
CONTENT BASED MUSIC INFORMATION
RETRIEVAL (CB-MIR) AND ITS

APPLICATIONS TOWARDS MUSIC
RECOMMENDER SYSTEM

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Y V SRINIVASA MURTHY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA (NITK),

SURATHKAL, MANGALORE,

KARNATAKA - 575 025, INDIA.

DECEMBER 2018





Dedicated to my
Grand Father (Late Sri Jaya Simhudu), Grand Mother, Parents,
Teachers, Research Supervisor, In-Laws, Mavayya (Uncle), Wife,

Daughter, Brother, My Friend (late) P. Srinivasu and All my
dear friends.





National Institute of Technology Karnataka, Surathkal

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-

DECLARATION
by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Content-based Music Informa-
tion Retrieval (CB-MIR) and its Applications Towards Music Recommender
System which is being submitted to the National Institute of Technology Kar-
nataka (NITK), Surathkal in partial fulfilment of the requirements for the award of
the Degree of Doctor of Philosophy in Computer Science and Engineering is a
bonafide report of the research work carried out by me. The material contained
in this Research Thesis has not been submitted to any University or Institution for the
award of any degree.

(135067 CS13F05, Y V Srinivasa Murthy)
(Register Number, Name & Signature of Research Scholar)

Department of Computer Science and Engineering

Place: NITK, Surathkal.
Date: December 12, 2018

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-





National Institute of Technology Karnataka, Surathkal
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-

CERTIFICATE

This is to certify that the Research Thesis entitledContent-based Music Informa-

tion Retrieval (CB-MIR) and its Applications Towards Music Recommender

System submitted by Y V Srinivasa Murthy, (Register Number: 135067 CS13F05)

as the record of the research work carried out by him, is accepted as the Research Thesis

submission in partial fulfillment of the requirements for the award of degree of Doctor

of Philosophy.

Dr. Shashidhar G. Koolagudi

Research Supervisor

(Name and Signature with Date and Seal)

Chairman - DRPC

(Name and Signature with Date and Seal)



––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––-







Acknowledgements

Firstly, I would like to express my sincere gratitude to my guide, Dr. Shashidhar G.

Koolagudi (Associate Professor, Department of CSE), for his continuous guidance

and motivation, because of which I have been able to solve any issues that I face. It is

due to his influence that I have gained patience and an insight on simple living.

Besides my guide, I would like to thank Prof. U. Sripathi Acharya (Professor,

ECE (RPAC Member)) and Dr. Mohit P. Tahiliani (Assistant Professor, CSE

(RPAC Member)) who have been a continuous source of encouragement to me and

have been always ready to assist me with constructive suggestions.

My sincere thanks also goes to Prof. Santhi Thilagam (HOD, CSE.) andDr. Al-

wyn Roshan Pais (Chairman, DRPC) who encouraged me all the time with positive

statements.

I can’t miss mentioning the faculty of CSE Department,Dr. K.C. Chandrasekaran,

Dr. B. Annappa, Dr. Manu Basavaraj, Dr. Jeny Rajan, Dr. Basavaraj

Talawar and Dr. B.R. Chandavarkar who have always been ready to support me

when I needed it.

I can’t forget the one who welcomed me to NITK with a smile, Late. Prof. K. C.

Shet.

A special thanks to Dr. Sujatha D. Achar, MACS Department, who blessed me

all the time with positive wishes.

This would be incomplete without mentioning my sister, Smt. Saumya Hegde

(Assistant Professor, CSE Department), who supported me in all the aspects of my

Ph.D. life.

Heartfelt thanks Mrs. Jayashree Koolagudi for enquiring my thesis status all the

time and caring all the time.

I would also like to thank the technical and supporting team Smt. Yashwanthi,

Smt. Seema Shivaram, Vairavanathan, Kamath, Mohini, Vikranth, Yash-



wanth, Ravi and Arun for providing all the facilities to do my research in a smooth

way. Without such high-end infrastructure and continuous power supply, it would have

not been possible for me to finish my research.

Heartfelt thanks to the speech group of NITK, SIMPLE (Speech, Image, and Mu-

sic Processing Learning Environment), the members including Pravin B. Ramteke,

who always helped in all the aspects, Manjunath Mulimani, Nagaratna B. Chit-

taragi and Fathima Afroz for their help in explaining unknown concepts, coding, ad-

justing my duties during presentations, and a lot more assistance they have rendered in

many personal matters too.

Thanks to the faculty and research scholars of CSE, IT & ECE departments who made

me happy all the time, especially Dr. Srihari, Dr. Ram Mohan Reddy, Raghaven-

dra, Dr. Likewin Thomas, Dr. Manoj Kumar, Sachin D. Patil, Nikhil, Pramod

Yelmewad, Bheemappa,Vishal,Rashmi, Bane Raman Raghunath,Dr. Sumith,

Dr. Ganesh Reddy, Shiva and Ambikesh.

My sincere thanks to the organizers of Workshop on Speech and Image Process-

ing (WISP) and Winter School on Speech and Audio Processing (WiSSAP)

for giving valuable suggestions on the research problem that I had chosen. A special

thanks to Prof. Sreenivasa Rao Krothapalli, Professor, IIT KGP, Prof. S.R.M.

Prasanna, and Prof. K.S. R. Murthy for their valuable comments on the work during

my research.

A special thanks to the members of my special group (Friends forever), Charitha,

Manjunath and Susanna for keeping me happy all the time and tracking my thesis

status every day.

I would like to express my gratitude to all the professors who served as Dean Aca-

demics (Prof. Sumam David, Prof. Katta Venkata Ramana and Prof. Sai

Dutta) for their support in all the academic regulations.

My sincere thanks to the Directors of NITK (Prof. Swapan Bhattacharya and

Prof. Uma Maheswara Rao) for their support, without which it would not have been

possible to conduct this research.

My sincere thanks to the members of Academic section team, especiallyDayanand

and Prathibha for their continuous support in processing applications.

I sincerely thank Mrs. Nisha Shetty for language corrections.

Special thanks to the Security Guards of NITK for their daily wishes with a smile.



Their smiles have helped me to forget the pressures of research.

Prior to NITK, many friends encouraged me to pursue my research in NITK. One

special person among them is P. Srinivasu. This never ending list includes Aditya,

Naidu, Dr. Suresh, Suresh Chandra Satapathy, Saranya, Dr. K. Tammi

Reddy, Prof. M. Kamaraju, Prof. G.V.S.N.R.V. Prasad, Prof. Y Srinivasu,

Dr. T Srinivasa Rao, S.V.G. Reddy, Dr. Santhi Chilukuri and Madhusudhan.

I am eternally grateful to all of them for their support.

Thanks to my B.Tech, Diploma and SSC friends Ramjee, Uma, Rama Rao, Ra-

makrishna, Raghuveer Arja, and Siva for supporting me mentally and financially.

A family is the most special asset in anyone’s life. Thanks to my Maternal Grand

Parents (Sri. Veeranki Jayasimhudu and Dhanalaxmi), Grand Parents (Yarla-

gadda Butchayya and Ushagani), Parents (Yarlagadda Srinivasa Rao and Vi-

jaya Bharathi), In-laws (Chebolu Srinivasa Rao and Baby Kanaka Durga),

Uncle(Veeranki Satyanarayana), who is my first teacher, Aunt (Smt. Satyavathi),

Brother (Yarlagadda Chanikya), Brother-in-laws (Pothuraju, Kondala Rayudu

and Gowtham) for their efforts in making my life special and worthwhile.

Last, but not the least, profound gratitude to my wife, Yarlagadda Sugandha, who

bore all my pressures and shared my happy and sad moments. Thank you so much.

A special thanks to my lovely daughter, Yarlagadda Hamsini, for making all my days

happy. Even in the toughest situations, her smile means a lot to me and gives me strength.

Finally, Thanks to all the GODs for keeping me healthy during my research career.

Place: Surathkal Y. V. Srinivasa Murthy

Date: December 12, 2018





Abstract

Music is a pervasive element of human’s day-to-day activities. Most of the people love to

listen to music all the time for handling their stress and tensions. Some are capable of

creating the music. The importance of music for human beings has exploited the advance-

ments in technology resulting in an enormous number of digital tracks. However, a ma-

jority of tracks are available with an inadequate meta-information. The meta-information

is limited to the song title, album name, singer name and composer. Now, the question

is how to organize them effectively in order to retrieve the relevant clips quickly, without

proper meta-information like genre, lyrics, raga, mood, instrument names, etc. The pro-

cess of labelling the meta-information manually for millions of tracks of the digital cloud

is practically not possible. Hence, an area of research known as music information re-

trieval (MIR) has been introduced in the early years of 21st century. However, it acquired

much attention of researchers since 2005 with the support of Music Information Retrieval

Evaluation eXchange (MIREX)1 competition. There are several works that have been

proposed for various tasks of MIR such as singing voice detection, singer identification,

genre classification, instrument identification, music mood estimation, lyrics generation,

music annotation and so on. However, the main focus is on Western music, and only a

few works are reported on Indian songs in the literature.

Since Indian popular songs are contributing to a major portion of the global digital

cloud, in this thesis, an attempt has been made to develop a few useful MIR tasks such

as vocal and non-vocal segmentation, singer identification, music mood estimation and

development of music recommender system in Indian scenario. Efforts have been put

to construct relevant databases with a possible coherence for all the tasks mentioned

above. Results include comparative analysis with standard datasets such as MIR-1K and

artist20 are given. For each of the four tasks, some novel approach has been presented in

this thesis.

First, the task of vocal and non-vocal segmentation has been choosen to locate the

1http://www.music-ir.org/mirex/wiki/MIREX_HOME
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onset and offset points of singing voice regions. A set of novel features such as formant at-

tack slope (FAS), formant heights from base-to-peak (FH1), formant angle values at peak

(FA1),formant angle values of valley (FA2), and singer formant (F5) have been computed

and used for discriminating vocal and non-vocal segments. Also, an attempt has been

made to develop a feature selection algorithm based on the concepts of genetics, known

as genetic algorithm based feature selection (GAFS). The list of observations made out

of this experimentation using selected features on the Indian and Western databases has

been reported. Second, the task of singer identification (SID) has been considered. A

database with the songs of 10 male and 10 female singers has been constructed. The

songs are taken from two popular cine industries of Indian subcontinent named Tollywood

(Telugu) and Bollywood (Hindi). Various timbral and temporal features have been com-

puted to analyze their effect on singer identification with different classifiers. However, the

feature based systems are found to be less effective, and hence the trending convolutional

neural networks (CNNs) have been used with spectrograms of song clips as inputs.

Identifying mood of the song has been considered as a third objective for this the-

sis. Six different moods are identified based on the analysis done on the combination of

Russell’s and Thayer’s models (Saari and Eerola, 2014). We have developed, a two-level

classification model for music mood detection. In the first stage, songs have been cate-

gorized into energetic or non-energetic songs. The actual class label has been predicted

in the second stage. The performance of the system is found to be better in this case

compared to development of single phase classification recommender system has been

taken up using the labels like the title of a track, singer name(s), mood of a song, and

duration. The graph structure based recommendation system has been proposed in this

work to estimate the similarity in the listening patterns of same listeners. A graph has

been constructed for every user by considering songs as nodes. Further, the similarities

are estimated using the adjacency matrices obtained on listening patterns. This approach

could be more appropriate for improving the performance of song recommender systems.

Keywords: Convolutional Neural Networks, Genetic algorithm based feature se-

lection (GAFS), Graph based collaborative filtering, Formant Analysis, Music informa-

tion retrieval, Music mood estimation, Music recommender system, Singer identification,

Singing voice detection, and Vocal & non-vocal segmentation.

ii



Contents

Abstract i

Table of Contents iii

List of Figures vii

List of Tables xi

Abbreviations 0

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Challenges in MIR and MRS . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Applications of MIR and MRS . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Music Information Retrieval (MIR) . . . . . . . . . . . . . . . . . . 9

1.4.2 Music Recommender System (MRS) . . . . . . . . . . . . . . . . . 10

1.5 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature Survey 17

2.1 Datasets used in Various MIR tasks . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Features and Classification Models . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Low-level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Mid-level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 High-level features . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Vocal and Non-vocal Segmentation . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Artist Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Music Mood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Music Recommender System (MRS) . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



2.8 Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Datasets Considered for this Thesis . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Classification of Vocal and Non-vocal Segments 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Classification Techniques . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Genetic Algorithm based Feature Selection (GAFS) . . . . . . . . . . . . . 52

3.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Estimation of Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Crossover Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Singer Identification 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . 70

4.4 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iv



5 Music Mood Estimation using Acoustical Features and CNNs 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.3 Proposed Emotional Classes . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Level-1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Level-2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Music Recommender System using Graph Structures 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.2 Challenges: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Factors and Issues that are to be Considered while Developing an MRS . . 99

6.3 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Sparse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Similarity Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6 Algorithm Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Summary, Conclusions and Future Work 111

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.1 Vocal and Non-vocal Segmentation . . . . . . . . . . . . . . . . . . 111

7.1.2 Singer Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.3 Music Mood Estimation . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.4 Music Recommender System . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 119

List of Publications 144

v



vi



List of Figures

1.1 Increasing trend of research activities in CB-MIR in the last 10 years. The

above data is collected from http://www.music-ir.org/mirex/wiki/MIREX_

HOME and http://scholar.google.com using the keyword Music Informa-

tion Retrieval that contains all articles published in both conferences and

journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The possible information that can be extracted from an audio signal by

developing an MIR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Increasing in the publications received for developing a Music Recom-

mender System. The information has been collected from the the Google

Scholar using the commands “allintitle: music recommendation” and “mu-

sic recommender”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 An instance of Gaana website that shows the nature of present recom-

mender system in filling the playlist based on manual linking. . . . . . . . 11

1.5 A brief thesis outline which describes about the organization of remaining

chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 (a) Audio feature classification as Low-level, Mid-level and High-level in-

formation. (b) Process of extracting low-level features. . . . . . . . . . . . 20

3.1 The proposed flow diagram for vocal and non-vocal segmentation. . . . . . 43

3.2 Jitter and shimmer computation from the speech signal. . . . . . . . . . . 45

3.3 The structure of formant spectrum for vocal and non-vocal regions. . . . . 46

3.4 Features that are computed computed based on their discrimination for

vocal and non-vocal segments. Since FH1 = FH2, only FH1 has been

considered for experimentation. . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 The process of computing angle values from the spectrum. (a) vocal spec-

trum and (b) non-vocal spectrum. . . . . . . . . . . . . . . . . . . . . . . . 47

vii

http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://scholar.google.com
http://scholar.google.com
http://scholar.google.com


3.6 The structure of Neuro Fuzzy Classifier. Note: M Function→ membership

function, F Layer→ Fuzzification layer, DF Layer→ Defuzzification layer,

Norm. Layer → Normalization Layer, V → Vocal, and NV → Non-vocal. . 49

3.7 The structure of simple artificial neural network. . . . . . . . . . . . . . . . 50

3.8 The accuracy obtained for varying number of hidden neurons. Note: Arrow

indicates the best accuracy obtained for Nh = d(1.85 ∗ In)e. . . . . . . . . . 51

3.9 An example to illustrate the complete process involved in GAFS-ANN. . . 53

3.10 The various crossover techniques available with examples. . . . . . . . . . . 55

3.11 The Correlation values obtained with some features for vocal and non-vocal

segments. Note: Only few are selected based on their discrimination. . . . 58

3.12 Correlation values obtained for individual feature using CCA.Note: FDLP

is divided into three parts as its dimension is 39. . . . . . . . . . . . . . . . 60

3.13 The outcome feature vector lengths of various feature selection algorithms

and best accuracy values obtained with them. Note: Two new terms: OV:

original feature vector (93-dimensional with an inclusion of base-to-peak

formant values FH2 (first, second, and third formants))) and BC: Best

combination (74 dimensional) obtained from original vector. . . . . . . . . 62

3.14 Comparison of accuracy values before and after windowing. . . . . . . . . . 64

4.1 The proposed framework for Singer Identification System. . . . . . . . . . . 67

4.2 SDC feature extraction with parameters (n-p-d-k). . . . . . . . . . . . . . . 69

4.3 The proposed CNN framework for Singer Identification System. . . . . . . 71

4.4 Visual correlation score histograms obtained for 20 singers which justifies

the usability of a chosen feature dimension. Rows: (a) Features that are

capable of discriminating singers, and (b) represent features that are not

suitable for discrimination. Columns: (i) MFCC feature, (ii) LPCC feature,

and (iii) Chroma feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Identified emotional classes for the song clips from the combined Russell’s

and Thayer’s models. (a) Recognized 101 unique emotional terms (PC:

(Saari and Eerola, 2014)), and (b) Proposed emotional classes. . . . . . . . 85

5.2 Further categorization of six moods (Angry, Devotional, Energetic, Happy,

Romantic, and Sad) into energetic and non-energetic classes. . . . . . . . . 85

5.3 The structure of ANN considered for level-1 classification. . . . . . . . . . 89

viii



5.4 Pictorial representation of confusion matrix obtained while classifying six

moods using NN classifier. The classification accuracy of Actual Vs Pre-

dicted classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Broad categorization of six moods (Angry, Devotional, Energetic, Happy,

Romantic, and Sad) into energetic and non-energetic classes. . . . . . . . . 91

5.6 The structural differences in the spectrograms observed during the analysis

of energetic and non-energetic moods. . . . . . . . . . . . . . . . . . . . . 92

5.7 The process of computing accuracy values for energetic and non-energetic

categories of moods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Different tables constructed to implement music recommender system.Note:

In table acronyms are provided due to alignment issues. l_id → lis-

tener_id, l_name→ listener_name, s_id → signer_id, s_name→ singer_name,

len(s) → length (in seconds), and date, time & freq. → date, time, & fre-

quency of download respectively. . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Proposed flow diagram for generating the recommended playlist for listen-

ers. Darkness in line indicates an arrow. . . . . . . . . . . . . . . . . . . . 104

6.3 Graphs considered for example given in Figure 6.4. . . . . . . . . . . . . . 105

6.4 An example illustrating the process of computing similarity between two

adjacency matrices using sparse matrices. Note: This example is given to

explain the process of all three 2, 3, 4 algorithms. . . . . . . . . . . . . . . 106

ix



x



List of Tables

1.1 The division of MIR tasks based on the objective and cultural aspects. . . 7

2.1 Highly used and publicly available datasets with some useful information. . 18

2.2 Summary of works on vocal and non-vocal segmentation. (Note: Only

some relevant and widely cited articles are listed). . . . . . . . . . . . . . 26

2.3 Excerpts of the articles published on the issue of Artist Identification.

(Note: Only some relevant and widely cited articles are listed). . . . . . . 31

2.4 Excerpts of the articles published on the issue of Emotion Recognition from

Music. (Note: Only some relevant and widely cited articles are considered). 33

2.5 The details of datasets considered in this thesis. . . . . . . . . . . . . . . . 38

2.6 Details of the singers whose songs are collected and included in the proposed IPSD. Note: Gender: M

→ Male and F → Female. Language: T → Telugu and H → Hindi. . . . . . . . . . . . . . . . 39

3.1 Different features considered in this work with their acronyms and length. . 56

3.2 The accuracy of vocal and non-vocal segmentation obtained on the pro-

posed and MIR-1K datasets using different feature combinations and clas-

sifiers. Note: bold face letters indicate the best performance for that clas-

sifier and colored background represents the best accuracy for that dataset.

SVM → Support vector machine, NFC → Neuro-fuzzy classifier, RF →

Random forest, and NN → Neural network. . . . . . . . . . . . . . . . . . 57

3.3 The correlation found between the vocal and non-vocal regions using the

set of features using CCA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 The comparison of different feature selection algorithms with the proposed

GAFS for four different classifiers. Note: Bold faced numbers indicate best

performance obtained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The perforamnce of the various feature combinations over different classi-

fiers and the affect with CNNs on IPSD and artist20. . . . . . . . . . . . . 73

xi



4.2 Comparison of Proposed Results with the existing works done for artist20

dataset. Note: ∗ It is not given in the article. However, MFCCs and their

statistical variations length is more than 28. . . . . . . . . . . . . . . . . . 78

4.3 Hyperparameters considered for designing the CNN for the task of Singer

Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Acoustic cues observed among different emotions for different features. . . 88

5.2 Hyperparameters considered for designing the CNN for the task of mood

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Time complexities in terms of Big Oh notation that are consumed by pro-

cessor for evaluating algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



Abbreviations and Nomenclature

Abbreviations

AB.Tree AdaBoost.Tree

AFTE Auditory Filter-bank Temporal Envelops

AGG-DTM Aggregating Song Level DTMs

ANN Artificial Neural Network

AR Amplitude Regression

AR Auto Regression

ASD Attack-Sustain-Decay

ASE Amplitude Spectrum Envelope

AUC Area Under ROC

BALS Boundary Alignment Linear Scaling

BDS Boosted Description Stumps

BPM Beats Per Minute

CB-IR Content-based Information Retrieval

CB-MIR Content-based Music Information Retrieval

CBIR Content based Image Retrieval

CDTW Continuous Dynamic Time Warping

xiii



CF Crest Factor

CMS-MFCCs Cepstral Mean Subtraction based MFCCs

COMUS Context-based Music Recommendation

CS Chord Sequence

DAR Diagonal Auto Regression

DCT Discrete Cosine Transformation

DFT Discrete Fourier Tranformation

DMM Dirichlet Mixture Model

DNN Deep Neural Networks

DTM Dynamic Texture Mixture

DTW Dynamic Time Warping

DWCH Daubechies Wavelet Coefficient Histograms

DWPT Discrete Wavelet Packet Transform

DWT Discrete Wavelet Tranformation

EDR Edit Distance on Real Sequence

EM Expectation Maximization

EMD Earth Mover’s Distance

ENS Echo Nest Song

ENT Echo Nest Timbre

F0 Fundamental frequency

FFT Fast Fourier Transform

FMCV Frame MDCT Coefficient Vector

xiv



FP Fluctuation Patterns

FT Fourier Transformation

GLM Generalized Linear Model

GMM Gaussian Mixture Models

GTCC Gamma Tone Cepstral Coefficient

HC Harmonic Coefficient

HEM-DTM Expected Maximization for DTM

HMM Hidden Markov Model

HPCP Harmonic Pitch Class Profile

ICA Independent Component Analysis

ICM Indian Classical Music

IGM Inter Genre Similiarity

IIGM Iterative approach of Inter Genre Similarity

IIR Infinite Impulse Response

IMIRSEL International Music Information Retrieval System Evaluation Laboratory

KNN K-Nearest Neighbour

KTA Key Transposition Algorithm

KTRA Key Transposition Recursive Alignment

LCSS Longest Common Sub-sequence

LDA Linear Discriminative Analysis

LDTW Local Dynamic Time Warping

LPC Linear Predictive Coding

xv



LPCC Linear Predictive Cepstral Coefficients

LS Linear Scaling

MAR Multi-variate Auto Regression

MDCT Modified Discrete Cosine Transformatino

MET Mask Estimation Technique

MFCC-EMD MFCC-Empirical Model Decomposition

MFCCs Mel Frequency Cepstral Coefficients

MGR Multi-variate Gaussian Regression

MIR Music Information Retrieval

MIREX Music Information Retrieval Evaluation eXchange

MLL Multi-label Learning

MP3 MPEG Layer-3

MRS Music Recommender System

MSC Modulation Spectral Contrast

MSD Million Song Dataset

MSV Modulation Spectral Valley

MUMS McGill University Master Samples

NLP Natural Language Processing

NLS Note-based Linear Scaling

NLSH Note-based Locality Sensitive Hashing

NRA Note-based Recursive Align

OSC Octave based Spectral Contrast

xvi



OSCC Octave Scale Cepstral Coefficients

PCD Pitch Class Distribution

PCDD Pitch Class Dyad Distribution

PCP Pitch Class Profile

PDF Probability Density Function

PLSH Pitch-based Locality Sensitive Hashing

PMCV Phoneme MDCT Coefficient Vector

PTD Propotional Transportation Distance

QBE Query-by-Example

QBH Query-by-Humming

QBIC Query-by-Image Content

QBT Query-by-Text

RC Rhythmic Coefficients

RCEPS Real Cepstral Coefficients

RH Rhythmic Histogram

RMS Root Mean Square

ROC Receiver Operating Characteristic

RP Rhythmic Patterns

RWC-MDB Real World Computing -Music Database

SC Spectral Contrast

SCF Spectral Crest Factor

SF Spectral Flux

xvii



SFM Spectral Flatness Measure

SH Spectrum Histogram

SHD Singing or Humming Discrimination

SMBGT Subsequence Matching with Boundary Gaps and Tolerances

SMN Semantic Multi-nominal

SPSF Stereo Panning Spectral Features

SR Spectral Roll-off

SRBM Sparse Restricted Boltzman Machine

SSD Statistical Spectrum Descriptor

STFT Short-Time Fourier Transformation

SVM Support Vector Machines

WLP Warped Linear Prediction

ZCR Zero Crossing Rate

ZT Z-Transformation

xviii







Chapter 1

Introduction

“ Music gives a soul to the universe, wings to the mind, flight to the
imagination and life to everything.

”
— Plato

1.1 Background

Music is a paramount element of a human’s day-to-day activities. Everyone shows their

love towards listening to music, except a negligible few while some are even capable of

creating it. The importance of music in human life has taken advantage of technology

advancements, resulting in an enormous number of music tracks. As a consequence, the

complexity of searching a relevant track has been increased phenomenally. The present

search engines are capable of providing information based on the input keywords provided.

However, the difficulty in forming a text query for extracting information from multimedia

data such as image, audio, and video has created an opportunity to design a system called

content-based information retrieval. In particular, the process of extracting information

based on passing an image as a query instead of text is called content-based image retrieval

(CBIR). Several sophisticated tools for CBIR have already been designed and created

in the past few decades, to extract information from images. Query-by-Image content

(QBIC) and Image compass are the notable ones (Weihs et al., 2007). However, similar

content extraction exercises have not been primarily reported in the literature on music

information retrieval (MIR). The complex structure of a music signal1 when compared

to an image is the reason for not developing a sophisticated tool for music information
1The terms ’audio signal’ and ’music signal’ are interchangeably used in the entire thesis.
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retrieval (MIR). Since the tool is expected to extract the information from an audio signal,

it is popularly called as content-based music information retrieval (CB-MIR).

Though the number of digital tracks are extensively available in online and offline

music stores, the information provided to develop the system on CB-MIR is inadequate.

Most of the available labelled information is limited to the title of track, album name,

singer, composer details, etc. only a few of them are labelled with the genre information.

In a majority of the cases, genre labelling is done based on experts opinion. Moreover,

many times the same song2 is found to be mapped onto more than one genre. The answer

to this question of what kind of information can be extracted, from music has remained

an unanswered one for several years, from the time of the expansion of the digital cloud.

