM migration can be estimated by the network tra�c generated

during migration. The total migration time is calculated by adding iterative pre-copy

time and suspended VM's downtime. The generated network tra�c is the volume

of data transferred between source and destination PM during the iterative transfer.

The Algorithm 5 thus presented is for modeling the migration process and to calculate
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parameters a�ecting the performance of migration. As per the live migration proce-

dure described above, line 2 to 9 show the iterative page transfer. All the memory

pages of the VM are transferred in �rst iteration. In subsequent iterations, the pages

(unique) dirtied during the previous iteration are selected for transfer in the current

iteration. The skip technique selects the pages which are dirtied in both previous and

present iteration for skipping. The skipped pages are subtracted from the number of

pages selected for the transfer in current iteration and shown in line 3. The iterative

pre- copy mechanism may not be complete and it can go on continuously, as some of

the memory pages get dirty during the execution of VM. Hence some conditions are

de�ned to stop this and are called as stop−and−copy conditions. If any threshold de-

�ned on di�erent parameters is crossed, then the VM is suspended and all remaining

pages are copied from source to destination.

1. Threshold on maximum number of iterations are completed.

2. Threshold on maximum tra�c is generated.

3. Threshold on maximum pages dirtied in an iteration

4. Threshold on memory dirtying rate of an application threshold de�ned

5.3.1 Model for Number of Memory Pages which may Get
Dirtied

Algorithm 5 gives the model for VM live migration process. Line 1 initializes the

variables. The algorithm iterates through lines 2 to 9 until any of the above de�ned

threshold is reached. Line 3 calculates the migration time required for the current

iteration. Line 4 accumulates the total migration time. Let P be number of average

unique memory pages dirtied in a speci�c time interval t in an iteration and Pnew be

the number of new memory pages dirtied in time t. Thus the number of unique pages

dirtied which is represented by Di is calculated as shown in line 6 in the Algorithm 5.

Line 7 takes these dirtied pages for the transfer in the next iteration. Line 8 increment

the iteration count. Line 10 calculates the total down time. Line 11 returns the total

migration time, total downtime and the amount of volume generated for transfer.
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Algorithm 5: Model of VM Migration Process
Input: Vsize (VM Memory size), Rpage (Page transfer rate), Threshods on

parameters for stop− and− copy phase.
Output: Tmig (Total migration time), Tdown (Downtime), Vmig (Amount of

volume generated).
1 Let V1 = Vsize, i = 1, Tmig = 0, Vmig = 0;
// i denotes interation number

2 repeat
3 Ti = (Vi - Si) / Rpage;

// SKIPi the pages skipped in iteration i
4 Tmig = Tmig + Ti;
5 Vmig = Vmig + Vi;
6 Di = min([P + (C − 1) ∗ Pnew],Mwws);

// C are the number of partitions in time Ti
7 Vi+1 = Di;
8 i = i +1;
9 until any one of the de�ned threshold reached ;
10 Tdown = Vi / Rpage;
11 return Tmig, Tdown, Vmig

The number of average unique pages dirtied depends on the maximum size of

writable working set of an application which is represented by (Mwws).The procedure

for computing P , Pnew are derived form the dirty bitmap collected at every time

interval. Mwws can be estimated with the help of average number of memory pages

skipped in all the iterations during migration. Algorithm 6 estimates the number of

memory pages which may get dirtied during next iteration and these steps are shown

in line 4 to 8 of the Algorithm 6. Line 2 calculates the number of intervals in an

iteration. Line 3 calculate newly dirtied pages where P T
new represents �rst time dirtied

per time t in a time period between 0 to T seconds. Line 4 to 8 is the calculation of

number of pages to be dirtied depending on the number of intervals. The minimum

of total newly dirtied pages in all intervals in an iteration and Writable Working Set

size is selected as the number of pages going to be dirtied in an iteration.

5.3.2 Computing P and Pnew

Whenever there is a need for predicting the performance of VM migration, the dirty

bitmaps are collected at a speci�c bitmap-collection interval t for a speci�c time

period. From this dirty bitmaps page dirtying information is known, from which P

and Pnew can be computed.
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Algorithm 6: Estimate the Number of Pages to be Dirtied
Input: Ti Iteration Time, P Number of unique memory pages dirtied during

the migration, P t
new Newly dirtied pages during time t, Mwws Writable

working set, j interval time.
Output: Number of memory pages to be dirtied.

1 Function NDP(Ti, P , P t
new, Mwws, j );

2 C = Ti/j ;
// C denotes number of intervals

3 Pnew <� P
round(Ti)
new ;

4 If C < 1 then ;
5 return min([P + (C-1) X Pnew ], Mwws );
6 else ;
7 return min([P x C], Mwws );
8 endif

Computing P : It is the number of memory pages (unique) dirtied during mi-

gration in a bit map collection time interval. Xen hypervisor set the bitmap bit for

the dirtied pages. P is estimated by taking an average of the number of set bits in

all collected bitmaps.

Computing Pnew : These are the number of �rst time dirtied pages in an bitmap

collection interval time t. It is estimated by taking the average over such �rst time

dirtied pages in all the bitmaps collected for the speci�c time interval T seconds. P T
new

represents �rst time dirtied per time t in a time period between 0 to T seconds. This

is shown in line 3 of the Algorithm.

