
BATCH VERIFICATION OF DIGITAL SIGNATURES

IN IOT

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

APURVA S. KITTUR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

OCTOBER, 2019

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Batch Verification of Digital

Signatures in IoT which is being submitted to the National Institute of Technology

Karnataka, Surathkal in partial fulfilment of the requirements for the award of the

Degree of Doctor of Philosophy in Department of Computer Science and Engineering

is a bonafide report of the research work carried out by me. The material contained

in this Research Thesis has not been submitted to any University or Institution for the

award of any degree.

Apurva S. Kittur, 155009 CS15FV03

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: 17 October 2019

CERTIFICATE

This is to certify that the Research Thesis entitled Batch Verification of Digital

Signatures in IoT submitted by Apurva S. Kittur (Register Number: 155009

CS15FV03) as the record of the research work carried out by her, is accepted as the

Research Thesis submission in partial fulfilment of the requirements for the award of

degree of Doctor of Philosophy.

Dr. Alwyn R. Pais

Research Guide

(Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere gratitude to all the people who encouraged

me to complete this dissertation.

First and foremost I would like to thank my supervisor and Head of the Department,

Dr. Alwyn R. Pais, for providing me an opportunity to pursue PhD under his guidance. I

appreciate his support, patience, motivation, and immense knowledge. I could not have

imagined a better mentor for the entire time of research and thesis of my PhD study.

I would also like to thank the research progress assessment committee members,

Dr. B. R. Shankar and Dr. Manu Basavaraju, for their insightful comments and

encouragement regarding my research work. I also extend my sincere thanks to the

entire teaching and non-teaching staff of the Department of Computer Science and

Engineering.

I would like to thank the Ministry of Electronics & Information Technology (Meity),

Government of India for their support in part of the research. I would also like to thank

NITK for providing me the infrastructure and facilities to pursue my research work

successfully.

A special thanks to my friends Alok Kumar, Srinivas and Shrutakirthi Godkhindi

for being with me all the time as a constant support during the tenure of my PhD. I

would also like to thank my friends Nikhil, Ajnas, Tanupriya, Zubair, Siva Kumar Sir,

Somesha Sir for all their help during the course of my PhD.

I am deeply indebted to my husband Raghunath Kulkarni, who has been a constant

pillar of emotional, technical and motivational support till the end of my PhD. Similarly

I am equally thankful to my parents and my loving brother Dr. Amogh, who encouraged

me to pursue PhD and my in-laws who have been very supportive towards the course of

study.

I thank almighty for providing me the right orientation throughout the path of life

and career.

Apurva S. Kittur

ABSTRACT

Internet of Things (IoT) is the interconnectivity of various devices, such as sensor

nodes, actuator nodes, gateway nodes, and other devices that have the software, and

electronics embedded within them which enables them to exchange data. These devices

lack the computation power, memory and battery capacity. The gateway node in IoT

handles various responsibilities such authentication, verification, data processing, data

encryption, decryption etc. Hence it is important to reduce the bottleneck at the gateway

node, so that the network is stable and secure. Therefore security in IoT becomes an

important field of research. Digital signatures are one of the ways of authenticating

the sender and also to protect the integrity of the data during the communication.

Verifying multiple digital signatures together in a batch reduces the computation load

and computation time during verification. There are many batch verification schemes

designed for popular digital signature algorithms such as RSA, DSS, ECDSA etc.

Majority of the batch verification schemes are not lightweight and are prone to attacks.

Even though the contemporary batch verification schemes have evolved with time,

but they are not scalable with the increase in batch size. Therefore this research focuses

on designing a new batch verification scheme which overcomes the drawbacks and is

suitable for IoT. ECDSA digital signature algorithm is a lightweight digital signature

algorithm because of its small signature size compared to other schemes for the same

level of security. Hence designing a batch verification algorithm for ECDSA∗ signatures

is beneficial in IoT. ECDSA∗ signature is a modified version of ECDSA signature whose

verification time is faster than ECDSA signatures. The proposed batch verification

scheme in the research is efficient for verification of multiple ECDSA∗ signatures and

is more secure than the other existing batch verification schemes.

Most of the other existing batch verification schemes do not specify the index of

the bad signature. There are many schemes in literature, to identify the bad signature

in a given batch, but either they are compute intensive or can not identify all the bad

signatures. Hence the research also proposes three bad signature identification schemes

based on hash function and Error Control Codes. After the batch verification test fails,

the signatures are verified using proposed schemes to identify the faulty ones. The

proposed verification schemes are lightweight compared to sequential verification and

other existing verification schemes.

As the aim of research is to implement batch verification in IoT to reduce the

bottleneck at the gateway node, the next topic of research is to design a trust model that

can decrease the load at gateway node by sharing it. The proposed trust model chooses

a set of Trusted nodes from the total available sensor nodes and distributes a set of

signatures to each of them. These Trusted sensor nodes verify the signatures using the

proposed batch verification scheme. This will significantly reduce the bottleneck at the

gateway node without the compromise in security.

ii

Contents

List of Figures vi

List of Tables viii

List of Abbreviations ix

1 Introduction 1

1.1 Batch Verification of Digital Signatures 2

1.2 Digital Signatures: Properties, Applications, and Threats 5

1.2.1 Digital Signature Algorithms 5

1.2.2 Properties . 6

1.2.3 Applications . 6

1.2.4 Threats on Digital Signatures 7

1.3 IoT and its Security . 9

1.4 Motivation . 10

1.5 Objectives . 11

1.6 Thesis Contribution . 13

1.7 Thesis Organization . 14

2 Literature Review 15

2.1 Batch Verification Schemes . 16

2.1.1 RSA Batch Verification Scheme 17

2.1.2 DSS Batch verification schemes 25

2.1.3 ECDSA Batch Verification schemes 33

2.2 Bad Signature Identification Schemes 47

2.3 Security Trust Models . 49

iii

2.4 Research Gaps . 52

2.5 Summary . 53

3 Batch Verification of ECDSA∗ Signatures 55

3.1 Definitions and Notations . 56

3.1.1 The ECDSA algorithm . 58

3.1.2 The ECDSA∗ algorithm . 59

3.2 Proposed Batch Verification Scheme 61

3.3 Security Analysis . 65

3.3.1 Possible Attacks on the Existing Schemes 65

3.4 Results and Analysis . 68

3.4.1 Verification Times . 69

3.4.2 Speedup Values . 72

3.4.3 Computation Cost Analysis . 76

3.4.4 Running Time Analysis . 78

3.5 Summary . 78

4 Bad Signature Identification in Batch Verification 81

4.1 Introduction . 81

4.2 Preliminaries . 83

4.3 Hash Based Verification Scheme . 88

4.3.1 Comparative Analysis . 89

4.3.2 Verification Time for Hash based verification 92

4.4 CRC based bad signature identification scheme 93

4.4.1 Error Detection Codes . 93

4.4.2 CRC Verification Algorithm 97

4.4.3 Security Analysis . 97

4.4.4 Comparative Analysis . 99

4.4.5 Results for CRC based scheme 100

4.5 LDPC based bad signature identification scheme 102

4.5.1 Designing the Parity Check Matrix 103

iv

4.5.2 LDPC Verification Algorithm 106

4.5.3 Security Analysis . 108

4.6 Results . 109

4.6.1 Results for the proposed batch verification scheme 111

4.7 SUMMARY . 113

5 A Trust Model based Batch Verification of Digital Signatures in IoT 115

5.1 Preliminaries . 117

5.1.1 IoT network nodes . 117

5.2 Proposed Model . 118

5.2.1 Parameters for Node selection 120

5.2.2 Implementation of the ECDSA∗ batch verification algorithm . . 122

5.3 Node selection based on Physical Parameters 124

5.3.1 Avail node selection algorithm 125

5.4 Node selection based on Security Parameters 127

5.4.1 Trusted Node Selection Algorithm 129

5.5 Results and Discussion . 130

5.5.1 Ideal Condition Results . 131

5.5.2 Practical Condition Results . 133

5.5.3 Security Analysis . 135

5.6 Summary . 137

6 Conclusions and Future Work 139

Bibliography 143

Publications 157

v

List of Figures

1.1 Basic Structure of IoT . 9

4.1 Execution Time when 50% signatures are faulty 101

4.2 Execution Time when all signatures are faulty 102

4.3 Graphical Representation . 105

4.4 LDPC encoding and decoding at sender and receiver 108

5.1 Trust Model for Digital Signature Verification in IoT 119

vi

List of Tables

2.1 Comparative analysis of Batch verification techniques for RSA 21

2.2 Characteristics of Batch verification techniques in RSA 22

2.3 Comparative analysis of Batch verification techniques for DSS 30

2.4 Characteristics of Batch verification techniques in DSS 31

2.5 Notations followed in ECDSA . 34

2.6 Comparative analysis of Batch verification techniques for ECDSA . . . 38

2.7 Characteristics of Batch verification techniques in ECDSA 38

2.8 Comparative study of Batch verification schemes based on Bilinear

Pairing . 45

2.9 Characteristics of Batch Verification techniques based on Bilinear Pairing 46

2.10 Various Bad Signature Identification Schemes 48

2.11 Trust Models . 50

3.1 Notations followed in chapter . 56

3.2 Verification Time for the curve (P-192) for Single Signer (sec) 70

3.3 Verification Time for the curve (P-224) for Single Signer (sec) 70

3.4 Verification Time for the curve (P-256) for Single Signer (sec) 71

3.5 Verification Time for the curve (P-192) for Multiple Signers (sec) 72

3.6 Verification Time for the curve (P-224) for Multiple Signers (sec) 72

3.7 Verification Time for the curve (P-256) for Multiple Signers (sec) 73

3.8 Speedup for the curve (P-192) for Single Signer 73

3.9 Speedup for the curve (P-224) for Single Signer 74

3.10 Speedup for the curve (P-256) for Single Signer 74

3.11 Speedup for the curve (P-192) for Multiple Signers 75

3.12 Speedup for the curve (P-224) for Multiple Signers 75

vii

3.13 Speedup for the curve (P-256) for Multiple Signers 76

3.14 Various Operations of batch verification for Single Signer 76

3.15 Various Operations of batch verification for Multiple Signers 77

3.16 Execution Time for expensive operations 77

4.1 Time required for various Verification operations 92

4.2 Time taken for Generation operation (msec) 100

4.3 CRC Encoding and Decoding times 109

4.4 Hash Encoding and Decoding times 110

4.5 LDPC Encoding and Decoding times 110

4.6 Verification Time for Hash-based verification for Single Signers (sec) . . 111

4.7 Verification Time for Hash based verification for Multiple Signers (sec) 112

4.8 Verification Time for CRC based verification for Single Signers (sec) . . 112

4.9 Verification Time for CRC based verification for Multiple Signers (sec) 113

4.10 Verification Time for LDPC based verification for Single Signers (sec) . 113

4.11 Verification Time for LDPC based verification for Multiple Signers (sec) 113

5.1 Current Consumption by different states of the node 121

5.2 Verification time(sec) for a single signer 123

5.3 Verification time(sec) for multiple signers 123

5.4 Ideal Condition (a) Proposed Model Node Selection (b) Random Node

Selection . 132

5.5 Ideal Condition (a) Physical Parameter based Node Selection (b)

Security Parameter based Node Selection 133

5.6 Practical Condition (a) Proposed Model Node Selection (b) Random

Node Selection . 134

5.7 Practical Condition (a) Physical Parameter based Node Selection (b)

Security Parameter based Node Selection 134

viii

LIST OF ABBREVIATIONS

Abbreviations Expansion

CRC Cyclic Redundancy Check

CPU Central Processing Unit

DC Divide-and-Conquer

DLP Discrete Logarithm Problem

DSS Digital Signature Scheme

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

FIPS Federal Information Processing Standard

GCD Greatest Common Divisor

GT Generic Tests

IoT Internet of Things

LDPC Low Density Parity Check

NIST National Institute of Standards and Technology

PKI Public Key Infrastructure

QoS Quality of Service

RSA Rivest, Shamir and Adleman

SOAP Simple Object Access Protocol

WSN Wireless Sensor Network

ix

Chapter 1

INTRODUCTION

Internet of Things (IoT) is coined in 1999 by Kevin Ashton. IoT can be defined in many

ways (Atzori et al. 2010; Gubbi et al. 2013; Zhu et al. 2010). ‘Internet’ refers to the

interconnectivity of devices to create a network, and ‘Things’ refers to the embedded

objects or devices that can connect to the Internet. One way of defining is, ‘it is a

network of sensors and smart devices which sense the data which is further processed

and analysed in an ubiquitous network.’ IoT has seen rapid development in recent

years because of its ’smartness.’ The various applications of IoT include Smart City

(Cocchia 2014; Jin et al. 2014), Smart Home (Du et al. 2013; Jie et al. 2013), Smart

Health (Amendola et al. 2014), Transport and Logistic applications (Karakostas 2013),

Weather monitoring and Forecast (Ram and Gupta 2016) etc. These applications have

millions of devices generating large volumes of data.

The rapid development of IoT has increased the curiosity of the attackers. The

devices (nodes) in the IoT network have weak security protocols because of their limited

computation ability and energy. Hence the nodes of the network are vulnerable to

various kinds of attacks. The IoT network has sensors, actuators, controllers, gateway

heads, sink, etc. For our reference, we have broadly classified these devices into sensor

nodes and gateway nodes. Sensor nodes includes low computation end devices such as

sensors, actuators etc., and gateway node includes gateway, sink, cluster head etc. The

gateway nodes have better computation power as compared to sensor nodes. But the

overall network is not competent to handle complex cryptographic operations. Hence

1

1. Introduction

the security of IoT network is one of the most researched topics. Authentication is one

of the important steps in any digital communication. There are many authentication

schemes available which verify the identity of the sender.

Signature is a unique way to identify a signer. The authenticity of a person/

organization/ entity is verified through its signature. A signature can be a handwritten

one, or it can be a digital one. Digital signatures are used to verify the content

of the received message and the signer’s identity in digital communication. The

exponential growth of Internet technology has led to the growth in usage of digital

signatures. Every signer generates a unique signature using his/her private key. The

verifier possesses the public key of the signer and verifies the signature using the

same. The signature generated by the signer can be verified by everyone who has

access to the public key. Digital signatures (Adleman et al. 1977; Blahut 2014) have

variety of applications (Chen et al. 2001; Davies 1983; Serret-Avila and Boccon-

Gibod 2004). The applications in industries and organizations have established e-

Signature standards based on digital signature technology and certified CAs (Certificate

Authority)(Vaeth and Walton 2000). Digital signatures are part of the X.509 standard

(Housley et al. 2002), which is an International, well-understood, standards-based

technology. This standard also helps to prevent forgery and modifications to documents

once the signature is generated.

1.1 BATCH VERIFICATION OF DIGITAL SIGNATURES

Most of the digital signature algorithms are based on Public Key Infrastructure (PKI)

(Stallings 2006). These algorithms hence have complex cryptographic operations

which require higher computation and energy. Some of the popular digital signature

algorithms are Rivest, Shamir, Adleman (RSA) (Bellare and Rogaway 1996), Digital

Signature Standard (DSS) (Kravitz 1993), and Elliptic Curve Digital Signature

Algorithm (ECDSA) (Koblitz 1998). The concept of batch verification is introduced to

reduce the verification time and complexity. Batch verification schemes verify multiple

signatures together with signatures either signed by single or multiple signers. Fiat

(1989) was the first to introduce the concept of batch verification. Later many batch

2

1.1. Batch Verification of Digital Signatures

verification schemes are introduced for RSA, DSS, and ECDSA.

Batch verification algorithm receives a set of digital signatures as input. The output

of the algorithm depends on the type of signatures. If there are one or more invalid/bad

signatures in the received batch of digital signatures, then the algorithm returns False,

else True. The words invalid/ faulty/ bad/ illegal are used synonymously to refer to the

invalid signatures signed by an unauthorised signer or unidentified signer. When all

the signatures in the received set of signatures are valid, then the batch of signatures

passes the batch verification test. Most of the existing batch verification schemes do not

specify the index of the faulty signature/s.

Therefore to identify the faulty signature/s, the verifier has to verify the signatures

from the received batch individually. There are various schemes proposed by Pastuszak

et al. (2000a); Ren et al. (2015) which aid in determining the faulty signature/s.

Some of the schemes perform worse than individual verification if the number of

faulty signatures are more in the batch. There are other coding theory based schemes

which need the information on the number of invalid signatures in the received

batch beforehand to identify the location. But in practical scenario, these schemes

are unimplementable, since the number of faulty signatures cannot be known before

verification.

Batch verification has various applications due to its low computation load and time

at the verifier, with secured communication. If the batch verification validates a batch

of signatures as true, then there are no invalid or bad signatures in the batch. If the batch

verification returns false, then there are either one or more bad signatures in the batch.

Internet based applications such as air traffic control, marketing, hospital management,

online banking transactions, etc as mentioned in Ndiaye et al. (2017), require frequent

use of digital signatures. Therefore deployment of batch verification in such scenarios

helps in faster communication. The advantages of batch verification can be harnessed

in IoT, which has computation and energy limitations. Hence batch verification reduces

computation time and energy.

Batch verification algorithms are used to verify the signatures signed using the

3

1. Introduction

following three types:

• Type 1: Single signer uses his private key (sk) to generate signatures for multiple

messages (m1,m2, . . . ,mt). The signatures are verified in a batch of t signatures

(s1, s2, . . . , st) at once.

• Type 2: Multiple signers use their private keys to sign multiple messages

(m1,m2, . . . ,mt). Signatures (s1, s2, . . . , st) are verified in a batch of t signatures

using the batch verification algorithm wherein the signatures correspond to n

different signers (2 ≤ n ≤ t).

• Type 3: The signatures which can not be categorized in Type 1 and 2 can be

categorized in this Type.

There are many digital signature algorithms for which batch signature schemes are

proposed. One such digital signature algorithm is ECDSA. ECDSA is considered

a lightweight digital signature algorithm because of its reduced key size. ECDSA

is derived from Elliptic Curve Cryptography (ECC). ECC is introduced by Koblitz

(1998) and Miller (1985) independently, which is one of the most secure cryptosystems.

ECDSA is a digital signature scheme of ECC which is similar to ElGamal signature

schemes. ECDSA is also popular because of its small key size and signature size. As

we know, most of the ElGamal signature schemes have the property that the signature

verification takes more time than the signature generation. This property holds true

for ECDSA scheme too. Hence verifying such signatures together in a batch reduces

the overhead of sequential verification. There are many batch verification techniques

available for ECDSA signatures which can verify these signatures at a time. Verifying

multiple ECDSA signatures in batches (Cheon and Yi 2007; Karati et al. 2012b)

makes the verification more applicable in various real-time applications since it reduces

the verification time and CPU consumption. Even though the existing techniques as

surveyed in Kittur and Pais (2017), try to reduce the computation time, but most

of them are not efficient for larger batch sizes. In our study, we are considering

ECDSA∗ signatures for authentication. ECDSA∗ signatures are the variation of ECDSA

signatures (Antipa et al. 2005) which provide 40% more efficiency in verification time

4

1.2. Digital Signatures: Properties, Applications, and Threats

without compromise in security. Apart from the naive batch verification scheme for

ECDSA∗ signatures, there are no batch verification schemes to verify multiple ECDSA∗

signatures.

1.2 DIGITAL SIGNATURES: PROPERTIES, APPLICATIONS, AND
THREATS

In this section, we discuss the properties every digital signature algorithm must satisfy.

And we also list the applications whose efficiency is significantly increased by batch

verification of digital signatures. We also elaborate on the various possible threats for

the verification of digital signatures in batches.

1.2.1 Digital Signature Algorithms

Digital signature (Goh and Jarecki 2003; Stallings 2006) is a way to authenticate the

sender/signer of the signature. It verifies the signer by checking whether he/she is a

valid signer who he/she claims to be. Digital signatures are usually developed using

Public Key Cryptography (PKC) (Diffie and Hellman 1976).

Digital signature algorithm consists of three phases (Katz 2010):

1. Key Generation phase: On the input of security parameter k (in Unary), this

phase generates both private key (sk) and public key (pk) as outputs.

2. Signing phase: For the security parameter k, this phase takes the private key sk

and the message m to be signed as inputs, and signs the message and generates

the signature s, s sk← m, for the message as the output.

3. Verification phase: For the security parameter k, the input at this phase is the

message m with appended signature s and the public key pk. The verifier uses

the public key of the signer to verify that the message has been sent by the sender

who he/she claims to be and outputs a single bit b. If b = 1 then accept the

signature or else reject.

Digital signature should satisfy the following requirements:

• The signature generated by the signer should be properly verifiable by the verifier.

5

1. Introduction

• It should not be possible for any third party to forge signer’s signature.

• And during disputes between signer and verifier, the third party should be able to

resolve the disputes easily.

1.2.2 Properties

Digital signatures are used to verify the following properties:

• Signature Authenticity - Verifies that the signature is actually signed by the

authorized signer.

• Signature Integrity - Verifies that the original signature has not been altered or

modified by the unauthorized party.

• Signature Non-repudiation - The sender cannot deny signing the authenticated

signature.

1.2.3 Applications

Batch verification of digital signatures has a variety of applications (Kinnis and Sit

2005; Naor and Yung 1989). Batch Verification verifies authenticity, integrity and

non-repudiation properties of digital signatures for these applications. The various

applications where the deployment of batch verification yields better results are:

• e-cash applications (Claessens et al. 2002; Furnell and Karweni 1999): This

application is an example of Type 1 batch verification signing where multiple

e-coins signed by a bank can be verified by consumers/merchants in batches to

check the validity of e-coins to achieve a quick transaction.

• e-Voting system: This is a typical example of Type 2 batch verification signing

where Millions of voters sign the ballot and each ballot has to be validated by

verifying the signature of the voter. Ballots are verified in batches to accelerate

the counting.

• WSN and IoT (Suo et al. 2012; Zhang et al. 2014): WSNs and IoT use

Public Key Cryptosystems very widely. When millions of sensor nodes send data

6

1.2. Digital Signatures: Properties, Applications, and Threats

continuously, it is crucial to check the authenticity and integrity of the sending

node and data respectively. This application belongs to Type 2 kind of batch

verification signing where millions of sensors sign the data and send across,

whereas, at the processing side, the data received needs to be verified in batches

to get quicker results in a real-time environment.

• Outsourced Database (Mykletun et al. 2006): Many clients query signed

request messages simultaneously; the server has to authenticate them through

Batch verification. It is a typical example of Type 2 batch verification signing,

where multiple clients are querying through signed message requests which can

be verified in batches at the server for faster results.

• Intelligent cars (Van Arem et al. 2003; Wang et al. 2006): Intelligent cars

are the recent interest of various governments and industries, where these cars

communicate with each other and share the transportation infrastructure to avoid

accidents and help to prevent traffic congestion. It is also a Type 2 signing

category of batch verification where multiple cars can be authenticated through

verification of their signature. Since multiple cars will be communicating

simultaneously, it is required to verify them in batches to process the data quickly

to make further decisions.

• Mixnet (Abe 1998; Lee et al. 2003): It is a network of routing protocols where

multiple signed messages from multiple senders are authenticated, shuffled and

sent to the next level of proxy servers for authentication. Therefore in Type 2

batch verification, multiple messages are verified in batches by proxy servers at

each layer before reaching the destination.

1.2.4 Threats on Digital Signatures

There are many possible attacks on the digital signatures (Boneh et al. 1999; Naor and

Yung 1990; Nguyen and Shparlinski 2002; Nguyen and Stern 2001). The attacker may

be the signature generator himself, or verifier or it may be a third party. The different

possible attacks (Kocher 1996; Stallings 2006; Vaudenay 2003) on the digital signatures

are:

7

1. Introduction

• Key-only attack: In this attack, the adversary has the information about only the

signer’s public key. With this available information, he tries to generate the fake

message - signature pairs (mi, si).

• Known message attack (Cheon 2002): The adversary has access to a certain

message - signature pairs (mi, si), where the messages are not chosen by the

adversary. And depending on the available information, the adversary tries to

learn the signature pattern.

• Generic chosen-message attack (Pfitzmann and Pfitzmann 1989): In this

attack, the adversary has a batch of messages (mi) which are independent of the

signer’s public key pk. Therefore the entire message list is prepared without the

knowledge of signatures. Then the adversary gets corresponding valid message

- signature pairs (mi, si) for the batch of messages through which he/she tries to

learn the signature pattern.

• Directed chosen-message attack: In this attack, the adversary chooses a set

of messages (mi) after learning the public key pk of the signer. In this attack

also, the list of messages is created without seeing the signatures. Then the

adversary gets corresponding valid message - signature pairs (mi, si) for the batch

of messages through which he/she tries to learn the signature pattern.

• Adaptive chosen-message attack (Goldwasser et al. 1988): Attacker has access

to the public key pk of the signer and also he/she has a few valid message -

signature pairs (mi, si). Based on this information, the attacker tries to request

for additional signatures for the chosen messages by considering the actual signer

as ’an oracle’ to understand the signature pattern.

All the attacks discussed above are not only applicable to individual verification

but also for batch verification. Therefore if the attack successfully bypasses the

individual verification test, then there is a high probability that it also bypasses the

batch verification test.

8

1.3. IoT and its Security

1.3 IOT AND ITS SECURITY

Security in IoT is essential as the network of IoT is fast growing. In IoT applications, it

is important that the data access and data transfer need to be authenticated and verified.

But the nodes in IoT do not have sufficient computation power, memory, and energy.

Hence attackers will try to intrude repeatedly. Therefore it is vital to have secure and

lightweight authentication schemes in IoT to prevent various attacks.

Internet

Gateway nodes

Sensor nodes

Figure 1.1: Basic Structure of IoT

The gateway nodes in the IoT network act as a bridge between sensors and internet

as depicted in Figure 1.1. The Figure 1.1 shows that the sensor nodes, denoted by

purple colour send their data regularly to gateway nodes, represented in orange. The

gateway node has to handle this huge amount of data traffic coming from sensor nodes

before communicating it to outside world through Internet. The gateway nodes collect

data from the sensor nodes, verify and normalize the information received for further

processing and storage, and they are also responsible for providing security (Kittur et al.

2017). These nodes initially authenticate the sensor node before the exchange of data.

Hence they play the role of a firewall by providing the security to sensor nodes as well

as to the Internet. Hence the gateway node has heavy computation to do which creates

a bottleneck. Therefore, developing techniques and models to reduce this bottleneck is

9

1. Introduction

needed without compromise in security.

Authenticating every data being exchanged in IoT is a challenge. Individual

verification of digital signatures reduces the performance of the real-time IoT system.

If the signatures are verified in batches, then the verification time can be significantly

reduced. Batch verification has two main advantages: one is decreased computation

load, and the other is reduced computation time at the verification side without

compromise in security.

1.4 MOTIVATION

The Internet of Things (IoT) can be defined as “a pervasive and ubiquitous network

which enables monitoring and control of the physical environment by collecting,

processing, and analyzing the data generated by sensors or smart objects.” Security and

privacy are the key issues for IoT applications, and still face some enormous challenges

(Jin et al. 2014). These challenges give rise to various security and privacy problems.

We should pay more attention to the research issues such as confidentiality, authenticity,

and integrity of data in the IoT. Security in IoT is an emerging and significant field

of research. There are various security protocols used by IoT devices based on

the security requirements of the applications where they are deployed. Because of

the limitation of the sensor nodes, it is difficult to implement computation intensive

cryptographic algorithms that need more energy and computation power. Hence

efficiently implementing secure authentication schemes is an important challenge.

Therefore developing secure protocols for IoT nodes and efficiently implementing

those protocols without significant reduction in performance is a major area of study.

In applications of IoT, the extent of security is inversely proportional to the node’s

performance.

One way of securing IoT is by implementing the digital signatures in IoT. But

digital signatures use PKI, which is compute-intensive. Hence implementation of

batch verification of digital signatures is efficient in such an environment. There is

an enormous amount of data being exchanged every second in IoT which needs to be

verified before processing further. Hence this verification can be achieved through batch

10

1.5. Objectives

verification. Most of the digital signature algorithms are not lightweight and are not

suitable for IoT. ECDSA∗ digital signature algorithm is considered lightweight because

of its smaller key size. Hence it is important to develop a batch verification scheme

which verifies multiple ECDSA∗ signatures to speed up the verification.

Implementing a new batch verification scheme in IoT is not easy considering its

limitations. Hence a trust model is necessary, that accounts security and efficiency

requirements in IoT environment for implementing the batch verification. Model should

consider various parameters of the nodes such as battery life, type of task the node

is performing at the given time, and other details. We know that the gateway node

performs major processing and verification of the data received from the sensor nodes.

Hence the model for implementing the batch verification should also take into account

the bottleneck created due to this and should also develop ways to reduce it.

1.5 OBJECTIVES

Though some of the existing batch verification schemes are fast and suitable for IoT

applications, they have certain weaknesses. A few of the schemes are not practically

implementable, and others are vulnerable to forgery attacks and some are not flexible

for varied batch sizes. Also, there are various techniques to identify the location of a

bad signature proposed by researchers. Since most of the batch verification schemes do

not identify the location of the bad signature, there are separate schemes available to

identify the location of the bad signatures. Since we aim to design a batch verification

scheme for IoT, it is important that the schemes should be less computational and less

time-consuming.

Also efficiently implementing such a batch verification scheme in IoT is important.

The scheme should not affect the lifetime of the network significantly. Hence it is

important to share the load of verification at the gateway node with other nodes in the

network (Frank 2013). But load sharing needs secure and trusted nodes, which can be

relied upon without affecting their standard functioning. There are many trust models

available in literature which concentrate on choosing the trusted nodes properly. But

these models do not consider the node’s availability since they are mostly designed for

11

1. Introduction

P2P network, WSN network, where the nodes are designed differently.

Therefore our first objective is to design a batch verification scheme suitable for IoT

applications. ECDSA∗ signatures, an existing modified version of ECDSA signatures,

is lightweight signature scheme as well as it reduces the verification time significantly.

Hence our aim is to design a batch verification scheme for ECDSA∗ signatures which

can further reduce the verification time. The scheme should be secure against forgery

attacks and should be efficient. The scheme should also be efficient for varied batch

sizes. A batch verification scheme just alone cannot identify the location of the bad

signature/s. Hence it is important to have an efficient bad signature identification

scheme which can identify the location of bad signature/s when the batch verification

test fails.

Our second objective to design a bad signature/s identification scheme for the batch

of signatures that fails the batch verification test. The goal is to develop a scheme

that performs better than individual verification in all the cases without compromise

in security. The existing scheme based on Hamming Codes has the limitation that, it

needs to know the number of bad signatures before verification. Hence such schemes

are practically difficult to implement. Thus proposing a new scheme that can overcome

such a drawback, is important. Some of the schemes perform worse than individual

verification in certain cases. Hence it is important to have low compute-intensive bad

signature identification scheme that is suitable for IoT applications.

The third objective of our research is, designing a trust model that can implement

the proposed batch verification scheme for IoT environment efficiently and reduce

the bottleneck at the gateway node. As we know that the sensor nodes in IoT have

low computation power and energy, sharing loads with other nodes helps reduce the

bottleneck. But the battery life of sensor nodes is less and are more vulnerable to

attacks. Hence a proper model is needed where the gateway can trust the sensor node

and distribute the load to it. Therefore our aim is to design a reputation based trust

model which can perform efficiently without compromise in the security of the network.

To summarize, the primary objectives of the research are:

12

1.6. Thesis Contribution

• Design, analysis and implementation of a new batch verification scheme for

ECDSA∗ signatures.

• Design a bad signature identification scheme to identify the location of the bad

signature in the given batch of ECDSA∗ signatures suitable for IoT.

• Design a trust model to implement the proposed batch verification scheme in IoT

to reduce bottleneck at the gateway node.

1.6 THESIS CONTRIBUTION

IoT constitutes a big heterogeneous network. There are various devices with different

capabilities from computation and communication point of view. Due to this

heterogeneous property, IoT poses lot of security challenges. We have developed a

low compute-intensive approach to implement digital signatures in IoT. The major

contributions of the thesis are:

• We provide a detailed study of various batch verification schemes designed for

digital signature algorithms (Kittur and Pais 2017). Additionally, we have made a

comparative analysis of these schemes based on their characteristic and security

features, along with the pros and cons of each scheme.

• We have developed a new batch verification scheme which is faster as well

as secure compared to existing schemes (Kittur and Pais 2019a). Our scheme

remains efficient regardless of the batch size of the signatures.

• We also have provided a detailed comparison of our scheme with the existing

schemes by providing the execution time details of various ECC curves for both

single and multiple signers.

• Most of the existing batch verification schemes do not identify the location of the

bad or faulty signature. We have designed three faulty signature identification

techniques based on the hash function and coding theory to identify the faulty

one in a given batch of signatures.

13

1. Introduction

– First scheme is based on the hash function which is lightweight and secure

(Kittur et al. 2019).

– Second scheme is error detection code based, which efficiently identifies the

faulty signatures in a batch based on the Cyclic Redundancy Check (CRC)

codes (Kittur et al. 2019).

– And the third scheme is error correction code based, which identifies the

faulty signatures in a batch based on the Low-Density Parity-Check (LDPC)

codes.

• A trust model is designed which helps in implementing the batch verification

scheme for IoT (Kittur and Pais 2019b). We have developed two algorithms

for the model which help in choosing the trusted nodes which perform batch

verification.