Furthermore, it is practically impossible to manually label the meta-information for every

track of digital cloud and may take several human years to do the same while new tracks

are continuously being added to the existing repository. Hence, an idea of automatic

music information retrieval system has been proposed by keeping in mind its importance

for future users (Kassler, 1966).
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Figure 1.1: Increasing trend of research activities in CB-MIR in the last 10 years.
The above data is collected from http://www.music-ir.org/mirex/wiki/MIREX_HOME and http://
scholar.google.com using the keyword Music Information Retrieval that contains all articles published
in both conferences and journals

The clearly intended research towards music information retrieval has been mainly

observed since the beginning of the 21st century, because of the involvement of Music In-

formation Retrieval Evaluation eXchange (MIREX)3. MIREX is an annual contest where

researchers propose techniques for MIR and these are evaluated with the coordination
2The words song and track are interchangeably used in the complete thesis.
3http://www.music-ir.org/mirex/wiki/MIREX$_$HOME
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of International Music Information Retrieval Evaluation Laboratory (IMIRSEL). Some

of the prominent tasks that are received by MIREX are generally published in a presti-

gious musical conference called International Symposium on Music Information Retrieval

(ISMIR). It is not surprising that the number of articles published on MIR has reached

1700 till 2016. An increase in the number of papers received every year indicates the

importance of sophisticated MIR system for future generations. The same information

has been depicted in the Figure 1.1 which shows the year wise growth in research in the

area of developing MIR systems.

In this work, a few important broad categories have been addressed from the list of

tasks identified by ISMIR, which are shown in Figure 1.2.
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Figure 1.2: The possible information that can be extracted from an audio signal by developing an MIR
system.

• Vocal and Non-vocal segmentation: A music signal contains several useful informa-

tion. Of these, the most important portions are vocal, where the voice presents

with background music, and non-vocals where it contains instrumental information.

The very preliminary need of an MIR system gives the onset and offset locations

of either vocal or non-vocal portions. The meta-information related to MIR can be

found in vocal portions, non-vocal portions, or in both the regions. If vocal region

is enough to extract meta-information, then there is no meaning in processing the

whole signal. For instance, a small vocal portion is enough to recognize a singer
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information instead of processing vocal and non-vocal regions.

• Artist Identification: It is a process of identifying either the singer, composer or in-

strumentalist information from the song. This is further extended to identify gender

of a singer, song category (solo/ duet/ trio/ chorus), tracking a singer throughout

the song and so on.

• Genre Recognition: This is the process of estimating the style or genre of a song

clip. Many classes are identified to create the taxonomy for genre (Li and Ogihara,

2005). It is hard to accept that the research towards categorizing genre classes is

still under progress.

• Raga Identification: Raga is a melodic framework of an audio clip. One can identify

a raga based on the tonic frequency or shadja. Since there are 72 parent ragas

and many child ragas in ICM, the process of automatic raga identification helps in

several applications like online tutor systems, categorizing concerts, etc.

• Music Mood Estimation: Mood of the song is an important information that decides

the present state of a person. Since it is very difficult to label all the moods pro-

vided in Thayer’s and Russel’s models, a majority of the works have concentrated

on only valence and arousal moods. The process of labelling relevant moods for

the songs have several applications in both, music categorization and pathological

applications.

• Instrument Identification: Instruments are important components of a music clip

that decides genre, mood and composer. They also help in annotating the music clip.

The number of instruments considered to compose an audio clip can be estimated

through the approach called, independent component analysis.

• Lyrics Transcription: Lyrics are another important portion of an audio clip. Pro-

vision of lyrics information facilitates the query-by-text application even for music.

If a user remembers a portion of the song, then the same can be given as a query

to extract the needed information.

• Query-by-humming/singing (QBSH): This approach is essential in implementing an

application called, query-by-content. In this case if a user remembers a portion of

the song, in this case, the same can be hummed to extract the relevant audio.
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• Music Annotation: This is an ultimate solution for MIR which converts an entire

audio clip in the form of text, by labelling each segment with relevant information

like instrument name, singer name, composer name, genre, mood, raga, lyrics, etc.

Figure 1.3: Increasing in the publications received for developing a Music Recommender System.
The information has been collected from the the Google Scholar using the commands “allintitle: music
recommendation” and “music recommender”.

It is quite easy to create personalized music collections if proper meta-information has

been provided with the MIR system. However, a massive growth in the number of tracks

in personalized music collections has deteriorated their value. It means that the tracks

with personalized interest are listened to only once, or not at all, due to huge increase

in the number of tracks. Due to this, many of the impressive songs are losing priority

and their identity may be lost soon. Hence, there is a need to focus on improvisation in

generating personalized music collections. An obvious solution is a recommender system,

which was implemented by (Shardanand, 1994) for the first time in 1994. However, there

has been a growth in the development of music recommender systems only in the later

years of automatic MIR implementation. Minimal growth has been found till 2007, with

the number of articles published on various aspects of MRS being 72, which is very less

(Herrada, 2009). However, a consistent growth has been found later, with a variety of

techniques. The same information has been depicted in Figure 1.3, which shows the year-

wise increase in the publications of MRS. The information provided in the figure has been

taken from Google Scholar website.
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1.2 Motivation

The increasing number of tracks in the digital cloud needs high capacity storage devices.

Fortunately, growth of hardware technologies is efficiently taking care of this rise in data

quantity. However, the thought of saving every song in a personal storage is an impractical

solution, as everyone is not interested in all the songs available. A better approach can be

the process of identifying songs based on their contents rather than blindly relying upon

the limited meta-data which is available at present with the tracks. The issue with many

online music stores such as; Gaana, iTunes , last.fm, Universal Music, Wynk and so on is

to categorize the song repository based on the music contents such as; lyrics, composer,

mood, singer, language, gender, raga, etc., and provide them to the listeners based on

their listening behaviour. In this scenario, the significance of music information retrieval

(MIR) has gained much attention of the researchers where a variety of useful information

can be obtained for every track of digital cloud (Jensen, 2010).

Basically, the tasks of MIR have been broadly categorized based on the aspects of

objective and cultural information. The subcategories based on objective and cultural

aspects are listed in Table 1.1. Of which, the list of objective aspects is primarily asso-

ciated with the intrinsic properties of an audio clip such as melody, singer information,

gender of a singer, rhythm, harmony, information about instruments, etc. There could

be a straight away approach for developing an algorithm in the case of objective infor-

mation. In contrast, categorizing the audio tracks based on cultural information is an

ambiguous task. It is quite difficult to decide whether the information mapped to audio

clip is appropriate or not. For instance, the process of labelling mood of a song clip is

highly subjective. One can argue with a different mood name for same song (Pachet and

Cazaly, 2000). Similarly, genre of a music clip is highly dependent on the geographical

area, music culture, and many other parameters (Scaringella et al., 2006).

In the past two decades, several research works have been received on MIR. However,

the focus has been mainly on Western music. Considering that Eastern music (especially

Indian music) is also highly contributing to the digital cloud, there is a need to develop

the suitable MIR systems for Eastern/Indian tracks as well. Moreover, appropriate MIR

approaches are yet to be developed for almost all objective and cultural aspects.

The motivation for developing an MIR system is to maintain a proper catalogue for

all the songs and to recommend songs based on user’s interest. The popular Indian music

websites such as Gaana, iTunes , Wynk , and Youtube.com are either recommending songs
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Table 1.1: The division of MIR tasks based on the objective and cultural aspects.

Objective aspects Cultural aspects

Singer recognition Mood estimation

Composer identification Genre classification

Gender recognition Song similarity

Instrument identification Rhythm similarity

Estimating beats per minute (BPM) Singer performance assessment

Chord recognition Music recommendation

Lyrics transcription

based on text found in the title or merely by repeating the playlist. A majority of the

listeners merely use the ‘shuffle’ option which selects the songs randomly for playing from

the playlist. New playlist can never be automatically generated based on listeners’ needs

in this case. Hence, we are motivated to develop an MIR system for Indian popular

songs, which extracts essential information from a given audio clip and uses that for

song recommendation. Since the singer and mood are two primary attributes that play

a significant role in recommender systems, they are considered as primary objectives in

this thesis. As the vocal and non-vocal segmentation is essential for locating singing voice

segments, the task of vocal and non-vocal segmentation has been considered as an initial

activity. Further, recommender systems based on graph structure analysis have been

considered to recommend songs with specific analysis on their listening behaviour.

1.3 Challenges in MIR and MRS

Key challenges that generally need attention while developing MIR systems are addressed

in this section. The first critical issue is the need for databases with original music tracks.

A majority of the systems developed till now have used the artificial databases (Lesaffre,

2006). For instance, singer voices have been recorded externally instead of getting them

from audio clips for singer identification (Bartsch and Wakefield, 2004). The performance

that is obtained with such systems cannot be considered for real-time applications. The

reason may be essential twined information like instruments, background support, chorus,

etc, along with vocals within the audio clip is ignored in artificial databases.

Moreover, it is strenuous to separate the singing voice alone from background com-

plex instrumentals (Lehner and Widmer, 2015; Vincent, 2006). Ideal MIR systems are
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expected to segment an each source of musical sound. However, it is unlikely due to their

frequency overlapping between many instrumental sounds. This overlapping nature is a

basic challenge for not developing an ideal system to label each instrument information

in a given polyphonic audio clip. However, repetition in a pattern is the intrinsic char-

acteristic of music that helps to remove the background music to some extent (Rafii and

Pardo, 2013; Thomas et al., 2016). Unlike speech processing, in which a majority of the

portion is voice alone, an audio clip is a mixture of several components like intro, verse,

chorus, bridge, and outro. Primarily, music clips may be categorized into vocal and non-

vocal portions. The vocal regions contain either singing voice or chorus, possibly along

with background accompaniment. It is very rare to find pure vocals in a given audio

clip. Hence, the systems developed using studio recorded artificial databases, miserably

fail in the case of real-world scenarios. In addition, labelling the subcategories of cultural

information such as genre, mood, rhythm, etc, is also a challenging task. An MIR system

with a few essential components such as vocal and non-vocal segmentation, singer identi-

fication, mood estimation, genre classification is sufficient for many applications including

music recommender system.

Many issues are to be considered while developing an ideal MIR system. Music listen-

ing behaviours of an individual change frequently and abruptly. Sometimes, the listener

in repeatedly listening to the same song, several times. Later, this interest may fade.

These are typical unpredictable problems that are to be faced while developing a recom-

mender system. Moreover, recommending a music track is not as easy as, recommending

the books or any other products (Herrada, 2009). The concept of collaborative filtering

technique, where it is assumed that individuals with similar listening behaviour listen to

the same songs, may not be suitable in many cases. Hence, a different approach that

adapts individual user’s listening behaviour is needed. The future of recommender sys-

tems is highly dependent on perceived accuracy, than the predicted one. This is also an

important aspect to be monitored while developing a system for music recommendation.

1.4 Applications of MIR and MRS

Music information retrieval (MIR) is a trending research field getting motivation from its

diversified and commercial applications. Some important applications of both MIR and

MRS are presented in this section.
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1.4.1 Music Information Retrieval (MIR)

The basic purpose of designing a MIR system is to support users in selecting the required

audio based on some machine driven measures. There are two such measures reported in

the literature based on the specificity (Casey et al., 2008). The high specificity system

is expected to retrieve exact matching information in an audio clip. If specificity is low,

then retrieval of the clip with statistically similar properties is enough (Grosche et al.,

2012). However, it should be possible to retrieve audio clips based on album, singer, genre

information and other relevant information in any case. The signal level similarity helps to

develop low specificity system. One significant application of low-specific MIR is assessing

the candidates’ performance objectively during live singing performances (Biswas et al.,

2018), where judges can assess the performance subjectively. It is also possible to assess

plagiarism content in an audio clip by comparing a song clip with the available original

audio clip. Similarity check can further help in providing copyright information to an

audio clip. The well-known applications designed for the task of similarity measurement

are Shazam4, MusicID5, and Vericast6 (Wang et al., 2003a).

Name of the music clip is considered as an important piece of information, while

categorizing audio clips in the case of traditional classification systems. The process of

cataloguing the music clips based on their objective similarity using dynamic time warp-

ing (DTW) sequence algorithms, is always a suitable and robust approach instead of their

track or album names (Müller et al., 2006). Similarly, collecting the songs of a particular

singer and keeping them as one cluster is also a kind of cataloguing (Cunningham et al.,

2012). Many times, we observe that the same song is available in the repository with

variations in instrumentation, harmony, key, rhythm or structure. The process of identi-

fying such similar songs is useful in grouping the similar tracks together; generally called

as cover song detection (Serra et al., 2010). Identifying cover song is another important

application of MIR system.

An approach of similarity measurement leads to retrieval of a music clip based on

the input query in the form of music itself instead of just keywords. Many a times, it

is practically not possible to provide keywords for each portion of an audio clip, as the

listeners may not be able to remember and reproduce the keywords; rather they hum

or sing a portion of the song. Query-by-humming/singing (QBSH) is another important

4http://www.shazam.com
5http://www.gracenote.com/music/recognition/
6http://www.bmat.com/products/vericast/
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application of MIR system where the user can conveniently frame a query for searching

the needed song. Many commercial systems are already supporting QBSH on limited

data. MUSART testbed (Dannenberg et al., 2007) and SoundHound7 (Salamon et al.,

2013) are some notable ones. The impact of MIR is to extract musical clips based on

semantic queries framed by listeners. For instance, a user can frame a query like “List all

the clips that have a tempo of 110 bpm at C major scale” (Isaacson, 2002). It is possible to

develop a system that can handle such type of queries using semantic information (Knees

et al., 2007; Turnbull et al., 2009).

In contrast to the above mentioned low specificity information, systems with some high

specificity information such as singer, mood, genre, instrument(s), raga, and lyrics, is also

essential and helps in cataloguing and indexing music clips. Cover song albums also can be

generated by collecting clips of similar high-specificity information. For instance, if anyone

is interested in listening to all songs of S.P. Balasubrahmanyam (SPB, a famous Indian

singer), then all SPB songs can be grouped by providing a suitable cover label. Estimating

prevailing mood of a song further helps to judge the mental state of a listener at that

moment. All high-specificity information along with relevant low-specificity information

greatly help in developing a sophisticated music recommender system.

1.4.2 Music Recommender System (MRS)

The primary goal of music recommender system (MRS) is to propose a set of music tracks

based on the listening behaviour of a user. A recommender system is capable of meet-

ing four specific requirements called accuracy, diversity, transparency, and serendipity

(áOscar Celma, 2010; Ricci et al., 2011). They have been categorized based on the sim-

ilarity among the recommended playlist and user’s preferences; user’s satisfaction with

comments, trust in the process of recommendation, and feeling towards surprising rec-

ommendations. Recommendation based on listener’s behaviour further helps to get the

knowledge of user’s present mental state. For instance, if the user is continuously listening

to the sad songs, then it is psychologically an indication of the depressed, hurt or inferior

state. Such analysis assists pathologists and psychiatrists to take necessary steps for the

treatment of such listeners.

Two primary objectives of MRS are playlist generation and recommending music for

visual presentations. The MRS system should keep up the above mentioned four re-

7http://www.soundhound.com
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Figure 1.4: An instance of Gaana website that shows the nature of present recommender system in filling
the playlist based on manual linking.

quirements of the user in mind while filling the playlist. Commercially available popular

websites such as Last.fm8, Pandora9, Gaana10, iTunes11, and Wynk 12 presently recom-

mend songs to the users based on manual similarity metrics that are available as an

information in the digital cloud. However, this information is available for a limited num-

ber of songs. In this case, when the user accesses a song, all other linked songs appear

as the list of recommended playlist. The same list repeatedly appears whenever the user

listens to a particular song. These kinds of recommendation systems may not sustain for

a long time due to overlooking the properties of diversity and serendipity. For instance,

Gaana website exactly provides the exact play list for the specific song played twice at

two different instances in the gap of three months. There is no difference found in the

recommended play lists that is obtained with the song played once in the mid of April

2018 and in the second week of June of the same year. The list has been displayed in

Figure 1.4. The selected song is “Beautiful Love” from the album name “Naa Peru Surya

Naa Illu India” of Indian Tollywood.

8http://www.lastfm.com
9http://www.pandora.com

10http://www.gaana.com
11https://www.apple.com/in/itunes/music/
12https://www.wynk.in/music
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The recommender systems may also be helpful in recommending songs to a car driver

to keep him alert while driving. Listening to lullabies while driving may lead consequences

that can be fatal (Baltrunas et al., 2011). In such cases, recommender systems would be

helpful in filtering out unwanted lullabies and also recommend energetic songs to keep

driver awake and alert. Presenting visual perception for a pattern of background music

thrills the listener. Future MRSs must address this issue as well.

1.5 Scope of the Thesis

This work focuses on the importance of content-based music information retrieval (CB-

MIR) mainly for music recommendation. Comparatively, MIR research that has been

reported in the context of Indian songs is too less. However, contribution of Indian songs

to the growth of digital cloud is considerably high. Hence, the songs of two popular Indian

cine industries namely, Tollywood and Bollywood, are considered for the work presented

in this thesis.

This work has focused on four individual components of music information retrieval,

of which two are chosen under the category of objective information and the other two

are from cultural information. Since the aim of this work is to propose a new approach

for music recommender system (MRS), the meta-information which is highly useful for

MRS has been obtained through automated approaches. Four different databases with the

tracks of Tollywood and Bollywood have been constructed with sufficient clips and care has

been taken to provide possible coherence among them. The performance obtained is based

on the experimentation done on closed set database. A little deviation in the performance

has been observed with the open testbed. The scope of each research objective is given

below:

• The task of vocal and non-vocal segmentation has been addressed by considering a

variety of music clips that include different male and female singers, instruments,

repeated patterns, pure vocals, vocals with background support, different moods,

etc. The accuracy which has been obtained is based on frame-level features. The

formant features are newly proposed. The genetic algorithm based feature selection

approach is found to be better when compared to other methods explored. It may

take more number of iterations to provide an optimal feature vector if the database

size is increased.
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• The data of twenty singers has been taken for the task of singer identification. Size

of the database considered for singer identification is larger when compared to that

for vocal and non-vocal segmentation. The performance reported in this work is

strictly limited to the list of singers considered.

• Six basic moods are considered in this work. The moods are identified based on

Thayer’s and Russell’s model. The database used in this work is an expanded

version of the one used for singer identification and vocal & non-vocal segmentation.

• In this thesis, a dataset with 1000 songs; listened by 500 listeners has been collected

to develop a music recommender system.

1.6 Thesis Outline

- Introduction to MIR and MRS

- Motivation
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- Challenges and Scope
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Figure 1.5: A brief thesis outline which describes about the organization of remaining chapters.
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The remaining chapters of the thesis are organized as follows.

The detailed literature survey on the various tasks of MIR has been given in Chapter

2. It covers the various approaches proposed for each task of MIR, limitations, and future

scope of some important research works for developing a MIR system. A few important

tasks such as vocal and non-vocal segmentation, singer identification, music mood esti-

mation, and recommender system are considered for detailed survey. The remaining tasks

are condensed for this thesis as there is less focus on them for this thesis. The research

gaps that are identified from the selected MIR tasks are listed that motivated us to frame

a problem statement with relevant objectives.

InChapter 3, the importance of vocal and non-vocal segmentation for the rest of MIR

tasks has been detailed. Then, the process of extracting suitable features for segmenting

vocal and non-vocal regions, based on the formant structure, is discussed. Further, the

explanation on the approach which is proposed for selecting the relevant features using

genetic algorithms is given. The detailed analysis of the results obtained for vocal and

non-vocal segmentation has been given, followed by summarizing the chapter.

In Chapter 4, the portions of vocal regions have been taken for the task of singer

identification. The experimental analysis has been given for 20 Indian singers, using both

traditional bags of features approach and trending convolutional neural networks. Further,

the performance comparison between Indian singers and the singers of artist20 database

has been given. Further, the chapter summarizes the work done for singer identification.

In Chapter 5, the importance of mood estimation, to estimate the listener’s be-

haviour, has been detailed. The effort behind the selection of moods with some opinion

scores has been given. The explanation on the proposed two-level classification and its

efficiency over direct classification has been given. Further, the chapter summarizes the

work done on music mood estimation.

In Chapter 6, the role of graph structures in recommending music to listener’s based

on the collaborative filtering has been detailed. Different similarity measures that are

considered for estimating the affinity among the listeners have been explained. Further,

the chapter has been summarized.

In Chapter 7, the conclusion of the works done on four tasks of MIR have been

detailed. Further, some important future directions have been given that may help the

future researchers to select the suitable problem and to know the status of a MIR system.

Finally, the reference research works that have been used as guides us in implementing

14



the proposed system are given followed by the list of papers presented based on this work.

A brief outline of the thesis has been depicted in Figure 1.5 which gives clear information

about the organization of the remaining chapters.
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Chapter 2

Literature Survey

“ Music can change the world because it can change people.

”
— Bono

This chapter covers in detail the existing literature on the selected subcomponents of

an MIR. It also touches upon the motivation for considering them in this thesis. Singing

voice detection, artist identification, genre identification, raga identification, instrument

identification, mood estimation, and music annotation are the major components of MIR.

Of these, singer and mood are two important attributes that affect the recommendation

performance in MIR. Hence, the literature with respect to singer identification and mood

estimation has been detailed in this chapter. Prior to that, the need of singing voice

detection and the works done are also detailed. In addition, works done on music recom-

mender system are also explained here. This chapter also includes sections on datasets

used in MIR works, feature extraction process and classification models.

2.1 Datasets used in Various MIR tasks

The difficulty, of arranging the tracks into different categories, is increasing, with an in-

crease in the number of digital tracks. The task-relevant tracks are highly essential for

building a sophisticated MIR system (Casey et al., 2008). For instance, different instru-

ment clips are preferred for developing the task of instrument identification instead of clips

with audio and polyphonic sounds. In this regard, it is useful if the benchmark datasets

are identified and listed for use in future research. Identifying task-specific datasets helps

the researchers in comparing their works with the state-of-art systems.
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In many cases, the copyright issue of commercial audio clips is of paramount cause

which leads to the use of existing datasets for research. Several datasets have been found

for the tasks of MIR based on few notable sources such as wiki1, ISMIR2, Colinraffel.com3,

and audio content analysis websites4. Most of the datasets mentioned in these sources do

not contain precise information. Many of them are not available publicly; some datasets

have very few clips to use for experiments. However, from the exhaustive list, we have

identified some prominent datasets that are publicly available and highly used in the past

two decades. Table 2.1 lists these datasets with some necessary information.

Table 2.1: Highly used and publicly available datasets with some useful information.

Sl. No. Datasets Ref. #Clips Purpose‡ Sl.No. Datasets Ref. #Clips Purpose‡

1. RWC Goto et al. (2003) 465 IR 12. 1517-Artists Seyerlehner et al. (2010) 3,180 AI

2. GTZAN Sturm (2013) 1,000 GC 13. MIR-1K Hsu and Jang (2010) 1,000 VOD, AI

3. USPoP Lidy and Rauber (2005) 8,752 QBH 14. OMRAS2 Fazekas et al. (2010) 1,52,410 MA

4. BallRoom Tsunoo et al. (2009) 698 GC 15. TagATune Hamel et al. (2012) 25,863 MA

5. ISMIR2004 Cano et al. (2006) 1,458 GC 16. CAL10K Tingle et al. (2010) 10,271 MA

6. 103-Artists Schedl et al. (2005) 2,445 AI 17. UNIQUE Seyerlehner et al. (2010) 3,115 QBH

7. Homburg Homburg et al. (2005) 1,886 GC 18. MSD Bertin-Mahieux et al. (2011) 10,00,000 GC

8. Codaich McKay et al. (2006) 26,420 GC 19. MusiClef Orio et al. (2011) 1,355 AI, MA

9. LMD Silla Jr et al. (2008) 3,227 GC 20. Ext.BallRoom Marchand and Peeters (2016) 4,180 GC

10. Artist20 Ellis (2007) 1,000 AI 21. AudioSet Gemmeke et al. (2017) 20,84,320 AEI

11. CAL500 Turnbull et al. (2007) 500 MA 22. FMA Benzi et al. (2016) 1,06,574 GC
‡AEI - Audio Event Identification, AI - Artist Identification, GC - Genre Classification, IR - Instrument Recognition, MA - Music

Annotation, QBH - Query-by-Humming, and VOD - Vocal onset Detection.

An effective MIR system can be built if the task-specific benchmark datasets are avail-

able. It is observed from the literature that the datasets available are less complex, and

are recorded with limited scope. The datasets with incomplete and monotonic information

are not suitable for many real-time applications. Considering the literature, the genres

of eastern countries are less focused, especially Indian categories. As they contribute to

a major portion of the digital music world, it is essential to develop a sophisticated MIR

systems on Indian categories.

2.2 Features and Classification Models

Audio songs are mainly available in the form of high-quality audio CDs’, recorded with

a sampling frequency of around 44.1 KHz., in offline and online stores. Direct processing

of these high-quality audio songs for information retrieval consumes large memory and

processing time. Generally, numeric features that resemble the signal characteristics and
1https://en.wikipedia.org/wiki/Wiki
2http://www.music-ir.org/mirex/wiki/MIREX_HOME
3http://colinraffel.com
4https://www.audiocontentanalysis.org/data-sets/
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compactly represent the original audio songs are extracted. There are enormous number of

features that have been introduced with the support of various signal processing techniques

and statistical methods. A majority of them are used to characterize the music. Some

additional features are also introduced to model the music signal in a better way. Based

on this, a hierarchy has been provided by (Scaringella et al., 2006) for audio features. In

this article, features have been categorized into three classes, namely timbre, pitch, and

rhythm. Later, the taxonomy has been revised by (Weihs et al., 2007) who categorized

them into short-term, long-term, semantic and compositional feature sets. Although the

features mentioned in the article are mainly based on few concepts of music research such

as music similarity, transcription, and cognitive psychology, they cannot be generalized

and used for all MIR tasks. Hence, the two taxonomies have been combined and enhanced

in (Fu et al., 2011) to present a generalized hierarchy for audio features. The features

discussed in this chapter are mainly classified into (i) Low-level, (ii) Mid-level and (iii)

High-level features, as shown in Fig. 2.1(a).

In general, low-level features are extracted from the smaller audio segments, of length

10 ∼ 100 milliseconds, known as frames. The mid-level features are extracted from a note

level (Kitahara, 2010). Low-level features carry abstract characteristics of a frame. They

cannot represent the characteristics of an entire signal. Mid-level features can mimic the

characteristics of an entire signal or set of segments. They can be computed on longer

segments or by applying statistical operations on low-level features (Dittmar et al., 2007;

Peeters, 2004; Wolter et al., 2008). High-level features provide semantic information such

as annotations, which are useful for labeling the clip and help for easy retrieval. The

combination of low and mid-level features is used to decide the high-level information

such as genre, mood, instrument, artist and so on. The following subsections describe

various low and mid-level features.

2.2.1 Low-level features

These are common block-based features used for various tasks related to music. They are

further classified into timbre and temporal features.

The number of vibrations caused, to produce sound waves in a second is known as

pitch (also called fundamental frequency (F0)) of a note. Strength of the signal can be

measured by computing the sum of squares of samples called energy of the signal. Timbre

is the quality of a musical tone which helps to differentiate the voice or instruments even
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(a) (b)

Figure 2.1: (a) Audio feature classification as Low-level, Mid-level and High-level information. (b) Process
of extracting low-level features.

when their pitch and energy are the same. For instance, if a guitar and a piano are playing

the same note on same scales then timbre of those instruments helps to classify them. In

psycho-acoustics, timbre is defined as the voice quality of a musical note, sound, tone color,

or tone quality that distinguishes various kinds of sound sources (Erickson, 1975; Popper

and Fay, 2014). Timbre features are generally computed from the frames of length 10-100

ms. The main advantage of this approach is the technical simplicity and availability of well

established methods, to process stationary signals in terms of effectiveness and complexity.

