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Abstract

Image restoration and enhancement are two important requirements in

the field of image processing. In this study three anisotropic non-linear

diffusion filters are proposed for image restoration and enhancement and

one filter for image inpainting. The orientation, type and extent of fil-

tering are controlled by the decision mechanism based on the underlying

image features. The first process is a conditionally anisotropic diffusion for

deblurring and denoising images. This process is a time-dependent curva-

ture based model and the steady state is attained at a faster rate, using

the explicit time-marching scheme. The filter switches between isotropic

and anisotropic behavior based on the local image features. Two other

non-linear curvature based diffusion processes are devised, one for image

enhancement and the other one for image inpainting. The diffusion process

in these filters is driven by the Gauss curvature of the level curves of the

image. Therefore, these methods are capable of preserving structures even

with non-zero mean curvature values like curvy edges and corners. To be

precise, the second process couples a hyperbolic shock filter together with

a Gauss curvature driven diffusion term to enhance images. And the third

one inpaints the intended domain based on the Gauss curvature. Finally, a

fourth-order shock coupled diffusion filter is proposed for image enhance-

ment. This is an anisotropic model that converges at a faster rate and

preserves planar approximation while enhancing images. In this study a

thorough theoretical and experimental analysis is carried out for each and

every diffusion process introduced as a part of this thesis work. A variety

of applications are presented for denoising and deblurring gray-level and

color images. The required mathematical preliminaries are presented in

the introduction of the thesis. We conclude the thesis highlighting some of

the future enhancements that could be possibly taken forward for further

research.

Keywords: Image Reconstruction; Image enhancement; Image inpaint-

ing; Variational methods; Regularization methods; PDE methods.
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Chapter 1

INTRODUCTION

Image processing is widely used for many applications in the areas of science and

engineering in recent years. With the help of sophisticated methods, the area of

image processing has created an ample impact on the society. Processing of images

has become an inevitable step in many image processing applications including medical

and satellite imaging.

Image denoising and enhancement/restoration are the two main image processing

activities that are widely used for many applications. The need for efficient image

restoration methods has grown with the massive production of digital images of all

kinds, often taken in poor conditions. No matter how good cameras are, an image

improvement is always desirable to extent their range of action. The deterioration of

images are generally caused due to two different phenomena (Chan and Shen 2005).

The first one is related to image acquisition and is mainly caused due to imaging sys-

tem artifacts, the best example would be blurring. There are three major categories of

blurs according to their physical background: optical, motion and atmospheric. Op-

tical blur is also known by the name out-of-focus blur and is due to the inappropriate

deviation of an imaging plane from the focus of an optical lens. Motion blur is due

to rapid motions of either target objects or imaging devices during image capturing

phase. Atmospheric blur is due to the scattering or optical turbulence of photonic

media (due to the pressure variations in the atmosphere) through which light rays

travel. The influence of the atmosphere on satellite imaging is a well known example,

refer Bertero and Boccacci (1998) and Hansen et at. (2006) for further details on blur-

ring. This phenomena is deterministic. The second one is due to the noise added to

images/signals (generally during data transmission) and this is rather stochastic. The
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CHAPTER 1. INTRODUCTION

knowledge regarding noise is limited to the probability distribution. Having said, that

the noise is random, if one analyzes properly, it can be easily observed that the noise

can also be data dependent. However, in most of the imaging modalities, noise can be

modeled as random and independent of data. Further, in many practical scenarios,

noise is observed to follow a Gaussian distribution with mean zero and variance σ2

(Gaussian White Noise 1).

Image denoising and restoration aim at recovering the original image from the

degraded one. In many practical applications this problem is not well-posed in the

sense of Hadamard (1953). Hence, the solution is not trivial. Many methods are

suggested over the last few years for finding an appropriate solution (approximate

solution) to this aforementioned image denoising and restoration problem. It ranges

from spatial/frequency domain filtering techniques (like spatial averaging, Fourier do-

main filtering etc.), to most modern and sophisticated techniques like PDE/Variational

methods. The recent solutions emerge in three different directions: PDE/variational

/regularization, wavelets and stochastic approaches, we refer to Chan and Shen (2005)

for details. This thesis focuses on the PDE, variational and regularization methods, for

the image denoising and reconstruction, with the assumption that the device artifact

is limited to an out-of-focus blur (linear and space invariant) and the noise is an addi-

tive data independent one. Furthermore, noise is assumed to be Gaussian distributed.

The idea behind these methods is to represent an image as a R
2 (2 dimensional real

space) function defined on a domain of image Ω. This function usually satisfies a time

dependent PDE that characterizes the problem under consideration. The solution of

the differential equation gives the processed image at the scale t.

This chapter is organized in five sections. Section 1.1 discusses a general image

degradation model and its mathematical formulation. Section 1.2 describes image

denoising and enhancement using various PDE based methods. In the same section

we introduce the mathematical preliminaries for variational and diffusion methods

and their solutions. In Section 1.3 variational restoration methods are introduced.

Section 1.4 highlights various quality measures used in this thesis to quantify the

reconstruction performance of various filters under consideration. In Section 1.5, a

brief outline of the contribution and the organization of this thesis is given.

1A stochastic signal n(t) with mean zero is called a white noise if its power spectral density is a
constant over all the spectra.

2



1.1. AN IMAGE DEGRADATION MODEL

1.1 AN IMAGE DEGRADATION MODEL

An image restoration system can be abstractly formulated by an input output system:

u0 = Ku+ n. (1.1)

The image u0 denotes a degraded image acquired by the system, which could be

degraded during acquisition, transmission or storage processes. Here u and u0 belong

to a Normed Linear Space (NLS). Here K : R2 → R
2 is a linear bounded operator

(compact) defined on a two dimensional (2D) image real space. Throughout the thesis

n denotes the noise (unless denoted otherwise), as already mentioned earlier the noise

is assumed to be random and follows a Gaussian distribution with mean zero and

variance σ2. In most practical situations K is a blurring operator, which is typically

a Fredholm first kind integral operator, and is assumed to be known a-priori. This

operator is generally written as:

(Ku)(x, y) =

∫

Ω

k(x, x′, y, y′)u(x′, y′)dx′dy′, (x, y) ∈ Ω, (1.2)

where k(x, x′, y, y′) = k(x−x′, y−y′) is the blurring kernel (shift invariance is assumed

for the kernel k) and is defined as:

k(x, y) =
1

4πσ2
e−(x2+y2)/2σ2

, (1.3)

where σ is the spread of the Gaussian kernel, Ω ⊆ R
2 is the area of support of

the image and it is assumed to be compact. Note that we have used the notation
∫

Ω
(.) in place of

∫

x

∫

y
(.) and the notations dΩ and dxdy are used interchangeably

throughout the thesis. Since shift invariance is imposed on k in (1.2), it becomes a

Point Spread Function (PSF). Therefore, Ku can be written as k ∗ u, where “*” is a

linear convolution operation.

