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ABSTRACT 

 

Delamination between plies is the most common mode of failure in composite 

laminates, which occurs due to the presence of matrix cracks, free edges and notches. 

Prediction of such failure poses a challenging task as it overburdens the computational 

resources. Therefore, cohesive zone model (CZM) was introduced for representing 

fracture as a material separation across crack surface. In CZM, cracks and other material 

discontinuities can be represented using zero thickness fracture process zone in a finite 

element (FE) framework. Hence, it has become one of the most powerful computational 

models in predicting the crack initiation and propagation in composites. Further to 

improve the efficiency of the model, metamodel techniques were introduced to capture 

the delamination strength of composites. Nevertheless, most of the metamodels are 

inefficient for highly nonlinear problems and sometimes insensitive to the parameters.  

Therefore, in this work, a novel CZM is developed based on high dimensional 

model representation (HDMR) to evaluate the fracture behavior of composites under 

different mode conditions. The proposed methodology involves the development of 

CZM using HDMR, implementation of traction-separation laws in FE model using a 

user-defined subroutine in Abaqus, and minimisation of error using optimisation 

techniques.  An attempt has been made to reduce the computational effort in accurately 

capturing the delamination strength. 

The proposed model is employed for capturing the steady state energy release 

rate (ERR) of a double cantilever beam (DCB) under Mode-I loading. The FE models 

have been created using HDMR-based response functions. Initially, the CZM is 

developed for predicting the delamination strength of 51 mm crack size DCB 

specimens, and the model is then used to predict the ERR variations of 76.2 mm crack 

size specimens.  Subsequently, the numerical results of the developed DCB models are 

verified with the available experimental data for unidirectional composites (IM7/977-

3). Then, the efficiency of the proposed model is demonstrated by comparing the results 

with second-order nonlinear regression metamodels. 

Further, the proposed methodology is extended to assess mixed-mode (MM) 

failure behavior of the adhesive joints. As a part of experimental study, the composite 

single leg bending (SLB) specimens are manufactured by using unidirectional carbon 



fiber reinforced material and epoxy resin, and the tests are conducted in TINUS testing 

machine as per ASTM D790 under the influence of pure mode dominant conditions in 

order to obtain the cohesive parameters. Optimization techniques are used to minimize 

the error between the simulation and experimental values. The MM–CZM is then 

established and implemented in the SLB joint under various mode mixities for 

analysing the fracture process. Comparison between the numerical and experimental 

results shows that the proposed HDMR based approach estimates the failure 

mechanism efficiently. 

 

Keywords: Cohesive zone model; Finite element analysis; High dimensional model 

representation; Response surface model; Double cantilever beam; Single leg bending. 
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CHAPTER 1 

INTRODUCTION 

Composite materials are used in various engineering fields such as aerospace, 

automobiles, construction, etc. (Mangalgiri 1999). However, due to the presence of 

flaws in materials, most of the designed components are not able to meet their design 

strength in service condition. The difference between theoretical and actual strength of 

the material occurs for various reasons, including lack of knowledge in design and 

testing, manufacturing defects, types of loading conditions and inadequate maintenance 

(Maleque and Salit 2013). Figure 1.1 shows the cracks in various structural 

components. The flaws present in the composite material, mostly as a crack, lead to 

premature failure of the structure. Therefore, characterising the composite material is 

very important. 

 Researchers have studied fracture mechanics principles which assist the linear 

and nonlinear failure behavior of composite materials ( Chaves et al. 2014; Liu et al. 

2012; Salih et al. 2019). The linear elastic fracture mechanics (LEFM) principles are 

used in understanding the linear failure behavior of a defective material though not 

much appreciated in a plastic failure analysis (Elices et al. 2002). Hence, nonlinear 

fracture mechanics (NLFM) principles have emerged to describe the crack initiation, 

propagation and fracture in the materials. Consequently, several methods have been 

developed using NLFM principles ( Pirondi et al.  2014; Stumpf  and Le 1990; Wang 

et al. 1984). A cohesive zone model (CZM) is, therefore, one of such popular 

computational models which describe the plastic zone in front of the crack tip (Jin and 

Sun 2006). The available probabilistic CZM’s are not much appreciated to analyse the 

fracture behaviour in composites (Shanmugam et al. 2012). However, it needs further 

improvement in understanding the failure behavior by using efficient design tools. 

Defects in composite material are inevitable due to complex factors involved in 

the manufacturing processes, and these flaws mainly lead to fracture (Smith 2009; 

Ghobadi 2017). During continued separation, crack tip moves along a geometric face 

termed as crack face. The crack tip is the line connecting all adjacent sites where 
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separation may occur subsequently. Based on the movement of crack faces, the fracture 

is described in three different modes as shown in Fig. 1.2. In Mode-I, the load is applied 

normal to the crack plane whereas in mode-II, it is in-plane shear loading. Mode-III is 

out-of-plane shear, where the crack edges are moved across each other in opposite 

directions. Likewise, mixed modes (MM) occur as a combination of any two basic 

modes (Anderson 2017). 

 

1.1 NEED FOR DESIGN TOOL DEVELOPMENT 

In most cases, prior to the full scale use of composite components, proper verification 

and validation have to be performed to fully understand the failure behavior of the 

material using suitable computational tools. Reliability evaluation of real-size 

composite components demands constant experimentation, which is highly sensitive 

and less affordable by the small sectors (Abunima et al. 2018). Furthermore, developing 

efficient design tools are significant in order to reduce the design and experimentation 

cost for certifying a composite material. Therefore, the use of advanced computational 

tools is gaining much consideration in composite material testing (Shymchenko et al. 

2017).  

 

 

Fig. 1.1 Cracks in (a) aerospace structure (b) buildings and (c) automobile parts (source: 

https://www.google.com) 

 

Fig. 1.2 Types of mode fractures 

(a) (b) (c) 

Mode-III Mode-I Mode-II 
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The process of conducting tests using computer applications is called virtual 

testing. If composite life under service condition is effectively predictable, then there is 

a scope of increasing the application of composites as structural components in many 

fields. 

Several factors affect the testing and analysis of composite components. Neither 

test nor analysis alone is enough to adequately verify and validate the models. 

Therefore, to increase the reliability and decrease the computational effort, test and 

analysis have to be performed simultaneously. This synergistic process helps the 

composite material from lamina developmental stage to the real size component stage. 

Moreover, each development stage is based on the knowledge obtained from a previous 

low-level complex situation. The process starting with the low-level complex situation 

and finally dealing with highly complex situations is known as the “Building Block” 

approach as shown in Fig. 1.3 (Turon 2006). Therefore, the advanced knowledge of 

technology and design tools assists in improving the performance and efficiency of the 

composite materials. 

 

1.2 DELAMINATION 

Laminated composite materials experience various types of damages during testing and 

in-service life condition. Generally, the most commonly observed type of damage is 

delamination. Delamination is a process of layer separation in the composite that occurs 

due to the presence of voids in the resin and misalignment of the layers (Di Landro et 

al. 2017). Internal and surface delamination are the two significant types of 

delamination often observed in composites (Bolotin 2001).  

 

Fig. 1.3 Building block integration and reduction on the test requirement through virtual 

testing (Turon 2006) 
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Various reasons are involved in delamination process such as sudden changes 

in sections, sharp edges, thermal variations, shrinkage of the matrix, formation of resin-

rich areas etc (Bolotin 1996). During interlaminar delamination in unidirectional fiber 

reinforced composites as shown in Fig. 1.4, fiber cross over bridging occurs, thereby 

interaction between laminates takes place. Owing to fiber bridging, variation in strength 

can be observed (Shanmugam et al. 2013). Therefore, the behavior of the laminate 

subjected to fiber bridging is crucial in predicting the life of the composite materials. 

Moreover, delamination damage mode is essential for the structural integrity of 

composite structures, because it is difficult to detect during the inspection. 

There are various approaches available to deal with delamination. LEFM 

approach has been used in the early stages of numerical simulation for predicting the 

delamination growth. Based on the LEFM principles, different techniques such as 

virtual crack closure technique (VCCT) (Irwin 1957; Krueger 2002; Raju 1987; 

Rybicki and Kanninen 1977; Zou et al. 2001;), J-integral method (Rice 1968), and 

stiffness derivative (Parks 1974) are used for energy release rate (ERR) calculations. 

Hence, the delamination growth in the composite material can be predicted when the 

ERR is equal to or greater than a critical value (Griffith 1921). However, the techniques 

face difficulties in using finite element (FE) codes unless nodal variable and topological 

information from the nodes ahead and behind the crack front is available for stationary 

crack. 

Another approach is developed based on cohesive or damage mechanics which 

follows cracks, progressively within the framework, starting from the crack initiation 

to the complete failure. CZM concept is the popular technique in damage modeling for 

predicting the delamination growth in both linear and NLFM (Gain et al. 2011).   

 

 

Fig. 1.4 Uni-directional fiber bridging (Robinson and song 1992) 
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Cohesive elements, which depends on constitutive laws or traction-separation 

law (TSL) with zero volume or zero surface area, are used to simulate the interfacial 

failure between material. In a CZM, damage propagation studies can be carried out 

without the presence of initial crack, and it is possible to embed in FE codes for static 

and fatigue damage studies. The drawback of the CZM is on selection of the appropriate 

TSL, because this affects the efficiency of the simulation process (Desai et al. 2016;) 

Zou et al. 2003). 

 

1.3 COHESIVE TRACTION-SEPARATION LAWS 

Experimental methods and/or phenomenological studies (with predefined functional 

assumption and estimated parameters) have been used in the development of TSLs. 

Though some tests are performed in laboratories to determine the TSLs, no standard 

approch exists for measuring the traction-separation performance (Tan et al. 2005). The 

TSLs measured will have a typical feature, i.e., the value of the cohesive traction 

increases until it reaches the critical peak value, then starts decreasing and finally 

reaches to zero as the separation still advances. The descending traction indicates the 

material softening with fracture proceeds. 

The CZM approach assumes a certain TSL for defining the cohesive region 

failure, and the values of cohesive parameters (the cohesive strength, the cohesive 

energy and characteristic length) are adjusted to fit the experimental results. The 

cohesive strength indicates the maximum resistance to fracture and is typically 

associated with the yield stress of the composite material in use, whereas the cohesive 

energy represents the transformation of energy associated with the material separation. 

On the other hand, the characteristic length refers to the magnitude of displacement that 

corresponds to the cohesive strength. The parameters are determined after fixing the 

shape of the TSL. Specifically, shape of the TSL and the value of the cohesive 

parameters are the important features of CZM. Many studies indicate that the shape of 

TSL has no significant effect on the numerical results of fracture simulations (Alfano 

2006; Hutchinson and Evans 2000; Jin and Sun 2005; Needleman 1990; Tvergaard and 

Hutchinson 1992). 

The CZM represents the toughness at the crack tip and describes the whole 

deformation process including the initiation and propagation of the crack. The presence 
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of an initial crack is not essential as required in conventional fracture mechanics. The 

CZM is a phenomenological model which does not describe exactly the real physical 

processes of fracture, however it has been used in several applications. The effective 

practicality of the CZM in studying and justifying crack growth simulation has been 

well known since 1960 in various materials such as metals, concretes, ceramics, 

polymers, and their composite counterparts. Likewise, several studies have been 

conducted using CZM to describe the micro-mechanical separation processes such as 

void growth and nucleation, atomic separation, interfaces fracture, composite 

delamination, and fibre bridging (Alfano and Crisfield 2001; Needleman 1987; 

Shanmugam et al. 2013; Tvergaard and Hutchinson 1993). In addition, CZM has been 

used in numerical modeling for understanding the propagation of earthquake ruptures 

(Andrews 1976; Lu et al. 2010; Rosakis 2002; Shi et al. 2010). Furthermore, the CZM 

has also been used in different modes of fracture studies under bonded specimen (Li et 

al. 2005; Roe and Siegmund 2003). 

 

1.4 METAMODELS 

Metamodels have been widely used in many scientific and engineering areas in order 

to analyse and model the intricate real-world systems. They essentially aim at 

establishing certain relationships between input variables and the output of the system. 

Therefore, it is evident that metamodels can govern any of the physical parameters 

present in the real-word problems. Nevertheless, the precision of the metamodel should 

be enhanced to reflect the real system and simulate the performance of a product or 

system, which has the preferred design configurations and set of design parameters, by 

choosing a better model. Performance is generally measured as a vector quantity and 

may encompass components such as part deflection, weight, noise, cost, reliability, etc. 

In general, the better the model is, the more accurate it represents the real system. 

Numerous interactive computer modules have been developed using 

mathematical representation to establish the input-output relationship which helps to 

understand the underlying physical phenomenon in composite materials. However, 

system-level design based on computational models is difficult to develop and predict 

the overall system behaviour, because the requirement of integration of different sub-

system modules is not an easy task. Furthermore, the individual components of the 



7 
 

computer model are often computationally expensive, thus researchers have examined 

the use of different approximation strategies (for instance, response surface methods) 

as alternative inexpensive simulation models. Usually, the metamodels are used as 

alternatives for the genuine simulation or experimental models when vast number of 

assessments are required. Accordingly, a large number of likely combinations of all 

design parameters can be established for each set of variables by assuming analogous 

predictive metamodel analysis. The use of well designed and developed metamodels 

allows a faster analysis and reliable information about the composite materials than the 

original complex engineering models. 

The metamodel development approach is characteristically a three-step 

procedure. The first step refers to selection of typical representative sample points in 

order to acquire optimal data on the whole design space depending on the kind of 

metamodel established. In the second step, outputs corresponding to each sample points 

are assessed and then used to obtain set of design points and corresponding responses. 

Finally, the third step is the building of the mathematical model which maps the input-

output relationship (Dey et al. 2017). 

Currently, many studies have incorporated the metamodeling techniques in 

design and optimization models. Some of research areas include sampling approaches 

(Giunta et al. 2003), metamodels development (Koziel and Yang 2011), model fitting 

techniques, model validation and verifications (Jin et al. 2001; Kim et al. 2009; Li et al. 

2010), design space exploration, and optimization methods in support to diverse types 

of problems. The classical design of experiments (DOE) theory is being applied during 

the metamodel development process, in which polynomial functions are introduced as 

response surfaces. The response surfaces are typically a second-order polynomial 

models with inadequate ability to precisely simulate nonlinear functions of random 

shape. Evidently, higher-order response surfaces are required to adequately simulate 

the nonlinear design space.  

Despite the fact that several sampling techniques and various metamodel 

formation methods are readily available for use, the selection of suitable DOE method 

and metamodeling technique is the key concern in choosing the efficient one among 

the existing fracture analysis approaches. Since the entire sampling approaches and 

metamodeling techniques have their unique properties, no universal metamodel is 
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considered as a best choice for all types of problems. Therefore, the sampling method 

and metamodeling technique for a specific type of problem has to be decided based on 

the degree of model complexity, existence of error in sample data, type and extent of 

input variables, anticipated level of precision and computational effectiveness. 

Moreover, it is crucial to rigorously check the quality of fitting and estimation 

capability of the available data beforehand using a particular metamodeling technique. 

Table 1.1 summarises the different metamodeling methods and sampling techniques 

applicable for fracture analysis studies. Furthermore, the sampling techniques and 

particular metamodeling methods shown in Figure 1.5 can be adopted to choose best 

likely performance of each model. 

 

High Dimensional Model Representation: 

High dimensional model representation (HDMR) is a dimension-reduction technique 

widely used in chemistry and structural reliability areas. It is a tool which shows the 

relationship between input variables and output solutions in the form of hierarchical 

correlated functional expansions (Balu and Rao 2012; Balu and Rao 2014; Li et al. 

2001; Rabitz et al. 1999). Also, HDMR tools have been employed for constructing a 

model from laboratory data, FE modeling, inverse reliability problems, structural 

damage identification, and so on (Balu and Rao 2011). An efficient uncertainty 

quantification scheme for frequency responses of laminated composite plates was 

investigated by bottom up metamodel-based approach using general-high dimensional 

model representation (GHDMR) for achieving computational efficiency in quantifying 

uncertainty (Dey et al. 2016). There are few studies on the application of response 

surface methods (RSM) to simulate the fracture behaviour. However, the proposed 

HDMR based methodology is computationally efficient as evidenced in the results and 

discussion. In the present work, CZM is developed based on the HDMR technique to 

simulate the fracture in composites. 

 

1.5 SIGNIFICANCE OF THE PRESENT WORK 

Few studies have used second-order nonlinear regression based CZMs to characterise 

the delamination strengths in laminated composites. However, the computational 

efficiency and the prediciton capabilty of  such models are not much appreciable.  
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Table 1.1 Metamodel techniques 

Modeling Methods Sampling Techniques 

❖ Polynomial Regression (PR) 

❖ High dimensional model representation (HDMR) 

(Li et al. 2002) 

❖ Polynomial chaos expansion (PCE) (Ghanem and 

Spanos 1990) 

❖ Splines [linear, cubic] (Durrleman and Simon 

1989) 

❖ Multivariate adaptive regression splines (MARS) 

(Friedman 1991) 

❖ Gaussian process 

❖ Kriging (Myers 1982) 

❖ Radial basis functions (RBF) (Park and Sandberg 

1991) 

❖ Least interpolating polynomials (moving least 

square) (MLS) (Lancaster and Salkauskas 1981) 

❖ Artificial neural network (ANN) (Yao 1999) 

❖ Group method of data handling - polynomial 

neural network (GMDH - PNN) (Lee and Jeng 

1998) 

❖ Knowledge base or decision tree (Cramer et al. 