The general process for low-level feature extraction is shown in Fig. 2.1(b). Initially, the

input signal is divided into chunks of frames and are transformed into frequency domain

using various transformations such as Fourier transform, constant Q-transform, wavelet

transform and so on. A sub-band decomposition technique is applied to the frequency

domain signal. Each sub-band is analyzed to extract the timbre features of a frame. A

combination of timbre features is used to extract temporal features. The low-level features

can be extracted from both, time and frequency domains. The important features found

in the literature that are extracted from time-domain information are root mean square

(RMS) energy, zero crossing rate (ZCR) (Tzanetakis and Cook, 2002; Li et al., 2003;

Bergstra et al., 2006; Mörchen et al., 2006), and crest factor (CF)5 (Helen and Virtanen,

2005). To analyze the signal in the frequency domain, various transformations such as dis-

crete Fourier transformation (DFT) (Ahmed et al., 1974), discrete wavelet transformation

(DWT) (Bruce et al., 2002), and constant Q-transformations (Schörkhuber and Klapuri,

2010) are applied. From the spectrum obtained through transformation, it is possible to

extract features like spectral roll-off (SR), spectral centroid (SC), spectral flux (SF), and

bandwidth using statistics. Instead of applying Fourier transformation (FT) on complete

5Crest factor is a ratio of amplitude peak and RMS value and is obtained as CF = peak(|signal|)
rms(signal) .
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signal, the short-time Fourier transformation (STFT) can be used to extract potential

features such as mel-frequency cepstral coefficients (MFCCs), linear predictive cepstral

coefficients (LPCCs), Daubechies wavelet coefficient histograms (DWCHs), spectral flat-

ness measure (SFM) (Allamanche et al., 2001; Benetos et al., 2006), spectral crest factor

(SCF) (Cheng et al., 2008), and amplitude spectrum envelope (ASE) (Kim and Sikora,

2004; Lee et al., 2009). To obtain MFCCs, the sub-bands during spectrum computation

are linearly spaced up to 1000 Hz and are logarithmically spaced at higher frequencies.

MFCCs can model music patterns better than other spectral features (Mörchen et al.,

2006). Moreover, segments of variable length are used to extract cepstral features based

on inter-beat segments which are more relevant than the traditional equal sized block

processing approach. This has led to the invention of new kinds of features, i.e. OSCCs

(Maddage et al., 2004). This approach is extended to extract relevant features directly

from MP3 files with slight modifications in discrete cosine transformation (DCT); this

process is called modified discrete cosine transformation (MDCT). An attempt has also

been made to extract the features from both recording channels (left and right) since the

vocals of both channels are common and the non-vocals vary for most of the times. To

identify the spectral distribution in both channels, the stereo panning spectral features

(SPSF) have been introduced (Tzanetakis et al., 2007, 2010). However, many of the tim-

bre features mentioned above are adopted from the works of speech processing. As there

are several distinctions between speech and music, the features used in speech processing

may not be suitable for extracting the distinct timbre effect for efficient music analysis.

The temporal variations in the signal help in several music classification tasks. Tempo-

ral features are a kind of low-level features extracted on top of timbre features and useful

to observe the temporal feature transformation of the given signal. Generally, to compute

the temporal features, statistical parameters such as mean, variance, co-variance, and

kurtosis are applied on large number of local windows (Tzanetakis and Cook, 2002). The

means and variances have been computed from a timbral texture to form a feature vector,

called MuVar (Tzanetakis and Cook, 2002). The means of covariance values are computed

from a covariance matrix to form a feature vector called MuCov (Mandel and Ellis, 2005).

MuVar and MuCov are also explored in the literature to observe the temporal variation

in the signal (Li et al., 2003). The same operations are performed on the frames of larger

lengths and named MuVar2 and MuCov2. Normally, the block based process is used to

extract temporal features considerably increasing the computational complexity. Hence,
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feature integration is done using the other techniques such as amplitude regression (AR),

multi-variate auto regression (MAR), multi-variate Gaussian regression (MGR), and di-

agonal auto regression (DAR) to reduce the complexity issues (Mandel and Ellis, 2005).

Along with the other available techniques, probabilistic models are also used to extract the

temporal features. One such model is hidden Markov models (HMM) (Weihs et al., 2007;

Reed and Lee, 2009) which models the time series data using hidden states. In HMM,

each frame is treated as a state that helps to provide the feature set for the current frame

based on the output probabilities of the previous frames.

2.2.2 Mid-level features

Human ears can perceive the intrinsic properties of any music with the help of integrated

biological mechanism. Generally, low-level features that have been discussed in previous

subsection have failed to capture much of the required information from a given music clip.

Thus, mid-level features have been introduced and they are mainly used for the tasks such

as QBE, Query-by-Singing/Humming (QBSH), cover song detection, raga identification,

and so on. There are three broad categories of mid-level features namely: (i) pitch− the

fundamental frequency, (ii) rhythm− the recurring pattern of tension, and (iii) harmony−

a mixture of notes that are played simultaneously and successively to produce chords and

chord progressions (Zentner, 2003). In music processing, pitch plays an important role for

different applications such as QBH and raga identification. Other factors such as context,

loudness and timbre also influence the pitch. In the musical context, the pitch is not a

single fundamental frequency (F0) since every instrument has its own harmonic frequency

series. Multi-pitch estimation is necessary for such cases. Few algorithms (Tolonen and

Karjalainen, 2000; Klapuri, 2003) have been designed especially to estimate the multiple

pitch values. These algorithms are helpful in extracting the pitch values at frame level

and song level using pitch histograms (PHs). The PHs are used to recognize the genre

and mood of a song with the additional support of MFCCs and other perceptual features.

Along with the PHs, other different features such as pitch class profile (PCP) can also

be used for music processing. The first note of the C major scale is the note C. If it is

pitched around 261.63 Hz, then the low-C and high-C is around 65.40 Hz. and 1046.50

Hz. respectively (Casey and Slaney, 2007). Though there are several variations in pitch

frequency, all the variations are considered in the same pitch class (Krumhansl, 2001).

PCPs and harmonic pitch class profiles (HPCPs) are helpful in extracting the chroma
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(pitch class) features. Chroma features are helpful in analyzing the melody of a song

including gamakas6 (Sarala and Murthy, 2013).

The occurrence and recurrence of patterns can be discriminated using rhythmic fea-

tures. These features are mostly helpful in recognizing the repeated pattern in a song

clip. The most repeated pattern in any song is known as a beat (Geist et al., 2012).

The features such as beats per minute (BPM) and tempo are useful to estimate the beat

locations. Another way of computing beat features is by taking the envelope of an auto-

correlation of a given input signal. The regularity in peaks of the auto-correlation signal

helps to compute beat histograms (Tzanetakis and Cook, 2002). In the literature, rhyth-

mic features are also used for mood estimation tasks (Feng et al., 2003a; Macy, 2001).

The results indicate that the mood of a song is highly correlated to the rhythm. It is

normally observed in music clip that each mood is roughly associated with some value of

a scale (Yang et al., 2010, 2008).

The third important mid-level feature is harmony which can be recognized through

several factors. Of these, one is chord sequence (CS). Harmony is quite different from

melody since melody obtains the horizontal information and harmony obtains the vertical

information of a song (Kuusi, 2009). Melody is the linear succession of musical notes and

is a combination of rhythm and pitch. Harmony is the combination of simultaneous notes

or chords. The CS can be extracted by some chord detection algorithms found in the

literature (Turnbull et al., 2007; Gómez and Herrera, 2004; Jensen et al., 2009). These

sequences are also helpful in detecting the multiple fundamental frequency values present

in the chord since a chord is the combination of more than one note played together. The

harmony features are used in the literature for the cover detection of a song (Bello, 2007)

and song similarity (Ellis and Poliner, 2007). Although mid-level features can capture the

intrinsic properties of a music clip such as pitch, BPM, melody, harmony, rhythm, etc.,

they alone are sometimes not sufficient enough to achieve good results. The combination of

both low-level and mid-level features can give better results (Kitahara, 2010). In pattern

recognition applications, it has been difficult to establish a strong correlation between

specific tasks and features. In such cases, a set of features is used initially, and later,

feature selection techniques such as elimination, correlation, and so on, are applied to

reach the optimum feature set (Li and Ogihara, 2006; Shen et al., 2006, 2009; Fu et al.,

2010; Ness et al., 2009; Barrington et al., 2008).

6A ‘gamaka’ is an ornament which gives soothing effect for the raga of ICM.
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2.2.3 High-level features

Sometimes, it is also possible to extract the features directly from the complete signal.

They can be artist name, album name, genre, raga of a song, mood of a song, singer

name, instrument names, song title, etc. However, it is not possible to characterize the

signal at once due to its stochastic nature. Hence, low and mid-level features are together

useful to identify the high-level information which is mentioned above.

The features specified in low-level and mid-level categories are task specific. However,

the task of vocal and non-vocal segmentation is the prior task for any music information

retrieval, to avoid irrelevant portions for a particular task. Hence, some suitable feature

vectors can be considered to accurately segment vocal and non-vocal segments. Further,

task related features may be considered to perform extract meta-information shown in

fourth block of 2.1 (a). All of the extracted high-level information are further considered

to annotate each portion of music clip.

The process of selecting a suitable classification model is the next important step

while developing MIR system. There are three categories of classification models namely

(i) unsupervised, (ii) semi-supervised, and (iii) supervised. Since the audio data is highly

non-linear and a majority of them are classification problems, unsupervised classification

models may not handle them effectively. Several supervised classification models such

as artificial neural networks (ANNs), Gaussian mixture models (GMMs), support vector

machines (SVM), AdaBoost (AB), generalized linear models (GLMs), k-nearest neighbor

(KNN), sparse restricted Boltzmann machine (SRBM), and so on, have been considered

for a variety of MIR tasks. Since the classifier selection is completely dependent on the

constructed feature vector (Murthy and Koolagudi, 2018b), it is highly difficult to suggest

a single classifier for the specific task. The performance of the system with different

classification models is given in respective sections of this thesis. For instance, if the data

falls under normal distribution, then GMM is the better classifier.

The following sections detail the related works taking place in the selected subtasks

of MIR for this thesis.

2.3 Vocal and Non-vocal Segmentation

An audio signal is a combination of pure vocals, instrumental region, silent regions (SIL),

and vocals with background instruments. Since a majority of the users are interested
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in listening to popular songs, identifying the popular song structure is an interesting

research assignment. In this section, two important issues are observed while processing

audio clips, and are discussed along with their possible solutions. Identification of SILs is

the foremost pre-processing step in any speech and audio-processing task. Generally, the

length of the silence portion in a song is negligible, because more than 99% of the audio

songs are occupied by either a singing voice or an instrumental sound. The second issue

is segmenting the vocal and non-vocal regions as the music signal, and is the complex

cohesion of these two components.

As vocals are usually accompanied with background music, segmentation becomes a

challenging task. Segmentation is a prerequisite for singer identification, emotion recogni-

tion, instrument classification, lyrics transcription, and so on. One of the interesting com-

mercial applications of vocal and non-vocal segmentation is the karaoke system. Karaoke

is a Japanese word, which means only music track without vocals. This is helpful for

music enthusiasts to learn singing for many existing compositions or to use the tracks

in concerts for simulating reality or ro sing with the existing instrumental composition

of a particular song. Presently, the extraction of karaoke tracks is being done manually

during recording, which requires a lot of manual effort and time. Segmentation of vocal

and non-vocal regions is an essential step in designing an automated karaoke system.

For automating segmentation, several approaches have been reported in the literature.

Initial attempts have been made, to analyze the signal in time domain, by using simple

features such as energy, ZCR, and so on; these values get a sudden jump when vocal region

appears (Zhang, 2003). However, when vocals are accompanied by background music. it

does not always hold true since the drum sound comprises high energy components when

compared to vocals In addition, it is understood that analysis of a music signal in its time

domain is not sufficient for accurate segmentation. Spectral analysis is also essential and

is employed.

Different kinds of transformations, including Fourier transform (FT), are available to

represent time domain signal in frequency domain. Note that the most of the energy of

vocals formant falls in the frequency range of 200 Hz. to 2000 Hz. Therefore, suppressing

other frequency values helps to locate the singing voice segments. This can be done by

using any of the available infinite impulse response (IIR) filters such as Butterworth,

Chebyshev and so on (Kim and Whitman, 2002). This approach can be used to separate

the background accompaniment, that helps in locating the vocal segments easily. However,

25



Table 2.2: Summary of works on vocal and non-vocal segmentation. (Note: Only some relevant and widely cited articles are listed).

Sl.

No.
Title of the article

Composition of

Database
Feature(s)

Accuracy

%
Remarks Future Scope Limitations

1 Artist detection in music with Min-
nowmatch Whitman et al. (2001).

82 clips

(male and

female)

FFT values

and

MFCCs

85.10 Two classifiers namely SVM and
ANN, are used for segmenting
singing voice segments.

As FFT gives good discrimination for
vocal and non-vocal portions, statis-
tical operations on FFT values may
improve the accuracy.

Accuracy of the system comes down
with the increase of database.

2 Singer identification in popular mu-
sic recordings using voice coding fea-
tures Kim and Whitman (2002).

20

full-length

songs

Chebyshev-IIR

and

Harmonicity

55.40 Chebyshev-IIR filter is applied to en-
hance vocal regions and attenuate
other frequency regions. Later, har-
monicity is applied to detect singing
voice segments.

Frequency analysis of singer and non-
vocal regions may improve the accu-
racy of detecting singing voice loca-
tions.

It is assumed that formant energy al-
ways falls below 4 KHz. Due to the
advancements in technology and mu-
sic rendering, distinguishable/useful
formants may be extracted up to 12
KHz.

3 Automatic singer identification
Zhang (2003).

English

and

Chinese

clips

Energy,

ZCR and

SF

70.00 A sudden increase in the value can be
observed for specified features when
singing voice starts.

Identifying similar kind of time-
domain features may reduce the com-
plexity issues

The sudden change in the specified
values can be found in case of pure
vocals. As the background accompa-
nies vocals in a majority of vocals,
the approach could not be practical.

4 Singer identification based on vocal
and instrumental models Maddage
et al. (2004).

110

tracks

(English

and

Chinese)

OSCCs 83.58 Inter-beat frames are considered in-
stead of fixed size frames to compute
cepstral coefficients and named them
as OSCCs. Better performance is ob-
served with OSCCs when compared
to traditional MFCCs.

There is a need to develop a system
that can divide the signal into vari-
able length frames instead of shorter
and fixed length frames. It may be
helpful in reducing complexity issues.

The proposed system is not suitable
to identify all the vocal and non-
vocal regions. The OSCCs may con-
fuse to segment using inter-beat seg-
mentation due to vocals involvement.

5 Singing voice separation from
monaural recordings Li and Wang
(2006).

Popular

English

songs

Intonation

and

Viterbi

algorithm

89.44 Inverse comb filtering is applied to
reduce the background accompani-
ment and later, vocal frames are
identified by observing high energy
levels when vocal region starts.

A thorough analysis of filtering tech-
niques may help in reducing the
background accompaniment which
further helps in properly detecting
the vocal onset detection.

The dataset contains very few songs
and may not be sufficient to general-
ize the results.

6
Automatic singer identification
based on auditory features Cai et al.
(2011).

140 clips

(English)

MFCCs 92.10
At first step, low-pass filter is applied
to suppress background accompani-
ment. Sparse representation classi-
fier (SRC) is used to locate the vocal
segments. MFCCs are used as fea-
tures

Reduction of background score and
enhancement of the singing voice
may increase the performance.

The detailed explanation is not found
on using the SRC classifier.

7 Classification of vocal and non-vocal
regions from audio songs using spec-
tral features and pitch variations
Murthy and Koolagudi (2015).

300 clips

(small and

longer)

clips

MFCCs,

stat{pitch}

and

vibrato

87.05 Baseline MFCCs, statistical values
of pitch and vibrato features were
used to observe the variations in vo-
cal non-vocal regions.

Signal level analysis on popular songs
may give some repeated patterns
that may be helpful in locating
singing segments.

It is observed that the computa-
tional complexity increases if the clip
length is longer.

8 A low-latency, real-time-capable
singing voice detection method with
LSTM recurrent neural networks
Lehner et al. (2015).

149 clips

Fluctrogram

Analysis

and

spectral

features

89.06 Fluctrogram is introduced to com-
pute the pitch, and available spectral
features such as MFCCs, Spectral
contraction and flatness are added to
improve the performance.

Proper analysis on fluctogram may
give suitable temporal features that
help in improving the accuracy of vo-
cal onset detection.

For experimentation, only a single
genre is considered, which is not suf-
ficient to rely on the approach.
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it is very difficult to observe the frequency range of vocal and music in a mixed clip (Vembu

and Baumann, 2005). The change in the shape of a spectrum of vocal and non-vocal

regions has created much research interest in recent times. By analyzing the spectrum,

formants and MFCCs are computed and used to understand the characteristics of vocal

and non-vocal segments (Regnier and Peeters, 2009).

In some works, it is found that fluctogram gives more information when compared to

a spectrogram. The sub-semitone and pitch-continuous fluctuations can be viewed using

a simple cross correlation followed by shifting operation. The resultant of this operation

gives a new visual representation named fluctogram. Features based on the fluctogram

have been extracted; however, very little effort has been made in this direction (Dittmar

et al., 2015; Lehner et al., 2015). Prominent human formant values are mainly observed

in the range of 2 - 3 kHz. Basic cepstral features such as MFCCs also carry important

music/vocal information (Cai et al., 2011; Li and Wang, 2006; Mesaros et al., 2007). While

computing MFCCs, the length of the frames is always fixed. Frames of variable lengths are

introduced (Maddage et al., 2004) based on inter-beat-times to improve the performance

of a system, known as OSCCs. The results convince that the OSCCs are more suitable

for music modeling than the MFCCs. Frequency analysis along with temporal behavior is

considered for vocal characterization by using ∆ (velocity) and ∆∆ (acceleration) features

of MFCCs. Similarly, there are other features found in literature such as ∆log energy,

modulation energy, harmonic coefficients (HC), and ∆ MFCCs for locating the singing

voice (Chou and Gu, 2001). Vibrato in the singing voice is also useful in locating the vocal

segments efficiently (Murthy and Koolagudi, 2015; Mauch et al., 2011). The trending deep

neural networks (DNNs) are also used in some works to separate the source information

(Simpson et al., 2015). Table 2.27 summarizes the research contributions to locate the

singing voice segments along with their limitations and scope of improvement.

In majority of the cases, the task of locating singing voice segments has been considered

as a sub-task for singer identification. It is true that the small portion of the singing voice

is enough for such tasks. A few works have concentrated on segmenting the complete music

that may be helpful for the applications like Karaoke (Shenoy et al., 2005; Murthy and

Koolagudi, 2015). Since the high dimensional feature vector takes more computational

time for segmentation, feature dimensionality reduction is also a necessary task. Some

works have concentrated on optimizing the features using feature selection algorithms

7Expansions for the acronyms are given in Appendix.
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that help in selecting the suitable features for locating vocal segments (Ramona et al.,

2008). Nevertheless, there is a good scope for an accurate system that segments the vocal

and non-vocal regions in a given song clip of any kind.

2.4 Artist Identification

Artist information is one important attribute available within a music clip. Singer identi-

fication, recognition of composer, and artist identification of a concert are the variations

in artist identification. Majority of the times, it is possible to observe the unique styles

(singing/ performing or writing/ composing) of the artist while they are performing.

Through the implicit learning capability of humans, the differences can be discerned by

listening to a sample audio clip (Fu et al., 2011). If a person is familiar with a specific

singer’s tone, it is possible to recognize the singer by a small piece of the audio clip. At

present, music stores are utilizing the efforts and expertise of music professionals to label

the singer information for the unknown songs of their music databases. However, it is

practically difficult to manually label millions of tracks available in the digital market

manually, and sometimes, it becomes unreliable. The complex audio signals do not give

any singer specific information by simply looking at them (Kim and Whitman, 2002).

The applications of automation of singer identification task include music recommenda-

tion, cataloging and indexing. It can also be used in issuing copyrights for tracks to avoid

music plagiarism.

Singer identification is a one − in − n class classification problem as it deals with

identifying a singer among n possible singers. The difficulty is to handle large music

database. In this scenario, “singer similarity” based approaches are more useful and

suitable. In the mutual phase, similar singers may be grouped together by using clustering

algorithms. One important constraint is that the singers maintain similar voice patterns

and common characteristics while rendering songs although the occasion is different. The

scope of this thesis is limited to the literature on singer identification.

Traditional speech processing techniques for speaker identification (Rabiner and Juang,

1993; Becchetti and Ricotti, 2008) may not be suitable for the task of singer identification

(Tsai and Lee, 2011). In spontaneous speech, the pitch of a speaker involuntarily changes

with factors such as emotion, loudness, and so on. Whereas in singing, controlled pitch

modulation is necessary for melody. Singers are trained to vary pitch while rendering

music and have control on vocal parameters including respiratory system, laryngeal muscle
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activity, articulation, and so on. In simple terms, singers are trained to vary the vocal

parameters systematically; this gives evidence to recognize the singers through the analysis

of voice parameters (Björkner, 2006; Shen et al., 2009).

In the literature, several techniques have been proposed on singer identification (Kim

and Whitman, 2002; Shen et al., 2009; Zhang, 2003; Patil et al., 2012; Mellody and

Wakefield, 2000; Tsai et al., 2008; Zhang and Packard, 2003; Maddage et al., 2004; Liu

and Huang, 2002; Tsai and Wang, 2006) and artist identification (Berenzweig et al., 2002;

Whitman et al., 2001; Kim et al., 2006). Some of the important approaches for singer

and artist identification given in the literature are presented below:

In many works, MFCCs are used as base-line features for singer modelling as they are

already well-established features for speaker identification (Reynolds, 1994; Logan et al.,

2000). Compared to speech, music contains more high-frequency components (many in-

strumentals) in the frequency range of 200 to 15000 Hz. To have the expected soothing

effect, the music signal is maintained at a very high sampling frequency (above 40 KHz).

A slight modification in MFCC extraction process produces tweaked MFCCs, which are

used for singer identification by using complete frequency bandwidth (up to 22000 Hz.)

(Whitman et al., 2001). Cepstral Mean Subtracted MFCCs (CMSMFCCs) have been

proposed to improve the classification accuracy as they can capture the variations among

singers (Patil et al., 2012). These features are computed by subtracting the cepstral mean

from each vector of MFCCs. Moreover, the temporal behaviour of MFCCs is considered

to study the singing pattern variations among singers through ∆ and ∆∆ MFCCs (Beren-

zweig et al., 2002). OSCCs have also been proposed for singer identification, where the

cepstral features are computed on frames of variable lengths (Kim and Whitman, 2002;

Zhang, 2003), which helped to characterize the harmonic structure of a singer. To com-

pute OSCCs, framing is done based on inter-beat duration rather than traditional fixed

length frames.

In general, specific vibrato and pitch profiles are followed by the singer while perform-

ing (Sundberg and Rossing, 1990). Therefore, features that resemble human perception

have a high role in many music processing applications. One such approach is warped lin-

ear prediction (WLP), where all coefficients are extracted at warped scale (Strube, 1980;

Harma and Laine, 2001). A warped scale is closely related to the logarithmic one and

highly resembles the functioning of a human ear. Hence, warped linear prediction coeffi-

cients (WLPCs) are used (Kim and Whitman, 2002) to recognize the singer successfully.
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The results of the above works convey that the WLPCs exhibit better singer characteri-

zation as compared to the conventional LPCs. In general, the same kind of instruments

are used to provide the background to the singer while he/she is performing in concerts.

Hence, the performance of the singer identification may be improved with the combina-

tion of non-vocals instead of vocals alone. In some works, the LPCs are utilized to dense

the cepstral coefficients for the task of singer identification (Zhang and Packard, 2003).

From the literature, it may be observed that warped LPC based cepstral coefficients can

be explored further for singer identification.

Primarily, the following points are to be considered while developing an application for

singer recognition. Commercially available audio files are always accessible in compressed

formants (e.g. MP3), whereas a majority of the works in the literature are experimented

on raw files (e.g. wav). MPEG Audio Layer-3 (MP3) is one of the techniques used to

compress the audio files. Identifying and extracting the features from MP3 clips help in

designing a real-time system for music processing. A few works are only reported in which

features are directly extracted from MP3 clips (Liu and Huang, 2002). New features and

approaches are essentially required to extract the singer relevant information from MP3

clips. Another important issue in singer identification is locating multiple singers and

identifying the overlapped regions. Existing systems are helpful in characterizing and

recognizing a single singer. Many a times, the length of duets and trios is much more

than that of the solo regions in the song. Thus, there is a need for the approaches to

recognize multiple singers, track the location of singers, etc. This approach is helpful to

those who are learning to sing songs on empty (vocals absent) tracks (Kim and Whitman,

2002; Tsai and Wang, 2004; Fujihara et al., 2005; Tsai et al., 2008). A summary of the

literature with their limitations and scope in artist identification is depicted in Table 2.3.

Singing voice mostly occupies a place between the dominant musical instrument and

speech (Mesaros and Astola, 2005b,a). The spectrogram of a singing voice reflects vowels

with a harmonic structure. Hence, the harmonicity helps in recognizing the singer from a

given clip. At the same time, the features based on articulatory techniques are also helpful

in determining the singer as they outperform in speaker identification tasks (Loui, 2015).

The above statements hint at combining music and speech related features to improve the

singer recognition accuracy. Considering the fewer efforts, singer identification has to be

explored with wider dimensions at least in the context of Indian music. Singing quality

of an artist has a direct correlation with one’s timbre. Hence, estimating the timbre will
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Table 2.3: Excerpts of the articles published on the issue of Artist Identification. (Note: Only some relevant and widely cited articles are listed).

Sl.

No. Title of the article
Composition of

Database
Feature(s)

Accuracy

% Remarks Future Scope Limitations

1
Artist detection in music
with Minnowmatch. Whit-
man et al. (2001)

82 clips

(male and

female)

FFT values

and

MFCC

85.10
Artist classification is done
with two classifiers. SVM
gives good performance
when compared with NN
for more artists.

Artist’s timbre can be de-
tected using the statistical
operations on FFT.

Database with fewer
artists gives good accu-
racy.

2
Singer identification in
popular music recordings
using voice coding fea-
tures. Kim and Whitman
(2002)

NECI

Minnowmatch

testbed

LPC

and

WLPCs

45.30
Warped scale is introduced
and combined with linear
scale to extract LPCs.

Features that are ex-
tracted using variable-
length frames and percep-
tual scales may be helpful
in developing real-time
systems.

A little bit of improvement
is found when compared to
traditional LPCs. How-
ever, the mentioned per-
formance may not be suf-
ficient to standardize the
system.

3
A singer identification
technique for content-
based classification of
MP3 music objects. Liu
and Huang (2002)

200 clips

(male and female)

PMCV

and

FMCV

66.00
DCT is applied on frames
of MP3 clips and named as
MDCT. Phone and frame
level features are extracted
for experimentation.

Feature extraction on MP3
files (compressed) may be
useful for the tasks of MIR
which is to be thoroughly
explored.

The database with few
clips has been considered
for experimentation and
less accuracy is observed.