Analyzing the equation (1.1) one can arrive at three different problems.

Problem 1: K = I, where I is an identity operator, the problem becomes a denoising

problem and takes the form:

u0 = u+ n. (1.4)

Problem 2: n = 0 and K 6= I, the problem takes the form of a de-blurring problem

3



CHAPTER 1. INTRODUCTION

and can be modeled as:

u0 = Ku. (1.5)

Problem 3: K 6= I and n 6= 0. In this case the problem is a deblurring and denoising

problem.

Image reconstruction is an inverse problem, where one has to restore the actual

image from the observed blurred and noisy one. One trivial way to solve this problem

is to find the inverse of the operator K, but in many practical situations the matrix

associated with the operator may be ill-conditioned (Having large condition number
2). Therefore, the problem is ill-posed (see Definition 1) in nature. The ill-posed

problems are generally handled using the regularization techniques. This chapter

briefly discusses some of the PDE and variational regularization techniques to solve

these problems and detailed explanations are provided in rest of the chapters of this

thesis.

Definition 1. (Well-posedness/Ill-posedness) When a minimization problem or a

PDE admits a unique solution that depends continuously on the data, we say that the

minimization problem or the PDE is well posed in the sense of Hadamard. If existence,

uniqueness, or continuity fails, we say that the minimization problem or the PDE is

ill posed (Hadamard 1953).

1.2 IMAGEDENOISING AND ENHANCEMENT

USING PDE

There has been a considerable interest in the field of Partial Differential Equations

(PDE) based image reconstruction, in the last few decades (Aubert and Vese 1997,

Kornprobst et al. 1997, Perona and Malik 1990, Weickert 1999, You and Kaveh 2000).

The Majority of models proposed in the literature include a prior knowledge into

the scale space evolution, which leads to an image enhancement, denoising, while

preserving some of the semantically important information like edges, lines and finer

details present in the images. These methods are widely used in the area of computer

vision and image processing. A detailed survey of these methods can be found in

Romeny and Bart (1994) and Weickert (1997). Spatial filters have been used for

2 Condition number =maximum eigenvalue of the K/ minimum eigenvalue of K.
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a long time as the traditional method for removing noise from images and signals.

However, these filters tend to smooth data along with noise. In the last two decades,

several improved PDE based techniques have been proposed for removing noise more

effectively, while preserving the edges in the images. One of the main motivations

for using PDEs is that, the theory behind the concept is well established. PDE

methods have several advantages over the conventional image processing techniques.

In PDE methods, substantial theoretical formulations are available with reference to

well-posedness, such that stable and unique solution can be obtained. PDE based

methods allow a re-interpretation of several classical methods under a novel unifying

framework, more details can be found in Aubert and Kornprobst (2006). Furthermore,

the PDE based approaches fall mainly into three categories: (i) diffusion based (ii)

variational based (iii) contour-based. A brief introduction to these three methods are

provided in this chapter and the details are presented in succeeding chapters.

1.2.1 Mathematical preliminaries

Well defined theories can be found in calculus of variations, to find a function that

minimizes the functional. The basic minimization problem, then, is to determine a

suitable function y = u(x) ∈ C1[a, b] that minimizes the objective Lagrange functional:

E(u) =

∫ b

a

f(x, u, u′)dx. (1.6)

For u(x) to be the function that minimizes the energy functional in (1.6), it must

satisfy the associated Euler-Lagrange(E-L) equation:

∂f/∂u − d

dx

(

∂f

∂u′

)

= 0, (1.7)

subject to the selected boundary conditions. A detailed explanation and derivation

of Euler-Lagrange equation is given in Appendix A-1. Any solution to the Euler-

Lagrange equation subject to the assumed boundary conditions forms a critical point

for the functional (cf. Gelfand and Fomin (1963) and Giaquinta and Hildebrandt

(1996)) and hence is a potential candidate for the desired minimizing function. And,

in many cases, the Euler-Lagrange equation suffices to characterize the minimizer

without further ado.

5



CHAPTER 1. INTRODUCTION

Proposition 1. (E-L Equation) A minimizer of the energy functional (1.6) neces-

sarily satisfies the so-called Euler-Lagrange equation in (1.7).

The uniqueness and existence of a minimizer for the functional is given in the following

theorem and the corollary.

Definition 2. (Convex Functions) f is a convex function if its domain is a convex

set and if for any two points x and y in this domain, the graph of f lies below the

straight line connecting (x, f(x)) to (y, f(y)) in the space R
n+1. That is, we have:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), for all α ∈ [0, 1].

Theorem 1. (Minimizer) When the functional f is convex (see Definition 2), any

local minimizer x∗ is a global minimizer of f . If in addition f is differentiable, then

any stationary point x∗ is a global minimizer.

Proof. Let x∗1 and x∗2 be the local and global minima for f and let x∗1 6= x∗2. Since the

functional is convex, then for any λ ∈ (0, 1) we can write:

f(λx∗1 + (1− λ)x∗2) ≤ λf(x∗1) + (1− λ)f(x∗2)

(follows from the definition of convexity). Since f(x∗1) is a minimum of the functional

we can write:

f(x∗1) ≤ f(λx∗1 + (1− λ)x∗2) ≤ λf(x∗1) + (1− λ)f(x∗2)

=⇒ f(x∗1) ≤ f(x∗2).

Similarly we can show that:

f(x∗2) ≤ f(x∗1). (1.8)

From the two inequalities above, we have:

f(x∗2) = f(x∗1). (1.9)

Assuming the differentiability and convexity for the functional f and applying Rolle’s

theorem, we have x∗2 = x∗1. This contradicts our assumption that x∗2 6= x∗1. Therefore

local and global minima are the same. The second part of the theorem follows from

the differentiability and convexity of the functional. Hence the proof.