1976) 

❖ Support vector machine (SVM) (Suykens and 

Vandewalle 1999) 

❖ Weighted least squares regression (Ruppert and 

Wand 1994) 

❖ Best linear unbiased predictor (BLUP) 

(Goldberger 1962) 

❖ Multi-point approximation (MPA) 

❖ Sequential or adaptive metamodeling (Dear and 

Brager 2001). 

❖ Hybrid models (Atluri et al.1975) 

❖ Classic methods 

▪ Factorial design 

▪ Central composite design (CCD) 

▪ Box-Behnken 

▪ Optimal designs 

▪ Plackett-Burman 

❖ Space-filling methods 

▪ Simple grids 

▪ Latin Hypercube (LH) 

▪ Sobol sequence 

▪ Orthogonal arrays (Taguchi) 

▪ Hammersley sequence 

▪ Uniform designs 

▪ Minimax and maximin 

❖ Hybrid methods 

❖ Random or human selection 

❖ Importance sampling 

❖ Directional simulation 

❖ Discriminative sampling 

❖ Sequential or adaptive methods 

 

In the present work, HDMR based CZM is introduced to improve the computational 

efficiency and accuracy of the unidirectional fiber reinforced composite material under 

different mode conditions using TSLs in FE models. 
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Fig. 1.5 Metamodeling methods and corresponding sampling techniques 

 

Moreover, the HDMR based CZM is also applied for single leg bending (SLB) joint 

failure analysis of  an arbitrary initial crack in composite materials. Accordingly, 

experiments have been conducted on SLB joints to find the fracture toughness. In 

addition, comparisons between the numerical and experimental results have proved that 

the HDMR based approach can efficiently estimate the failure mechanisms in 

composite materials.  
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1.6 THESIS ORGANISATION 

In this work, HDMR-based CZM is developed for predicting the failure charactaristics 

in composite materials. Experimental studies have been carried out for evaluating the 

fracture toughness under MM conditions. The thesis is organised as follows. 

i) The first chapter describes a brief introduction to fracture, need for developing 

design tools, delamination and delamination methods. In addition, 

characteristics of cohesive TSL have been discussed. Furthermore, the use of 

metamodels and their importance to analyse and simulate complex real-world 

systems have been described along with the significance of the present study. 

ii) The second chapter presents a detailed review of relevant literature on CZMs, 

and metamodels, followed by summary of literature and objectives of the 

proposed research work. 

iii) The third chapter demonstrates the development of HDMR based CZM to 

capture the steady state ERR of a Double Cantilever Beam (DCB) under mode-

I loading. The efficiency of the proposed model is compared with the available 

experimental data. 

iv) The fourth chapter describes the determination of inter facial fracture toughness 

using SLB test setup. Various composite thickness test results are also 

demonstrated.  

v) The fifth chapter demonstrates the simulation of MM-CZM.  

vi) The last chapter presents the conclusions based on the findings from the present 

work, and also scope for the future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

The prediction of failure behavior of composite materials using LEFM principles has 

gained attention since 1960. Such ability to predict fracture has provided a basis for 

assessing the safety and reliability of composite elements. Furthermore, it evaluates the 

product quality in a series of manufacturing processes, and also provides the basis for 

failure analysis. However, the nonlinear failure behaviour is not efficiently predicted 

despite its success in LEFM. 

Advanced development in computer technology contributes to provide the 

solution for analysing the nonlinear structures using computational fracture mechanics. 

In limited cases, it is possible to obtain a closed-form analytical solution. Consequently, 

numerical modeling has become a potential tool in fracture analysis. A variety of 

numerical techniques have been applied to problems in solid mechanics, including 

finite differences, FE methods and boundary integral equation methods. Recently, the 

FE based CZM has gained much attention in cracked bodies studies. In CZM, fracture 

is characterised by a TSL relation across a specified set of cohesive surfaces. The 

cohesive constitutive relation embodies a description of the mechanical effects of the 

separation process as well as any dissipation associated with it. 

A detailed review of relevant articles in the field of fracture mechanics is 

presented in this chapter. Also, the importance of CZM in fracture studies with respect 

to various techniques is explored. Metamodels and their developments in different 

studies are reviewed. HDMR and its contribution as a metamodel or surogate model 

has been presented. The literature study is mainly focused on CZM, metamodel and 

HDMR. Summary of the literature is provided and also research gaps are highlighted. 

Finally, the objectives of the present work are derived. 
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2.2 COHESIVE ZONE MODEL 

The CZM has gained a lot of attention in crack nucleation and propagation modeling, 

and is widely adopted in nonlinear failure mechanism studies. Therefore, several studies 

has been developed to charaterise the cohesive region in composite materials. The 

distribution of cohesive forces near the crack tip region is quite complicated in 

characterising the behavior of failure. Therefore, a phenomenological distribution has 

been introduced for brittle fracture, which shows peak value at the crack tip thereby 

decreases rapidly (Barenblatt 1959, 1962). Similarly, analysis to calculate the extent of  

yielding in steel sheets containing cracks is carried out by considering the uniform stress 

distribution in the cohesive region (Dugdale 1960). 

A fictitious crack model was developed for characterising the fracture behavior 

in concrete structures (Hillerborg et al. 1976). The application was limited to the 

concrete fracture community for more than a decade. The cohesive concepts were used 

to generate the mathematical framework. Despite the fact that the model was focused 

on brittle fracture studies, the computational formulation of the cohesive region 

facilitates to describe the nonlinear materials behavior. Cohesive surfaces were 

introduced to assess the void nucleation at the interface of particle and matrix material, 

crack growth in brittle material under dynamic loading, and dynamic crack growth 

along the interface of composites. Constitutive relations were specified independently 

for the matrix, the inclusion, and the interface. Constitutive equation for the interface 

was similar to that of CZM concept. To describe mechanical response of the interface, 

critical interfacial strength and displacement are the necessary input parameters. 

Dimensional considerations have introduced a characteristic interface length into the 

model. The key advantage of the model is the ability to predicit the ductile to brittle 

fracture without any initial crack (Needleman 1987, 1990; Xu and Needleman 1994). 

 Cohesive constitutive relationships can be classified as either nonpotential-

based models or potential-based models. The fracture behavior has been characterised 

by the TSL in potential based models. The TSL relations are usually derived based on  

direct ( Gowrishankar et al. 2012; Sørensen and Jacobsen 2000; Sorensen et al. 2008; 

Victor et al. 1987) or indirect methods (Gowrishankar et al. 2012; Manshadi et al. 2014; 

Pappas and Botsis 2016; Sorensen et al. 2007;). In the direct method, calculation of the 

J-integral (Rice 1968) and measurements of crack opening displacement at the end of 
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the bridging zone, are required for obtaining the tractions. Effective usage of such 

method generally requires the data points quality to be exactly fit, particularly at the 

commencement of the fracture process, the description of maximum deflection, and the 

displacement at which the tractions disappear ( Heidari-rarani et al. 2013; Sorensen et 

al. 2008). In the indirect method, the bridging zone traction parametrs were identified 

using an inverse optimisation technique, which requires the objective function 

experimental data set. Iterative procedures were adopted in the indirect methods to 

derive the TSL using measured strain data set along the specimen (Cox and Marshall 

1991; Gowrishankar et al. 2012; Sorensen et al. 2007). Both the direct and indirect 

methods were used to extract the TSL of various types of composites (Frossard et al. 

2017; Gowrishankar et al. 2012; Manshadi et al. 2014; Pappas and Botsis 2016; Pappas 

et al. 2017; Sørensen and Jacobsen 2000;). Moreover, Feih et al. (2005) developed 

adjusted bridging law for the composites subjected to fiber bridging. Furthermore, 

Shanmugam et al. (2013) used adjusted bridging law for simulating delamination in 

composites. 

The CZMs have been efficiently simulating not only the interfacial 

delamination (Feraren and Jensen 2004; Li et al. 2005a; Valoroso and Champaney 

2006; Parmigiani and Thouless 2007), but also a plethora of other interface problems 

such as crack nucleation at bimaterial corners (Mohammed and Liechti 2000), plastic 

dissipation in thin debonding films (Shirani and Liechti 1998), and delamination of 

composites (Högberg et al. 2007; Li et al. 2005b; Li and Thouless 2006; Moroni and 

Pirondi 2011; Sørensen and Jacobsen 2000). However, CZMs require specific material 

parameters in order to make meaningful predictions. 

Delamination of fiber reinforced composite material under mode-I loading 

condition has been studied mostly by the DCB specimen test ( Kim and Mai 1991; Ivens 

et al. 1995; O’Brien 1998; Sela and Ishai 1989; Sørensen and Jacobsen 2000). In the 

DCB specimens test, the fracture toughness or ERR in mode-I failure (ASTM D5528) 

for unidirectional composites has been measured. However, many tests using the DCB 

specimen are plagued by fiber bridging. Despite the fact that the fiber-bridging is 

undesirable, the researchers try to describe the structure at the occurrence of fiber-

bridging during failure (Johnson and Mangalgiri 1987). Spearing and Evans (1992) 

conducted experiments on DCB specimens to understand the sensitivity of the fibre 
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bridging on the inter-laminar fracture. As a result, the energy plot showed a steadily 

raising pattern in ERR with advance in crack length, and such increasing phenomenon 

is known as R-curve effect (Anderson 2017). Sørensen and Jacobsen (1998) proved that 

the feature of R-curve is purely dependent on the geometry of the model if large scale 

bridging takes place in the material at the time of failure, hence it cannot be considered 

as a material property. In most of the cases, fiber breakage occurs in unidirectional 

composite since the fibers migrate into other laminates during the curing process. 

Rafiee and Ghorbanhosseini (2018) developed a computational model to predict the 

material properties of a composite covering all involved scales from nano to macro. 

Shanmugam et al. (2013) conducted tests on unidirectional composite DCB specimens 

to understand the R-curve effect. Response surface model had been constructed by 

using Latin hypercube samples (LHS) on various combinations of adjusted bridging 

law parameters for capturing steady state ERR. 

Generally, predicting the failure behavior of the adhesive is cumbersome during 

numerical simulations, because they are influenced by adhesive properties and interface 

characteristics. In most cases, modeling methods use FEs for representing the adhesive 

layer and assume that the adhesive and adherent bondage without any flaws, which 

indirectly state that the strength of the adhesive is weaker than the interface strength 

(Sheppard et al.1998). To model failure behavior of the bonded joints, several modeling 

methods are proposed (Tong and Steven 1999). In many cases, partial cohesive failure 

occurred in bonded joints. Therefore, analysing the failure behavior of bonded joints is 

having more importance in composites (Chen and Baker 2005). 

For NLFM problems, CZM is commonly applied to understand failure behavior 

of bonded joints (Ouyang and Wan 2009). In VCCT the fracture is modelled using stiff 

spring elements, but in the CZM, cohesive laws are implemented (Shet and Chandra 

2002). The role of the TSL is to define progressive failure of the bonded layer (Shabir 

et al. 2011). Bilinear TSL can be easily described by three parameters (the initial 

stiffness, critical cohesive strength and fracture toughness) (Song et al. 2008). To 

determine cohesive parameters there is no standard procedure, but one can estimate by 

conducting the experiments on the given material fracture toughness (Lee et al. 2010). 

The remaining parameters are obtained by matching the simulation and experimental 

results respectively (Li et al. 2005a). 
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The CZM in pure modes I and II is constructed using the Double Cantilever 

Beam (DCB) test and the End Notched Flexure (ENF) test, respectively. On the other 

hand, the SLB joint has an inherent mode-mixity because of its geometry and its mode-

mixity can be controlled by specimen thicknesses. For simplicity, three-point bending 

tests of mode I and II-dominant SLB joints can be performed instead of pure mode tests 

by controlling the composite thickness of the SLB specimen. 

 

2.3 METAMODEL 

Metamodels (also referred as apporximation models) are used as a preferable approach 

for the studies demanding repetitive model assessment to successfully substitute the 

expensive models in a computationally efficient manner (Baran et al. 2017; Kleijnen 

1987). Consequently, metamodeling approaches have been extensively implemented  

in the design appraisal and optimization processes of numerous engineering activities 

(Arregui-mena et al. 2016). Most important metamodeling techniques such as 

polynomial regression (PR), Kriging, HDMR, polynomial chaos expansion (PCE), 

artificial neural network (ANN), moving least square (MLS), support vector regression 

(SVR), multivariate adaptive regression splines (MARS), radial basis function (RBF) 

and polynomial neural network (PNN) are available in many areas of research. 

Conventional DOE concepts are used in the development of metamodels using 

polynomial functions as response surfaces. Sacks et al. (1989a; 1989b) suggested 

Kriging models for treating deterministic variables in order to realise the random 

function with respect to the real system response. ANNs have also been used in 

establishing the response surfaces for system approximation (Papadrakakis et al. 1998). 

Other types of models include rational basis functions (Dyn et al. 1986), MARS 

(Friedman 1991), and inductive learning (Langley and Simon 1995). Besides, 

Varadarajan et al. (2000) have reported works involving both  the polynomial functions 

and ANNs. So far, there is no distinctive approach to choose the appropriate model for 

superior performance. However, much more insight on various models has been gained 

through a number of studies (Giunta and Watson 1998; Jin et al. 2001; Koch et al. 1999; 

Simpson et al. 2001b; Simpson et al. 2001c). The Kriging and second-order 

polynomials are the most intensively studied models. The Kriging model is, generally, 

considered as a more precise model for nonlinear problems, but difficult to develop and 
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apply. In contrast, the polynomial model is easy to develop, good in parameter 

sensitivity, and inexpensive to work with, but is less precise than the Kriging model 

(Jin et al. 2001; Simpson et al. 2001c). 

Clarke et al. (2005) introduced SVR, a novel metamodel technique with higher 

precision compared to other models. However,  the vital reasons for the SVR to win out 

are yet unclear. Mullur and Messac (2005) established an enhanced RBF model 

including additional terms to the basic RBF model to improve the flexibility. It is 

claimed that this extended RBF applies to almost all problems. The interests on Kriging 

remain high with more in-depth studies (Van Beers and Kleijnen 2003; Martin and 

Simpson 2005). 

Similarly, a reliable and inexpensive gradient data can be employed in 

metamodeling applications (Morris et al. 1993; Koehler 1998). Furthermore, multipoint 

approximation (MPA) approach has also gained some attention by several researchers 

(Toropov et al. 1993; Wang et al. 1996; Rasmussen 1998; Shin and Grandhi 2001). It 

uses blending function to join several local approximations in metamodels. Based on 

the aforementioned studies, a flexible and generic metamodels are required as 

alternative to the expensive models. Such metamodels may include mixed metamodels, 

metamodels of irregular reliability, tuneable metamodels, and so on (Leary et al. 2003). 

From the practical view, there is always uncertainty issues originating from 

sampling and difference in model functions, regardless to the type of model used. 

Moreover, the accuracy of the metamodel is also associated with design space. Hence, 

an iterative-based metamodels have been established to improve the accuracy in the 

metamodel (Dennis and Torczon 1997). Several methods were developed aiming at 

reducing the design space in metamodels to improve the modeling accuracy. Based on 

the available literatures, two types of design space reduction approaches were observed. 

The first one corresponds to dimensionality  reduction of the design space by 

decreasing the number of design parameters. This has been explained in the early works 

of several scholars foucsing on refining the response surfaces to accurately predict the 

actually system by minimising the input parameters. (Welch et al. 1992; Giunta et al. 

1997; Balabanov et al. 1999). Dimensionality reduction is highly significant as it aims 

at breaking the “curse of dimensionality”, though it is not easy to bring such significant 

reduction particularly for multidisciplinary design problems (Koch et al. 1999). The 
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second approach of design space reductions tends to decrease the size of the design 

space with the assumption that the dimensionality cannot be further decreased. The size 

of the design space is contolled by the collective range of design parameters.The 

smaller the range of design parameters, the smaller the size of the design space, and 

viceversa. However, having larger design space leads to cumbersome and expensive 

metamodel construction. In other hand, sequential metamodeling technique was 

promoted by several scholars by means of move limits or trust regions (Alexandrov et 

al. 1998; Wujek and Renaud 1998a; Wujek and Renaud 1998b; Booker et al. 1999). 

Renaud and Gabriele (1994), have detailed the importance of  data generated during 

concurrent subspace optimization in developing response surface approximations of the 

design space, which inturn forms a basis for the subspace coordination procedure. 

In order to achieve the model accuracy, itreratively generated samples are 

required to update the response surface approximations. Thus, the approximation 

precisions of the model were sequentially updated and enhanced with multistage 

Kriging strategies using additional sample points  (Osio and Amon 1996).  Wang (2003) 

developed the adaptive response surface method (ARSM), which systematically 

decreases the size of the design space by removing sample points with values greater 

than to the threshold value at each optimization iterations. Therfore,  the design space 

is progressively reduced near to the optimal  design value. 

In general, the systematic justification of the interrelatedness between design 

variables  is  used to characterise the design space reduction techniques. The enhanced 

ARSM uses inherited latin hypercube designs (LHD) for sampling purpose. This 

largely decreases the quantity of samples required (Wang 2003). Moreover, Wang and 

Simpson (2004) established a heuristic hierarchical metamodeling approach to improve 

the drawabcks of both polynomial and Kriging models. 