5.3.3 Computing Maximum Writable Working Set MWWS

Every workload has a set of hot pages which are dirtied again and again and are

skipped (Si) during the iterative pre-copying procedure. This set of pages is called as

Writable Working Set (Mwws).

The memory dirtying rate can also be calculated with dirty bitmap using shadow

page tables (Clark et al., 2005). Generally writable working set of most of the appli-

cations is approximately proportional to the pages dirtied in each precopying round.

Hence,

Mwws = η.Vi and η = α.Ti−1 + β.Rd + γ (5.1)

where η is a variable, correlating time duration of each iteration Ti and memory

dirtying rate Rd.
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For a particular application multiple observations are taken, for the number of

pages dirtied in each iteration and time duration of respective iteration, to calculate

η. By solving these simultaneous linear equations, model parameters α, β and γ are

calculated.

5.3.4 Computing Number of Memory Pages to Skip Si

The memory pages to be skipped in an iteration are the number of pages which

are dirtied in both present and previous iterations of memory transfer. Hence the

number of skipped memory pages as per Skip− technique of Xen, can be computed

by subtracting the memory pages dirtied (represented by U) in both the iterations (Ti

+ Ti−1), from the addition of memory pages dirtied in the two individual iterations.

If memory pages dirtied in present and previous iterations are estimated as Di and

Di−1, are the memory pages to be skipped in current iteration i can be given by-

Si = .(Di−1 +Di)− U (5.2)

These can be put in Algorithm 5 and updated algorithm is shown in Algorithm 7.

Lines 3-11 shows the iterative page transfer as in Algorithm 5. Line 4 calculates the

the number of pages to be skipped. Line 5 calculates the current iteration time. Line

6 and 7 combines the total migration time and total tra�c generated. Line 8 gives

the number of dirtied pages to be considered for transfer in the next iteration. Line

9 takes the dirtied pages to transfer in next iteration. Line 10 increments iteration

count. Line 12 gives the downtime in the migration process and line 13 returns the

total migration time, downtime and total tra�c generated during the migration.

5.4 Study of Interference due to Live VM Migration

To study the e�ects of live VM migration on other VMs hosted on source and destina-

tion physical machine, the VMs are migrated between two physical machines. A Xen

virtualization platform is installed on two PMs. Two VM instances have been created

and started, denoted by vm1 , vm2 on one PM and vm3 on another PM. These VM

instances are large enough to represent production standard environment, having 2

VCPUs , 8 GB memory and cap value of 400. Instance vm2 is made idle. Instance
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Algorithm 7: Model of VM migration

1 Function LVM(VMsize, Rpage, P , P t
new, Mwws, BT );

2 i<�1; Vi<�VMsize;
3 repeat
4 Si = (α * Rpage) + (β * Ei) + γ;
5 Ti = (Vi - Si) / Rpage;
6 Tmig = Tmig + Ti;
7 Vmig = Vmig + Vi;
8 Di = NDP(Ti, P , P t

new, Mwws, j, BT );
9 Vi+1 = Di;

10 i = i +1;
11 until any one de�ned threshold crossed ;
12 Tdown = Vi / Rpage;
13 return Tmig, Tdown, Vmig

vm1 is run with network intensive workload netperf (Netperf, 2015) application and

transmits TCP streams to instance vm3 running on second PM. The migration of

vm2 is started from pm1 to pm2. The network output throughput readings of vm1

at source PM and network input throughput of vm3 at the destination PM are plot-

ted. It has been observed that network output throughput of vm1 and network input

throughput of vm03 has dropped from 950 Mbps to 610 Mbps when vm2 is migrating,

as shown in Fig. 5.1.

Figure 5.1: netperf TCP

The interference due to VM migration with CPU and memory-intensive workloads

is further observed. We started mcf application to run on vm1, vm2 and vm3. The

arrangement of two separate VCPUs are made for both the instances, on the source,
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Figure 5.2: mcf Application

Figure 5.3: CPU and Memory Usage

as well as on destination PM . vm2 from vm1 is migrated to vm3. Experimental result

shows that the execution time taken by this application on vm1 and vm3 is increased

by 40-50 seconds during migration of vm2. From Fig. 5.2 shows that the CPU of

vm1 is moderately a�ected while the memory of vm1 remains unchanged during the

migration process. Hence it is clear that due to VM migration there is performance

degradation in other VMs.

While the above experiments show the VM migration interference which is col-

lected from guest VMs, additional experiments have been carried out to see the per-

formance interference on Domain-0 of source PM. mcf application has been installed

on vm1, vm2 on PM1 and vm3 on PM2. vm2 migrated from PM1 to PM2 and the
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Figure 5.4: Network Throughput in Dom-0 of Source PM and Destination PM

Domain-0 parameters has been observed. It has been observed that CPU usage of

domain-0 has increased from 6% to 25% while memory usage remains low, as shown

in Fig. 5.3. Network output throughput varies from 30%-90%, in Dom-0 of source

PM. Similarly, the network input throughput of domain-0 at destination PM varies

from 30%-90% as shown in Fig. 5.4. CPU and memory readings are almost the same

as that of source PM.