6
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Corollary 1. (Uniqueness) If the flux function 3 φ(.) associated with the functional

E(u) =
∫

Ω
f(.) is monotonically increasing then the functional is convex. In addition,

if the functional is convex, then a unique minimum exists by Theorem 1 and the sta-

tionary point is described by the steady state solution of the associated Euler-Lagrange

equation (note that the functional is assumed to be continuous and differentiable). The

stationary point will be the global minimum of the functional.

Proposition 2. (L2 stability) If a classical solution u of higher order nonlinear

diffusion with a non-negative diffusivity function c exists, which is continuously dif-

ferentiable in the time variable t and 2p times continuously differentiable in the space

variable, then the PDE is stable if L2 -norm of u(., t) is monotonically decreasing with

t ≥ 0. Similarly the notion of stability (l2- stability) can be defined for discrete schemes

as well. Here l2 denotes the space of all square summable 4 discrete sequences.

In many classical solutions, the image is assumed to be a measurable function in

the space of measurable functions defined in terms of Lebesgue measure(Lp space). A

Lp image is defined below. Especially in some of the denoising models the image is

assumed to be in L2 space with normal Euclidean norm or L2 norm.

1.2.1.1 Ill-posedness and Regularization

In many image processing applications we come across inverse problems which are

ill-posed in the sense of Hadamard, deblurring and denoising are good examples. Due

to this ill-posed nature of the problem an inverse may not exist or if it exists, then it

does not continuously depend on the data. In such scenarios the obtained solution is

highly sensitive to perturbations. Hence the role of a regularization is well justified in

such situations. In principle regularization imposes stability on an ill-posed problem

in a manner that yields accurate approximate solutions, often by incorporating prior

information, like smoothness of the function.

1.2.1.2 Lp Images

For any p ∈ [0,∞], the Lebesgue Lp function space is defined as:

Lp(Ω) = {u :

∫

Ω

‖u(x)‖pdx <∞}. (1.10)

3Flux function is the gradient of the potential function f(.) i.e. ∇f(.).
4
∑i=N

i=0
(xi)

2 <∞ for any discrete sequence (xi).
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And the images belong to Banach space under the norm (Adams and Fournier 2003,

Chan and Shen 2005):

‖u‖p =
[
∫

Ω

‖u‖pdx
]1/p

.

In many of the practical image processing and computer vision applications, it is

assumed that the image belongs to a space of bounded variation (BV-Space). The

property of BV-space allows discontinuities in the input image function, which comes

in handy for many image processing applications, where images consist of many edges

and finer details. These features contribute towards the discontinuities in the input

image function. We define the concept of bounded variation images in the following

section.

1.2.1.3 Bounded Variation Images

Let Ω ⊆ R
2 denotes a bounded open domain and u = u(x, y) ∈ L1(Ω). In many image

processing applications we assume Ω to be a Lipschitz domain. If u is smooth then

Total Variation (TV (u)) is defined as TV (u) =
∫

Ω
‖∇u‖dxdy, where ∇u = (ux, uy)

(here ux denotes ∂u
∂x
). A function u with TV (u) < ∞ is said to have a Bounded

Variation (BV) (Ambrosio et al. 2000, Aubert and Kornprobst 2006, Chan and Shen

2005). The BV space is denoted as BV (Ω), which is all the functions in L1(Ω) with

BV. BV space is Banach under the natural norm ‖u‖BV = ‖u‖L1 + TV (u).

As evident from the details mentioned above, BV space allows discontinuities,

thereby preserving the edges and finer details. However, the noise features contribute

to high gradient oscillations (frequent discontinuities) in the input functions. So,

while preserving the discontinuities the BV space ensures that the high oscillatory

components are kept out by assuring the variations to be bounded.

1.2.1.4 Gradient descent method

Many methods are suggested in the last few decades to solve the minimization prob-

lem associated with the Euler-Lagrange equation, see Chan and Mulet (1999) and

Chan and Chiu (1998) for details. One of the prominent methods widely used for

solving these types of problems is the Gradient Descent method (Thomas 1995). To

find the solution of a minimization problem, iterative algorithms can be used. These

algorithms start with a given initial guess x0 and generate a sequence of iterates

{xk}∞k=0 that hopefully will converge to the solution x∗. Here it is assumed that the

8



1.2. IMAGE DENOISING AND ENHANCEMENT USING PDE

initial guess is the observed degraded image and the solution is the final processed

image. Which algorithm to use, depends on the problem, but all good algorithms

should have the following properties:

• Robustness means that the solution is insensitive to the inputs in the algorithm.

The algorithm must perform well on a wide variety of problems and for all

choices of initial variables. Stability is also necessary. A stable algorithm gives

nearly the right answer to nearly the right question.

• Efficiency is important, especially for large problems. If the algorithm requires

too much computer time or storage, it may be impossible to solve the problem.

• One can confirm that an algorithm is accurate if the relative error between

the mathematical problem f(x) and the computed solution g(x) is small. The

relative error is defined as:
‖g(x)− f(x)‖
‖f(x)‖ . (1.11)

These goals may be at the expense of each others. An efficient algorithm not nec-

essarily be the most accurate one. The method of steepest descent can be used for

calculating a local maximum or minimum of a real-valued function f(x). If f(x) is

continuous and differentiable in a neighborhood of a point x0, f(x) increases rapidly

from the point x0 in the direction of ∇f(x0) and decreases rapidly in the direction of

−∇f(x0). To find a minimum one can start at a point x0 and take a small step in

the direction of −∇f(x0) to a new point x1. This can be done several times by the

algorithm, that is:

xn+1 = xn −∆t∇f(xn), n = 0, 1, 2, ..., (1.12)

where x0 ∈ R
2 is an initial guess, ∆t > 0 is the step size and ∇f(x) ∈ R

2 is the

gradient of the function f at x. In case of convex functions, when ∆t is small, the

process converges to the desired solution. If ∆t is small enough, xn gets closer to the

minimum as n increases. At a minimum x∗, the gradient ∇f(x∗) equals zero and the

iterative algorithm has converged. If one follows the direction of the steepest descent

from the initial guess x0 in Figure 1.1, this will lead us much closer to the minimum.