Physical experiments and simulations performed during engineering design are 

the time consuming tasks, in addition with increase in design cost. High dimensional or 

large number of input variables makes the design problem complex. HDMR is a 

powerful method in approximating high dimensional and expensive problems (Rabitz 

et al. 1999). It is a set of quantitative model assessment and analysis tools for improving 

the efficiency of deducing high dimensional input–output system behavior. HDMR is 

a tool, which expresses the input and output relationships of complex and 
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computationally expensive models to form a function having hierarchical correlation 

expansions. Various studies concluded that, responses of a system have influence from 

the lower order input variables interaction. 

Stochastic free vibration analysis of angle-ply composite plates using random 

sampling high dimensional model representation (RS-HDMR) approach has been 

carried out (Dey et al. 2016) by developing a metamodel to express stochastic natural 

frequencies of the system, and performance of RS-HDMR has been compared with full-

scale Monte Carlo simulation results. Mukhopadhyay et al. (2015) introduced an 

efficient hybrid method based on RS-HDMR and genetic algorithm (GA) coupled with 

a local unconstrained multivariable minimization function for optimization of fiber 

reinforced polymer (FRP) composite web core bridge deck panels. The application of 

HDMR in stochastic multiscale modeling in conjunction with multielement least square 

approach has been carried out by Jiang and Li (2015). HDMR tools have been employed 

for constructing a model from lab data, FE modeling, inverse reliability problems, 

structural damage identification etc (Mukhopadhyay et al. 2016). Further in order to 

construct an efficient HDMR expansion, concepts of support vector regression adopted 

by Li et al. (2017) enabled efficient construction of high dimensional models with 

satisfactory prediction accuracy from a modest number of samples. 

 

2.4 SUMMARY OF LITERATURE REVIEW 

Experimental results attribute to evaluate material properties like yield strength, shear 

strength, ultimate strength and fracture toughness values used in structural design.  

Nevertheless, there are no precise assessments designed to calibrate the CZM bridging 

variables so as to measure their scatter information when transforming from traditional 

failure analysis technique to the new CZM based technique.  Therefore, RSMs have 

been developed to characterise the load and crack length distribution in terms of 

adjusted bridging law variables.   

The existing methodologies using RSM techniques have ability to precisely 

estimate the energy and load variations, but are not effective in predicting the crack 

length variations in uni-directional composites.  This can be attributed to lack of 

information significant in associating steady state energy and load values to a specific 

crack length. Hence RSMs play a vital role in predicting the fracture parameters. 
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Composite materials are used as base materials in most of the advanced 

products. The use of composites in main structural components is still limited owing to 

the difficulty in predicting the service life. The presence of material defects or 

manufacturing defects in composites is highly uncertain to diagnose, and hence fracture 

phenomenon is unpredictable.  Many studies have been carried out both experimentally 

and numerically to understand the failure behavior and factors influencing the fracture 

process using the concepts of LEFM. However, the available techniques developed 

based on LEFM are not readily applicable to nonlinear problems. Therefore, as an 

alternative approach, the application of CZM has become prevalent due to the 

advantages such as the ability to adequately predict the behavior of uncracked 

structures, and suitability in the conceptual framework for interfaces. CZM is a 

computational model in which fracture formation is regarded as a gradual phenomenon 

where separation of the surfaces occurs across an extended crack tip, and is opposed by 

cohesive tractions. Cohesive elements have been proven to be an excellent approach in 

computational fracture mechanics. Nevertheless, massively parallel computations are 

required in order to capture the damage-patterns and evolutions precisely in composites. 

Computationally efficient metamodels were employed in evaluating large 

number of model outputs with  limited set of algorithmically selected input variables. 

As a result, a corresponding mathematical model is developed to simulate the 

fundamental input-output relationship of the system based on efficient metamodels. 

The need of integrating the metamodels has significant demand for assessing the 

response characteristics of composites by accounting the uncertainties in the models. 

Different metamodels are developed to understand the responses of a laminated 

composite structures. Compared to all the other methods, models developed based on 

HDMR are promising towards the computational efficiency. 

 

2.5 OBJECTIVES OF RESEARCH WORK 

Based on the literature review, the objectives of the present research work are as 

follows: 

i) To develop the high dimensional model representation  based cohesive zone 

model for representing the effects of toughening behavior in composites. 
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ii) To conduct the single leg bending tests for obtaining the cohesive parameters 

under different mode dominance conditions. 

iii) To validate the methodology in mixed mode conditions. 

 

2.6 SCOPE OF THESIS 

i) To develop HDMR based CZM for capturing the steady state energy in uni-

directional DCB specimens, based on the experimental data. 

ii) To conduct experiments on the uni-directional composite specimens under three 

point bending test using Tinus testing machine for obtaining load-displacement 

curves on different mode dominant conditions. 

iii) To determine the optimal cohesive parameters form the experimental data and 

simulation, and 

iv) To verify the developed method in different mixed mode conditions. 
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CHAPTER 3 

MODELING DELAMINATION IN COMPOSITE USING HDMR 

BASED COHESIVE ZONE MODEL 

3.1 COHESIVE BRIDGING LAW 

Generally, cohesive elements are embedded by the TSL for defining the crack tip. 

Based on TSL, the CZM which signifies fracture process zone (FPZ), starts separation 

as the load increases and this separation will continue till it reaches the critical limit. 

Traction-separation failure mechanism follows three steps: (i) Damage initiation: It 

signals when the element starts the damage, (ii) Damage evolution: It is the rate of 

change of stiffness of the element when damage occurs, and (iii) Element removal: It 

happens when the traction reaches zero at a critical normal separation value. Due to 

active participation of fibers in the crack advancement, the crack growth resistance will 

take place in delamination process. 

In General, delamination takes place between matrix interfaces. During crack 

propagation in laminates, fiber interaction is inevitable due to their misalignment of the 

fibers at the time of curing process. Hence, these type of fiber interactions rely on the 

geometry of specimen and loading mixity at the time of fracture resistance (Spearing 

and Evans 1992).  Due to the fiber bridging in composites, increase in ERR is observed. 

Therefore, the crack initiation and crack propagation energies need to be considered in 

TSL, which is not possible with the existing bilinear or park paulino roesler (PPR) 

CZM. To estimate the progressive delamination of composites, different TSLs were 

used in the literature. 

With the help of J-integral concepts, the bridging law parameters are measured 

to understand the features of the unidirectional fiber composites (Rice 1968; Spearing 

and Evans 1992). Suo et al. (1992) developed an analytical expression for evaluating 

the global J-integral on the outer layers of the specimen beneath mode-I loading as 

follows. 
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where,   is an elastic anisotropy measure, 22 11E E= , in which, 
22

E  is modulus of 

elasticity in transverse, and 11E  is in the longitudinal directions, and   is also an elastic 

anisotropy measure, ( )11 22 12 12 212E E G= −    ,  and G   are shear moduls and 

Poisson’s ratio, while p  is load, a  is crack length, and b  & h  are the dimensions of 

the specimen. I  is the moment of inertia of the DCB model expressed as, 3 12I bh= .  

The coefficient   has been evaluated numerically (Bao et al. 1992) as:

( ) ( ) ( )
2 3

0.677 0.146 1 0.0178 1 0.00242 1ρ = + − − − + −  . 

Generally, when the unidirectional composite DCB specimen is subjected to a 

load, fiber bridging occurs across the crack faces near the crack tip for the growth of 

the crack in pure mode-I, assuming that the stresses corresponding to closure/bridging 

are dependent on the local crack separation,  . Due to this nature, bridging law 

( )  =  is taken as equal over the bridging zone length. Therefore, the relationship 

between bridging stress,   and local crack separation,   is used to define the bridging 

law. The fibers will carry the load till it reaches the characteristic crack separation 
0

 , 

and once this stage is reached, the closure traction disappears. Then locally estimated 

J-integral is represented as (Suo et al. 1992) 
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*

0
0

  


  = +J d J  (3.2) 

where, first term is the energy dissipation in the bridging zone and 0
J  is the initial value 

of ERR evaluated around the crack tip, and *  is the end-opening of the bridging zone.  

Also, the bridging law is obtained by 

 ( )*

*

R
J

 



=


 (3.3) 

where RJ  is the ERR during crack growth. At the beginning, the crack is unbridged, 

and the crack growth initiation takes place when 
0R

J J= .  As the crack develops, the 

value of RJ  goes up, and the R-curve reaches steady state crack growth resistance ssJ , 

whereas the end-opening of the bridging zone *  reaches 
0

 . 

Feih et al. (2005) found that the following analytical equation will be valid for 

all the test data curves of crack growth resistance against crack separation data. 
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 ( )

1

* 2
*

0

0

R SSJ J J





 
= +   

 
 (3.4) 

where, 
SS

J is the steady state fracture energy, ( )0SS SS
J J J = − , which indicates that 

the presence of fiber bridging results in increased value of crack growth resistance. 

Differentiating Eq. (3.4) yields the results in bridging law. 

 ( )

1

2
*

0

0 0 0

    0
2 2

SS SSJ J
   

   

−

  
= =   

 
 (3.5) 

Feih (2006) compared bridging laws for different fiber systems and concluded that the 

bridging law is independent of specimen geometry. Figure 3.1 shows the bridging law 

for a typical material system , and it can be considered as a material property (Spearing 

and Evans 1992; Sørensen and Jacobsen 1998). 

 

3.2 IMPORTANCE OF ADJUSTED BRIDGING LAW 

The bridging law in Eq. (3.5) has a simple form, but if the crack opening displacement 

is zero, then the singularity will take place, and the bridging stress leads to infinity and 

also after differentiation of Eq. (3.4), there is no crack initiation 
0

( )J  term. To address 

these two important points during the numerical adjustment, finite stress value and zero 

stress value are the two different methods implemented (Feih 2006). The simplest 

approach is to divide the two components 0J  and ssJ  within the bridging law and use 

the initial increase up to 2u  for introducing 0J . The adjusted bridging law is shown 

in Fig. 3.2.  

 

Fig. 3.1 Typical bridging law (Shanmugam et al. 2013) 
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The power law factor   helps to maintain the tangent close to zero at the peak of the 

bridging law, in turn, assists to an improved numerical behavior by means of 

convergence. The physical interpretation of the cohesive law parameters is 

advantageous in splitting of the bridging law into an initial fracture and damage control 

part. Accordingly, the bridging law variables (
0

J , 
SS

J , 
0

u  and 
2

u  except 
1

u ) are 

measured  on the basis of the experimental data. Hence, the crack initiation 
0

J  and 

steady state energy 
SS

J  values can be designated using the R-curve as shown in Fig. 3.3 

(obtained from the experiments), and with the help of these two values, the difference 

in fracture energy, ( )0SS SS
J J J = −  is calculated. Figure 3.4 shows the relationship 

between crack opening displacement and crack growth resistance, and both the crack 

opening displacements 
2

u  and 
0

u  are measured at 
0

J and 
SS

J , respectively. Hence, 

only the value of 
1

u  is to be adjusted in the bridging law to fit the experimental data 

points. 

 

Fig. 3.2 Adjusted bridging law (Shanmugam et al. 2013) 

 

Fig. 3.3 Energy vs crack length (Shanmugam et al. 2013) 
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3.3 APPLICATION OF THE USER ELEMENT 

Several possible techniques are used in applying the cohesive laws in the FE codes. The 

development and coding of cohesive elements based on the cohesive laws is among the 

most adoptable one (Schellekens and Borst 1993; Chen et al. 1999; Spring and Paulino 

2014). A stress, based on a relative nodal spacing is recommended in most cases, 

presumably known with zero thickness choesive elements. Likewise, efforts 

asscociated with simplifications have also been employed in VCCT in order to compute 

the corresponding nodal spring forces from the surrounding elements. However, VCCT 

is not directly applicable for nonlinear shape functions, such as eight-noded elements 

(Jacobsen and Sorensen 2001). 

Basic Equations: 

Two-dimensinal and three-dimensional interface elements are illustrated in Figure 3.5.  

 

 

Fig. 3.4 Energy vs crack opening displacement (Shanmugam et al. 2013) 

 

 

Fig. 3.5 Quadratic line and plane interface elements 
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The interface element encompasses two quadratic line elements or two quadratic two-

dimensional plane elements. During the fracture growth, the faces of adjacent elements 

are connected with the interface elements. Segurado and Llorca (2004) have studied the 

application of user elements. Accordingly, quadratic solid elements are selected as a 

cantilever beam, which in most cases distorts under bending. Overlaying the quadratic 

element with interface element requires the interface element nodes to fit perfectly. 

Therefore, the node numbering is selected based on ABAQUS conventions of two-

dimensional and three-dimensional quadratic solid elements.  

In unstressed deformation state, the two interface element surfaces lie together 

and separate as the adjacent elements start to deform. The relative separations of the 

element face create both normal and shear movements, which in turn create element 

stresses based on the constitutive equations of the material. The application of a general 

interface element for the quadratic line element (for two-dimensional models) is 

explained as follows. 

The line interface element has 12 (i.e., 26) degrees of freedom, where as the vector 

(12 1) of the nodal displacements )N(d  in the global coordinate system is given as: 

 ( )
T

1 1 2 2 6 6 =     . . .  N x y x y x yd d d d d dd  (3.6) 

where, T stands for transpose of the matrix. 

The nodal difference between the top and bottom displacements , ( )u gives the opening 

of the interface element and expressed as: 

    
top bottom

u u u = −  (3.7) 

thus leading to the subsequent description of the interface opening 
N

u  in terms of 

nodal separation of paired nodes: 

 
6 6 6 6 =  =   N N N  −  u d I I d  (3.8) 

where 
6 6

I  represents an identity matrix with six rows and six columns, and 
N

u  is a 

6 1  vector. 

The crack opening is interpolated to the integration points from the nodal locations with 

the help of standard shape functions. Let ( )iN   be the shape function for the node pair 

i (i = 1−3), where   stands for the local coordinate of the element with 1 1.−    The 
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relative displacement between the nodes for each point within the element is then given 

by: 

 ( )
( )

( )
( ) =  = 

x

N

y

u

u

 
    

u H u


 


 (3.9) 

where ( )H   is a 2 6  matrix containing the quadratic shape functions. From the line 

element,  

 ( )
( ) ( ) ( )

( ) ( ) ( )
1 2 3

1 2 3

0 0 0
 = 

0 0 0

N N N

N N N

 
 
 

H
  


  

 (3.10) 

thus results in, 

 ( ) ( ) ( ) =  = N Nu H d B d    (3.11) 

where, ( )B   is of the dimension 2 12  and ( )u   is of the dimension 2 1 ; thereby 

describing the continuous displacement field in both directions within the element.  

A local coordinate system is required by the user element, inorder to measure 

local deformations in normal and tangential directions during large deformations. The  

coordinate system obtained from the middle points of the two element faces is, therfore, 

considered as one of the best common choice, which thereby coincides with the nodal 

positions in the undeformed state.  

If the coordinates of the initial configuration are given by the vector NX  and 

the deformation state is defined by the vector Nd , the reference surface coordinates 

R

NX   are computed by linear interpolation between the top and bottom nodes in their 

deformed state: 

 ( )( )6 6 6 6

1
 =     + 

2

R

N N N x I I x d  (3.12) 

The coordinates of any specific reference plane can be derived similar to Eq.(3.9). 

 ( )
( )

( )
( ) =  = 

R

R R

NR

x

y

 
  
 

x H x


 


 (3.13) 

This local coordinate vector, with unit length, is obtained by differentiating the global 

position vector with respect to the local coordinates: 
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T

1

1
 = ,  

R R

R

x y  
 
   



t
x  



 (3.14) 

The normal vector (also with unit length) of the local coordinate element needs to be 

perpendicular to the vector 
1

t : 

 

T

n

1
 = ,  

R R

R

y x − 
 
   



t
x  



 (3.15) 

and the derivatives are determined as follows: 

 
( ) ( )( )

( ),

,

 =   = 

RR

R R

N NR

x

y

 
=  

 

Hx
x h x





  


 
 (3.16) 

with 

( )
( ) ( ) ( )

( ) ( ) ( )
1 2, 3,

1 2, 3,

, 0 0 0
 = 

0 , 0 0

N N N

N N N

 
 
 

h
  

  

  


  
 (3.17) 

The length of the vector is given by the standard definition: 

 

2 2

 =  + 
R R Rx y     

   
     

x

  
 (3.18) 

The components 
1

t  and 
n

t  indicate the direction cosines of the local coordinate system 

to the global one, thus defines the 2 2  transformation tensor   as 

  1 n = ,t t  (3.19) 

which relates the local and global displacements as follows: 

 T

loc  =  u u  (3.20) 

where,  the local matrices are designated by the subscript (loc) as in Eq. 3.20 above, 

else the expressions refer to the global values.  

loc
t  is the 1 2  vector governing the bridging stresses in the local coordinate system and 

relates to the local relative displacement through constitutive equation for the interface 

element: 

 ( )1

loc loc loc loc =  =  
n

 
  

 
t C




u u  (3.21) 
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where, locC  is the constant not depend on the displacements. The constitutive equation 

can be described either with a linear displacement term for u  as shown above, or 

with a coupled form, where u  is encompassed with nonlinear dependence. 