1.7 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 is the Literature Review of

various batch verification schemes available for different digital signature schemes and

various trust models suitable for IoT. Chapter 3 explains the new batch verification

scheme for ECDSA∗ signatures. In Chapter 4, we introduce three schemes for

identifying the faulty signatures in a given batch. In Chapter 5, a new trust-based model

for implementing the batch verification in IoT is proposed. Conclusion and future scope

of the work are discussed in Chapter 6.

14

Chapter 2

LITERATURE REVIEW

IoT network is an interconnection of various heterogeneous networks. These networks

consist of various sensor nodes which have low processing power. In such a

heterogeneous network, security of the devices plays an important role. The sensor

nodes in the network are vulnerable to attacks because of the lack of standard security

protocol. The most secure protocols need heavy computations and energy, which the

sensor nodes cannot support. Authentication is the important part of security in all the

networks. As discussed in Chapter 1, the advantage of batch verification can prove to be

efficient for IoT applications. Therefore to design a batch verification scheme for IoT

network, it is important to study various existing batch verification schemes. Most of

the existing batch verification schemes do not identify the index of the faulty signature

in the batch, that fails the batch verification test. The other existing schemes to identify

the location of the bad signature have various limitations, which make them difficult to

implement in practical conditions.

As discussed in Chapter 1, gateway node plays an important role in IoT network as

it handles many responsibilities. Therefore to reduce the load at the gateway node, our

idea to share the load with other sensor nodes requires choosing trusted nodes carefully.

There are various trust models in the literature, designed to carefully choose trusted

entities implemented in various networks using different parameters.

In this chapter, we survey many batch verification schemes designed to speed up

the verification process of various digital signature algorithms. The different digital

15

2. Literature Review

signatures considered for the study are RSA, DSS, and ECDSA. There are multiple

batch verification schemes for verifying each of the digital signature algorithms. We

have made a comparative study of these batch verification schemes, to understand

the properties of these schemes along with their pros and cons. We have even

classified them based on whether the schemes identifies the faulty signature along with

verification or just verifies the batch of signatures.

From the survey of the batch verification schemes, it is evident that most of the batch

verification schemes do not identify the bad signature in the batch. There are schemes

which do identify the bad signature/s, but they suffer from various disadvantages.

Therefore, we have surveyed these existing bad signature identification schemes and

compared their efficiency to analyse whether they perform well in IoT applications.

Hence once the authentication schemes are analysed and compared, the next step is

implementation in IoT, so that the load on the gateway node is reduced and the security

is improved without significant hit on the performance.

A trust model that can reduce the bottleneck at the gateway node by sharing the

load to other nodes. The model should be designed such a way that it can improve the

performance at the gateway node as well as maintain the security of the network. There

are multiple trust models in the literature designed for various networks to evaluate the

trust value based on different parameters. These models differ in the parameters used

for evaluating the trust of the entity.

We start our survey with various batch verification schemes for RSA, DSS, and

ECDSA. Then we survey various bad signature identification schemes. We also survey

various trust models for various networks and compare them. This will help us design

an efficient trust model for IoT.

2.1 BATCH VERIFICATION SCHEMES

In this section, we list various batch verification schemes to verify multiple digital

signatures. The schemes are categorized based on the digital signature for which they

are designed. In our study, we have categorized them based on whether the batch

verification scheme is designed for RSA, DSS, and ECDSA.

16

2.1. Batch Verification Schemes

2.1.1 RSA Batch Verification Scheme

RSA public key Algorithm (Bellare and Rogaway 1996; Rivest et al. 1978) was

developed by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977 (Adleman et al.

1977). Soon it became popular and was adopted by many standard bodies. It is based

on the difficulty of finding the factors for the product of two large prime numbers.

(a) RSA Digital Signature Algorithm

The RSA digital signature algorithm is based on the RSA encryption scheme.

Hence understanding the steps of signature generation and verification is

important.

The steps of RSA digital signature are as follows:

1. Key Generation Phase

• Select two large distinct random primes p and q of bit-length l
2
, where

l is the security parameter.

• Compute n = p ∗ q.

• Compute the totient value: ϕ = (p− 1)(q− 1).

• Select random integer e with 1 < e < ϕ and gcd(e, ϕ) = 1.

• Using extended gcd algorithm, compute unique integer d, 1 < d < ϕ,

such that ed ≡ 1 mod ϕ.

• The public key is (n, e) and private key is (d).

2. Signing

• Calculate the hash value for the message m, using cryptographic hash

function M = H(m),

• Sign the hash value with the private key, compute signature s = Md

mod n.

• Signature s is appended to the message and sent across.

3. Verifying

• After receiving the signature s′, the verifier calculates h′ = (s′)e mod

n, as the verifier has public key of the signer for verification.

17

2. Literature Review

• Then the verifier also calculates the hash value of the received message

M = H(m)

• If M ?
= h′, then Accept the signature, else Reject.

There are different batch verification techniques introduced to verify RSA

signatures in batches. These techniques are divided into two categories. In the

first category, the techniques verify the existence of a bad signature in a given

batch of digital signatures. And in the second category, the techniques also

identify the location along with the existence of bad signatures.

(b) Identifying Existence of Bad-Signature

In this subsection, we discuss the existing techniques for batch verification of

RSA digital signatures which identify the existence of bad signature in a given

batch of digital signatures. Harn (1998b), Min-Shiang et al. (2001) and Bao et al.

(2006) have proposed different techniques for identifying the bad signature in a

batch of digital signatures.

(a) In the technique proposed by Harn (1998b), the message to be sent is

first hashed, then signed and the signature generated is appended with

the original message and sent to the verifier. The equation proposed for

signature verification at the verifier is given in Equation 2.1,

(
t∏
i=1

si)
e ?

=
t∏
i=1

H(mi) mod n (2.1)

From the Equation 2.1, it is clear that, after receiving the signatures

s1, s2, . . . st, multiply all the si values and create an exponent of the product

to the power e. Then all the hash values of the signatures are multiplied

independently and the product of both the expressions are compared and

verified. If the values match, then there is no bad signature in the batch,

else there is an existence of one or more bad signatures. This technique

is efficient for Type 1 way of signing signatures for batch verification

where a single signer signs multiple signatures. The number of modular

exponentiations required at the verification side is one and the number

of modular multiplications required is 2t − 2. The advantage of this

18

2.1. Batch Verification Schemes

scheme is that it reduces the number of modular exponentiation operations

to verify a batch of t signatures compared to the individual verification. The

disadvantage of the technique is, it is not secure against adaptive chosen

message attack by the signer, and it does not take into account the concept

of multiple signers.

The work of Hwang et al. (2000) mainly concentrates on the Harn (1998b)

scheme of batch verification of RSA signatures where weaknesses of the

scheme are discussed. The possible adaptive chosen message attack by

the signer during batch verification using Harn (1998b)’s scheme has been

discussed. In the first attack, suppose 3 signatures have to be signed, then

the sender signs s′1 = H(m2)
d mod n, s′2 = H(m3)

d mod n, s′3 =

H(m1)
d mod n, then sends (m1, s

′
1), (m2, s

′
2), (m3, s

′
3) to the verifier.

The verifier multiplies all s′i mod n and all H(mi)
dmod n separately and

compares the two values to verify the sender as legitimate. Now the sender

may deny by provingH(mi) 6= (s′i)
e mod n. The other attack by the signer

is that, the sender sends r signatures s′i = ai ∗ si, i = 1, 2, . . . , r, where ai

is the number that satisfies a1 ∗ a2 ∗ · · · ∗ ar = 1, and s′i is the forged

signature of si generated by signer so that the forged signatures pass the

batch verification test.

(b) In the technique proposed by Min-Shiang et al. (2001), which is suitable for

Type 1 batch verification signing where single user signs multiple messages,

the equation for verification at the verifier is given in Equation 2.2,

(
t∏
i=1

svii)e
?
=

t∏
i=1

H(mi)
vi mod n (2.2)

where vi is a small random number generated by the verifier, which is

used as an exponent for verification of the signatures. This results in

2t + 1 number of modular exponentiations and 2t − 2 number of modular

multiplications. Therefore if the attacker wants to forge the signature, then

he has to guess the value of random number vi, such that the value has

to satisfy the equation,
∏t

i=1 s
vi
i =

∏t
i=1(s

′
i)
vi , where s′i is the forged

signature. Therefore it is difficult for the attacker to forge the signature

19

2. Literature Review

in this technique. The main point of concern in this technique is definitely

the increased number of exponentiation operations due to inclusion of new

integer.

(c) The scheme proposed by Bao et al. (2006) makes sure that the signatures

are generated only with the valid private key. This scheme is efficient for

Type 1 batch verification signing. The verifier makes slight modification to

the Min-Shiang et al. (2001) scheme and is given by Equation 2.3,

(
t∏
i=1

svii)2e
?
=

t∏
i=1

H(mi)
2vi mod n (2.3)

where vi is the random number generated by the verifier. This scheme

requires 2t + 1 number of modular exponentiations, 2t number of modular

multiplications for batch verification at the verifier. This method is secure

against the adaptive chosen message attacks by the signer where he denies

signing message. But there is one more possibility of attack with probability

1/a, where a ≥ 2, if the signer chooses w such that it satisfies wa ≡

1 mod n in s′i = si ∗ w. And to avoid such a possibility, the Equation

2.3 is modified as follows,

(
t∏
i=1

svii)be
?
=

t∏
i=1

H(mi)
bvi mod n, (2.4)

where b =
∏a

j=2 j. This adds little exponentiation, but provides more

security. Therefore Equation 2.4 is more secure than Equation 2.3.

Table 2.1 compares the various batch verification schemes for verifying RSA

digital signatures. The various parameters considered for comparison of batch

verification schemes are:

• Possibility of Forging: This parameter indicates whether the scheme is

vulnerable to forgery attacks.

• Forger: This parameter indicates who can forge the signatures if there is a

possibility of forgery.

• No. of Modular Exponentiations: This parameter provides the runtime

analysis of the schemes. The variable t is the batch size.

20

2.1. Batch Verification Schemes

Table 2.1: Comparative analysis of Batch verification techniques for RSA

Technique Possibility
of Forging Forger

No. of
Modular

Exponentiations

Index of
bad

signature
Pros Cons

Harn
(1998b)

yes signer constant no
Reduces the computation

load and time at verifier.

There is possibility of

Adaptive-chosen message

attacks by sender.

Min-Shiang
et al. (2001)

yes signer
linear function

of t
no

Provides security against

Adaptive chosen-message

attacks by signer by 50%.

Increases the computation

load at verifier.

Bao et al.
(2006)

yes signer
linear function

of t
no

Improves security of the

technique Min-Shiang et al. (2001)

to reduce the possibility of

chosen-message attacks.

Cannot eliminate the

possibility of Adaptive

chosen message attack

by signer completely.

Changchien
et al. (2002)

yes signer constant yes
Identifies the location of

bad signature accurately.

Increases the number of

modular multiplication

operations and carries

same disadvantages as of

Harn (1998b) scheme.

Li et al.
(2010)

no -
linear function

of t
yes

Identifies faulty signature

location without individual

verification.

Exponentiations increase

as the number of bad

signatures increases.

Ren et al.
(2015)

no -
linear function

of t
yes

Performs better irrespective of

the number of bad signatures

in the given batch.

Better performance than

Li et al. (2010) scheme

but not as good as

Harn (1998b) scheme.

Seungwon
et al. (2006)

no -
linear function

of t
yes

Efficient for identifying

bad signature position.

Increased number of

modular multiplications

reduces performance of

the verification.

• Index of bad signature: This parameter indicates whether the scheme

identifies the location of the faulty signature.

• Pros & Cons: These columns indicate the strengths and weaknesses of the

schemes.

Table 2.2 presents the comparison of the schemes based on the security

parameters. Also, the column Computation Overhead indicates whether

the scheme is computation expensive or not. If the number of modular

21

2. Literature Review

Table 2.2: Characteristics of Batch verification techniques in RSA

Technique Authenticity Integrity Non-
repudiation

Computation
Overhead

Harn (1998b) X - - low

Min-Shiang et al. (2001) - X - high

Bao et al. (2006) X X - high

Changchien et al. (2002) X - - low

Li et al. (2010) X X X high

Ren et al. (2015) X X X high

Seungwon et al. (2006) X X - high

exponentiations is high, the scheme requires more computation.

(c) Identifying location of bad signature

In this subcategory we discuss various schemes proposed for batch verification

of RSA digital signatures which identify the location of the bad signature/s in a

given batch of digital signatures.

(a) Changchien et al. (2002) proposed an extension to Harn (1998b) scheme.

This technique is applied to a batch of signatures, when there is a bad

signature in a batch identified by Harn (1998b) scheme. This scheme

belongs to Type 1 batch verification signing, since it is not efficient in case

of multiple signers. To locate the index of bad signature, hash function

is redefined so that the value of one-way hash function H(.) is prime

and
∏t

i=1H(mi) ≤ n, and let the length of H(.) is b |n|
t
c bits. The

verifier calculates L = (
∏t

i=1 si)
e and verifies if L mod H(mi) = 0, i =

1, 2, . . . , t. The verifier has to verify L with the hash values of the messages

individually by the modular operation. The scheme requires one modular

exponentiation, t − 1 modular multiplications, and t modulo operations.

This scheme increases the number of modulus operations. And also the

scheme fails to identify the location of the bad signature, if there are more

than one bad signatures in the batch.

(b) Li et al. (2010) proposed a batch verification scheme for a batch of t

22

2.1. Batch Verification Schemes

signatures signed according to Type 1 batch verification signing. The

verifier generates an M × N matrix where M ∗ N ≥ t where t is the

batch size and also generates t random numbers ri, i = 1, 2, . . . , t and

ri ∈ {1, 2, . . . , t}. The elements of the matrix are the signatures arranged as

follows:

s(M,N) =

s(d
ri
N
e, N), if ri mod N = 0

s(d ri
N
e, ri mod N), otherwise

After the assignment, the verifier verifies the rows and columns using Harn

(1998b) scheme. All the rows and columns are independently verified

through Equations 2.5, 2.6, 2.7 and 2.8.

At the row side:

For the first row, (
N∏
i=1

s(1,i)

)e

?
=

N∏
i=1

H(m(1,i)) mod n (2.5)

For M th row, (
N∏
i=1

s(M,i)

)e

?
=

N∏
i=1

H(m(M,i)) mod n (2.6)

At the column side:

For the first column,(
M∏
i=1

s(i,1)

)e

?
=

M∏
i=1

H(m(i,1)) mod n (2.7)

For the N th column,(
M∏
i=1

s(i,N)

)e

?
=

M∏
i=1

H(m(i,N)) mod n (2.8)

Whenever there is an occurrence of bad signature, it will be detected in

both the row and column verification. Depending on the location of bad

signature, the corresponding row and column fail the Harn (1998b)’s test

and the location of the signature is found. During the batch verification

at the verifier, the number of modular exponentiations is M + N and the

number of modular multiplications is 2(2MN − M − N). This scheme

is efficient for a single occurrence of a bad signature. If the number of bad

signatures in a given batch increases then efficiency decreases. The adaptive

chosen message attacks can become a challenge to this scheme too.

23

2. Literature Review

(c) Ren et al. (2015) came up with the technique where a cubical arrangement

of signatures is considered for identifying the location of the bad signature.

Like the previous technique by Li et al. (2010), this also is efficient for Type

1 way of signing for batch verification. For a given t number of signatures,

identify the smallest number ‘M ’ such that the dimension M3 ≥ t. Next

step is to identify t random numbers ri, where ri ∈ {i = 0, 1, . . . ,M3 − 1}

and i = 1, 2, . . . , t. The matrix or the cube isM×M×M and the signatures

are placed according to ri = xM2+yM+z and x, y, z ∈ {0, 1, . . . ,M−1}.

For the plane of x-axis the verification Equations are 2.9 and 2.10:

for x = 0, (
M−1∏
i=0

M−1∏
j=0

s(0,i,j)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(0,i,j)) (2.9)

for x = M − 1,(
M−1∏
i=0

M−1∏
j=0

s(M−1,i,j)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(M−1,i,j)) (2.10)

For the plane of y-axis the verification Equations are 2.11 and 2.12:

for y = 0, (
M−1∏
i=0

M−1∏
j=0

s(i,0,j)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(i,0,j)) (2.11)

for y = M − 1,(
M−1∏
i=0

M−1∏
j=0

s(i,M−1,j)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(i,M−1,j)) (2.12)

For the plane of z-axis the verification Equations are 2.13 and 2.14:

for z = 0, (
M−1∏
i=0

M−1∏
j=0

s(i,j,0)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(i,j,0)) (2.13)

for z = M − 1,(
M−1∏
i=0

M−1∏
j=0

s(i,j,M−1)

)e

?
=

M−1∏
i=0

M−1∏
j=0

H(m(i,j,M−1)) (2.14)

Therefore it becomes easy to identify bad signature in a batch by

checking the intersection of all the axes and identifying the location where

the verifications fail. Number of modular exponentiations is 3M and

24

2.1. Batch Verification Schemes

the number of modular multiplications is 3M3. Here the number of

exponentiation computations does not abnormally increase as the number

of faulty signatures in a given batch increases. This is the main advantage

of this scheme as compared to Li et al. (2010) scheme. This scheme

performs better in terms of number of modular exponentiations required for

verification than Li et al. (2010) scheme for varied batch size, but if there

are no faults in the batch then this method proves to be costlier than Harn

(1998b) scheme.

(d) The technique by Seungwon et al. (2006) checks for the occurrence of bad

signature using the Generic Test (GT) proposed by Bellare et al. (1998).

And if there is presence of any bad signature/s, then the proposed technique

can be applied to get the index of the bad signature. The technique belongs

to Type 1 batch verification signing where all the messages are signed with

a single private key. To find the index of the bad signature in a batch

of signatures, first step is to compute
∏t

i=1m
i
i mod n and

∏t
i=1 s

i
i mod n.

Then next step is to find k, an integer such that,[
(
∏t

i=1 si)
e

(
∏t

i=1mi)

]k
=

(∏t
i=1 s

i
i

)e∏t
i=1m

i
i

mod n (2.15)

If such an integer k exists foe Equation 2.15, then check the batch of

signatures again using GT excluding kth signature to check if there are any

other bad signatures and if there are none then return k as the index of the

bad signature. Finding the value of k is one of the time consuming task of

this scheme. The method has increased number of modular exponentiations

and modular multiplications.

2.1.2 DSS Batch verification schemes

National Institute of Standards and Technology (NIST) proposed DSS (Kravitz 1993)

in 1991 and soon in 1993, it was regarded as Federal Information Processing Standard

(FIPS) for digital signatures.

In this section, we discuss the different batch verification techniques for DSS. We

also categorize these techniques based on whether the technique identifies only the

25

2. Literature Review

existence of a bad signature or also identifies the index of these bad signature.

(a) DSS Digital Signature Algorithm

DSS consists of three algorithms: key generation, signature generation, and

signature verification. The three algorithms are briefed below:

1. Key Generation

• If l is the security parameter, then choose a large j-bit prime integer q

and l-bit prime p such that p− 1 is a multiple of q.

• g is an order of q:

– Select a random h, 0 < h < p, and compute g = h
p−1
q mod p.

– If g = 1, then re-select h.

• Choose a random integer x, 0 < x < q and calculate y = gx mod p.

• Here x is the private key and y is the public key.

2. Signing

• For every message to be signed, select a random integer k, 0 < k < q.

• Compute r= (gk mod p) mod q.

• Also compute s = [k−1(H(m) + xr)] mod q.

• Signature is (r, s).

3. Verification

• Verify if r′ > 0 and s′ < q, if either of the conditions fail, reject the

signature.

• Verifier receives (m′, r′, s′), and computes,

V = [gH(m′)(s′)−1 mod qyr
′(s′)−1 mod q] mod p

• v = V mod q

• If v ?
= r′, then the signature is verified.

(b) Identifying existence of bad signature

26

2.1. Batch Verification Schemes

In this section, we discuss the different batch verification techniques for DSS. We

also categorize these techniques based on whether they identify only the existence

of the bad signature or also identify the index of these bad signature/s. The

techniques discussed in this subsection verify the existence of the bad signature/s

in a given batch of digital signatures. If any of the signatures in the batch are

faulty, then these techniques identify the batch as the invalid batch.

(a) Naccache et al. (1994) introduced two techniques: Interactive Batch

Verification and Probabilistic Batch Verification. Both the techniques are

efficient for Type 1 batch verification signing where single signer is involved

in signing multiple messages.

In Interactive Batch verification, the signer chooses ki, ki ∈R GF ∗(q) and

calculates and sends ri = gki mod p, for 1 ≤ i ≤ t. The verifier replies with

a message randomiser bi of e-bit length for each message, which is appended

to the message and then hashed before sending to the verifier. The signature

generated is si and is given by si = H(mi|bi)+xri
ki

mod q

Then at the verifier, the verification Equation is 2.16
t∏
i=1

rbii mod p ?
= (g

∑t
i=1 wiH(mi|bi) mod q)(y

∑t
i=1 wiri mod q) mod p (2.16)

where wi = 1
si

mod q. This scheme requires computation of t + 2

modular exponentiations and 3t − 2 number of modular multiplications

for verification at the verifier. The size of the random variable bi plays

an important role in the security of the technique. Lim and Lee (1994)

mainly discuss the security leak in Interactive Batch verification of DSS.

They provide two instances: Directed chosen message attack by verifier and

Generic chosen message attack by the signer.

(b) The second scheme of Naccache et al. (1994) is the probabilistic batch

verification, where the signature generation for the message is same as the

naive DSS algorithm, and the only difference is in the signature verification.

At the verification, the verifier chooses pairwise relative prime equation

27

2. Literature Review

randomisers b1, b2, . . . , bt ∈R GF ∗(q) and verify the Equation 2.17,
t∏
i=1

rbii
?
= [(g

∑t
i=1 biwiH(mi) mod q)(y

∑t
i=1 biwiri mod q)] mod p (2.17)

The technique requires t+ 2 modular exponentiations and 5(t− 1) modular

multiplications during verification. This technique provides security but at

the cost of increased computational complexity.

(c) The scheme by Harn (1998a) for DSS-type algorithm is based on the

different ElGamal type digital signature schemes (Harn and Xu 1994) and

has the same parameters as the original DSS algorithm.

At the signature generation side,

r = (gk mod p) mod q and

s = (rk −mx) mod q

At the verification side,

r = (gsr
−1
ymr

−1 mod p) mod q

In order to verify t signatures (r1, s1), (r2, s2) . . . , (rt, st) in batches,

multiply all the ri values of t signatures,

r1r2 . . . rt
?
= (gs1r

−1
1 +s2r

−1
2 ···+str

−1
t ym1r

−1
1 +m2r

−1
2 +···+mtr−1

t mod p) mod q

(2.18)

From the above Equation 2.18, it is clear that to verify one signature in

individual verification, two modular exponentiations are needed, and for t

signatures, 2t modular exponentiations are needed. This batch verification

technique requires just 2 modular exponentiations and 3t − 2 modular

multiplications to verify the batch of signatures. There are various instances

(Hwang et al. 2001) where this technique fails to provide the expected

security. This can be explained as follows,

Suppose (mi, ri, si) is generalised signature,

Let s′i = si + airi mod q, where
∏t

i=1 ai = 0, now the sender sends

(mi, ri, s
′
i). Therefore during batch verification, these multiple signatures

satisfy the verification equation of the technique and hence it is difficult to

identify forged invalid signatures. Such invalid signatures can be detected

through individual verification but not by the above verification technique.

28

2.1. Batch Verification Schemes

(d) The technique by Shao (2001) accounts for verification of different

signatures by different signers for different messages and hence can

be categorized under Type 3 way of signing for batch verification.

u1 + u2 + . . . ut are a set of signatures generated by t signers

with public keys y1, y2, . . . , yt respectively. Here u1 signatures are

{r11, s11}, {r12, s12}, . . . {r1u1 , s1u1} that are generated for messages

m11,m12, . . . ,m1u1 with private key x1. Similarly the signatures u2, . . . , ut

are generated with various private keys. The Equation 2.19 represents

verification.
t∏
i=1

ui∏
j=1

r
uij
ij

?
= (g

∑t
i=1

∑ui
j=1 uijsij)(

t∏
i=1

y
∑ui
j=1 uijH(mij ,rij)

i) mod p (2.19)

The main disadvantage of the scheme is increased number of modular

exponentiation operations at the verification. Even if the security is

comparable to individual verification, it has lengthy signatures which may

lead to computation overhead. The scheme is expected to perform better

for elliptic curve digital signature as per Shao (2001), since it can speed up

verification by 50% in comparison to individual verification.

(e) In the technique proposed by Lin et al. (2005), batch verification time speeds

up for DSS signatures. Batch verification procedure of this scheme belongs

to Type 1 way of signing messages where the technique is efficient for single

signer. The technique introduces a number ′S ′ at the verification side. The

verification equation can be explained as follows,

Choose randomly b1, b2, . . . , bt ∈ {0, 1}l and compute for j = 1, 2, . . . , t

Sj =
t∏

i=1,i 6=j

si mod q

And also compute S = (s1S1) mod q and then verify,

(
t∏
i=1

rbii mod p)S mod q ?
= [(g

∑t
i=1miSibi mod q)(y

∑t
i=1 riSibi mod q)] mod p

(2.20)

If the batch verification Equation 2.20 holds true, then accept or else reject

the signature. The verification scheme requires l+ t(7 + l/2)−6 number of

modular multiplications and three modular exponentiations, where l is the

29

2. Literature Review

length of the random number bi. This batch verification scheme removes

the inverse modular exponentiation operation at the verifier but instead

increases the number of modular multiplications.

Table 2.3: Comparative analysis of Batch verification techniques for DSS

Technique Efficient
for

Possibility
of Forging Forger

No. of
Modular

Exponentiations

Index of
bad

signature
Pros Cons

Interactive
(Naccache
et al. 1994)

single
signer

yes signer,

verifier
constant no

Provides quick batch

verification and reduces

computation load.

Attacks are possible

since the randomizers

are generated at the signer.

Probabilistic
(Naccache
et al. 1994)

single
signer

yes signer
linear function

of t
no

Introduction of

randomizers at verifier

increases the security.

The number of modular

exponentiations increases

due to the introduction

of randomizers.

Harn
(1998a)

single
signer

yes signer constant no

Number of

exponentiations are

reduced considerably.

It is proved to be

erroneous and insecure.

Shao
(2001)

multiple
signers

no -
linear function

of t
no

Its security is

comparable to

individual verification.

The signature size

and computation

time are high.

Lin et al.
(2005)

single
signer

no -
liner function of
t (exponents are

small)
no

Does not need modular

inverse computation.

Increased number of

modular multiplications.

Shen et al.
(1999)

single
signer

no -
linear function

of t
yes

Identifies the index

of bad signature/s if

the number of invalid

signatures is known

beforehand.

Efficiency decreases

as the number of bad

signatures increases.

Pastuszak
et al.

(2000a)

single
signer

no -
logarithmic
function of t

yes

Very efficient if the

number of bad

signatures is known

beforehand.

Efficiency reduces

as the number of

bad signatures increases.

Tables 2.3 and 2.4 discuss about the batch verification techniques for DSS. Table

2.3 makes a comparative study of the behavior of these different techniques. It

also talks about the possibility of forgery by the signer and the pros and cons of

the techniques. The various parameters of comparison are:

• Efficient for: Indicates whether the scheme is efficient for single or multiple

30

2.1. Batch Verification Schemes

Table 2.4: Characteristics of Batch verification techniques in DSS

Technique Authenticity Integrity Non-
repudiation

Computation
Overhead

Interactive (Naccache et al. 1994) - - - low

Probabilistic (Naccache et al. 1994) X - - high

Harn (1998a) - - - low

Shao (2001) X X X high

Lin et al. (2005) X X X high

Shen et al. (1999) X X X high

Pastuszak et al. (2000a) X X X high

signers.

• Possibility of Forging: This parameter indicates whether the scheme is

vulnerable to forgery attacks.

• Forger: This parameter indicates who can forge the signatures if there is a

possibility of forgery.

• No. of Modular Exponentiations: This parameter provides the runtime

analysis of the schemes. The variable t is the batch size.

• Index of bad signature: This parameter indicates whether the scheme

identifies the location of the faulty signature.

• Pros & Cons: These columns indicate the strengths and weaknesses of the

schemes.

Table 2.4 shows how the basic properties of the digital signatures are satisfied

by different techniques of DSS. The computation overhead column indicates

whether the scheme’s batch verification time depends on the batch size. For

certain schemes, the verification time increases as the batch size increases. Hence

such schemes have high computation overhead.

(c) Identifying location of bad signature

31

2. Literature Review

In this category, we discuss the batch verification techniques proposed for DSS,

which identify the existence of the bad signature along with the index of the bad

signature. These techniques consume more time than the techniques proposed

for identifying just the existence of the bad signature in a batch of signatures

discussed in Section 2.1.2(b).

(a) The technique proposed by Shen et al. (1999) uses a binary tree-searching

algorithm to find the invalid signature/s in the given batch. This technique

is applied if the given batch fails the verification test for the techniques

proposed by Harn (1998a). The given batch is divided into two sub-

batches and again the same verification test is applied on the two sub-

batches independently. This technique is efficient for Type 1 way of signing

in batch verification. The algorithm takes the entire batch, its first and

last indices, and status as inputs. The status stores the result status of the

algorithm as either valid or invalid. After independently verifying the two

sub-batches, the technique tries to identify which sub-batch is faulty by

checking status and applies the same steps repeatedly to arrive at the bad

signature. It uses divide and conquer approach. The proposed technique

requires Min(2t − 1, 2k(dlogte−logk) + 2k − 1) verification tests, where

k is the number of invalid signatures among the batch of t signatures. The

performance of the technique ceases as the number of faults k increases

within the batch. The algorithm is most efficient if k is less than 0.5t/log t.

(b) The Hamming Verifier (Pastuszak et al. 2000a) technique mainly focusses

on identifying the location of bad signature in a batch of digital

signatures. The technique establishes the relationship between the degree of

contamination and the number of batch instances. The technique compares

its efficiency with Divide and Conquer method (Pastuszak et al. 2000a;

Seungwon et al. 2006) based on the number of GTs needed to identify the

bad signature. Depending on the probability distribution, it is proved that the

divide and conquer method is efficient for 2k signatures, if there are 2k−3 or

less number of bad signatures, and Hamming Verifier is efficient for a batch

32

2.1. Batch Verification Schemes

of length 2k − 1 signatures if there is a single bad signature. And again if

the number of bad signatures is known beforehand then divide and conquer

becomes much more efficient, with almost the number of verification tests

reduced by almost half. Hamming verifier technique is based on the parity

check matrix, and it successfully identifies a single bad signature. And,

if there are two bad signatures, then a two-layer Hamming Verifier is

efficient in identifying the two signatures based on Bose, Chaudhuri, and

Hocquenghem (BCH) (Forney 1965) codes accurately. Similarly, it can be

extended to more than two bad signatures. But the efficiency of Hamming

code verifier reduces as the number of bad signatures increases.

2.1.3 ECDSA Batch Verification schemes

There has been growing interest in ECDSA in recent years. ECDSA provides the same

level of security as RSA with reduced key size. ECDSA is a digital signature algorithm

of Elliptic Curve Cryptography (ECC) which is either based on DLP or Bilinear Pairing.

The short signature techniques based on Bilinear Pairing use Elliptic Curve Groups.

The following list briefs about the various techniques proposed for improving the batch

verification of ECDSA.

(a) ECDSA Digital Signature Algorithm

ECDSA is a variant of Elliptic Curve Cryptosystem (Blake et al. 1999; Brown

2005; Koblitz 1987, 1998) similar to DSS. The parameters for computation are

considered from the elliptic curve group E(Fq) (Brown 2005). It is currently

IEEE P1363-2000, FIPS 186-3 standard. The digital signature generation and

verification methods are defined in ANS X9.62. The curve parameters are chosen

in such a way that the Elliptic Curve Discrete Logarithm Problem (ECDLP) can

not be solved in less than exponential time.

The three algorithms: key generation, signature generation and signature

verification are provided in this section. The ECDSA signature (r, s) has r and s

values modulo n.

33

2. Literature Review

The standard equation for elliptic curve is given in Equation 2.21,

y2 = x3 + ax+ b (2.21)

where a, b ∈ Zp and 4a3 + 27b2 6= 0 mod p

Table 2.5: Notations followed in ECDSA
Symbol Reference to
q Order of the prime field Fq.
E(Fq) Elliptic Curve defined over prime field Fq.
n Order of P , usually a prime.
P Random non-zero base point of order n in E(Fq).
h The cofactor E(Fq)

n .
t Size of the batch of signatures.

1. Key Generation

• Choose a non-zero point P , P ∈ E(Fq).

• Choose a random integer d such that 1 ≤ d ≤ n− 1.

• Compute Q = dP ∈ E(Fq).

• The Public key is (Q) and the private key is d.

2. Signing

• Signer chooses a random integer k, such that 1 ≤ k ≤ n− 1.

• Compute R = kP .

• Compute r as the x - coordinate of point R. r = x(R) mod n.

• Then compute s = k−1(H(m) + dr) where H(m) is the hash value of

the message m to be signed.

• Signature (r, s) is appended with the message and sent to verifier.

3. Verification

• The verifier receives (m′, r′, s′) and verifies if (r′, s′) ∈ [1, n− 1], else

reject the signature.