Apart from VM migration interference, when the migrated VM is resumed at the

destination PM, its co-resident interference on other running VMs on destination PM

has to be measured and considered in VM selection strategy. This VM co-resident

interference helps to decide potential migration destinations for the VMs which need

to be migrated. Hence, VM co-resident interference on the destination PM is studied

next. VM co-resident interference degrade the performance of the running VMs,

hence a degradation in performance can be de�ned as the ratio of performance in

degradation to the original performance. The degraded performance can be measured

as decrease in network throughput or increase in execution time.

The performance degradation with two running applications netperf and mcf is

shown in Fig. 5.5 with varying co-resident VMs. It shows that VM co-resident interfer-

ence increases with the number of co-resident VMs on PM. Performance degradation

becomes worse in case of mcf application, when number of co-resident VMs goes be-

yond 8. In case of netperf application it becomes worse when number of co-resident

VMs goes beyond 5. This is because the netperf application is network intensive and
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Figure 5.5: The Performance Degradation

VM live migration is itself very network intensive. As the mcf application is CPU

and network intensive the degradation e�ect is initially less as compared to netperf

application.

5.5 Modeling Interference

The migrating VM interferes with the performance of other running VMs on the

physical machine. This VM migration interference can be calculated as network I/O

contention and CPU resource contention on both migration source and destination

PMs. The interference due to network I/O as variations in the network throughput of

VMs is modeled. This distribution of variation can be observed as ratio of standard

deviation of the network throughputs and mean of network throughputs collected of

di�erent VMs. For this the network throughput of VM vi during some time interval

of τ sec has been collected. Then mean µi and standard deviation σi of the samples

that have collected during this time interval of τ seconds are calculated for every VM

vi . Hence interference due to network I/O of Migration process on VM vi on PM Pi

is given by Equation 5.3, where αi are the number of VMs hosted on PM Pi.

NMi
=

αi∑
j=1

σj
µj

(5.3)

Similarly interference due to CPU usage on VM vi on PM Pi is given by Equation
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5.4.

CMi
=

∑αi
j=1(CPUj).Nj

Ni

(5.4)

where CPUj is the CPU utilization of VCPU given to VM vj and Ni is the number of

PCPU hosted by Pi. Hence the total migration interference incurred can be calculated

as

IMi
= a1.NMi

+ a2.CMi
(5.5)

where a1 and a2 are parameters that are used to control the NMi
and CMi

values with

respect to their minimum and maximum values.

The main reason of VM co-resident interference is contention at the shared and

limited network bandwidth and CPU resources at the destination PM. The interfer-

ence due to co-resident contention and migration interference during migration, at

destination PM, gives the total network I/O interference. This total I/O interference

NRi due to migrating VM vi on the destination PM Pd is given by

NRi =
µi
µd

+ IMd
(5.6)

where µi is the mean network requests/interrupt value inside the Vi which can be

taken as request demand of network I/O and µd is the capacity of destination PM Pd

for serving the request demands. The migration interference at Pd is IMd
.

Similarly CPU resource contention due to migrated VM vi at the destination PM

Pd is given by

CRi =
Ci
Nd

+ CMd
(5.7)

where Ci is the CPU resource demand of vi and Nd is the number of physical CPUs

available with Pd and CMd
is the CPU resource contention due to migration at desti-

nation PM.

The total co-resident interference due to physical resource contention is given by-

IRi = b1.NRi + b2.CRi (5.8)

where b1 and b2 are the values that control NRi and CRi with respect to their minimum

and maximum values.

The total VM performance interference TIi is the addition of these two migration
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interference and co-resident interference. TIi can be calculated as

TIi = c1.IMi
+ c2.IRi (5.9)

where c1 and c2 are the values used to control IMi
and IRi with respect to minimum

and maximum values.

5.6 Selecting VM for Migration

When there is a need to migrate virtual machine due to insu�cient resources for

allocation or any other reason like load balancing, power saving, server consolidation

in the data center, a subset of VMs, which have least migration interference given by

Equation 5.5, is selected. Similarly, potential migration destination PMs are selected

by estimating VM's co-resident interference given by Equation 5.8. For every VM in C,

a destination PM is selected based on resource requirements and minimum co-location

interference. After iterating such pairs of VM and its destination PM, a pair with

minimum overall performance interference is selected to carry out migration of that

particular VM. This process is represented in the Algorithm 8. Line 1 selects candidate

VMs which gives minimum migration interference on source PM of migration and

minimum collocation interference on the destination PM. This becomes set C. For

every VM in set C, step to identi�es a destination PM in such a way that combined

VMmigration and co-resident interference at the destination PM is less which is shown

in line 2. Finally line 3 selects a pair with minimum overall performance interference

to carry out migration of that particular VM.

Algorithm 8: Selection of VM for migration
Input: Set V of possible VMs selected for migration , Set P PMs
Output: Selection of VM to be migrated, Selection of destination PM where

seleced VM will be migrated
1 Select candidate VMs which gives minimum migration interference on source
PM of migration. This set is C.

2 For every VM in set C, identify a destination PM in such a way that combined
VM migration and co-resident interference at the destination PM is less.