Nonetheless, the ideal alternative depends on the form of the constitutive expression. 

For the equation introduced in Eq. (3.5) , a coupled form is preferable: 

 

1

2
loc loc loc =  

−

t C u  (3.22) 

In comparison with Eq. (3.5),   has been substituted with the general numerical 

terminology for the opening, 
loc

.u  This convention will be used in the following 

descriptions. Note that, the UEL subroutine in ABAQUS needs the element stiffness 

matrix and the right hand side nodal force vector.  

The element force vector is of size 12 1. Its role to the global force vector is given by  

 el

el T

A

1
T

loc
1

f  

  det  

N dA

W d
−

=

= 





B t

B t J 

 (3.23) 

where W is the width of the interface element and, as in most cases of 2-D modeling, 

also the width of the FE model, and det J  is the Jacobian defined by the transformation 

of the global coordinates ( ),x y  to the current element coordinate ( ) , and results, for 

the line element, in the same expression as previously used for calculating the length of 

the unit vector in Eq. (3.18): 

 

2 2

det  =  + 
R Rx y    

   
    

J
 

 (3.24) 

In most studies, the Jacobian matrix is not considered as constant but depends on the 

local element coordinates. Therefore, it requires derivations for each integration point. 

Hence, the tangent stiffness matrix (i.e., 12 12 ) is accordingly defined as  

 
el

el N

el


= −



f
K

d
 (3.25) 

with the derivation from Eq. (3.23), this results in: 

 

T loc

elAel

1
T T

loc
1

  det  

dA

W d
−


= − 



= −  





t
K B

d

B D B J 

 (3.26) 
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The stiffness matrix D is defined as: 

 loc
loc

loc

 = 




t
D

u
 (3.27) 

It can also be expressed in terms of the constitutive equation in Eq. (3.21) with a linear 

dependence on u : 

 
( ) ( )

( )loc

C
 =  =  + C

            
 

C u u u
D u u

u u
 (3.28) 

The local traction matrix S is then given by 

 
1

loc  = 
c

c n

D D

D D

 
 
 

S  (3.29) 

Finding derivations of Eq. (3.27) yields the terms
1

D  and 
n

D  values. The 
c

D  elements 

are possible coupling terms,  which are typically attained by the TSLs derived from an 

elastic potential for the cohesive law. For mode-I loading cases, the relative 

displacement in 1
u  direction will be zero, and thus leads to zero traction stresses. 

Therefore,  the coupling terms can then be set to zero as they do not impact the overall 

results. However, a dummy value for 
1

D  has to be assumed to prevent likely numerical 

errors attributable to a singular stiffness matrix. 

 

3.4 COHESIVE ELEMENT VERIFICATION 

The process of implementing the cohesive elements in to the ABAQUS is shown in Fig. 

3.6. A simple two element model with user element is shown in Fig. 3.7. Accordingly, 

the nodes 1 to 6 (in Fig. 3.7) for the user element primarily coincide in their position 

(here, the nodes are shown far from each other for a good understanding of the node 

numbering).  The input deck for the two-element problem is as shown in Appendix-A.  

Figure 3.8 reveals the values for the test case as created by ABAQUS. As the 

stiffness of the top element is high compared to the bridging stress input, the stress 

distribution in loading direction appears constant.  
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Fig. 3.6 Implementation process 

 

Fig. 3.7 2-D user element 

Besides, the displacement field caused by the Poisson's effect in x-direction varies 
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uniform deformation (i.e., constant displacement boundary conditions on the entire top 

nodes). Meanwhile, the sensitivity of results  use the crack opening, crack length and 

crack shape among the information related to fracture data to the presumed bridging 

law shape. Furthermore, numerical estimates are used in refining the bridging law fit of 

the shapes. 

 

 

Fig. 3.8 (a) Contours of stress and displacement; (b) Stress at crack tip 

 

 

(a) 

(b) 
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3.5 HIGH DIMENSIONAL MODEL REPRESENTATION 

HDMR is the method of multivariate functions (Balu and Rao 2013). It is having high 

command on the system response, starts with constant term and gradually includes 

higher order terms. In most of the cases, by using only lower order terms, the entire 

physical system can be captured. The HDMR methodology has been applied to even 

nonlinear models to get accurate reduced model of the original system (Wang et al. 

1999; Alış and Rabitz 2001; Chowdhury and Adhikari 2010; Li et al. 2001; Balu and 

Rao 2012; Gao et al. 2015; Naveen and Balu 2017)  

To understand the relationship among the input parameters and output response, 

consider ( )f x  as the output of the system response, which is a function of input vector 

 1 2, ,..., Nx x x=x . The output response will have the effect of the input in terms of 

individual or cooperative, therefore the output of the HDMR is expressed as follows. 

 ( ) ( ) ( ) ( )0 12... 1 2

1 1

, ... , ,...,
N

i i i j i j N N

i i j N

f f f x f x x f x x x
=   

= + + + + x  (3.30) 

where 0f  denotes the response of the system at the mean input parameters. The term 

( )i if x  is a first-order of variable ix  on the output ( )f x , and ( ),ij i jf x x  is a second-

order term having the influence of the both the variables ix  and jx  in the cooperative 

manner on ( )f x . If all the component functions in Eq. (3.30) are obtained, then it is 

efficient to calculate the output responses of the system. Hence, expensive methods can 

be replaced with the HDMR for calculations. 

To represent the output ( )f x  exactly in the given variable space, cut-HDMR 

method will be helpful. The initial step in this method is selecting the reference point 

 1 2, ,..., Nc c c=c  for the variables, but in the convergence limit, the selection of 

reference point c  is invariant. Generally, c  is chosen within the region of interest in 

the input space. Once the selection process is finalised, need to determine the expansion 

functions with the help of input−output responses of the system relative to the defined 

reference point c  along the cuts in the input variable space. Hence the component 

functions in Eq. (3.30) are as follows. 

 ( )0f f= c  (3.31) 
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 ( ) ( ) 0, i

i i if x f x c f= −  (3.32) 

where ( ) ( )1 2 1 1, , ,... , , ,...i

i i i i Nf x c f c c c x c c− +=  represents that except ix  the other input 

parameters are at their reference point values. Finally, to get the value for 0f  evaluate 

all the input parameters at the reference point c . 

To get the final output response ( )f x , the following steps are followed. 

Step 1: Select the first-order component function ( ) ( )1 2 1 1, , ,..., , , ,..., .i

i i i i Nf x c f c c c x c c− +=  

If for ,j

i ix x n=  function values 

 ( ) ( )1 2 1 1, , ,... , , ,... ,     1, 2,...,j i j

i i i i Nf x c f c c c x c c j n− += =  (3.33) 

are given at n sample points along the variable axis ix . The function value is thus 

evaluated as follows. 

 1 1 1
1

, ,( , ) ( ) ( ,..., ). ,., .
N

j i j
i j i i Ni i

j

f x c x f c c x c c− +
=

=   (3.34) 

where, N is number of variables involved.  By using Eq. (3.34), ( )i if x  can be generated 

if n function values are available. Repeat the same procedure for the remaining 

component functions. 

Step 2: By adding the above functions, we get the first-order expansion ( )f x  as 

follows. 

 0

1

1 1 1
1

,( ) ,( ) ( ,..., , , ) ( 1)...
N

i

n
j

j i i Ni i
j

f x x f c c x c c N f
=

− +
=

=  − −  (3.35) 

where the Lagrange interpolation function ( )j ix  is defined as  

 
( ) ( )( ) ( )
( ) ( )( ) ( )

1 1 1

1 1 1
( )

j j n

i i i i i i i i

j i j j j j j j n

i i i i i i i i

x x x x x x x x
x

x x x x x x x x

− +

− +

−  − −  −
 =

−  − −  −
 (3.36) 

The total number of original function evaluation is obtained by 

 
( )

( )
0

!
1

1 ! !

l
s

s

N
n

N s=

−
−

  (3.37) 

where, s is the order of the component function, n is the number of sample points.   

As compared to the other sampling schemes, HDMR sampling scheme is significant 

because, with minimum component functions, more accurate results can be achieved. 
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3.6 HDMR BASED CZM  

For generating the FE model, the details of the model are chosen from the tests 

conducted to determine the interlaminar fracture toughness of the unidirectional 

composite DCB under mode-I loading (Shanmugam et al. 2013). The dimensions of the 

2-D FE model are 254 mm long with a width of 25 mm which has two 6 mm thickness 

arms, and also having an initial crack of 51 mm and 76.2 mm, which are similar to the 

test specimens. The material properties of the composite are shown in Table 3.1. Each 

FE model (Fig. 3.9) comprises of 6 node cohesive elements with zero thickness and 

0.5 mmelement size 8 node elements (i.e., CPE8). In the FE model, cohesive elements 

are placed ahead of crack tip at the interface of model arms. 

In this work, to capture the steady state ERR variation, following procedure is adopted. 

i. From the available experimental data of 51 mm crack size (Table 3.2), the load, 

crack length and steady state energy are represented in cumulative distribution 

function (CDF) format. 

ii. The HDMR response surface functions are developed for crack length and load 

distribution from bridging law parameter bounds.  

iii. Monte carlo simulations (MCS) are performed to get the load, crack length and 

the corresponding energy (J). 

iv. To minimize the error between the experimental and calculated values, 

optimization is performed using Eq. (3.38) and statistical characteristics (mean, 

standard deviation, skewness and kurtosis) are determined for the adjusted 

bridging law parameters. 

 ( )
2

cal testError J J= −  (3.38) 

Figure 3.10 shows the flowchart for the procedure adopted in calculating the ERR.  

 

 

Fig. 3.9 DCB finite element model 

 

Cohesive element 

(user subroutine) 
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Table 3.1 Material properties (Shanmugam et al. 2013) 

Description Value 

11
(GPa)E  146 

22
(GPa)E  8.214 

12
(GPa)G  4.53 

12
  0.332 

21
  0.012 

2

0-Initiation
( J m )J  213 

 

Table 3.2 Test data for 51mm initial crack  (Shanmugam et al. 2013) 

Test number Crack length, a (m) Load (N) 
2(J/m )ssJ  

Test 1 0.1314 243.863 653.0 

Test 2 0.1614 220.741 800.6 

Test 3 0.1746 204.248 800.3 

Test 4 0.1203 236.659 517.5 

Test 5 0.1251 221.788 490.6 

Test 6 0.1509 223.733 721.3 

Test 7 0.1689 197.728 702.8 

Test 8 0.1740 203.795 791.7 

Test 9 0.1689 197.867 702.4 

Test 10 0.1880 193.867 833.7 

Test 11 0.1829 176.798 656.8 

Test 12 0.1421 201.575 519.9 

Test 13 0.1509 216.157 672.7 

Test 14 0.1560 198.514 605.6 

Test 15 0.1558 200.236 614.6 

 

Using the experimental data, bounds for each bridging law parameter are 

estimated as presented in Table 3.3 (Shanmugam et al. 2013). For these bounds, the 

HDMR techniques are implemented to generate the component functions. Accordingly, 

HDMR was constructed using 21 component functions for the adjusted parameters.  

The magnitudes of the crack length and load, where the steady state crack 

propagation starts, were determined for the developed component functions using the 

ABAQUS. Figure 3.11 presents a flow chart for generating the response surface using 

HDMR.  

From the Finite Element Analysis (FEA), the details of crack length and load 

are calculated for the component functions, and their results are shown in Table 3.4.  
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Table 3.3 Lower and upper bounds 

Parameter Lower bound Upper bound 
2(J/m )

SS
J  100 700 

0
(mm)u  1 7 

1
(mm)u  0.01 0.09 

2

0
(J/m )J  190 230 

fac
K  5 12 

 

Figure 3.12 shows the captured steady state energy and load for the corresponding crack 

length for the third component function. Using the FEA data, two individual HDMR 

response surfaces were created for crack length and load as they are necessary inputs 

for steady state ERR calculation. After substituting the available material properties in 

Eq. (3.1), it becomes easy to calculate the steady state ERR as shown in Eq. (3.39). 

 

22 2 0.00291
, 1

1.6425

p a
Energy J

a

 
= + 

 
 (3.39) 

 

Fig. 3.10 Flowchart for determining CZM parameters 
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Table 3.4 Cut-HDMR sampling and corresponding FEA results for 51 mm initial crack 

Component functions Load (N) Crack length (m) 

(100,  4,  0.455,  210,  8.5)f  127.26 0.1522 

(250,  4,  0.455,  210,  8.5)f  171.92 0.1523 

(400,  4,  0.455,  210,  8.5)f  208.67 0.1489 

(550,  4,  0.455,  210,  8.5)f  243.50 0.1440 

(700,  4,  0.455,  210,  8.5)f  275.26 0.1417 

(400,  1,  0.455,  210,  8.5)f  312.26 0.0940 

(400,  2.5,  0.455,  210,  8.5)f  243.50 0.1252 

(400,  4,  0.455,  210,  8.5)f  208.67 0.1489 

(400,  5.5,  0.455,  210,  8.5)f  187.23 0.1680 

(400,  7,  0.455,  210,  8.5)f  170.69 0.1860 

(400,  4,  0.01,  210,  8.5)f  213.36 0.1510 

(400,  4,  0.2325,  210,  8.5)f  209.41 0.1495 

(400,  4,  0.455,  210,  8.5)f  208.67 0.1489 

(400,  4,  0.6775,  210,  8.5)f  207.25 0.1489 

(400,  4,  0.9,  210,  8.5)f  207.37 0.1482 

(400,  4,  0.455,  190,  8.5)f  203.11 0.1515 

(400,  4,  0.455,  200,  8.5)f  205.43 0.1550 

(400,  4,  0.455,  210,  8.5)f  208.67 0.1489 

(400,  4,  0.455,  220,  8.5)f  209.96 0.1487 

(400,  4,  0.455,  230,  8.5)f  212.37 0.1417 

(400,  4,  0.455,  210,  5)f  207.34 0.1472 

(400,  4,  0.455,  210,  6.75)f  209.14 0.1469 

(400,  4,  0.455,  210,  8.5)f  208.67 0.1489 

(400,  4,  0.455,  210,  10.25)f  209.63 0.1487 

(400,  4,  0.455,  210,  12)f  209.78 0.1495 

 

The MCS was implemented on the response functions generated using HDMR 

with Pearson family of distributions. The selected distribution requires only four 

statistical parameters to represent probability density function (PDF). From each 

iteration of the MCS, the particular response surface generates one set of crack length 

and load values to estimate the CDF of steady state ERR using Eq. (3.39). The use of 

four statistical parameters facilitates the determination of each of the five CZM 

parameters in the HDMR owing to Pearson systems. The resulting 20 variables are 

adjusted for the purpose of simulation so as to match the scatter level in ERR with the 

experimental values. 
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Fig. 3.11 Flow chart of HDMR based response surface generation 

 

 

 

Fig. 3.12 Variation of energy and load with crack length (for 3rd sample point) 
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3.7 RESULTS AND DISCUSSION 

In order to simulate the scatter in the delamination process, the cohesive bridging law 

variables have to be adjusted. This process involves minimisation of error between the 

expected and actual scatter in the steady state ERR. The error between the computed 

CDF and actual CDF from the experimental data is optimized by implementing the 

particle swarm optimization (PSO) using lower and upper bounds as presented in Table 

3.3. The CDF plots of the steady state ERR for both experiment and simulation based 

obtained results are shown in Fig. 3.13. The statistical moments of the CZM parameters 

are well predicted by the implemented optimization process as observed from Fig. 3.13 

and the maximum error occurred is 0.105. In Table 3.5 the optimal values of the CZM 

bridging parameters are exhibited. Using the available optimized values of the CZM, 

with an arbitrary initial crack size of DCB specimens, the steady state energy can be 

anticipated. Similarly, the load and crack length scatters have also been captured in the 

simulation as shown in Figs. 3.14 and 3.15, respectively. The load plot is in good 

agreement with the experimental data and the maximum error occurred is 0.149. 

However, the crack length prediction has shown some contradiction due to the 

inconsistent definitions, and the maximum error is 0.252. An average ERR can be 

obtained throughout steady state crack propagation and it remains constant. In the same 

way, it is clearly identified where the steady state crack propagation is approaching for 

a particular load. Nonetheless, the crack length may take many values. Hence, the 

scatter in crack lengths is inappropriate for adjusting the CZM parameters. 

 

Fig. 3.13 Cumulative distribution function obtained by HDMR with respect to steady state 

energy for 51 mm crack 
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Table 3.5 Bridging law distribution results 

Bridging law parameters Pearson distributions Optimal  

ssJ  Mean (J/m2) 396.749 

Std. dev.(J/m2) 96.311 

 Skewness  0.285 

 Kurtosis 6.310 

   

0u  Mean (mm) 4.026 

Std. dev.(mm) 0.342 

 Skewness  -0.412 

 Kurtosis 3.784 

   

1u  Mean (mm) 0.285 

Std. dev.(mm) 0.106 

 Skewness  -0.047 

 Kurtosis 7.000 

   

0J  Mean (J/m2) 203.460 

Std. dev.(J/m2) 6.396 

 Skewness  0.250 

 Kurtosis 4.323 

   

facK  Mean  7.764 

Std. dev. 0.803 

 Skewness  -0.123 

 Kurtosis 6.658 

 

 

Fig. 3.14 Cumulative distribution function obtained by HDMR with respect to load for 51 mm 

crack 
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Fig. 3.15 Cumulative distribution function obtained by HDMR with respect to crack for 51 

mm crack 

 

To show the predictive potential of newly developed CZM, a FE model with 

76.2 mm crack size is created. Similar to the 51 mm initial crack, two individual HDMR 

response surfaces were created for crack length and load. Table 3.6 shows the FEA 

results obtained for the 76.2 mm initial crack component functions. Considering the 

bridging parameters as the material property, the determined optimal cohesive 

parameters for 51 mm model are directly taken for 76.2 mm model with no further 

minimisation process.  