• Compute w = (s′)−1 mod n.

• Then compute u = H(m′)w mod n.

• Compute v = r′w mod n.

34

2.1. Batch Verification Schemes

• R = uP + vQ ∈ E(Fq), and if x(R)
?
= r′, then accept the signature or

else reject.

(b) Signatures Based on DLP

In this subcategory, we analyze the techniques for batch verification of ECDSA

signatures which are based on DLP. Most of the techniques discussed here are

efficient for single as well as multiple signers.

(a) ECDSA∗ signature scheme proposed by Antipa et al. (2005) provides 40%

efficiency in the verification time for ECDSA signatures. The security of

their signature scheme is equivalent to ECDSA. The basic batch verification

scheme for ECDSA∗ signatures is also known as the naive batch verification

scheme and it belongs to Type 2 way of signing. The signature of modified

ECDSA∗ signature scheme is (R, s), where R is the Elliptic curve point

with (x, y) coordinates, whereas the original ECDSA signature is (r, s) with

respect to (m,Q), where m is the message to be signed and Q is the public

key. The scheme involves appending a few bits of side information to

the signature by the signer. To improve the efficiency of original ECDSA

signature (r, s), it is first converted to ECDSA∗ (R, s) signature. Hence

reconstructingR from r in an efficient way to speedup ECDSA is important.

Thus for an elliptic curve E(Fq) over finite field Fq , with cofactor h, there

can be h+ 1 values for x coordinate of R. The number of dlog2(h+ 1)e+ 1

bits of side information can efficiently identify the point R. The extra

overhead of side information is the disadvantage, but this extra information

can help boost the verification time by 40%.

(b) The scheme proposed by Cheon and Yi (2007) claims to give better batch

verification results for single as well as multiple signers. Hence it can

be classified under Type 2 way of signing in batch verification. The

scheme involves generation of width-w Non-Adjacent Forms (w-NAFs)

uniformly. After the experimentation with different values of w, they

arrived at optimum value of w as 3, which leads to a minimum number of

35

2. Literature Review

point doublings, point additions, and exponentiations during ECDSA batch

verification at the verifier. For t signatures (mi, Ri, si), where Ri = (xi, yi)

, ri = xi mod q and si = k−1(mi + xri), the verification equation is

R = aG + bQ where a = ms−1 mod q and b = rs−1 mod q. The modified

ECDSA batch verification scheme is as follows: The technique uses

random w-NAFs c1, c2, . . . , ct and applies batch verification by 3-NAFs for

multiple signers, where a = −
∑t

i=1 aici mod q and b′i = −ris−1i ci mod q

for each i with digit set D= {±1,±3}, compute

aG+
t∑
i=1

b′iQi +
t∑
i=1

ciRi (2.22)

and for single signer, compute a = −
∑t

i=1 aici mod q and b =

−
∑t

i=1 ris
−1
i ci mod q and then compute,

aG+ bQ+
t∑
i=1

ciRi (2.23)

If the result of both the expressions 2.22 and 2.23 is equal to point at infinity

O, then accept all the signatures of the batch, else reject the signatures.

The overhead in this scheme is to convert the original ECDSA signature to

modified ECDSA∗ signature.

(c) Two batch verification techniques for ECDSA and the naive verification are

introduced by Karati et al. (2012b): one is the naive approach and the other

two are efficient algorithms Algorithm S1, Algorithm S2 which perform

better than naive approach. All the three techniques belong to Type 2

category of signing for batch verification.

In case of naive approach, for the verification of signatures by multiple

signers is given in the Equation 2.24,
t∑
i=1

Ri
?
=

(
t∑
i=1

ui

)
P +

t∑
i=1

viQi (2.24)

In case of single signer, the verification equation is Equation 2.25,
t∑
i=1

Ri
?
=

(
t∑
i=1

ui

)
P +

(
t∑
i=1

vi

)
Q (2.25)

This involves computation of modular square roots for the value of y, which

is a time-consuming operation. The modified algorithm for the same would

36

2.1. Batch Verification Schemes

be the ECDSA∗, which includes addition of a few bits in signature which

avoids the calculation using square root operation.

Algorithm S1 does not use the regular method of finding y using square

root technique. As we know, Ri = (xi, yi) and ri = x(Ri) ie., xi = ri. The

value of yi is calculated using the Equation 2.26,

y2i = r3i + ari + b mod q (2.26)

Now by applying multiple elliptic-curve point addition formula for point

R =
∑t

i=1Ri, which results in,

R =

(
gx(y1, y2, . . . , yt)

hx(y1, y2, . . . , yt)
,
gy(y1, y2, . . . , yt)

hy(y1, y2, . . . , yt)

)
where the denominator is u(y2, y3, . . . , yt)y1+ v(y2, y3, . . . , yt). In order

to eliminate y1, multiply both gx and hx by u(y2, y3, . . . , yt)y1 −

v(y2, y3, . . . , yt), which eliminates y1 using the formula stated in Equation

2.26, and using Equations 2.24 and 2.25, we express R = (α, β) where

α, β ∈ Fq,

Rx(y1, y2, . . . , yt) = α (2.27)

Ry(y1, y2, . . . , yt) = β (2.28)

Then the multivariate Equations 2.27 and 2.28 are solved to retrieve the

value of y. They avoid the calculation of u and v from the basic equation.

Since the algorithm gives effective results for batch size t ≤ 6, its efficiency

decreases as we increase the batch size. And also in case of point addition,

if the two points turn out to be equal, then the results will be different

since there is a different formula for point doubling in case of elliptic curve

cryptosystems.

(d) Algorithm S2 is similar to Algorithm S1, but the procedure for solving the

multivariate equations to get the values for x and y are modified to reduce

the complexity of finding the sign of y.

In this algorithm, only the first multivariate equation is considered where

the y1, y2, . . . , yt are eliminated through an equation u2i (r
3
i + ari + b) − v2i

where yi is eliminated and u, v are polynomials in y1, . . . , yi−1, yi+1, . . . , yt.

And if the equation reduces to zero, then the original equation is consistent

37

2. Literature Review

with the equation for ECDSA.

Table 2.6: Comparative analysis of Batch verification techniques for ECDSA

Technique Efficient for Conversion to
ECDSA∗

Efficient for
Batch size Pros Cons

Naive ECDSA single

signer
no t < 6

Most secured

technique.

Includes heavy

calculation for

finding the square

roots of the equation.

Naive ECDSA∗

(Antipa et al.
2005)

multiple signers yes t > 8
It is one of the

most efficient ones.

The inclusion of

side information

bits increases size

of signature.

Cheon and Yi
(2007)

multiple signers yes any t

Algorithm is

efficient for single

and multiple signers.

It introduces

precomputation

of w-NAF.

Algorithm S1
(Karati et al.

2012b)
single signer no t < 6

It is quite efficient

for small batch size.

Its efficiency

suddenly decreases

with the increase in

batch size.

Algorithm S2
(Karati et al.

2012b)
single signer no t ≤ 8

Its efficiency is

comparable to ECDSA∗.

Performance

deteriorates as

the curve field increases.

Table 2.7: Characteristics of Batch verification techniques in ECDSA

Technique Authenticity Integrity Non-
repudiation Speed-up

Naive ECDSA - X X low

Naive ECDSA∗

(Antipa et al. 2005)
- X X high

Cheon and Yi (2007) X X X high

Algorithm S1
(Karati et al. 2012b)

X X X low

Algorithm S2
(Karati et al. 2012b)

X X X low

The two Tables 2.6 and 2.7 analyze the ECDSA batch verification techniques.

Table 2.6 discusses the behavior of these different techniques. This table also

38

2.1. Batch Verification Schemes

shows the pros and cons of the techniques. The various parameters can be

explained as:

• Efficient for: Indicates whether the scheme is efficient for single or multiple

signers.

• Conversion to ECDSA∗: This indicates whether the scheme first converts

the signatures to ECDSA∗ to make the computation easier.

• Efficient for Batch Size: This indicates the batch size for which the scheme

performs its best.

• Pros & Cons: These columns indicate the strengths and weaknesses of the

schemes.

And in Table 2.7, we summarize how these techniques satisfy the digital signature

properties. The speedup parameter compares the speedup gained by the technique

compared to the individual verification. The lower range is the speedup in case

of multiple signers, and the higher range is for the single signer.

(c) Signatures based on Bilinear Pairing

In this section, we review the batch verification schemes for short signatures

(Boneh and Boyen 2004; Boneh et al. 2004; Delerablée and Pointcheval 2006)

based on Bilinear Pairing (Koblitz and Menezes 2005). There are two variations

to this kind of signatures. One is batch verification scheme for signatures either

belonging to Type 1, Type 2 or Type 3. The other one is the batch verification

scheme for group signatures.

Regular Signature: In regular signature category, we discuss the batch

verification techniques based on Bilinear pairing, which are used to verify

signatures generated either by Type 1, Type 2, or Type 3.

(a) The batch verification technique by Camenisch et al. (2007) is introduced

for the Boneh-Lynn-Shacham (BLS) signature scheme defined by Boneh

et al. (2001). First, we will describe the signature scheme, which is based

39

2. Literature Review

on bilinear pairing.

1. Key Generation:

• Choose a random integer x ∈ Zq, where q is the prime order of

group G.

• Private Key sk = x and public key pk = gx, where g is the

generator of group G.

• And e : G × G → GT be the pairing map which satisfies the

properties of Bilinearity and Non-degeneracy.

2. Signing

• Calculate hash value for the message m, M = H(m).

• Given the private key sk, calculate the signature s = Mx.

3. Verifying

• Verifier verifies the signature by

e(s, g)
?
= e(M, gx) (2.29)

• If LHS is equal to RHS, then the signature is successfully verified.

Batch Verification for BLS Signature Scheme: The batch verification

technique proposed for BLS by Camenisch et al. (2007) belongs to Type

2 way of batch verification where the verifier verifies signatures signed by

multiple signers. The verification equation for the same is given by:

e(
t∏
i=1

sδii , g)
?
=

t∏
i=1

e(Mi, pki)
δi (2.30)

where si are the signatures of t signers for t distinct messages with t public

keys pki, where 1 ≤ i ≤ t. δi is a random element of l bits from Zq
and δ is the vector defined as δ = δ1, δ2, . . . , δt. Once the verifier receives

the signatures, it first verifies if all the public keys pki are valid, and all

the signatures si ∈ G for all i, otherwise reject. If the above Equation

2.30 holds then accept all the signatures in the batch, otherwise it indicates

the presence of invalid signature/s. The computation time increases linearly

with the number of signers. Hence the scheme is inefficient for large number

40

2.1. Batch Verification Schemes

of signers.

(b) The Camenisch and Lysyanskaya (CL) signature scheme proposed by

Camenisch and Lysyanskaya (2004) is not efficient for batch verification.

Therefore, the modified version of the CL signature scheme CL∗ is proposed

by Camenisch et al. (2007), which is suitable for batch verification is

presented below.

1. Key Generation

• Choose x randomly, such that x ∈ Zq and then calculate X = gx,

where g is the generator for the group G of prime order q.

• sk = x and pk = X .

2. Signing

• ϕ ∈ φ is the current time period of generating signatures where |φ|

is the polynomial.

• Compute w = H3(m||ϕ), a = H1(ϕ), b = H2(ϕ) where H1, H2

and H3 are the hash functions H1 : φ → G, H2 : φ → G and

H3 : M × φ → Zq, where M = {0, 1}∗ is the message space and

the message m ∈M .

• Signature s = axbxw.

3. Verifying

• After receiving message-period pair (m,ϕ) and signature s,

compute w = H3(m||ϕ), a = H1(ϕ) and b = H2(ϕ).

• Then verify if the equation given below holds,

e(s′, g)
?
= e(a,X).e(b,X)w (2.31)

• If this is true, then the signature is accepted or else rejected.

Batch Verification for CL∗ Signature Scheme: Camenisch et al. (2007)

proposed a technique for batch verification of CL∗ Type 2 signatures. The

t signatures s1, s2, . . . , st are generated for the messages m1,m2, . . . ,mt

using the public keys X1, X2, . . . , Xt at the same time period ϕ. Once the

signatures are received at the verifier, first is to verify if Xi are valid and

41

2. Literature Review

si ∈ G, where i ∈ [1, . . . , t], otherwise reject the batch of signatures. Next

is to verify the equation,

e(
t∏
i=1

sδii , g)
?
= e(a,

t∏
i=1

Xδi
i).e(b,

t∏
i=1

Xwiδi
i) (2.32)

where δi is the randomly generated number of l bit length. If this equation

holds then accept all the signatures in the given batch or else reject.

(c) The Guo-Mu-Chen (GMC) signature scheme which is introduced by Guo

et al. (2008) is another batch verification scheme based on bilinear pairing.

The GMC scheme for individual signature is defined as follows:

1. Key Generation

• G1 and G2 be the bilinear groups with prime order q and randomly

generate g2 ∈ G2 and calculate g1 = ψ(g2).

• Generate α, β ∈ Zq.

• Compute u = e(g1, g2) ∈ GT , v = e(g1, g2)
α ∈ GT and z = gβ2 ∈

G2.

• Public key pk = (e,G1,G2, g1, g2, u, v, z) and secret key sk =

(α, β).

2. Signing

• Generate a random integer r ∈ Zq for message m ∈ Zq.

• Generate the signature sm = (s1, s2) = (α − r(β − m), gr1) ∈

Zq ×G1.

3. Verifying

• Verifier verifies the message m using the public key pk using the

verification equation:

us
′
i .e(s′2, z/g

m
2)

?
= v (2.33)

• If verification holds true, then the signature is valid.

Batch Verification for GMC signatures: This batch verification

technique Guo et al. (2008) comes under Type 1 of batch signatures. For

t signatures sm1 , sm2 , . . . , smt for messages m1,m2, . . . ,mt signed using

42

2.1. Batch Verification Schemes

sk, and the random integers generated are r1, r2, . . . , rt ∈ Zq. First step

for batch verification is to check whether gr11 , g
r2
1 , . . . , g

rt
1 ∈ Gn

1 . Next is to

choose a random vector δ = δ1, δ2, . . . , δt, where the length of each δi is l

bits. Then is to compute A, B, and C.

A = (gr11)δ1 .(gr21)δ2 . . . (grn1)δt

B = (gr11)m1δ1 .(gr21)m2δ2 . . . (grn1)mnδt

C = δ1(α− r1(β−m1)) + δ2(α− r2(β−m2)) + · · ·+ δt(α− rt(β−mt))

= α
∑t

i=1 δi − β
∑t

i=1 δiri + β
∑t

i=1 δirimi.

The verification equation is given by Equation 2.34,
uC .e(A, z)

e(B, g2)
?
= v

∑t
i=1 δi (2.34)

Group Signature Generation: This section explains the batch verification

scheme of group signatures (Boneh et al. 2004) based on Bilinear pairing. In the

case of group signatures, a single member of the group generates signature for

the message on behalf of the entire group. The identity of the signing member

is kept hidden and is only known to the group manager who can identify every

member of the group through unique identification key.

The algorithm to verify a group signature can be given as follows:

Let PSetup(1τ) → (q, g1, g2,G1,G2,GT , e), where H : {0, 1}∗ → Zq is a hash

function, g1, g2 are generators of groups G1 and G2 respectively and there exists

an efficiently-computable isomorphism ψ : G2 → G1. Let l be the number of

users in a group.

1. Key Generation

• Randomly select g2 ∈ G2 and also sets g1 ← ψ(g2).

• Choose h R← G1\{1G1}, r1, r2
R← Z∗q and also set values of u, v such

that, ur1 = vr2 = h.

• Choose γ R← Z∗q and assign w = gγ2 .

• For i = 1 to n, choose xi
R← Z∗q and also set fi = g1/(γ+xi).

• Public key is (g1, g2, h, u, v, w), the group manager’s secret key is

(r1, r2) and the ith user secret key is (fi, xi).

43

2. Literature Review

2. Signing

• Choose α, β, rα, rβ, rx, rγ1 , rγ2
R← Zq.

• Compute T1 = uα; T2 = vβ; T3 = f.hα+β; γ1 = x.α; γ2 = x.β;

R1 = urα; R2 = vrβ ; R3 = e(T3, g2)
rx .e(h,w)−rα−rβ .e(h, g2)

−rγ1−rγ2 ;

R4 = T rx1 .u−rγ1 ; R5 = T rx2 .v−rγ2 .

• Compute c = H(m,T1, T2, T3, R1, R2, R3, R4, R5).

• Compute sα = rα+c.α; sβ = rβ +c.β; sx = rx+c.x; sγ1 = rγ1 +c.γ1;

sγ2 = rγ2 + c.γ2.

• Generate the signature σ = (T1, T2, T3, c, sα, sβ, sx, sγ1 , sγ2).

3. Verifying

• Compute R1 = usα .T−c1 ; R2 = vsβ .T−c2 ;

R3 = e(T3, g2)
sx .e(h,w)−sα−sβ .e(h, g2)

−sγ2−sγ2 ;

R4 = T sx1 .u−sγ1 ; R5 = T sx2 .v−sγ2 .

• Verify if c′ ?
= H(m,T1, T2, T3, R1, R2, R3, R4, R5).

Batch Verification of BBS Group Signatures: Boneh - Boyen - Shacham

(BBS) Scheme is the group signature scheme introduced by Boneh et al. (2004).

Here the message is signed by one of the members of the group whose identity

is hidden. Only the group manager can trace back the actual signer in the group

through the group secret key gsk. The BBS scheme key generation, signature

generation, and verification details are explained in Boneh et al. (2004).

For batch verification of BBS Group Signatures (Boneh et al. 2001), a small

modification is done to original BBS signature, making it suitable for batch

verification. The most expensive operation in signature verification is the

computation of R3. The batch verification of BBS group signatures as stated by

Ferrara et al. (2009), for m signatures, involves the addition of an extra element

in the signature, which increases signature size.

For j = 1, 2, . . . , t signatures, compute the R1, R2, R4, R5 for every signature.

Then for every j = 1, 2, . . . , t signature, verify if cj = H(Mj , Tj,1, Tj,2, Tj,3, Rj,1,

Rj,2, Rj,4, Rj,5).

44

2.1. Batch Verification Schemes

Then at the end, with just two Bilinear pairings, equation verifies the batch of

signatures,

e(
t∏

j=1

(T
sj,x
j,3 .h

−sj,γ1−sj,γ2 .g
−cj
1)δj , g2).e(

t∏
j=1

(h−sj,α−sj,βT c3)δj , w)
?
=

t∏
j=1

R
δj
j,3

(2.35)

where t random vectors δ1, δ2, . . . , δt of l bit length ∈ Zq. Accept the batch of

signatures only if the equation holds correct.

Table 2.8: Comparative study of Batch verification schemes based on Bilinear Pairing

Technique Efficient
for

Type of
Signature

Generation

No. of
Bilinear
Pairings

Security using
Random Oracle

Model
Pros Cons

BLS
(Camenisch
et al. 2007)

single

signer

Individual
Signature

t+1(multi-
signer)

2(single-
signer)

yes

For single signer, the

number of pairings is

just 2 and security level is

comparable to RSA - 1024.

For multiple signers,

the verification time

increases.

II - Sig
(Camenisch
et al. 2007)

multiple
signers

Individual
Signature

3 yes

The scheme is more secure

and is suitable for

multiple signers.

The scheme has time

period restrictions for

the signer.

GMC (Guo
et al. 2008)

single
signer

Individual
Signature

t+1(muti-
signers)
2(single
signer)

no

Efficient as BLS scheme

(Camenisch et al. 2007)

without random oracle.

The scheme does not

provide any improvement in

verification efficiency over

existing schemes and

has a fixed signature

size of 320 bits.

BBS
(Ferrara

et al. 2009)

multiple
signers

Group
Signature

2 yes

The no. of pairings is

constant and is independent

of no. of signers.

The scheme increases

the signature size of

each signature to make it

compatible for batch

verification.

Tables 2.8 and 2.9 make a comparative study on the behavior of Bilinear pairing

based batch verification schemes using Elliptic Curve Groups. The parameters

used for comparison of the schemes are:

• Efficient for: Indicates whether the scheme is efficient for single or multiple

signers.

• Type of Signature Generation: Indicates whether the signature represents an

45

2. Literature Review

Table 2.9: Characteristics of Batch Verification techniques based on Bilinear Pairing

Technique Authenticity Integrity Non-
repudiation

Computation
Overhead

BLS (Camenisch
et al. 2007)

X X X high

II - Sig (Camenisch
et al. 2007)

X X X low

GMC (Guo et al.
2008)

X X X high

BBS (Ferrara et al.
2009)

X X X low

individual entity or the group.

• No. of bilinear pairings: Provides the information on whether the number

of bilinear pairing operations depends on the batch size or fixed.

• Security using Random Oracle Model: Specifies whether the scheme is

secure when used with ransom oracle model.

• Pros & Cons: These columns indicate the strengths and weaknesses of the

schemes.

The computation overhead is determined by the number of Bilinear pairings in

the verification of signatures. For a batch of signatures with size t , the entries

in the Table 2.9 for computation overhead can be interpreted as: High (When the

number of Bilinear Pairings is a linear function of t), and for Low (When the

number of Bilinear Pairings is a constant and independent of t).

(d) Identifying location of bad signatures in ECDSA

The batch verification schemes in ECDSA does not identify the invalid signature’s

location. Hence to identify the bad signature, one has to either perform

individual verification, Divide-and-Conquer(DC) verification or verification

using Hamming code verifier (Pastuszak et al. 2000a). These bad signature

identification schemes are not specific to the signature scheme. It can be used with

RSA, DSS, or ECDSA. There are other schemes by Ren et al. (2015) and Li et al.

46

2.2. Bad Signature Identification Schemes

(2010), which can be extended to various batch verification schemes. Different

schemes have various disadvantages in real-time implementation. DC verifier

cannot perform the best in all cases; its efficiency decreases as the number of

faulty signatures increases. Hamming code verifier needs the information of the

number of faulty signatures in the batch before verification, which is impossible

to know before verification.

The schemes proposed by Li et al. (2010) and Ren et al. (2015) are compute

intensive. Hence there is a need for faster verification scheme which can identify

the location of the bad signature efficiently in less time compared to the existing

scheme. Hence to implement batch verification in IoT, we need secure and

efficient batch verification schemes which are faster and also can identify the

location of the faulty signatures.

Most of the verification schemes discussed in Section 2.1 do not identify the

bad signature in the batch of signatures. Therefore there are many bad signature

identification schemes designed to locate the bad signature in a batch that fails the

batch verification test. Hence in the next section, we discuss various bad signature

identification schemes.

2.2 BAD SIGNATURE IDENTIFICATION SCHEMES

There have been many batch signature verification techniques introduced. Few

techniques trade the security to achieve greater computation efficiency in verifying the

signatures (Kittur and Pais 2017). But most of the techniques fail to locate the index of

the bad signature/s in case if the batch verification fails.

There are multiple batch verification techniques introduced for various digital

signature schemes (Fiat 1989; Harn 1998b; Karati et al. 2012b; Min-Shiang et al.

2001) which locate the index of the invalid signature in case of the failure of batch

verification. Pastuszak et al. (2000a) makes a comparative study of Divide-and-Conquer

(DC) approach and the naive approach. Some of the important definitions are given

below:

47

2. Literature Review

Table 2.10: Various Bad Signature Identification Schemes

Technique Prior
Info. No. of GT Restriction on #

bad signatures Characteristics Drawback

Sequential No Fixed No

Performs verification test

on every signature to identify

the faulty one.

It is the most time taking

verification process.

DC Verifier
(Pastuszak

et al. 2000a)
No Variable No

Proves to be efficient in average

case where few of the signatures

are bad in the batch.

Performs worst when all the

signatures are bad in the

batch.

DBIbasic
(Seungwon
et al. 2006)

Yes Fixed Yes
Very efficient in identifying

the index of the bad signature.

Is efficient only if the batch

contains only one bad

signature.

IC Verifier
(Pastuszak

et al. 2000b)
Yes Fixed No

For better identification capability,

uses indices of Hamming weight.

Every increase in

the number of bad signatures,

increases the computation.

Li et al.
(2010)

No Variable Yes

Divides the given batch instance

into MxN matrix and identifies

the location of bad signature

accurately.

Increases the number of

computations considerably.

Ren et al.
(2015)

No Variable No

Divides the given batch into

MxMxM cube. This further

reduces the memory size.

With the increase in

the dimension, the number

of GTs will also increase.

Table 2.10 makes a comparative analysis of the existing schemes to identify the

index of the bad signature in a given batch of signatures. We have compared these

existing techniques through various parameters. These parameters can be explained as

below:

• Prior Info: This parameter indicates whether the technique needs prior

knowledge of the number of bad signatures present in the given batch of

signatures. Hence this helps in deciding the kind of environment this scheme

can be applied.

• No. of GT: This parameter specifies whether the number of GT operations

depends on the size of the batch. Therefore in a few techniques, if the number

of GT is fixed, it means that the number of GT operations does not vary with the

increase in the batch size.

• Restriction on # Bad Signatures: This parameter indicates whether there is a

48

2.3. Security Trust Models

restriction on the number of bad signatures in a given batch. Certain schemes do

not give proper results if the number of bad signatures is more than one.

The techniques Li et al. (2010); Ren et al. (2015) use two order and three order matrix

respectively to identify the bad signature in the batch. The given batch size of t

signatures is placed in a matrix of order (M ×N ≥ t). Then the GT verifier is applied

on each row and column to identify the bad signature.

In the other technique Ren et al. (2015), the given batch of signatures is divided into

a cube M ×M ×M ≥ t. The signatures are distributed uniformly in the matrix, and

computation is carried out similarly as the previous one.

To implement batch verification in IoT, we first have to study various existing

efficient popular trust models.

2.3 SECURITY TRUST MODELS

In this section, we are surveying various security trust models, models used for efficient

energy harvesting in sensor nodes. There are various trust models available which prefer

the selection of entities based on the trust value of the entity in the cloud platform

(Manuel 2015; Xiong and Liu 2004). There are other reputation based models which

consider the reputation of the entity with their neighbours and also examines the entity’s

performance in the past (Kalra and Sood 2015; Selcuk et al. 2004; Vu et al. 2012) before

considering as trusted. Most of the reputation based models are designed for Peer-to-

Peer (P2P) network (Kamvar et al. 2003; Xiong and Liu 2004; Zhou and Hwang 2007).

The nodes are trusted based on the feedback received from their peers. The trust can

also be computed using the entity’s behavior, its belief, and other parameters, as shown

in Zhiwei et al. (2015). Buzzanca et al. (2017) considers even aging as a metric for trust

computation in their study. Aging refers to the pattern of trust growth for the entity,

which also takes into account the recent change in behavior of the entity.

Implementing authentication schemes in IoT have challenges such as low

computing power and memory of sensor nodes. The sensor nodes also have the

restriction of low battery capacity. Hence there are various research works on the energy

49

2. Literature Review

harvesting in sensor nodes and efficient usage of energy (Escolar et al. 2014; Fisher et al.

2015; Wu et al. 2017) as well as developing lightweight schemes (Wu et al. 2018). Some

researchers are working on how efficient public key cryptographic schemes are in IoT

and WSN environment (Kayalvizhi et al. 2010; Wander et al. 2005). Since individual

signature verification is a costly affair in IoT, the batch signature verification reduces the

computation load significantly. In the model by Kittur et al. (2017), the gateway node

reduces the burden of computation by distributing its load to other nodes. The authors

show that the load is distributed among other gateway nodes to reduce the burden of

computation at a single node. But the disadvantage with this scheme is that the scheme

assumes that the Gateway nodes are idle and are available most of the times.

There are many trust models developed for various type of networks. In the case of

e-Bay transactions, user feedback is very important. Therefore in Peer-to-Peer (P2P)

network, it is important to trust the feedback received from various users. There are

various trust models available for Wireless Sensor Networks (WSN) for finding the

trusted path for the information to reach the central hub. Hence we have provided a

comparison of a few popular existing trust models.

Table 2.11: Trust Models
Scheme

Type of

Network
Reputation

Feedback

From

Save Trust

Value of

Physical State

of the Node

Eigen (Kamvar et al. 2003) P2P Distributed Peers All peers No

Peer Trust (Xiong and Liu 2004) P2P Distributed Peers Neighboring Peers No

BTRM-WSN (Mármol and Pérez 2011) WSN Distributed Peers Neighboring Peers No

Power Trust (Zhou and Hwang 2007) P2P Centralized Reputation System Only one No

ATSN (Chen et al. 2007) WSN Centralized Agent Only one Yes

Ganeriwal et al. (2008) WSN Distributed Peers All Peers No

We have compared various trust models in Table 2.11 with the proposed trust model

using certain parameters as explained below:

• Type of Network: Type of network for which the model is developed, is an

important parameter, which decides the way the trust model has to be developed

efficiently. In the case of a P2P network, each node has sufficient computation

capability and memory storage available to compute and store the trust value of

50

2.3. Security Trust Models

other peer nodes.

• Reputation: This parameter indicates whether the reputation of the node is

decided at the single point of control or is decided collectively by the peers in

the distributed network. We can observe in Table 2.11 that few of the models are

centralized and few are distributed.

• Feedback From: The third parameter indicates the source from where any node

gets its trust value. But the trust value in a centralized network can also be

calculated from using the feedback received from the other peer nodes. But only

a single entity decides the final trust value for the node.

• Save Trust Value: This parameter depends on the memory capacity of the node.

In a few models, nodes store the trust value of all the peers in the network or store

only the trust value of the neighboring peers. In centralized reputation models,

the nodes need not have to store the trust value of other peers.

• Physical State of the Node: This parameter indicates whether the model considers

the physical state of the node into account while choosing it. The physical state

indicates whether the node is up and running, or whether the node is busy. This

parameter is important in WSN and IoT environment.

The design of the trust model varies based on the application and network where

the model needs to be deployed. Every application has its security and privacy

requirements; hence accordingly, the models are designed. We can observe from Table

2.11 that our model is better suited for the IoT environments since it is centralized.

Sensor nodes have low computation capability, and hence, a distributed model will not

be suitable in such a case. Since we are considering a centralized model, the peers do

not participate in the computation of trust value. Hence any sensor node gets its QoS

value computed by the single entity, which saves the trust value of all the peers in the

network. There is one more model, ATSN by Chen et al. (2007), which is also suitable

for our network, with a difference that an extra entity Agent is required, that collects the

feedback from the peer nodes in ATSN. Every node gets its QoS value finalized based

on the final evaluation by the Agent.

51

2. Literature Review

2.4 RESEARCH GAPS

In the previous sections, we have surveyed various batch verification techniques for

RSA, DSS, and ECDSA and have given a brief overview of the techniques and the

various attacks possible on the techniques under different conditions. Therefore this

poses the following Research challenges:

1. Batch Verification for Multiple Signers: Most of the techniques, as per our

knowledge are efficient for Type 1 way of signing where single signer either signs

a single message or multiple messages. Therefore there is a need for various

batch verification techniques for RSA, DSS and ECDSA digital signatures

which consider efficiency for multiple signers into account while designing new

techniques.

2. Reduced number of modular exponentiations/ Scalar Multiplications: DSS batch

verification techniques which identify the index of the bad signature requires

minimum t number of modular exponentiations, where t is the size of the batch

of DSS digital signatures. Therefore developing techniques which identify the

index of the bad signature in less than t number of modular exponentiations is a

major challenge.

3. Ensuring Non-repudiation: Providing non-repudiation property for the digital

signatures is one of the major challenges in batch verification of digital signatures.

As we have observed, most of the techniques fail in satisfying this criterion of

digital signatures where the signer denies of signing the message.

4. Efficiency, irrespective of batch size: Most of the batch verification techniques

introduced for ECDSA are efficient for small batch size. Therefore in practical

implementation, a technique becomes more advantageous if it performs well for

varied batch size.

5. Minimizing precomputation in ECDSA: Since ECDSA is grabbing attention

in recent times due to its short signature property, it has the overhead of

precomputation. ECDSA∗ is one of the ways to minimize the precomputation

52

2.5. Summary

overhead, but it increases the signature size to gain efficiency. Although the side

bit information in ECDSA∗ does not create significant overhead but developing

techniques as efficient as or more efficient than ECDSA∗ requires attention.

6. Provable Security using Random Oracle Model: In case of batch verification

schemes based on Bilinear pairing, it is important to develop schemes which are

efficient for varied batch size with the provably secure Random Oracle Model. It

is difficult for any application to practically implement the Random Oracle model

that covers all security properties of the model.

7. Bad Signature Identification in a batch: The existing schemes have disadvantages

such as poor performance if the number of faulty signatures is more. One

more downside is the pre-knowledge of the number of bad signatures before

verification. Other techniques have compute-intensive operations which hinder

the performance of the scheme. Hence there is a need for lightweight and secure

scheme which performs consistently irrespective of the number of bad signatures.

8. Trust Model for IoT: IoT nodes are more vulnerable to various kinds of attacks

because of their low computation power and energy. Hence designing a

trust model which can reduce the computation complexity without significantly

affecting the life of the node is important.

2.5 SUMMARY

In this chapter, we have provided an in-depth survey of various batch verification

schemes and various trust models. We have categorized the batch verification schemes

based on the digital signature for which they are proposed. We have also made a

comparative study of these schemes. This survey has led us to the discussion of various

unresolved problems and issues which need attention from the majority of researchers.

We also studied various bad signature identification schemes available in the literature.