3 Select a pair with minimum overall performance interference to carry out
migration of that particular VM.
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5.7 Validating Performance Model of Live VM Mi-

gration

Figure 5.6: Migration Time Error (Percentage)

Figure 5.7: Migration Time Error(Absolute Error)

The model of estimating performance of live VM migration has been compared

with other models with di�erent techniques of estimating number of skip pages. The

other two models, Liu-Model and AVG-Model which are compared have been equipped

with prop-skip and hot-skip techniques respectively as described before. The errors

between the values that are received with the proposed model and with actually

implementing the migration techniques are compared. The percentage errors and
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Figure 5.8: DownTime Error

Figure 5.9: Network Tra�c Error

absolute errors that we have received with these di�erent techniques are drawn as

Cumulative Distribution Function (CDF), as shown in Fig. 5.6 and Fig. 5.7 for

migration time. The CDF for downtime and network tra�c generated errors are

shown in Fig. 5.8 and Fig. 5.9. In all comparisons the proposed model gives minimum

errors for the maximum, i.e.80-90%, readings from the model.

5.8 Validating VM Interference Models

We �rst validate interference due to VM migration which is give by Equation 5.5.

For this three VMs have been launched on one PM. Each VM runs the web service.

Using netperf network performance application network I/O demands are generated
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to these web servers on VMs. As these are three di�erent network I/O, demands

on three VMs there is network I/O contention. The network throughput of vm1

and vm2 is �xed to 200Mbps and 450 Mbps and varied on vm3 from 100Mbps to

1000 Mbps. Thus the network I/O contention scenario is created, instead actually

migrating the VM. The actual network I/O throughput is recorded for 10 seconds. The

network I/O interference is calculated by using Equation 5.3. The CPU utilization

is recorded to calculate the value of CMi given by Equation5.4. We calculated the

migration interference given by Equation 5.5. The overall degradation in network

I/O throughput according to actual network throughput received is calculated. It is

observed that calculated network I/O interference values follows the trend of network

throughput degradation of the three VMs as shown in Fig.5.10. Next, the estimation

Figure 5.10: Validation of Migration Interference Estimation Model

model for co-resident interference due to migrated VM at destination PM which is

given by Equation 5.8 is validated. For this we have taken two PMs are taken, pm1

as a source PM and pm2 as a destination PM in VM migration. Source PM pm01 is

running with one VM, vm01, which is to be migrated to destination PM pm02. We

vary the number of VMs on PM2 from 1 to 10 and run the experiments separately

and taken the reading. Each VM is running with mcf application of SPECCPU2006.

The network interrupt readings are collected from the linux vmstat tool and also

collected CPU resource utilization for each separate migration with varying number

of VMs on the destination PM. The VM co-resident interference RI is calculated
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which is given by Equation 5.8. As shown in Fig. 5.11, we observe that, as there is an

increase on number of VMs on PM2, migrating vm1 from PM2 to PM2 would result

in substantially more co-resident interference. This is the same trend as we received

performance degradation of mcf application shown in Fig. 5.5.

Figure 5.11: Validation of Co-resident Interference Estimation Model

5.9 Performance Comparison in Selecting VM for

Migration

In an experimental setup 10 physical machines have been taken. Each PM is installed

with Xen virtualization platform, on which small and large type of VM instances are

created. The VM types and parameters are taken as small and large instances of

VMs. Small instance contains 1 VCPU, 1 GB memory, weight value 256 and cap

value 100. While large instance consist of 4 VCPU, 8 GB RAM, weight 256 and cap

400. These represent industry standard VM instances. Typical data center workload

is created with di�erent applications running on VMs. Various applications such mcf

from SPECCPU2006, netperf , terasoft of Hadoop.

The VMs are set on PM1 as the potential candidates VMs for migration and

PMs P2,P3,P4,P5,P6,P7,P8,P9,P10 are the available destination PM for migration. The

physical machine P1 runs with one large instance and �ve small instances. Compared

to this P1, others are running with small instances. It is observed that the VM

selection for migration and destination PM selection with Sandpiper (Urgaonkar et al.,
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2005b) and the proposed method for comparison. Sandpiper strategy selects the

large VM instance for migration from PM p1 and select PM P5as a destination PM.

Sandpiper policy is to select heavily loaded VM for migration to the lightly loaded

PM. Hence Sandpiper strategy selects large VM instance for migration towards lightly

loaded PM, which is P5. But the interference strategy selects an other VM which has

less migration interference from PM P1 to destination PM P8 has the least estimated

VM co-resident interference.