4
Automatic singer identifi-
cation. Zhang (2003)

45

(English and

Chinese)

clips

LPC

and

MFCCs

80.00
Singing voice locations are
identified automatically.
Further, GMM classifier
is used to classify the
singers.

Increase in database size
and understanding the
voice qualities of singers
may be helpful for singer
identification.

Database size is very small
and it may difficult to
model all modulations of
singers’ using it.

5
Automatic singer recog-
nition of popular music
recordings via estimation
and modeling of solo vo-
cal signals. Tsai and Wang
(2006)

260

(solo

and duet

tracks)

MFCCs
82.80

(solo)

Solo and duet clips are
considered to extract mul-
tiple singers’ information.

The system may be ex-
tended to locate the singer
information and track the
singer.

Performance of locating
target singer and tracking
target singer is not as per
expectation.

6
Automatic singer identifi-
cation based on auditory
features. Cai et al. (2011)

140

clips

MFCCs,

LPCCs,

and

GTCCs

90.00
Combination of three cep-
stral features are used to
improve the performance.

As cepstral features are
highly correlated to hu-
man perception, they can
be used to characterize the
singer.

It is observed that the
performance gets degraded
with the increase in the
number of singers.

7
Combining evidences from
mel-cepstral features and
cepstral mean subtracted
features for singer identifi-
cation. Patil et al. (2012)

500

(14 M

and 6F)

MFCCs

CMS-MFCCs
84.50

Cepstral mean is sub-
tracted to observe the
temporal variation of
singers’ information.

Temporal fluctuation esti-
mation may be helpful to
identify singer

Vocal locations are man-
ually marked, which may
not meet the real time ap-
plications.
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benefit the task of singer identification. Moreover, the vocal tract, and excitation level

features along with rhythmic features of a performer may further be useful in detecting

the singer more accurately.

2.5 Music Mood Estimation

Music mood8 estimation based on music patterns is another important aspect of CB-

MIR which helps to recommend or fill the playlist based on users’ emotional needs. The

aim is to categorize the songs based on emotional patterns such as happy, angry, sad,

and so on. Emotions are difficult to process because of inherent complications. It is

impractical to compare the performance of the systems due to lack of benchmark dataset.

Recently, MIREX has created a standard dataset that is used to check the reliability

and effectiveness of the works received for their competition. However, the dataset is not

generalized to cover all important categories. The effort to create a benchmark dataset

in the context of Indian popular music is almost nil. Hence, there is a need to create a

standard dataset and develop an approach, which can classify music based on emotions.

The task of mood estimation is highly ambiguous due to many psychological aspects

related to the emotions of a song. In the literature, some approaches such as Thayer’s

model (Thayer, 1989), Hevner’s model (Hevner, 1936), and TWC model (Tellegen et al.,

1999) have tried to address the issues in emotion processing. All these models are designed

by expert psychologists and used by various MIR scientists; however, these models lack the

support of listeners. In the recent works, listeners’ opinion is collected through majority

voting which makes an open ballot available to collect the options from a variety of users,

and then a majority can be used to label the emotion of the song (Hu and Downie, 2007;

Downie et al., 2008).

The features used in literature for the task of mood estimation are almost similar to

those used for genre classification. From the analysis of the literature, it is clear that

the low-level spectral features such as MFCCs, LPCCs, ∆ features, etc., are helpful in

estimating the mood of an audio clip (Li and Ogihara, 2006, 2003; Korhonen et al., 2005;

Lu et al., 2006). Some experiments have also been conducted using rhythmic features for

categorizing the emotions in music (Feng et al., 2003a). These features are combined with

other low-level features to improve the performance (Chua, 2008). The perceptual obser-

vation that the smoothness is in placid emotions such as happy or sad is high compared
8The words ‘mood ’ and ‘emotion’ are interchangeably used in this thesis.
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Table 2.4: Excerpts of the articles published on the issue of Emotion Recognition from Music. (Note: Only some relevant and widely cited articles are considered).

Sl.

No. Title of the article
Composition of

Database

Emotional

Classes
Feature(s)

Accuracy

% Approach Future Scope Limitations

1
The 2007 MIREX audio
mood classification task:
Lessons learned Downie
et al. (2008).

600

Clips

Five

emotions

Temporal,

Tonal

and

Loudness

52.65
Human-based classifica-
tion is done and later
compared with the sys-
tem performance.

Analysis of the clips for
all categories of emo-
tions with mean opinion
score may give better re-
liability.

The performance of system
is not up to the mark with
specified features.

2
Music mood and theme
classification - a hybrid
approach Bischoff et al.
(2009).

Allmusic.com

and

Last.fm

Four

moods and

Four

themes

Audio

features

62.50
The hybrid approach is
proposed to group the
songs based on the emo-
tions in them.

The theme and mood hi-
erarchy is not standard-
ized. Generalized hier-
archy may be helpful to
classify songs.

The process of feature ex-
traction and feature selec-
tion is not explained prop-
erly.

3
SMERS: Music emotion
recognition using support
vector regression Han
et al. (2009).

165

Clips

Eleven

emotions

Scale,

Energy,

Rhythm and

Harmonics

94.55
Eleven emotions have
been classified with the
support of support vec-
tor regression (SVR).

Proper selection of per-
ceptual features may be
useful to detect the emo-
tions in a better way.

SVR is showing better
performance compared to
other non-linear classifiers.
However, task related fea-
tures are to be selected.

4
Lyric-based song emotion
detection with affective
lexicon and fuzzy clus-
tering method Hu et al.
(2009).

981

Chinese

Clips

Valence

and

Arousal

NLP and

Fuzzy

clustering

60.38
NLP is applied to recog-
nize the words and dis-
tribution among valence
and arousal is done us-
ing fuzzy clustering.

Extracting lyrics may be
helpful along with the
support of signal pro-
cessing approaches for
mood estimation.

Fuzzy clustering alone is
considered, which may be
the reason for less accu-
racy.

5
Music emotion classifica-
tion and context-based
music recommendation
Han et al. (2010).

120

Clips

Eleven

emotions

Low-level

features

and

COMUS

Ontology

61.80
COMUS is used an on-
tology to estimate the
users’ present emotional
state based on past be-
havior and low-level fea-
tures that are applied
for song mood estima-
tion.

Multi-mood estimation
may be possible with
low-level features as a
song contains more than
one emotion.

The system gives less ac-
curacy due to improper es-
timation of users’ mood.
Moreover, low-level fea-
tures alone may not be suf-
ficient.

6
An approach of genetic
programming for music
emotion classification
Bang et al. (2013).

488

western

clips

Five

Emotions

Timbre,

Tonality

and

Chord

74.4
Two-level classification
is applied to identify
class of emotion and ac-
tual emotion.

A light is to be thrown
on evolutionary ap-
proaches to reduce the
complexity issues and
increase the perfor-
mance.

The performance of sys-
tem gets degrading when
the number of classes is in-
creasing.

7
Audio songs classification
based on music patterns
Sharma et al. (2016).

300

clips

Seven

Emotions

MFCC,

stat{Pitch}

and

Vibrato

82.00
Modulated features are
used to detect emotions
and mean opinion score
is collected.

Consideration of vocal
and non-vocal regions
may improve system ac-
curacy.

Increase in database may
reduce the accuracy be-
cause the features may not
be sufficient to discrimi-
nate emotions.
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to strong emotions like anger (Mion and Poli, 2008). To estimate the smoothness among

the changing multiple sounds, articulation-based features, are more useful (Chua, 2008).

Some experiments are conducted on tempo-based features, and the tempo of angry clips

is faster than that of placid emotions. This analysis supports the necessity of the use of

articulation and rhythmic features for mood estimation.

The process of low-level feature extraction demands more time as these features are

extracted at every 20∼40 milliseconds. To resolve this problem octave-based spectral

contrast (OSC) is explored (Jiang et al., 2002). These features are extracted at every

spectral sub-band instead of fixed small-length segments known as frames (Jiang et al.,

2002; Lu et al., 2006; Yang et al., 2008). The results of this approach convince that

the OSCs are better than traditional MFCCs for music mood estimation. Moreover, the

emotion classification in music is multi-label learning (MLL) problem because, a song may

contain more than one emotions in it (Li et al., 2003). To address this issue, sophisticated

algorithms are introduced with the support of kNN classifier (Trohidis et al., 2008). The

literature also reports the efforts to identify the mood of a song based on the instrumental

region (Agarwal et al., 2018). In fact, the emotion of a song clip can be recognized by

focusing on vocal as well as non-vocal regions. Table 2.4 gives some overview of the existing

literature with possible future directions. Based on the literature, the development of a

reliable system for emotion recognition from songs based on the analysis of both vocal

and non-vocal regions may give better performance.

2.6 Music Recommender System (MRS)

The process of generating a playlist with relevant audio clips for the listener is called

music recommendation. Based on the literature, MRSs are categorized into three classes

on the basis of collaborative filtering, content-based recommendation, and hybrid recom-

mendation.

Collaborative filtering does not depend on the audio content of the song. They mon-

itor the listener’s previous profile in order to extract the information, such as ratings of

audio clips, listening statistics, sequence of songs listening and other similar behaviour

(Celma and Serra, 2008; Jawaheer et al., 2010; Levy and Bosteels, 2010). Further, the

semantic tags such as artist information, song title, genre, etc of audio clips are consid-

ered for music recommendation. The information about the tags has been taken from

social tagging websites (Celma and Serra, 2008; Herrada, 2009; Schedl et al., 2011). In
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the case of popular songs The approaches used in collaborative filtering are successful

in predicting the relevant tracks for listeners. However, their performance is found to

be miserable in the long tail for unpopular songs. The reason could be the “cold-start”

problem due to the unavailability of user ratings and meta-information in the beginning

(Celma and Serra, 2008). Content-based music recommendation can overcome this prob-

lem (Hyung et al., 2014; Bogdanov et al., 2013). In general, the which are content-based

recommendation approaches construct a feature vector using a timbral, tonal, temporal,

and/or high-level information from the audio clips. Further, some similarity measures

are considered to find the distance among the audio clips that give a report about the

list with similar nature (Bogdanov et al., 2010; Pohle et al., 2009). This approach is

similar to query-by-singing/humming (QBSH). The success rate achieved by MIR com-

munity using content-based recommendation is high. However, there is a concern about

computational complexity as each clip has to be compared with all others to obtain the

similarity measures (Downie et al., 2010). Further, the research has been focused on

hybrid recommendation which is a combination of both collaborative and content-based

recommendations (Su et al., 2010).

The task of music recommendation with content-based approaches has coaxed with

the issues of computational complexity. Hence, an effective collaborative recommendation

system with semantic information that can overcome the issue of “cold-start” problem is

essential.

2.7 Research Gaps

• Sophisticated algorithm that separates vocal and non-vocal segments is not imple-

mented yet despite being an important prerequisition for implementing many other

issues of MIR.

• Lack of standard datasets for real-time application development is the other issue.

Creating a generalized dataset for varied requirements of MIR is an impossible task.

However, it is possible to collect an exhaustive dataset for a particular regional audio

clips.

• Based on the literature, it is found that the work that has been done on Indian

music is very meager. except some works on raga identification. Since contribution

of Indian music to the digital cloud is high, there is an essence to focus on Indian
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music in all aspects.

• The task of vocal and non-vocal segmentation is considered as a singing voice de-

tection in most of the existing literature works. There is ample scope of research for

developing an efficient system for vocal and non-vocal segmentation which should

be independent of singer, music, genre, etc. Identification of task specific features

for vocal and non-vocal segmentation is also an issue to be addressed in multiple

dimensions with an acceptable depth.

• Source (instrumental sounds) separation is a challenging issue which is addressed in

sleak. Though some efforts are made to separate the source from vocals, a sophis-

ticated system is yet to be built. Separation of source gives clear vocal information

which cut down the complexity of other MIR tasks.

• Majority of the experiments conducted on singer identification are mainly based

on the studio recorded voice of a specific singer which may not suit in real-world

environments. Along with singer identification, MIR systems have to address many

other issues like processing background accompaniment, mood of a singer, age,

gender, duets, chorus, and so on.

• There are many works reported on music mood estimation. However, the perfor-

mance of automatic mood detection system is not commercially acceptable. The

majority of the works have tried to categorize the songs into two basic moods namely

valence and arousal. The human perception with respect to mood is quite different.

There is a need of the system which is capable of characterizing and categorizing

the music into 6-8 basic moods/emotions.

• The two existing approaches for music recommendation namely collaborative and

content based filtering have their inherent drawbacks. The first one is suffering

from recommendation accuracy & ‘cold-start ’ problem, and the other one is from

computational complexity issues. Focusing on some other formal method based

recommendation can resolve to some extent.

2.8 Problem Statement and Objectives

Based on the research gaps identified from the literature review, the research problem for

this work has been defined as follows.
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This work aims at designing a music information retrieval (MIR) system for Indian

songs which extracts useful information such as locating singing voice, singer information,

and mood of a music. Further, this work also proposes an approach for music recommender

system (MRS) using graph structures.

I To develop a module for the task of vocal and non-vocal segmentation: Features

based on formant structure have been proposed to discriminate vocals and non-

vocals effectively. Genetic algorithm based feature selection has been proposed to

extract the useful features and ignore the rest. n−point moving window has been

proposed to accurately segment vocal and non-vocal regions.

II To recognize a singer from a smaller snippet using feature-based and deep learning

approaches: An attempt has been made to classify and categorize 20 Indian singers.

Two different approaches of which, one is based on features and the other is using

trending convolutional neural networks (CNN) have been proposed.

III To estimate the mood of a song clip using two-level classification approach: Six

different moods have been selected based on the analysis of standard models. A

two-level classification model of which, one is categorizing the given audio clip into

energetic and non-energetic and, the other classifies into actual mood using CNNs.

IV To propose an approach that recommends songs using collaborative filtering by con-

sidering singer, emotion and user statistics as key parameters: A database has been

constructed based on the listening behaviour for around 100 users. A graph has been

constructed to understand their listening patterns. Further, to recommend songs,

graph similarity metrics have been considered.

2.9 Datasets Considered for this Thesis

Four different datasets have been constructed for different experimental setups with re-

spect to each objective. The list of datasets and their details are listed in Table 2.5. It

also contains the information about some standard datasets that are considered for com-

parison. Since the emotional and MRS database have been considered with respect to

Indian music, It is difficult to find similar datasets for comparison. The clips considered

for Indian database are taken from the two popular Indian cine industries named Tol-

lywood and Bollywood. Care has been taken to include all varieties of information that
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include various singers, genders, moods, instruments, and scenarios. The details of each

dataset with possible information are given in the following points.

Table 2.5: The details of datasets considered in this thesis.

Sl.No. Name of the Dataset Details of the dataset

Standard dataset

for comparison

(if available)

Objective Source of data

1
Tollywood and Bollywood

Popular Songs (TBPS)

#Clips: 500 vocal & 500 non-vocal

MIR-1K dataset Objective - I
Audio CDs

Music websites

#albums: 100

#singers: 20

2
Indian popular singers

database (IPSD)

#clips: 100 clips for each singer

artist20 dataset Objective - II
Audio CDs

Music websites
#singers: 20

#Male: 10 & #Female: 10

3
Moods of

Indian songs (MIS)

#categories: two

– Objective - III
Audio CDs

Music websites
#moods: six hr

#clips: 50 for each mood

4 MRS database

Listener’s behaviour

– Objective - IV ConstructedSongs information

Listener’s information

1. Tollywood and Bollywood Popular Songs (TBPS): Two sets of audio clips have been

considered for segmenting the vocal and non-vocal regions. One set contains train-

ings and the other set holds testing clips. The training set has been created with

500 vocal and 500 non-vocal clips of length 3∼5 seconds each. The test set has

the clips of length 1∼5 minutes each. Combinations of {vocal, non-vocal, vocal},

{non-vocal, vocal, non-vocal}, {vocal, non-vocal}, and {non-vocal, vocal} have been

considered while creating the test dataset. All the clips are sampled at 44,100 Hz

and quantization is 16-bits.

2. MIR-1K dataset:Further, the comparison has been done with standard dataset called

Multimedia Information Retrieval – 1K (MIR-1K)9. The standard MIR-1K dataset

contains 1000 clips that incorporate both vocal and non-vocal regions. Majority

of the works of well-known MIREX (Music Information Retrieval Evaluation eX-

change) have utilized this dataset for experimentation. However, the songs of this

dataset do not contain different variations. The concept of REpeating Pattern Ex-

traction Technique (REPET) (Rafii and Pardo, 2013) has been applied to suppress

the source information on MIR-1K clips, as they maintain notable background pat-

terns.
9https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Table 2.6: Details of the singers whose songs are collected and included in the proposed IPSD. Note: Gender: M → Male
and F → Female. Language: T → Telugu and H → Hindi.

Sl. No. Singer Name Gender Language Sl. No. Singer Name Gender Language

A Arjith Singh Male Hindi K Mohammed Rafi Male Hindi

B Asha Bhosle Female Hindi L Mukesh C Mathur Male Hindi

C Geetha Madhuri Female Telugu M S. Janaki Female Telugu

D K.J. Yesudas Male Telugu N S.P. Balasubramanyam Male Telugu

E K.S. Chitra Female Telugu O S.P. Sailaja Female Telugu

F Karthik Male Telugu P Shreya Ghoshal Female Hindi

G Kousalya Female Telugu Q Sunidhi Chauhan Female Hindi

H L.R. Eswari Female Telugu R Udit Narayan Male Hindi

I Latha Mangeshkar Female Hindi S V. Ramakrishna Male Telugu

J Mano Male Telugu T V.R. Ghantasala Male Telugu

3. Indian Popular Singers Database (IPSD): Twenty different singers from two cine

industries have been selected. Around 100 clips are chosen for each singer from a

variety of albums. The details of singers including their name, gender, and language

are given in Table 2.6. Care has been taken to include different emotions as well.

The length of each clip in training set is 3∼5 seconds. However, care has been taken

while collecting test set which includes the clips of lengths 60s, 30s, 10s, and 5s. The

reason for collecting different lengths is to estimate the effect of the performance of

the proposed system on longer clips and shorter clips as well.

4. artist20 dataset: Efforts have been made to construct training and testing set for

standard artist20 10 data set as well. In a majority of MIR tasks, artist20 is highly

used for the task of singer identification since 2005. Twenty different artists have

been considered to build the artist20 dataset with 1413 tracks in total. The songs

have been taken from six different albums of each artist that include two genres

(rock and pop) (Ellis, 2007).

5. Music Mood Dataset: It is very difficult to label the song clip with a particular

mood due to ambiguities. In this work, certain analysis has been done on both Rus-

sell’s (Russell, 1980) and Thayer’s (Thayer, 1989) models and six different moods

namely happy, anger, energetic, sad, devotional, and romantic are identified. They

have been identified based on analysis in two categories called Energetic and Non-

energetic. For each mood, around 50-100 song clips have been collected based on

their availability. An opinion from music professionals and mean opinion scores

(MOS) have been taken to label the audio clips. Care has been taken to include

the different emotions of same singer in the database. As there is a lack of standard

10https://labrosa.ee.columbia.edu/projects/artistid/
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datasets for the task of mood estimation, similar kind of Western datasets are not

available for comparison.

6. MRS dataset: The set of 1000 song clips are chosen with complete details that

include song name, album name, duration, singer name, and mood (energetic or

non-energetic). The listening behaviour of 50 user’s has been taken by collecting

their login time, song name, duration, and frequency. For initial experimentation,

these two datasets have been considered, as there is a lack of proper database from

the popular Indian musical websites such as Gaana11 and Raaga12. The details of

the datasets for each objective are given in Table 2.5.

2.10 Summary

This chapter gives detailed literature on the works of MIR. Since the focus is on a few

important aspects, such as vocal and non-vocal segmentation, singer identification, and

music mood estimation, a complete literature on these aspects has been given. In addition

to this, details on some standard datasets available for implementing various MIR tasks,

and literature on music recommender system are also presented. Further, few research

gaps that have led to the problem formulation are given along with specific objectives of

the thesis. Moreover, the details of the datasets that have been considered for experi-

menting the objectives are also presented. Chapter 3 discusses on the approach proposed

to solve the foremost objective, called vocal and non-vocal segmentation.

11https://gaana.com/
12https://www.raaga.com/
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Chapter 3

Classification of Vocal and Non-vocal
Segments

“ If I cannot fly, let me sing.

”
— Stephen Sondheim

3.1 Introduction

Though the number of digital tracks is huge, proper meta-information is not available

to all songs/albums. It is hard to categorize/use the digital cloud adequately if proper

meta-information is not available. A song is a combination of different portions that ap-

pear in a specific order namely intro, verse, bridge, chorus, and outro (Nwe and Li, 2007;

Thomas et al., 2016). The song starts with an intro and ends with an outro. There is

an involvement of several components that include vocals (singing voice with background

accompaniment), non-vocals (pure instrumental sounds), and chorus (multiple singers

voice) to make the song complete. The details of all these components have not been

tagged to each of the existing tracks of digital cloud. It is important to annotate the nec-

essary meta-information such as singer(s), instruments used, genre, language, emotion(s),

composer, lyrics, and so on for a song clip. Hence, several efforts have been made by the

International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL)

to build an efficient music information retrieval (MIR) mechanism through a centralized

evaluation system named Music Information Retrieval Evaluation eXchange (MIREX)1.

1http://www.music-ir.org/mirex/wiki/MIREX_HOME

41

http://www.music-ir.org/mirex/wiki/MIREX_HOME


The ideal MIR system has to extract the meta-information automatically if relevant por-

tion of a clip is given as an input. For instance, it is worthless to analyze the non-vocal

portions of a clip for the task of singer identification. The process of labelling the vocal

onset and offset points manually for a millions of tracks is impractical. Hence, there is

a necessity to develop an automated system which can automatically segment the vocal

and non-vocal regions.These segmented (vocal/non-vocal) tracks would serve as inputs to

other MIR tasks.

3.1.1 Applications

The task of segmenting vocal and non-vocal regions in a music clip has many commercial

applications. One such important application is Karaoke. The term Karaoke is termed

from the combination of two Japanese words Karappo (means empty) and Okesutura

(means orchestra). It means, Karaoke is an empty track without vocals. These tracks

are highly useful for amateur singers to tune themselves to the track. Karaoke is also

useful for the singers during their live performances (Berenzweig et al., 2002; Kim and

Whitman, 2002; Zhang and Packard, 2003; Wang et al., 2003b, 2004). It is also possible

to reduce the number of accompanying musicians while performing on stage by providing

Karaoke tracks. In addition to that, the research on MIR will benefit greatly from the

segmentation of vocal and non-vocal regions (McVicar et al., 2014).

3.1.2 Challenges

Since the nature of an audio signal is highly complex due to its stochastic behaviour and

the involvement of multiple components, it is quite difficult to segment the vocal and

non-vocal portions. It is easy to distinguish vocals from non-vocals if pure vocals are

available but, it is rare to get pure vocals without background accompaniment. Hence,

the complexity of the task increases making it difficult to determine the characteristics of

vocals.

3.2 Research Gaps

• Time-domain features such as ZCR, SF, STE, etc., are used in literature for the task

of singing voice detection. They may not be able to accurately detect the singing

voice due to dominant background accompaniment.
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• The majority of the features found in the literature are adapted directly from the

influences of speech processing. For instance, features used for speaker identification

are directly explored for singer identification. However, certain analysis has to be

done to select suitable features for the task of music processing.s

• Lack of proper database for implementing a sophisticated system for vocal and

non-vocal segmentation.

3.3 Proposed Methodology

The step by step process of the present work is depicted in Figure 3.1. This section details

the process behind feature extraction, and classifiers configuration. The details of feature

selection using GAFS is explained in subsequent section.

Feature extraction

GAFS :: Genetic based 

feature selectionTesting Data
Feature extraction

Selected Feature set
Trained ANN with

selected feature set

11-point moving 

window
Non-vocal segmentsVocal segments

Training process Testing process

Training Data

Figure 3.1: The proposed flow diagram for vocal and non-vocal segmentation.

3.3.1 Feature Extraction

Different features have been considered in this work. Important ones among them are

MFCCs, LPCCs, FDLP, statistical values of pitch, jitter, shimmer, and formant based

features. Following subsections discuss the process of extracting them one after the other.

A Mel-Frequency Cepstral Coefficients (MFCCs)

The popular and widely used features that played a major role in many speech and au-

dio processing tasks are Mel frequency cepstral coefficients (MFCCs) (Logan et al., 2000;

Ellis, 2007; Tzanetakis and Cook, 2002). The compact representation of spectral enve-

lope provided by MFCCs is helpful in characterizing the speech and speaker information.
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MFCCs also perform well in many music processing tasks (Eghbal-Zadeh et al., 2015).

There are several variations for MFCCs such as velocity, acceleration, cepstral mean sub-

traction (CMS), and so on. However, standard MFCCs are considered for this work as

better baseline performance has been obtained with them.

B Linear Prediction Cepstral Coefficients

The linear prediction coefficients (LPCs) are the coefficients of all-pole filter that can

be used to model the vocal tract system. The process of computing LPC coefficients

(LPCCs) is simple and can be done directly from the LPCs given below:

cep(m) =



0 ;m < 0

ln (G) ;m = 0

am +
∑m−1

q=1

(
q
m

)
c(q)am−q ; 0 < m ≤ p∑m−1

q=m−p
(
q
m

)
c(q)am−q ;m > p

(3.1)

Where cep(m) is cepstral coefficient, aq represents linear prediction coefficients, and q is

the order of prediction (Wong and Sridharan, 2001).

C Frequency Domain Linear Prediction based Features

Many transformation techniques such as Fourier transform, Wavelet transform, constant

Q-transform, and so on are available to assist while converting the signal from time-domain

to frequency-domain. The concept of linear prediction has been introduced because of its

importance in many speech processing applications such as formant analysis, fundamen-

tal frequency estimation, spectrum and cepstrum analysis, source estimation and so on

(Markel and Gray, 2013). The technique of linear prediction can capture temporal varia-

tions in the case of spectral domain. The work proposed by (Ganapathy, 2012), known as

frequency domain linear prediction (FDLP), is designed to construct the short-time fea-

ture vector using DCT components that consume less time when compared to the other

existing approaches. The FDLP coefficients perform well in many speech applications

even the signal is supported with background random noise including reverberant speech.

Since they can clearly capture the temporal variations, they are suitable for the tasks of

MIR specially to discriminate vocal and non-vocal regions like other cepstral features. A

39-dimensional feature vector has been constructed for the present work.
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D Statistical Values of Pitch, Jitter and Shimmer

The spectrograms and pitch contours of vocal and non-vocal portions are to be properly

analyzed for the task of segmentation. It is also known that singers voluntarily change

their pitch to provide a melody component while rendering music and the same may not be

found with the non-vocals. Based on this observation, statistical variations in pitch such

as minimum, maximum, standard deviation (σ) and mean (µ) have been estimated and

analyzed with different correlations, histograms and GAFS. In addition, cycle-to-cycle

variations of pitch and amplitude have been used, also known as Jitter and Shimmer

respectively. The process of computing jitter and shimmer has been depicted in Figure

3.2.
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Figure 3.2: Jitter and shimmer computation from the speech signal.

The process of computing jitter and shimmer are formulated in equations 3.2 and 3.3

(Farrus and Hernando, 2009).

J =
1

N − 1

N−1∑
i=1

|Ti − Ti+1| (3.2)

Where Ti is the extracted pitch period and N is the number of cycles considered.