Gradient descents for various step sizes ∆t are shown in Figure 1.2.

9
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Figure 1.1: The gradient descent for a 2D function f(x) = 1
2

(

x21 + ηx22
)

, with η = 10
and ∆t = 0.18, initial solution x0 = [0.5, 0.5].

 

 
Contour
Time step Delta t=0.03
Time step Delta t=0.1
Time step Delta t=0.18

Figure 1.2: The gradient descent for a 2D function f(x) = 1
2

(

x21 + ηx22
)

, with η = 10
and different step size ∆t = 0.03, ∆t = 0.1 and ∆t = 0.18, respectively. Initial solution
x0 = [0.5, 0.5].

1.2.1.5 Finite Difference Methods

There are many approaches that are used for discretizing a partial differential equation.

Among the most important ones, one can mention finite differences, finite elements,

and spectral methods, refer Thomas (1995) for details. Finite difference methods are

widely adopted in image processing, hence we restrict our discussion to finite difference

10
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method, which is used throughout this thesis for discretizing the PDEs. The reason

for adopting this method is well explained by the structure of digital images, which

are a set of uniformly distributed pixels. Here a well-posed parabolic PDE (linear heat

equation) is considered for explaining the concept, we refer to Aubert and Kornprobst

(2006) for further details. The same scheme is adopted for all the parabolic PDEs

(non-linear) discussed in this thesis. For hyperbolic PDEs we have adopted the upwind

scheme proposed by Osher and Sethian. A brief explanation of the upwind scheme

can be found in the next section and refer to Osher and Sethian (1988) for the details.

Let us consider a parabolic 1D heat equation (the same idea can be extended in 2D

cases as well):

∂u/∂t = ν
∂2u

∂x2
, (1.13)

where ν > 0 is a constant, with the initial condition u(x, 0) = u0. Let u be the exact

solution and v be an approximate one. One can write (1.13) in the form:

∂u/∂t − ν ∂
2u

∂x2
= 0. (1.14)

Remark 1. One can realize that the discretized equation replaces the original equa-

tion by a new one, and that an exact solution of the discretized problem will lead to

an approximate solution of the original PDE. An obvious error will be introduced due

to the approximation.

To solve PDE in (1.14) numerically, the spatial domain needs to be discretized using

the grid points over the domain. Uniformly separated grids are used with the spacing

∆x and ∆t over the spatial and temporal domains, respectively. The solution is, to

find a discrete function v at the point (n∆t, i∆x) which is an approximation of (1.14).

With the help of Taylor’s series expansion one can write the discretization of (1.14):

∂u(n∆t, i∆x)

∂t
−ν ∂

2u(n∆t, i∆x)

∂x2
=
un+1
i − uni
∆t

−ν u
n
i+1 − 2uni + uni−1

∆x2
+O(∆t)+O(∆x2).

(1.15)

11
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Here O(.) denotes the order5. Therefore, a considerable approximation to (1.15) is

written as:
vn+1
i − vnn
∆t

− ν v
n
i+1 − 2vni + vni−1

∆x2
= 0, (1.16)

where v is an approximation to u. The expression in (1.16) can also be written as:

vn+1
i = (1− 2r)vni + r

(

vni+1 + vni−1

)

, (1.17)

where r = v∆t/∆x2. The scheme described in (1.17) is the explicit Euler scheme.6

This scheme provides an approximate solution to the parabolic PDE described in

(1.13), we refer to Aubert and Kornprobst (2006) for the details. The explicit scheme

is used throughout the thesis, there are implicit and semi implicit schemes that can

be used as well in image processing, see Thomas (1995).

Definition 3. (Notion of Convergence) The scheme (1.16) approximating the PDE

in (1.13) is convergent scheme at time t, if (n+ 1)∆t→ t then, ‖un+1 − vn+1‖∗ → 0,

as ∆t→ 0 and ∆x→ 0. Here ‘*’ denotes the corresponding norm.

The discrete explicit schemes are l2-stable 7, similar to L
2-stability for continuous

functionals in Proposition 2.

For handling the hyperbolic equations we use the upwind scheme proposed by

Osher and Sethian (1988). Upwind schemes use an adaptive or solution-sensitive finite

difference scheme to numerically simulate more properly, the direction of propagation

of information in a flow field. The upwind schemes attempt to discretize hyperbolic

partial differential equations by using differencing based on the direction determined

by the sign of the characteristic speeds. Consider a hyperbolic wave equation of the

form:

∂u/∂t = −a∂u/∂x. (1.18)

It describes a wave propagating in the x-direction with a velocity a. The preceding

equation is also a mathematical model for one-dimensional linear advection. Consider

a typical grid point i in the domain. In a one-dimensional domain, there are only two

directions associated with point i - left and right. If a is positive the left side is called

upwind side and right side is the downwind side. Similarly, if a is negative the left

5Note that g(s) = O(φ(s)) for some s ∈ S, if there exists a constant such that ‖g(s)‖ ≤ C‖φ(s)‖
for all s ∈ S. We say that g(s) is of order φ(s) (Aubert and Kornprobst 2006).

6The values at time (n+ 1)∆t are obtained only from the values at time n∆t.
7In case of discrete sequences.
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side is called downwind side and right side is the upwind side. The first order upwind

scheme is given by:

un+1

i
−un

i

∆t
+ a(uni − un−1

i ) = 0 if a > 0
un+1

i
−un

i

∆t
+ a(uni+1 − uni ) = 0 if a < 0.