 The MCS was performed on the HDMR expressions and their results are 

compared with the experimental data for load, crack length and steady state energy as 

presented in Table 3.7. Figure 3.16 presents the details of crack propagation and 

identification of load. It has predicted the values exactly matching with the one obtained 

through the experiments, hence the proposed technique has the capability to model the 

delamination strength efficiently. As observed for the 51 mm initial crack length 

specimens, the crack length scatter (Fig. 3.17) between the test and simulation was not 

comparable even for the 76.2 mm specimens. As the 51 mm and 76.2 mm models 

possess the identical ERR, the information can be combined to make a single plot as 

presented in Fig. 3.18. 
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 Table 3.6 Cut-HDMR sampling and corresponding FEA results for 76.2 mm initial crack 

Component functions Load (N) Crack length (m) 

(100,  4,  0.455,  210,  8.5)f  113.365 0.1780 

(250,  4,  0.455,  210,  8.5)f  150.165 0.1750 

(400,  4,  0.455,  210,  8.5)f  180.786 0.1720 

(550,  4,  0.455,  210,  8.5)f  209.988 0.1675 

(700,  4,  0.455,  210,  8.5)f  235.445 0.1650 

(400,  1,  0.455,  210,  8.5)f  254.272 0.1171 

(400,  2.5,  0.455,  210,  8.5)f  206.133 0.1486 

(400,  4,  0.455,  210,  8.5)f  180.786 0.1720 

(400,  5.5,  0.455,  210,  8.5)f  182.969 0.1750 

(400,  7,  0.455,  210,  8.5)f  156.145 0.2027 

(400,  4,  0.01,  210,  8.5)f  181.692 0.1725 

(400,  4,  0.2325,  210,  8.5)f  180.598 0.1713 

(400,  4,  0.455,  210,  8.5)f  180.786 0.1720 

(400,  4,  0.6775,  210,  8.5)f  177.616 0.1733 

(400,  4,  0.9,  210,  8.5)f  179.699 0.1720 

(400,  4,  0.455,  190,  8.5)f  182.764 0.1710 

(400,  4,  0.455,  200,  8.5)f  184.855 0.1700 

(400,  4,  0.455,  210,  8.5)f  180.786 0.1720 

(400,  4,  0.455,  220,  8.5)f  180.681 0.1710 

(400,  4,  0.455,  230,  8.5)f  181.703 0.1718 

(400,  4,  0.455,  210,  5)f  182.124 0.1718 

(400,  4,  0.455,  210,  6.75)f  113.365 0.1780 

(400,  4,  0.455,  210,  8.5)f  180.786 0.1720 

(400,  4,  0.455,  210,  10.25)f  150.165 0.1750 

(400,  4,  0.455,  210,  12)f  209.988 0.1675 

 

 

 

Table 3.7 Test data for 76.2 mm initial crack (Shanmugam et al. 2013) 

Test number Crack length, a (m) Load (N) 
2(J/m )ssJ  

Test 1 0.1535 195.306 567.8 

Test 2 0.1599 179.193 518.2 

Test 3 0.1722 179.608 602.0 

Test 4 0.1596 173.628 484.5 

Test 5 0.1585 184.528 540.3 

Test 6 0.1725 173.947 566.9 

Test 7 0.1708 179.904 594.5 

Test 8 0.1600 198.845 638.6 

Test 9 0.1799 164.193 548.5 
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Fig. 3.16 Cumulative distribution function obtained by HDMR with respect to load for 51 & 

76.2 mm initial crack 
 

 

Fig. 3.17 Cumulative distribution function obtained by HDMR with respect to crack for 51 & 

76.2 mm initial crack 

 

 

Fig. 3.18 Cumulative distribution function obtained by HDMR with respect to steady state 

energy for 51 & 76.2 mm initial crack 
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Comparison Between HDMR, RSM and Experimental Data 

The results of HDMR based CZM are compared with the RSM based probabilistic CZM 

reported in the literature (Shanmugam et al. 2013). The comparative study is carried 

out for 51 mm initial crack among the RSM, HDMR and experimental data. Figure 3.19 

shows the scatters obtained from RSM, HDMR and the experiment. It is also observed 

that the HDMR sampling scheme is having much significance as compared to the LHS 

sampling scheme owing to the accurate results in minimum component functions. From 

the Fig. 3.19, it is observed that the maximum error occurred for predicting the load, 

based on RSM and HDMR, is 0.159 and 0.149, respectively compared to the 

experimental data. The efficiency of the HDMR can be seen in Fig. 3.20, where the 

crack length of the specimen captured using first-order HDMR is much better than the 

second order nonlinear regression model (Shanmugam et al. 2013). When compared 

the RSM and HDMR in Fig. 3.20, the error is 0.265 and 0.252 respectively.  

Figure 3.21 shows the effectiveness of the HDMR while capturing the 

delamination strength of the DCB specimen. Finally, in the energy plot shown in Fig. 

3.21, the error obtained using RSM and HDMR is 0.148 and 0.105, respectively. In the 

similar way the predictive capability of the HDMR based CZM was compared to the 

76.2 mm initial crack. As discussed earlier, all the data are combined into one data set 

and plotted. 

 

 

Fig. 3.19 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to load for 51 mm crack 
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Figure 3.22 shows the CDF plots of the load corresponding to the steady state 

crack propagation. In the same way, the plots for crack length and energy are 

respectively shown in Figs. 3.23 and 3.24. Due to the reasons mentioned earlier, while 

capturing the steady state crack length, the application of HDMR improves the 

efficiency of the model compared to the nonlinear regression model. 

 

 

Fig. 3.20 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to crack for 51 mm crack 

 

 

Fig. 3.21 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to steady state energy for 51 mm crack 
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Fig. 3.22 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to load for 51 & 76.2 mm crack 
 

 

Fig. 3.23 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to crack for 51 & 76.2 mm crack 
 

 

Fig. 3.24 Cumulative distribution function obtained by HDMR, RSM and test data with 

respect to steady state energy for 51 & 76.2 mm crack 
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Moreover, the HDMR based CZM is effective in capturing the delamination strength 

of any arbitrary initial crack length. Therefore, the novel method implemented to 

capture the steady state energy using HDMR based CZM depicts a good agreement 

between the predicted and the actual scatter. In fact, a marginal deviation is observed 

in the plots from the experimental data in comparison with the present model using 

HDMR. This deviation can be further reduced with the use of higher-order HDMR 

expressions, but with additional computational effort. 
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CHAPTER 4 

EXPERIMENTAL STUDY FOR FRACTURE TOUGHNESS 

4.1 GENERAL 

Experimental investigations are necessary to understand the failure behavior of 

composites. Shih (1991) and Hutchinson and Suo (1991) developed a valuable 

theoretical work on the interfacial fracture. For understanding the interfacial fracture, a 

well-defined experimental setup with suitable load fixtures and effectively designed 

specimens are required. The experimental setup should be able to perform the test on 

different types of material pairs, and has to form different mode mixities. For non-

oscillatory singular fields, the test techniques are principally driven by the need to 

analyse the delamination toughness of laminated materials. The DCB (Devitt 1980) and 

end notch flexure (ENF) tests (Carlsson et al. 1986) are well recognized for usage of 

such materials under pure mode-I and mode-II conditions, respectively. Several MM 

experiments have been employed over the past years (Whitney and Pagano 1989). The 

mixed-mode bending (MMB) test is found to be the widely recognized method by 

different researchers in the recent times (Reeder and Crews 1990; Reeder and Crews 

1992; Oliveira et al. 2009; Razavi et al. 2018). However, the MMB test requires a 

nonlinear analyses for most of the bimaterial specimen geometries, as reported by 

Sundararaman and Davidson (1997). 

In this chapter, a brief description is given on the SLB test, and also a suitability 

analysis is made on the interfaces between materials, in order to determine the fracture 

toughness. It is shown that the SLB test, along with other tests such as the asymmetric 

DCB  and ENF test, provides a way to determine the fracture toughness of most 

bimaterial interfaces over an entire range of mode mixities (Sundararaman and 

Davidson 1997). Besides, these tests use somewhat simple specimen geometries, 

loading fixtures, and data reduction approaches. As will be elucidated afterwards, the 

key benefit of the SLB test is the use of compliance calibration procedure to directly 

obtain the whole ERRs from test data. Thus, any uncertainties resulted from 
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inappropriate description of material properties, geometric properties, and/or the effect 

of finite width are controlled. 

 

4.2 THE SLB TEST 

Figure 4.1 represents a distinctive SLB test and specimen schematic diagram. 

Consequently, the sample has a beam-type geometry which comprises different 

materials attached in some manner. Accordingly, Davidson et al. (1995) have made a 

standard three-point bending fixture with loading pins. In the experiment, a portion of 

the lower material has been removed in order to transfer the entire reaction force at the 

cracked end to the upper end material. 

 

4.2.1 Classical Plate Theory Analysis 

Classical Plate Theory (CPT) analysis is used to relate the in-plane load and moment 

resultants in a sample to its in-plane strains and curvature (Szekrényes and Uj 2006). It 

is believed that CPT is valid for the measurement of strain ERR (Davidson and 

Sundararaman 1996a). From the SLB geometries shown in Fig.4.1, the section on top 

of the crack plane is termed as the top plate and the region beneath the crack plane is 

the bottom plate. The origin of system lies along the plane defined by the geometric 

centre of the uncracked region. For the upper cracked region, the moment curvature 

relationship is given by (Davidson and Sundararaman 1996a). 

 
2

2T T

d w
M BD

dx
= −  (4.1) 

where TM  is the moment on a face expressed by a normal vector in the positive or 

negative x  direction, B is the width, w  is the deflection in the z direction, and TD  is the 

effective bending rigidity of the top plate. As the bending rigidity depends upon the 

constraint conditions, the term ‘effective’ is used in the description. Moreover, a 

standard sign convention is used for TM , i.e., a positive moment generates a positive 

stress in positive z. 

For the uncracked section, a similar functional relationship is also applied, in 

such cases the subscript ‘T’ will be omitted. Applying the CPT assumptions, the 

bending rigidity of the top plate is expressed as 
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3
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T T
T

E t
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=  (4.2) 

and for the uncracked region 
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= −  (4.3) 
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E t E t
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 +
=  (4.6) 

where, ,i iE E =  for plane stress conditions and ( )21 .i i iE E = −  for plane strains.  

In the above expressions, the terms iE  and i  corresponds to the Young’s modulus and 

Poisson’s ratio, respectively, of material ' ',i and it  is the thickness (Fig. 4.1). The TE

term used in Eq. (4.2), is similarly can be expressed using the above equation by 

substituting the subscript the ' 'i  term in the iE  by ' 'T . The expression for D  in Eq. 

(4.3) represents the reduced bending rigidity as shown by the uncracked region, that 

does not have a midplane symmetry. This equation is derived from the standard CPT 

equation by considering the fact that, the in-plane load is zero for the SLB geometry 

and loading. 

 

 

Fig. 4.1 SLB test and specimen geometry  
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 The moment-curvature relationship expressed in Eq. (4.1) and its equivalent for 

the uncracked region are used in the derivation of the equation of compliance of the 

SLB specimen using CPT as 

 
( )3 3

CPT
2 1

12

L a R
C

BD

+ −
=  (4.7) 

where the compliance ( )C  is defined as the centre-point deflection divided by the load. 

Also, the crack length, ( )a  and half-span length, ( )L  are as defined in Fig. 4.1, and 

R is the ratio of the flexural rigidity of the uncracked region to that of the top plate, 

i.e., .TR D D=  Assuming a specimen production process with no contribution of the 

residual thermal stresses to the ERR, Eq. (4.7) may be substituted into the relation 

between ERR ( )G  and the derivative of compliance with respect to crack length; 

 
2

2

P C
G

B a


=


 (4.8) 

to obtain 

 
( )2 2

CPT

2

1

8

P a R
G

B D

−
=  (4.9) 

Or, substituting Eq. (4.7) into Eq. (4.9) 

 
( )

2
CPT

3 3

3 1

2 2 1

wP a R
G

B L a R

 −
=  

+ − 


 (4.10) 

where w is the center-point deflection and P  is the applied load. Equation (4.9) with 

the critical load or Eq. (4.10) with the critical load and deflection, can be used to 

determine the critical ERR, c( )G . Equation (4.10) is more precise, as there is less effect 

of errors in material properties on c.G  Hence, the compliance calibration method is 

found to be the most preferable and more precise data reduction technique for obtaining 

cG . In such approaches, the compliance of the specimen should be first measured with 

proper assignment of the specimen in the loading point as a function of crack length. 

The specimen is then examined to failure at the crack length of interest. Likewise, the 

critical load together with the experimentally measured compliance and the crack length 

relations are applied in Eq. (4.8) to get c.G  
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4.2.2 Laboratory Test 

In general, the fracture toughness of the materials is obtained by performing the 

laboratory test on DCB for mode-I, and ENF for mode-II (Tsai et al. 2014; Kossakowski 

2007). Lee et al. (2010) conducted co-cured SLB joint tests to evaluate the fracture 

toughness of the composite materials under mode-I and II dominant conditions. In SLB 

joint, the mode mixity can be controlled by modifying the specimen thickness. For the 

homogeneous SLB, the values of the mode mixity ranges may precisely be acquired 

from the values reported in Davidson et al. (1995).  Hence, SLB joint has been studied 

in the present work by applying three-point bending tests on the composite specimens. 

The composite specimens have been prepared with mild steel and unidirectional carbon 

fiber reinforced materials. 

An alternative to the DCB and ENF tests, the SLB joint specimens have been 

utilized by changing the thickness of the composite specimens. Figure 4.2 shows the 

SLB specimen with dominant conditions of mode-I and mode-II. The composite 

thickness was adjusted in order to develop different mode conditions. The details of the 

composite specimens are as follows: the thickness of the composite for mode-I 

dominant case is 1 0.7 mmat =  and for mode-II dominant case is 1 2.2 mmbt = , and the 

length and breadth of the composites are 40 and 5 mm, respectively. The dimensions 

of the steel are 26 1 5 mm  ; the distance between supports, 2 35 mm;L =  the initial 

crack, 12.5 mma = from the left support; 2 1 mmt =  and 5 mm.B =  Table 4.1 

presents the details of the materials. The experiments were conducted in TINUS Olsen 

testing machine as per ASTM D790 as shown in Figs. 4.3 and 4.4. 

 

 

Fig. 4.2 SLB joint dominant cases (a) Mode-I, (b) Mode-II 
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Table 4.1 Material properties 

Material Property Value 

Composite 

1
 (GPa)E  130.20 

2 3
,   (GPa)E E  8.00 

12 13
, (GPa)G G  4.50 

12 13
,     0.28 

23
  0.46 

Steel 
 (GPa)E  200.00 

  0.30 

 

The load-displacement (P-δ) curves obtained from the experiments for the 

mode-I and mode-II dominant conditions are shown in Figs. 4.5 and 4.6, respectively. 

In mode-I case the maximum force noticed is 21.34 N and in mode-II case is 144.32 N. 

Due to the thickness variation in the composite arms, maximum deflection occurred 

before failure in the mode-I is 0.669 mm and in the case of mode-II is 0.207 mm. The 

link between the P-δ curve during crack propagation and the fracture energy is usually 

represented by the compliance method (Whitney and Pagaon 1989). The fracture 

toughness was measured and mode-mixity was determined experimentally by using the 

classical beam theory (Davidson and Sundararaman 1996a) 

 

Fig. 4.3 Experimental set up for bending test 
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Many experimental observations in MM delamination specimens reveal that the 

fracture energy globally involved in the fracture process strongly depends on the 

percentage of participation of different fracture modes. The fracture toughness for pure 

mode-I and mode-II conditions were determined by linear extrapolation as shown in 

Fig 4.7 (Allix and Corigliano 1996; Lee et al. 2010). 

 

Fig. 4.4 Three-point bending test for (a) Mode-I and (b) Mode-II 

 

 

Fig. 4.5 P-δ curve for mode-I dominant condition 
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Fig. 4.6 P-δ curve for mode-II dominant condition 

 

 

Fig. 4.7 Fracture toughness as a function of the mode mixity by linear extrapolation 

 

The circular dots are the fracture toughness for each mode dominant condition and the 

diamond dots are the fracture toughnesses for each pure mode obtained by linear 

extrapolation. The mode decomposition values obtained from calculation are 

2
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II 292.6 J mc =  for each pure mode, respectively. 
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CHAPTER 5 

SIMULATION OF MIXED MODE COHESIVE ZONE MODEL 

5.1 GENERAL 

Generally, predicting the failure mechanism of adhesive joints using simulation is 

challenging task due to the complexity in characterising the interface between adhesive 

and adherend joints (Chang et al. 1998). Thus, FE models are used to effectively 

represent the adhesive layer, and the bonding between adhesive and adherent of the 

composite, which states that the strength of the adhesive is weaker than interface 

strength (Sheppard et al. 1998). However, in many cases, partial cohesive failures occur 

in adhesive joints, and hence analysing the failure mechanism is of more importance in 

composites (Behroozinia et al. 2018). 