We also have studied a few popular trust models for P2P network, WSN network is also

discussed and compared to identify the suitability for IoT network.

53

Chapter 3

BATCH VERIFICATION OF ECDSA∗ SIGNATURES

As we are designing a batch signature verification scheme for IoT network, it is essential

to have a scheme which is lightweight as well as efficient for different batch size.

Therefore we have decided ECDSA∗ as the digital signature algorithm for our study

since it accelerates verification by 40% as well as it has small key size. Since ECDSA∗

signature verification is faster compared to other schemes studied in Chapter 2, we have

designed a new batch verification scheme for these signatures. The only disadvantage

of ECDSA∗ signatures is their increased signature size. But these extra bits do not make

any changes to the standard ECDSA specifications. Hence ECDSA∗ signatures are in

conformant with the ECDSA standards.

We have designed a batch verification scheme for ECDSA∗ signatures which can

also be applied on ECDSA signatures too. The primary advantage of our scheme is that

the efficiency of the scheme does not vary significantly with the increase in the batch

size. The other highlighting factor of our scheme is the inclusion of random pairwise

primes which enhance the security of the scheme further.

We have analysed various disadvantages and attacks possible on the existing

schemes in the literature. Our scheme is inspired by the work of Naccache et al. (1994),

which is proposed for DSS signatures. The scheme for DSS is secure against many

attacks by the unauthorized user and also the fraud signer.

The contributions of the chapter towards research include:

55

3. Batch Verification of ECDSA∗ Signatures

• A new batch verification scheme for verifying ECDSA∗ signatures is proposed,

which is efficient for various batch sizes.

• Detailed security analysis of the proposed scheme is provided.

• Cost and complexity analysis of the proposed scheme is provided.

The rest of this chapter is organized as follows: Section 3.1 provides definitions

and notations; in Section 3.2, we introduce our new batch verification algorithm for

ECDSA∗ signatures. Section 3.3 is about the security analysis of our scheme, and

Section 3.4 shows the comparative results and discussion followed by the summary in

Section 3.5.

3.1 DEFINITIONS AND NOTATIONS

Koblitz (1987) and Miller (1985) independently introduced Elliptic Curve

Cryptography, which is currently one of the most secure public key cryptosystems.

ECDSA is based on the Discrete Logarithm Problem (DLP). All the values used for

computation belong to the Elliptic Curve group.

Table 3.1: Notations followed in chapter
Symbol Reference to
q Order of the prime field Fq.
E(Fq) Elliptic Curve defined over prime field Fq.
n Order of P , usually a prime.
P Random non-zero base point of order n in E(Fq).
h The cofactor E(Fq)

n .
H(m) Hash value of the message to be verified.
t Size of the batch of signatures.

Table 3.1 shows the notations followed in the chapter for further references.

We provide generic algorithms for digital signature. The digital signature generation

and verification consists of three algorithms and can be formally defined as

A Digital Signature Algorithm is actually a systematic study of three probabilistic

Algorithms (Gen, Sign, Vrfy)(Katz and Lindell 2014):

• Gen is the Key Generation algorithm, which takes security parameter 1l as input

56

3.1. Definitions and Notations

and generates the (pk, sk) as output, where pk is public key and sk is private key.

We assume that pk and sk have length at least l, and that l can be determined from

pk and sk.

• Sign is the Signing algorithm that takes the private key sk and the message m as

inputs and outputs signature s, which can be written as s← Signsk(m).

• Vrfy is the Verification algorithm, which takes the public key pk, message m and

the signature s as inputs and outputs b whose value is either ’1’, if the signature

is valid or ’0’, if the signature is invalid. It can be shown as b← V rfypk(m, s).

Similarly the batch verification algorithm can be formally stated as:

Suppose (Gen, Sign, Vrfy) is a Digital Signature Scheme with 1l as the security

parameter, k, n ∈ poly(l), PK = pk1, . . . , pkk and (pk1, sk1), . . . , (pkk, skk) are

generated by Gen(1l), the Batch Verification Algorithm (Bellare et al. 1998) should

hold the following conditions:

• If pki ∈ PK and V rfypki(mi, si) = 1 for 1 ≤ i ≤ n then

Batch((pk1,m1, s1), . . . , (pkn,mn, sn)) = 1

• If pki ∈ PK for all 1 ≤ i ≤ n and V rfypki(mi, si) = 0 for some 1 ≤ i ≤ n, then

Batch((pk1,m1, s1), . . . , (pkn,mn, sn)) = 0 except with negligible probability

in l, over the randomness of Batch.

The batch verification is as secure as individual verification provided the batch

verification satisfies the basic digital signature properties: Authenticity, Integrity, and

Non-Repudiation.

There are certain assumptions we have made for further processing. The cofactor is

assumed as h = 1, which makes E(Fq) a cyclic group and P is the generator of E(Fq).

According to Hasse’s theorem, |n − q − 1| ≤ 2
√
q. If n ≥ q, then Zn has a unique

representation in Zq. And if n < q, then an element in Zn has up-to two representation

in Zq.

57

3. Batch Verification of ECDSA∗ Signatures

3.1.1 The ECDSA algorithm

ECDSA is one of the most secure and lightweight digital signature algorithm. The

elliptic curve parameters are carefully designed so that attacker should not be able to

solve the ECDLP in less than exponential time. In this subsection, we provide the

ECDSA algorithms for key generation, signature generation and signature verification.

The ECDSA domain parameters are {q, E(Fq), P, n, h}. These parameters remain the

same for ECDSA and ECDSA∗ signatures. These parameters are briefed in Table 3.1.

Algorithm 3.1: ECDSA Key Generation Algorithm
Input: Standard domain parameters
Output: Key Pairs: Public Key- Q, Private Key- d

1. For an elliptic curve E(Fq), choose P of order n, P ∈ E(Fq)

2. Choose a random integer d such that 2 ≤ d ≤ n− 2.

3. Compute Q = dP .

The Algorithm 3.1 is for key generation, where the public key and private key for

ECDSA signatures are generated using domain parameters. The Algorithm 3.2 refers

to signature generation. The key generation and signature generation phase of both

ECDSA and ECDSA∗ signatures are same.

Algorithm 3.2: ECDSA Signature Generation Algorithm
Input: Message to be signed m, Private Key d, Elliptic Curve Domain

Parameters
Output: ECDSA Signature (m, r, s)

1. Signer chooses a random integer k, such that 2 ≤ k ≤ n− 2

2. Compute R = kP

3. r = x(R)(mod n), where x(R) is x- coordinate of R.

4. Compute s = k−1(h(m) + dr) (mod n)

The Algorithm 3.3 is for verification of ECDSA signatures. The algorithm briefs

the steps for verification of individual ECDSA signature.

58

3.1. Definitions and Notations

Algorithm 3.3: ECDSA Signature Verification Algorithm
Input: ECDSA signature (m, r, s), Public Key Q
Output: Signature Accept or Reject

1. Verifies if (r, s) ∈ [1, n− 1], else rejects the signature.

2. The verifier computes w = s−1(mod n)

3. Compute u = h(m)w (mod n)

4. Compute v = rw (mod n)

5. Calculate value of R.y to retrieve point R through square root method from
received r value

6. Compute R = uP + vQ ∈ E(Fq) , and accept the signature if and only if
x(R) = r (mod n), where x(R) is x- coordinate of R.

3.1.2 The ECDSA∗ algorithm

Next, we provide the algorithms for key generation, signature generation, and signature

verification of ECDSA∗ signatures. The ECDSA∗ key generation and signature

generation algorithms are the same as for ECDSA signatures. The only difference is

in the signature size and the signature verification algorithm. The signature of ECDSA∗

signature scheme is (R, s) whereas the original ECDSA signature is (r, s) with respect

to (m,Q), where r = f(R), m is the message to be signed and Q is the public key. The

key generation and signature generation algorithms are provided in Algorithms 3.4 and

3.5 respectively.

Algorithm 3.4: ECDSA∗ Key Generation Algorithm
Input: Standard domain parameters
Output: Key Pairs: Public Key- Q, Private Key- d

1. For an elliptic curve E(Fq), choose Base point P of order n, P ∈ E(Fq).

2. Choose a random integer d such that 2 ≤ d ≤ n− 2.

3. Compute Q = dP .

The Algorithm 3.6 is the verification algorithm for only one ECDSA∗ signature.

The naive batch verification equations for ECDSA∗ signatures are same as the naive

59

3. Batch Verification of ECDSA∗ Signatures

Algorithm 3.5: ECDSA∗ Signature Generation Algorithm
Input: Message to be signed m, Private Key d, Elliptic Curve Domain

Parameters
Output: ECDSA∗ Signature (m,R, s)

1. Signer chooses a random integer k, such that 2 ≤ k ≤ n− 2.

2. Compute R = kP .

3. r = x(R)(mod n) \\x(R) is x- coordinate of R.

4. Compute s = k−1(H(m) + dr) mod n.

Algorithm 3.6: ECDSA∗ Signature Verification Algorithm
Input: ECDSA∗ signature (m,R, s), Public Key Q
Output: Signature Accept or Reject

1. Verifies if s ∈ [1, n− 1], else rejects the signature.

2. The verifier first computes r, r = x(R).

3. The verifier computes w = s−1 mod n.

4. Then compute u = H(m)w mod n.

5. Compute v = rw mod n.

6. Compute R = uP + vQ , and accept the signature if and only if
x(R) = r mod n \\x(R) is x- coordinate of R.

batch verification equations for ECDSA signatures as provided in Equations 3.1

and 3.2. The difference between the two lies in the initial verification, where extra

computation of yi-coordinate of point Ri in ECDSA is needed, which is not needed in

ECDSA∗. The other difference is the signature size. Since ECDSA∗ sends entire point

Ri, the yi-coordinate value is also included in the signature along with xi-coordinate

value. Hence ECDSA∗ signature size is little higher than ECDSA signature. For a

batch of ECDSA∗ signatures or ECDSA, the last step of naive batch verification test is

same and has two cases. The first case is when the signatures in the batch are generated

by the single signer and the equation for the same is Equation 3.1, and the second case

is when the signatures are generated by multiple signers denoted by Equation 3.2.

60

3.2. Proposed Batch Verification Scheme

In case of single signer,
t∑
i=1

Ri =

(
t∑
i=1

ui

)
P +

(
t∑
i=1

vi

)
Q (3.1)

In case of multiple signers,

t∑
i=1

Ri =

(
t∑
i=1

ui

)
P +

t∑
i=1

viQi (3.2)

In the case of multiple signers, the efficiency decreases. As the number of scalar

multiplications increases, the execution time increases too.

3.2 PROPOSED BATCH VERIFICATION SCHEME

The nodes in the IoT network are more vulnerable to various security attacks because of

their low computation capability and memory because of which security protocols are

difficult to implement. They also have low battery capacity, which needs to be utilized

efficiently so that the routine tasks of the nodes are not affected. The existing batch

verification schemes are efficient for signatures of both single and multiple signers.

Although the existing batch verification schemes are secure and efficient, the efficiency

ceases as the size of the batch increases. In real time scenario, the batch size is relatively

higher, and the existing schemes will not be suitable under such conditions.

The proposed scheme performs well for various batch sizes at the price of a few integer

multiplication operations and also provides more security.

When multiple ECDSA∗ signatures generated by either single signer or multiple

signers, are received, the verifier performs batch verification to verify these signatures

at once. Our scheme is derived from the concept introduced by Naccache et al. (1994)

and is a variation of the scheme introduced in Karati et al. (2012a). In our scheme,

the verifier generates the pairwise relative prime equation randomizers b1, b2, . . . , bt <

n,∈ Fq during verification. The generation of the pairwise random numbers will incur

a little delay in verification, but it is very insignificant as compared to the advantage in

the gain of efficiency and security.

The pairwise relative primes are the ones where any pair of numbers are relatively

prime with each other, i.e., the GCD of any pair of numbers is one. The relative prime

61

3. Batch Verification of ECDSA∗ Signatures

numbers b1, b2, . . . , bt can be generated by considering a set M of natural primes which

are less than n. To optimize the cardinality of M , let us denote one more set C of first

g primes. Let f(g) be such that Sf(g)g (Sterling numbers of second kind) is maximal.

Sterling numbers of the second kind is a concept in combinatorics, which indicates the

number of ways in which a set of g numbers can be partitioned into f(g) empty sub-

sets. For computing b1, b2, . . . , bf(g) during verification, the set of primes C has to be

partitioned into f(C) classes C1, C2, . . . , Cf(C), and the elements in each Ci are inter-

multiplied to obtain bi. Hence to generate f(g) pairwise random numbers, we just need

g primes, where (f(g) > g). Hence we optimized the size of set C. Therefore if we had

generated only primes instead of pairwise primes, then the cardinality of C would have

been very large, and it would become difficult for the verifier to maintain such a large

set. Hence to reduce memory usage as well as to improve security, we used pairwise

random numbers.

This can be explained with an example as follows: Consider the set of first 6 primes

C = {2, 3, 5, 7, 11, 13}. To find relative primes, create three subsets and assign the

primes randomly from set C to these subsets, C1 = {2, 11} and C2 = {3, 13} and

C3 = {5, 7}. Now by inter-multiplying any number of elements in Ci, we obtain bi.

Therefore b1 = {2× 11}, b2 = {3× 13}, b3 = {5× 7} and so on. Hence if only three

b’s are needed, then b1 = 22, b2 = 39 and b3 = 35. The three numbers {b1, b2, b3} =

{22, 39, 35} are relatively prime with each other. If we pick any two numbers of the

three, their GCD will be one. For our scheme we are generating the co-primes of size

32-bit. For an intruder, it is challenging to guess these numbers which are generated

randomly during verification.

For the given standard elliptic curve parameters [a, b, q, P, n], our scheme generates

pairwise relative prime randomizers in the range [1 . . . n]. The reason for implementing

our scheme on ECDSA∗ is because the verification of ECDSA∗ signatures takes less

time compared to ECDSA signatures. The y-coordinates of the point Ri at the LHS of

Equations 3.1 and 3.2 in ECDSA are unknown when the verifier receives signatures.

Hence ECDSA requires extra time for verification since the computation of the y-

coordinates for each Ri involves solving for modular square roots. But in ECDSA∗,

62

3.2. Proposed Batch Verification Scheme

y-coordinates of the point Ri are known since the curve point R is sent directly in the

signature to the verifier. Hence the time to compute y-coordinate is reduced in ECDSA∗

signatures.

Algorithm 3.7: Our Scheme Key Generation Algorithm
Input: Standard domain parameters
Output: Key Pairs: Public Key- Q, Private Key- d

1. For an elliptic curve E(Fq), choose P of order n, P ∈ E(Fq).

2. Choose a random integer d such that 2 ≤ d ≤ n− 2.

3. Compute Q = dP .

Algorithm 3.8: Our Scheme Signature Generation Algorithm
Input: Message to be signed m, Private Key d, Elliptic Curve Domain

Parameters
Output: ECDSA Signature (m,R, s)

1. Signer chooses a random integer k, such that 2 ≤ k ≤ n− 2.

2. Compute R = kP .

3. r = x(R) mod n, where x(R) is x- coordinate of R.

4. Compute s = k−1(H(m) + dr) mod n.

The verification equation in case of single signer is given in Equation 3.3,
t∑
i=1

Ribi =

(
t∑
i=1

(biui)(mod n)

)
P +

(
t∑
i=1

(bivi)(mod n)

)
Q (3.3)

The verification equation for multiple signers is given in Equation 3.4
t∑
i=1

Ribi =

(
t∑
i=1

(biui)(mod n)

)
P +

(
t∑
i=1

(bivi)(mod n)Qi

)
(3.4)

Our scheme is implemented for ECDSA∗ signatures to reduce the overhead of

calculating R.y. Our proposed scheme can also be implemented for ECDSA signatures

too. The three Algorithms (3.7, 3.8, 3.9) explain our scheme for single and multiple

signers. In the verification Algorithm 3.9, bi’s are the relative prime numbers

whose generation has already been explained. The scheme incurs additional integer

multiplication for every signature. But this increased computation cost does not

63

3. Batch Verification of ECDSA∗ Signatures

Algorithm 3.9: Our Scheme Signature Verification Algorithm
Input: t number of ECDSA∗ signatures (mi, Ri, si), Public Key Q
Output: Signature Accept or Reject

1. Chooses t pairwise relatively prime randomizers b1, b2, . . . , bt < n,∈ Fq.

2. The verifier first computes ri, ri = x(Ri), where x(R) is x- coordinate of R.

3. The verifier computes wi = s−1i mod n.

4. Compute ui = h(mi)wi mod n.

5. Compute vi = riwi mod n.

6. Compute the LHS and RHS separately and verify the signatures with either of
Equations
3.3 or 3.4.

significantly affect the performance of the verification algorithm. The bi is generated

for every signature to be verified. Hence the intruder cannot guess the value of bi

beforehand.

Hence with ECDSA∗ signatures, the overhead of computing point R by calculating

R.y is reduced at the verifier. The signer sends the entire point R in the signature along

with s, instead of R.x and s. Therefore one major step of calculating R.y is reduced

during verification. In the results section, we provide the performance of our scheme

implemented for ECDSA∗ signatures.

As per the results in Antipa et al. (2005), implementing ECDSA∗ signatures

increases the performance of verification by 40%. Therefore from the algorithm for

ECDSA∗ signature verification, we can observe that the amount of time spent in

calculating the R.y for every signature is reduced with a minor increase in the signature

size. The proposed scheme is very similar to the scheme introduced by Karati et al.

(2012a). The only difference is the generation of bi during verification. In the Karati

et al. (2012a) scheme, the bis are generated randomly, and in the proposed scheme, we

are using random relative prime numbers which require less memory space and provide

more security.

Our focus is on developing a batch signature verification scheme for IoT. The IoT

64

3.3. Security Analysis

environment requires a fast and secure batch verification scheme since they have low

computing power, which makes them more vulnerable to external attacks. Hence a

scheme which requires less computation and is more secure proves to be suitable for

IoT. Therefore the proposed scheme, which is faster as well as secure compared to most

of the other batch verification schemes, is more suitable for IoT applications.

3.3 SECURITY ANALYSIS

In ECDSA∗ algorithms, the signature (mi, Ri, si) is generated by the signer. The

proposed scheme is a batch verification scheme for ECDSA∗ signatures. Our scheme

is different from naive batch verification scheme for ECDSA∗ signatures, only in

verification algorithm.

For ECDSA∗ signature scheme, the entire Ri is part of the signature generated by

the signer, which reduces the time of reconstruction of yi at the verifier. But this exposes

entire Ri to the adversary. Hence disclosing R1, R2, . . . Rt will expose both xi and yi

coordinates of every Ri, which makes the naive batch verification scheme for ECDSA∗

signatures vulnerable to forgery attacks. Hence introducing t pairwise relative prime

randomizers makes such forgery attacks infeasible. The attacker finds it very difficult

to guess the numbers generated. A l-bit relative prime number can enhance security by

2l. We have also presented a forgery attack later on the schemes which use only random

prime numbers during batch verification. Even though the proposed batch verification

scheme experiments for ECDSA∗ signatures, the scheme can also be applied to ECDSA

signatures too, since both the schemes are equally secure (Antipa et al. (2005)).

3.3.1 Possible Attacks on the Existing Schemes

1. In the attack stated by Bernstein et al. (2012), an attacker generates two forged

signatures among the t signatures. Therefore the verifier has only t−2 valid signatures.

If the two forged signatures are (r, s) and (r,−s) for the same message m, generated

with the same key pair (d,Q), then the naive batch verification algorithm verifies and

accepts all the t signatures. This attack on naive ECDSA and ECDSA∗ is successful

when all the other signatures are from the same signer.

To overcome such an attack, our scheme generates random pairwise primes during

65

3. Batch Verification of ECDSA∗ Signatures

verification. Therefore it becomes challenging for the attacker to guess the number

generated at the verifier. For a l bit relative prime, it takes around 2l tests to arrive at

the number, which is practically impossible to guess for the attacker. Hence our scheme

can tackle this attack since the attacker cannot guess the random number generated by

the verifier during verification.

2. In the second attack as stated in Karati et al. (2012a), the attacker has knowledge

of the valid key pair (d1, Q1). The attacker tries to forge the signature for message

m2 by generating (r2, s2) under any valid key Q2 along with the key Q1 for message

m1. The values r2 and s2 can be found as, R2 = k2P and r2 = x(R2) with random

s2. Now for another message m1, R1 is computed as R1 = r2s
−1
2 Q2 and r1 = x(R1)

and s1 = (H(m1) + r1d1)(k2 − H(m2)s
−1
2)−1. During batch verification using naive

method, R1 +R2 = (H(m1)s
−1
1 +H(m2)s

−1
2)P + r1s

−1
1 Q1 + r2s

−1
2 Q2, which is same

as (k2P + r2s
−1
2 Q2). Therefore these signatures are verified as valid for the naive batch

verification.

In this attack, the attacker tries to forge the signatures and pass the verification test.

But he/she fails to guess the relative prime number generated during verification for

every signature. Hence the forger has to guess this number of l bits length from 2l

possibilities for every signature which is practically impossible. In our scheme, we are

generating 32-bit co-prime numbers at the verifier, which challenges the attacker to try

all 232 possibilities to arrive at the number. Therefore our verification scheme ceases

the possibility of accepting these invalid signatures.

3. In the third attack, we explain the possibility of an attack if we use the random prime

numbers instead of relative primes for verifying ECDSA∗ signatures.

Theorem 3.1
The following statements are equivalent:

(a) There is an efficient batch verification algorithm

Batch(m1,m2, b, b1, b2, P,Q) = (R1, R2, s1, s2) for verifying ECDSA∗ signatures

(wherem1,m2 are the messages and b, b1, b2 are randomly generated primes) such

66

3.3. Security Analysis

that:

R1b+R2bi

= (bs−11 H(m1) + bis
−1
2 H(m2)) mod n P + (bs−11 r1 + bis

−1
2 r2) mod n Q (3.5)

where b 6= b1 6= b2

(b) An algorithm exists to break this batch verification test.

Proof: In order to prove that (a) =⇒ (b), one has to choose b, b1, b2 in such a way

that b′ = b1− b2 has an inverse modulo n and compute Batch(m1,m2, b, b1, b2, p, Q) =

(r1, r2, s1, s2)

R1b+R2bi = (bs−11 H(m1) + bis
−1
2 H(m2)) mod n P + (bs−11 r1 + bis

−1
2 r2) mod n Q

(3.6)
Now by subtracting the Equation 3.6 for i = 1, 2, we get

(R1b+R2b1)− (R1b+R2b2) =

((bs−11 H(m1) + b1s
−1
2 H(m2)) mod n P + (bs−11 r1 + b1s

−1
2 r2) mod n Q) −

((bs−11 H(m1) + b2s
−1
2 H(m2)) mod n P + (bs−11 r1 + b2s

−1
2 r2) mod n Q) (3.7)

Therefore the equation leads to,

R2b
′ = (b′s−12 H(m2)) mod n P + (b′s−12 r2) mod n Q (3.8)

Now by taking b′th roots mod n on both the sides, since b′ has an inverse modulo n, the

signature (m2, r2, s2) passes the batch verification and individual ECDSA∗ verification

tests.

Therefore a lemma can be stated as the immediate consequence to Theorem 3.1:

Lemma 3.2
If all the bis are picked in a set M and are pairwise relatively prime, and are smaller

than n then,

Ω(M) = Pr
[
BATCH(bi ∈M, {{r, s}, {r′, s′}}) = True|

ECDSA∗({r, s}) ∧ ECDSA∗({r′, s′}) = False
]

= 1
|M |2−|M |

∼= |M |−2 (3.9)

Proof: Here the probability of batch verification returning True and two ECDSA∗

67

3. Batch Verification of ECDSA∗ Signatures

verification having the same b is inversely proportional to the cardinality of M . To

prove the same, consider a natural set M of primes which are less than certain bound,

which is decided depending upon the application. To optimize the cardinality of M ,

lets us denote M as a set of first m primes and let f(m) be such that Sf(m)
m is maximal.

For computing b1, b2, . . . , bf(m), M has to be randomly partitioned into f(m) classes

M1,M2, . . . ,Mf(m), and the elements in each Mi are multiplied in combination within

each class, to obtain bi. This generates pairwise prime numbers from an optimized set

M .

From the Lemma 3.2, it is clear that we can reduce the cardinality of M and still

manage to generate relative co-prime numbers more than the cardinality of M . That

is, if the cardinality of M is m, then we can still generate more than m pairwise prime

numbers. That is the reason behind considering pairwise co-prime random numbers

rather than random primes. If only primes are considered, then the size of M has to

be very large. Hence we are generating pairwise co-primes, to restrict the cardinality

of M and generate more b’s. These co-primes have an added advantage in security. If

the numbers are only prime numbers, then more than 50% of the computation for the

attacker is reduced, since all the even and composite numbers are eliminated.

3.4 RESULTS AND ANALYSIS

In this section, we provide the results of implementing the proposed batch verification

scheme for ECDSA∗ signatures. We also provide the results of existing batch

verification schemes for ECDSA and make a comparative study. All the parameters

considered for experimentation are standard parameters suggested by NIST (National

Institute of Standards and Technology).

We have applied the proposed batch verification scheme on three NIST suggested

curves: (P-192), (P-224) and (P-256) curves. We have analysed the runtime values,

the speedup values of all the three curves. We have also provided the speedup and

verification time values for multiple signers as well single singer, for all the curves.

The experimentation is carried out on a Rock cluster CentOS 6.0 system. The

processor is Intel® Xeon® E5-2650. There are seven machines, and each machine has

68

3.4. Results and Analysis

twenty cores. And each core runs on 2.3 GHz processor. We have implemented using

the library CyptoPP. CryptoPP or Crypto++ is an open source class library for C++ for

cryptographic algorithms and functions. CryptoPP supports most of the cryptographic

schemes and primitives. The library supports a variety of compilers and all major

operating systems.

We have compared the verification time and speedup values of various schemes in

this section. The columns indicate the verification time values for different schemes,

including our schemes.

• Batch Size: Indicates the number of signatures in the batch.

• Individual: These values indicate the time of verification if the signatures are

verified individually.

• Naive ECDSA: This indicates the time taken by the naive batch verification

scheme for ECDSA signatures.

• Naive ECDSA∗: It indicates the verification time taken by the naive batch

verification scheme for ECDSA∗ signatures.

• S1: The verification time for the Algorithm S1 for ECDSA signatures.

• S2: The verification time for the Algorithm S2 for ECDSA signatures.

• Our Scheme: The verification time taken by the proposed batch verification

scheme for ECDSA∗ signatures.

3.4.1 Verification Times

The proposed batch verification scheme for ECDSA∗ signatures is compared with

existing batch verification schemes for ECDSA signatures. The results are also

compared with the sequential verification of ECDSA signatures. We first provide the

verification time values for single and multiple signers and later we discuss the speedup

gained by using the batch verification schemes over sequential verification.

69

3. Batch Verification of ECDSA∗ Signatures

Single Signer

For single signer, we have provided results for all the three curves. We can observe one

interesting fact that, the curve P-192 takes more verification time compared to the other

two curves. The performance of the curve P-224 and P-254 are almost same. Among

the two, the curve P-224 proves to be mostly suited for batch verification schemes for

ECDSA signatures as well as individual verification for single signer.

Table 3.2: Verification Time for the curve (P-192) for Single Signer (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.108 0.056 0.056 0.056 0.055 0.057

3 0.498 0.184 0.175 0.191 0.18 0.182

4 0.709 0.214 0.184 0.275 0.214 0.198

5 0.896 0.256 0.194 0.605 0.297 0.25

6 1.163 0.298 0.213 2.326 0.546 0.302

7 1.626 0.351 0.258 6.775 4.065 0.354

8 2.213 0.427 0.313 - - 0.517

16 9.201 0.892 0.661 - - 0.963

32 28.64 1.429 1.108 - - 1.844

64 78.32 2.728 2.255 - - 3.341

Table 3.3: Verification Time for the curve (P-224) for Single Signer (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.1575 0.091 0.090 0.081 0.08 0.091

3 0.280 0.118 0.113 0.104 0.113 0.098

4 0.412 0.144 0.135 0.146 0.120 0.140

5 0.536 0.180 0.145 0.319 0.161 0.151

6 0.732 0.242 0.178 1.22 0.293 0.193

7 0.888 0.256 0.191 4.44 0.986 0.203

8 1.067 0.273 0.212 - - 0.235

16 2.74 0.403 0.333 - - 0.421

32 8.94 0.789 0.663 - - 0.803

64 32.11 1.5408 1.284 - - 1.596

Tables 3.2, 3.3 and 3.4 represent the verification time taken by the three curves for

a batch of signatures signed by single signer. We can observe from the tables that, the

verification time taken by the naive batch verification schemes is less than the proposed

70

3.4. Results and Analysis

Table 3.4: Verification Time for the curve (P-256) for Single Signer (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.153 0.079 0.079 0.078 0.077 0.079

3 0.276 0.102 0.096 0.105 0.097 0.102

4 0.457 0.135 0.12 0.154 0.13 0.131

5 0.663 0.173 0.14 0.338 0.19 0.157

6 0.866 0.240 0.162 1.209 0.307 0.187

7 1.093 0.225 0.172 2.876 1.271 0.201

8 1.385 0.238 0.186 - - 0.223

16 4.737 0.408 0.332 - - 0.431

32 18.703 0.758 0.627 - - 0.815

64 76.462 1.52 1.275 - - 1.630

scheme, since our scheme generates the relative pairwise primes for security. Therefore

our scheme has higher number of modular addition and scalar multiplication operations.

We have already discussed the attacks on the naive verification. S1 and S2 schemes are

efficient for smaller batch sizes, but as the batch size increases, they become impractical.

Hence they are not applied for higher batch sizes. The batch verification schemes

definitely have significant improvement over individual verification of signatures in

sequential manner.

Multiple Signers

In case of verification time for multiple signers, again the curve P-224 performs

better than the other two curves. In case of multiple signers verification time, the

batch of signatures contains signatures signed by more than one signer. Hence such

a batch requires more time for verification. The verification time values for individual

verification does not change for single and multiple signers.

Tables 3.5, 3.6 and 3.7 represent the verification time values for batch of signatures

signed by multiple signers. Table 3.5 is for the curve P-192 and the Tables 3.6 and

3.7 are respectively for the P-224 and P-256 curves. The efficiency gained through

batch verification for multiple signers over individual verification is not very significant

as compared to the efficiency gained for single signers. In case multiple signers too,

the proposed scheme’s performance is comparable to the performance of naive batch

71

3. Batch Verification of ECDSA∗ Signatures

Table 3.5: Verification Time for the curve (P-192) for Multiple Signers (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.108 0.08 0.083 0.087 0.08 0.09

3 0.498 0.35 0.339 0.356 0.35 0.389

4 0.709 0.477 0.472 0.545 0.51 0.537

5 0.896 0.618 0.56 0.985 0.64 0.66

6 1.163 0.868 0.705 2.91 0.99 0.843

7 1.626 1.355 0.945 5.42 1.827 1.169

8 2.213 1.75 1.28 - - 1.574

16 9.201 7.25 5.11 - - 6.35

32 28.64 21.12 15.31 - - 19.48

64 78.32 55.23 41.22 - - 52.8

Table 3.6: Verification Time for the curve (P-224) for Multiple Signers (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.1575 0.13 0.127 0.122 0.12 0.135

3 0.280 0.21 0.210 0.2 0.195 0.221

4 0.412 0.307 0.290 0.31 0.275 0.311

5 0.536 0.412 0.37 0.531 0.383 0.398

6 0.732 0.567 0.47 1.49 0.653 0.536

7 0.888 0.632 0.562 2.69 1.03 0.645

8 1.067 0.751 0.667 - - 0.768

16 2.74 1.879 1.62 - - 1.925

32 8.94 5.87 5.02 - - 6.144

64 32.11 20.73 17.54 - - 21.81

verification scheme for ECDSA signatures. But the proposed scheme can not surpass

the performance of naive batch verification ECDSA∗ signatures, because our scheme

has more number of modular addition and scalar multiplication operations.

3.4.2 Speedup Values

In the previous subsection, we analysed the verification time for different NIST elliptic

curves for both single as well as multiple signers. Next is to study the speedup gained

by the batch verification schemes compared to ideal speedup for all the three curves.

Initially we provide speedup values for batches signed by single signer. Later we discuss

the speedup gained when multiple signers sign the signatures in the batch.

72

3.4. Results and Analysis

Table 3.7: Verification Time for the curve (P-256) for Multiple Signers (sec)
Batch Size Individual Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.153 0.116 0.116 0.116 0.115 0.128

3 0.276 0.194 0.19 0.194 0.189 0.215

4 0.457 0.30 0.295 0.319 0.305 0.344

5 0.663 0.44 0.404 0.619 0.44 0.487

6 0.866 0.61 0.52 1.574 0.66 0.627

7 1.093 0.761 0.63 3.036 1.23 0.786

8 1.385 0.969 0.819 - - 0.988

16 4.737 3.025 2.513 - - 3.273

32 18.703 11.82 10.33 - - 12.80

64 76.462 49.04 40.456 - - 51.63

Single Signer Speedup

In a batch of signatures signed by single signer, the ideal speedup is the expected

speedup. All the other batch verification schemes are compared with the ideal speedup

and the schemes whose speedup values are close to ideal speedup are considered

efficient.