(1.19)

Let

a+ = max(a, 0), a− = min(a, 0)

and

u+x =
uni+1 − uni

∆x
, u−x =

uni − uni−1

∆x
,

then the explicit Euler equation can be written as:

un+1
i = uni −∆t

(

a+u−x + a−u+x
)

. (1.20)

The upwind scheme in (1.20) is stable if it satisfies the Courant-Friedrichs-Lewy (CFL)

condition (which relates the time step ∆t with the space step ∆x) 8:

C =

∣

∣

∣

∣

a∆t

∆x

∣

∣

∣

∣

≤ 1. (1.21)

1.2.2 Diffusion methods

Linear diffusion or heat equation is a trivial and widely used diffusion method in the

literature, see Witkin (1983) and Iijima (1962). The PDE associated with the heat

equation is parabolic. A linear heat equation is formulated as:

∂u

∂t
= div(c.∇u). (1.22)

Here c denotes the coefficient of diffusion and div is the divergence operator. The

equation (1.22) is a parabolic equation and taking c = 1 will result in a linear heat

equation:

∂u

∂t
= ∇2u = uxx + uyy , t ≥ 0, (x, y) ∈ R2, (1.23)

8The time step ∆t for all the PDEs defined in this thesis are evaluated based on this condition.
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with the initial condition u(x, y, 0) = u0(x, y). Here uxx and uyy denotes the second-

order derivatives along the directions x and y, respectively. Furthermore, one can see

that uxx + uyy = uηη + uξξ (therefore, throughout the thesis these two notations are

used interchangeably), where η and ξ are the directions along and across the gradient

directions. The fundamental solution to heat equation is given by:

u(x, y, t) = (G√
2t ∗ u0)(x, y), (1.24)

where Gσ(x, y) denotes the two-dimensional Gaussian kernel:

Gσ(x, y) =
1

2πσ2
exp
−|x2 + y2|

2σ2
. (1.25)

The formula (1.24) gives the correspondence between the time t and the scale pa-

rameter σ of the Gaussian kernel. Hence, the explicit solution for heat equation is

equivalent to a convolution of the data (image) with a Gaussian kernel. The convolu-

tion by a Gaussian is equivalent to a low-pass filtering, that inhibits high frequencies

(oscillations in the space domain). Thus, it effectively removes noise, at the same time

it also causes blurring of edges. Moreover, this solution is well defined in L2 space with

L
2 norm. The L2 space (with L

2 norm) does not allow discontinuities in the solution.

Therefore, the sharp edges and textures are highly affected by the diffusion flow. Fig-

ure 1.4 C shows the result of filtered output using the linear diffusion method. The

image is denoised by penalizing the edges.

The aforementioned defect of linear diffusion was a serious concern for the image

processing community for many years, till the introduction of a non-linear diffusion

method. Since then, many non-linear diffusion methods of different orders were in-

troduced by various researchers (Perona and Malik 1990, Rudin et al. 1992, Weickert

1999, You and Kaveh 2000, Lysaker et al. 2003). For a spatial 1-Dimensional filtering

in the interval (a, b) ⊂ R
2, any general nonlinear diffusion of order 2p is governed by

the PDE:

∂u/∂t = (−1)p+1∂px (c(∂
p
xu)∂

p
xu) , (1.26)

with the corresponding boundary conditions given as:

∂kx (c(∂
p
xu)∂

p
xu) (x) = 0, (1.27)

for k ∈ 0, ...., p− 1 and x ∈ {a, b}. There are p constraints at each boundary pixel

14
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as a generalization of homogeneous boundary condition. Here we remark that ∂pxu

denotes ∂pu
∂xp .

Setting p = 1 in a 2-Dimensional scenario one can obtain the classical Perona-Malik

filter (Perona and Malik 1990), read as:

∂u/∂t = div
(

c(‖∇u‖2)∇u
)

, (1.28)

where

c =
1

1 + ‖∇u‖2/κ2 . (1.29)

(Here κ is a contrast parameter, which determines the nature of diffusion), with the

homogeneous boundary condition:

∂u

∂~n
= 0, (1.30)

where ~n is the unit outward normal, and the initial condition:

u(x, y, 0) = u0(x, y), (1.31)

where u0 is the initial image. Here ‖.‖ denotes the absolute value of the function or

the Euclidean norm. Throughout this thesis the boundary condition in (1.30) and the

initial condition in (1.31) are assumed for all the PDEs, unless stated otherwise. The

filter in (1.28) is a second-order non-linear filter which diffuses in the image regions

with varying magnitudes. Here the diffusion coefficient c (as defined in (1.29)) is a

function of the absolute gradient. Therefore, the diffusion happens at a higher rate

in those regions where the gradient magnitude is low (homogeneous regions) and the

extent of diffusion is negligible in the high gradient regions (or on the edges and finer

details). This way, the non-linear diffusion preserves the edges and finer details while

removing the noise features.

1.2.2.1 Properties of non-linear second-order diffusion

Denoising

The Perona-Malik filter (discussed above) applies an inhomogeneous diffusion that

reduces the diffusivity at those locations which have a greater likelihood of being

edges. However, the diffusion flux j = −c(‖∇u‖)∇u is always parallel to the gradi-
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ent direction since the diffusivity c(‖∇u‖) is a scalar. Therefore, the Perona-Malik

filter is not purely anisotropic9 as the title of the paper suggests (Perona and Malik

1990). The second-order curvature-based methods like Total Variation (TV) denoising

(Rudin et al. 1992) and Mean Curvature based method (Marquiana and Osher 2000)

were introduced in the literature to address this issue. These curvature-based meth-

ods are anisotropic, so they diffuse along and across the edges, at varying magnitudes.

The diffusion magnitude along the edges is much more compared to the magnitude

across them (this can even be zero).

Enhancement

The energy functional associated with Perona-Malik filter in (1.28) is:

E(u) =

∫

Ω

f(‖∇u‖)dxdy =
∫

Ω

κ2

2
ln(k2 + ‖∇u‖2)dxdy. (1.32)

The flux function φ(∇u) is taken as the gradient of the potential function f(u) in

(1.32), ie.:

φ(∇u) = ∇(f(‖∇u‖)). (1.33)

Let s = ∇u, then φ(s) = ∇f(‖s‖), ∇f(‖s‖) = c(‖s‖)s, where c(‖s‖) = 1
1+‖s‖2/κ2 . The

gradient descent solution for (1.32) can be written as:

ut = div(c(‖∇u‖)∇u), (1.34)

where ut = ∂u
∂t
. For understanding easily, let us write the above equation in one-

dimensional case. ut = ∂x(φ(∂xu)) = φ′(∂xu)∂xxu (we remark that ∂xu = ∂u/∂x

and ∂xxu = ∂2u/∂x2 are the first and second partial derivatives of u along x). Note

that φ′(s) (the first derivative of φ) satisfies: φ′(s) ≥ 0 for s ≤ κ and φ′(s) < 0 for

s > κ. Hence, one can observe that this model is forward parabolic when s ≤ κ and

inverse parabolic otherwise. When it is forward parabolic, the flux function φ(‖∇u‖)
is monotonically increasing (see Figure 1.3), hence the associated energy functional in