Shimmer =
1

N − 1

N−1∑
i=1

|20log(
Ai+1

Ai
)| (3.3)

Where Ai is the extracted peak-to-peak amplitude data and N denotes the count of pitch

periods.

E Formant Analysis

Formants are the resonance frequencies that can estimate the structure of vocal tract

system. In this task, first four formants and formant energies have been used for dis-
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criminating vocal and non-vocal regions. Formant frequency values and their energies are

found to be incapable while discriminating vocal and non-vocal regions. However, there

are some structural differences that are observed in the average formant structure of some

vocal and non-vocal segments, shown in Figure 3.3.
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Figure 3.3: The structure of formant spectrum for vocal and non-vocal regions.
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Figure 3.4: Features that are computed computed based on their discrimination for vocal and non-vocal
segments. Since FH1 = FH2, only FH1 has been considered for experimentation.

Analysis has been carried out on the structure of formants and it is found that the

attack slope, decay slope, and height of the peaks are quite different and found to be

useful features for discrimination of vocal and non-vocal parts (shown in Figure 3.4).

Hence, formant attack slope (FAS), and base-to-peak height of the formant (FH1) have
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been computed for the regions of F2, F3, and F4, ignoring F1 since the values mentioned

above are not much distinctive for F1. In addition to them, F5 is also considered since

it is the singer formant and the value of F5 (Mendes et al., 2003) is almost null for the

non-vocal segments.

Further, geometric methods are also applied on the formant structures of vocal and

non-vocal regions to measure some discriminating parameters such as angle at peak (FA1)

and valley (FA2). They are computed for second, third, and fourth formants as F1 is not

much discriminating. The features that are extracted based on geometric methods are

pictorially showin in Figure 3.5.
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Figure 3.5: The process of computing angle values from the spectrum. (a) vocal spectrum and (b)
non-vocal spectrum.

3.3.2 Classification Techniques

Four different classifiers namely support vector machines (SVM), Neuro-fuzzy classifier

(NFC), random forest (RF), and neural networks (NN) have been chosen for the task of

vocal and non-vocal segmentation. The configuration of each classifier and its importance

are given below:

A Support Vector Machines (SVM)

The concept of statistical learning theory is the base for support vector machines (SVM).

They focus on estimating the boundaries that separate the input feature space into two

different classes (Vapnik, 2013). If the two classes are linearly separable, a decision bound-

ary that separates the two classes at maximum will be chosen. A margin can be defined

as the sum of the distances to the hyperplane from the nearest points of the two class

labels (Vapnik, 2013). The technique of quadratic programming (QP) can be used to
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solve the issue of margin maximization. The data points around the hyperplane (also

called as support vectors) are considered to measure the margin. In the case of non-linear

data, two important issues have to be addressed. One is margin maximization, and the

other one is minimizing the misclassification errors. A user-defined parameter adjusts the

margin and reduces the misclassification error (Cortes and Vapnik, 1995).

B Neuro-fuzzy Classifier (NFC)

Traditional pattern classification approaches involve the process of clustering the training

samples and mapping test samples to the relevant cluster. Many times, the process of

defining boundaries among the clusters is ineffective due to non-linearity in data. It

would be difficult to have linearly separable boundary if the length of the feature vector

increases. In contrast, the set of rules in fuzzy makes this task more straightforward

and easy. It is easy to represent the high dimensional feature vector by mapping the

relevant class using the set of non-deterministic rules (known as fuzzy) (Sun and Jang,

1993; Do and Chen, 2013) In the Neuro-fuzzy classifier (NFC), the input feature space

is distributed to various fuzzy subspaces using fuzzy if-then rules. Further, these fuzzy

rules are represented through a network structure. The network contains a multilayer

feed-forward neural network structure including different layers namely input layer, fuzzy

layer, fuzzification, defuzzification, normalization layer, and class label. A typical block

diagram of NFC for a feature vector of length n and two output classes vocal and non-

vocal is shown in Figure 3.6. The details of the membership function, fuzzification, and

defuzzification are given below:

– Membership Function: In this layer, a membership function is identified for every

input. There are several membership functions available such as triangular, trape-

zoidal, Gaussian, and so on. Since the data is normally distributed, a Gaussian

function has been utilized and is defined Eq. 3.4.

µmn(xkn) = exp

(
− (xkn − cmn)2

2σ2
mn

)
(3.4)

Where µmn(xkn) represents the membership grade of the mth rule and nth feature;

xkn represents the kth sample and nth feature; cmn and σmn represent the center and

width of the Gaussian process,respectively.
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Figure 3.6: The structure of Neuro Fuzzy Classifier. Note: M Function→ membership function, F Layer
→ Fuzzification layer, DF Layer → Defuzzification layer, Norm. Layer → Normalization Layer, V →
Vocal, and NV → Non-vocal.

– Fuzzification: If the input sample satisfies the fuzzy rules, then a signal that resem-

bles the degree of fulfillment will be generated by each node of this layer. In simple

terms, a strength to the fuzzy rule is given by this layer and on the kth rule:

νmk =
N∏
n=1

µmn(xkn) (3.5)

Where N represents the length of feature vector.

– Defuzzification: The weighted outputs will be calculated in this layer. If a rule

of output is capable of controlling a particular class, then the weight is larger for

that class when compared to the other classes. The process of computing weighted

output for jth class is given below:

βkj =
M∑
m=1

νmkδmh (3.6)

Where δmh represents the degree of the hth class that is controlled by mth rule and

M represents the number of rules

Further, the normalization layer normalizes the weights as there is a chance of getting

a value which is more than ’1’ due to summation. Finally, all the weights are compared
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at the output class to identify the class label which is associated with maximum weight

obtained.

C Random Forest Classifier (RF)

Random forest (RF) classifier is the composition of several decision tree classifiers. In

which, each tree classifier has been built for a randomly selected feature subspace from

the original input feature vector. The class which gains more votes from the set of trees is

helpful in deciding the class label (Breiman, 2001). One important step in the process of

RF classification is the attribute selection. There are two frequent methods used to select

the attributes for decision tree induction namely information gain ratio criterion (IGRC)

(Loh, 2011) and Gini index (Quinlan, 2014). Each combination of the feature vector

constructed from the training data that generates a tree to the maximum depth. Since

the RF classifiers are considering the attribute selection and not considering the pruning

approach, their performance surely outperforms the traditional decision tree methods.

However, the tree without pruning may not give overfitting issues because of Strong Law

of Large Numbers (Feller, 2008) and capable of converging the error at some point. Hence,

the effectiveness of the RF algorithm depends on the number of trees chosen.

D Artificial Neural Networks (ANNs)
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Input 1

Input 2

Input 3
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Figure 3.7: The structure of simple artificial neural network.

The process of selecting a classifier is always based on the kind of data chosen. It is

also true that the features considered for this work are non-linearly related. It is hard to
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discriminate them using a linear classifier. The efficient classifier that can handle highly

non-linear data is artificial neural networks (ANNs) (Phillips et al., 2015; Wei et al., 2019).

With this understanding, ANNs have been considered for segmenting vocal and non-vocal

regions. The basics of ANNs and their variations can be found in many research articles

(Jain et al., 1996). The structure of the three-layered ANN that suits the present task is

shown in Figure 3.7. It contains input, hidden and output layers. It is empirically tested

and found that the single hidden layer is enough to achieve better results as well as the

model is computationally economical. However, the number of neurons in hidden layer

plays a major role in better classification.
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Figure 3.8: The accuracy obtained for varying number of hidden neurons. Note: Arrow indicates the
best accuracy obtained for Nh = d(1.85 ∗ In)e.

It has been stated that if the number of hidden neurons is in the range of 1.5 to 2 times

of the input neurons, then they are able to classify more precisely (Boger and Guterman,

1997). Based on this, empirically the number of the hidden neurons is decided to be

equal to 1.85 times the input neurons i.e. Nh = d(1.85 ∗ In)e where Nh is the number

hidden neurons and In represents the number of input neurons. Performance of neural

network model with different number of hidden layer neurons and feature sets is shown in

Figure. 3.8. Arrow marks pointing to highest peaks in each category of features indicate

the highest performance of the neural network model for that category of features.
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3.4 Genetic Algorithm based Feature Selection (GAFS)

One of the revolutionary developments to solve and optimize the issues in computing

world is evolutionary computation (Goldberg, 2006). A genetic algorithm (GA) is one of

the evolutionary mechanisms which is flexible and works based on genealogy and natural

phenomena (Kinnear, 1994). The genetic algorithm is designed with the principle of “sur-

vival of the fittest” proposed by Charles Darwin (Goldberg, 2006). Genetic algorithms are

naturally intended to optimize the process, select the best solution, and discard the rest.

They are also capable of providing efficient solutions to the problems. Similar to the other

evolutionary algorithms, genetic algorithms are based on randomized operations. How-

ever, it is sufficient if one set of random values–called as the population of chromosomes–is

generated. The remaining sets are produced from the primary set with the help of some

primitive operations. Thus, they do not depend on the problem and are more capable

when compared to conventional random & exhaustive search techniques (Kinnear, 1994).

Moreover, genetic algorithms are found to be proficient and give best possible solutions

even for the problems that do not have continuity, linearity, or other prominent infor-

mation (Goldberg, 2006). The genetic algorithms have also several other advantages like

providing the optimal solution, offering more than one solution, suitable for large search

space problems where a large number of attributes present, etc. In contrast, genetic al-

gorithms also have some drawbacks. One major drawback is that their unsuitability to

solve small problems where size of the dataset is limited. Genetic algorithms are proven

to be fit in many engineering applications such as structure optimization, control sys-

tem optimization, and optimized filter design approaches. We also found that they are

vaguely used in speech and music processing applications (Behroozmand and Almasganj,

2007). The advent of genetic algorithms has motivated us to use the same for selecting

the appropriate features for vocal and non-vocal discrimination. We called this approach

as the genetic algorithm based feature selection (GAFS). The ANNs are considered to

evaluate the performance of every chromosome2. An example flow of GAFS-ANN ap-

proach is shown in Figure 3.9. Genetic algorithms have few natural operations such as

initialization, selection, crossover, and mutation that are helpful to provide the optimal

solutions. All the steps mentioned above are quite common to many applications except

selection which varies depending on the problem. One complete iteration of GA process

2The terminology used in genetic algorithms for features can be referred in (Goldberg, 2006).
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and its blocks are shown in Figure 3.9. The details of each block with relevant examples

are given in the subsequent subsections.
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Figure 3.9: An example to illustrate the complete process involved in GAFS-ANN.

3.4.1 Initialization

The initial set of chromosomes has been generated using random number generator. A

simplified example is shown in Figure 3.9 which selects the optimal set of features from

the original feature vector of length 12. Each row represents 12-bit feature vector which

is arranged as a 12 element tuple. The presence of ′1′ indicates the selection of the feature

and ′0′ represents its absence in the final feature tuple. The process of choosing 12-bits

is random in nature. Initially, three random numbers are generated in the range from

0 to 15. The binary encoding of a randomly generated numbers forms a chromosome of

length 12. The number of random numbers depends on the size of the feature vector.

Similarly, ′n′ number of chromosomes is created to generate the initial population, the

value of ′n′ is 10 in the example shown. From the generated initial population, the features

corresponding to the bit ′1′ are selected, and the rest are ignored (shown in Block-2 of

Figure 3.9). An example of generating chromosomes from the random values is shown

below:

[ 12, 7, 2 ]→ [ 1100 0111 0010 ] → Chromosome A

[ 4, 3, 5 ] → [ 0100 0011 0101 ] → Chromosome B
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3.4.2 Estimation of Fitness

Each generated feature vector by selecting features as shown in the previous step is given to

the classifier. ANN is used as a classifier to test fitness of each selected feature vector. The

performance accuracy of ANN classifier and the number of features in each chromosome

have been considered to estimate the fitness value. The corresponding weight is given to

both count and performance accuracy. The experimentation is done with different values,

and better results are obtained with the fitness function proposed shown in Eq. 3.7.

fitness(i) = (0.8 ∗ acc)− (0.2 ∗ fc) (3.7)

Where i is the chromosome index, fc is the count of features selected, and acc is

accuracy obtained by ANN. The fitness values are shown in the 3rd block of the first row

of Figure 3.9. The third block contains three columns where column 1 represents the

accuracy, the second column is the number of features, and the third column is the fitness

values obtained.

3.4.3 Selection Process

A variety of selection techniques are available to preserve the finest chromosomes. Some

of the widely used ones are tournament selection, roulette wheel selection, rank selection,

proportionate selection, steady-state selection, etc. The tournament selection method is

considered in the present work for the selection of features for further processing. The

example explains the process of selecting the finest chromosomes based on the threshold

cut-off on fitness values computed.

3.4.4 Crossover Operation

There are several forms of crossover techniques available in the literature. Some popular

techniques are single-point, two-point, uniform, and arithmetic. The performance of each

technique is dependent on the problem that was chosen. The process of generating child

chromosome using each technique is detailed below.

A Single-point crossover

A single random number is generated for two chromosomes. Further, the values of chro-

mosome A and B gets interchanged to create new offspring based on the random value.

An example is shown in Fig. 3.10(a).
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B Two-point and uniform crossover

Two or more random numbers will be considered to extract more characteristics of two

parent chromosomes A and B for producing a new offspring. The examples for two-point

and uniform crossovers have been illustrated in Figure 3.10(b) and 3.10(c) respectively.

C Arithmetic crossover

To examine the similar or dissimilar characteristics of two chromosomes A and B, the

arithmetic crossover is popularized. The operation can be any of the AND, OR, or other

operations. An example which illustrates the process of arithmetic crossover is shown in

Figure 3.10(d).

3.4.5 Mutation

The mutation operation is preferred to enrich the qualities in the child. It is simply done

by inverting the bit value or by interchanging the multiple bits within the chromosome.

An example is shown in the last step of Figure 3.9.
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Figure 3.10: The various crossover techniques available with examples.

The above steps are performed iteratively till the optimal solution is obtained. It is

decided that there is a less probability to produce better chromosome if the majority of

the chromosome values are in steady state and.

3.5 Experimental Analysis

The results obtained using the proposed approach are analysed in this section. Two

different datasets are used namely Tollywood and Bollywood popular songs (TBPS), and
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MIR-1K are used for experimentation. The details of them are detailed in sections 2.1.1

and 2.1.2.

3.5.1 Result Analysis

A majority of the times, processing of time-domain signal alone may not be sufficient to

discriminate vocal and non-vocal regions. Hence, some useful features have been consid-

ered from the frequency domain. The features such as MFCCs, LPCCs, FDLPs, statistical

values of pitch, jitter, shimmer, and formants are extracted. In addition to them, a set

of novel features namely formant height from peak-to-base (FH1), angle values at peak

(FA1), and valley (FA2) have been computed from the formant structure after thorough

analysis. These features been computed for second, third, and fourth formants since not

much discrimination is observed in the case of first formant. Moreover, singer formant

(F5) is also computed as it is rarely found in non-vocal segments and always available in

vocal portions. Since the signal is stationary and useful to do certain analysis at lower

frame lengths, a frame length of 25 ms. with an overlap of 10 ms. has been considered

to compute all features mentioned above forming a 90-dimensional feature vector for a

frame. The details of features are given in Table 3.1.

Table 3.1: Different features considered in this work with their acronyms and length.

Sl. No. Feature Name Acronym Size

1 MFCCs M 13

2 LPCCs L 12

3 FDLPs F 39

4 Stat{Pitch} SP 4

5 Jitter J 2

6 Shimmer S 2

7 Formants and Formant Energies FOR 8

7 Height from Peak-to-Base FH1 3

8 Angle at Peak FA1 3

9 Angle at Valley FA2 3

10 Singer Formant F5 1

The columns of the table represent the feature name, its acronym, and its size of

the feature vector. From here onwards, in this section, the acronyms are to refer to the
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features. The features all together form a feature vector of length 93. The possible feature

combinations have been constructed to test their ability in segmenting the vocal and non-

vocal regions and applied on both the proposed TBPS and standard MIR-1K datasets.

The results obtained for the various combinations are given in Table 3.2.

Table 3.2: The accuracy of vocal and non-vocal segmentation obtained on the proposed and MIR-1K
datasets using different feature combinations and classifiers. Note: bold face letters indicate the best
performance for that classifier and colored background represents the best accuracy for that dataset. SVM
→ Support vector machine, NFC → Neuro-fuzzy classifier, RF → Random forest, and NN → Neural
network.

Accuracy (in %)

Proposed TBPS Dataset MIR-1K DatasetFeature Set

SVM NFC RF NN SVM NFC RF NN

{M} 53.68 64.05 72.54 70.12 65.52 63.82 73.82 72.69

{L} 52.96 63.16 68.29 69.64 63.98 65.75 72.96 70.83

{F} 48.34 53.42 53.12 59.54 52.84 61.49 68.45 61.86

{M+L} 54.25 64.95 74.92 71.56 66.12 66.72 72.83 73.66

{M+F} 56.72 62.24 71.54 72.39 56.21 59.13 70.09 63.98

{L+F} 55.02 59.39 65.07 61.82 54.25 60.29 68.45 64.82

{M+L+F} 58.66 63.56 63.14 60.47 57.57 58.37 73.58 66.56

{M+SP} 61.28 67.12 71.86 72.69 69.85 73.82 78.92 76.76

{L+SP} 59.85 65.63 69.99 72.08 72.35 75.19 77.45 75.45

{F+SP} 51.26 57.95 62.54 61.23 56.15 67.85 71.68 70.52

{M+L+SP} 62.38 67.32 74.87 71.69 76.48 76.32 76.12 77.39

{M+L+F+SP} 64.29 61.96 67.92 63.58 66.56 73.58 78.59 74.94

{M+SP+J+S} 66.72 69.52 75.84 73.54 80.36 81.69 82.98 83.67

{M+SP+J+S+FOR+FE} 59.15 57.26 62.87 61.54 70.24 69.23 72.58 71.96

{L+SP+J+S} 65.47 68.19 73.09 71.36 78.59 80.86 84.59 78.54

{F+SP+J+S} 56.12 60.04 69.57 66.21 61.28 70.23 77.25 73.96

{M+L+SP+J+S} 68.32 69.12 75.82 74.58 82.84 82.09 89.94 85.69

{M+L+F+SP+J+S} 69.69 63.46 73.23 68.48 73.96 78.96 83.58 81.23

{M+F5+SP+J+PFF} 72.98 73.87 75.98 78.96 78.35 85.29 91.65 87.23

{L+F5+SP+J+PFF} 71.59 72.45 78.35 77.58 82.56 86.56 90.28 85.96

{F+F5+SP+J+PFF} 64.18 61.73 73.36 68.33 73.69 79.15 86.68 79.54

{M+F+F5+SP+J+S+PFF} 73.54 75.82 78.36 79.15 83.63 88.05 93.92 91.58

{M+L+F+F5+SP+J+S+PFF} 74.69 73.93 76.19 75.78 79.56 82.19 89.27 83.62

From the table, it is observed that the feature combination {M+SP+J} is sufficient

to classify the vocal and non-vocal segments of MIR-1K dataset. The reason could be
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Figure 3.11: The Correlation values obtained with some features for vocal and non-vocal segments. Note:
Only few are selected based on their discrimination.
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the suppression of background accompaniment using REPET algorithm. Since the clips

of MIR-1K are having less and rule-based background support, the source information

can be easily separated. However, the accompaniment structure of the proposed TBPS

dataset is quite different. Moreover, the composers always improvise the staff 3 in the

case of Indian music (Samsekai Manjabhat et al., 2017; Fung, 1993). Hence, it is difficult

to suppress the level of source information when compared to MIR-1K. The accuracy

obtained with some feature combinations of 74 features is {M+F+F5+SP+J+S+PFF}

is appreciable though the length is little high. However, use of such high dimensional

feature vector leads to the computational complexity and is not suitable for real-time

applications. Moreover, all features in the vector may not be relevant to the selected task

leading to overfitting and underfitting issues. An approach to chose only relevant features

from a set of features would help to overcome the problems specified above.

Various analysis have been done to sort out the specific features using correlation and

feature selection algorithms. The correlation analysis has given the information about

how far a specific dimension is distinct concerning the class. Two approaches have been

considered to select the features based on correlation analysis. One is visual analysis using

normalized histograms and scatter plots. The normalized histograms after curve fitting

have been drawn for the two classes of each dimension and shown in Figure 3.11. Finally,

the features that give at least a minimal discrimination are considered in the final list.

From Figure 3.11, it is evident that considering all features reduces the performance of

the system. However, some dimensions of features are found to greatly aid in improving

the performance after a thorough analysis using correlation techniques.

With this motivation, different feature selection techniques have been chosen to reduce

the dimensionality. The clips of MIR-1K can be well segmented with the minimal feature

vector. Since Indian music is the focus of this work, extended experimental analysis is done

on Indian clips. Some experiments are done on the combined dataset (TBPS+MIR-1K).

However, the accuracy is not up to the mark hence, ignored the same for experimentation.

The correlation values obtained for an individual feature and a set of feature category have

been computed as shown in Table 3.3 and Figure 3.12 respectively. The table is evident to

convey that all the dimensions are not relevant for the specified task. As the correlation

values obtained for a category of features are high, it drives us to work on individual

feature analysis. From Figure 3.12, it is possible to say that some of the dimensions of

3Staff is a piece of paper which contains various music symbols.
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Figure 3.12: Correlation values obtained for individual feature using CCA. Note: FDLP is divided into
three parts as its dimension is 39.

all the feature categories are very important to segment the vocal and non-vocal regions

as they are less correlated. Of these, formant energies are found to be least significant

for the same. Various threshold values are applied to select the suitable features based

on the correlation values obtained. Out of all feature combinations, a feature vector with

43-dimensions obtained at a threshold value 0.021 is giving an accuracy of 84.32%.

Table 3.3: The correlation found between the vocal and non-vocal regions using the set of features using
CCA.

Feature Vector
Correlation

Value

MFCCs 0.1462

LPCCs 0.1859

FDLPs 0.1010

Pitch 0.2381

stat{pitch} 0.0249

Jitter 0.0140

Shimmer 0.0138

Formants 0.2229

Formant Energies 0.3329

However, it is uncertain to finalize the feature vector based on only the correlation

analysis since there is a chance of unexplored combination that may give better accuracy.

It is very important to observe the possible subsets of features to determine the best one.
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Experimenting all the subsets, i.e., 2n−1 (assuming n is the dimension of feature vector) is

practically not feasible for real-time applications when n is large. There could be a chance

of high computational issues in such cases. Hence, different feature selection algorithms

namely correlation-based feature selection (CFS) (Hall, 1999), principal component anal-

ysis (PCA) (Abdi and Williams, 2010), gain ratio attribute evaluation (GRAE) (Robnik-

Šikonja, 2004), Symmetric uncertainty attribute evaluation (SUAE) (Hall and Holmes,

2003), and Relief (Liu and Motoda, 2007) are considered. In addition, one more feature

selection algorithm has been proposed for this work with the support of an evolution-

ary approach, called “genetic algorithm based feature selection” (GAFS). Four different

classifiers namely support vector machines (SVM), Neuro-fuzzy classifier (NFC), random

forest (RF), and artificial neural networks (ANN) are chosen based on their ability in han-

dling the non-linear data. Various performance measurement techniques like precision,

recall, accuracy, receiver operating characteristic (ROC) curve value, mean absolute error

(MAE), and root mean squared error (RMSE) are used to evaluate the classifier efficiency.

The performance values obtained for different feature selection algorithms with various

classifiers are given in Table 3.4. It is found that all the feature selection algorithms are

equally important. However, GAFS is selecting the best combination in optimal time.

As the evolutionary algorithms are randomized, they always outperform many conven-

tional approaches when the feature dimension is large. The comparative analysis about

the feature vector lengths obtained using various feature selection algorithms versus the

accuracy achieved has been plotted in Figure. 3.13. Though GAFS is little high when

compared to PCA, a better accuracy has been obtained.

Out of four classifiers, ANNs are observed to be more suitable for classifying vocal

and non-vocal segments as they are designed to handle highly non-linear data. Different

measurement techniques mentioned above are considered to compare the classifier perfor-

mance. Though the RFs are giving better accuracy many times (see Table 3.4), their error

values are found to be more, and ROC is less when compared to ANNs. ROC is another

factor to decide the suitability of classifier for the specific task. The classifier with more

ROC sometimes gives less accuracy. Moreover, MAE and RMSE are also computed to

justify the appropriateness. The values of MAE and RMSE are less in the case of ANNs.

Further, it is observed that there are some intermittent misclassifications in continuous

vocal and non-vocal segments. Hence, a concept of n− point moving window has been

introduced to retain the continuity in both the segments. The concept of n− point moving
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Figure 3.13: The outcome feature vector lengths of various feature selection algorithms and best accuracy
values obtained with them. Note: Two new terms: OV: original feature vector (93-dimensional with
an inclusion of base-to-peak formant values FH2 (first, second, and third formants))) and BC: Best
combination (74 dimensional) obtained from original vector.

Table 3.4: The comparison of different feature selection algorithms with the proposed GAFS for four
different classifiers. Note: Bold faced numbers indicate best performance obtained.

Performance

Measurement

Cfs Subset Eval. (43) PCA (23) GainRatio Attr. Eval. (39)

SVM NFC RF NN SVM NFC RF NN SVM NFC RF NN

Precision 0.823 0.871 0.854 0.847 0.832 0.831 0.854 0.836 0.829 0.837 0.862 0.859

Recall 0.823 0.871 0.854 0.847 0.832 0.831 0.854 0.836 0.829 0.838 0.862 0.859

Accuracy

(in %)
82.34 87.15 85.49 84.76 83.25 83.19 85.49 83.64 82.93 83.84 86.24 85.99

ROC 0.848 0.832 0.879 0.892 0.837 0.896 0.932 0.937 0.874 0.896 0.932 0.917

MAE 0.352 0.349 0.316 0.279 0.296 0.279 0.234 0.186 0.348 0.324 0.301 0.223

RMSE 0.348 0.331 0.324 0.295 0.267 0.263 0.316 0.267 0.374 0.337 0.324 0.286

Performance

Measurement

SUAE (46) Relief (37) Proposed GAFS (32)

SVM NFC RF NN SVM NFC RF NN SVM NFC RF NN

Precision 0.818 0.829 0.849 0.856 0.793 0.832 0.876 0.887 0.819 0.833 0.897 0.892

Recall 0.818 0.829 0.849 0.856 0.793 0.832 0.876 0.887 0.819 0.833 0.897 0.892

Accuracy

(in %)
81.86 82.93 84.95 85.63 79.36 83.25 87.63 88.71 81.92 83.28 89.74 89.23

ROC 0.834 0.879 0.924 0.931 0.769 0.876 0.893 0.947 0.917 0.892 0.945 0.972

MAE 0.324 0.316 0.287 0.268 0.369 0.324 0.287 0.278 0.296 0.287 0.267 0.182

RMSE 0.335 0.325 0.254 0.293 0.389 0.357 0.324 0.296 0.283 0.312 0.292 0.259

window is helpful to improve the classification accuracy and to locate the vocal onsets

and offsets accurately. A thorough analysis has been done to decide the value of n. A

human ear can perceive the information if it is played for the minimum of 1/4th of a
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Algorithm 1: Algorithm for n− point moving window.
Input: An array of 1s and 0s representing vocals and non-vocals for all the frames of

length 25 ms. (Outcome of classifier)
Output: An array of 1s and 0s after moving window.