Table 3.8: Speedup for the curve (P-192) for Single Signer
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 2 1.92 1.92 1.92 1.96 1.89

3 3 2.70 2.84 2.6 2.76 2.73

4 4 3.3 3.85 2.57 3.31 3.58

5 5 3.5 4.61 1.48 3.01 3.5

6 6 3.9 5.45 0.50 2.13 3.85

7 7 4.62 6.3 0.24 0.4 4.5

8 8 5.18 7.06 - - 4.28

16 16 10.3 13.9 - - 9.55

32 32 20.04 25.8 - - 15.53

64 64 28.7 34.73 - - 23.44

The Tables 3.8, 3.9 and 3.10 represent the speedup details with respect to ideal

speedup, for various batch verification schemes. For a batch size (< 6), the Algorithm

S2 performs considerably well. For batch sizes higher than that, the performance of

73

3. Batch Verification of ECDSA∗ Signatures

Table 3.9: Speedup for the curve (P-224) for Single Signer
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 2 1.73 1.75 1.95 1.98 1.73

3 3 2.37 2.47 2.69 2.82 2.85

4 4 2.85 3.05 2.82 3.43 2.94

5 5 2.97 3.69 1.68 3.3 3.55

6 6 3.02 4.11 0.6 2.5 3.79

7 7 3.47 4.64 0.2 0.9 4.37

8 8 3.91 5.03 - - 4.54

16 16 6.8 8.23 - - 6.5

32 32 11.3 13.48 - - 11.1

64 64 20.8 25 - - 20.12

Table 3.10: Speedup for the curve (P-256) for Single Signer
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 2 1.94 1.94 1.96 1.98 1.92

3 3 2.70 2.87 2.62 2.84 2.7

4 4 3.38 3.81 2.97 3.5 3.48

5 5 3.83 4.73 1.96 3.48 4.22

6 6 3.6 5.34 0.71 2.82 4.63

7 7 4.86 6.35 0.38 0.86 5.44

8 8 5.82 7.44 - - 6.21

16 16 11.6 14.27 - - 10.99

32 32 24.67 29.83 - - 22.95

64 64 50.09 59.97 - - 46.9

Algorithm s S1 and S2 decreases. The speedup of S1 and S2 decreases drastically as

the batch size increases. More the gain over individual verification time, more is the

speedup. Hence the speedup for P-256 is high and not P-224. The speedup of proposed

scheme is comparable to the speedup gained by the naive batch verification for ECDSA.

Multiple Signers Speedup

The speedup gained for multiple signers can not be same as for single signers. Since

the number of operations in case of multiple signers is more. The ideal speedup for

multiple signers is given by 2t
t+1

, where t is the batch size.

74

3.4. Results and Analysis

Table 3.11: Speedup for the curve (P-192) for Multiple Signers
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 1.33 1.28 1.30 1.23 1.34 1.17

3 1.50 1.42 1.47 1.4 1.41 1.279

4 1.60 1.5 1.50 1.30 1.39 1.321

5 1.67 1.45 1.60 0.91 1.4 1.358

6 1.71 1.34 1.65 0.4 1.17 1.379

7 1.75 1.20 1.72 0.30 0.89 1.391

8 1.78 1.26 1.73 - - 1.406

16 1.88 1.27 1.80 - - 1.448

32 1.94 1.35 1.87 - - 1.470

64 1.97 1.41 1.9 - - 1.483

Table 3.12: Speedup for the curve (P-224) for Multiple Signers
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 1.33 1.21 1.24 1.29 1.32 1.16

3 1.50 1.34 1.33 1.40 1.43 1.267

4 1.60 1.34 1.42 1.33 1.50 1.322

5 1.67 1.30 1.45 1.01 1.4 1.346

6 1.71 1.29 1.55 0.49 1.13 1.365

7 1.75 1.4 1.58 0.33 0.86 1.377

8 1.78 1.42 1.6 - - 1.388

16 1.88 1.45 1.69 - - 1.423

32 1.94 1.52 1.78 - - 1.455

64 1.97 1.55 1.83 - - 1.472

The Tables 3.11, 3.12 and 3.13 represent the speedup values for a batch of signatures

signed by multiple signers. The speedup gained by all the three curves for multiple

signers are very similar. The speedup gained for multiple signers is not as significant as

the speedup for single signers.

From all the verification time results and speedup results for the three curves and

various number of signers, it is clear that the naive batch verification scheme for

ECDSA∗ signatures is the most efficient one. But as mentioned in the possibility of

attacks in Section 3.3.1, the scheme is not very secure. Hence our scheme is the little

75

3. Batch Verification of ECDSA∗ Signatures

Table 3.13: Speedup for the curve (P-256) for Multiple Signers
Batch Size Ideal Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 1.33 1.32 1.31 1.31 1.32 1.19

3 1.50 1.42 1.45 1.42 1.46 1.281

4 1.60 1.50 1.55 1.43 1.5 1.329

5 1.67 1.51 1.64 1.07 1.49 1.360

6 1.71 1.42 1.67 0.55 1.31 1.380

7 1.75 1.43 1.72 0.36 1.89 1.39

8 1.78 1.43 1.69 - - 1.402

16 1.88 1.566 1.74 - - 1.447

32 1.94 1.58 1.81 - - 1.461

64 1.97 1.56 1.89 - - 1.481

modification to the naive scheme for ECDSA∗ signatures and increases the security of

the batch verification.

3.4.3 Computation Cost Analysis

In this subsection, we analyse the execution time of various ECC operations obtained

during our experimentation. The verification time of the proposed batch verification

scheme is very similar to the naive batch verification scheme for ECDSA∗ with a

difference in extra computation of random co-prime numbers in the proposed scheme.

We explain these computations in detail one by one.

We will analyse the various operations of naive batch verification of ECDSA∗

signatures and the proposed scheme for a given batch of t signatures.

Table 3.14: Various Operations of batch verification for Single Signer

Operation
No. of Computations

ECDSA∗ Our Scheme
Point Addition t t

Scalar Multiplication 2 t+2
Modular Multiplication 2t 4t

Batch verification algorithm for ECDSA∗ signatures has various time consuming

operations such as Point Addition, Scalar Multiplication. These operations affect the

76

3.4. Results and Analysis

Table 3.15: Various Operations of batch verification for Multiple Signers

Operation
No. of Computations

ECDSA∗ Our Scheme
Point Addition 2t-1 2t-1

Scalar Multiplication t+1 2t+1
Modular Multiplication 2t 4t

verification time of signatures and also help in analysing and comparing the efficiency

of the various schemes. Tables 3.14 and 3.15 provide the number of operations

required for verification using naive batch verification scheme and our proposed

scheme for ECDSA∗ signatures. In Table 3.14, we can observe that the proposed

scheme has relatively higher number of scalar and modular multiplications for single

signer as compared to the naive batch versification scheme. Similarly 3.15 represents

the operation-count for batch verification schemes for signatures signed by multiple

signers.

Now we analyse the time taken by the two compute-intensive operations: Point

Addition and Scalar Multiplication.

Table 3.16: Execution Time for expensive operations
Operation Time (sec)

Point Addition 2.193×10−5

Scalar Multiplication 3.24×10−3

From Table 3.16, we can observe that scalar multiplication takes more computation

time than point addition. Even though our scheme has a higher number of scalar

multiplications, but it is resistant against forgery attacks which the naive batch

verification scheme is not. But the number of point addition operations remains the

same for both the schemes. Hence the overhead incurred is minimum compared to the

security it provides.

77

3. Batch Verification of ECDSA∗ Signatures

3.4.4 Running Time Analysis

In the previous subsection, we analyzed the performance of the proposed scheme as

well as a few existing schemes. The schemes S1 and S2 have various running time

complexities. Most of the time is consumed in solving the multivariate equations to

arrive at the value of R.y. Therefore the running time of the Algorithm S1 as stated

by Karati et al. (2012b) is, Θ(m3) where m = 2t and t is the batch size. The running

time of the naive scheme involves the computation of t modular square roots in Fq. If

we assume the time for each square root computation as σ, then the complexity can be

stated as O((σ + m)t). We can observe that the Algorithm S1 can perform better than

naive algorithm only if (σ + m)t � m3 and it happens only if the batch size is small,

i.e., if t < 6.

Similarly, Algorithm S2 has the running time complexity ofO(mt2), which is better

than Θ(m3) for Algorithm S1. Therefore (σ + m)t� O(mt2) condition is not always

true in all cases. For smaller batch sizes, Algorithm S2 performs better than naive

algorithm whereas (σ +m)t� m3 is true in most of the cases.

We analyzed that the running time of naive, S1, and S2 schemes depends on

recreating the point R from R.x and finding the value of R.y. In our scheme, we

have implemented the algorithm for ECDSA∗ signatures where there is an increase

in the signature size, which significantly reduces the computation of R.y. Hence the

performance of our scheme is better than S1 and S2 for varied batch sizes and is in

comparison with naive ECDSA verification. The naive scheme has overhead because

of the square root calculation, and our scheme has overhead in generating the pairwise

relative prime numbers during verification. Hence their speedup almost goes hand in

hand. The complexity of generating these primes is O(t ∗ loglogt).

3.5 SUMMARY

This chapter proposes a new batch signature verification algorithm for ECDSA∗

signatures. The proposed scheme is suitable for devices with low computation power

since the scheme uses ECDSA∗ signatures, which are 40% faster in verification

compared to ECDSA signatures. We have shown that the proposed scheme performs

78

3.5. Summary

better since it is independent of the batch size of signatures. Hence even though few

of the existing schemes perform better than the proposed scheme, they are not efficient

for batch sizes greater than 6 (t ≥ 6). The execution time and the speedup gained by

various existing schemes and our scheme are also discussed in multiple cases like single

and multiple signers, varied batch sizes, and also for different elliptic curves.

The proposed technique is based on the use of Sterling numbers of the second

kind to generate the relative prime numbers during the signature verification. The

chapter also discussed how the existing time-efficient techniques are vulnerable to

attacks. Hence to design a batch verification scheme for IoT, we first developed a

lightweight and secure verification scheme for IoT. This chapter introduced a novel

batch verification approach to verify multiple signatures in the IoT network. The

proposed scheme successfully identifies the presence of faulty signatures in the given

batch of digital signatures efficiently.

The proposed scheme only tests for the presence of any faulty signatures in a given

batch of ECDSA∗ signatures. But the scheme does not identify the location of the

bad signature/s. To determine the location, we need other schemes which are efficient

for IoT, i.e., which involves less computation. Hence our next objective is to design a

scheme to identify the bad signatures in the batch that has failed the verification test.

79

Chapter 4

BAD SIGNATURE IDENTIFICATION IN BATCH
VERIFICATION

4.1 INTRODUCTION

Many digital signatures can be verified at a time in a batch using various batch

verification schemes. There are multiple batch verification schemes (Cheon and Yi

2007; Fiat 1989; Kittur and Pais 2017) available for various digital signature algorithms

as discussed in Chapter 2. Most of the batch verification schemes accept a batch of

signatures and verify whether the batch has any faulty signature/s. If all the signatures

in the batch are valid, then the output of verification is True, and if one or more bad

signatures exist in the batch, then it returns False.

The secure and efficient batch verification scheme for ECDSA∗ signatures proposed

in Chapter 3 does not identify the index of bad signature. Hence there are various

techniques introduced to identify the bad signature/s within a batch. The default

way to find the faulty signature is sequential verification, where every signature is

individually verified to find the faulty one. There are many other techniques such as

Divide-and-Conquer (Pastuszak et al. 2000a; Seungwon et al. 2006), Hamming code

verifier (Pastuszak et al. 2000a), etc. to identify the faulty signatures in a given batch

of signatures. The existing bad signature identification schemes are either costly in

computation or have restriction on the number of bad signatures in the batch. The

Hamming code verifier has a restriction on the number of signatures in the batch to

identify the faulty signatures. Hence it is essential to have schemes which do not pose

81

4. Bad Signature Identification in Batch Verification

any such restrictions on the batch of signatures to identify the faulty signature. Since

our aim is to design bad signature identification scheme for IoT applications. Hash

function is one such function which is lightweight and secure and also a standard. But

only hash based authentication does not satisfy the non-repudiation property, where it is

difficult to prove the signer of the signature as explained in example 9.64 in Katz et al.

(1996).

Hence the first scheme proposed is based on the hash function, which harnesses the

advantages of hash based authentication scheme (Krawczyk et al. 1997). Hence in the

proposed hash based bad signature identification scheme, the verifier performs batch

verification, and if the output of batch verification is False, then the hash value of every

signature is verified sequentially. To further reduce the bad signature identification

time, we have also proposed schemes based on error control codes to verify each of the

signatures in the batch to identify the faulty one. Hence the next scheme is based on

Cyclic Redundancy Check (CRC) codes (Peterson and Brown 1961) which are Error-

Detection codes to identify the bad signature. The other scheme is based on the Low-

Density Parity-Check (LDPC) codes (Gallager 1962; MacKay and Neal 1996) which

are error detection codes. LDPC codes are used for detecting and correcting data bits

during transmission.

In all the proposed schemes, the signer generates a signature for the given message

and encodes it using encoder (either Hash or CRC or LDPC encoder) to create the

codeword by adding the check-bits to the signature. This codeword is sent to the verifier

along with the message and signature. The verifier performs batch verification, and if

the output of batch verification is False, then the signatures are individually decoded

using decoders (either Hash or CRC or LDPC) to verify the signatures individually and

identify the faulty ones.

The contributions of the chapter are :

• Proposed an efficient hash based bad signature identification scheme inspired

from the advantages of HMAC (Krawczyk et al. 1997) authentication scheme.

• Proposed a novel efficient CRC-based bad signature identification scheme based

82

4.2. Preliminaries

on the error-detection codes.

• Proposed a novel error correction code based scheme to identify the faulty

signature using LDPC codes.

The chapter is organised as follows: Section 4.1 is for introduction, Section 4.2

briefs the existing bad signature identification schemes. In Section 4.3, we learn the

hash based bad signature identification scheme in detail and Section 4.4 is for CRC

based scheme and Section 4.5 for LDPC based scheme. The results for all the schemes

are provided in Section 4.6 and the chapter is summarized in Section 4.7.

4.2 PRELIMINARIES

In this section, we are providing some of the important algorithms which are referred in

the chapter later. First we study the three algorithms proposed by Bellare et al. (1998).

These algorithms are also known as Generic Tests (GT) as stated by Pastuszak et al.

(2000a), which can be used to refer to batch verification of signatures. The efficiency

of these schemes depend on the size of the batch of signatures being verified. Hence in

the rest of the chapter, we also refer to batch verification as Generic Test (GT).

The three GTs are: Random Subset Test presented in Algorithm 4.1, Small

Exponents Test presented in Algorithm 4.2 and Bucket Test presented in Algorithm

4.3. In the GT Algorithms presented, g is the generator of the group G and xi ∈ Zq and

yi ∈ G for i = 1, 2, . . . , t with security parameter l. The GT Algorithm is represented

as GT(m, s, t), indicating message m, signature s and batch size t.

Next, we study the algorithms used to find faulty signatures when the batch

verification using GT fails. Hence there are multiple schemes to identify the faulty

signature/s in the failed batch. In the sequential verification, the signatures in the batch

are individually verified in sequence as shown in Algorithm 4.4, to identify the index

of bad signature/s. This is also the default or the naive method of locating the bad

signature.

The next approach in finding the index of the bad signature is the Divide-and-

Conquer (DC) verifier (Pastuszak et al. 2000a; Seungwon et al. 2006). The entire

83

4. Bad Signature Identification in Batch Verification

Algorithm 4.1: Random Subset Test
Input: Batch of t message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st))
Output: Signatures Accept or Reject

1. For every signature si, i = {1, 2, . . . , t}, select bi ∈ {0, 1} in random.

2. Select a set S of n signatures, where n < t, where bis are equal to 1.

3. For all the selected sj, j ∈ 1, . . . , n, perform standard batch verification.

4. If the batch verification succeeds, accept the signatures, otherwise reject and
repeat the batch verification test for various sub-set of signatures .

Algorithm 4.2: Small Exponents Test
Input: Batch of t message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st))
Output: Signatures Accept or Reject

1. Generate random number ui ∈ {0, 1}l, for every signature si.

2. Apply the random number on both sides of naive batch verification equation.
For RSA batch verification, compute,
x =

∑t
i=1 xiui and y =

∏t
i=1 y

ui
i and verify if gx = y.

3. If the verification succeeds, then accept the batch of signatures, otherwise
reject.

Algorithm 4.3: Bucket Test
Input: Batch of t message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st)),

integer v ≥ 2 and computes V = 2v, where V are buckets
Output: Signatures Accept or Reject

1. For every si, i ∈ {1, 2, . . . , t}, pick Vj from j ∈ {1, . . . , V } randomly. This
means place all signatures randomly in the V buckets.

2. For every bucket Vj from j ∈ {1, . . . , V }, apply standard batch signature
verification algorithm on all signatures in the bucket.

3. Repeat the same batch verification test for dl/(v − 1)e times and accept the
batch of signatures if all the sub- tests accept.

batch of given signatures is verified through one of the GTs. If the test fails, then

the batch is divided into sub-batches which are again independently verified through

the same GT previously used. Then the sub-batches which fail the GT are again sub-

84

4.2. Preliminaries

Algorithm 4.4: Sequential Verifier
Input: Batch of t message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st))
Output: Signatures Accept or Reject

1. If GT outputs True, then accept all the signatures and exit, otherwise go to
next step.

2. For every signature si where i ∈ {1, 2, . . . , t} do,

(a) Apply GT verification, GT(mi, si, 1).

(b) If GT(mi, si, 1) = 1, then the signature is valid, increment i and move
to next signature.

(c) If GT(mi, si, 1) = 0, then the signature is invalid and add to the list L.

3. List all the signatures from the list L as invalid and exit

divided recursively to locate the bad signature. The DC verification algorithm is given

in Algorithm 4.5.

Algorithm 4.5: DC Verifier
Input: Batch of t message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st))
Output: Signatures Accept or Reject

1. t = 1, then verify the signature using the GT. If GT(m, s, 1) = 1, signature
is valid, otherwise invalid and exit.

2. If GT(m, s, t) = 1, where t > 1, then all signatures are valid and exit,
otherwise go to next step.

3. If the given batch has a few invalid signatures, then split the batch into α
sub-batches, α1, α2, . . . , αα, where every sub-batch has a set of t

α
signatures.

4. Now invoke the DC Verifier for every sub-batch αj , where j ∈ {1, 2, . . . , α}.

There are batch verification techniques such as Hamming Code verifier (Pastuszak

et al. 2000a) shown in Algorithm 4.6, which identify the invalid signature provided there

is only one bad signature in the given batch of signatures. Hence the scheme performs

batch verification and identifies the location of bad signature too, with a restriction on

the batch size.

One more approach to finding the illegal signature/s is based on ID codes proposed

85

4. Bad Signature Identification in Batch Verification

Algorithm 4.6: Hamming Verifier
Input: Batch of t = 2k − 1, k > 0, message-signature pairs

((m1, s1), (m2, s2), . . . , (mt, st))
Output: Index of bad signature

1. Apply GT on the received batch of signatures. If GT(m, s, t) = 1, accept the
signatures and exit, otherwise go to next step.

2. Next is to create k sub-batches,

(mi, si) = {(mj, sj)|hi,j = 1}

where i = 1, . . . , k and hi,j is an element the Hamming code parity matrix,
for which hi,j is equal to 1, otherwise ignored.

3. Perform GT(mi, si, 2
k − 1) = σi, for i = 1, . . . , k, depending on the result of

verification, the value of σi is decided.

4. If the value of σi = 0, then test is successful, else GT fails. The syndrome
(σ1, . . . , σk) indicates the bad signature positions.

5. Perform GT on the instances which are free from bad signatures. If the batch
instance is accepted then return the index, else exit.

by Pastuszak et al. (2000b) shown in Algorithm 4.7. The scheme can not detect all the

illegal signatures in the batch, it has the restriction on the number of bad signatures it

can detect in a batch.

Algorithm 4.7: ID codes based Verifier
Input: Batch of t message-signature pairs Bt = {(mi, si)|i = 1, . . . , t}
Output: Index of n bad signatures

1. Apply GT on the received batch of signatures. If GT(m, s, t) = 1, accept the
signatures and exit, otherwise go to next step.

2. The identification code IC(u, n) identifies a maximum of n bad signatures
in a collection of sub-instances (B1, B2, . . . , Bv) where Bi ∈ Bu.

3. The pattern S = (GT(B1), . . . ,GT(Bv)) identifies all the n faulty signatures.

The next bad signature identification schemes perform batch verification as well

as identify the bad signature in the batch (Li et al. 2010; Ren et al. 2015). Two

similar schemes are proposed based on the idea of placing signatures in the matrix

86

4.2. Preliminaries

form and identifying the bad signature by batch verifying signatures in each row and

column separately. One scheme considers two-dimensional matrix and is explained in

Algorithm 4.8 and the other considers three-dimensional matrix. The two verifications

schemes where the signatures are arranged in matrix fashion have certain disadvantages.

If one of the rows or columns have more than one bad signatures, then the schemes fail

to identify them. These two schemes are expensive, since the number of times the GT

is performed is more and depends on the batch size.

Algorithm 4.8: Matrix based Verifier
Input: Batch of t, message-signature pairs ((m1, s1), (m2, s2), . . . , (mt, st))
Output: Index of bad signature

1. The verifier generates a M ×N matrix such that M ×N ≥ t, and t random
numbers ri where i = 1, 2, . . . , t and ri ∈ {1, 2, . . . , t}.

2. Now the verifier fills the matrix positions with the signatures according to
the following equation,

s(M,N) =

{
s(d ri

N
e, n), if ri mod M = 0

s(d ri
N
e, ri mod n), otherwise

3. Now the verifier uses GT verification to verify every row and every column
individually. At the row side,

(
N∏
i=1

s(M,i))
e =

N∏
i=1

H(m(M,i)) mod n

At the column side:

(
M∏
i=1

s(i,N))
e =

M∏
i=1

H(m(i,N)) mod n

4. Find the rows and columns which fail the GT, and their overlapping location
points us to the location of bad signature.

In next section we study the hash based scheme proposed to identify the bad

signature. Since the existing schemes have the drawback in identifying the bad signature

in the batch, we have proposed hash based bad signature identification scheme.

87

4. Bad Signature Identification in Batch Verification

4.3 HASH BASED VERIFICATION SCHEME

Since the existing schemes either have restriction on the batch size or they are

computationally very expensive, it is important to have a secure and efficient scheme to

identify the bad signatures in a batch of signatures. Hence we have proposed a scheme

based on hash function. Hash function is lightweight and secure. The hash function has

an important property that it is a one-way function. Once the hash value for a string

is generated, the string cannot be traced back from the hash value. Hence hashing has

many advantages in cryptography and we have used the hash function to locate the

bad signature. Hash-based bad signature identification scheme is similar to HMAC

(Krawczyk et al. 1997). The algorithms for generating the codeword and verifying the

same using hash function are provided in this section.

Algorithm 4.9: Hash based Signature Generation
Input: Secret Key sk and message m1,m2, . . . ,mt

Output: ((m1, s1), (m2, s2), . . . , (mt, st))and (H1, H2, . . . , Ht)

1. Generate the message-signature pairs (mi, si) for t messages, using
the secret key sk of the signer for every message mi.

2. For every message-signature pair (mi, si), generate the hash values,
Hi = H(si).

3. Finally, send all the t hash values, message-signature pairs ((m1, s1, H1),
(m2, s2, H2), . . . , (mt, st, Ht)) across to the verifier.

As shown in Algorithm 4.9, we increase the length of the data to be sent across to

the verifier in the network by a few bits by appending hash value check-bits to generate

the codeword. This codeword is sent across to the verifier along with the message and

the signature.

The algorithm described in Algorithm 4.10 is for hash based signature verification

to identify the bad signature. We can see that the verifier performs the Generic batch

verification test for the given batch instance. If the batch is found faulty, the verifier

performs hash verification of individual signatures to locate the faulty one/s.

88

4.3. Hash Based Verification Scheme

Algorithm 4.10: Hash based Signature Verification
Input: ((m1, s1), (m2, s2), . . . , (mt, st))and (H1, H2, . . . , Ht)
Output: Index of bad signature

1. Stopping case: If t = 1, then if GT(m, s, 1) = 1, then the signature is valid
else is invalid.

2. If the instance x has signatures t > 1, then perform GT(mi, si, t), where
i ∈ 1, 2, . . . , t on the input x. If GT(mi, si, t) = 1, return True else go to
next step.

3. Hashing step: For every received data (mi, si, Hi), generate hash value for
the signature si. H ′i = H(si).

4. If H ′i
?
= Hi. The signature is valid if the hash values are equal, otherwise

invalid.

4.3.1 Comparative Analysis

In this section, we are making a comparative analysis of hash based verifier with

the existing sequential verifier signatures and DC verifier for ECDSA∗. During this

comparative analysis, we assume that the number of bad signatures is unknown at

the beginning of verification. To make a comparative analysis of the three algorithms

(sequential, DC, Hashing), we consider their performance in best, average, and worst

case scenarios. For convenience, we express the batch size t as αk, where α and k are

integers and n is the number of faulty signatures.

Best Case Analysis

In the best case scenario, we assume that there are no bad signatures in a given batch of

t signatures. Then the verifier performs GT batch verification in all the three cases, i.e.,

sequential, DC and hashing, as the first step. The GT verifier outputs ‘True′ since there

are no faulty signatures. Hence the number of GT verifications performed is just one in

all three algorithms.

Average Case Analysis

There are two possibilities in the average case. We will study one by one:

1. When there is only one faulty signature, i.e., n = 1 out of t = αk signatures

in a given batch. But as previously mentioned, the presence of a single faulty

89

4. Bad Signature Identification in Batch Verification

signature is unknown beforehand. The time complexity of the three algorithms

can be explained as follows:

(a) In case of the sequential verifier, GT batch verification fails at the beginning

due to the presence of faulty signature. The verifier then verifies every

individual signature to identify the faulty one. Since the number of faulty

signatures is not known, it has to look into every individual signature even

after identifying one faulty signature. Therefore the number of operations

are:

No. of GT: 1

No. of Individual Verifications: t = αk

(b) In case of DC verifier, the initial GT batch verification fails as explained

earlier. So the verifier now divides the given batch into α sub-instances,

and perform GT on every sub-instance. If any of the sub-instance fails the

GT, again sub-divide the sub-instance and perform GT and go on till you

identify the faulty signature. Now, in this case, there is only one faulty

signature, and hence, only one sub-instance fails. Hence we continue to

sub-divide the sub-instance until we reach the index of the faulty one.

No. of GT: ((α− 1 + 1
α

)k + 1)

(c) In hash based verifier, the verifier performs GT batch verification on the

batch of t signatures. The test fails since there is one faulty signature in it.

Then every signature is individually verified using hash verification. Hence

the verifier has to perform t hash verifications.

No. of GT: 1

No. of Individual Hash Verifications: t = αk

2. Next we consider a scenario where n number of signatures in a given batch size

of t signatures are faulty and n < t. The performance of the three algorithms can

be given as follows:

(a) In case of the sequential verifier, the GT batch verification test fails, and

since the number of faulty signatures is not known, the verifier checks all

90

4.3. Hash Based Verification Scheme

the t signatures individually to identify the faulty ones.

No. of GT: 1

No. of Individual Verifications: t = αk

(b) In DC verifier, the GT verification fails since there are multiple invalid

signatures. Suppose the batch instance is of size t = αk and the number

of faulty signatures is n = αr. In such a scenario the number of various

operations is

No. of GT: αr+1(k − r + 1)− 1

(c) In the hash based verifier, average case occurs when 50% of the signatures in

the given batch are faulty. Then each of the signature in the given batch has

to be verified using the hash algorithm to identify the faulty ones. Therefore

the number of operations performed to identify the faulty signatures is given

as,

No. of GT: 1

No. of Individual Hash Verifications: t

Worst Case Analysis

The worst case happens when all the t = αk signatures in a given batch are faulty, ie.,

n = t. In such a scenario, the performance of all the three algorithms are explained as

follows:

1. In sequential verifier, after the failure of the GT test, every signature in the given

batch is individually verified to identify the index of the faulty ones. The total

number of operations is

No. of GT: 1

No. of Individual Verifications: t = αk

2. In DC verification, the verifier divides the given instance into α sub-instances,

after the GT test fails. Then at every recursive step, the GT test fails for all

the sub-instances since all the signatures are faulty. Hence the total number of

operations is given as

No. of GT: nα−1
α−1

91

4. Bad Signature Identification in Batch Verification

3. In hash based verifier, the batch is first verified through GT, after which the batch

fails the verification test. Then all the signatures in the entire batch are verified

using hash verification. Hence the number of operations can be given as,

No. of GT: α + 1

No. of Individual Hash Verifications: t = αk

From the various case analysis, it is clear that hash based verifier needs more number

of hash computations than DC verifier in best and average cases, but in worst case, DC

verifier requires more number of verifications than hash. But there is one important

observation to be made here. Even though the number of hash verifications are high in

hash based verification, the time taken for one hash verification is very less than time

taken by GT. Time taken for one signature verification is same as the time taken by

GT for verification of batch of signatures with size one. The next subsection briefs the

verification time for GT and hash verifier.

4.3.2 Verification Time for Hash based verification

We performed hash based verification on a batch of signatures that fails the batch

verification test proposed in Chapter 3. The hash based scheme outperforms the

sequential verifier in total verification time needed to identify the faulty signature.

Table 4.1: Time required for various Verification operations

Operation Time in msec
for 1 sign appx

Time in msec
for 10 sign appx

Signature Verification 10 150

Hash Verification 6 70

As it can be seen from the Table 4.1, the time needed to perform one hash

verification is lesser than one signature verification. Hence in worst case, the hash

verification scheme performs better than the other existing schemes. Hence for DC

verifier, even though the number of GT are less than hash based verifier, hash verifier

takes less time because the time for one hash verification is less than signature

verification.

92

4.4. CRC based bad signature identification scheme

After the discussion of hash based verification scheme to identify the faulty

signature, one might think of performing only hash verification to verify the sender

and digital signature algorithm is unnecessary. Hash verification definitely verifies

authenticity and integrity of the sender, but it does not verify the non-repudiation

property. Hence it is difficult to prove that the message is indeed sent by the same sender

who he claims to be. Therefore we ask the sender to generate the signature also along

with codeword for every message, which is verified using batch verification before

performing hash verification. In order to further reduce the time needed to identify

the faulty signature, we are proposing CRC based code generation and verification in

next section.

4.4 CRC BASED BAD SIGNATURE IDENTIFICATION SCHEME

The proposed bad signature identification scheme is based on Cyclic Redundancy

Check (CRC) codes, which are error-detecting codes used in digital communication.

The receiver in any communication uses error detection codes to detect if the

received data has any occurrence of error during transmission. Before introducing our

verification scheme, first, we will brief error detection and CRC encoding and decoding

details in digital communication.

4.4.1 Error Detection Codes

Error detection is identifying errors caused during transmission between sender and

receiver, due to noise or other impairments intentionally or accidentally. Hence the

error detection schemes add extra bits to the data known as check bits. The sender

generates check bits which are added to the data bits to form the codeword which is

sent to the verifier. The verifier performs decoding operation to check if the received

codeword has any errors.

There are various error detection codes available based on the Hamming distance

(Sweeney 1991). Error detection codes generate check bits which are added to the data

which aids in the detection of communication errors. Error detection codes identify the

error in the received data, but not correct them unlike error correction codes. Some of

the popular error detection codes are:

93

4. Bad Signature Identification in Batch Verification

• Simple parity check

• Two-dimensional parity check

• Checksum

• Cyclic redundancy check

Simple Parity Check or One-dimension Parity Check:

This is one of the least expensive and most commonly used error detection code. In

this scheme, a parity bit is added to the data before sending to the receiver. The parity

bit is computed based on the number of 1’s in the data. If the data block contains an

odd number of 1’s, then a parity bit of 1 is added to make it even and if there are even

number of 1’s, then 0 (zero) is added as the parity bit to the data to form the codeword.

At the receiver, the parity bit is computed for the received data block and verified against

the received parity bit. Hence the modifications to the codeword can be detected at the

receiver.

Two-dimension Parity Check:

If even number of 1’s are modified in the codeword, then the single parity check

scheme does not recognize. Hence an improved two-dimension parity check scheme is

introduced. Here the entire data block is arranged as a matrix or as a table. The parity

bits are calculated for every row and every column. And the parity values for row and

column are added to the data and are sent to the receiver. At the receiver, the parity bits

are computed and verified against the received data.

Checksum:

In checksum error detection, the data bits are divided into fixed sized segments.

The sender adds the data segments by using 1’s compliment arithmetic to get the sum.

This sum is complemented to generate the checksum. This checksum is sent to the

receiver along with the data segments. Then at the receiver end, all the data segments

are added, including the checksum using 1’s compliment arithmetic. Then this sum is

complemented to verify the data bits. If the result of the compliment is zero, then there

are no errors in the received data or else there are errors.

94

4.4. CRC based bad signature identification scheme

Cyclic Redundancy Check (CRC):

CRC codes are one of the error detection codes, where the check bits or CRC bits

are calculated through binary division and are appended to the data unit to form the

codeword. The codes and other vectors are expressed as polynomial in x, where the

co-efficient of the exponent of x acts as the place marker, where a polynomial of length

l has a polynomial degree of l − 1.