(1.32) is convex (see Appendix A-4 for detailed derivation and the proof), therefore,

it has a unique minimum, so that, the gradient descent procedure can find it. On

the other hand when s ≥ κ the flux function becomes non-monotonic (happens when

the PDE is inverse parabolic) and the associated functional becomes non-convex and

the solution becomes non-unique. When the flux function is monotonically increasing,

9In anisotropic diffusion the magnitude of diffusion depends on the direction of the gradient field.
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Figure 1.3: (A) The diffusivity function c(s2); (B) the flux function φ(s).

then the diffusion cannot cause an enhancement to the edges, in other words, inverse

diffusion will never take place. The inverse diffusion will result in enhancement or

sharpening of the image features, see Figure 1.5. Therefore, there is a built-in shock10

in the filter given in (1.28), which will enhance the edges in a non-linear way. Note

that this shock is due to the negative diffusion under the conditions explained above.

In general, for non-monotone flux function φ(∇u), there is no mathematical theory

that guarantees for well-posedness. It is further shown in Hollig (1983) that, some of

the diffusion processes with non-monotone flux functions, can have infinite number of

solutions because the associated functional will become non-convex. There are many

improved filters suggested by researchers to address this issue, see Weickert (1997),

Catte et al. (1992) and Alvarez et al. (1992) for details. Figure 1.4 D shows the result

of non-linear Perona-Malik filtering process. The image is denoised while preserving

the edge features.

Piece-wise linear approximation

All the non-linear second-order diffusion filters are capable of denoising the images,

while preserving the details. However, the second-order non-linear diffusion methods

are devised in such a way that they diffuse in the homogeneous regions at a faster rate

as compared to the non-homogeneous ones. All the second-order non-linear diffusion

methods approximate the observed image with piece-wise linear images. The PDE

evolution eventually results in forming piece-wise patches during the early stages of

evolution and finally these patches combine to form a piece-wise image. This piece-

10Shock enhances the image edges and finer details.
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wise image is the only minimum of the energy functional in (1.32), associated with

the second-order PDE. Similarly during the inverse diffusion, any piece-wise constant

image is a global minimum of the energy functional in (1.32), therefore, the blocks will

appear in the early stages of evolution and they remain without any change during the

course of evolution. The above mentioned discrepancy causes a visually unpleasant

output image and this discrepancy is widely known by the name staircase effect. Fig-

ures 1.5 and 1.4 show the output of filtered images using second-order methods, the

staircase effect is evident from the result. A sample Matlab code for implementing the

second-order non-linear diffusion filter (Perona-Malik), using explicit finite central dif-

ference method with gradient descent procedure is provided in Appendix A-2. Similar

coding scheme is followed for the parabolic non-linear PDEs discussed in this thesis.

Therefore, for the brevity we don’t provide the implementation for all the methods

discussed in the thesis.

From the properties of the second-order filter defined above, it is evident that the

filter approximates homogeneous regions with piece-wise constant functions, which

eventually leads to the formation of piece-wise smooth patches. These patches causes

visual discrepancy as mentioned already. Furthermore, the enhancement property of

the second-order parabolic filter is governed by the unstable diffusion process causing

the solution to be non-unique. The staircase effect is addressed by reformulating the

diffusion to be of higher order (generally fourth-order PDEs serves the purpose very

well). We describe a brief history of the fourth-order filter in the next section and

a detailed description is provided in Chapter 5 of this thesis. The theoretical insta-

bility of the second-order non-linear parabolic PDE (during the negative diffusion) is

handled effectively using stable hyperbolic PDEs. Therefore, these hyperbolic filters

are extensively used for image enhancement. A detailed analysis on various stable

non-linear second-order restoration filters is done in Chapter 3 of this thesis.

1.2.3 Higher-order diffusion methods

When p = 2 in (1.26), we obtain a fourth-order diffusion filter. The fourth-order

diffusion filters are employed recently for image denoising, we refer to You and Kaveh

(2000), Lysaker et al. (2003) and Chan et al. (2010) for details. One of the main moti-

vations for using fourth-order filter is, fourth-order diffusion damps oscillations faster

as compared to the second-order ones. Therefore they denoise the images rapidly.

Moreover, fourth-order diffusion approximates observed images with piece-wise planar

18



1.2. IMAGE DENOISING AND ENHANCEMENT USING PDE

A B C

D E F

Figure 1.4: Results of linear and non-linear diffusion: (A) Original Image; (B) Noisy
Image; (C) Filtered by linear heat equation; (D) Result of non-linear diffusion equation
(Perona-Malik); (E) The residual image for linear diffusion; (F) The residual image for
Perona-Malik filter.

images providing a better natural appearance to the processed image. The fourth-

order diffusion method proposed by You and Kaveh (You and Kaveh 2000) considers

the energy functional:

E =

∫

Ω

f(∇2u)dxdy, (1.35)

where f(.) is an increasing function of Laplacian of the image (∇2u). The functional

is convex and hence a unique minimum exists due to Theorem 1 and Corollary 1, (see

Appendix A-3 for details and proof). Minimizing the energy functional is equivalent

to smoothing the image. Deriving the PDE for the functional in (1.35) using the Euler

Lagrange equation results in the evolution PDE stated as:

∂u

∂t
= −∇2

(

c
(

‖∇2u‖
)

∇2u
)

, (1.36)
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A B

C C

Figure 1.5: Results of non-linear forward and backward diffusions: (A) Original Im-
age; (B) Noisy Image; (C) Filtered by Perona-Malik forward diffusion; (D) Filtered by
Perona-Malik backward diffusion.

where ‖.‖ is the Euclidean norm. The diffusion coefficient c(.) is a non-increasing

function of the absolute Laplacian of the image function defined as:

c(‖∇2u‖) = 1

1 +
(

‖∇2u‖
κ

)2 , (1.37)

here κ is the contrast parameter.