1 // The array contains 1s and 0s representing vocals and non-vocals;
2 array[]← classifierOutput();
3 // Each value of array is equal to frame length.;
4 length← array.length();
5 // Start with first 11 frames by making center frame as pivot ;
6 for i in 6 . . . (length− 5) do
7 count_1← 0;
8 count_0← 1;
9 // Check all the points of that frame and increase 1s count if the point value is 1.

Else, increase 0s count ;
10 for j in i− 5 . . . i+ 5 do
11 if array(j) == 1 then
12 count_1← count_1 + 1;
13 end
14 else
15 count_0← count_0 + 1;
16 end
17 end
18 // Check the 1s and 0s count and update the pivot accordingly ;
19 if count_1 > count_0 then
20 array(i)← 1;
21 end
22 else
23 array(i)← 0;
24 end
25 end
26 // Iterate the loop for all the points of an array.;

second (Hughes, 1946). Thus, the value of n is considered to be 11. In which, each point

represents a frame length of 25 ms. Therefore, the total window length would be 275 ms.

An example illustrating the concept of an 11-point moving window is detailed in

Algorithm 1. Travelling to the details, the output of classifier has been labelled with ‘1’

for vocal and ‘0’ in the case of non-vocal which is done for each frame of a clip. An

11-point moving window is placed on the first 11 frames and the midpoint is considered

as a pivot. If the number of 1s in that window is greater than the number 0s, then pivot

element is replaced with ‘1’ representing the frame is expected to be vocal. Else, pivot

is replaced with ‘0’ indicating that it is non-vocal. A frameshift of one is considered to

iterate the above steps for all the array of frames. The improved accuracy values obtained

before and after moving window are depicted in Figure 3.14. An accuracy of 95.16% is

obtained with neural networks after windowing. In the case of singing voice detection,

the system is able to give around 98% accuracy. The frame error rates of onset and offsets
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are ignored since a part of singing voice can be selected from the longer portions of vocal

regions.

Figure 3.14: Comparison of accuracy values before and after windowing.

3.6 Summary

This chapter gives the possible solution to locate vocal onsets and offsets in a given audio

clip. In particular, the focus is on Indian popular songs. Audio songs of two popular cine

industries called Tollywood and Bollywood are considered. Various acoustical features

and their variations have been computed along with frequency domain linear prediction

(FDLP) values. Further, analysis has been done on formant structure to obtain the

features that discriminate vocal and non-vocal regions. Since the length of feature vector

with all these features is large, a feature selection algorithm based on genetics is also

proposed in this work. Experiments have been conducted on both TBPS and MIR-

1K datasets. The frame-level accuracy obtained at initial stage is less and hence, 11-

point moving window algorithm is proposed to avoid intermittent misclassification among

continuous vocal and non-vocal regions. The accuracy values obtained before and after

11-point moving window are given. Chapter 4 gives the implementation details of singer

identification by locating the singing voice segments automatically using the approach

proposed in this chapter.

64



Chapter 4

Singer Identification

“ The greatest respect an artist can pay to music is to give it life.

”
— Pablo Casals

4.1 Introduction

4.1.1 Motivation

The oldest musical instrument with which everyone is familiar is the singing voice (Sund-

berg, 1977; Sundberg and Rossing, 1990). One can easily discriminate the singer, once

the person is familiar with the singers’ singing voice. To identify a singer, a small portion

of the vocal region is enough for the humans. Their perceptual apparatus and neural

training mechanism help to do this efficiently. On the other hand, there is a huge growth

in digital media due to the advances in technology. Thus, millions of tracks available to

the listeners that create more confusion while selecting a song based on singer information

and some good songs remain unnoticed. It is also observed that a majority of the song

labels do not contain any information other than title of the track. Some tracks are found

even without a title. Basic meta-information for a track includes album name, singer(s),

genre, composer, mood, instruments, lyrics, etc. Of which, singer information is most

widely used in music cataloguing and categorization. Many times users choose a song

based on their favourite singers (Fujihara et al., 2010). The process of manual labelling of

meta-information may take several human years which is practically impossible (Sturm,

2014). Moreover, a lot of inconsistencies may arise if manual labelling is not done by a

music expert. A survey has been done to analyze the requirement of a number musicol-

ogists for labelling the meta-information and it is reported that at least 30 musicologists
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are needed for a complete year to label the essential meta-information for all the tracks

(Scaringella et al., 2006). It is quite difficult to even think about it. Hence, there is

a need to automate the tasks of music information retrieval (MIR). The task of singer

identification is further categorized into subtasks like target singer detection (TSD) in a

song, target singer tracking (TST), identification of a song category (solo or duet), singer

gender recognition, signer emotion recognition and so on. In this work, the task of singer

identification is addressed.

4.1.2 Applications

The process of automating the task of singer identification has many commercial applica-

tions. It helps to identify the songs of a particular singer from the millions of tracks for

a personalized collections. The song categorization based on a singer helps in extracting

and recommending the songs to the listeners depending on their favourite singer. Further,

it helps to create an album with a songs of particular singer. It is also possible to iden-

tify the singers who have similar characteristics based on the singers’ timbre for grouping

them into a cluster based on their similarities (Pachet and Aucouturier, 2004). Further,

it plays a significant role in improving the rating of recommender systems.

4.1.3 Challenges

The task of automating singer identification is highly complex when compared to speaker

recognition. During speech, one can observe some discriminating patterns like pauses,

phonemes, unit separation, etc. Whereas, singing is a continuous speech with intentional

change in pitch and vocal tract behaviour (Ratanpara and Patel, 2015). Moreover, the

continuous background accompaniment for singing voice increases the complexity of singer

identification (Helen and Virtanen, 2005; Comon and Jutten, 2010). The complexity in

estimating the timbral information under background accompaniment is the major issue

for the unavailability of an accurate singer identification system. The similarities among

two singers may also confuse the system while categorizing the singers.

4.2 Research Gaps

1. The systems that are previously developed for singer identification are mostly done

on studio recorded datasets that may not suitable for real-time applications.
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2. The process of locating singing voice segments is done manually which needs to be

automated.

3. A very less focus has been done towards popular singers of many cultural regions

where their contribution to digital cloud is high.

4. The use of feature selection and the deep networks are not much considered in the

literature.

4.3 Proposed Methodology

The framework of the proposed methodology has been given in Fig. 4.1. It starts with

the task of database collection and locating the singing voice segments. Further, different

features related timbre and temporal aspects that are suitable for singer identification

are extracted. They are fed to two different classifiers for training and testing. Further,

spectrograms and chromagrams are computed and are fed to CNN for estimating the

performance of CNN over traditional feature-based approaches.

Audio Data
Music

Database Method for locating 

singing voice 

segments

Timral Features Temporal 

Feature

Extraction

ANN

Classifiers

Spectrogram &

Chromagram

Vocal segments Non-vocal segments

Ignore

MFCCs LPCCs SDCs

Random

Forest

Convolutional

Neural Networks

Comparison

of Results

Chroma

Features

Figure 4.1: The proposed framework for Singer Identification System.

4.3.1 Feature Extraction

In this work, timbre and temporal features are exploited for singer identification. As

timbre is the attribute that decides the quality of singer and also categorizes them, they are
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considered with some derived features. Two different categories of features are extracted.

Of these, one category is timbre, and the other is derived features of timbre values that

captures temporal variations. Features like MFCCs & LPCCs are considered as timbral

features, and shifted delta cepstral (SDC) coefficients have been derived from the cepstral

coefficients that are used to capture temporal information.

A Mel-frequency Cepstral Coefficients (MFCCs)

MFCCs are the standard features that are fairly used in many speech processing appli-

cations and even in modelling music. As they are capable of correlating human auditory

system (Murthy and Koolagudi, 2015), basic performance can be expected using them.

Hence, they are extracted to discriminate singers of the audio songs.

B Linear Prediction Cepstral Coefficients (LPCCs)

LPCCs are another kind of standard spectral features that are designed based on the vocal

tract system. These are the coefficients of the all-pole filter that are believed to represent

the shape of a vocal tract. The process of computing LPCCs is taken from (Wong and

Sridharan, 2001) and (Murthy and Koolagudi, 2018b).

C Shifted Delta Cepstral Coefficients (SDCs)

One variant of MFCC stacks and delta cepstral feature is named as SDCs (Kumar et al.,

2011). They are computed from the adjacent frames of the audio clip and depend on

four parameters (n, p, d, k). The value n indicates the number of cepstral coefficients, p

& d indicate time shift & advances, and k denotes the span of the feature. For a given

utterance with nv number of cepstral features, [nv−(k−1)∗p−d] number of SDC features

can be extracted. The process of SDC feature extraction is shown in Figure 4.2. SDC

feature (λ) at the time t is given as:

∆λ(t) = λ(t+ jp+ d)− λ(t+ jp− d) (4.1)

Where j lies between 0 to k − 1.

D Chroma Features

In a musical octave, the intensity associated with each of the 12 semitones is recorded

by projecting them on 12 bins known as chroma features. Based on these 12 semitones,

a 12-dimensional chroma feature vector is formed. Several routines are available to map
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Figure 4.2: SDC feature extraction with parameters (n-p-d-k).

the spectra to chroma with some permissible loss. In this work, in order to improve the

resolution of the underlying frequency and estimate the strong tonal components of the

spectrum, in this work, phase-derivative has been considered for each FFT bin [1,4]. As

they are prominent for singer identification (Ellis, 2007).

A total of 46-dimensional feature vector is formed by appending each group features

that are mentioned above in the order i.e. MFCCs (13), LPCCs (12), SDCs (9), Chroma

(12).

4.3.2 Feature Selection

More the number of features higher the computational complexity. There are chances for

performance reduction too due to irrelevancy in some feature dimensions over the output

classes. It is always necessary to develop a system with an optimized feature vector to

obtain better results. Hence, feature selection is an important aspect that filters out the

odd ones. Feature selection based on genetic approach, known as genetic algorithm based

feature selection is introduced in this work (Murthy and Koolagudi, 2018b). The detailed

process of selecting features based on GAFS is clearly explained in 3.4. This process gives

a feature vector of length 28 with 41% reduction in the size of the resultant feature vector.

4.3.3 Classification Models

Two different classification models such as artificial neural networks (ANNs) and random

forest (RF) are used based on their capability of capturing non-linear patterns though the

number of output classes are high (Ryo and Rillig, 2017; Wei et al., 2019). Details of the

classification models are provided below:
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A Artificial Neural Networks (ANNs)

ANNs are found to be more suitable for many classification problems. The structure of

ANNs is almost correlating with the human brain (Güçlü and van Gerven, 2017). Due to

this, they are highly capable of handling non-linear patterns (Wei et al., 2019). In this

work, three-layered ANN architecture has been considered containing input, hidden and

output layers. The number of neurons in the input layer is equal to the length of the feature

vector considered i.e. either 46 (Before features selection) or 28 (after feature selection).

The number of neurons in the hidden layer is fixed to 1.8 times to the number of neurons

in the input layer. The count is obtained after an empirical analysis performed based on

the thumb rule (Boger and Guterman, 1997). The number of output classes decides the

count of neurons in the output layer. In this case, the number of classes considered is

20. Feed-forward back propagation neural network (BPNN) has been applied to learn the

singer specific properties through the feature vector. The neurons of each layer are fully

connected to the neurons of adjacent layers.

B Random Forest (RF)

This classifier divides the entire feature space into several subspaces. A separate tree has

been built for each subspace. These subspaces are randomly constructed from the original

space (Breiman, 2001). The majority of the votes obtained for each tree are helpful in

deciding the output class label. Attribute selection is one crucial step of a random forest

classifier. Gini index (Quinlan, 2014) and information gain ratio criterion (Loh, 2011) are

the two popular feature selection algorithms that are highly used in the literature. As

the process of implementing random forest does not include pruning, it is found to be

effective when compared to the traditional decision tree approaches (Ho, 1995). There

may be a chance of over fitting if the tree is not pruned due to the Strong Law of Large

Numbers (Feller, 2008). One advantage is that the tree gets converged at some point if

not pruned. Based on this, it can be said that the effectiveness of RF classifier depends

mainly on the number of trees constructed.

4.3.4 Convolutional Neural Networks (CNNs)

In CNN, convolutional layers that are designed to extract the relevant local features from

all locations of raw input images. They are sometimes called as ConvNets. Their archi-

tecture is very similar to the traditional feed forward back propagation neural networks
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(BPNN) with some additional blocks known as convolution layers, rectified linear unit

(ReLU), pooling, flatten and Softmax. A simple architecture with [INPUT-CONV-RELU-

POOL-FC] is given in Fig. 4.3 (LeCun, 2015; Karpathy et al., 2014). The description of

each layer has been given below.
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Figure 4.3: The proposed CNN framework for Singer Identification System.

A Convolutional Layer (CONV)

In this step, 2D convolution is carried out on the input images. Further, a small subset of

spatially connected neurons from input images has been taken to generate local features.

A weight matrix has been generated to perform the dot product with the chosen subset.

The same weights are shared among all remaining nodes of convolution layers to retain

the search for the same local features.

B Rectified Linear Unit (ReLU)

Increase in non-linear properties of decision function happens in ReLU layer. There are

many functions available that increase non-linear properties of which, commonly used ones

are hyperbolic tangent activation function (f(x) = tanh(x)), sigmoid function (f(x) =

(1 + e−x)−1), and non-staturing activation function (f(x) = max(0, x)).

C Pooling

Another important function of CNN architecture is pooling which reduces the size of fea-

ture maps based on the maximum feature response. Many non-linear functions have been

introduced for pooling. Of which, maxpooling is the most commonly used. It divides the

input image into a collection of rectangles that are non-overlapping with each other. The
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same operation is done for each sub-region that outputs the maximum. The relativeness

of the feature with other features has been estimated in this process. The number of

parameters and computation time are generally optimized using pooling layer which fits

in between two successive convolutions (Krizhevsky et al., 2012).

D Fully Connected Layer (FC)

After a set of convolution and pooling operations, the obtained feature space is passed

on to a fully connected network. The structure of the FC layer is similar to the standard

neural network architecture where each node is connected with every node of the sub-

sequent layer. Activation function has been applied at every node to process the input

value of the node.

E Softmax Layer

Similar to the sigmoidal function, the softmax function sets down the information in the

range [0,1]. Moreover, the division happens in such a way that the sum of output values

is equal to 1. Hence, it can be said that the output of softmax layer is in the form of

probability distributions which decide the output class label. The mathematical equation

for the softmax layer is given in Eq. 4.2.

σ(s)i =
esi∑T
i=1 e

si
(4.2)

Where s is the vector of inputs to the output layer and i indexes the output classes

whic varies from i = 1, 2, ...T (Wang et al., 2016).

4.4 Experimental Analysis

In this section, the analysis of the proposed singer identification system with the results

obtained using different feature combinations and classifiers is given. The explanation

about the proposed dataset for this work is given in 2.1.3. In addition to that, a standard

artist20 dataset is also considered for comparative analysis and the details about artist20

are given in 2.1.4. Further, the singing voice segments have been located by using the

approach proposed in 3.3. Further, the proposed singer identification system has been

implemented and the details are as given below:

The focus of experiments that have been conducted here is based on two aspects.

The first one is for understanding the effectiveness of selected features and the second
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Table 4.1: The perforamnce of the various feature combinations over different classifiers and the affect with CNNs on IPSD and artist20.

Accuracy (in %) for a clip of length (in seconds)

Indian Singers Database artist20 dataset

NN RF CNN NN RF CNN
Sl. No.

Feature Vector/

Classification Model

60s 30s 10s 5s 60s 30s 10s 5s 5s 60s 30s 10s 5s 60s 30s 10s 5s 5s

1 MFCCs 29.44 25.12 24.06 22.39 27.86 25.48 20.69 17.12

–

NA

–

29.58 23.32 21.15 18.36 31.25 21.05 17.54 14.53

–

NA

–

2 LPCCs 29.98 26.28 24.14 21.32 24.96 20.45 20.18 18.02 26.13 24.96 2138 19.58 33.59 25.78 23.63 21.43

3 Chroma 23.59 21.25 20.47 18.54 29.18 26.89 23.85 22.72 31.29 26.47 24.18 22.78 36.52 31.45 26.97 26.33

4 MFCCs + Chroma 56.57 54.68 53.15 51.78 59.14 57.35 53.08 51.36 45.18 42.49 40.35 39.33 56.87 42.73 40.68 38.19

5 LPCCs + Chroma 54.15 52.66 53.94 50.12 59.58 56.80 53.99 52.18 44.72 42.16 40.39 39.22 59.72 53.28 50.77 49.64

6
MFCCs + LPCCs +

SDCs + Chroma
57.88 56.21 56.02 54.95 62.41 58.29 56.28 54.36 52.15 51.03 49.39 48.25 61.18 54.29 52.18 49.96

7 Selected <6> 61.86 59.25 58.33 58.06 63.17 61.78 58.47 56.15 58.23 56.94 56.12 55.75 61.69 60.82 57.45 53.12

8 Spectrogram Image 75.50 42.13

9 Chromagram Image
NOT APPLICABLE

35.23
NOT APPLICABLE

23.12
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is to analyse the use of trending CNNs in singer identification. Two different classifica-

tion models namely artificial neural networks (ANNs) and random forest (RF) have been

used to understand the importance of feature-based approach for singer identification.

Different timbral and temporal features that have proved their worth in speech appli-

cations are used in modelling music information. The list includes Cepstral coefficients

such as Mel-frequency cepstral coefficients (MFCCs) and linear predictive cepstral coef-

ficients (LPCCs) that are capable of correlating human perceptual mechanism. The fea-

tures known as shifted delta cepstral (SDC) coefficients have been computed and used as

temporal variations instead of conventional velocity (∆) and acceleration (∆∆) features.

Further, chroma vector has been computed from chromagrams forming a 46-dimensional

feature vector with all the features that have been mentioned above.

The test data is partitioned into the clips of different lengths of 60, 30, 10, and 5

seconds. However in the dataset, the number of clips of 10 and 5 is considerably high when

compared to those of 30 and 60 seconds. The number of clips that are considered in the

experiments is 100 for each in the case of 5 and 10 seconds, to understand the contribution

of each category of features towards singer specific information. The classifiers are trained

and tested using individual and combination of features separately. The results obtained

are tabulated in Table 4.1. In the table, rows of serial numbers 1 to 6 show either

individual or combinations of some of the timbre, temporal or chroma features. The

row with sl.no. 7 show the singer identification performance using reduced number of

features by applying genetic algorithm based feature selection technique. The results

obtained using neural networks and random forests have been displayed for both IPSD

and artist20 datasets. The last two rows of the table show the results obtained using

convolutional neural networks by considering the spectrograms and chromagrams. For

each classifier except CNN, the results that are reported in the table are for the audio clip

lengths of 60, 30, 10, and 5 seconds. For CNNs, the spectrograms and chromagrams are

given as inputs since CNNs are capable of extracting the features directly from the images

(Vieira and Ribeiro, 2018; Liu et al., 2018). Rows with serial numbers 8 & 9 of Table 4.1

shows the accuracy values obtained using CNNs with spectrograms and chromagrams.

The measurement which is considered to represent a value in each corresponding cell is

accuracy, and computed using the formulae shown in Eq. (4.3).

SIA =

∑N
i=1

Correctsi
Totalsi

N
(4.3)
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Where SIA is singer identification accuracy, N is the total number of singers (in this

case, N = 20), Correctsi is the number of correctly identified clips of the singer si, Totalsi
is the total number clips for the same singer.

The results of the table gives a clue that the MFCCs and LPCCs can be considered

as baseline features for identifying a singer to any kind of singer database. Addition

of MFCCs to other features is found to be advantageous and they do not degrade the

performance. In addition to cepstral coefficients, some of their statistical values are also

contributing little to the performance improvement. Though they are not contributing

much, they have been included to specify their importance for singer identification. Based

on this, SDCs have been directly added to the final feature vector instead of experimenting

with them separately. In few works (Ellis, 2007), chroma features have been considered for

singer identification. Based on this, experiments are also conducted using chroma features.

They have been experimented individually and also as a group. Chroma as a combination

yields to better results than that of individually. Better results are obtained with chroma

as a combination rather than alone (see row numbers: 3,4,&5). The combination of all

these features is giving better performance, however, computational complexity issues

due to the high-dimensional feature vector. As the feature selection techniques select

only relevant and useful features the results obtained using the selected feature vector are

better than the results obtained using all the dimensions. One can also observe that the

performance using random forest is better when compared to that of neural networks.

The reason could be the feature subset selection that is involved in the process of random

forest classification algorithm. At the same time, the performance is degrading if there is

a reduction in the length of the input clip. The classifier may not be able to classify all

the frames accurately and hence, reduction in performance.

It has been found that, all the dimensions of feature vector do not contribute much to

the classification performance of certain task most of the time. Moreover, there can be a

chance in performance degradation due to some irrelevant dimensions. Some visual nota-

tions have been given in Fig. 4 which depicts the distinguishable and non-distinguishable

features for singer identification. In this figure, x-axis represents normalized feature val-

ues and y-axis shows their normalized frequency score of twenty different classes (in this

case, singers). In the cases of MFCC-3, LPCC-1, and Chroma-12; one can observe clear

visual distinction for 20 singers. Where as, distinction is difficult for MFCC-2, LPCC-3,

and Chroma-10. See figures 4.4(a) and 4.4(b) respectively. This observation is called the
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Figure 4.4: Visual correlation score histograms obtained for 20 singers which justifies the usability of a chosen feature dimension. Rows: (a) Features that are capable
of discriminating singers, and (b) represent features that are not suitable for discrimination. Columns: (i) MFCC feature, (ii) LPCC feature, and (iii) Chroma
feature.
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visual correlation analysis.

The results obtained using the selected feature vector of size 28 have been compared

with few recent singer identification works that have also been done for artist20 dataset.

The results of the proposed work with random forest classifier are found to have improved

when compared to the existing works shown in Table 4.2. The table contains the informa-

tion about the feature vector that is considered in previous works along with its length,

classifier used, and accuracy obtained. Acoustical features such as MFCCs are used as

baseline features in almost all the works that have been mentioned in the table. The

design of MFCCs which correlates with the human auditory system may be the reason

for that. Hence, the same MFCCs along with LPCCs have been considered as baseline

features in this work as well. The support vector machine (SVM) is a highly used clas-

sifier, due to its kernel capability of handling non-linear data. However, neural networks

are found to be highly accurate when compared to SVM. There is a chance to improve

results with the random forest (RF) classifier as they consider majority voting to decide

the best combination of feature dimensions. The selected feature vector obtained using

GA is giving better performance with a random forest classifier. The reason could be the

two-stage feature selection to select the best suitable subset. Of which, one selection is

by GA and the other is by random forest. In this case, though ANN is highly suitable

for multi-class classification problems, they are unable to provide equivalent results when

compared with RF. Two approaches (Su and Yang, 2013; Sarkar and Saha, 2015) are

able to give better performance when compared to proposed work. However, the feature

vector length proposed in their work is substantial. They are computationally expensive

and cannot be considered for real-time applications since the present trend is looking for

optimized methods.

Apart from this, conventional neural networks (CNN) are also used in this work for

singer identification as they are presently trending now a days in many applications.

Short-term spectrograms and chromagrams from the frame of 25 ms are computed from

the clips of length 5 seconds. These are directly fed to CNN during the training phase.

Different configurations of CNNs are tested with different parameters such as number of

filters, hidden layers, neurons in each hidden layer, activation function and so on. The

results of singer identification that are obtained on chromagram and spectrogram image

inputs are given in the last two rows of Table 4.1. They have been quoted them for both

IPSD and artist20 datasets. Though it is claimed that chromagrams mainly represent
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Table 4.2: Comparison of Proposed Results with the existing works done for artist20 dataset. Note: ∗ It
is not given in the article. However, MFCCs and their statistical variations length is more than 28.

[REF] Features
Feature

Length
Classification

Accuracy

(in %)

(Ellis, 2007) MFCC 13 SVM 54.00

(Ellis, 2007) MFCCs with Chroma 25 SVM 57.00

(Langlois and Marques, 2009) MFCC and stat<MFCCs> >28∗ HMM 59.14

(Sarkar and Saha, 2015)
STE+ZCR+MFCCs+

stat<MFCCs>
616 NN 62.77

(Eghbal-Zadeh et al., 2015) MFCCs 20
kNN

LDA
55.23

PROPOSED
Selected<MFCCs+LPCCs+

SDCs+Chroma> using GA
28 RF 61.69

musical patterns (Harte and Sandler, 2005), the performance obtained is incomparable

with the other results. The reason can be the resolution issues.

Table 4.3: Hyperparameters considered for designing the CNN for the task of Singer Identification.

Sl.No. Parameter Value

1. Batch size 8

2. No. of channels
3 channels

(RGB)

3. Filter size 3*3

4. Image size 256*256

5. No. of convolution layers 4

6. No. of flatten layers 2

7. Softmax layer 1

8. No.of output classes 20

9. Activation function tanh & Relu

10. No. of epochs Around 50-60

The CNN has given some baseline results with default parameters. Further, hyperpa-

rameter tuning has been applied to identify the right set for this dataset and the improved

the performance of singer identification system. A few noticeable parameters that affect

the performance have been identified and listed in Table 4.3. They include batch size, im-

age size, number of convolutional layers, number of channels, filter size, number of epochs,
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activation function, etc. The parameters known as batch size, and image size represents

the number of processed inputs and the size of each image respectively. The values set to

these two parameters directly affect the computational complexity. Though there is an

increase in the size of image resolution which gives detailed information about the pixels,

there is a limit to this as it is not possible to get more than the captured information. The

experimentation has been done with different image sizes, and better accuracy is found

with the image size 256. After that, the accuracy is observed to be constant.

Similarly, the parameter values of batch size, number of convolutional layers, number

of flattening layers, filter size, input channels, number of output classes, number of epochs,

and activation function considered for this work are detailed in Table 4.3. All these values

have been set based on certain experimentation. Better performance has been obtained

with the values mentioned in the table. The number of epochs is initially set to 1000, and

the weights are converged at around 60 epochs.

An empirical based analysis has been used to fix the values of each parameter. The

same parameters that are considered for Indian popular singers database (IPSD) are used

to classify the singers of artist20 dataset as well. However, the results obtained using

these parameters are found to be worse. An average accuracy values of around 42%

and 23% are obtained using spectrogram and chromagram respectively. Moreover, the

performance of the chromagrams is very less even in the case of IPSD. From this, it can

be seen that the features obtained from chromagram are performing well and a complete

chromagram image is not suitable for singer identification. The reason can be the missing

information related to singers in complete chromagram and CNNs are unable to capture

the same from local windows. The accuracy obtained with CNN can motivate the future

researchers to explore the required components that are to be changed in the structure of

CNN.

4.5 Summary

This chapter gives the implementation details of singer identification. Two different

datasets such as Indian popular singers database (IPSD) and artist20 are used in this

work for singer identification. Two different cine industries such as Tollywood and Bol-

lywood are considered to construct IPSD. Features such as MFCCs, LPCCs, SDCs and

Chroma are computed for constructing a feature vector. An accuracy values of 63.17% for

IPSD and 61.69% for artist20 are obtained with the selected features. The feature selec-
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tion is done based on visual correlation and genetics based feature selection algorithms.