 The VCCT is a basic modeling technique which depicts the failure mechanism 

of adhesive joint based on LEFM (Alfano and Crisfield 2001). In VCCT, the crack 

propagation depends on the displacement of the internal nodal forces at the crack tip, 

and the ERR is calculated based on the relative displacements of the nodes. If the 

calculated ERR exceeds the fracture toughness of the material, then the crack 

propagation will take place (Wei et al. 2017). 

In contrast to VCCT, where stiff spring elements are used, the cohesive laws 

are implemented in CZM to infer the failure mechanism of the adhesive layer (Shet and 

Chandra 2002). The TSL such as bilinear, trilinear, PPR , etc., defines the progressive 

failure of the adhesive layer (Shabir et al. 2011; Park and Paulino 2012). The bilinear 

TSL can be described by three parameters (initial stiffness, critical cohesive strength 

and fracture toughness). To determine the cohesive parameters, as there is no standard 

method available, experiments need to be conducted on the given material for fracture 

toughness (Lee et al. 2010). Using the simulation and experimental data, the remaining 

parameters can be obtained. From the P-δ curves, the observed load deviation is 

considered as an error which is used to construct a metamodel, and then the error is 

minimized using optimization techniques. However, the choice of the metamodel will 

eventually affect the sensitivities in the optimization algorithm (Kim et al. 2006). 
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Generally, two methods are considered in the extraction process of TSLs: a 

direct method and an iterative method. In the direct method, in general, primarily 

measured displacement variables were used to deliver results without repetition on 

extensive numerical analysis (Sørensen and Jacobsen 2000; Sorensen et al. 2008; Zhu 

et al. 2009). In this approach, however, resolution issues control the extraction of TSLs 

in deciding the crack front and determining the crack opening displacements. 

Conversely, the iterative method categorizes parameters based on comparison results 

of numerical solutions and measurements (Cox and Marshall 1991; Li et al. 2005a; 

Mello and Liechti 2006; Sorensen et al. 2008). 

In most cases, fracture energies use a specific equipment, loading fixture, or a 

number of different specimen configuration for assessing the mode mixity effect of 

bonded joints. For instance, a bi-axial fracture test was performed by Liechti and Chai 

(1992), to describe the fracture energy envelope under full range of mode mixity for a 

brittle epoxy/glass interface. Accordingly, as the mode mixity closes to the pure mode-

II condition, the fracture energy abruptly increases. In addition, has made an attempt to 

determine the fracture energy on asymmetric constant thickness DCB specimen up to a 

phase angle of 38° using a simplified wedge test, where the phase angle is defined by 

( )1tan II IK K−=  and KII and KI are the mode-II and mode-I stress intensity factors, 

respectively. During such test, the fracture energy was observed to rise as the value of 

the phase angle approximately reaches 27°. Furthermore, an asymmetric DCB test was 

performed by Sundararaman and Davidson (1997) on a glass/epoxy interface to assess 

a mode mixity up to 30°.  

Russell and Street (1985) have also developed a MM flexure test (also referred 

to as the SLB test), to determine the fracture energy in bonded joints. An identical 

sample to that of the DCB configuration was used during SLB test, except that the load 

is applied to only one of the debonded arms of the sample, as the bonded end remains 

fixed. Any variation in the ratio of the adherend thicknesses in the SLB test leads to a 

limited mode mixity state, similar to that of the DCB test. For the case of identical 

adherends, the SLB provides a mode mixity of 41°. 

In general, all the aforementioned test configurations are used to evaluate the 

fracture energy at a single mode mixity adherends with set of uniform thicknesses. Park 
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and Dillard, (2007) suggested asymmetric tapered beam samples to give a range of such 

thicknesses, in which one adherend is of uniform thickness and the other is contoured. 

The relative toughness of the two adherends varies as the debond propagates, resulting 

in a systematic variation in fracture mode mixity. Sundararaman and Davidson (1997) 

have documented values of the asymmetric tapered specimens tested as DCB 

specimens. 

Nevertheless, hybrid adherend arrangements, such as the end load split (ELS) 

or ENF specimens, could also be applied to the SLB loading configuration or to other 

configurations. In this case, the mode mixity can change from 0° to the limiting value 

of approximately 40° if the DCB specimen is used, with one adherends being much 

firmer than the other. 

 

5.2 MIXED-MODE COHESIVE ZONE MODEL (MM-CZM) 

CZM is one of the specialised models to predict the crack growth in damage region. In 

the CZM, the damage region is accumulated into one cohesive layer before it is placed 

ahead of the crack tip. Here, the TSL characterises the fracture mechanism, and the 

intrinsic fracture energy (Г) influences on the propagation of the crack. Hence, the TSL 

constitutes the microscopic and macroscopic features of the composite specimens 

(Vossen et al. 2014). Both the energies of adhesive and adherent of the composites are 

incorporated into the cohesive zone. An advantage of the SLB joint is the development 

of normal and shear behaviors occuring simultaneously in the damage zone with the 

existing MM condition.  

The damage initiation for MM condition is evaluated as follows. 

 

2 2

I II

c c

I II

1
 

 

   
+ =   

   
 (5.1) 

where ( )I II,   are the stress elements, and ( )c c

I II,   are the cohesive strengths at 

critical state. Similarly, the propagation of the cohesive layer is estimated as follows. 

 I II

I II

1
G G   

+ =   
    

 (5.2)

in which ( )I II,G G  are the ERR, and ( )I II,   are the fracture toughness. Once the 
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cohesive elements satisfy Eq. (5.1) criterion, the damage initiation will occur in the 

model and the complete separation is guided by Eq. (5.2). The bilinear TSL as shown 

in Fig. 5.1 is considered to define the fracture process of the SLB joint with three 

cohesive parameters. 

 

5.3 DETERMINATION OF COHESIVE PARAMETERS 

Generally, CZMs are used to describe the interfacial mechanism of the composite 

joints. To understand fracture mechanism using CZM, cohesive parameters must be 

known in advance. The iterative method, in contrast, measures the parameters by 

distinguishing numerical results and measurements, which has been frequently 

employed in the past. The research on the systematic way to find the cohesive 

parameters is scarce. In the present study, the cohesive parameters are determined based 

on HDMR techniques as outlined in the flow-chart shown in Fig. 5.2. 

 

Application of HDMR for Cohesive Parameters: 

In this study, it is observed that the critical cohesive strength and initial stiffness are 

responsible to efficiently define the failure mechanism of SLB joint. The limits on the 

affecting variables are obtained by relating the experimental data with the simulation 

results. Table 5.1 shows the limits of the variables. 

 

 

Fig. 5.1 Bilinear TSL 
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Based on the limits, HDMR sampling scheme is implemented to generate the 

component functions, and the corresponding P-δ curves are obtained through FEA. 

Using the FEA data, two individual HDMR expressions were developed for mode-I and 

mode-II dominant cases, as they are necessary input for predicting the optimal values 

of the cohesive parameters. Therefore, to obtain the optimal cohesive parameters for 

predicting the MM-SLB joint failure, the error observed from the experiment and 

simulation P-δ curves should be minimized. To minimize the error, a nonlinear 

algorithm-based optimization technique has to be implemented.  

Using lower and upper limits as presented in Table 5.1 and the developed 

HDMR expressions, the GA is implemented. From this process the obtained optimal 

cohesive parameters are 8.5MPa,c

I = 57MPa,c

II = 1 50MPa,E =  and 350MPa.IIE =  

Based on the obtained cohesive parameters, MM-SLB joint failure is determined. 

 

 

Fig. 5.2 Flowchart for determining the CZM parameters 
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Table 5.1 Lower and upper limits 

Parameter Lower limit Upper limit 
2

I
 (N/mm )E  50.0 300.0 

2

II
 (N/mm )E  200.0 350.0 

cr

I
  6.5 8.5 

cr

II
  48.0 58.0 

 

5.4 ANALYSIS OF SLB JOINT  

The numerical model utilized to predict the failure mechanism of SLB joint is shown 

in Fig. 5.3. In the FE model, the cohesive elements are used in the FPZ, and for the 

remaining portion, four-node elements are provided. Figure 5.3 also shows the FPZ 

from the crack head to the loading point of the specimen. The entire model was 

constructed with the help of FEA software. The total number of elements used for 

mode-I and mode-II model are 5032 and 6598, respectively. Moreover, Fig. 5.4 shows 

the discretised version of the SLB geometry near the crack tip. CPE4R type of element 

are adopted. The mesh dimensions are adopted based on the models created by 

Davidson et al. 1995. Thus, the output acquired from the FEA is then evaluated with 

the experimental values. The obtained optimal cohesive parameters were implemented 

to verify the developed method in the mode-I and mode-II dominant SLB joint models. 

FEA results of these models are compared with the experiment results as shown in Figs. 

5.5 and 5.6. The relative errors of 6.5% and 5.3% for mode-I and mode-II dominant 

conditions are observed between the peak failure load of the experimental and 

simulated P-δ curves.  

 

 

 

 

Fig. 5.3 FE model of SLB joint 
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Fig 5.4 Finite element mesh in the crack tip neighborhood 

 

 

Fig. 5.5 P-δ curves for mode-I 

 

 

Fig. 5.6 P-δ curves for mode-II 
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Hence, the determined cohesive parameters are implemented in the MM-CZM. For 

different thicknesses of the composite varying from 1.28 to 1.48 mm, the FEA is carried 

out by implementing the developed cohesive parameters. Due to the variation in 

thickness of composite, different mode-mixities will develop in the specimens. In Fig. 

5.7 and Fig. 5.8 the P-δ curves obtained from the simulation and the experiment for 

composite thickness of 1.28 and 1.48 mm are respectively presented. 

 

 

Fig. 5.7 P-δ curve ( 1.28 mmt = ) 

 

 

Fig. 5.8 P-δ curve ( 1.48 mmt = ) 

The relative error between the experiment and simulation for the 1.28 mm and 1.48 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

6.1 SUMMARY AND RESEARCH FINDINGS 

Compared with metals, composites have high demand due to their elevated strength to 

weight. Many justifications are presumed for the failure behaviour of the composite 

materials. One of such major reason of failure is the delamination. The cracks due to 

the delamination interact with misaligned or inclined fibers especially in unidirectional 

composites. Usually,  such interactions lead to fiber bridging, which inturn causes the 

nominal delamination resistance to rise as the crack spreads. The key objetive of study 

in this area is to evaluate the behavior of composites when fiber bridging occurs during 

structural failure. In general, mode-I inter-laminar fracture toughness and critical ERRs 

of unidirectional composites are determined using DCB specimens. To understand the 

energy variations in unidirectional composites, several crack dimensions of DCB 

samples are tested, and the variations in ERR are observed. 

CZM represents the fracture as a material separation. Nowadays,  the use of 

CZM has grown largely due to the accessibility of computational power. For this 

reason, the probablistic model development process requires the determination of the 

CZM parameter distributions. Furthermore, the fiber bridging zone has to be simulated 

as a discrete method on its own. As a result, the link between the crack opening 

separation and the local bridging tractions emanating from the bridging ligaments is 

characterized by a bridging law, which in turn defines the failure process. 

The order of correlations amongst the input parameters is revealed by a 

systematic mapping technique between the inputs and outputs. Only a relatively low-

order relationships of the input parameters are expected for most well-defined physical 

systems in order to have an impact upon the output. The HDMR utilize this property to 

present an exact hierarchical representation of the physical system. The HDMR 

approximates multivariate functions in such a way that the component functions of the 

approximations are well-organized, beginning with a constant trend and later steadily 

approaches to multivariates as it progresses along process such as first-order, second-
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order and so on. The HDMR applications includes building a computational model 

directly from experimental/field data, making an efficient comparable operational 

model that replaces an existing time-intensive mathematical model, identifying the 

main model parameters, comprehensive uncertainty studies, efficient quantitative risk 

analysis, etc. It is specified that a few lowest-order terms are often sufficient to 

represent the model in equivalent form to good accuracy. 

In this work, bridging laws have been applied into an interface element using 

the user subroutine in ABAQUS. The efficient implementation of a cohesive user 

element into ABAQUS is carried out. This element type is proved to be a flexible tool 

for estimation of opening crack length and crack profiles as a function of the crack 

growth resistance. The distinct benefit of cohesive element is that it has a number of 

integration points which can be used to advance the numerical performance for a given 

mesh density. Therefore, a novel HDMR based CZM has been developed to capture the 

steady state ERR of an initial crack of 51 mm unidirectional composite specimen. 

To understand the fracture characteristics in the FPZ, the adjusted bridging law 

has been employed in the FE model. Based on the cohesive parameter limits, two first-

order HDMR expressions are developed for capturing the load and crack length, and 

then the  objective function was  built-up using the residuals between the experimental 

and the predicted responses. Optimization techniques are used to get the optimal values 

from the developed HDMR expressions. The simulation of delamination for 51 mm 

initial crack is carried out with the help of the optimal values. MCS is applied to the 

HDMR expressions with the Pearson family distributions of bridging law parameters. 

From each iteration of the MCS, the particular HDMR generates load and crack length 

values to estimate steady state ERR. The results showed that the developed HDMR 

based CZM is effective in capturing the delamination strength. In order to substantiate 

the effectiveness of the developed model, the delamination strength of 76.2 mm initial 

crack specimens is predicted without any further optimization. The comparison of the 

simulation and experimental results showed good agreement. 

Finally, the developed procedure has been adopted for determining the cohesive 

parameters of an MM-CZM. Instead of DCB and ENF tests for finding the fracture 

toughness in pure modes, SLB joint with different thickness of the composite are 

manufactured and tested in the laboratory using TINUS testing maching. The critical 
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cohesive strength and initial stiffness are selected as the variables which affect the 

behaviour of the SLB joints, and the limits of these variables are decided based on the 

simulation and the experimental results. The two HDMR expressions are, then 

constructed for mode-I and mode-II dominant conditions. From the observation of P-δ 

curves obtained from the experiments and the simulation, the variation in peak loads is 

considered as an error. Using the cohesive parameter limits and HDMR expressions, 

the optimization was carried out to minimize the error. The MM-CZM is developed 

based on the optimal values and utilized in predicting the failure behavior of the MM-

SLB joint. 

For different mode-mixities, the constructed model has been implemented in the 

FEA. The effectiveness of the model has been validated using experimental results.  

The results obtained from the FEA indicate that the failure behaviour was well predicted 

for different mode-mixities. The maximum relative error observed between the 

experimental and the simulation failure loads is around 7% for all the cases. It is 

observed that the other models exhibited the error of about 15% as reported in the 

literature. Hence, the developed model using HDMR is computationally efficient, and 

it can be implemented in different types of adhesive joints. 

 

6.2 FUTURE SCOPE 

i. In the present work, based on first order HDMR expansions the CZM has been 

developed. Further, the accuracy for capturing the delamination strength can be 

significantly improved by employing the second order HDMR with a little  

increased computational effort. 

ii. In the present study, Lagrange interpolation functions are utilized. Further, other 

interpolation techniques can be used for improving the computational 

efficiency. 

iii. The present model has been developed for crack growth studies under static 

loads. However, further studies using the HDMR based CZM need to be 

employed for fatigue crack growth propagation analysis. 
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APPENDIX A 

INPUT FILE FOR 2D ELEMENT  

 

*HEADING 

*NODE 

1, 0.0, 0.0 

2, 1.0, 0.0 

3, 0.5, 0.0 

4, 0.0, 0.0 

5, 1.0, 0.0 

6, 0.5, 0.0 

7, 1.0, 1.0 

8, 0.0, 1.0 

9, 1.0, 0.5 

10, 0.5, 1.0 

11, 0.0, 0.5 

*NSET, NSET=ALL 

8, 10, 9 

*user element, type=U6, nodes=6, coordinates=2, i properties=2, properties=7, 

variables=15 

1, 2 

*ELEMENT, TYPE=U6, ELSET=ALL 

1, 1, 2, 3, 4, 5, 6 

*ELEMENT, TYPE=CPS8, ELSET= ALL 

2, 4, 5, 7, 8, 6, 9, 10, 11 

*SOLID SECTION, ELSET=EALL, MATERIAL=MAT1, 

ORIENTATION=ORIENT1 

1.0 

*UEL PROPERTY, ELSET=ALL 

1.65, 1.0, 0.5, 0.15, 1.0, 1000.0, 1.0, 3 

1 

*MATERIAL, name=mat1 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

41.5E3, 9.5E3, 9.5E3, 0.3, 0.3, 0.3, 15.8E3, 3.65E3 

3.65E3 

*orientation, name=orient1 

1.0, 0.0, 0.0, 0.0, 1.0, 0.0 

1, 0. 