Another model in this flavor was proposed by Lysaker et al. (2003). This model is

formulated as a regularization model with specific boundary conditions. Taking p = 2

in (1.26) and total variation (TV) diffusivity as considered in Lysaker et al. (2003),
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the evolution PDE can be formulated as:

ut = −
(

uxx
|uxx|

)

xx

−
(

uyy
|uyy|

)

yy

− λ(u− u0), (1.38)

with the boundary condition:

(

uxx
|uxx|

)

v1 +

(

uxx
|uxx|

)

v2 = 0 (1.39)

and
(

uxx
|uxx|

)

x

v1 +

(

uxx
|uxx|

)

y

v2 = 0 on ∂Ω, (1.40)

where v = (v1, v2) is vector normal to ∂Ω and the regularization parameter λ is

updated as:

λ =
1

σ2

∫

Ω

(

uxx
|uxx|

(u− u0)xx −
uyy
|uyy|

(u− u0)yy
)

dΩ. (1.41)

1.2.3.1 Properties of fourth-order diffusion filters

Planar Approximation

All the fourth-order models approximate the observed images with piece-wise planar

images. These filters try to minimize the Laplacian of the pixel at its neighborhood.

The Laplacian of the pixel is zero in its planar neighborhood. The planar approx-

imation helps in preserving the natural appearance of the image by reducing the

staircase-effect unlike the second-order counterparts.

Isotropic property

The filter proposed in You and Kaveh (2000) is isotropic. When Laplacian is used as

an edge descriptor as done in (1.36) and (1.38), results in an equi-magnitude diffusion

in all directions. This property is not so desirable for images with considerable amount

of edges and finer details. The planar approximation reduces the staircase-effect as

evident from the Figure 1.6 and the enlarged portions of the second-order and fourth-

order diffusion results in Figure 1.7. The isotropic nature of the filter is also quite

noticeable in the filtered output images in Figure 1.6. Due to isotropic property of the

PDE, the filtered output is apparently smooth or blurred. Many methods have been

proposed in the recent literature to address these shortcomings of the fourth-order

filter. The details are discussed in Chapter 5.
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A B

C D

Figure 1.6: Results of fourth-order diffusion filters: (A) Original Image; (B) Noisy
input image; (C) Result of You-Kaveh method; (D) Result of Tai’s Method.

A B

Figure 1.7: A: Enlarged portion of second-order filtered image (Perona-Malik); (B)
Enlarged portion of fourth-order filtered image (Lysaker et al. Lysaker et al. (2003)).
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1.3 VARIATIONAL METHODS FOR RESTORA-

TION

Variational methods seek to minimize an energy functional. Therefore, the problem

is to minimize the energy functional:

argminF (u),

u
(1.42)

where F (u) is the energy functional to be minimized over the image function u. Let

F ′(u) denotes the Euler-Lagrange derivative of the functional F (u). The necessary

condition for F ′(u) to be the minimizer for F (u) is; F ′(u) = 0, by solving the steady

state equation ∂u
∂t

= 0, one can obtain the desired solution.

The main objective of energy minimization formulation is to estimate u (the orig-

inal image) from the statistics of noise and a-priori knowledge of the image features,

like smoothness of the image and existence of edges. Let us assume a functional J(u),

which measures the quality of the image u i.e., smaller value of J(u) represents a

better image. One can see that, under the above assumption, the problem can be

solved as a constraint minimization problem:

min
u
J(u); subject to ‖u− u0‖2L2 = |Ω|σ2. (1.43)

Here ‖u − u0‖2L2 =
∫

Ω
(u − u0)

2dx ≈ E(
∫

Ω
n2dx) = |Ω|σ2, (details are presented in

Appendix A-3) where E(x) stands for the expectation of the random variable x. An

unconstrained formulation of the above minimization equation can be written as:

F (u) =

∫

Ω

J(u)dxdy +
λ

2

∫

Ω

(u− u0)2dxdy, (1.44)

where J(u) stands for the functional to be minimized and λ is a Lagrange multi-

plier commonly known as regularization parameter, other symbols are in usual sense.

Incorporating the notion of blurring kernel (as a general scenario in case of image

restoration) the reconstruction models can be reformulated as:

min

∫

Ω

J(u) dxdy; subject to
1

2

(
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2

)

= 0, (1.45)
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where k is the blurring kernel as described in (1.3). The unconstrained formulation

can be written as a Lagrange functional:

F (u) =

∫

Ω

J(u) dxdy +
λ

2

(
∫

Ω

(k ∗ u− u0)2dxdy
)

, (1.46)

λ fetches the same meaning as in (1.44). The details of the above formulation is

analyzed in many previous works (Wei and Xu 2009, Marquiana and Osher 2000).

Well-posedness of regularization functionals

We had already defined the notion of well-posedness in Definition 1. For the equation

to be well-posed it must satisfy existence, uniqueness and continuity. Consider an

image domain Ω which is a bounded Lipschitz domain in R
2. In addition let us

assume the following conditions

1. The ideal image u ∈ BV (Ω)

2. The blurry and noisy observation u0 ∈ L2(Ω)

3. The linear operator K : L1(Ω) → L2(Ω) is bounded injective and satisfies the

DC condition i.e K(1) = 1.

The conditions in (1) and (2) above are necessary to make the formulation meaningful

and condition (3) is for proving uniqueness, refer Chan and Shen (2005) for details.

Theorem 2. (Existence and uniqueness) Under the three conditions defined above

the optimal deblurred estimation of u∗ = min
u
J(u) in the model (1.45) exists and is

unique.

Proof. Please refer Theorem 5.2 in Chan and Shen (2005)

Many promising energy functionals were proposed and analyzed in the litera-

ture for J(u) in (1.44). Some of the widely used functionals are ‖∇u‖2
L2, which

is the L
2 norm of the squared gradient function, this functional was introduced in

Tikhonov and Arsenin (1977), ‖∇u‖TV , which is the TV norm of the gradient func-

tion, see Rudin et al. (1992) for details and ‖∇2u‖L2, which is the L
2 norm of the

Laplacian of the image (cf. You and Kaveh (2000) and Lysaker et al. (2003)). Each

of these functionals were proposed to address various issues and limitations of the pre-

vious ones, in the order of their appearance. For instance the TV norm preserves the

edges well but results in piece-wise linear approximation of the image, on the other
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hand the L2 functionals (with L
2 norms) perform a planar approximation whereas

they smooth-out the high gradient points in the image. Therefore, the choice of the

functional is the demand of the situation and should be appropriately chosen based

on the application under consideration.