5.10 Summary

A live migration procedure model is presented by considering all the parameters which

are responsible for performance of live migration. The interference e�ects caused by

the migration procedure itself on other running VMs on PM are studied and the model

is presented to calculate CPU and Network interference e�ects. Next, live migration

interference with other running VM on source and destination PM is studied and

modeled to capture actual interference. The migration interference and co-resident

interference are estimated with the de�ned model. Migration interference estimation

is considered when selecting the candidate VMs for migration, whereas co-resident

interference is considered in the decision of selecting destination PM.
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Chapter 6

Live VM Migration Manager

In chapter 4, the discussion is on how to predict an application workload and dynam-

ically allocate the resources to the VMs as per their dynamically changing resource

requirements. If the demanded requirement cannot be satis�ed through the locally

available resources on the PM, then resource allocation has to be done using live

migration of the VM which is demanding additional resources, to the PM where suf-

�cient amount of demanded resource are available. The alternative solution will be

to move any other VM so that su�cient resources will be released and these can be

allocated to the demanding VM. During this dynamic allocation of resources using

live VM migration, the ultimate aim is not to degrade the performance of the other

running VMs and the migrating VM. Hence it is very important to select such a VM

for migration such that there will be very minor performance degradation of the ap-

plications running on the di�erent VMs on the PM. In Chapter 5, we modeled a live

VM migration pre-copy mechanism, which is used in Xen virtualization platform is

modeled. Performance and cost parameters of live VM migration can be determined

in advance which can be used in deciding which VM has to be selected for migration

so that there will be less performance degradation with very little cost of migration.

While modeling the pre-copy mechanism we determined performance parameters such

as migration time and downtime is determined. The cost parameter like network traf-

�c generated is determined. These parameters are given individual performance and

cost for migration. To understand the e�ects of migration interference on other run-

ning VMs on the source and destination PM, migration interference is empirically

studied with realistic experiments with benchmark workloads. VM migration perfor-

mance interference is measured as the addition of CPU and network interference on
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PM from where VM is migrating. In selecting the VM for migration this interference

cost is also considered. The migration manager which determines the interference

cost in addition to migration performance and cost parameters values to decide which

VM should be selected for migration.

6.1 Allocating resources using Live VM Migration

6.1.1 Resource Allocation Controller

The fuzzy prediction system is installed for each virtual machine (VM) which predicts

the future resource usage. If predicted resource needs can be satis�ed from the local

physical server on which VM is running these are allocated or deallocated at this

machine itself. If predicted resource needs can not be satis�ed from the local machine

then the VM should be migrated to another physical server in the data center. It is

better to predict such situations beforehand where demand is more than supply of

resources at the physical machine. Resource Allocation controller of every PM does

this work. If migration is required, then this message is given to migration manager.

Migration manager selects the VM to be migrated and the destination PM for this

migration. This Resource allocation controller is given by Algorithm 8. The load on

any VM can be given by following equation.

load =
1

1− cpu
∗ 1

1− nw
∗ 1

1−mem
(6.1)

where cpu, nw and mem are utilization readings of CPU, network and memory nor-

malized by maximum number of CPUs, maximum network interfaces and maximum

amount of memory allocated to VM respectively.

6.1.2 Prediction of Need for Migration

Using the same resource usage prediction system the future time resource needs are

predicted for every VM. Let there are K number of VMs running on a physical server.

These VMs are denoted by vm1,vm2,.....,vmK . Let [Ci,t+1, ......, Ci,t+L] denotes future

resource needs predicted at time t for future times t+ 1 to t+ L. The total demand
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Algorithm 9: Controller of each Physical Machine
Input: W = {Ct−l,.....,Ct−1}, P = W/CapV al
Output: Padding values, value of α to raise the CPU cap, A : Allocation of

additional resources as per the predicted needs,
1 PadV al = EvaluatePadVal(W , P );
2 Load = (1/(1-cpu)) * (1/(1-nw)) * (1/(1-mem));
3 {et−l,.....,et−1} = P - A;
4 NMi

=
∑αi

j=1
ρ
µj
;

5 CMi
=

∑αi
j=1(CPUj).Nj

Ni
;

6 IMi
= a1.NMi

+ a2.CMi
;

7 if Any of the e component is negative then
8 α = (P -Punder)/(1-Punder);
9 end
10 repeat
11 CapV al = CapV al * αk;
12 until All the e's become positive OR CapV al < CapTotal;
13 if CapV al < CapTotal then
14 Trigger migration ;
15 end
16 if Need for migration is estimated at time tm then
17 Send the signal to migration manager;
18 end

on the physical server is given by-

[
K∑
i=1

Ci,t+1, ......,
K∑
i=1

Ci,t+L] (6.2)

We can estimate when there is need for migration by comparing the calculated

total demand with its capacity.

K∑
i=1

Ci,tm > C (6.3)

The selection of VM for migration and its destination PM is decided by following

Algorithm 9. Line 1 calculates the padding value as described in Algorithm 3. Line

2 combines the load using Equation (6.1). Line 3 calculates underestimations errors

observed. Line 4 calculates the interference due to network I/O of migration process

of every VM on every PM using the Equation (5.3). Line 5 calculates the interference

due to CPU usage for every VM on every PM using the Equation (5.4). Line 6

combines the interference of network I/O and CPU contention as total interference

due to migration. Lines 7 to 9 calculates the ratio required to raise the cap value of
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the resource if any underestimations errors are present. Line 11 raise the cap value of

the resource. Line 10 to 12 is repeated until all underestimation errors got resolved. If

raised cap value is not accommodated in the present PM then migration is triggered

as shown in lines 13 to 15. Lines 16 to 18 also identi�es is there any need for migration

by leveraging previous prediction methods. If there is need for migration in future is

predicted then a signal is given to the migration manager.