The sender and receiver have a pre-agreed binary number, also known as

generator polynomial, whose coefficients represent the binary number, helps to generate

codeword and verify the same. The sender performs binary division of the data unit by

the pre-agreed number, and the remainder is appended to the data unit and sent to the

receiver. At the receiver, the codeword is divided by the pre-agreed number, and if the

remainder is zero, then the data is accepted, else rejected.

To calculate the CRC codes, first, append the data of length k bits with zeros of

length l − 1, where l is the length of the pre-agreed binary number. Therefore to

get a codeword of length n bits, the data is appended with n − k number of zeroes.

Then divide the data by the generator polynomial. The appended zeroes to the data

are replaced with the remainder of the division to form the n-bit codeword. And this

codeword is sent to the verifier. The codeword for the polynomial can be given as,

c(x) = d(x) + r(x)

where d(x) is the data and r(x) is the remainder. A generator polynomial g(x) of length

n− k is needed to generate the CRC bits. The CRC bits are generated as,

r(x) = Rg(x)(d(x)xn−k)

where (Rg(x)(d(x)xn−k)) is the remainder obtained after dividing d(x) by g(x). These

bits are appended to the data bits and sent. At the receiver, the received codeword is

divided by the generator polynomial. If the remainder of division is zero, then there

are no errors, else there are. Since we append the remainder of division to the data

to generate codeword at the sender side, the codeword becomes perfectly divisible by

g(x), unless it has been modified during transmission. Hence we are using the concept

of error detection codes in batch verification to identify faulty signatures quickly.

95

4. Bad Signature Identification in Batch Verification

The CRC error detection can be explained with an example as follows: Suppose the

coefficient of the generator polynomial is a 4-bit number 1011, and the data to be sent

is 1101. Now during the modulo-2 arithmetic division, the data 1101 is appended with

three zeroes 1101000 and is divided by 1011. The remainder is three-bit number 001,

which replaces three zeroes in the data to form 1101001 codeword. This codeword is

sent to the receiver. The receiver divides the codeword by the generator polynomial. If

the remainder of division results in zero, then there are no errors in the data received,

and if the result is non-zero, then there is a presence of error in the received data.

The drawbacks of some of the existing error detection codes are as follows:

• In simple parity checking, only single bit error can be detected. However, if

two errors appear in the same codeword, then the verifier considers it as a valid

codeword. Hence the simple parity check scheme can only detect an odd number

of errors in the codeword.

• In two dimension parity checking, the probability of detecting the errors in the

codeword increases drastically. But there is certain error which goes undetected.

If two bits in the data unit are erroneous and two bits in another data unit at

precisely the same position are damaged, then this error detection code cannot

detect such an error.

• The checksum scheme detects all kinds of errors, including the odd bit and even

bit errors too. But the drawback is that there is a possibility of two different data

segments to have the same checksum, which creates ambiguity. Hence it is risky

in practical implementation.

• CRC does not have any of the drawbacks as mentioned above. CRC can detect

single-bit, double-bit errors; it also can detect an odd number of errors too. The

chances of CRC making errors is 1
2c

, where c is the length of check-bits. The

error happens when more than one message has the same CRC check-bits. Hence

the probability of error is 1− 1
2c

(Wolf and Blakeney 1988). Hence the reason we

considered CRC for authentication.

96

4.4. CRC based bad signature identification scheme

4.4.2 CRC Verification Algorithm

In this subsection, we provide the proposed algorithms for CRC code generation at the

signer and verification at the verifier designed to identify the bad signature. The signer

generates the CRC check bits for every signature generated for every message as shown

in Algorithm 4.11. The CRC bits are appended to the signature and sent across to the

verifier (Kittur et al. 2019).

Algorithm 4.11: CRC based Signature Generation
Input: Secret Key sk and message m1,m2, . . . ,mt, CRC generator g(x)
Output: ((m1, s1), (m2, s2), . . . , (mt, st)) and CRC codewords

c1(x), c2(x), . . . , ct(x)

1. Generate the message-signature pairs (mi, si), for all the t messages using
the signer’s secret key.

2. For every signature si, calculate the CRC polynomial bits ri(x) of length
n− k bits using the pre-agreed binary number of bit length l bits.

3. Finally append the CRC code bits ri(x) to every signature si respectively to
create the codeword ci(x).

The verifier receives the message-signature pairs (mi, si) and the codewords for the

signatures, ci(x) and performs batch verification. If the batch verification test fails, then

the signatures are verified through their CRC codes, to identify the faulty signature and

can be shown in Algorithm 4.12.

The algorithms in Algorithm 4.11 and 4.12 for signature generation and verification

describe the steps to identify the faulty signature among a batch of signatures. Once the

batch verification fails, we perform binary division of data unit ci(x) by the generator

polynomial r(x). If even a single bit is altered or modified, then the remainder will be

non-zero, which proves that the signature is faulty.

4.4.3 Security Analysis

The security of this scheme depends on many factors. One major advantage of the

scheme is that it can even identify a minor modification such as a single bit flip in the

received codeword. This makes it very powerful, but this can not be completely relied

97

4. Bad Signature Identification in Batch Verification

Algorithm 4.12: CRC based Signature Verification
Input: Public Key pk and t message-signature pairs

(m, s) = (m1, s1), (m2, s2), . . . , (mt, st), codewords
c1(x), c2(x), . . . , ct(x), CRC generator g(x)

Output: Index of the bad signature

1. Stopping case: For t = 1, if GT(m, s, 1) = 1, then the signature is valid else
is invalid.

2. If t > 1, perform GT(m, s, t) on all the received signatures. If
GT(m, s, t) = 1, return True, else go to next step.

3. Code Verify: For every signature received, (mi, si, ci(x)), divide the data
unit ci(x) of every signature by the polynomial bits g(x). If the division
leaves no remainder then the signature is valid, otherwise invalid.

upon for authentication, since it just verifies the integrity of the data. Hence we perform

the batch verification before performing CRC based verification. Batch verification is

an authentication scheme which satisfies authentication, integrity and non-repudiation.

Hence having a secure and efficient batch verification scheme is equally important.

Hence the scheme proposed in Section 3.2 is used as the batch verification scheme in

all our references, since we have proved it to be secure against most of the attacks.

In case of Man-in-the-Middle attack, if the attacker modifies the signature

intentionally or unintentionally, the CRC verification fails. When an attacker modifies

one or more bits of signature, the polynomial division ends up with a remainder, which

results in a conclusion that the signature is faulty.

If an attacker modifies the signature, then the received data unit is c′(x). Then the

batch verification using one of the GTs fails. Then we perform CRC verification.

r′(x) = c′(x)/g(x)

r′(x) 6= 0

Since c′(x) is modified, the division does not end with zero remainder, and the faulty

signature can be detected.

The next attack can be the modification of CRC bits itself. But the verifier does

not know the Generator Polynomial, which is shared between the signer and verifier

98

4.4. CRC based bad signature identification scheme

beforehand. Hence without the knowledge of it, it cannot generate the CRC bits. Hence

the attacker does not even know the length of CRC bits and signature. Therefore the

attacker does not exactly know which part of the codeword is signature and which part

is CRC bit part.

4.4.4 Comparative Analysis

The proposed CRC verifier outperforms all other existing faulty signature identification

schemes. We have not considered the schemes which require the count of faulty

signatures at the beginning of verification since in real time scenario, it is difficult to

know the number of faulty signatures beforehand.

The proposed scheme outperforms the existing schemes in terms of computation

time to identify the bad signature/s. The number of operations in the proposed scheme

to locate the invalid signature is independent of the number of invalid signatures.

Therefore we discuss the number of operations the CRC based scheme performs in

best, average and worst cases in detail.

Best Case

The best case scenario happens when all the signatures are valid, and there are no invalid

ones. In such a scenario, no more verifications are needed to identify any bad signature

after GT. Hence the number of CRC verifications is zero.

No. of GT: 1

Average Case

The average case occurs when one or more signatures are faulty. Suppose there is a

batch of signatures of batch size t, and n signatures among them are faulty, then the

CRC verifier verifies every signature to locate the faulty ones, because it is not known

beforehand the value of n.

No. of GT: 1

No. of CRC individual verifications: t

Worst Case

This is a scenario where all the signatures in a given batch are faulty. For a batch of t

signatures, all t signatures are faulty, ie., n = t. Hence in the CRC based scheme, after

99

4. Bad Signature Identification in Batch Verification

the failure of GT, every signature is verified using CRC verification. Hence the total

number of operations remains the same in the average case and worst case.

No. of GT: 1

No. of CRC verifications: t

The number of operations needed to locate the bad signatures in various other

techniques is already discussed. Next, we study the verification time taken by these

techniques in doing the same.

4.4.5 Results for CRC based scheme

In case of CRC based verification, the standard CRC check-bits are either 16 or 32 bits.

Here in the proposed scheme, an extra 32 bits are appended to the signature s. Hence

the signer needs an extra time to generate CRC check-bits and the codeword. We have

implemented the sequential verifier, DC verifier, Hash based verifier and CRC verifier,

to compare the verification time of the schemes.

We have considered ECDSA∗ signature scheme for our experimentation. Initially,

we perform batch signature verification of ECDSA∗ signatures using the scheme

proposed in the Chapter in 3. If the batch verification fails, then we identify the index

of the bad signature using hash verification as well as other existing verifiers. We made

a comparative study of the execution time taken by these verifiers to identify the faulty

signatures. The experimentation is carried out on a Rock cluster CentOS 6.0 system.

The processor is Intel® Xeon® E5-2650. Each machine has twenty cores. And each

core runs on 2.3 GHz processor.

Table 4.2: Time taken for Generation operation (msec)

Time (msec)
Batch Size of Signatures

22 24 26 28 212

Signature Generation 10.2 11 12.06 27.8 148

CRC Generation 1.15 1.27 2.81 8.59 137.4

Table 4.2 gives the values of time needed for a signature generation without

CRC and time for CRC codeword generation. The CRC codeword generation adds

100

4.4. CRC based bad signature identification scheme

a minimum delay at the signer side. But this extra time for CRC generation saves

more than 50% of extra verification time in identifying the faulty signature through

sequential verification. Hence the generation of CRC code incurs minimum extra time

and computation when compared to the amount of time and computation it saves at the

verification side.

Next is to analyse how efficient CRC verification is in identifying bad signatures as

compared to the existing schemes. We have plotted the total verification time needed

to identify the faulty signatures. We have experimented the schemes for various batch

sizes.

0 2 4 6 8 12
0

5

10

15

20

25

30

35

Batch Size (2x)

Ti
m

e(
se

c)

Sequential Verifier
DC Verifier

CRC Verifier
Hash Verifier

Figure 4.1: Execution Time when 50% signatures are faulty

The two graphs represented in Figures 4.1 and 4.2 indicate the verification time

taken by Sequential verifier, DC verifier, Hash verifier and CRC verifier. We can

observe clearly from the graphs that, our proposed CRC verifier performs better than

the other schemes in both the average as well as worst cases, since it does not involve

complex cryptographic computations needed for PKI based signature verification. The

proposed CRC based verification scheme performs a little better than the hash based

scheme and it involves only binary division operation as the prime operation. Hence

the proposed technique proves to be the efficient technique among the available ones.

101

4. Bad Signature Identification in Batch Verification

0 2 4 6 8 12
0

10

20

30

40

50

60

Batch Size (2x)

Ti
m

e(
se

c)

Sequential Verifier
DC Verifier

CRC Verifier
Hash Verifier

Figure 4.2: Execution Time when all signatures are faulty

4.5 LDPC BASED BAD SIGNATURE IDENTIFICATION SCHEME

There are two sets of codes in coding theory. First is error detection codes, which just

detect the error in transmission and second is error correction codes, which detect and

correct the error in transmission. As we have already discussed an error-detection code

based CRC verification scheme, our next aim is to propose a scheme based on error-

correction codes, that uses LDPC codes.

LDPC codes belong to linear error control codes, used for message transfer

through a noisy channel in digital communication. Gallager (1962) was the first to

introduce LDPC codes in his Ph.D. thesis in 1962 and were redefined by MacKay and

Neal (1996). These codes are a way to transmit data through a noisy transmission

channel. None of the error control codes provide 100% error-free transmission, but

the probability of error can be minimized. LDPC allows data transmission rates very

close to the theoretical maximum (Shannon Limit). There are many applications where

LDPC code is currently being applied, such as digital satellite television, ultra-high

speed wireless local area networks (WLAN), optical communications, and hard disk

drives, etc.

In a digital communication system, the purpose of the error correcting codes is to

add redundancy to the binary data stream to combat the effect of signal degradation in

102

4.5. LDPC based bad signature identification scheme

the channel. Ideally, channel codes should meet the following requirements:

• Channel codes should be high rate to maximize data throughput.

• Channel codes should have good Bit Error Rate (BER) performance at the desired

Signal-to-Noise Ratio(s) (SNR) to minimize the energy needed for transmission.

• Channel codes should have low encoder and decoder complexity.

In our proposed scheme to identify the bad signature, we have used LDPC codes.

LDPC codes are generated at the signer, using the Parity-check matrix H . The LDPC

code (n, k), where n is the length of the codeword, and k is the message length

that needs to be transmitted. LDPC codes can be represented in two ways: Matrix

representation and the Graphical representation.

4.5.1 Designing the Parity Check Matrix

The Parity check matrix plays a major role in the performance of LDPC

encoding/decoding. Depending on the platform where the encoding/decoding process

is done, this matrix can be random or structured. The low-density parity-check matrix

H is of order (n − k) × n for (n, k) code, where n is the length of the codeword and

k is the length of signature to be sent. The number of 1’s in the parity matrix should

be less or sparse. The number of 1’s in each row is wr and the number of 1’s in each

column is wc. The conditions wr � k and wc � n must be satisfied for the matrix to

be called as low-density. Hence to satisfy this property, the parity check matrix should

be sufficiently large. It also requires less memory to store the matrix. There are many

ways to generate parity-check matrix.

We are using Gallager (1962) algorithm for generating parity-check matrix. In the

Gallager (1962), the parity-check matrix H , for LDPC codes mostly contains 0’s and

a very few 1’s. A regular LDPC code (n,wc, wr) of block length n has a parity-check

matrix of order (n − k) × n, where the number of 1’s in each column is a fixed small

number wc ≥ 3 and the number of 1’s in each column wr, is also fixed small number

wr ≥ wc. Let n be the length of the codeword and k be the length of the signature

103

4. Bad Signature Identification in Batch Verification

to be sent and m = n − k is the length of the parity-check equation. The steps for

constructing parity-check matrix are as follows:

• Construct the matrix of order m × n with wc number of 1’s in each column and

wr in each row.

• Divide the m× n matrix into (wc ∗m)/(wr ∗ n), with each having a single 1.

• 1’s are assigned to the sub-matrices in descending order of sub-matrices such that,

the ith sub-matrix contains 1’s at positions (i− 1)wr + 1 to i ∗ wr.

• Similarly other sub-matrices are designed with similar column permutations.

• Check if no two-columns have an overlap of more than one to avoid length-four

cycles.

For our reference, we are considering an example matrix of order 4×8 for (8,4)

LDPC code. We can observe that the number of 1s in each row is same. Similarly

number of 1s in each column is consistent.

0 1 0 1 1 0 0 1

1 1 1 0 0 1 0 0

0 0 1 0 0 1 1 1

1 0 0 1 1 0 1 0

The graphical representation was introduced by Tanner (1981) in 1981 for the LDPC

codes. LDPC codes are represented using bipartite graphs, where the there are two

distinctive sets of nodes which are connected by edges. The edges do not connect the

nodes belonging to the same set.

Figure 4.3 represents the bipartite graph for the given code. C-nodes are the check

nodes, which represent the parity bits and V-nodes are variable nodes which represent

the codewords. In the Figure 4.3, the c1, c2, c3, c4 are check nodes and v1, v2, . . . , v8 are

variable nodes.

An LDPC code can be either regular or irregular based on two conditions. First is

if wc is constant for every column and second is if wr = wc ∗ m
n

. If the matrix satisfies

104

4.5. LDPC based bad signature identification scheme

c1

c2

c3

c4

v1

v2

v3

v4

v5

v6

v7

v8

C-nodes
V-Nodes

Figure 4.3: Graphical Representation

these conditions, then its a regular one. Hence the example we considered is a regular

graph.

There are multiple decoding algorithms available for LDPC codes. The codeword

is generated using the generator matrix, which in turn is generated using the parity-

check matrix. We are using Gallager’s method for generating the parity-check

matrix. Similarly, at the receiver side, the received codeword is decoded using Belief

Propagation Algorithm (Fossorier et al. 1999).

The decoding part is categorized in to two parts: Hard Decision Decoding and

Soft Decision Decoding. In hard decision decoding, the decoder accepts the incoming

stream of data as input and considers each bit as definitely either as 1 or 0. The hard

decision decoding decides the bit based on the voltage value received, and compares

with the threshold, and accordingly makes a decision of 1 or 0. There is more scope of

error in hard decision decoding.

The soft decision decoding accepts the stream of data as input and decodes them

by taking into account varied combination of values that it can take. Depending on

the reliability on the received data, it makes the most favourable decision to form the

better estimate of the received input. Since we are using decoding for verification which

does not involve any hardware and make decision depending on the computation, soft

105

4. Bad Signature Identification in Batch Verification

decision decoding is the preferable one in our case. Hence we prefer soft-decision

decoding in our case.

4.5.2 LDPC Verification Algorithm

There are two algorithms for LDPC based bad signature identification. One is for LDPC

based signature generation as shown in Algorithm 4.13 and the other is for LDPC based

signature verification. The signer generates the signature as well as LDPC codeword

which is verified for every signature to identify the faulty signature at the verifier.

Algorithm 4.13: LDPC based Signature Generation
Input: Secret Key sk and message m1,m2, . . . ,mt

Output: ((m1, s1), (m2, s2), . . . , (mt, st)) and LDPC codewords c1, c2, . . . , ct
1. For a given message m to be sent across to the receiver, first the signature s

for the message of length k bits.

2. Generate the parity-check matrix H as explained in Section 4.5.1.

3. The parity-check matrix can be calculated by performing Gauss-Jordan
elimination on the H to obtain in the form, H = [A, In−k], where A is binary
matrix of order n− k × k and In−k is the identity matrix.

4. The generator matrix G can be found as, G = [Ik, A
T], where AT is the

transpose of A.

5. The generator matrix is orthogonal to the parity-check matrix and can be
given as, GHT = 0

6. The codeword c is generated for the signature s as, c = sGT , where GT is
the transpose of the Generator matrix and s is the signature.

The number of 1’s in rows and columns in parity check matrix H , as defined earlier

are represented by wr and wc respectively. There is one more important parameter

involved in the transmission of a message to the receiver known as Code Rate. Code

rate can be defined as the ratio of signature length k to the length of the codeword n.

CodeRate =
k

n
Code rate can also be stated as the amount of actual message transmitted per block.

Higher the rate is, greater is the data length to be transmitted. We need the k value to

106

4.5. LDPC based bad signature identification scheme

be higher. Hence the rate should satisfy the condition,
k

n
> 1− wr

wc

Hence to obtain higher code rate, the values of wr and wc should be minimum, so

that the parity matrix H is as sparse as possible. Hence to decrease the value of n, we

increase the value of i in i ∗ wc, where i is 1, 2, . . . , k. Suppose to obtain a code rate 1
4
,

we chose wr and wc as,

n = 4 ∗ k − 2 ∗ wc

There are multiple decoding algorithms to decode LDPC codes, independently

proposed by various researchers with different names. Some of the popular ones are

Belief Propagation Algorithm, Message Passing Algorithm, Sum-Product Algorithm,

etc. The most popular decoding scheme is the Belief Propagation (BP) Algorithm.

Decoding of LDPC codes is NP-hard for most of the schemes. The decoding algorithm

has the parity matrix H , received codeword c, and the number of iterations max itr

as the inputs. The LDPC based signature verification algorithm is shown in Algorithm

4.14.

Algorithm 4.14: LDPC based Signature Verification
Input: Public key pk and (m, s) = ((m1, s1), (m2, s2), . . . , (mt, st)) and CRC

codewords c1, c2, . . . , ct
Output: Index of bad signature

1. Stopping case: If GT(m, s, 1) = 1, then accept the signature, else reject.

2. If GT(m, s, t) = 1, then accept all the signatures as valid and stop, else go to
next step.

3. Perform iterative decoding on received codeword with max itr as maximum
number of iterations using BP algorithm.

4. Assume c′ is obtained codeword after decoding.

5. Check obtained c′ is a correct codeword or not by computing H ∗ c′. If
H ∗ c′ = 0; c, is correct codeword, otherwise remove respective faulty
signature/s from the batch and perform batch verification again.

The encoding and decoding steps are explained in Figure 4.4. We can observe that

the LDPC encoder generates the codeword for the signature at the signer. Then the

107

4. Bad Signature Identification in Batch Verification

 SENDER RECEIVER

No

H*x’=0

Yes

Message (mi)

Signature (si)

Parity Check Matrix (H)

Generator Matrix (G)

LDPC Encoder

Code word(c)

BV

All are valid

BV

No

BV

H*c’=0

For every signature

c’

LDPC Decoder

Valid

Invalid

Yes

No

(m,s,c)

Figure 4.4: LDPC encoding and decoding at sender and receiver

signer sends the message, signature, and the codeword to the verifier. The verifier

first performs batch verification, which is shown as BV. If the verification test fails,

then there are one or more faulty signatures in the batch. Now the verifier performs

individual LDPC verification through LDPC decoder. The decoder generates the

codeword c′ by iterative BP decoding. This c′ is multiplied with parity-check matrix

H , if the result leads to zero then the signature has not been modified and is valid, else

is invalid. The runtime results for LDPC codes are provided in the next subsection.

We have not provided the comparative results for LDPC because, LDPC codes require

more time for encoding and decoding as compared to other schemes.

4.5.3 Security Analysis

In case of Man-in-the-Middle attack, if the attacker modifies the signature intentionally

or unintentionally, the LDPC verification test returns the signature as faulty. When an

attacker modifies one or more bits of signature, the codeword decoding ends up with a

positive integer, which results in a conclusion that the signature is faulty.

If an attacker modifies the signature, then the received codeword is c′. Then the

batch verification test returns False. Then we perform LDPC verification and verify,

Hc′ 6= 0

where H is the parity-check matrix and c′ is the received codeword. If the codeword is

108

4.6. Results

modified, then the modular multiplication operation does not lead to remainder zero to

reveal the modified signature.

The next attack can be the modification of LDPC bits itself. But the attacker does

not know the parity-check matrix, which is shared between the signer and verifier

beforehand. Hence without the knowledge of it, it cannot generate the LDPC code

bits for the signature. Hence the attacker does not even know the length of LDPC bits

and signature. Thus the attacker does not exactly know which part of the codeword is

signature and which part is LDPC code bit part.

4.6 RESULTS

In this section, we discuss the results obtained by implementing LDPC codes in

software to verify the authenticity of the received message and signature. In the previous

section, we have already provided details of CRC codes and hash verification, used for

identifying bad signatures. We chose LDPC codes for our experimentation because they

are one of the most efficient block coding schemes.

We provide the encoding and decoding times of all three schemes (Hash, CRC,

LDPC) separately for different number of signatures. We even provide the signature

length and the codeword length for different schemes. We have recorded the encoding

and decoding times for more than one signatures.

Table 4.3: CRC Encoding and Decoding times

No. of Signatures k n Encoding (sec) Decoding (sec)

1 64 80 21× 10−3 0.7× 10−3

2 128 144 27× 10−3 1.3× 10−3

3 192 208 36× 10−3 2.8× 10−3

4 256 272 48× 10−3 3.5× 10−3

Table 4.3 provides the implementation details for identifying faulty signature using

the CRC verification scheme. Similarly we have also provided results of hash encoding

and decoding in Table 4.4.

Table 4.5 indicates that the LDPC encoding and decoding times take more time

109

4. Bad Signature Identification in Batch Verification

Table 4.4: Hash Encoding and Decoding times

No. of Signatures k n Encoding (sec) Decoding (sec)

1 64 224 44× 10−3 43.35× 10−3

2 128 288 63× 10−3 64.35× 10−3

3 192 352 75× 10−3 75.35× 10−3

4 256 416 116× 10−3 117.38× 10−3

Table 4.5: LDPC Encoding and Decoding times

No. of Signatures k n Encoding (sec) Decoding (sec)

1 64 248 0.0202 6.3432

2 128 504 0.0241 24.4648

3 192 760 0.0649 67.8917

4 256 1016 0.1312 83.67

than the times for other two schemes. The most time consuming stage in encoding of

LDPC codeword is the Gallager’s parity-matrix generation. And in the decoding, it is

the iterative decoding stage to reconstruct the codeword using the BP algorithm which

consumes the maximum time.

The reason for the higher decoding time for LDPC is explained as follows:

• LDPC encoding is matrix multiplication of v(1, k) and G(k, n). The size of one

signature is 64 bits, which leads to 64×248 matrix multiplication which is costly.

• Decoding uses Belief propagation algorithm, which uses graph/tree for sum-

product message passing. Hence LDPC decoding is computationally heavy

operation compared to other implementations.

• Our implementation is at the software level. Hardware-level implementation of

encoders and decoders is much faster than software. Parallel / Partially parallel

decoders can be designed for efficient decoding.

110

4.6. Results

4.6.1 Results for the proposed batch verification scheme

In Chapter 3, a new batch verification scheme is introduced which performs verification

of ECDSA∗ signatures in batches. If the scheme returns True, then all the signatures are

valid, else we apply one of the schemes proposed in this chapter, to identify the faulty

signature. In this subsection, we provide results of various batch verification schemes

along with the bad signature identification scheme. First, we provide the performance of

the hash-based bad signature identification scheme applied after the batch verification

test fails.

Table 4.6: Verification Time for Hash-based verification for Single Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.128 0.076 0.076 0.076 0.075 0.077

3 0.528 0.214 0.205 0.211 0.213 0.212

4 0.749 0.254 0.224 0.305 0.254 0.238

5 0.946 0.306 0.234 0.645 0.337 0.290

6 1.223 0.358 0.263 2.396 0.586 0.342

7 1.696 0.411 0.308 6.835 4.135 0.404

8 2.293 0.497 0.363 - - 0.567

16 9.251 0.962 0.731 - - 1.023

32 28.71 1.499 1.178 - - 1.914

64 78.39 2.798 2.335 - - 3.411

Tables 4.6 and 4.7 refer to the hash-based verification scheme. Table 4.6 is for the

single signer, where all the messages are signed by the single signer. We can observe

that the proposed batch verification scheme for ECDSA∗ signatures perform better than

S1 and S2 and also than individual verification. Similarly Table 4.7 provides results for

all batch verification schemes for ECDSA∗ signatures, where the signatures in the batch

are signed by multiple signers.

Similar to the previous results for Hash-based verification, in the results of CRC

based verification to identify faulty signatures also, our batch verification schemes

perform better than S1 and S2. There is an important observation in Tables 4.6,

4.7, 4.8 and 4.9 that, the batch verification schemes including our proposed scheme

perform better than individual verification even after combining with bad signature

identification. Individual verification helps in finding the faulty signature. Similarly,

111

4. Bad Signature Identification in Batch Verification

Table 4.7: Verification Time for Hash based verification for Multiple Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.128 0.100 0.103 0.107 0.100 0.110

3 0.528 0.38 0.369 0.386 0.380 0.419

4 0.749 0.390 0.379 0.585 0.550 0.577

5 0.936 0.658 0.600 1.025 0.680 0.700

6 1.213 0.868 0.755 2.96 1.04 0.893

7 1,686 1.415 1.005 5.48 1.887 1.229

8 2.293 1.830 1.360 - - 1.654

16 9.291 7.34 5.200 - - 6.440

32 28.74 21.22 15.41 - - 19.57

64 79.52 55.43 41.34 - - 52.92

Table 4.8: Verification Time for CRC based verification for Single Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.134 0.82 0.082 0.082 0.081 0.083

3 0.534 0.220 0.201 0.227 0.216 0.218

4 0.757 0.262 0.232 0.323 0.264 0.246

5 0.951 0.317 0.255 0.666 0.358 0.311

6 1.234 0.369 0.301 2.397 0.617 0.372

7 1.706 0.431 0.338 6.855 4.145 0.434

8 2.326 0.540 0.426 - - 0.630

16 9.343 1.034 0.803 - - 1.105

32 28.897 1.686 1.365 - - 2.101

64 78.84 3.226 2.490 - - 3.835

batch verification followed by the bad signature identification scheme also identify the

faulty signatures. Hence individual verification is proved to be inefficient in most of the

cases.

Tables 4.10 and 4.11 represent LPDC based bad signature identification scheme

performed after batch verification. The timing results include batch verification time

as well as LDPC based bad signature identification time. From all the tables, it is

clear that, in IoT application, where we need lightweight yet secure protocols, batch

verification along with one of the efficient bad signature identification schemes proves

to be efficient than sequential verification. From the results, it is clear that LDPC based

verification is not suitable for IoT applications. Instead this verification is suitable for

112

4.7. SUMMARY

Table 4.9: Verification Time for CRC based verification for Multiple Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 0.134 0.106 0.109 0.113 0.106 0.116

3 0.534 0.386 0.375 0.392 0.386 0.425

4 0.757 0.525 0.520 0.593 0.558 0.585

5 0.957 0.679 0.621 1.046 0.701 0.721

6 1.234 0.939 0.776 2.981 1.061 0.914

7 1.706 1.435 1.025 5.5 1.907 1.249

8 2.326 1.863 1.393 - - 1.707

16 9.343 7.392 5.252 - - 6.492

32 28.897 21.377 15.567 - - 19.737

64 78.814 55.724 41.714 - - 53.294

Table 4.10: Verification Time for LDPC based verification for Single Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 6.679 7.365 6.627 6.627 6.626 6.628

3 26.022 25.689 25.689 25.715 25.716 25.706

4 68.712 68.217 68.187 68.278 68.219 68.201

applications which have high computation power.

Table 4.11: Verification Time for LDPC based verification for Multiple Signers (sec)
Batch Size Sequential Naive ECDSA Naive ECDSA∗ S1 S2 Our scheme

2 6.653 6.625 6.628 6.632 6.625 6.635

3 25.986 25.838 25.827 25.844 25.838 25.877

4 68.664 68.432 68.427 68.500 68.465 68.492

4.7 SUMMARY

This chapter presented one hash based and two error control code based schemes

(CRC & LDPC) to identify the location of the bad signature in a given batch of

digital signatures during verification. We have provided algorithms for various existing

schemes. First we studied hash based verification scheme, which proved to be very

efficient in identifying the faulty signatures among the existing schemes. To further the

reduce the verification time, we proposed schemes based on error control codes.

CRC based bad signature identification scheme is very efficient compared to

LDPC scheme. Because LDPC scheme involves complex operations such as large

113

4. Bad Signature Identification in Batch Verification

matrix multiplication which are time-consuming as well as compute-intensive, another

disadvantage with the LDPC code based scheme is that it can not identify the invalid

signature until there is major bit difference in the codeword.

Hence in IoT environment, CRC proves to be efficient and secure compared to the

existing schemes. Also, the CRC scheme does not need to know the number of bad

signatures beforehand. Hence it is practically implementable. Therefore the next aim is

to implement the batch verification to identify faulty signatures in an IoT environment.

Hence the next objective is to design a trust model which minimizes the bottleneck at

the gateway node efficiently without compromise in security.

114

Chapter 5

A TRUST MODEL BASED BATCH VERIFICATION
OF DIGITAL SIGNATURES IN IOT

The security in IoT is one of the trending research areas. Because of the various

challenges an IoT network faces as discussed in Chapter 1, designing a standard

secure protocol has always attracted the attention of researchers. Hence our aim is

to design a lightweight and secure batch verification scheme to verify and identify the

bad signatures in a batch of digital signatures. In Chapter 3, we designed a lightweight

and secure batch verification scheme which performs better than other schemes and is

also secure against most of the attacks. We also developed schemes to identify the bad

signatures from a batch that fails the batch verification test in Chapter 4.

The goal of the next research is to reduce the bottleneck at the gateway node

by implementing batch verification in IoT network. Hence in this chapter, we have

designed a trust model for IoT. The proposed trust model chooses a few trusted sensor

nodes carefully based on the trust parameters and shares the verification workload with

these nodes. These nodes, in turn, verify the signatures through the batch verification

technique and send back the results to the gateway node, which is responsible for further

processing.

Trust Model

Trust is the subjective probability level of assessment of one’s influence over

another’s outcome for a particular action or impact on another’s performance in a

115

5. A Trust Model based Batch Verification of Digital Signatures in IoT

given situation. There have been many proposals for building computational trust and

reputation models (Sabater and Sierra 2005). Trust can be assessed in various ways

depending on the application.

Trust models are characterized into:

1. Cognitive: For models based on this approach, trust and reputation are based on

the degree of belief. The model also considers the mental state, which leads to

the trust on another entity (Esfandiari and Chandrasekharan 2001).

2. Neurological: In such models (Wang et al. 2007), the trust is related to the

experiences with external sources from both cognitive and affective perspective.

3. Game-theoretical: The trust and reputation are considered subjective probabilities

where an individual A’s trust on individual B depends on how B performs for a

given action by A (Gambetta et al. 2000).