Further, the convolutional neural networks (CNNs) are considered by feeding spectro-

grams as input images to them. Better accuracy of 75% is obtained for Indian dataset.

However, the accuracy is not satisfactory in the case of artist20. CNN parameters that

are considered for Indian dataset may not be capable of classifying the artists of artist20

due to cultural changes.
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Chapter 5

Music Mood Estimation using
Acoustical Features and CNNs

“ Music can bring us tears, console us when we are in grief and drive us

to love.

”
— Yi Hsuan Yang

5.1 Introduction

The Emotion expressed by a person determines their present mental state. People tend

to behave abnormally when they are mentally stressed. The Emotion of a person can be

recognized based on certain parameters such as voice, speech, facial expressions, heart

rate, blood pressure, sweating and so on. Of these, speech and facial expression are two

prominent parameters that have gained high attention from the researchers in the past

two decades. Since they are convenient to analyze and compare, several research works

have been proposed in the fields of speech and image processing to recognize the emotions,

while the rest of the parameters still need an efficient automated system. In addition to

the parameters mentioned above, music is also one such prominent factor which also helps

in estimating present mental state of a person.

Every music piece is capable of expressing some emotion (Feng et al., 2003b; Huron,

2000). It is not possible to compose, perform, or listen to a music signal without the

involvement of related emotion (Juslin and Sloboda, 2001; Yang and Chen, 2012). Hence,

emotion is a prominent attribute that helps in music organization, cataloguing, indexing,
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and recommendation. The survey of Last.fm says that emotion is the third most demand-

ing attribute which is tagged by online users (Lamere, 2008). In 2004, a survey has been

conducted, to know the important attributes of music clips, for implementing an effective

Music Information Retrieval (MIR) system and 28.2% people mentioned that the emotion

is an important attribute for music file organization (Yang and Chen, 2011). Now, the

task of music emotion recognition has gained more importance and several works have

been proposed in the literature with different approaches.

Music emotions are broadly categorized into three types namely expressed, perceived,

and evoked (or felt) emotions (Gabrielsson, 2001; Hallam et al., 2011; Huron, 2006).

Expressed emotions belong to the performer and the emotional information is completely

dependent on the performer’s expertise. In this case, the performer can be a singer,

or a composer. The remaining two depend on the listener’s view points. Some may

listen to the songs and are capable of perceive emotion and a few listeners may feel the

emotion. These kind of listeners are generally useful in labelling the song clips based

on their inherent capabilities of recognizing emotions. The process of automatic emotion

recognition is highly dependant on the representation of emotional patterns inside the

song clip (Knox et al., 2011; Valstar et al., 2016). The performers express emotions with

some acoustical cues into the song clips. The representation of emotions is based on the

perception meter, harmony, tonality, melody, timbre, rhythm, style, and so on. Hence, it is

possible to recognize the emotions using acoustical features (Juslin and Sloboda, 2001; Lu

et al., 2006). However, certain analysis may be required to identify the suitable features

from the categories mentioned above. In this work, an effort has been made to classify

the six important music emotions using acoustical features and trending Convolutional

Neural Networks (CNNs).

5.1.1 Applications

The process of music mood estimation has several useful applications in commercial,

social, and pathological aspects. It is possible to categorize and index the music clips

based on the emotional patterns in it. Moreover, the efficiency of recommender system

can also be improved by tagging emotions to music clips. Since a majority of the listeners

show their interest in listening to the songs depending on their emotional states, it is

possible to estimate their mental behaviour, based on the songs chosen by them and would

also help in developing a multi-modal system for recognizing the present environment of a
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listener and provide songs accordingly. For instance, if a person is in a birthday party, then

energetic songs can be played, ignoring sad songs in the playlist. The system developed

for music recommendation based on mood of a song can also keep a driver awake.

5.1.2 Challenges

Though the mood information is highly needed for several applications, development of

a sophisticated system is still under progress due to three major challenges: (i) lack of

proper databases, (ii) ambiguities in mood labels, and (iii) cultural differences.

i. Lack of proper databases: There are many standard databases available in the liter-

ature for task of speech emotion recognition. Speech is a continuous task and since

the system which is developed for one language may give similar performance with

another language, the same is not true in the case of music emotion recognition due

to prosodic similarities. There are many factors that influence emotions of one region

when compared with the other region song clips. Hence, it is essential to consider

these factors while constructing a database for Music Emotion Recognition (MER).

Some efforts have been done to develop a database for music emotion recognition;

however, there are many limitations found in them. One important issue identified

are low number of emotional classes considered without proper analysis. Another

important issue is copyright protection which restricts researchers from distributing

the database publicly. Due to this, most of the implemented works are unable to

share their datasets. Moreover, the data which is shared publicly has only a few

number of clips, emotional classes, and improper emotional tags (Aljanaki et al.,

2017). In addition, the emotion in a song changes over time resulting in more than

one emotion for a given song clip.

The online websites such as moodfuse.com, allmusic.com, and last.fm are facing

the same issue of less number of tags and emotional classes. Of late, Medi-

aEval Database for Emotional Analysis in Music (DEAM) is one combinational

dataset which is designed for western moods and contain 1802 songs (online:

http://cvml.unige.ch/databases/DEAM/ ) (Yang et al., 2018). However, the num-

ber of emotional classes are less in their database. By keeping in mind, the above

issues, a database with six emotional classes are considered in this work for Indian

Tollywood and Bollywood music.
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ii. Ambiguities in mood labels: The task of musical mood estimation remains challeng-

ing due to the inherent ambiguities in the specified mood labels. It happens due to

the disagreement, while perceiving and interpreting the music clip, by two different

people (Kim et al., 2010; Schmidt and Kim, 2010). This leads to the complications

in assigning a mood label for a song clip. Some times, there may be a chance of

having more than one mood label for a song clip. In this thesis, Mean Opinion

Score (MOS) has been taken from different listeners, music professionals and ex-

perts, while labelling the mood for a song clip. Care has been taken to consider

only single label for each audio clip.

iii. Cultural differences: Emotions are biological and socio-logical in nature (Argstatter,

2016). There exists cultural differences in emotions with respect to prevalent, modal,

and normative responses (Mesquita et al., 1997). There are two kinds of differences

namely, excess and deficits in emotions. Due to these differences, there exists a lack

of coherence in the emotional components of two regions. However, research has

taken place estimating universal and biological differences in the emotions. There is

less focus on socio-logical aspects in the literature. However, these aspects are also

highly helpful in estimating the cultural differences ((Mesquita and Walker, 2003)).

There are several other factors that exhibit differences in emotions for different

regions. The appraisal, experience in expressing emotions, behaviour of automatic

nervous system, and perceiving nature are the few notable ones (Barrett and Russell,

1999). Hence, in this thesis, care has been taken to include the emotional clips that

are related to the same culture.

5.1.3 Proposed Emotional Classes

Normally Russell’s and Thayer’s emotional models are used to represent emotions on

an X-Y plane, where X-axis represents valence and Y-axis represents arousal . Recently,

many works have been reported to combine them into a single class as shown in Figure

5.1(a) (Saari and Eerola, 2014). There are 101 unique emotional classes available in the

combined model. However, it is difficult to identify the song clips for all the emotional

classes. Hence, six different moods are identified based on their energy levels namely,

Angry, Devotional, Energetic, Happy, Romantic, and Sad. The position of the identified

emotional classes is located in the proposed mood model, shown in Figure 5.1(b).
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Figure 5.1: Identified emotional classes for the song clips from the combined Russell’s and Thayer’s
models. (a) Recognized 101 unique emotional terms (PC: (Saari and Eerola, 2014)), and (b) Proposed
emotional classes.

5.2 Proposed Methodology

The proposed method for music mood estimation has been depicted in Figure. 5.2. It

is implemented in two levels. At the first level, the given input signal is categorized into

either energetic or non-energetic class. In level-II, actual mood has been recognized, from

respective energetic or non-energetic classes, using convolutional neural networks. The

terminology and approach considered in each level classification have been detailed in the

subsequent subsections.

Happy
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Output
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Figure 5.2: Further categorization of six moods (Angry, Devotional, Energetic, Happy, Romantic, and
Sad) into energetic and non-energetic classes.
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5.2.1 Level-1 Classification

In the first level of classification, the system decides the broad category of a given audio

clip. Two categories have been identified. One is energetic class and the second one is

non-energetic class. The set of features considered for categorizing the audio clips into

two broad classes is described below. Moreover, the details of ANN classifier are also

provided.

A Features considered for level-1 classification

Four different types of acoustic features namely Mel-Frequency Cepstral Coefficients

(MFCCs), Short-Time Energy (STE), Beats Per Minute (BPM), and harmony are con-

sidered for categorizing the input audio clip into either energetic or non-energetic classes.

Since the description about MFCCs has already been provided in Section 3.3.1(A), de-

tails of the same are not given in this chapter. The process of computing other features

is detailed below:

1. Short-Time Energy (STE): The term energy is directly related to the loudness of

the signal. The instrument which has louder outputs, enforces higher energy in the

signal than that of the one that has torpid outputs (Fu et al., 2008). As the total

energy of complete music clip does not give any information w.r.t. emotions, short

time energy is computed from each frame, as shown in Eq. 5.1 (Anagnostopoulos

et al., 2012).

En =
n∑

m=n−N+1

[x(m)w(n−m)]2 (5.1)

Where En is the energy value, x is the input signal, N represents the length of the

frame, w() represents analysis window which can be rectangular or hamming, and

n is the sample where the analysis window is focused.

It is observed that the energy of the songs, that belong to energetic category, is nor-

mally high when compared to the non-energetic song clips (Scherer, 2003). Hence,

energy could be one of the useful feature for categorizing the songs into two classes.

2. Beats Per Minute (BPM): The music can be perceived in an organized manner

due to the involvement of tempo. It provides a platform to build melodic-harmonic

lines (Weikart, 2003; Norris, 2009). Tempo, rhythm, and harmony are the three
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important attributes that influence the effectiveness in music emotion recognition

(Fernández-Sotos et al., 2016). Based on this, two features, tempo and harmony,

are considered in this work. They are chosen to estimate the mood category (either

energetic or non-energetic) of a given audio clip. The tempo of a music clip has

been measured using Beats Per Minute (BPM) and the process of computing BPM

is given below.

Initially, the given input signal is converted into time-frequency representation us-

ing Short-Time Frequency Transformation (STFT), which is applied on shorter seg-

ments known as frames. Further, spectral energy flux is computed using the equation

given in 5.2.

Esf (f, p) =
∑
k

h(k − p)G(f, k) (5.2)

Where Esf is the spectral energy flux, h(k) approximates the differentiator filter, i.e.

H(ej2πf ) ≈ j2πf , and the transformation G(f, k) is obtained based on low-pass filter

which is applied on frequency representation |X̃(f, p)| of given signal x(n). Along

with low-pass filter, a non-linear compression has also been applied by masking

rapid modulations, shown in 5.3.

G(f, k) = F|X̃(f, k)| (5.3)

An empirical study has been carried out to decide the order of differentiator and the

filter of order 8 is found more suitable w.r.t. complexity and efficiency. In connection

to the parameters considered for computing spectral energy flux, an N point Fast

Fourier Transformation (FFT) has been considered to evaluate STFT. The set of

frequency channels obtained with this process are N
2

and they are considered for

time-frequency representation. All these values are filtered using h(k) to obtain

spectral energy flux. Later, a temporal waveform, called w(k) has been produced

by summing all the positive contributions. It gives the locations, where the energy

flux is large. These locations are generally the onsets of beats (also called beat

onsets).

Further, median filter is applied to estimate the true beats. A dynamic threshold

is used to suppress the unwanted beats (Alonso et al., 2004). After this process,
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chosen beats are processed further periodicity among beats is ignored as the music

clips considered for experimentation are polyphonic in nature.

3. Harmony: Harmony is another important feature for categorizing the moods. Chord

sequences are a set of features that have already proven their ability in categorizing

the genre classes and music classification (Cheng et al., 2008). The process of

recognizing chord sequence is easier with monophonic clips. Though some works

have been done on automatic chord extraction from polyphonic clips (Zenz, 2007),

accurate results have not been obtained in the case of polyphonic clips. Moreover,

one important observation made from the literature is that, the chromagram is

more suitable for extracting chord sequence information (Oudre et al., 2011; Jiang

et al., 2002; Rolland, 2014). Based on this, chroma features have been computed

from chromagram instead of chord sequences. They are assumed to be better for

classifying the moods in the case of polyphonic clips since they belong to super class

of chord sequences.

With the above mentioned features, a 27-dimensional feature vector is formed and

includes 13-MFCCs, 12-chroma, 1-STE, and 1-BPM. All these features are computed

based on the acoustic cues identified among two different emotional classes called energetic

and non-energetic. Further, the behaviour of acoustic features of six emotional classes is

also mentioned. It says that, the behaviour of the above mentioned features is same with

the classes of energetic and non-energetic. Table 5.1 shows the behaviour of each feature

w.r.t. to the emotional categories. The rows of the table represent the feature name and

the columns contain the value corresponding to the emotion.

Table 5.1: Acoustic cues observed among different emotions for different features.

Feature/

Emotion

Energetic Non-energetic

Angry Energetic Happy Devotional Romantic Sad

Tempo (BPM) Fast Fast Fast Slow Slow Very Slow

Sound Level

(Energy)
Very High Very High High Low Regular Very Low

Spectrum
High Energy

(at HF)

High Energy

(at HF)

Energy

fluctuation
staccato Regularity

Low energy

Irregularity

Spectral flux Bright Little Bright Bright staccato
Little Bright

with regularity
Dull
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B Artificial Neural Networks (ANNs)

The Artificial Neural Networks (ANNs) are found to be better in handling non-linear

data even though the size of training data is small and consists of few number of classes.

Hence, ANNs are used for classifying the input audio clips into either energetic or non-

energetic classes. Three layer ANN with single input, hidden and output layers is used.

The number of neurons in input layer is equal to the length of the feature vector (i.e. 27 ).

The structure of ANN used for level-1 classification is shown in 5.3.

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Input 26

Input

27

27
2

Energetic

Non-energetic

49

Figure 5.3: The structure of ANN considered for level-1 classification.

5.2.2 Level-2 Classification

In the second level classification, the spectrograms w.r.t. energetic classes namely, Angry,

Energetic & Happy, and non-energetic classes namely, Devotional, Romantic, and Sad

have been constructed. These spectrograms are fed to the Convolutional Neural Networks

(CNNs) to estimate the actual mood class of a given clip. Details of CNN are already

provided in Section 4.3.4, hence they are ignored here to avoid the unnecessary repetitions.

5.3 Experimental Analysis

The details of the dataset considered for experimentation on mood estimation is presented

in Section 2.9.5. It contains the clips of six different emotions namely Angry, Devotional,

Energetic, Happy, Romantic, and Sad. Since the process of labelling mood information of

a song is difficult, help from music professionals has been taken. Further, Mean Opinion
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Score (MOS) is considered to label the audio clips. A Majority voting has been considered

for labelling the mood of an audio clip. Initially, the dataset has been divided into training

and testing sets, where the training set contains 100 clips of length 3 to 5 seconds each.

The length of test clip varies from 30 to 60 seconds. The background accompaniment has

been suppressed using Infinite Impulse Response (IIR) filtering techniques. All the audio

clips considered for experimentation are collected from high-quality audio CD’s recorded

at 44,100 Hz.

The first phase of the system is developed using six different emotion classes. The

statistical values of pitch (4), jitter (1), shimmer (1), Short-Term Energy (STE) (1),

harmony (1), and BPM (1) values have been computed as features. They are added

to the baseline MFCCs (13) forming a feature vector of length 23. The features have

been computed from the frames of length 25 ms. The reason for choosing the above-

mentioned features is their performance in recognizing speech emotions (Koolagudi and

Rao, 2012; Jacob, 2016; Koolagudi et al., 2018). Moreover, the distinction among the

features for different emotions has been given in Table 5.1. Further, Artificial Neural

Networks (ANNs) are trained to classify the moods. The results obtained using this

approach are given in the form of confusion matrix as shown in the Figure 5.4. The

values of confusion matrix have been represented pictorially here. The intensity values of

black colour indicate the classification strength. From the figure, one can see that this

approach may not be able to accurately recognize the moods of music. There are many

misclassifications between happy & energetic, happy & anger, and romantic & sad.
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Figure 5.4: Pictorial representation of confusion matrix obtained while classifying six moods using NN
classifier. The classification accuracy of Actual Vs Predicted classes.
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Figure 5.5: Broad categorization of six moods (Angry, Devotional, Energetic, Happy, Romantic, and Sad)
into energetic and non-energetic classes.

The average accuracy obtained with this approach is around 67.20%, which is quite

low and may not be suitable for real-time applications. To improve the mood recognition

accuracy, a two phase system classification approach is proposed; for the first phase the

songs clips are classified into broad classes such as energetic and non-energetic. These

groups are formed based on the position of moods in the valence-arousal plot; shown in

Figure 5.5. The energetic category contains the moods of Angry, Energetic, and Happy.

The remaining moods, Devotional, Romantic, and Sad, belong to non-energetic category.

A two-level classification model has been proposed, where the first-level classification

categorizes the given input audio clip into either energetic or non-energetic class. Features

such as MFCCs, Short-Term Energy (STE), Beats Per Minute (BPM), and chroma values

are computed forming a feature vector of length 27. ANN classification model has been

used, with one hidden layer, to classify the given feature vector into one of the two

classes. The accuracy obtained, to classify the input into any of the two categories, is

92%. Once the first-level classification is complete, the actual mood is predicted using

trending Convolutional Neural Networks (CNN).

CNNs have proved effective over traditional neural networks in the case of image pro-

cessing. They perform well for audio classification as well (Hershey et al., 2017). However,

based on their expertise in image classification, due to the involvement of convolution lay-

ers, spectrograms of the audio clips have been fed as an input to the CNNs. The reason
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Figure 5.6: The structural differences in the spectrograms observed during the analysis of energetic and non-energetic moods.
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for constructing spectrograms is their energy variations at different frequency ranges for

different moods. The sample spectrogram with energies, for a range of frequency values

over the time, is given in Figure 5.6. In which, the spectrograms for six moods of the two

categories are given in the form of a table. Each row of the table represents category of

moods whereas each column is the actual mood which is corresponding with their cate-

gory. One can clearly observe the discrimination among the spectrograms of each mood

class of a particular category. The spectral energy values are found to be more for some

moods. Whereas, they are low in case of other moods. Hence, spectrograms have been

considered, to train and test the CNNs, for better performance.

Table 5.2: Hyperparameters considered for designing the CNN for the task of mood classification.

Sl.No. Parameter Value

1. Batch size 8

2. No. of channels
3 channels

(RGB)

3. Filter size 3*3

4. Image size 256*256

5. No. of hidden layers 4

6. No. of flatten layers 2

7. Softmax layer 1

8. No.of output classes 3

9. Activation function tanh & Relu

10. No. of epochs Around 50-60

To obtain a spectrogram, each audio clip is divided into 25 ms frames with an overlap

of 10 ms. Short-time Fourier transform is applied to obtain frequency spectrum. They

are placed on a time scale together to form a spectrogram and the resultant spectrogram

is integrated into 64 Mel-spaced frequency bins. Each of these magnitudes is transformed

into a logarithmic domain. During this process, the numerical issues are bypassed, using

offsets. For training, 70% of the dataset has been chosen randomly and remaining 30%

is considered for testing. For implementing training, CNN, TensorFlow (Abadi et al.,

2016) have been used and trained asynchronously on multiple GPUs. Grid searching

has been performed on batch sizes, parameters, number of GPUs, and learning rates.
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However, there is no need to consider multiple GPUs for this dataset since the size is very

low. Softlayer classification has been chosen since each output class is corresponding to

a single mood. The same CNN architecture has been considered for classifying the mood

classes of both energetic and non-energetic mood categories. The complete details about

the hyperparameters of CNN are given in Table 5.2.

Level-1 Accuracy
EnergeticAccuracy

Non-energeticAccuracy

Process of Computing

Level-2 Accuracy
Process of Computing

Figure 5.7: The process of computing accuracy values for energetic and non-energetic categories of moods.

Mood estimation and accuracy are computed as a performance metric to evaluate the

system’s performance. The process of computing accuracy values at the first level and

the second level is depicted in Figure 5.7. In level-I all the test clips are initially divided

into two classes namely total clips of energetic (Te) and non-energetic (Tne) categories.

The total number of correctly identified energetic clips (Ncel1) and non-energetic clips

(Ncnel1) are summed together and divided by ((Te) + (Tne)) to obtain the accuracy (l1acc)

at level-1 stage. At the second level, the accuracy values are obtained separately for

energetic and non-energetic classes. The terms that are used in the level-2 classification,

are l2e−acc which indicates the level-2 energetic accuracy; l2ne−acc is the level-2 non-

energetic accuracy, Ncel2 represents the number of energetic mood classes that is correctly

identified at level-2, and Ncnel2 is the number of non-energetic mood classes correctly

identified.

The accuracy is computed by considering the misclassifications that have been taken

place at the first level. The misclassified clips are manually removed and given to CNN

for obtaining the accuracy which suits for real time. The average accuracy values of

87.2% and 83.4% are obtained for the moods of energetic and non-energetic categories

respectively. If misclassifications are considered, then the accuracy values drop down to

80.22% and 76.72%.
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5.4 Summary

In this chapter, the task of mood estimation from the music clips is addressed using

two-level classification model. Since emotion is the third most important aspect of music

information retrieval, an effort has been made to recognize the moods in Indian songs.

Six different moods namely Angry, Devotional, Energetic, Happy, Romantic, and Sad are

proposed, based on the analysis done on Russell’s and Thayer’s model. Initially, these

moods have been broadly categorized into energetic and non-energetic classes. In the first

level, the given audio clip is classified into either of these two classes. Further, actual mood

label is predicted at the second level classification. Acoustic features such as MFCCs,

Chroma, Tempo, and Harmony are considered to develop the first level classification

model using ANNs. For the second level, spectrograms have been constructed and are fed

to CNN, to help recognise the music samples for their mood classes of energetic as well

as non-energetic categories.
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Chapter 6

Music Recommender System using
Graph Structures

“ Music Recommender Systems (MRS) are important drivers in music

industry to estimate the listener’s behaviour, to identify the people who

are having similar nature.

”
— Christine Bauer

6.1 Introduction

Music is a powerful communication tool that keeps people relaxed. It is said that music is

highly an engaging activity for humans when compared to other activities like watching

movies, reading books, playing games, watching TV and so on. (Song et al., 2012). A

huge number of tracks has been introduced in online and offline stores during the past few

decades. This enormous inclusion introduces two latent problems: (i) difficulty in music

organization, (ii) difficulty in recommendation.

The problem in music organization is mainly due to the unavailability of complete

meta-information for millions of tracks. The process of manual labelling can take several

years and is a never ending process, as new songs are added to the repository at a higher

rate than before. Hence, the task of Music Information Retrieval (MIR) has gained impor-

tance as it extracts useful meta-information about every song such as artist identification,

genre classification, mood estimation, raga identification, instrument identification, music

annotation, and so on. Several research works have been reported with the coordination

of MIREX to build a robust MIR systems. The other issue is selection of relevant songs,
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as per the need, once meta-information is obtained. It is very difficult to identify the

songs that better suit the listener, from the enormous list of a variety of songs. In such

cases, recommender systems can help in identifying the next song to be chosen by the

listener based on his/her previous statistics.

Recommender system is a software tool that can select or suggest the items which

suit the user’s needs (Ricci et al., 2015). The suggestion may be; what product to buy,

what kind of books to read, what movies to watch, what news to read, what sports news

to read, what TV programs to watch, what music to listen to, what places to visit, who

can be in the friends list, and so on (Mahmood and Ricci, 2009; Resnick and Varian,

1997; Burke, 2007). The process of developing a recommender system is different for each

different applications. For instance, the system which is developed for recommending

books or movies may not suit the music recommendation. Hence, different analysis and

approaches have to be proposed for developing a music recommender system.

The methods used for music recommendation have been named broadly as demo-

graphic filtering, collaborative filtering, content-based filtering, context-based filtering,

and hybrid filtering. Each approach has its own limitations (Lu et al., 2015). There is

one more important factor, called type of listener, which is to be considered while imple-

menting a recommender system. There are four types of listeners reported in the literature

namely the savants, the enthusiasts, the casuals, and the indifferents. In literature (Her-

rada, 2009), it has been said that on an average there are 7% savants, 21% enthusiasts,

32% casuals, and 40% indifferents are there in the whole world. While developing mu-

sic recommender systems, one of the three different approaches, namely; user-centric,

system-centric, or network-centric approach may be used.

After reading through the literature, an approach has been proposed using graph

structures. This approach estimates the next song to be chosen by the listenerx1 by

obtaining the similarity scores with other x− 1 users. The songs chosen by the listenery

(∀ y = 1, 2, . . . x−1) with high similarity score, are more suitable for recommending them

to userx. Cosine similarity is used to obtain similarities among listeners. Further, listener

feed back has been taken to improve the system performance.

1The term listener and user are interchangeably used in this thesis.
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6.1.1 Applications

Music processing has many useful applications in day to day lives with different dimen-

sions. Based on listener’s past behaviour, it is possible to analyze their mental state.

For instance, if the listener prefers to listen to mostly sad songs, then the listener may

be in a negative state of mind. Sometimes it is possible to recommend songs based on

listener’s present location. For instance, if the listener is driving a vehicle, it is better

to skip all slow songs or lullabies. This work has tried to categorize listener’s, based on

the similarities in their interests. Many a times, songs can be recommended based on the

other listeners of similar interests. This approach also ensures to overcome the issue of

losing many popular songs.

6.1.2 Challenges:

Developing a music recommender system has many challenges since it is a distinct task

compared to other recommender systems. Generally song selection criteria of a listener

depends on their mood, it is difficult to predict their next selection. The interests of

an individual also change over time. For instance, one may show interest in listening to

energetic songs when young. However, as they become old, they may prefer slow music or

devotional music. Hence, the recommender system of one age group may not be suitable

to that of another age group. It is also very difficult to implement recommender system

for every individual. In this work, a graph structure based recommendation scheme has

been used that mainly behaves more objectively to gender,age and other similar issues;

more often irrespective of their age, gender etc.

6.2 Factors and Issues that are to be Considered while
Developing an MRS

There are certain factors which are to be considered while developing a recommender sys-

tem. Few important prerequisites are datasets, creation of user profile, meta-information

for recommendation (e.g., based on artist, title, mood, etc.), recommendation methods,

and performance evaluation strategies. The details of each of these are given below along

with the considerations made in this study.

Database is an important factor for any recommender system. While implementing

music recommender system for developing MRS, Last.fm is the popular website which
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Figure 6.1: Different tables constructed to implement music recommender system.Note: In table acronyms
are provided due to alignment issues. l_id → listener_id, l_name → listener_name, s_id → signer_id,
s_name → singer_name, len(s) → length (in seconds), and date, time & freq. → date, time, & frequency
of download respectively.

is used by many researchers. However, it contains only the meta-information, limited to

artist name, song title, album name, and download time stamp. In this work, a dataset

has been constructed with 100 listeners and 700 songs. The details of the database

are given in schema (shown in Figure 6.1).Four different tables are constructed named

SINGER{singer_id , singer_name, gender, language}, LISTENER{listener_id, lis-

tener_name, age, gender }, SONG{song_id , song_name, album_name, length, singer_id,

mood }, andBEHAVIOUR{index,listener_id, song_id, date, time frequency}. Initially,
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the tables for singers, listeners, and songs have been constructed with 20-30 singers, 100

listeners, and 700 songs. Based on the information collected from the above three tables,

another table calledBEHAVIOUR has been constructed to know the listeners behaviour

and their interests. The attribute underlined in the table indicate either primary2 or for-

eign key3. In Figure 6.1, primary and foreign keys are indicated with thick and a dash

respectively.