6.1.3 Migration Manager

The migration manager observes all PMs in the data center with the resource moni-

toring system described in previous chapter. It collects the resource usage information

from all VMs on all PMs. The manager is shown in Algorithm 10. Each PM arrange

all the VMs in the decreasing order of the load / VMsize ratio. The load is considered

with respect to the size of the VM. Line 1 represents this step. If there is a signal for

migration from any PM this algorithms selects a VM for migration and the destina-

tion for the same. All these steps are shown in lines 2 to 9 of the Algorithm 10. Line

3 select the VM from PM having highest load/VMsize value and minimum Vmig and

Tmig values and minimum total TIi value given by Equation (5.9). Lines 4 to 6 select

a destination PM for a selected VM. Such PM should be with least loaded and with

su�cient resources availability. If so such PM found then select a VM with second

highest load/VMsize value as shown in line 8 to 10 for migration. Repeat the steps in

line 7 to 11 until suitable PM is found.

6.2 Performance Veri�cation

We studied the performance of proposed migration manager in the cloud environment

were mixed types of workloads are running. We set up a cluster of eight physical

servers and installed xen virtualization platform on every server. Our proposed system

is added on above this. A mix of di�erent workload VMs are created and running

on the cluster. Each type of workload is running in nine di�erent VMs, thus in all

(4*9) =36 VMs are running in the cluster. Out of these VMs, few VMs are with

larger memory and others are with small. The VMs initial placement is shown in Fig.

6.1. The following notations are used to denote the running workloads and VM with
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Algorithm 10: Migration Manager
Input: Load on individual VM on every PM, Total load on PM
Output: VM to be migrated, Destination PM where seleced VM will be

migrated
1 Within each PM arrange the VMs in the decreasing order of load / VMsize;
2 if Trigger for Migration from any PM then
3 Select the VM from PM having highest load/VMsize value and minimum

Vmig and Tmig values and minimum total TIi value given by Equation (5.9);
4 repeat
5 Select the next least loaded PM as a destination for candidate VM;
6 until Least loaded server found with su�cient resources available;
7 repeat
8 if No PM can satisfy the candidate VM then
9 Select the VM from highest loaded server having next highest

load/VMsize value and minimum Vmig and Tmig values and minimum
TIi value given by Equation (5.9);

10 end

11 until until a suitable PM is identi�ed ;
12 end

speci�c workload.

1. W1 : SPECCPU2006

2. W2 : netperf v.2.4.0

3. W3 : Hadoop v.0.20.2

4. W4 : SPECweb2005 Release 1.30

5. VMWn_L : Large VM running Wn type of benchmark workload, where n in

1..4

6. VMWn : Small VM running Wn type of benchmark workload, where n ∈ 1..4

7. VMWn(m) : m number of VMs running Wn type of benchmark workload, where

n in 1..4

To verify the performance of the proposed system we set the VMs on PM1 in such

a way that these will be selected for migration and PMs (P1,P2,P3,....,Pn) are the

destinations for the migration. The VM migrations decisions taken by the di�erent

schemes are shown in Fig. 6.2. We compared our proposed system with two others,

Sandpiper and First− FitDecreasing(FFD). The Sandpiper is for load balancing
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given by and the FDD is power and migration cost aware application placement

technique given by. It is observed that both Sandpiper and FFD selects VMW1L

on PM1 for migration, whereas proposed system selects VMW3 for migration. The

destination chosen by Sandpiper, FFD and proposed system are PM7, PM4 and

PM8 respectively.

The reasons behind selecting VMW1L for migration by Sandpiper and FFD are -

(1) Sandpiper select the most loaded VM for migration and the destination is the least

loaded PM. The load in Sandpiper is calculated as 1
1−cpu ∗

1
1−nw ∗

1
1−mem . According

to this formula VMW1L is the most loaded as CPU usage is almost 100% and memory

allocated is 90%. Hence it is selected for migration. PM7 is the least loaded PM,

hence it is selected as destination PM. (2) FFD selects largest CPU and memory size

VM for migration and destination will be selected such that power consumption will

be the least. Accordingly, FFD selects VMW1L for migration as it is consumed with

more memory and CPU. The destination PM will be PM4.

The proposed system selects small VMW3 for migration and the destination PM

is PM8. The reason behind this is- (1) The least estimated interference due to VM

migration on source PM is given by VMW3 and (2) PM8 is with least estimated VM

co-resident interference.

Figure 6.1: VM's Initial Placement

The performance of the di�erent workloads is measured as application execution

time, network throughput. The performance measurements given here are the average

across multiple runs on di�erent VMs in the cluster. In case of SPECWeb and Hadoop
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Figure 6.2: Migration Decisions under Di�erent Schemes

Figure 6.3: Performance of Applications under Di�erent Schemes

performance is retrieved form their "master" instances which co-ordinate with "slave"

to complete the job. Here the performance is number of successfully completed jobs

against submitted. Fig. 6.3 compares the performances of di�erent workloads during

migration. The performance measurements are normalized to their maximum perfor-

mances when no any other interference exists during migration. The measurements

shows the proposed migration manager increase the system performance by around

45%-50% and improvement of 25%-30% for cpu and memory intensive workloads as

compared with FFD. As compared with Sandpiper for network intensive workload the

improvement is 35%-40% and for cpu and memory intensive workload the improve-
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ment is 15%-20%. Sandpiper selects the VM with maximum load to memory_size

ratio. Hence it will select the heavily loaded VM with less memory size. But as the

VM is heavily loaded it consumes high network bandwidth and high CPU. Hence

its interference will be more when taken for migration. In our algorithm the VM

incurs less interference cost is selected for migration. Hence the improvement in the

throughput.