*BOUNDARY 

1, 1, 2 

2, 2, 2 

3, 2, 2 

4, 1, 1 

11, 1, 1 

8, 1, 1 
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*STEP, INC=100, NLGEOM 

*STATIC 

0.01, 1.0, 0.01 

*MONITOR, DOF=2, NODE=4 

*CONTROLS, PARAMETERS=TIME INCREMENTATION 

7, 10, 9, 16, 10, 4, 20, 10, 6 

*BOUNDARY 

8, 2, 2, 1.0 

7, 2, 2, 1.0 

10, 2, 2, 1.0 

*OUTPUT, FIELD, FREQ=1 

*ELEMENT OUTPUT 

S, 

E, 

*NODE OUTPUT 

U, 

RF, 

*OUTPUT, HISTORY, FREQ=1 

*NODE OUTPUT, NSET=ALL 

U2, 

RF2 

*end step 
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APPENDIX B 

INPUT FILE FOR 51 mm INITIAL CRACK 

 

*HEADING 

*Node, input=.\PREPARE51.2\ABA_ND.DAT 

*NSET, NSET=TOP_POINT 

1 

*NSET, NSET=BOT_POINT 

20370 

*NSET, NSET=FIXED 

2, 1018,  1019,  1020,  1021,  1022,  1023,  1024,  1025,  1026,  

1027,  1028,  1029,  1030,  1031,  1032,  1033,  1034,  1035,  1036,  

1037,  1038,  1039,  1040,  1041,  19331, 20347, 20348, 20349, 20350, 

20351, 20352, 20353, 20354, 20355, 20356, 20357, 20358, 20359, 20360, 

20361, 20362, 20363, 20364, 20365, 20366, 20367, 20368, 20369 

*Nset, nset=CZ_TOP 

*include,input=.\PREPARE\CZ_TOP.DAT 

*user element, type=U6, nodes=6, coordinates=2, i properties=2, properties=7, 

variables=30 

1, 2 

*ELEMENT, TYPE=CPE8, input=.\PREPARE\ABA_EL_TOP.DAT, 

ELSET=TOP_ARM 

*ELEMENT, TYPE=CPE8, input=.\PREPARE\ABA_EL_BOT.DAT, 

ELSET=BOT_ARM 

*ELEMENT, TYPE=U6, input=.\PREPARE\ABA_EL_COH.DAT, 

ELSET=COHESIVE 

*SOLID SECTION, ELSET=TOP_ARM, MATERIAL=MAT1, 

ORIENTATION=ORIENT1 

25.0 

*SOLID SECTION, ELSET=BOT_ARM, MATERIAL=MAT1, 

ORIENTATION=ORIENT1 

25.0 

*UEL PROPERTY, ELSET=COHESIVE 

***number Jss Uo U1 J0 Kfac 

*** ref1 272 6.679 0.782 206 9.180 

272e-3, 6.679, 0.782, 206e-3, 9.18, 1000.0, 25.0, 6 

1 

*MATERIAL, name=mat1 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

146.0E3, 8.214E3, 8.214E3, 0.332, 0.332, 0.332, 4.53E3, 4.53E3 

4.53E3 

*orientation, name=orient1 
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1.0, 0.0, 0.0, 0.0, 1.0, 0.0 

1, 0. 

*orientation, name=orient2 

1.0, 0.0, 0.0, 0.0, -1.0, 0.0 

1, 0. 

*BOUNDARY 

FIXED, 1, 2 

*STEP, INC=100, NLGEOM 

*STATIC 

0.01, 1., 1e-08, 0.01 

*MONITOR, DOF=2, NODE=TOP_POINT 

*CONTROLS, PARAMETERS=TIME INCREMENTATION 

7, 10, 9, 16, 10, 4, 20, 10, 6 

*BOUNDARY 

TOP_POINT, 2, 2, 10.0 

BOT_POINT, 2, 2, -10.0 

*OUTPUT, FIELD, FREQ=1 

*ELEMENT OUTPUT 

S, 

E 

*NODE OUTPUT 

COORD, 

U, 

RF 

*Element Output, ELSET=COHESIVE, directions=YES 

SDV 

*El print, ELSET=COHESIVE 

SDV 

*OUTPUT, HISTORY, FREQ=1 

*NODE OUTPUT, NSET=TOP_POINT 

U2, 

RF2 

*NODE OUTPUT, NSET=BOT_POINT 

U2, 

RF2 

***NODE OUTPUT, NSET=CZ_TOP 

***COORD, 

***U2 

*end step 
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INPUT FILE FOR 76.2 mm INITIAL CRACK 

 

*HEADING 

*Node, input=.\PREPARE_762\ABA_ND.DAT 

*NSET, NSET=TOP_POINT 

13860 

*NSET, NSET=BOT_POINT 

32208 

*NSET, NSET=FIXED 

1,714,  715,  716,  717,  718,  719,  720,  721,  722,  

723,  724,  725,  726,  727,  728,  729,  730,  731,  732,  

733,  734,  735,  736,  737,  19368, 20081, 20082, 20083, 20084, 

20085, 20086, 20087, 20088, 20089, 20090, 20091, 20092, 20093, 20094, 

20095, 20096, 20097, 20098, 20099, 20100, 20101, 20102, 20103 

*Nset, nset=CZ_TOP 

*include,input=.\PREPARE_762\CZ_TOP.DAT 

*user element, type=U6, nodes=6, coordinates=2, i properties=2, properties=7, 

variables=30 

1, 2 

*ELEMENT, TYPE=CPE8, input=.\PREPARE_762\ABA_EL_TOP.DAT, 

ELSET=TOP_ARM 

*ELEMENT, TYPE=CPE8, input=.\PREPARE_762\ABA_EL_BOT.DAT, 

ELSET=BOT_ARM 

*ELEMENT, TYPE=U6, input=.\PREPARE_762\ABA_EL_COH.DAT, 

ELSET=COHESIVE 

*SOLID SECTION, ELSET=TOP_ARM, MATERIAL=MAT1, 

ORIENTATION=ORIENT1 

25.0 

*SOLID SECTION, ELSET=BOT_ARM, MATERIAL=MAT1, 

ORIENTATION=ORIENT1 

25.0 

*UEL PROPERTY, ELSET=COHESIVE 

***number Jss Uo U1 J0 Kfac 

*** ref1 272 6.679 0.782 206 9.180 

272e-3, 6.679, 0.782, 206e-3, 9.18, 1000.0, 25.0, 6 

1 

*MATERIAL, name=mat1 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

146.0E3, 8.214E3, 8.214E3, 0.332, 0.332, 0.332, 4.53E3, 4.53E3 

4.53E3 

*orientation, name=orient1 

1.0, 0.0, 0.0, 0.0, 1.0, 0.0 

1, 0. 

*orientation, name=orient2 

1.0, 0.0, 0.0, 0.0, -1.0, 0.0 

1, 0. 

*BOUNDARY 
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FIXED, 1, 2 

*STEP, INC=100, NLGEOM 

*STATIC 

0.01, 1., 1e-08, 0.01 

*CONTROLS, PARAMETERS=TIME INCREMENTATION 

7, 10, 9, 16, 10, 4, 20, 10, 6 

*BOUNDARY 

TOP_POINT, 2, 2, 7.5 

BOT_POINT, 2, 2, -7.5 

*OUTPUT, FIELD, FREQ=1 

*ELEMENT OUTPUT 

S, 

E 

*NODE OUTPUT 

COORD, 

U, 

RF 

*Element Output, ELSET=COHESIVE, directions=YES 

SDV 

*El print, ELSET=COHESIVE 

SDV 

*OUTPUT, HISTORY, FREQ=1 

*NODE OUTPUT, NSET=TOP_POINT 

U2, 

RF2 

*NODE OUTPUT, NSET=BOT_POINT 

U2, 

RF2 

***NODE OUTPUT, NSET=CZ_TOP 

***COORD, 

***U2 

*end step 
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COHESIVE ELEMENT CODE 

 

SUBROUTINE 

UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS, 

     1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME, 

     2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF, 

     3 

NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP, 

     4 PERIOD) 

C 

      INCLUDE 'ABA_PARAM.INC' 

      PARAMETER (ZERO = 0.D0, HALF=0.5D0, ONE= 1.0D0, TWO=2.0d0, 

     1 THREE= 3.0d0, TOL=-1E-5) 

   

   LOGICAL::exists 

   CHARACTER (len=200) outFilepath 

    

      DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL), 

     1 SVARS(NSVARS),ENERGY(8),PROPS(*),COORDS(MCRD,NNODE), 

     2 U(NDOFEL),DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2), 

     3 PARAMS(3),JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*), 

     4 DDLMAG(MDLOAD,*),PREDEF(2,NPREDF,NNODE),LFLAGS(*), 

     5 JPROPS(*) 

       

C GENERAL ELEMENT VALUES 

   DIMENSION STRESS(MCRD) 

        DIMENSION DDSDDR(MCRD,MCRD) 

         

C GAUSS INTEGRATION VARIABLES (3 INTEG POINT) 

        DIMENSION GAUSS3(3), WEIGHT3(3), COTNEW(3), CWEIGHT(3) 

   DIMENSION GAUSS6(6), WEIGHT6(6), COTNEW6(6), CW6(6) 

        DIMENSION GAUSS12(12), WEIGHT12(12), COTNEW12(12), CW12(12) 

         

C ARRAYS FOR QUADRATIC LINE ELEMENT 

   DIMENSION DNDXI(3), DELTA_U(6), DU_CONT(MCRD), 

DU_LOC(MCRD) 

   DIMENSION H(MCRD,6), C_COOR(MCRD,NNODE), PSI(6,NDOFEL) 

   DIMENSION B(MCRD, NDOFEL), BT(NDOFEL, MCRD) 

   DIMENSION A1(NDOFEL, MCRD), A2(NDOFEL, NDOFEL) 

   DIMENSION AV_COOR(MCRD, 3), V_XI(MCRD), V_N(MCRD) 

   DIMENSION THETA(MCRD, MCRD), STR_GLOB(MCRD) 

   DIMENSION D_GLOB(MCRD, MCRD), DD1(MCRD, MCRD) 

         

   data iuel/0/ 

   save iuel 

   outFilepath = 'D:\verify.out' 

        CALL KASET2(AMATRX, NDOFEL, NDOFEL) 
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   IF (NHRS.EQ.1) THEN 

      CALL KASET1(RHS, MLVARX) 

   ELSE 

      CALL KASET2(RHS, MLVARX, NRHS) 

        END IF 

         

   CALL KASET2(PSI, 6, NDOFEL) 

        CALL KASET2(H, MCRD, 6) 

   CALL KASET2(AV_COOR, MCRD, 3) 

   CALL KASET1(V_XI, MCRD) 

   CALL KASET1(V_N, MCRD) 

   CALL KASET2(THETA, MCRD, MCRD) 

         

   CALL KASET2(DDSDDR, MCRD, MCRD) 

        CALL KASET2(D_GLOB, MCRD, MCRD) 

         

   CALL KASET1(STRESS, MCRD) 

   CALL KASET1(STR_GLOB, MCRD) 

         

C    REAL INPUT PROPERTIES 

    WIDTH = PROPS(7) ! Width of elements (same as solid section width for 

solid elements) 

C    INTEGER INPUT PROPERTIES 

       NINTP = JPROPS(1) ! Number of integration points 

        INTS = JPROPS(2) ! Integration point scheme (1: gauss, 2: newton cotes) 

C INFORMATION OUTPUT AND CHECK 

       IF (iuel.EQ.0) THEN 

    INQUIRE(file=outFilepath, exist=exists) 

         

C CHECKING FOR THE RIGHT NUMBER OF NODES 

        IF (NNODE.NE.6) THEN 

      CALL STDB_ABQERR (-3, '6 nodes required for interface element: 

     1 specified number of nodes is incorrect',0,0.0,' ') 

        END IF 

         

C Checking for number of state variables 

      minnum = NINTP*5 

      IF (NSVARS.LT.minnum) THEN  

      CALL STDB_ABQERR(-3, 'Number of state variables too small for 

     1 chosen number of integration points!',MINNUM,0.0,' ')  

      END IF 

  IUEL = 1 

        END IF 

C DEFINE DELTA_U=U_TOP - U_BOTTOM 

      DO  K = 1, NDOFEL/2 

          PSI(K, K) = -ONE 
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          PSI(K, K+NDOFEL/2) = ONE 

      END DO  

C Compute nodal coordinates in deformed state 

C ADD PROPER COORDINATE TRANSFORMATION LATER 

      DO  I=1,MCRD 

          DO  J=1, NNODE 

              NN=I+(J-1)*MCRD 

              C_COOR(I,J)=COORDS(I,J) + U(NN) 

           END DO 

       END DO 

c Reference coordinate system (midpoint averages) 

      DO  I=1, MCRD 

          DO  J=1, NNODE/2 

              AV_COOR(I,J)=ONE/TWO*(C_COOR(I,J)+C_COOR(I,J+NNODE/2)) 

           END DO 

       END DO 

c Gaussian integration (3 gauss points) 

      GAUSS3(1) = -SQRT(0.6) 

      GAUSS3(2) = ZERO 

      GAUSS3(3) = SQRT(0.6) 

       

      WEIGHT3(1) = 0.55555555555555 

      WEIGHT3(2) = 0.88888888888888 

      WEIGHT3(3) = 0.55555555555555 

       

c Gaussian integration (6 gauss points) 

      GAUSS6(1) = -0.932469514203152 

      GAUSS6(2) = -0.6612093864662646 

      GAUSS6(3) = -0.2386191860831968 

      GAUSS6(4) = 0.2386191860831968 

      GAUSS6(5) = 0.6612093864662646 

      GAUSS6(6) = 0.932469514203152 

       

      WEIGHT6(1) = 0.1713244923791709 

      WEIGHT6(2) = 0.3607615730481379 

      WEIGHT6(3) = 0.4679139345726913 

      WEIGHT6(4) = 0.4679139345726913 

      WEIGHT6(5) = 0.3607615730481379 

      WEIGHT6(6) = 0.1713244923791709 

       

c Gaussian integration (12 gauss points) 

      GAUSS12(1) = -0.981560634246732 

      GAUSS12(2) = -0.904117256370452 

      GAUSS12(3) = -0.7699026741943177 

      GAUSS12(4) = -0.5873179542866143 

      GAUSS12(5) = -0.3678314989981804 

      GAUSS12(6) = -0.12523340851114688 
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      GAUSS12(7) = 0.12523340851114688 

      GAUSS12(8) = 0.3678314989981804 

      GAUSS12(9) = 0.5873179542866143 

      GAUSS12(10) = 0.7699026741943177 

      GAUSS12(11) = 0.904117256370452 

      GAUSS12(12) = 0.981560634246732 

       

      WEIGHT12(1) = 0.04717533638647547 

      WEIGHT12(2) = 0.1069393259953637 

      WEIGHT12(3) = 0.1600783285433586 

      WEIGHT12(4) = 0.2031674267230672 

      WEIGHT12(5) = 0.2334925365383534 

      WEIGHT12(6) = 0.2491470458134027 

      WEIGHT12(7) = 0.2491470458134027 

      WEIGHT12(8) = 0.2334925365383534 

      WEIGHT12(9) = 0.2031674267230672 

      WEIGHT12(10) = 0.1600783285433586 

      WEIGHT12(11) = 0.1069393259953637 

      WEIGHT12(12) = 0.04717533638647547 

       

c Newton Cotes integration (3 integration points) 

      COTNEW(1) = -ONE 

      COTNEW(2) = ZERO 

      COTNEW(3) = ONE 

       

      CWEIGHT(1) = ONE/THREE 

      CWEIGHT(2) = ONE + ONE/THREE 

      CWEIGHT(3) = ONE/THREE 

       

c Newton Cotes integration (6 integration points) 

       

      COTNEW6(1) = -ONE 

      COTNEW6(2) = -3.0d0/5.0d0 

      COTNEW6(3) = -1.0d0/5.0d0 

      COTNEW6(4) = 1.0d0/5.0d0 

      COTNEW6(5) = 3.0d0/5.0d0 

      COTNEW6(6) = ONE 

       

      CW6(1) = 19.0d0/144.0d0 

      CW6(2) = 75.0d0/144.0d0 

      CW6(3) = 50.0d0/144.0d0 

      CW6(4) = 50.0d0/144.0d0 

      CW6(5) = 75.0d0/144.0d0 

      CW6(6) = 19.0d0/144.0d0 

       

c Newton Cotes integration (12 integration points) 

      COTNEW12(1) = -ONE 
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      COTNEW12(2) = -9.0d0/11.0d0 

      COTNEW12(3) = -7.0d0/11.0d0 

      COTNEW12(4) = -5.0d0/11.0d0 

      COTNEW12(5) = -3.0d0/11.0d0 

      COTNEW12(6) = -1.0d0/11.0d0 

      COTNEW12(7) = 1.0d0/11.0d0 

      COTNEW12(8) = 3.0d0/11.0d0 

      COTNEW12(9) = 5.0d0/11.0d0 

      COTNEW12(10) = 7.0d0/11.0d0 

      COTNEW12(11) = 9.0d0/11.0d0 

      COTNEW12(12) = ONE 

       

      CW12(1) = 2171465.0d0/43545600.0d0 

      CW12(2) = 13486539.0d0/43545600.0d0 

      CW12(3) = -3237113.0d0/43545600.0d0 

      CW12(4) = 25226685.0d0/43545600.0d0 

      CW12(5) = -9595542.0d0/43545600.0d0 

      CW12(6) = 15493566.0d0/43545600.0d0 

      CW12(7) = 15493566 .0d0/43545600.0d0 

      CW12(8) = -9595542.0d0/43545600.0d0 

      CW12(9) = 25226685.0d0/43545600.0d0 

      CW12(10) = -3237113.0d0/43545600.0d0 

      CW12(11) = 13486539.0d0/43545600.0d0 

      CW12(12) = 2171465.0d0/43545600.0d0 

       