While creating the user profile, it is also important to decide the meta-information

which is highly important for further processing. The listener may listen to the songs

based on a particular singer, and his/her mental state. Some listeners listen to the songs

casually, called casual listeners. Many other factors influencing recommendation include

interest in melodies, particular genre, instruments, language, singer’s gender, signer’s age,

title of the song, popularity of the song, song rating and so on effecting the performance

of recommender system. Of these, singer information and mood of a song clip are two

important attributes that are often considered by a listener to change a song. (Ghatak,

2012). This work has also constructed a SONG table with title of the song, album_name,

singer name, mood, and length (in seconds). Moreover, Gender, and age information is

also collected for each singer in the SINGER table, which is a parent table for SONG.

Another important factor which is to be considered while implementing recommender

system is the method chosen for developing it. There are few recommendation methods

namely collaborative filtering, content-based, context-based, hybrid recommender sys-

tems that have gained much importance in recent years (Wang and Wang, 2014; Hors-

burgh et al., 2015; Chiliguano and Fazekas, 2016). However, each technique has its own

limitations. Collaborative filtering is suffering from a “cold-start problem”, content-based

filtering is with computational complexity issues, and context based recommendation from

issues of social tagging and Gray-sheep problems. A major problem of the hybrid system

is to decide trade of between issues. For instance, there are three users {u1, u2,&u3}

interested in the items {{i1, i2,& i3}, {i2, i3,& i4},&{i5,& i6}} respectively. In such a

case, it is possible to recommend the items of u1 to u2 and vice-versa. Since u3s interests

are not matching with any other, the recommendation system fails to recommend any

item to u3. This problem is generally called as “Gray sheep problem” (Ghazanfar and

Prügel-Bennett, 2014).

2It ensures the uniqueness and not null properties for the column.
3It keeps track information of other tables based on the unique value given.
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In this work, a graph based recommendation method is proposed as a base work for

future research. It can push the future researchers to focus on listening path, number of

times the same song is listened to, other factors affecting while selecting the next song,

whether the song has been listened to completely or skipped in between, etc. The present

recommender systems have considerably failed to obtain better performance since, they

are depending on the user ratings (Isinkaye et al., 2015). In graph based recommender

system, the analysis of a user listening graph can automatically give a hint on the per-

formance of recommender system. However, the work done in this thesis is limited to

the basic recommender system implemented using graph structures. The details of the

proposed graph model for recommender system is given in Section 6.4.

6.3 Basic Terminology

A graph G{V,E} is a data structure which is used to represent the information having

set of vertices V {1, 2, . . . n} and edges E{e1, e2, . . . et}. In general, adjacency matrices are

used to represent the graphs where the the number of rows and columns of the matrix is

equal to the number of vertices (n). The value of corresponding row i and j is set to ‘1’

if there is an edge, eij exists between Vi and Vj. In this work, the number of songs of the

cloud are considered as nodes4 of the graph. The adjacency matrices are produced for

each listenerx ( ∀x = 1, 2, . . . ,m) and the value eij is set to ‘1’ if the listener is listening

to jth song after i. Further, sparse matrix has been constructed since the number of zero

elements are found to be more in the adjacency matrix as the listener is incapable to listen

all the songs of database in a single life.

6.3.1 Sparse Matrix

A sparse matrix is a compressed version of matrix if there are more number of zeros in

the original matrix. The representation of sparse matrix is SP (nz, 3), where, nz is the

number of non-zero elements. The first and second columns hold the row and column

indices respectively. The third column has a non-zero value. For instance, the original

matrix is of size (25*25) and has 20 non-zero elements. Assuming that each element needs

4 bytes of memory space, the total size needed by the original matrix is equal to 25*25*4 =

2500 bytes (≈ 2.44KB). The same can be represented in (20*3) size with the help of sparse

matrix. The size needed for sparse representation is 20*3*4 = 240 bytes (≈ 0.234KB),

4The terms vertex and node are interchangeably used in this thesis.
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which is approximately consumes 90% less size. The space complexity issues are resolved

using sparse matrices in this work. An algorithm for the sparse construction is given in

Algorithm 3.

6.4 Proposed Methodology

The complete process of proposed music recommendation system is given in Figure 6.2.

Initially, adjacency matrices are constructed for listeners {1, 2, . . . , m}, in which, the

number of rows and columns are equal to the number of songs (n) considered to construct a

graph. Further, each listener’s (listeneri){∀i = 1, 2, . . . ,m} adjacency matrix is compared

with all adjacency matrix of listenerj, ∀j = 1, 2, . . . ,m such that i 6= j. Row vector

similarity technique has been used to obtain the cosine similarity among two rows of

an adjacency matrix. Since a majority of cells have zeros (0s) in the adjacency matrix,

sparse matrix has been constructed to reduce the memory space as well as the issues of

computational complexity.

Each sparse matrix represents a listener’s behaviour in terms of songs heard. Further,

two sparse matrices are analysed to obtain the similarity among the listening patterns

of two listeners i and j. If two listening behaviours of the listeners i and j are similar,

beyond certain level, then the songs heard by the listener may be recommended to the

others. Based on the high similarity values obtained among different listeners, the songs

heard by these listeners have been chosen to fill the playlist of others in the different

groups. To evaluate the statistically of recommendation, rating from listener has been

taken out of 5 for each song of the generated playlist. An average rating of 3.5 has been

obtained for the proposed recommendation approach on a list of 35 listeners. The details

of obtaining similarity metric along with the analysis of the proposed algorithm are given

in the subsequent subsections.

6.5 Similarity Metric

Consider a dataset consisting of n songs and m listeners. This work mainly focuses on

building a recommender system using the inherent similarities found in listening patterns

of the users. A nXn matrix is formed by using the songs in the database. Rows and

columns of the matrix indicate the songs numbered 1 to n. The contents of the matrix

are either ‘1’ or ‘0’ based on the listeners choice of songs. If the listener prefers to listen
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Figure 6.2: Proposed flow diagram for generating the recommended playlist for listeners. Darkness in line indicates an arrow.
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to jth song {∀j = 1, 2, . . . n} after ith song {∀i = 1, 2, . . . , n}, then the ith row and jth

column in the matrix is made ‘1’. An adjacency matrix has been obtained and they are

formed for every user.

The comparison of such matrices, for similarity, can help in recognising similar listeners

recommends their songs to each other. The matrices are tallied using cosine similarity

which gives similarity in the listening patterns of two persons. This indeed helps in

recommending the next song for the users of similar patterns.

Consider two listeners A and B and two adjacency matricesX and Y assigned to them.

Similarity in their pattern can be recognised by using cosine similarity. This is obtained

by extracting the ith row of X and ith row of Y matrix and computing the dot product

on the vectors. Later, the value is normalised by dividing with individual magnitudes of

the vectors. The formula used to obtain the similarity metric among two given rows of

matrices is given in Eq. 6.1.

Similarity(Xi, Yj) =

−→
Xi.
−→
Yj

||Xi||.||Yj||
(6.1)

(a) (b)

Figure 6.3: Graphs considered for example given in Figure 6.4.

Figure 6.4 pictorially explains the process of similarity metric computation. Two

graphs given in Figure 6.3 are used to compute the listening pattern. Only vertices

having edges are considered to form Figure 6.3, as the complete graph with all nodes may

confuse the perception of the reader. Graphs 6.3(a) indicates the listener1 behaviour and

6.3(b) is for listener2. Initially, the adjacency matrices are constructed to compute the

similarity between them, as shown in Figure 6.4(a) & (b). Later, sparse matrices have

been computed using Algorithm 3, resulting in the matrices shown in Figure 6.4(c) & (d).
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8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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+
15

6
= 0.533

Figure 6.4: An example illustrating the process of computing similarity between two adjacency matrices
using sparse matrices. Note: This example is given to explain the process of all three 2, 3, 4 algorithms.

Further, similarity has been computed using Algorithm 4. In this example, no values is

similar hence, the similarity between two graphs is zero, as shown in Figure 6.4(e).

6.6 Algorithm Analysis

Three different algorithms are developed to perform different tasks of song recommender

system in order to recommend songs to the listeners. mainFunction() takes adjacency

matrices of m listeners as input. The size of each adjacency matrix is n ∗ n. The adja-

cency matrix of each listeneri {∀i = 1, 2, . . . ,m} is compared with adjacency matrices of

listenerj{∀j = 1, 2, . . . ,m} and i 6= j (see line 1 and 5 in Algorithm 2). For each listener,

sparse matrix has been constructed as the number of non-zero elements in adjacency ma-

trix. The sparse represents the same adjacency matrix in less space. For instance, if there

are 9 non-zero elements in Figure 6.4(b), to represent the same using adjacency matrix, a

memory space of 15∗15∗4 = 900 bytes is needed (Assuming each element needs 4 bytes of

memory). The same can be represented in 9∗3∗4 = 108 bytes using sparse representation

(shown in Figure 6.4(d)). If n value is in lakhs, then the reduced sparse matrix is capable

of occupying very less space when compared to original adjacency matrix. The process of

constructing a sparse matrix is explained in Algorithm 3.
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Algorithm 2: Main() :: Music Recommender System
Input: Adjacency_matrix[n][n] for m listeners.
Output: Recommended playlists for m listeners.

1 for i← 1 to m do
2 sim[m− 1]← 0;
3 sim_j ← 1;
4 sp1← constructSparse(adjMatrix[i]);
5 for j ← 1 to m− 1 do
6 if i 6= j then
7 sp2← constructSparse(adMatrix[j]);
8 sim[sim_j + +] = checkSimilarity(sp1, sp2);

9 findAvg(sim);
/* Apply threshold to find most similar listeners */

10 generateP laylist[i](songs(similar));

Algorithm 3: Sparse Matrix Construction
Input: Adjacency matrix[n][n]
Output: Sparse matrix[nz][3]
; // Stores only positions of non-zero (nz) elements

1 Function constructSparse(adjMatrix[n][n]):
2 nz ← countNonZero(adjMatrix[n][]n);
3 sparse[nz][3]← 0;
4 spi = 1;

// Sparse Index
5 for i← 1 to n do
6 for j ← 1 to n do
7 if adjMatrix[i][j] 6= 0 then
8 sparse[spi][1] = i;
9 sparse[spi][2] = j;

10 sparse[spi+ +][3]← adjMatrix[i][j];

11 return sparse[nz][3];

12 Function countNonZero(adjMatrix[n][n]):
13 nz ← 0;
14 for i← 1 to n do
15 for j ← 1 to n do
16 if adjMatrix[i][j] 6= 0 then
17 nz + +;

18 return nz;

A sparse matrix is equal to the size of (#nz ∗ 3), where, #nz is the number of non-

zero elements. Each row of the sparse matrix has three columns: row index, column

index, and value(row, column) of a non-zero element. To construct the sparse matrix,

5The term nz is equal to the number of rows in sparse matrix or number of non-zero elements of
adjacency matrix.
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Algorithm 4: Similarity checking b/w two sparse matrices.
1 Function checkSimilarity(sp1[r][3], sp2[s][3]):
2 r1← max(unique(sp1[][1]));
3 s1← max(unique(sp2[][1]));
4 i← 1, j ← 1, sim_i← 0;
5 sim[min(r1, s1)]← 0;
6 while (i < r1) and (j < s1) do
7 dotProd← 0, sq1← 0, sq2← 0;
8 temp1← i, temp2← j;
9 val1← sp1[i][1], val2← sp2[j][1];

10 while val1 == sp1[temp1][1] do
11 temp1 + +;

12 while val2 == sparse2[temp2][1] do
13 temp2 + +;

14 min_t← min(temp1, temp2);
15 if min_t == temp1 then
16 k ← i, l← j;
17 while k ≤ temp1 do
18 m← col_match(sp1[k], sp2[l...temp2]);
19 if m > 0 then
20 dotProd+ = (sp1[k][3] ∗ sp2[m][3]);
21 sq1+ = (sp1[k][3] ∗ sp2[k][3]);
22 sq2+ = (sp2[m][3] ∗ sp2[m][3]);
23 k + +;
24 if m < temp2 then
25 l = m+ 1;

26 else
27 break;

28 else
29 k ← j, l← i;
30 while k ≤ temp2 do
31 m = col_match(sp1[l...temp1], sp2[k]);
32 if m > 0 then
33 dotProd+ = (sp1[m][3] ∗ sp2[k][3]);
34 sq1+ = (sp1[m][3] ∗ sp2[m][3]);
35 sq2+ = (sp2[k][3] ∗ sp2[k][3]);
36 k + +;
37 if m < temp1 then
38 l = m+ 1;

39 else
40 break;

41 sim[sim_i+ +] = (dotProd/sqrt(sq1 ∗ sq2));
42 i = i+ (temp1− i), j = j + (temp2− j);
43 return avg(sim);
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Table 6.1: Time complexities in terms of Big Oh notation that are consumed by processor for evaluating
algorithms.

Sl. No. Algorithm #Max. operations Time Complexity

1.
constructSparse()

Algorithm - 3
Two times n2 which is equal to 2n2. O(n2)

2.
checkSimilarity()

Algorithm -4
The number of multiplications in sparse
matrix is equal to (nz2)5 in the worst
case. Where, adjacency matrix needs
n2 operations.

O(nz2)

3.
mainFunction()

Algorihtm - 2
Each listener’s adjacency matrix is
compared with (m − 1) listeners. It
happens for m number of listeners. So,
the number of iterations is equal to
(m2 −m). Moreover, constructSpace()
and checkSimilarity() are called inside
the main function.

O(m2.n2)

entire adjacency matrix has to be traversed. Hence, the time complexity needed for

constructing a sparse matrix is O(n2), as shown in second row of Table 6.1.

For similarity check of two sparse matrices, the listening behaviour of cosine similarity

is computed on the two matrices. This algorithm computes the similarity for each row

and finally finds the average which is treated to be the similarity of two graphs. The

cosine function operated on two adjacency matrices, has the time complexity of O(n2)

and the number of multiplications computed is also equal to n2. This can be performed

in (nz2) time on sparse matrix.

According to algorithm 4, if the first columns of two sparse matrices are the same,

then, only the similarity among the subsequent next column is computed and compared.

If rows and columns of first and second matrices are same, then multiplication happens.

In case of direct multiplication of adjacency matrices, every value of one adjacency matrix

is multiplied with the other one. This process needs O(n2) multiplications. The same

operation is possible using sparse matrix in less time which is almost equal to O(nz2) in

the worst case. The details of calculating time complexity for Algorithm 4 are given in

2nd row of Table 6.1.

Since both the constructSparse() and similarityCheck() are called from mainFunc-

tion(), the total time needed to process the complete program is O(m2.n2.nz2). The same

process may take O(m2.n4) if adjacency matrices are considered for similarity check.

The time complexities have been computed for each algorithm and are mentioned in
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Table 6.1. Initially, time complexity values are estimated for the functions called inside

the loop of mainFunction(), i.e, Algorithm 2. The time needed to construct a sparse

matrix (Algorithm 3) is O(n2),as given in row one. The similarity checking algorithm

(Algorithm 4) needs O(nz2) to check the similarity values of two given sparse matrices,

shown in second row of Table 6.1. Hence, the time taken by Algorithm 2 is O(m2.n2.nz2)

which is shown in the third row of the table.

6.7 Summary

In this work, a graph based recommendation approach has been proposed to analyse

the listening pattern of music listeners. The existing recommendation approaches have

some major issues like “cold-start problem”, “Gray-sheep problem”, complexity issues, etc.,

Four different tables called SINGER, SONG, LISTENER, and their BEHAVIOUR

are designed and used. Sequence of hearing songs is represented as a adjacency matrix.

cosine similarity among the adjacency matrices is used to estimate similarity in listening

behaviour. The SONG table has been provided, with additional meta-information like

duration (in seconds), singer, and mood information, to properly estimate the listener’s

behaviour. Further, the playlist of 10 songs has been generated, based on the listening

similarities. User ratings are taken for every song of playlist, to evaluate the system

performance. An average rating of 3.5 is obtained using this approach.
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Chapter 7

Summary, Conclusions and Future
Work

“ Reasoning draws a conclusion, but does not make the conclusion certain,

unless the mind discovers it by the path of experience.

”
— Roger Bacon

This chapter concludes the work along with some possible future research directions.

Since the MIR system is still under construction and is dependent on many subtasks such

as singing voice detection, singer identification, composer recognition, instrument identi-

fication, genre classification, raga identification, mood estimation, music annotation, and

so on, implementation of each system has its own contribution towards its development

(Murthy and Koolagudi, 2018a). In this thesis, a few important tasks such as vocal and

non-vocal segmentation, singer identification, and music mood estimation are considered

while developing a music recommender system.

This chapter contains summary of the work addressed in this thesis, learning outcomes

are given as conclusions and some issues are highlighted as directions for future research.

7.1 Summary and Conclusions

This section gives conclusions made out of each section in a detailed manner.

7.1.1 Vocal and Non-vocal Segmentation

An approach has been proposed to select the relevant and suitable features for the task

of vocal and non-vocal segmentation. An evolution based genetic algorithm (GA) has
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been proposed for feature selection. To develop such system for vocal and non-vocal seg-

mentation a database with relevant tracks is essential. In this work, two datasets namely

the standard MIR-1K dataset, and the other is TBPS dataset collected from Tollywood

and Bollywood songs of Indian film industries. Some novel features have been computed

such as formant height from base-to-peak (FH1), formant angle at peak (FA1), and valley

(FA2) on top base-line features have been computed, that are forming a 93-dimensional

feature vector. It is practically not possible to consider high dimensional feature vectors

for real-time applications due to the issues of response time and complexity. Hence, an

approach has been proposed to select the relevant features among 90-dimensional feature

vector and to reduce the dimensionality of the feature set. Various feature selection tech-

niques have been chosen to compare the results with evolutionary based feature selection

which uses the concepts of genetics. It is observed that the evolutionary algorithms are

highly efficient when compared to the correlation-based feature selection and wrapper

methods (Murthy and Koolagudi, 2018b). Out of four different classifiers used, ANNs

are found to be more suitable for segmenting vocal and non-vocal regions. The concept

of point moving window has been used to avoid the problems of intermediate misclas-

sification of vocal and non-vocal frames which further improves the performance of the

system.

The task of vocal and non-vocal segmentation is found to be difficult due to the

stochastic nature of their properties. However, it can be implemented using thorough

analysis on the properties of music signal. One such property is repetition nature of

music. Locating the repeating patterns may give a clue for locating the onsets of singing

voice. The concept of Q-transformation has been used to estimate the repeating patterns

at signal level. From the features extracted from Q-transformation, the system is able to

recognize the repeating patterns of a signal up to 75%. Moreover, formant analysis is also

giving better discrimination for discriminating the vocal and non-vocal regions.

7.1.2 Singer Identification

In this work, an approach has been proposed to recognize the singer’s information using

convolutional neural networks. Initially, different feature combinations have been tried

to identify singer information using the random forest and artificial neural networks.

However, they are unable to learn the properties of singer. Hence, CNNs have been

considered as they are capable of extracting the features from the images without forming a
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manual intervention. Though they are giving better performance for Indian popular songs,

the same architecture has failed to achieve similar performance with artist20 dataset.

The task of singer identification has been implemented using song clips of different

lengths varying from 5 to 60 seconds. The degradation in the performance of singer recog-

nition has been observed when the length of input clip is reduced. However, identifying a

singer from smaller snippets is essential to make the MIR system real-time applicable. In

such cases, feature-based approaches may not show acceptable performance. It is also ob-

served that effective singer identification is possible with CNNs using spectrogram images

of song clips as inputs. CNN configuration which is done for one set of singers may not

be useful to the other set due to cultural variations and many other unknown factors such

as instrumentals, genres, etc. Due to this, the CNN designed for Indian singers dataset

has not shown similar performance with artist20 dataset.

7.1.3 Music Mood Estimation

Since the classification of moods is quite difficult at single level, a two-level classification

approach has been proposed in this work. At the initial stage, different acoustical features

have been computed for categorizing the song clips into either energetic or non-energetic

classes. Further, CNNs have been used to identify the actual class label.

In music mood estimation, there is a chance for ambiguities since the perceiving nature

differs from person to person. Hence, the support of mean opinion score (MOS) and

experts opinion always help in labelling the moods. It is also a difficult to develop a

system for more number of classes at one phase. The reason may be the pattern similarity

in the signal for certain moods. For instance, the signal characteristics of happy and

angry will be same since their energy levels are similar at signal level. However, the

analysis in frequency domain may give cues for better classification. The process of

developing a multi-level classification system is able to efficiently classify the moods since

the single level classification is suffering with either over-fitting or under-fitting issues.

There could be a problem of improper information for some moods due to ambiguities in

them. Though the spectrogram has been constructed for analysing the mood characters at

frequency level, it is quite difficult to identify discriminative properties unless the complete

image is processed in the learning phase. Hence, deep neural networks always do better

in such cases as they deal with the whole image instead of features obtained by us.

They are capable of self extracting features from the image based on their discriminative
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characteristics for different classes. The multi-lingual database is also to be analysed to

develop a mood classification system for different cultures.

7.1.4 Music Recommender System

As seen in the literature, music recommender system is developed using collaborative

and content-based recommendation approaches. Apart from them, graphs are the data

structures that are capable of holding information as well as they are capable of estimating

the listener’s behaviour. Hence, in this work, a graph based recommendation has been

proposed which can be enhanced by the future researchers who have willing to work on

recommender systems. The edges of the graph can give information about the movement

of listener from song to song. It can be the information about singer, mood, composer,

album, etc. Moreover, it is possible to estimate the performance of recommender system

without the intervention of listener using graph structures.

7.2 Future Work

The work and ideas presented in this thesis may be further extended and improved as

follows

→ The performance of vocal and non-vocal segmentation can be enhanced by using

larger database and more test clips. Features based on Q-transform, Wavelets etc.,

may give better performance due to their capability to retain and enhance the

resolution compared to traditional spectrogram techniques. These approaches may

also help in singing voice detection.

→ The task of singing voice detection can be effectively addressed based on estimating

repeated patterns as majority of vocals start immediately after a recurring pattern.

→ The process of singer identification may be poor when the number of singers is

more. Providing multi-level classification approach may improve the efficiency of

singer identification. The problem can be extended to identify the similarity in

singers through certain features.

→ Characterising a timbre with respect to the specific singer is also an essential step

that has to be taken care of while developing the singer identification system.
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→ As CNNs are capable of discriminating the moods effectively, high resolution fre-

quency spectrogram having more and better information may be used with CNNs

for better performance.

→ Since the task of developing MRS has been considered as a prime objective in this

thesis, a method based on graph structures has been proposed. Enhancing the

database, and implementation of complete recommender system based on graph

structures by using the information like time of listening to a song, whether com-

pletely listened to, listened to repeatedly etc., is the immediate task which may

recommend more relevant songs.

7.3 Future Directions

→ Lack of benchmark datasets in eastern countries, especially the music of Indian sub-

continent is a major concern to the music research community. The song categories

of eastern world contribute to a major portion of the digital audio domain. The

provision of standard datasets to cover different aspects of MIR highly motivates

the researchers to work on this area.

→ The features that are computed for various speech and audio processing techniques

have been directly used for a majority of MIR tasks without thorough analysis.

Some standard correlation analysis may help in deciding the feature set. In this

process, it is also possible to reduce the dimensionality which further minimizes

the computational complexity issues. The task of identifying requirement related

features for different issues of MIR system is still a major problem which needs an

immediate concern.

→ At present, the task of vocal and non-vocal segmentation has been considered just

as a subtask of a singer identification, for which, extracting a small portion would

be sufficient. However, there are many other applications for a complete vocal and

non-vocal segmentation task. The process of separating source information may

simplify the task of locating vocal onset and offset points. This separation is also

helpful in developing an efficient Karaoke system without foreground voice. Hence,

a special focus is essential on vocal and non-vocal segmentation.

→ Majority of singer identification systems that are accessible at present, consider
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audio clips with solo singer, and minimal or monophonic musical accompaniment.

This can be the major hindrance in considering them for real-time applications.

Hence, there is an immense need to develop singer identification systems that can

handle the clips with multiple singers, overlapping singers, and variety of background

instruments. Singer tracking in duets is also an important step towards a complete

solution. The process of detecting gender of a singer could be one possible solution

which simplifies the task of singer identification.

→ The taxonomy of genres is not well-defined in the music industry. Many a times

it is found that the same track appears in the category of more than one genre.

The taxonomy creation is surely a motivation for the researchers to design a proper

genre classification system.

→ The task of raga identification can be improved only with the support of tonic

identification. Though significant amount of work has already been reported on tonic

(frequency) estimation, the approaches reported are not adequately developed for

live concerts. As tonic frequency is an essential component in estimating the singer of

a song, it is essential to develop a complete and effective tonic identification system.

Existing tonic identification systems have not considered, all the 72 Melakarta ragas.

The task of raga identification and note transcription can help in designing an

automated tutor for those who are interested in teaching learning Indian classic

music. A system can also be developed to judge the singers in live performances

through objective evaluation.

→ The task of instrument identification is highly focused on monophonic clips, and

the overlapping issues are less addressed. The approach of independent component

analysis may help in estimating the instruments though they are recorded in a

polyphonic environment. The timbre of an instrument is also highly helpful for the

task of instrument identification. The histogram analysis for different features of

various instruments can be another possible solution in order to distinguish them.

Multi-pitch detection is helpful to recognize the multiple instruments in a selected

clip. More fine-tuned automated systems are essential to detect the instruments in

polyphonic environment.

→ The area of speech emotion recognition has been highly addressed, and many ap-
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proaches have been proposed. The difficulty in deciding the mood of a song clip is

the main reason for not having standard models and benchmark datasets for music

mood estimation. An effort has to be made for a general dataset and standard

baseline model of mood estimation in the context of songs. Moreover, the existing

works have concentrated only on the song portions, or on instrumentals separately.

However many a times, in real world scenarios they are available together in songs.

It is also true that the vocals carry much information related to moods. This hints

towards extensive efforts on mood estimation from a song based on vocals in it.

→ Query By Humming (QBH) is another important task of MIR which has been

implemented mostly on MIDI files which may not be suitable for real-time scenarios.

Recently, some systems have been proposed for query-by-singing (QBS) which is

also useful to extract or search clips based on either lyrics or human voice. The

accuracy of Top-1 rank is also not up to the appreciable mark for generalization

of the performance. From this background, it is said that there is a huge research

scope in QBH and QBS.

→ The process of annotating each portion of the song is the ultimate solution to MIR

which gives complete information. The task is certainly dependent on the other

tasks of MIR. At present, the works have focused on labelling the songs based on

the lyrics, instruments, and solo singer. There are many other important tasks of

MIR that are to be concentrated on, to provide complete annotation such as gender,

multiple singers, raga, and so on. It is also useful that the portion of a song can be

labelled with more than one tags based on the information present.

Inclusion of all the above aspects while developing the tasks of MIR may result in

a sophisticated MIR system which can be used for real-time applications.
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