Figure 6.4: Performance of Applications under Di�erent Schemes

Figure 6.5: Performance of Applications under Di�erent Schemes

It is also observed that the performance speci�cally during the migration time

and after VM migration. It is shown in Fig. 6.4 and Fig. 6.5. It is found that

both Sandppiper and FDD severly degrade the network throughput and moderately
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Figure 6.6: Network Throughput Variation during Migration

degrade CPU utilization of VMs compare to proposed system. The VMs selected by

Sandpiper and FFD are with heavily loaded with large VM size and heavy resource

consumption. Destination selected by Sandpiper and FFD during migration have

less number of resources which are in contention with others. Thus these migration

decisions results into more CPU, network and memory interference at source and des-

tination PMs. This ultimately results into poor performance. In contrast proposed

method takes care of migration and co-resident interference during migration, hence

the VM selected for migration and the destination PM will incur less interference.

Hence performance is so much degraded during and after migration. Thus the pro-

posed system not only consider the migration time, downtime, and tra�c generated

during the migration, but it also looks into the interference e�ects on the same VM

and other running VMs.

The proposed system is proactive in nature. It is compared with the reactive

system VMware DRS and network throughput is observed before, during and after

the live migration of VM. The proposed system gives better network throughput all

the time as shown in Fig. 6.6. The improvement in the results in the proposed system

is due to proactive handling of resource needs and migration decisions. The resources

are allocated on the same PM or the migration is done if su�cient resources are not

available on the same PM before the actual peak requirement came into existence.

This need is detected prior to the actual happening and accordingly resource allocation

is done. This all observed during the live VM migration time in the Fig. 6.6.
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6.3 Service Level Agreements (SLA) Violation Study

A small datacenter testbed is created on two Intel Xeon Servers with hyperthreaded

dual Intel Xeon 3.2 GHz CPUs and 4 GB RAM. Virtualization layer is created with

Xen hypervisor. Virtual machines are created on these servers machines with di�erent

initial minimum requirements to run OS, Local Controller and Web Server like ap-

plication. Local controller is deployed on every virtual machine. A Global Controller

is deployed on separate Desktop Machine with Intel i5 processor and 4GB RAM.

It collects the CPU requirements from Local Controllers and requests the required

amount of CPU resource to the Xen resource pool. All these servers and desktop

machine are connected with Gigabit Ethernet. HTTP Workload is generated from

real time HTTP workload traces using real-time Logreplayer (2011). RUBiS (2012)

benchmark is used to create a WebStore which represents typical e-business appli-

cation. Httperf is used to generate http requests which represents http workload.

Di�erent real-time traces like (Wikimedia, 2013), CAIDA (CAIDA, 2016) , TPC-W

(TPC-W, 2005) are used for experimentation and evaluation of the proposed system.

Analysis with all these workload traces are shown in following subsections. All the

controller approaches described above viz. Proactive Moving Average Predictive Con-

troller, Fuzzy Logic Controller, Kalman Filter Controller and combined Fuzzy Logic

Prediction and Kalman Filter Controller are tested with di�erent real-time workload

traces and analyzed.

These traces contain two weeks worth of all HTTP requests to the ClarkNet web

server. ClarkNet is a full Internet access provider for the Metro Baltimore-Washington

DC area. The workload trace was transformed to a time series of web requests per

minute and used for testing the various resource management systems that have been

developed. The RUBiS benchmark is used to represent a real world e-business appli-

cation. RUBiS is an auction site prototype modeled after eBay.com. HTTP workload

that represent the ClarkNet trace is generated with various client requests issued by

httperf . The estimation of resource required to satisfy the incoming workload is done

by local controller. It is implemented using the Fuzzy Prediction approach described

earlier. This fuzzy prediction based local controller is compared with other techniques

like Proactive Moving Average Predictive Controller, Fuzzy Logic Controller, Kalman
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Filter Controller and Combined approach with Kalman and Fuzzy prediction. The

results are shown in Fig. 6.7. The RNN with LSTM proposed method for prediction

gave less number of violation in all.

The datacenter cluster set of 29 days provided by Google is also tested with respect

to CPU usage. The First twenty days data is used for modeling and prediction.

The CPU usage requirements for day 21,22 and 23 are calculated and counted the

number of underestimates/ SLA violations. The results shows that the number of SLA

violations are less with proposed method. Here also Kalman Filter gives the noise

reducing advantage. The results are shown in Fig.6.8 and found that the proposed

method gives less number of SLA violations. Due to advantage of LSTM, RNN gave

less number of SLA violation.