      IF (LFLAGS(3).EQ.1) THEN 

C Normal incrementation (RHS and AMATRX required) 

          IF (LFLAGS(1).EQ.1.OR.LFLAGS(1).EQ.2) THEN 

C *STATIC AND *STATIC, DIRECT 

C LOOP OVER INTEGRATION POINTS 

              DO  IINTP = 1,NINTP 

                  IF (NINTP.EQ.3.AND.INTS.EQ.1) THEN 

                       

                      POINT = GAUSS3(IINTP) 

                      WEIGHT = WEIGHT3(IINTP) 

                       

                  ELSE IF (NINTP.EQ.6.AND.INTS.EQ.1) THEN 

                       

                      POINT = GAUSS6(IINTP) 

                      WEIGHT = WEIGHT6(IINTP) 

                       

                  ELSE IF (NINTP.EQ.12.AND.INTS.EQ.1) THEN 

                       

                      POINT = GAUSS12(IINTP) 

                      WEIGHT = WEIGHT12(IINTP) 

                       

                  ELSE IF (NINTP.EQ.3.AND.INTS.EQ.2) THEN 
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                      POINT = COTNEW(IINTP) 

                      WEIGHT = CWEIGHT(IINTP) 

                       

                  ELSE IF (NINTP.EQ.6.AND.INTS.EQ.2) THEN 

                       

                      POINT = COTNEW6(IINTP) 

                      WEIGHT = CW6(IINTP) 

                       

                  ELSE IF (NINTP.EQ.12.AND.INTS.EQ.2) THEN 

                       

                      POINT = COTNEW12(IINTP) 

                      WEIGHT = CW12(IINTP) 

                       

                  ELSE 

                       

C                      WRITE(15,*) 'Unspecified integration required' 

C                      CALL FLUSH(15) 

                      CALL XIT 

                  END IF 

C Shape function value 

                  H1 = ONE/TWO*(-POINT + POINT**TWO) 

                  H2 = ONE/TWO*( POINT + POINT**TWO) 

                  H3 = ONE - POINT**TWO 

                   

C DERIVATIVE OF SHAPE FUNCTION VALUE (3X1 MATRIX) 

                  DNDXI(1) = -ONE/TWO + POINT 

                  DNDXI(2) = ONE/TWO + POINT 

                  DNDXI(3) = -TWO*POINT 

                   

C H matrix 

                  H(1,1) = H1 

                  H(2,2) = H1 

                  H(1,3) = H2 

                  H(2,4) = H2 

                  H(1,5) = H3 

                  H(2,6) = H3 

                   

C write(15,*) 'Starting loop over integration points' 

C write(15,*) 'INTP POINT and WEIGHT', IINTP, POINT, WEIGHT 

C call flush(15) 

      CALL KASET2(B, MCRD, NDOFEL) 

      DO  I=1, MCRD 

          DO  J=1, NDOFEL 

              DO  K=1, NDOFEL/2 

                   

                  B(I,J) = B(I,J) + H(I,K)*PSI(K,J) 
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               END DO 

           END DO 

       END DO 

C TRANSPOSED B MATRIX 

      DO  I=1, MCRD 

          DO  J=1, NDOFEL 

              BT(J,I) = B(I,J) 

           END DO 

       END DO 

C CALCULATE GLOBAL DISPLACEMENT AT INTEGRATION POINT 

C FROM CONTINUOUS DISPLACEMENT 

      CALL KASET1(DU_CONT, MCRD) 

      DO  I=1, MCRD 

          DO  J=1, NDOFEL 

               

              DU_CONT(I) = DU_CONT(I) + B(I,J)*U(J) 

               

           END DO 

       END DO 

C LOCAL COORDINATE SYSTEM 

C (USE AVERAGE OF DEFORMED X-POSITIONS OF TOP AND BOTTOM) 

      X_xi = ZERO 

      Y_xi = ZERO 

      DO  I=1,3 

          X_xi = X_xi + 

     1 DNDXI(I)*AV_COOR(1,I) 

          Y_xi = Y_xi + 

     1 DNDXI(I)*AV_COOR(2,I) 

       END DO 

c Jacobian (vector length in xi-direction) 

      DETJ = sqrt(X_xi**TWO + Y_xi**TWO) 

      IF (DETJ.LT.ZERO) THEN 

C      write(15,*) 'Negative Jacobian encountered! 

C     1 Check element and nodal definition for elem', JELEM 

      CALL XIT 

      END IF 

C Local coordinate vector 

      V_XI(1) = X_XI/DETJ 

      V_XI(2) = Y_XI/DETJ 

       

C Normal vector in 90 degree angle 

      V_N(1) = - V_XI(2) 

      V_N(2) = V_XI(1) 

       

c Rotational matrix 

      THETA(1,1) = V_XI(1) 
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      THETA(2,1) = V_XI(2) 

      THETA(1,2) = V_N(1) 

      THETA(2,2) = V_N(2) 

       

c Relative displacement in local coordinate system 

       

      CALL KASET1(DU_LOC, MCRD) 

      DO I=1, MCRD 

          DO  J=1, MCRD 

               

              DU_LOC(I) = DU_LOC(I) + THETA(J,I)*DU_CONT(J) 

               

           END DO 

       END DO 

c over-closure check (can be used as re-start criterion - see uinter) 

      IF (DU_LOC(2).LT.TOL) THEN 

C      write(15,*) 'Over-closure at element', JELEM 

      END IF 

C write (15,*) 'DU_LOC:', DU_LOC(1), DU_LOC(2), IINTP 

C CALL FLUSH(15) 

C CALCULATE STRESS AND TRACTION STIFFNESS BASED ON 

RELATIVE DISPLACEMENT 

      CALL KTRACN(DU_LOC, PROPS, STRESS, DDSDDR, 

     1 MCRD, SVARS, NSVARS, IINTP, NINTP, KINC, JELEM) 

 

      DDSDDR(1,1) = 10000 

C RHS ASSEMBLY 

C CHECK FOR APPLIED LOADS ON STRUCTURE 

      IF (NDLOAD.NE.0) THEN 

C          WRITE(15,*) 'Element loads not implemented' 

C         CALL FLUSH(15) 

          CALL XIT 

      END IF 

       

C Stiffness matrix 

c Transformation 

      CALL KASET2(DD1, MCRD, MCRD) 

      DO  I=1, MCRD 

          DO  J=1, MCRD 

             DO  K=1, MCRD 

                  

                  DD1(I,J) = DD1(I,J) + DDSDDR(I,K)*THETA(J,K) 

                   

               END DO 

           END DO 

      END DO 
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      CALL KASET2(D_GLOB, MCRD, MCRD) 

      DO  I=1, MCRD 

          DO  J=1, MCRD 

              DO  K=1, MCRD 

                   

                  D_GLOB(I,J) = D_GLOB(I,J) + THETA(I,K)*DD1(K,J) 

                   

               END DO 

           END DO 

      END DO 

       

      CALL KASET2 (A1, NDOFEL, MCRD) 

      DO  I=1, NDOFEL 

          DO  J=1, MCRD 

              DO  K=1, MCRD 

                   

                  A1(I,J) = A1(I,J) + BT(I,K)*D_GLOB(K,J) 

                   

               END DO 

           END DO 

      END DO 

       

      CALL KASET2 (A2, NDOFEL, NDOFEL) 

      DO  I=1, NDOFEL 

          DO  J=1, NDOFEL 

              DO  K=1, MCRD 

                   

                  A2(I,J) = A2(I,J) + A1(I,K)*B(K,J) 

                   

               END DO 

           END DO 

      END DO 

       

      DO  I=1, NDOFEL 

          DO  J=1, NDOFEL 

               

              AMATRX(I,J) = AMATRX(I,J) + 

     1 WIDTH*WEIGHT*DETJ*A2(I,J) 

               

           END DO 

       END DO 

C Right hand side 

C Transformation 

      CALL KASET1(STR_GLOB, MCRD) 

      DO  I=1, MCRD 

          DO  J=1, MCRD 
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              STR_GLOB(I) = STR_GLOB(I) + THETA(I,J)*STRESS(J) 

               

           END DO 

       END DO 

      DO  I=1, NDOFEL 

          DO  K=1,MCRD 

               

              RHS(I,1) = RHS(I,1) + 

     1 DETJ*WIDTH*WEIGHT*BT(I,K)*STR_GLOB(K) 

               

           END DO 

      END DO 

       

      IF (NRHS.EQ.2) THEN 

C          WRITE(15,*) 'Riks solution not supported by element' 

C          CALL FLUSH(15) 

          CALL XIT 

      END IF 

       

      IF (LFLAGS(4).EQ.1) THEN 

C PERTURBATION STEP 

C          WRITE(15,*) 'Perturbation step not supported by element' 

C         CALL FLUSH(15) 

          CALL XIT 

       END IF 

C SAVE OPENING AND STRESSES AT INTEGRATION POINT AS STATE 

VARIABLES 

       SVARS(IINTP+NINTP) = DU_LOC(1) 

       SVARS(IINTP+2*NINTP) = DU_LOC(2) 

       SVARS(IINTP+3*NINTP) = STRESS(1) 

       SVARS(IINTP+4*NINTP) = STRESS(2) 

        

      END DO 

       

          ELSE 

C              WRITE(15,*) 'Only static procedure supported by element' 

C              CALL FLUSH(15) 

              CALL XIT 

      END IF 

       

      ELSE IF (LFLAGS(3).EQ.4) THEN 

           

              DO I=1, NDOFEL 

                   

                  AMATRX(I,I)= 1.0d0 

              END DO 
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      ELSE 

           

c              WRITE(15,*) 'Only normal incrementation supported by element' 

c              CALL FLUSH(15) 

              CALL XIT 

               

          END IF 

          RETURN 

          END 

C------------------------------------------------------------------------------ 

      subroutine ktracn(RDISP, PROPS, STRESS, DDSDDR, MCRD, SVARS, 

     1 NSVARS, IINTP, NINTP, KINC, JELEM) 

       

      INCLUDE 'ABA_PARAM.INC' 

       

      PARAMETER (ZERO = 0.D0, TWO=2.0D0, ONE= 1.0D0, THREE= 3.0d0) 

       

      DIMENSION PROPS(*), RDISP(MCRD), STRESS(MCRD), DDSDDR(MCRD, 

MCRD) 

      DIMENSION SVARS(NSVARS) 

       

      data ifirst/0/ 

      data iopen/0/ 

      data iclose/0/ 

      save ifirst, nodefirst, iopen, iclose 

       

c REAL INPUT PROPERTIES 

C TEST MATERIAL from stochastic papaper 

C  6.2 Numerical bridging results with finite stress value 

      dJss = props(1) !Increase in fracture toughness 

      deltac = props(2) !Max crack bridging opening 

      delta1 = props(3) !Initial linear decrease/increase, softening afterwards 

      dJ0 = props(4) !Value of J0 (from measurements) 

      fac1 = props(5) !Stress increase factor for power law 

      penalty = props(6) !Penalty factor on contact 

C  write(15,*) 'ktracn call. Properties array' 

C      WRITE(15,*) 'dJss =', props(1),' deltac =', props(2),'delta1 = ',props(3),' dJ0 = 

',props(4),' fac1 = ',props(5),' penalty = ',props(6) 

      flush(15)    

C Sigma0, in the paper we have a different equation 

   sigma0 = 1.5d0*dJss/delta1*sqrt(delta1/deltac) 

      slope1 = -dJss/(delta1*deltac*sqrt(delta1/deltac)) 

      fac = dJss/(two*sqrt(deltac)) 

C Sigma1 this is similar to the pa        

   sigma1 = fac/sqrt(delta1) 

      slope = sigma1/delta1      

c J0 is included separately now 
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c with zero start power law 

      alpha = 100.0 

      delta2 = dJ0/(sigma0*fac1)*(alpha+1)/alpha 

C get values from state variables 

      iold = SVARS(IINTP) 

      stressold = SVARS(IINTP + 4*NINTP) 

      rdispold = SVARS(IINTP + 2*NINTP) 

c Checks for opening/closing behaviour 

      IF (ifirst.eq.0) THEN 

          ifirst = 1 

          NODEFIRST = NODE 

C write(15,*) dJss, deltac, delta1, dJ0, fac1, penalty 

C write(15,*) sigma0, sigma1, slope, slope1, delta2, fac 

      END IF 

c new increment detection (includes restart) to count contact changes 

      IF (NODE.EQ.NODEFIRST.AND.KIT.EQ.1) THEN 

          iopen = 0 

          iclose = 0 

      END IF 

c Not included right now (KINC.GE.1000) 

      IF (rdisp(2).LT.rdispold.AND.rdisp(2).GT.delta2.AND. 

     1 KINC.GE.1000) THEN 

c Elastic unloading and reloading 

      stress(2) = stressold/rdispold*rdisp(2) 

      ddsddr(2,2) = stressold/rdispold 

C      write(15,*) 'Elastic unloading encountered' 

      ELSE 

c Check for penetration of surfaces and indicate status 

       if (rdisp(2).LT.zero) then 

C   write(15,*) 'Area I'           

      stress(2) = penalty*slope*rdisp(2) 

      ddsddr(2,2) = penalty*slope 

      lOpenClose = 0 

c Stresses will be negative (tension) 

c First slope bit (different from square root law) 

      else if (rdisp(2).GE.zero.and.rdisp(2).LT.delta2) then 

c Initial increase 

C  write(15,*) 'Area II' 

       stress(2) = fac1*sigma0* 

 1      (1.0-((delta2-rdisp(2))/delta2)**alpha) 

       ddsddr(2,2) = fac1*alpha*sigma0/delta2* 

     1 (((delta2-rdisp(2))/delta2)**(alpha-1)) 

       lOpenClose = 1 

       c Softening behaviour 

             else if (rdisp(2).GE.delta2.and. 

     1 rdisp(2).LT.(delta1+delta2)) then 

C  write(15,*) 'Area III' 
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      stress(2) = sigma0 + slope1*(rdisp(2)-delta2) 

      ddsddr(2,2) = slope1 

      lOpenClose = 2 

      else if (rdisp(2).GE.(delta1+delta2). 

     1 and.rdisp(2).LT.(deltac+delta2)) then 

C  write(15,*) 'Area IV' 

          stress(2) = fac/sqrt((rdisp(2)-delta2)) 

          ddsddr(2,2) = -fac/2*((rdisp(2)-delta2))**(-3.d0/2.d0) 

          lOpenClose = 3 

          else if (rdisp(2).GT.(deltac+delta2)) then 

C  write(15,*) 'Area V' 

              stress(2) = 0 

              ddsddr(2,2) = 0 

              lOpenClose = 4 

      end if 

      END IF 

 IF (lOpenClose.NE.iold.AND.iold.EQ.0.AND.KINC.GT.3) THEN 

C Restart if more than one contact pair opens (iold=0) in 2nd call 

 IF (KIT.EQ.2) THEN 

          iopen = iopen + 1 

 END IF 

C          write(15,*) 'Status: iopen=', iopen, 'at int point', IINTP, 

C     1 'in element', JELEM, 'and increment', KINC 

C          write(15,*) 'lOpenClose =',lOpenclose,'iold=',iold,'KIT=', KIT 

c Possible restart procedure 

 IF (iopen.gt.1) THEN 

C write(15,*) 'Too many contact openings: reduce increment' 

 END IF 

       END IF 

c Restart if one contact pair closes (iold=1/lOpenClose=0) 

      IF (lOpenClose.EQ.0.AND.iold.EQ.1.AND.KINC.GE.2) THEN 

          iclose = iclose + 1 

C          write(15,*) 'Status: iclose=', iclose, 'at int point', IINTP, 

C     1 'in element', JELEM, 'and increment', KINC 

C          write(15,*) 'lOpenClose =',lOpenclose,'iold=',iold,'KIT=', KIT 

          IF (iclose.gt.0) THEN 

C              write(15,*) 'Elastic unloading possible: reduce increment' 

          END IF 

      END IF 

c Restart with PNEWDT (if PNEWDT less than 1) 

      IF (iclose.gt.0) THEN 

          PNEWDT = 1.0 

      ELSE IF (iopen.gt.4) THEN 

          PNEWDT = 1.0 

      END IF 

c Stiffness matrix according to ABAQUS definition: -dF/du!! 

            stress(2) = - stress(2) 
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      SVARS(IINTP) = lOpenClose 

      return 

      end 

C------------------------------------------------------------------------------ 

      subroutine KASET1(DMATRIX, IDIMX) 

      INCLUDE 'ABA_PARAM.INC' 

      PARAMETER (ZERO = 0.0D0) 

      DIMENSION DMATRIX(IDIMX) 

      DO i=1, IDIMX 

          DMATRIX(i) = ZERO 

      END DO 

      RETURN 

      END 

C------------------------------------------------------------------------------ 

      subroutine KASET2(DMATRIX, IDIMX, IDIMY) 

      INCLUDE 'ABA_PARAM.INC' 

      PARAMETER (ZERO = 0.0D0) 

      DIMENSION DMATRIX(IDIMX, IDIMY) 

      DO I = 1, IDIMX 

          DO J = 1, IDIMY 

              DMATRIX(I,J) = ZERO 

          END DO 

      END DO 

      RETURN 

      END 
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