Our model is Game-theoretical, where the gateway node’s trust over the sensor

nodes depends on the experience, ie., the experience based on the direct interaction of

the gateway node with the sensor nodes. There are various parameters which influence

the trust of gateway node on the sensor nodes. In the proposed model, the trust value is

calculated based on the previous performances of the node and decided by the gateway

node.

The contributions of this chapter are as follows:

1. Proposed a model for the selection of sensor nodes for batch verification of digital

signatures based on physical and security parameters of sensor nodes.

2. Introduced a novel reputation-based trust model to select the trusted nodes among

the available nodes.

3. Parallel implementation of batch signature verification defined in Section 3.2

using ECDSA∗ algorithm.

116

5.1. Preliminaries

The chapter is organized as follows: Section 5.1 explains the groundwork needed

for further understanding. Section 5.2 introduces the proposed model, and Section 5.3

and 5.4 describe the details of the algorithms used in the model. Then Section 5.5

provides experimental results and the chapter is summarized in Section 5.6.

5.1 PRELIMINARIES

In this section, we provide some of the preliminary details to understand the proposed

model in a better way. First, we provide the specifications of a few popular sensor nodes

followed by the specification of one of the famous gateway nodes.

5.1.1 IoT network nodes

IoT network has sensor nodes and gateway nodes. Multiple sensor nodes send their data

at regular intervals to the gateway node. We highlight the specifications of two popular

sensor nodes:

1. LOTUS (Frank 2013)

• Processor: Cortex M3 CPU 32-bit processor with 10 - 100MHz

• Memory: 64KB SRAM, 512 KB FLASH, 64MB Serial FLASH

• Radio: Integrated 802.15.4 Radio with on-board 2.4 GHz Antenna

• Radio Throughput: 250 kbps, High Data Rate Radio

• Battery: 2.7-3.3V, 2x AA battery

2. Waspmote (Pham 2014)

• Processor: 8-bit Microcontroller with 14.7456MHz

• Memory: 8KB SRAM, 128 KB FLASH

• Radio: XBee Pro 802.15.4 Radio with 2.4 GHz Antenna

• Radio Throughput: 100 kbps

• Battery: 3.3-4.2V, 6600 mAh Li-Ion rechargeable // 52000 mAh non-

rechargeable

117

5. A Trust Model based Batch Verification of Digital Signatures in IoT

The gateway nodes have higher computation power as well as a memory when

compared to sensor nodes. Raspberry Pi is one of the famous gateway nodes used

in IoT network. Hence we are providing the specifications of Raspberry Pi3 Model B+

(Pi 3)

Raspberry Pi

• Processor: ARM Cortex-A53 64-bit quad core processor SoC @ 1.4GHz

• Memory: 1GB LPDDR2 SDRAM, 512 KB L2 Cache

• Connectivity: 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth

4.2, BLE Gigabit Ethernet over USB 2.0 (maximum throughput 300Mbps)

• Power: 5V/2.5A DC via micro USB connector Power over Ethernet

(PoE)–enabled (requires separate PoE HAT)

5.2 PROPOSED MODEL

The gateway nodes as specified in Section 5.1 have higher computational power as

compared to sensor nodes, and they also handle many responsibilities such as data

aggregation, data preprocessing, authenticity and security of underlying nodes, etc.

Therefore it is essential to minimize the load on the gateway nodes. Even though

gateway nodes have computation power and energy, but it is not sufficient for complex

cryptographic functions. Since the computational capability of the gateway nodes is

low, and they have low memory, it is challenging to provide a secure protocol which

protects them from most of the attacks. Hence in such an environment, it is better

to seek for lightweight cryptographic algorithms for verifying authenticity, encryption

and decryption, and other cryptographic operations. Hence we are adopting the batch

verification algorithm proposed in Section 3.2, in the IoT environment, where multiple

sensor nodes are sending a large number of messages to the gateway node. Thus the

gateway node can utilize the advantages of batch verification algorithms to reduce the

computation cost and time. Therefore in our proposed model, we have further tried to

reduce the computation burden of authentication at the gateway node by distributing

the responsibility of authentication of data among the Trusted sensor nodes. The

118

5.2. Proposed Model

proposed trust model aids the gateway node in identifying these Trusted nodes and

distribute the signatures among the Trusted nodes for verification without compromise

in security. These nodes verify the signatures using the batch verification technique

already discussed in Chapter 3.

Second Round of Filtering

Avail Node
Selection
Algorithm

Avail Nodes

Trusted
Node

Selection
Algorithm

Trusted Nodes

Sensor nodesSensor Nodes n Sensor Nodes

a=n-k nodes k>0

t=a-i nodes i>=0

First Round of Filtering

Figure 5.1: Trust Model for Digital Signature Verification in IoT

Figure 5.1 gives an overview of the proposed model. The model aims at reducing

the workload at the gateway node by sharing their load with a few trusted sensor nodes.

The figure has two algorithms for filtering the sensor nodes and choosing the trusted

ones. The first algorithm is for fetching the Avail nodes from the set of sensor nodes.

The second algorithm is for selecting the set of Trusted nodes from the Avail node

set. Therefore whenever the gateway node in an IoT network receives thousands of

signatures which need to be verified, then it uses the first algorithm to identify the

available nodes out of all the sensor nodes. Later, to identify the trustworthy nodes

from available nodes, the gateway uses the second algorithm.

119

5. A Trust Model based Batch Verification of Digital Signatures in IoT

After choosing the Trusted set of nodes at the end of the second algorithm, the

next task is sharing of load among these nodes by the gateway node. The gateway

node shares a disjoint set of digital signatures with each of these nodes, which perform

batch verification on their received set of signatures. Batch verification operation can

be performed simultaneously across all the Trusted nodes in parallel. This parallel

verification results in a significant reduction in verification time needed to verify

multiple signatures. The results for the same are shown later in Table 5.2 and 5.3. These

selected Trusted nodes perform batch verification on the received batch of signatures.

Then the sensor nodes respond the result of the batch verification to the gateway node.

The number of Trusted nodes chosen depends on the application as well as on the

number of signatures to be verified.

There are various parameters considered in our study to choose the trustworthy

sensor nodes. These parameters help the gateway node to build trust on the trusted

sensor nodes. We have designed two algorithms which assist in filtering the nodes.

These algorithms are subsequently discussed in Sections 5.4 and 5.5.

5.2.1 Parameters for Node selection

There are multiple parameters of a sensor node which help us to decide whether

it is suitable for load distribution. Few of the parameters for node selection are

battery capacity level, the efficiency of execution, the type of task the node is already

performing, the reputation of the node in history, etc. The threshold value for a few of

the parameters is set at the beginning. We have divided the type of parameters into two

categories: Physical Parameters and Security Parameters. The two algorithms in our

model filter the sensor nodes based on these parameters. The first algorithm considers

the physical parameters and generates the Avail node set. The second algorithm uses

security parameters to generate the Trusted node set which is used for load sharing with

the gateway node.

Physical Parameters: These are the parameters which define the physical state of the

sensor node. In our study, we are considering three physical parameters.

• Battery Level helps us decide whether the node can complete the task assigned

120

5.2. Proposed Model

to it with the available battery level. The batch verification comes under heavy

task for the sensor node, which consumes more power. Hence it is important to

check the battery status of the node initially.

• Type of Task the node is currently running. If the node is currently running a

heavy task like transmission or receiving, then it will end up taking more time to

complete the task of batch verification and also will be consuming more energy.

Table 5.1 helps us analyze the amount of current discharged during various states

of the node. Here we can observe that the node utilizes maximum battery during

transmitting and receiving.

Table 5.1: Current Consumption by different states of the node

Node State Discharge Current

Idle 4.8mA

Transmitting 156.2mA

Receiving 138.7mA

Sleep 94.4 µ A

• Charging status of the node is one of the essential parameters. If the node’s

battery level is lower than the threshold and if it is charging, then the probability

of the node running out of battery will be less. Hence, in such a scenario, the

node can be considered in Avail nodes set, provided it satisfies other conditions.

Security Parameters: These parameters help the gateway node in building the trust

on the sensor node, hence the name Trust Model. The various security parameters

considered are:

• Availability checks whether the sensor node is available at a given time.

• Reliability indicates whether the node is reliable to perform our task

confidentially.

• Data Integrity Indicates whether the node is capable of maintaining the integrity

of the data being processed.

121

5. A Trust Model based Batch Verification of Digital Signatures in IoT

• Turnaround Efficiency indicates how efficiently the node completes the given

task in the expected amount of time.

The security parameters are qualitative parameters. Hence we have made an effort to

quantify these parameters based on the node’s efficiency at completing the given task

in history. These parameters are explained in detail in Section 5.5.

As discussed in Liao and Hsiao (2014), for a sensor node with a 5MHz processor,

the time per Elliptic Curve Cryptography (ECC) scalar multiplication is approximately

0.06 sec. Hence as per Equation 3.3 and 3.4 in Chapter 3, the number of scalar

multiplications needed for the proposed scheme as discussed in Section 3.2, is

minimum. Therefore our model does not overload the sensor nodes with batch

verification. Hence for sensor nodes in the IoT network, Public Key Infrastructure

(PKI) based authentication schemes such as ECC will not create a burden.

5.2.2 Implementation of the ECDSA∗ batch verification algorithm

Earlier in Chapter 3, we introduced a new batch signature verification algorithm

for verifying multiple ECDSA∗ signatures signed by either single signer or multiple

signers. Hence to reduce the verification time at the gateway node, we are using the

same batch verification scheme. To further reduce the load on the gateway node, we are

performing the batch verification task in parallel among the Trusted sensor nodes. We

distribute a set of signatures to the Trusted nodes which perform batch verification to

reduce the verification time. Suppose if there are t signatures received at the gateway

node, and there are n Trusted sensor nodes, then the received signatures are divided

among the sensor nodes. Therefore each node receives approximately t
n

signatures.

The sensor node collects all the signatures and verifies them together using the batch

verification scheme. If n > 1, then all the sensor nodes verify the batch of signatures at

the same time. Hence the verification time can be considerably reduced at the verifier.

Therefore we performed batch verification in parallel to reduce the verification time

compared to the individual verification.

Table 5.2 provides results of running the batch verification code for ECDSA∗

122

5.2. Proposed Model

Table 5.2: Verification time(sec) for a single signer
Batch

Size

Individual

Verification

Number of nodes

10 20 30 40 50 60

22 0.457 0.053 0.048 0.057 0.051 0.055 0.050

24 4.737 0.085 0.070 0.068 0.063 0.064 0.072

28 6.328 0.707 0.442 0.384 0.309 0.247 0.200

212 47.914 11.877 5.778 4.35 3.866 3.170 2.559

216 808.818 190.11 92.334 65.681 57.668 51.399 42.27

Table 5.3: Verification time(sec) for multiple signers
Batch

Size

Individual

Verification

Number of nodes

10 20 30 40 50 60

22 0.457 0.064 0.060 0.058 0.061 0.063 0.062

24 4.737 0.096 0.089 0.102 0.114 0.101 0.097

28 6.328 1.546 0.688 0.552 0.472 0.470 0.460

212 47.914 25.574 12.470 9.362 7.866 6.82 5.386

216 808.818 421.88 199.93 150.16 128.26 89.362 65.271

signatures on a different number of nodes for the single signer. We can also observe

from the table that batch verification has an advantage over individual verification in

case of the higher number of signatures. The verification time can be further reduced

by dividing the batch size into smaller sizes, and all are executed in parallel at different

Trusted sensor nodes, to achieve time efficiency. We can observe that with the increase

in the number of nodes working together, the time for batch verification also reduces

considerably — similarly, Table 5.3 shows the batch verification results for multiple

signers. We can also observe the verification times for 10 nodes and 60 nodes, where

the time efficiency is increased by 4.5 times with 60 nodes in case of 216 signatures.

Hence more the batch size, the number of nodes should also be more to gain maximum

efficiency. Therefore in applications like IoT, after finalizing the Trusted nodes, we can

make the nodes run in parallel and perform the verification of signatures in batch to gain

maximum efficiency.

The batch verification scheme for ECDSA∗ signatures has been implemented on a

cluster system having seven machines, one is master, and the other six are compute

machines. The system is a Rock cluster 6.0 system. The processor is Intel® Xeon®

123

5. A Trust Model based Batch Verification of Digital Signatures in IoT

E5-2650. Each machine has ten cores. And each core runs with 2.3 GHz processor.

Based on the specification of the sensor node provided in Section 5.1.1, we have

simulated each machine as equivalent to 20 sensor nodes. Therefore to simulate the

environment of multiple sensor nodes, we used the concept of multi-threading, where

a single processor is divided into multiple threads. Hence each thread can be mapped

to one sensor node. And we use the MPI library to communicate with other machines

in the cluster system for parallel execution. The results show the gain in speedup as

we increase the number of nodes. We have considered a maximum of 20 threads per

machine.

The gateway node chooses the Trusted nodes based on the proposed Trust model for

batch verification in IoT network. The results indicate that more the number of nodes,

faster are the results. Our next sections brief the algorithms necessary for choosing

Trusted nodes among the given sensor nodes by the gateway node.

5.3 NODE SELECTION BASED ON PHYSICAL PARAMETERS

The sensor nodes have low computation power and battery. Therefore to share the

workload of the gateway node, it is very critical to check parameters of the node such

as the node’s state and battery level. Therefore these parameters are considered as

the physical parameters which define the physical state of the node. We propose an

algorithm which chooses the Avail nodes depending on the value of these parameters

by making a comparison with the threshold value set. Hence it is essential to learn the

battery charging and discharging pattern in order to choose the sensor node.

We know that the battery level of the sensor node is an important parameter in

Avail node selection. Therefore understanding the behavior of the battery charging and

discharging is very important. The discharge time can be calculated with the following

formula:

t =

(
C

I

)
(5.1)

where t is the discharge time, C is the battery capacity, and I is the discharge

current. We can observe that heavy tasks need more current discharge, as shown in

124

5.3. Node selection based on Physical Parameters

Table 5.1, which leads to faster battery discharge. Also, the increase in the rate of

discharge decreases battery capacity. Therefore the Equation 5.1 holds true in ideal

condition. Thus in practical situations, the time of battery discharge Formula (5.2)

given by Peukert (1987), considers the decrease in battery capacity aspect also.

t = H

(
C

IH

)k
(5.2)

where H is the hour rating, k is the Peukert’s constant whose value mostly ranges

between 1.1-1.3. The Peukert’s constant value is usually specified by the vendor on the

label of the battery. During the simulation, it is essential to know the battery level of the

sensor node before assigning the task of verification by the gateway node. Hence the

equation to calculate the available battery capacity at a given time t is given in Equation

5.3,

C = e

(
log t

H
k

+log(IH)

)
(5.3)

The Equations 5.1, 5.2 and 5.3 help us learn the characteristics of battery at any

given condition. The gateway node checks the battery level of the sensor node before

assigning a task to it. Hence depending on the discharging formula, it can compute

whether the sensor node can last with its regular task along with the extra task of

verification before the next charging cycle arrives. Therefore the gateway node first

computes the battery capacity using Equation 5.3, and then accordingly computes

approximate time for which the battery lasts to complete the given task. Hence the

threshold battery level needed to assign verification task is set beforehand depending

on the kind of application, as well as the capacity of the battery, which aids in filtering

the nodes. In the next subsection, we describe our algorithms.

5.3.1 Avail node selection algorithm

After checking the battery level of the sensor node, it is important to check whether

the node is connected to the power source or no and also to check the type of task the

node is running. These parameters can be explained through the Algorithm 5.1 in this

subsection. The gateway node checks all the parameters mentioned in Subection 5.3

before making the selection.

The Algorithm 5.1 explains how the Avail nodes are selected from the given set of

125

5. A Trust Model based Batch Verification of Digital Signatures in IoT

Algorithm 5.1: Avail node selection Algorithm
Input: List of n sensor nodes

n′ nodes are not connected to a power source for charging
n′′ nodes are connected to a power source for charging

Output: Avail nodes
1 Case 1: Nodes whose battery is not connected to a power supply are n′

2 for i← 1 to n′ do
if Bi > BT then

if Bstatus 6= busy then
add to Avail list
Bstatus = busy

end if
end if

3 end
4 end for
5 Case 2: Nodes whose battery is connected to Power supply are n′′

6 for j ← 1 to n′′ do
if Bstatus 6= busy then

add to Avail list
Bstatus = busy

end if
7 end
8 end for

sensor nodes. We first divide the algorithm into two cases, one is for the nodes which

are not charging, and other is for the nodes which are charging.

The first case in the algorithm considers nodes which are not connected to power

supply for charging. We initially check the battery level of every node, which is not

connected to power supply. If the battery level Bi is below the threshold battery

level BT , i.e., Bi < BT , then we will discard the node. The threshold level is set

according to the type of battery as well as the application where it is deployed. In

our experimentation, we consider a threshold battery level as 30% of the total battery

capacity. If the battery level is more than the threshold, then we check the state of

the node, else discard the node. Once the battery capacity of the node is greater than

the threshold, then the gateway node checks for the kind of task the node is currently

performing. If the node is involved in the task of either transmitting or receiving, i.e.,

Bstatus = busy, then the node is considered busy, and it will not be considered further

126

5.4. Node selection based on Security Parameters

in the Avail node list. Otherwise, it will be added to the Avail list.

In the second case, where the nodes are connected to the power supply, we only

verify the status of the node. Since the nodes are connected to the power supply, there

is very less probability for the node to run out of battery, since the rate of charging is

faster than the rate of discharge. Hence now depending on the kind of the task the node

is performing, the decision is made whether to consider the node in Avail node list.

Thus if the node is not busy in either transmitting or receiving, we include the node in

Avail list of nodes.

5.4 NODE SELECTION BASED ON SECURITY PARAMETERS

This section aims at choosing Trusted nodes by the gateway node from Avail nodes for

load sharing based on Quality of Service (QoS) value. We use the terms QoS value

and trust value interchangeably, but both of them refer to the same value. The designed

model aims at evaluating the QoS for every node which can be given as,

QoS = w1 ∗ (AV) + w2 ∗ (RL) + w3 ∗ (DI) + w4 ∗ (TE) (5.4)

The QoS value computation as shown in Equation 5.4, is determined by Availability

(AV), Reliability (RL), Data Integrity (DI) and Turnaround efficiency (TE). The

constants w1, w2, w3 and w4 are fixed at the beginning depending on the kind of

application the model is being deployed in and the security requirement. The sum

of w1, w2, w3, and w4 should be equal to one. Suppose in case of cloud computing

applications, the choice of w1 = 0.2, w2 = 0.2, w3 = 0.5 and w4 = 0.1. In our

application, the values of the constants are w1 = 0.25, w2 = 0.4, w3 = 0.1 and

w4 = 0.25. The choice of constants can be explained as: since verification of the

signature is done to avoid any kind of unreliability, we have assigned the highest

preference value to w2. Since the IoT environment needs authentic results in real-time

processing, Availability and Turnaround Efficiency are assigned next preference and

at the end comes Data Integrity. The weights provided remain the same for a given

application in the IoT network. Hence the choice of weights is an intelligent and crucial

task. The variables (AV , RL, DI , TE) associated with every constant weight, changes

127

5. A Trust Model based Batch Verification of Digital Signatures in IoT

according to the verification performance of the nodes. The weights help us decide the

preferences to be given to various security parameters for the given application.

Availability: Availability, in our case, is the degree to which a node is operational

or accessible when needed for service. The availability factor of a node is the fraction

of the number of job requests accepted to the number of job requests received over

a given period. Suppose if a node receives R number of job requests and A number

of requests are accepted for processing over a given period of T , then the Availability

factor is given as

Availability(AV) =
A

R

Reliability: Reliability is a measure of trust. It is the degree to which the node

performs failure-free operations under given circumstances. It is the measure of the

number of jobs successfully completed among the accepted jobs. Suppose among A

jobs accepted, and only C are successfully completed over a period T , then Reliability

can be given as,

Reliability(RL) =
C

A

Data Integrity: Data Integrity refers to completeness, accuracy, and consistency

of data. Data loss or data modification by any unauthorized node leads to loss of

data integrity. Data Integrity aims at preventing accidental and unauthorized changes

to information. Suppose out of C successfully completed jobs, only for D jobs data

integrity is maintained over a period T , then DI value can be given as,

Data Integrity(DI) =
D

C

Turnaround Efficiency: Turnaround time is the time gap between the submission

of job and successful completion of the job by the node. The expected turnaround time

is the turnaround time specified for the node, and actual turnaround time is the total time

between the submission and successful completion of the job in a practical situation.

Actual turnaround time is usually different from the expected turnaround time. TE for

a given period T can be given as,

128

5.4. Node selection based on Security Parameters

Turnaround Efficiency for a node(TE) =
Expected turnaround time

Actual turnaround time

5.4.1 Trusted Node Selection Algorithm

Our trust model concentrates on choosing the Trusted nodes among the Avail nodes

through their QoS value. Every Trusted sensor node and gateway node update the

QoS value for the Trusted node after efficient completion of verification job request.

Therefore higher the QoS value, higher the probability of the node getting chosen for

load sharing. Thus depending on the need of the number of sensor nodes for load

sharing in an application, we decide the size of the Trusted node set.

Suppose if there are 500 available nodes, and the signatures to be verified is 215, then

according to our analysis, 100 nodes will provide sufficient speedup. Hence instead of

choosing all 500 available nodes, the gateway node chooses only 100 nodes from the

Avail nodes to distribute the load. Therefore 100 nodes are selected based on their

physical and security parameter values. The top 100 Avail nodes sorted according to

QoS value are chosen. The choice of the number of Trusted nodes depends on the

number of signatures received at the gateway node. For our experimentation, we have

chosen the number of Trusted nodes in such a way that each trusted node gets maximum

500 signatures. Hence with these conditions, we can achieve maximum speedup.

Algorithm 5.2 explains the criteria for choosing the nodes for the parallel batch

verification by the gateway node. The reason for sorting the nodes according to

QoS value is to choose the most trusted nodes. The nodes with higher QoS value

indicates that the nodes have a higher success rate for completion of verification. The

unsuccessful completion of the task by the node might be due to many reasons. Either

the node went down because of some hardware or software crash or natural calamities,

or it may be due to sudden node compromise. Hence verifying the behavior and

performance of the node in history is very important. The reputation of the node helps

us in minimizing the vulnerable node selection probability.

The gateway node distributes a set of different signatures to each of the Trusted

nodes. These Trusted nodes perform batch verification to check whether the received

129

5. A Trust Model based Batch Verification of Digital Signatures in IoT

Algorithm 5.2: Scheduling Available gateway Nodes
Input: List of Avail nodes g
Output: Trusted nodes c

1 Sort the Avail nodes based on QoS value
2 Verify the QoS value stored with the node with the value stored in gateway

node
3 for j ← 1 to Avail do
4 if(stored[j].QoS6=j.QoS)
5 Discard the node from Avail list
6 end
7 end for
8 Choose the top c nodes needed for execution
9 Send(); Distribute various batch of signatures to c nodes

10 Receive(); Receive the verification result from individual nodes
11 for i← 1 to c do
12 Increment AV for node i
13 if (i.status=successfully completed in given turnaround time)
14 Increment RL, DI, TE for node i
15 else If (i.status=successfully completed with more than expected

turnaround time)
16 Increment RL, DI for node i
17 Decrement TE for node i
18 else If (i.status=successfully completed with loss of data integrity)
19 Increment RL for node i
20 Decrement DI, TE for node i
21 else
22 Decrement RL, DI, TE for node i
23 end
24 end for

batch or set of signatures are valid or no. If the batch of signatures fails the verification

test, then either the sensor node or the gateway node will verify further to identify the

faulty signature/s. If the sensor node notifies that the batch contains bad signatures, then

the gateway node identifies the bad signature through any of the schemes, proposed in

Chapter 4, to identify the faulty signature/s.

5.5 RESULTS AND DISCUSSION

In this section, we provide the results of implementing our model. We also compare our

results in various scenarios with other models. We provide the probability of choosing

nodes that can complete the job successfully in our proposed model and other models.

130

5.5. Results and Discussion

Our first set of results are taken by considering ideal conditions, 1) the battery is

100% efficient, 2) the node never goes down unless the battery level is zero, 3) the

nodes with QoS value greater than 30% will never fail. We are considering four models

for load distribution:

1. In the Proposed model, the nodes are filtered to perform batch verification based

on the physical and security parameters. It is explained in detail in Section 5.3

and 5.4.

2. In the Random Selection model, the nodes are chosen randomly for performing

batch verification. There is no filter on the selection of nodes. Hence this model

has a higher probability of node failure.

3. In the Physical Parameter model, the nodes are filtered based on the physical

parameters and not security. Hence the probability of node failure is reduced as

compared to the Random Selection model.

4. In the Security Parameter model, nodes are filtered based on only the security

parameters. The probability of node failure in this model is comparable to the

Physical Parameter model.

We have implemented all the four models for the ideal condition as well as for

practical conditions. We will go through the results in both the conditions in separate

subsections.

5.5.1 Ideal Condition Results

As we know, Ideal condition is the state where the entire model is 100% efficient. In

such a state node battery is fully efficient, and its efficiency does not decrease even if

the battery level goes less than the threshold level. To make a detailed study of the

four models, we consider an IoT network scenario and compare the efficiency of all the

models.

Consider a scenario of an IoT network consisting of 1000 sensor nodes connected

to a single gateway node. Therefore to distribute the load from gateway node among

131

5. A Trust Model based Batch Verification of Digital Signatures in IoT

the sensor nodes, the proposed model and other models pick 100 sensor nodes from the

1000 nodes and distribute a set of signatures to each of the sensor nodes. Among the

chosen 100 sensor nodes, there is always a probability of node getting dysfunctional

because of unintended hardware or software failure. Hence among the 100 nodes

chosen, we consider 1-10% of nodes failing randomly due to hardware or software

failure. Now the efficiency of the models lie in reducing the intended node failure such

as node running out of battery, node getting compromised etc., which can be avoided.

We have performed the experiment 50 times to choose the 100 nodes effectively

using every model to compare the efficiency of models in reducing the intended

failures. Table 5.4(a) provides the results of 50 iterations for the proposed model. Each

number in the table indicates the number of sensor nodes available to the gateway node

(Trusted) after intended and unintended failures. Therefore the average of these 50

iterations is almost 95. The proposed scheme considerably reduces the intended node

failures. Hence because of low node failure, more number of sensor nodes are available

for gateway node to share the load and more efficient will be the network.

Similarly we have performed 50 experiments for all the other three models. In

the Random selection model, since the 100 nodes are chosen randomly, they will have

maximum node failure because of the intended node failures. Therefore from the Table

5.4(b), it is clear that average number of available nodes after intended and unintended

node failure is 87.

Table 5.4: Ideal Condition (a) Proposed Model Node Selection (b) Random Node
Selection

(a) Available nodes (b) Available nodes
93 96 95 98 91 95 97 96 99 99 82 80 79 84 83 84 92 90 87 96
99 91 99 94 97 92 100 97 92 93 95 94 96 93 93 98 99 93 94 90
96 91 95 92 95 96 92 93 93 93 82 81 84 82 89 82 87 86 89 88
96 93 98 91 97 96 93 97 94 100 90 86 90 86 92 92 96 90 94 90
96 91 98 96 96 96 95 93 100 93 86 82 85 81 89 89 87 89 88 91

Tables 5.5(a) indicates the results for the Physical parameter model, where the 100

nodes are selected based on the physical parameters of the node. This considerably

reduces the intended node failure due to lack of battery, or node unavailability due

to other scheduled task. Intended failure may be because of node compromise, node

132

5.5. Results and Discussion

Table 5.5: Ideal Condition (a) Physical Parameter based Node Selection (b) Security
Parameter based Node Selection

(c) Available Nodes (d) Available Nodes
87 83 82 88 84 84 90 97 90 87 92 91 95 89 94 92 93 93 97 92
95 95 87 86 93 89 88 84 96 95 94 91 95 87 91 97 89 89 91 93
81 92 91 90 84 89 90 83 95 88 88 89 89 93 94 89 95 94 94 87
94 87 95 93 93 90 87 94 94 91 92 88 92 96 94 91 95 94 94 97
84 87 92 90 86 95 93 97 94 92 90 88 91 88 88 95 92 88 87 89

unresponsive. Therefore the average number of nodes available after intended and

unintended node failure is higher than Random selection model but less than the

proposed model. The average of the entries in Table 5.5(a) is around 90. Hence an

average of 10% nodes fail due to intended and unintended node failure.

On similar grounds, Table 5.5(b) represents the experimental results for 50 iterations

of Security parameter model. Each value in the table indicates the number of nodes

available for load sharing in each iteration of the model after the node failures. The

intended node failure is due to node running out of battery or node being busy with

other tasks. Hence the selection of compromised nodes is prevented which reduces the

node failure compared to Random selection model. The performance of this model is

equivalent to Physical selection model. The average of the 50 iterations is around 90.5.

Hence from the results of all the four models, it is clear that the proposed model

reduces the intended node failure probability considerably. The unintended node

failures are not in control. Hence the gateway node gets more number of Trusted nodes

to share load to reduce the bottleneck at the gateway node and increase the efficiency of

the network.

5.5.2 Practical Condition Results

We considered ideal conditions for node selection in the previous subsection, and now

we consider the practical conditions. In practical conditions, the battery efficiency

reduces when the battery level goes down below 30%(we assumed that the efficiency

decreases as the battery level drops below 30% and hence the node can not perform

batch verification). Hence we have set the threshold battery level to 30% in Algorithm

5.1. And also the nodes with trust value less than 50%, fall under greater node failure

133

5. A Trust Model based Batch Verification of Digital Signatures in IoT

category. Our proposed model checks for these conditions by default. Hence the

performance of our model does not reduce in practical conditions too, whereas it affects

the other models.

As explained in the ideal conditions, in practical conditions too, we analyse the

results of all the four models, each performed for 50 iterations. For the proposed model,

the Table 5.6(a) provides 50 entries which indicate the number of nodes available after

node failure at the end of each iteration. There is no change in the performance of the

proposed model when compared to ideal condition, since the model avoids the intended

node failures.

The results for Random selection model as shown in Table 5.6(b) indicates that the

node failure has increased in practical conditions. Since the nodes are randomly picked

for load sharing by the gateway node, the intended node failures increase. Hence the

model performs worst with an average number of nodes being available equal to 71 by

considering results of all 50 iterations. The selected 100 nodes have more number of

nodes with battery less than 30% and QoS less than 50%.

Table 5.6: Practical Condition (a) Proposed Model Node Selection (b) Random Node
Selection

(a) Available nodes (b) Available nodes
93 96 95 98 91 95 97 96 99 99 62 60 59 64 63 64 72 70 67 76
99 91 99 94 97 92 100 97 92 93 75 74 76 73 63 68 69 73 74 70
96 91 95 92 95 96 92 93 93 93 62 71 64 72 69 62 67 66 69 68
96 93 98 91 97 96 93 97 94 100 70 66 70 66 72 72 76 70 74 70
96 91 98 96 96 96 95 93 100 93 66 62 65 61 69 69 67 69 68 71

Table 5.7: Practical Condition (a) Physical Parameter based Node Selection (b) Security
Parameter based Node Selection

Available Nodes Available Nodes
77 73 72 78 74 74 80 87 80 77 82 81 85 79 84 82 83 83 87 82
95 95 87 86 93 89 88 84 96 95 84 81 85 77 81 87 79 79 81 83
71 82 81 80 74 79 80 73 85 78 78 79 79 83 84 79 85 84 84 77
84 77 85 83 83 80 77 84 84 81 82 78 82 86 84 81 85 84 84 87
74 77 82 80 76 85 83 87 84 82 80 78 81 78 78 85 82 78 77 79

The average number of failure-free nodes for Physical parameter model in practical

conditions is 80.18. This number is bigger than the Random selection model,

134

5.5. Results and Discussion

but smaller than the proposed model. This model includes those nodes that are

compromised and unresponsive with QoS value less than 50%. Hence the total number

of failure-free node’s average is smaller than the average of the proposed model. This

is shown in Table 5.7(a).

Similar to Physical parameter model, in case of Security parameter model as shown

in Table 5.7(b), the average of the entries in the table is 82. The node failure in

practical conditions for this model is due to the node having battery less than 30% . The

performance of the model in practical conditions decreases because of the restrictions

in practical scenario. Hence the node failure probability due to its battery level less than

30% is more.

Hence by comparing the performance of all the four models in practical conditions,

we can observe that the proposed model performs better in practical conditions too.

The efficiency of the Random selection model decreases significantly because of the

restriction in the practical scenario. The proposed model performs better in both the

conditions because the model keeps a check on every parameter of the sensor node.

Also, the performance does not degrade by varying conditions and by varying the

number of sensor nodes. Hence the proposed model plays a crucial role in implementing

batch verification in IoT network efficiently. Hence the proposed model also reduces

the bottleneck at the gateway without compromise in security.

5.5.3 Security Analysis

We have used ECDSA∗ signatures (Antipa et al. 2005) for node authentication.

ECDSA∗ signature is as secure as ECDSA signature. And for batch verification, we

are using the batch verification scheme proposed in Chapter 3. The security for the trust

model is measured through the trust value of the sensor node. Hence in the Algorithm

5.2, we can observe that the gateway node prefers the nodes with higher QoS value.