Figure 6.7: ClarkNet Data Trace

The system is also evaluated with three recent real world traces. The �rst includes

traces of requests to the web server from the Wikimedia Foundation collected August

2016. These includes HTTP requests requesting for static web pages and images ag-

gregated in one hour intervals. The second one includes traces from CAIDA (Center

for Applied Internet Data Analysis) internet traces collected in April 2016. Web Store

is implemented using RUBiS benchmark. The http requests representing these work-

loads are issued to Web Store. The CPU resource requirement is predicted for the

next hour for allocating resources in both the cases and given it to global controller

for allocation. The third data set used is TPC-W benchmark for the speci�cation of
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Figure 6.8: Google Cluster Trace

Figure 6.9: Wikimedia, CAIDA & TPC-W

e-commerce applications. The http requests are issued as per the benchmark spec-

i�cation. The CPU resource is predicted for next one hour. The percentage SLA

violations with these three data sets are given in Table 6.1 and shown in Fig.6.9. The

proposed approach produce less number of SLA violations.

The prediction accuracy is validated using Wikimedia, CAIDA and TPC-W work-

loads. The measurement parameter MAE (Mean Absolute Error) is calculated with

various methods as shown in Fig.6.9. The prediction accuracy with average MAE of

0.08 which is pretty good.
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Workload Trace Moving Average Fuzzy Logic Kalman Filter Combined

Wikimedia 25.34 11.25 16.20 3.80

CAIDA 20.65 10.40 15.35 3.16

TPC-W 22.55 12.40 14.35 3.30

Table 6.1: Percentage SLA Violations

6.3.1 Resource Allocations through VM Live Migrations

The need for migration is predicted by leveraging the same fuzzy prediction based

technique. The results are shown in the following �gures. When CPU resource goes

beyond 50%, system predicts the future load and it concludes that further load is

increasing drastically at time t=630 sec as shown in Fig.6.10 when total CPU usage

goes beyond total capacity. Hence CPU availability is more for contention.

Figure 6.10: CPU Utilization of PM1 and PM2

In case of Network Utilization as shown in Fig.6.11, when the network load goes

beyond 60%, it is predicted that the network load will increase from time 450 sec

hence at this point migration is triggered.

The response time for the web application running on a VM to be migrated as

shown in Fig.6.12 is calculated for every 4sec interval during migration. The RUBiS

workload with 100 clients is generated and response time is measured at the interval of

4sec. It is observed that there is delay in response time during the period of migration

process. If it is experimented without proposed system the delay in response time is
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Figure 6.11: Network Bandwidth Utilization of PM1 and PM3

Figure 6.12: Response Time

more and it is successful in processing 148 requests . With the proposed system the

delay is less and response time is quick, hence 198 requests were served. It is observed

that there is an average 50% decrease in the response time.

6.4 Summary

The migration manager presented in this chapter detects when to trigger migration,

select the VM for migration so that interference e�ects is reduced and select the

destination PM where selected VM is to be migrated.

106



Chapter 7

Conclusions and Future Work

This work presents an intelligent system which predicts future resource demand of the

applications on VMs and allocates the resources in line with actual requirements to run

with the desired SLA. It combines the fuzzy prediction system and prediction based

on Kalman �lter depending upon the workload type and time needed for prediction.

The combined approach gives better results as compared to others used in the system.

The Chaos indicator is found to be a very e�cient module to check how chaotic the

trend of CPU usages have been, and this is also able to distinguish noisy signals from

clean signals which follows a deterministic pattern. If a very noisy and chaotic signal is

seen, it switches to use Kalman �lter for base prediction otherwise it switches to fuzzy

prediction system. It thus optimizes on base allocations in both scenarios. Kalman

Filter also was found to perform well and is able to generate base patterns on the �y as

required. When the incoming workload is noisy, we conclude that it provides superior

performance compared to general proactive system. Finally the prediction model

with RNN and LSTM gives better performance than all other methods implemented

above. The RNN-LSTM prediction model is tested with three di�erent workload.The

prediction accuracy increased 10%- 20% when compared with our Fuzzy Prediction

System.

To avoid underestimation prediction errors due to spikes in the workload, the

predicted values are padded with proper value. If such errors are detected again then

resource caps have to be raised immediately resource caps are raised. The resource

con�ict (when enough resources are not available) situations are resolved with live VM

migration. Migration manager takes care of properly selecting VM for migration and

destination PM so as there is not be any performance loss. The migration manager
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triggers the migration with the help of performance, cost and interference parameters

generated from the live migration model. It improves the performance of the system.

The scaling of the CPU resource is automatically done in accordance with dynam-

ically changing workload at a minimum granularity of 2 seconds. The resource saving

with proposed method is around 30-50% as compared to static allocations. The per-

formance improvement in terms of response time of an application is around 15-20%

as compared to other methods because of proper selection of VM for migration by the

migration manager.

In this work, the workload type is studied with respect to �nding pattern in it

or not. Other characteristics of the data may be useful to improve the prediction

performance. Hence in future we plan to study the characteristics of the data and to

�nd out whether it is useful for improving prediction accuracy. Most of the parameters

a�ecting live VM migration are considered, but parallel migrations of VMs if required

in the scenario is not studied. This will be explored in the future. The applications

workloads may be non-stationarity in nature which will be addressed in the future

work. The storage of the resource usage also may reveal the working style of an

application and some important behavior. Hence these should be addressed.
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