Suppose in one of the scenarios, a node gets compromised, and its QoS value is

illegally incremented to get access to signatures, then the proposed model is efficient to

detect it. In such an attack, the attacker tries to include the compromised node in the

list of trusted nodes. This way, the attacker tries to verify an illegal or bad signature as

135

5. A Trust Model based Batch Verification of Digital Signatures in IoT

the legal signature by paving way for the other attacks.

The unauthorized manipulation of the QoS value of the node can be detected by

storing a copy of QoS value of every node in the gateway node. Hence, once the Avail

nodes are derived from Algorithm 5.1, our next task is to verify whether the QoS values

of these nodes are same as the QoS values stored in the gateway node. Therefore this

way, it will be easy for the gateway node to identify the faulty node and discard it from

the list. This way, the node will not be considered for further verification task by the

gateway node.

For the Data information spoofing during communication between the sensor node

and the gateway node, there are multiple Key Predistribution Schemes available (Chan

et al. 2003; Du et al. 2005). Since sensor nodes have low bandwidth and computation

power, it is imperative to have lightweight protocols like Simple Object Access Protocol

(SOAP) (Mitra et al. 2003), Constrained Application Protocol (CoAP) (Shelby et al.

2014), etc. There are other protocols for secure communication such as IPsec (Frankel

and Krishnan 2011), DTLS (Rescorla and Modadugu 2012) etc. These protocols are not

suitable for communication in sensor nodes since the protocols have a high bandwidth

delay product, high packet loss.

There is always a trade-off between the security and the computation time. Many

industries come up with technologies which compromise the security in a contest to

reduce the computation time. Hence in our trust model, we are trying to reduce the

computation load at the gateway node by distributing load across Trusted nodes, which

reduce the probability of node failure. Our scheme does not increase the latency since

the sensor nodes need not have to communicate back the entire batch of signatures to

the gateway node. The sensor nodes verify the signatures through batch verification and

respond to the gateway node whether the batch verification is a success or a failure.

In case of failure of batch verification test, the gateway node can find the

exact location of the forged signature by performing the individual verification of

signatures by using bad signature identification schemes. This load sharing reduces

the computation cost to find the exact index of the forged signature.

136

5.6. Summary

5.6 SUMMARY

In this chapter, we have proposed a trust model, which helps in the efficient

implementation of batch verification in IoT applications to reduce the load on the

gateway node. Since the gateway node has many responsibilities, the proposed model

significantly reduces a load of authentication for every message received from hundreds

of sensor nodes.

The proposed trust model has two algorithms: one for choosing Avail sensor nodes

based on physical parameters and the second for choosing Trusted sensor nodes from

the Avail nodes. The gateway node distributes the signatures among the Trusted nodes.

The Trusted nodes perform batch verification and return the result of verification to the

gateway node. This significantly reduces the signature verification time and load at the

gateway node, which the gateway node can utilize for performing other tasks. Hence

the proposed model successfully implements the batch verification in IoT network

efficiently.

137

Chapter 6

CONCLUSIONS AND FUTURE WORK

IoT network consists of sensor nodes, actuators, gateway nodes, etc. These nodes

have low computation power, memory, and energy. Among these nodes, the gateway

node has more computation power and energy compared to other nodes. All the

communication with the external world happens through gateway node, making

the gateway a bridge between the IoT network and external cloud. This role

creates a bottleneck at the gateway node since the gateway becomes responsible for

authentication, verification, normalization of data received from the sensor nodes.

Therefore to reduce this bottleneck, there is a need for lightweight, secure schemes

which can be implemented in the IoT network to reduce the load on the gateway node.

To develop a lightweight batch verification scheme, it is essential to survey various

batch verification schemes available in the literature. Since ECDSA∗ signature is

the lightweight signature algorithm, it is advantageous to develop a batch verification

scheme for ECDSA∗ signatures. Therefore in this work, a new batch verification

scheme for ECDSA∗ signatures is developed, which is secure as well lightweight

compared to existing schemes. The proposed batch verification scheme and most of

the existing schemes do not identify the bad signature in the batch when the batch

verification test fails. Therefore there are various bad signature identification schemes

available in the literature to locate the bad signature in the batch. But these available

schemes suffer from various drawbacks.

Therefore the second work of the thesis concentrates on developing bad signature

139

6. Conclusions and Future Work

schemes based on the hash function and Error Control Codes. The schemes are applied

with batch verification. The signer generates the signature and the codeword and sends

to the verifier. If the batch verification test fails, the verifier performs decoding of the

codeword to identify the bad signature. We have presented the encoding and decoding

times for the three schemes and compare results with other existing schemes. We found

that the Hash and CRC based verification are efficient for IoT applications than LDPC

based verification.

The next contribution of the thesis is to design a trust model to implement the

proposed schemes efficiently to reduce the bottleneck at the gateway node. The trust

model identifies the Trusted sensor nodes out of all the sensor nodes. These Trusted

sensor nodes verify the received signatures using proposed schemes and return the result

to the gateway node. The model introduces two algorithms for choosing the Trusted

nodes among the available nodes based on various parameters associated with the nodes.

Future Scope

As the approaches proposed in the thesis reduce the load on the gateway nodes,

there is significant scope for future research. Further research can be carried out in the

following areas:

• The existing batch verification schemes are not efficient for multiple signers.

Hence to gain further efficiency, designing schemes which are more suitable for

multiple signers is an excellent research topic to study.

• Most of the existing batch verification schemes verify the received batch of

signatures to check if there is a presence of any faulty signature/s. Hence a

promising future research direction is to design batch verification scheme which

can verify as well as identify the bad signature in the received batch of digital

signatures.

• Since ECDSA is grabbing attention in the recent times due to its short signature

property, it has the overhead of precomputation. ECDSA∗ is one of the ways

to minimize the precomputation overhead, but it needs extra bits of information,

140

which increases the signature size, to gain efficiency. Although the extra bits

of information in ECDSA∗ does not create significant overhead, developing

techniques as efficient as or more efficient than ECDSA∗ requires attention.

• The trust model designed reduces the overhead at the gateway node in IoT by

distributing the authentication load among the sensor nodes. Hence exploring

new schemes to reduce other responsibilities of gateway node and models to

reduce heavy computation load is a promising research direction in this area.

In conclusion, this dissertation proposes a new batch verification scheme for

verifying multiple ECDSA∗ signatures, which is more efficient and secure than the

existing schemes. One new hash-based and two new error control code based schemes

are proposed to identify the faulty signatures in the batch, which are efficient in

identifying faulty signature than individual verification. To reduce the overhead of

gateway node, a trust model for IoT network is designed. The overhead is reduced by

distributing the authentication load to sensor nodes, which perform batch verification to

verify the digital signatures.

141

BIBLIOGRAPHY

Abe, M. (1998). “Universally verifiable mix-net with verification work independent

of the number of mix-servers.” In International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 437–447.

Adleman, L., Rivest, R. L. and Shamir, A. (1977). “On digital signatures and public

key cryptosystems.”).

Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C. and Marrocco, G. (2014). “Rfid

technology for iot-based personal healthcare in smart spaces.” IEEE Internet of

Things Journal, 1(2), 144–152.

Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R. and Vanstone, S. (2005).

“Accelerated verification of ecdsa signatures.” In International Workshop on Selected

Areas in Cryptography, Springer, 307–318.

Atzori, L., Iera, A. and Morabito, G. (2010). “The internet of things: A survey.”

Computer networks, 54(15), 2787–2805.

Bao, F., Lee, C.-C. and Hwang, M.-S. (2006). “Cryptanalysis and improvement

on batch verifying multiple rsa digital signatures.” Applied Mathematics and

Computation, 172(2), 1195–1200.

Bellare, M., Garay, J. A. and Rabin, T. (1998). “Fast batch verification for modular

exponentiation and digital signatures.” In International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 236–250.

Bellare, M. and Rogaway, P. (1996). “The exact security of digital signatures-how to

143

BIBLIOGRAPHY

sign with rsa and rabin.” In International Conference on the Theory and Applications

of Cryptographic Techniques, Springer, 399–416.

Bernstein, D. J., Doumen, J., Lange, T. and Oosterwijk, J.-J. (2012). “Faster batch

forgery identification.” In International Conference on Cryptology in India, Springer,

454–473.

Blahut, R. E. (2014). Cryptography and Secure Communication, Cambridge University

Press.

Blake, I. F., Seroussi, G. and Smart, N. (1999). Elliptic curves in cryptography, volume

265, Cambridge university press.

Boneh, D. and Boyen, X. (2004). “Short signatures without random oracles.” In

Eurocrypt, volume 3027, Springer, 56–73.

Boneh, D., Boyen, X. and Shacham, H. (2004). “Short group signatures.” In Crypto,

volume 3152, Springer, 41–55.

Boneh, D. et al. (1999). “Twenty years of attacks on the rsa cryptosystem.” Notices of

the AMS, 46(2), 203–213.

Boneh, D., Lynn, B. and Shacham, H. (2001). “Short signatures from the weil

pairing.” In International Conference on the Theory and Application of Cryptology

and Information Security, Springer, 514–532.

Brown, D. R. (2005). “Generic groups, collision resistance, and ecdsa.” Designs, Codes

and Cryptography, 35(1), 119–152.

Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M. and Mangioni, G. (2017).

“Direct trust assignment using social reputation and aging.” Journal of Ambient

Intelligence and Humanized Computing, 8(2), 167–175.

Camenisch, J., Hohenberger, S. and Pedersen, M. O. (2007). “Batch verification of

short signatures.” In Eurocrypt, volume 4515, Springer, 246–263.

144

BIBLIOGRAPHY

Camenisch, J. and Lysyanskaya, A. (2004). “Signature schemes and anonymous

credentials from bilinear maps.” In Annual International Cryptology Conference,

Springer, 56–72.

Chan, H., Perrig, A. and Song, D. (2003). “Random key predistribution schemes

for sensor networks.” In IEEE symposium on security and privacy, volume 197,

Berkeley, California.

Changchien, S. W., Hwang, M.-S. and Hwang, K.-F. (2002). “A batch verifying and

detecting multiple rsa digital signatures.” International Journal of Computational and

Numerical Analysis and Applications, 2(3), 303–307.

Chen, H., Wu, H., Zhou, X. and Gao, C. (2007). “Agent-based trust model in wireless

sensor networks.” In null, IEEE, 119–124.

Chen, T., Wang, J. and Zhou, Y. (2001). “Combined digital signature and digital

watermark scheme for image authentication.” In Info-tech and Info-net, 2001.

Proceedings. ICII 2001-Beijing. 2001 International Conferences on, volume 5, IEEE,

78–82.

Cheon, J. H. (2002). “A universal forgery of hess’s second id-based signature against

the known-message attack..” IACR Cryptology ePrint Archive, 2002, 28.

Cheon, J. H. and Yi, J. H. (2007). “Fast batch verification of multiple signatures.” In

International Workshop on Public Key Cryptography, Springer, 442–457.

Claessens, J., Dem, V., De Cock, D., Preneel, B. and Vandewalle, J. (2002). “On the

security of today’s online electronic banking systems.” Computers & Security, 21(3),

253–265.

Cocchia, A. (2014). “Smart and digital city: A systematic literature review.” In Smart

city, Springer, 13–43.

Davies, D. W. (1983). “Applying the rsa digital signature to electronic mail..” IEEE

Computer, 16(2), 55–62.

145

BIBLIOGRAPHY

Delerablée, C. and Pointcheval, D. (2006). “Dynamic fully anonymous short group

signatures.” Vietcrypt, 4341, 193–210.

Diffie, W. and Hellman, M. (1976). “New directions in cryptography.” IEEE

transactions on Information Theory, 22(6), 644–654.

Du, K.-k., Wang, Z.-l. and Mi, H. (2013). “Human machine interactive system on smart

home of iot.” The Journal of China Universities of Posts and Telecommunications,

20, 96–99.

Du, W., Deng, J., Han, Y. S., Varshney, P. K., Katz, J. and Khalili, A. (2005).

“A pairwise key predistribution scheme for wireless sensor networks.” ACM

Transactions on Information and System Security (TISSEC), 8(2), 228–258.

Escolar, S., Chessa, S. and Carretero, J. (2014). “Energy management in solar cells

powered wireless sensor networks for quality of service optimization.” Personal and

ubiquitous computing, 18(2), 449–464.

Esfandiari, B. and Chandrasekharan, S. (2001). “On how agents make friends:

Mechanisms for trust acquisition.” In Proceedings of the fourth workshop on

deception, fraud and trust in agent societies, volume 222, 19.

Ferrara, A. L., Green, M., Hohenberger, S. and Pedersen, M. Ø. (2009). “Practical short

signature batch verification..” In CT-RSA, volume 5473, Springer, 309–324.

Fiat, A. (1989). “Batch rsa.” In Conference on the Theory and Application of

Cryptology, Springer, 175–185.

Fisher, R., Ledwaba, L., Hancke, G. and Kruger, C. (2015). “Open hardware: A role to

play in wireless sensor networks?.” Sensors, 15(3), 6818–6844.

Forney, G. (1965). “On decoding bch codes.” IEEE Transactions on information theory,

11(4), 549–557.

Fossorier, M. P., Mihaljevic, M. and Imai, H. (1999). “Reduced complexity iterative

decoding of low-density parity check codes based on belief propagation.” IEEE

Transactions on communications, 47(5), 673–680.

146

BIBLIOGRAPHY

Frank, R. (2013). Understanding smart sensors, Artech House.

Frankel, S. and Krishnan, S. (2011). “Ip security (ipsec) and internet key exchange (ike)

document roadmap.” Technical report.

Furnell, S. M. and Karweni, T. (1999). “Security implications of electronic commerce:

a survey of consumers and businesses.” Internet research, 9(5), 372–382.

Gallager, R. (1962). “Low-density parity-check codes.” IRE Transactions on

information theory, 8(1), 21–28.

Gambetta, D. et al. (2000). “Can we trust trust.” Trust: Making and breaking

cooperative relations, 13, 213–237.

Ganeriwal, S., Balzano, L. K. and Srivastava, M. B. (2008). “Reputation-based

framework for high integrity sensor networks.” ACM Transactions on Sensor

Networks (TOSN), 4(3), 15.

Goh, E.-J. and Jarecki, S. (2003). “A signature scheme as secure as the diffie-

hellman problem.” In International Conference on the Theory and Applications of

Cryptographic Techniques, Springer, 401–415.

Goldwasser, S., Micali, S. and Rivest, R. L. (1988). “A digital signature scheme secure

against adaptive chosen-message attacks.” SIAM Journal on Computing, 17(2), 281–

308.

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013). “Internet of things (iot):

A vision, architectural elements, and future directions.” Future generation computer

systems, 29(7), 1645–1660.

Guo, F., Mu, Y. and Chen, Z. (2008). “Efficient batch verification of short signatures

for a single-signer setting without random oracles.” Advances in Information and

Computer Security, 49–63.

Harn, L. (1998a). “Batch verifying multiple dsa-type digital signatures.” Electronics

Letters, 34(9), 870–871.

147

BIBLIOGRAPHY

Harn, L. (1998b). “Batch verifying multiple rsa digital signatures.” Electronics Letters,

34(12), 1219–1220.

Harn, L. and Xu, Y. (1994). “Design of generalized elgamal type digital signature

schemes based on discrete logarithm.” Electronics letters, 30(24), 2025–2026.

Housley, R., Polk, W., Ford, W. and Solo, D. (2002). “Internet x. 509 public key

infrastructure certificate and certificate revocation list (crl) profile.” Technical report.

Hwang, M.-S., Lee, C.-C. and Lu, E. J.-L. (2001). “Cryptanalysis of the batch verifying

multiple dsa-type digital signatures.” Pakistan Journal of Applied Sciences, 1(3),

287–288.

Hwang, M.-S., Lin, I.-C. and Hwang, K.-F. (2000). “Cryptanalysis of the batch

verifying multiple rsa digital signatures.” Informatica, 11(1), 15–18.

Jie, Y., Pei, J. Y., Jun, L., Yun, G. and Wei, X. (2013). “Smart home system based on

iot technologies.” In Computational and Information Sciences (ICCIS), 2013 Fifth

International Conference on, IEEE, 1789–1791.

Jin, J., Gubbi, J., Marusic, S. and Palaniswami, M. (2014). “An information framework

for creating a smart city through internet of things.” IEEE Internet of Things Journal,

1(2), 112–121.

Kalra, S. and Sood, S. K. (2015). “Secure authentication scheme for iot and cloud

servers.” Pervasive and Mobile Computing, 24, 210–223.

Kamvar, S. D., Schlosser, M. T. and Garcia-Molina, H. (2003). “The eigentrust

algorithm for reputation management in p2p networks.” In Proceedings of the 12th

international conference on World Wide Web, ACM, 640–651.

Karakostas, B. (2013). “A dns architecture for the internet of things: A case study in

transport logistics.” Procedia Computer Science, 19, 594–601.

Karati, S., Das, A. and Chowdhury, D. R. (2012a). “Using randomizers for batch

verification of ecdsa signatures..” IACR Cryptology ePrint Archive, 2012, 582.

148

BIBLIOGRAPHY

Karati, S., Das, A., Roychowdhury, D., Bellur, B., Bhattacharya, D. and Iyer, A.

(2012b). “Batch verification of ecdsa signatures.” In International Conference on

Cryptology in Africa, Springer, 1–18.

Katz, J. (2010). Digital signatures, Springer Science & Business Media.

Katz, J. and Lindell, Y. (2014). Introduction to modern cryptography, CRC press.

Katz, J., Menezes, A. J., Van Oorschot, P. C. and Vanstone, S. A. (1996). Handbook of

applied cryptography, CRC press.

Kayalvizhi, R., Vijayalakshmi, M. and Vaidehi, V. (2010). “Energy analysis of rsa and

elgamal algorithms for wireless sensor networks.” In International Conference on

Network Security and Applications, Springer, 172–180.

Kinnis, T. F. and Sit, H. W. (2005). “Digital signature service.”)US Patent 6,959,382.

Kittur, A. S., Jain, A. and Pais, A. R. (2017). “Fast verification of digital signatures

in iot.” In International Symposium on Security in Computing and Communication,

Springer, 16–27.

Kittur, A. S., Kauthale, S. and Pais, A. R. (2019). “Bad signature identification in

a batch using error detection codes.” In International Conference on Security &

Privacy, Springer, 53–66.

Kittur, A. S. and Pais, A. R. (2017). “Batch verification of digital signatures:

Approaches and challenges.” Journal of Information Security and Applications, 37,

15–27.

Kittur, A. S. and Pais, A. R. (2019a). “A new batch verification scheme for ECDSA*

signatures.” Sadhana, 44(7), 157.

Kittur, A. S. and Pais, A. R. (2019b). “A trust model based batch verification of digital

signatures in iot.” Journal of Ambient Intelligence and Humanized Computing, 1–15.

Koblitz, N. (1987). “Elliptic curve cryptosystems.” Mathematics of computation,

48(177), 203–209.

149

BIBLIOGRAPHY

Koblitz, N. (1998). “An elliptic curve implementation of the finite field digital signature

algorithm.” In Annual International Cryptology Conference, Springer, 327–337.

Koblitz, N. and Menezes, A. (2005). “Pairing-based cryptography at high security

levels.” Lecture notes in computer science, 3796, 13.

Kocher, P. C. (1996). “Timing attacks on implementations of diffie-hellman, rsa, dss,

and other systems.” In Annual International Cryptology Conference, Springer, 104–

113.

Kravitz, D. W. (1993). “Digital signature algorithm.”)US Patent 5,231,668.

Krawczyk, H., Bellare, M. and Canetti, R. (1997). “Hmac: Keyed-hashing for message

authentication.” Technical report.

Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J. and Yoo, S. (2003). “Providing

receipt-freeness in mixnet-based voting protocols.” In International Conference on

Information Security and Cryptology, Springer, 245–258.

Li, C.-T., Hwang, M.-S. and Chen, S. (2010). “A batch verifying and detecting the

illegal signatures.” International Journal of Innovative Computing, Information and

Control, 6(12), 5311–5320.

Liao, Y.-P. and Hsiao, C.-M. (2014). “A secure ecc-based rfid authentication scheme

integrated with id-verifier transfer protocol.” Ad Hoc Networks, 18, 133–146.

Lim, C. H. and Lee, P. J. (1994). “Security of interactive dsa batch verification.”

Electronics letters, 30(19), 1592–1592.

Lin, C.-H., Hsu, R.-H. and Harn, L. (2005). “Improved dsa variant for batch

verification.” Applied mathematics and computation, 169(1), 75–81.

MacKay, D. J. and Neal, R. M. (1996). “Near shannon limit performance of low density

parity check codes.” Electronics letters, 32(18), 1645–1646.

Manuel, P. (2015). “A trust model of cloud computing based on quality of service.”

Annals of Operations Research, 233(1), 281–292.

150

BIBLIOGRAPHY

Mármol, F. G. and Pérez, G. M. (2011). “Providing trust in wireless sensor networks

using a bio-inspired technique.” Telecommunication systems, 46(2), 163–180.

Miller, V. S. (1985). “Use of elliptic curves in cryptography.” In Conference on the

Theory and Application of Cryptographic Techniques, Springer, 417–426.

Min-Shiang, H., Cheng-Chi, L. and Yuan-Liang, T. (2001). “Two simple batch

verifying multiple digital signatures.” In International Conference on Information

and Communications Security, Springer, 233–237.

Mitra, N., Lafon, Y. et al. (2003). “Soap version 1.2 part 0: Primer.” W3C

recommendation, 24, 12.

Mykletun, E., Narasimha, M. and Tsudik, G. (2006). “Authentication and integrity in

outsourced databases.” ACM Transactions on Storage (TOS), 2(2), 107–138.

Naccache, D., M’RaÏhi, D., Vaudenay, S. and Raphaeli, D. (1994). “Can dsa

be improved?—complexity trade-offs with the digital signature standard—.” In

Workshop on the Theory and Application of of Cryptographic Techniques, Springer,

77–85.

Naor, M. and Yung, M. (1989). “Universal one-way hash functions and their

cryptographic applications.” In Proceedings of the twenty-first annual ACM

symposium on Theory of computing, ACM, 33–43.

Naor, M. and Yung, M. (1990). “Public-key cryptosystems provably secure against

chosen ciphertext attacks.” In Proceedings of the twenty-second annual ACM

symposium on Theory of computing, ACM, 427–437.

Ndiaye, M., Hancke, G. and Abu-Mahfouz, A. (2017). “Software defined networking

for improved wireless sensor network management: A survey.” Sensors, 17(5), 1031.

Nguyen, P. Q. and Shparlinski, I. E. (2002). “The insecurity of the digital signature

algorithm with partially known nonces.” Journal of Cryptology, 15(3), 151–176.

Nguyen, P. Q. and Stern, J. (2001). “The two faces of lattices in cryptology.” In

Cryptography and lattices, Springer, 146–180.

151

BIBLIOGRAPHY

Pastuszak, J., Michałek, D., Pieprzyk, J. and Seberry, J. (2000a). “Identification of

bad signatures in batches.” In International Workshop on Public Key Cryptography,

Springer, 28–45.

Pastuszak, J., Pieprzyk, J. and Seberry, J. (2000b). “Codes identifying bad signatures

in batches.” In International Conference on Cryptology in India, Springer, 143–154.

Peterson, W. W. and Brown, D. T. (1961). “Cyclic codes for error detection.”

Proceedings of the IRE, 49(1), 228–235.

Peukert, D. (1987). Die Weimarer Republik, volume 9, VEB Deutscher Verlag für

Musik.

Pfitzmann, B. and Pfitzmann, A. (1989). “How to break the direct rsa-implementation of

mixes.” In Workshop on the Theory and Application of of Cryptographic Techniques,

Springer, 373–381.

Pham, C. (2014). “Communication performances of ieee 802.15. 4 wireless sensor

motes for data-intensive applications: A comparison of waspmote, arduino mega,

telosb, micaz and imote2 for image surveillance.” Journal of Network and Computer

Applications, 46, 48–59.

Pi, R. (3). “Model b+-raspberry pi”, raspberry pi, 2018.”).

Ram, K. S. S. and Gupta, A. (2016). “Iot based data logger system for weather

monitoring using wireless sensor networks.” International Journal of Engineering

Trends and Technology, 32(2), 71–75.

Ren, Y., Wang, S., Zhang, X. and Hwang, M.-S. (2015). “An efficient batch verifying

scheme for detecting illegal signatures..” IJ Network Security, 17(4), 463–470.

Rescorla, E. and Modadugu, N. (2012). “Datagram transport layer security version 1.2.”

Technical report.

Rivest, R. L., Shamir, A. and Adleman, L. (1978). “A method for obtaining digital

signatures and public-key cryptosystems.” Communications of the ACM, 21(2), 120–

126.

152

BIBLIOGRAPHY

Sabater, J. and Sierra, C. (2005). “Review on computational trust and reputation

models.” Artificial intelligence review, 24(1), 33–60.

Selcuk, A. A., Uzun, E. and Pariente, M. R. (2004). “A reputation-based trust

management system for p2p networks.” In ccgrid, IEEE, 251–258.

Serret-Avila, X. and Boccon-Gibod, G. (2004). “Methods and systems for encoding

and protecting data using digital signature and watermarking techniques.”)US Patent

6,785,815.

Seungwon, L., Seongje, C. and Yookun, C. (2006). “Efficient identification of bad

signatures in rsa-type batch signature.” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 89(1), 74–80.

Shao, Z. (2001). “Batch verifying multiple dsa-type digital signatures.” Computer

Networks, 37(3), 383–389.

Shelby, Z., Hartke, K. and Bormann, C. (2014). “The constrained application protocol

(coap).” Technical report.

Shen, X., Liu, Z., Harn, L. and Lou, Y. (1999). “A batch-verifying algorithm for

multiple digital signatures.” Proc. Of the Iasted, November, MIT, Boston, USA.

Stallings, W. (2006). Cryptography and network security: principles and practices,

Pearson Education India.

Suo, H., Wan, J., Zou, C. and Liu, J. (2012). “Security in the internet of things:

a review.” In Computer Science and Electronics Engineering (ICCSEE), 2012

International Conference on, volume 3, IEEE, 648–651.

Sweeney, P. (1991). Error control coding, Prentice Hall UK.

Tanner, R. (1981). “A recursive approach to low complexity codes.” IEEE Transactions

on information theory, 27(5), 533–547.

Vaeth, J. S. and Walton, C. S. (2000). “Virtual certificate authority.”)US Patent

6,035,402.

153

BIBLIOGRAPHY

Van Arem, B., Tampère, C. and Malone, K. (2003). “Modelling traffic flows with

intelligent cars and intelligent roads.” In Intelligent Vehicles Symposium, 2003.

Proceedings. IEEE, IEEE, 456–461.

Vaudenay, S. (2003). “The security of dsa and ecdsa.” In International Workshop on

Public Key Cryptography, Springer, 309–323.

Vu, Q.-A. N., Canal, R., Gaudou, B., Hassas, S. and Armetta, F. (2012). “Trustsets:

using trust to detect deceitful agents in a distributed information collecting system.”

Journal of Ambient Intelligence and Humanized Computing, 3(4), 251–263.

Wander, A. S., Gura, N., Eberle, H., Gupta, V. and Shantz, S. C. (2005). “Energy

analysis of public-key cryptography for wireless sensor networks.” In Pervasive

Computing and Communications, 2005. PerCom 2005. Third IEEE International

Conference on, IEEE, 324–328.

Wang, F.-Y., Zeng, D. and Yang, L. (2006). “Smart cars on smart roads: an ieee

intelligent transportation systems society update.” IEEE Pervasive Computing, 5(4),

0068–69.

Wang, R., Gu, F. and Shen, E. (2007). “Advances in cognitive neurodynamics.” In

the Proceedings of Internatinal Conference on Cognitive Neurodynamics, Springer

Publication, Springer.

Wolf, J. K. and Blakeney, R. D. (1988). “An exact evaluation of the probability

of undetected error for certain shortened binary crc codes.” In MILCOM 88, 21st

Century Military Communications-What’s Possible?’. Conference record. Military

Communications Conference, IEEE, 287–292.

Wu, F., Rüdiger, C. and Yuce, M. R. (2017). “Real-time performance of a self-powered

environmental iot sensor network system.” Sensors, 17(2), 282.

Wu, F., Xu, L., Kumari, S., Li, X., Das, A. K. and Shen, J. (2018). “A lightweight and

anonymous rfid tag authentication protocol with cloud assistance for e-healthcare

applications.” Journal of Ambient Intelligence and Humanized Computing, 9(4),

919–930.

154

Xiong, L. and Liu, L. (2004). “Peertrust: Supporting reputation-based trust for

peer-to-peer electronic communities.” IEEE transactions on Knowledge and Data

Engineering, 16(7), 843–857.

Zhang, Z.-K., Cho, M. C. Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K. and Shieh, S.

(2014). “Iot security: ongoing challenges and research opportunities.” In 2014 IEEE

7th International Conference on Service-Oriented Computing and Applications,

IEEE, 230–234.

Zhiwei, G., Yingxin, H. and Kai, L. (2015). “Cptias: a new fast pki authentication

scheme based on certificate path trust index.” Journal of Ambient Intelligence and

Humanized Computing, 6(6), 721–731.

Zhou, R. and Hwang, K. (2007). “Powertrust: A robust and scalable reputation system

for trusted peer-to-peer computing.” IEEE Transactions on Parallel & Distributed

Systems, (4), 460–473.

Zhu, Q., Wang, R., Chen, Q., Liu, Y. and Qin, W. (2010). “Iot gateway:

Bridgingwireless sensor networks into internet of things.” In Embedded and

Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference on,

IEEE, 347–352.

PUBLICATIONS BASED ON THE RESEARCH
WORK

1. Kittur, A. S., and Pais, A. R. (2017). Batch verification of Digital Signatures:

Approaches and challenges. Journal of Information Security and Applications

(Elsevier), 37: 15–27. [Published]

2. Kittur, A. S., and Pais, A. R. (2019). A Trust Model based Batch Verification

of Digital Signatures in IoT. Journal of Ambient Intelligence and Humanized

Computing (Springer), 1–15 [Published]

3. Kittur, A. S., and Pais, A. R. (2019). A New Batch Verification Scheme for

ECDSA∗ Signatures. Sādhanā (Springer), 44(7): 157. [Published]

4. Kittur, A. S., Jain, A., and Pais, A. R. (2017, September). Fast Verification of

Digital Signatures in IoT. International Symposium on Security in Computing

and Communication (pp. 16-27). Springer, Singapore. [Published]

5. Kittur, A. S., Kauthale, S., and Pais, A. R. (2018). Bad Signature Identification in

a Batch using Error Detection Codes. International Conference on Security and

Privacy 2019 (ISEA-ISAP 2019) (pp. 53-66) (Springer) Singapore [Published]

157

BIO-DATA

Name: Apurva S. Kittur

Date of Birth: 12/03/1991

Gender: Female

Marital Status: Married

Father’s Name: Dr. Shreekant Kittur

Mother’s Name: Sneha Kittur

Husband’s Name: Mr. Raghunath Kulkarni

Email Id: apurva.kittur@gmail.com

Present Address: SB G1, Kumardhara Block, Vijaya Enclave,

Bilekhalli, Bannerghatta Road, Bangalore,

Karnataka, INDIA-560076

Educational Qualifications: B.Tech (CSE) - KLS Gogte Institute of

Technology, Belagavi, Karnataka

M.Tech (Networking and Internet

Engineering) - Sri Jayachamarajendra

College of Engineering, Mysore, Karnataka

Areas of Interest: Security in IoT, Cryptography, High

Performance Computing, Information

Security

159

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Batch Verification of Digital Signatures
	Digital Signatures: Properties, Applications, and Threats
	Digital Signature Algorithms
	Properties
	Applications
	Threats on Digital Signatures

	IoT and its Security
	Motivation
	Objectives
	Thesis Contribution
	Thesis Organization

	Literature Review
	Batch Verification Schemes
	RSA Batch Verification Scheme
	DSS Batch verification schemes
	ECDSA Batch Verification schemes

	Bad Signature Identification Schemes
	Security Trust Models
	Research Gaps
	Summary

	Batch Verification of ECDSA* Signatures
	Definitions and Notations
	The ECDSA algorithm
	The ECDSA* algorithm

	Proposed Batch Verification Scheme
	Security Analysis
	Possible Attacks on the Existing Schemes

	Results and Analysis
	Verification Times
	Speedup Values
	Computation Cost Analysis
	Running Time Analysis

	Summary

	Bad Signature Identification in Batch Verification
	Introduction
	Preliminaries
	Hash Based Verification Scheme
	Comparative Analysis
	Verification Time for Hash based verification

	CRC based bad signature identification scheme
	Error Detection Codes
	CRC Verification Algorithm
	Security Analysis
	Comparative Analysis
	Results for CRC based scheme

	LDPC based bad signature identification scheme
	Designing the Parity Check Matrix
	LDPC Verification Algorithm
	Security Analysis

	Results
	Results for the proposed batch verification scheme

	SUMMARY

	A Trust Model based Batch Verification of Digital Signatures in IoT
	Preliminaries
	IoT network nodes

	Proposed Model
	Parameters for Node selection
	Implementation of the ECDSA* batch verification algorithm

	Node selection based on Physical Parameters
	Avail node selection algorithm

	Node selection based on Security Parameters
	Trusted Node Selection Algorithm

	Results and Discussion
	Ideal Condition Results
	Practical Condition Results
	Security Analysis

	Summary

	Conclusions and Future Work
	Bibliography
	Publications