Here we show the numerical implementations and stability of the scheme for a

generalized TV based model. Consider the functional to be minimized:

F (u) =

∫

Ω

|∇u|p dxdy + λ

2

(
∫

Ω

(u− u0)2dxdy
)

, (1.47)

where p ≥ 1 (scalar positive variable). The E-L equation for (1.47) can be written as:

ut = ∇.
(

|∇u|p−2∇u
)

− λ(u− u0). (1.48)

Note that when p = 1 the above models becomes TV-denoising model (Rudin et al.

1992). The numerical implementation using the explicit Euler scheme is:

un+1 = un +∆t

(

∆x
−

(

∆x
+u

n

((∆+
x u

n)2 + (∆+
y u

n)2)
2−p

2

)

+∆y
−

(

∆y
+u

n

((∆+
x u

n)2 + (∆+
y u

n)2)
2−p

2

))

− λ(un − u0), (1.49)

where ∆x
+ and ∆y

+ denotes the forward and backward difference operators, respectively.

Stability of the numerical scheme

We recall from Proposition 2, the notion of stability for discrete sequences.

Lemma 1. Consider the discrete scheme in (1.48), subject to the initial data u0 ∈ l2,
then:

‖u(t)‖lp ≤ ‖u0‖lp, (1.50)

where lp denotes the space of p-summable sequences and ‖.‖lp represents the lp norm11

(Song 2003).

Proof. We have:
∂u(t)

∂t
= ∆x

−D1 + ∆y
−D2, (1.51)

11‖xi‖lp =
(

∑i=N
i=0
|xi|p

)1/p

.
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where D1 and D2 are defined as:

D1 =
∆x

+u

((∆x
+u)

2 + (∆y
+u)

2)
2−p

2

and

D2 =
∆y

+u

((∆x
+u)

2 + (∆y
+u)

2)
2−p

2

.

Then

∂

∂t

∑

|u|p = p
∑

|u|p−1∂u

∂t

= p
∑

|u|p−1.(∆x
−D1 + ∆y

−D2)

= −p
∑

(

D1.∆x
+|u|p−1 +D2.∆y

+|u|p−1
)

= −p(p− 1)
∑

D1|u|p−2∆x
+u+D2|u|p−2∆y

+u

= −p(p− 1)
∑

|u|p−2|∇u|p

≤ 0.

Therefore, lp norm is non-increasing. Hence, it is lp stable.

From the above lemma and Proposition 2 one can infer that the discrete system is

stable. The stability aspect is true for all the values of p ≥ 1 in (1.48). More details

of variational schemes are discussed in Chapter 2.

1.3.1 Curvature-based denoising methods

Typical noise-removal schemes driven by curvatures have the form:

∂u/∂t = F (K)‖∇u‖, (1.52)

where u is the intensity function and F (K) denotes the speed of the function based on

the curvatureK of the level curve. The level-set method introduced by Osher and Sethian

(1988) is used as a tool for tracking the evolution of iso-intensity contours.

An anisotropic method is introduced in Alvarez et al. (1992) and Marquiana and Osher

(2000), to direct the diffusion in the desired direction, with proper magnitude. If ξ

indicates the direction perpendicular to ∇u ( ξ = 1
‖∇u‖(−uy, ux)), that is, parallel to
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the image discontinuities (edges), driving the diffusion of image function u, only in

this direction gives:
∂u

∂t
= K‖∇u‖ = uξξ. (1.53)

The equation (1.53) can be obtained directly from (1.52) by substituting F (K) = K

(The curvature). The equation in (1.53) is commonly known by the name Mean

Curvature Motion (MCM). The level-curves of u in (1.53) are evolving at a speed

equal to the mean curvature. Using the central difference scheme, one can write the

curvature of the level curve K as (refer Appendix A-5 for derivations):

K =
uxxu

2
y − 2uxuyuxy + uyyu

2
x

‖∇u‖3 . (1.54)

Therefore, the MCM is formulated as (refer Appendix A-5 for derivations):

∂u

∂t
= K‖∇u‖ =

uxxu
2
y − 2uxuyuxy + uyyu

2
x

‖∇u‖2 . (1.55)

Image denoising algorithms based on MCM exploit the fact that curves moving

under their mean curvature smooth out and disappear. Very small contours, corre-

sponding to the noise, will disappear quickly. MCM evolves each of the level lines

of the image in the gradient direction with a velocity equal to their mean curvature

value. However, the continued application of MCM results in blurring and deforma-

tion of edges (usually the curved edges appear more curvy) since an image other than

a flat one always has some mean curvature value, see Figure 1.8 for the result of MCM

based diffusion.

1.3.1.1 Curvature driven diffusion for denoising

Curvature driven diffusion controls the speed of diffusion process based on the curva-

ture at any point. The commonly used curvatures are the curvature of the level curve

and mean curvature of the surface. The mean curvature is the mean of principal

curvatures which is defined as:

H =
1

2
(K1 +K2), (1.56)
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A B

Figure 1.8: Results of MCM filter: (A) Noisy input image; (B) Result of MCM.

where K1 and K2 are the maximal and minimal curvatures respectively (principal

curvatures) of a given point p on a surface S. The mean curvature value tends to zero

when all the principal curvature values tend to zero. So the diffusion process driven

by mean curvature may slash-out features with non-zero mean-curvature values. In

practice one can notice that, many of the natural images contain meaningful features

with non-zero mean curvature values, curvy edges and corners are some of the exam-

ples. Another commonly used curvature is Gauss curvature which is defined as the

product of principle curvatures:

GC = K1 ×K2, (1.57)

here GC stands for the Gauss-curvature. Unlike mean curvature the Gauss curvature

does not affect the features with non-zero mean curvature. Since, Gauss-curvature

being the product of curvatures it becomes zero even if any one of the principal

curvatures is zero. Therefore, Gauss curvature tries to remove isolated points or noise,

mean while it leaves other features untouched. A detailed explanation of curvature

driven diffusion process in given in Chapter 3.

1.4 QUALITY MEASURES

The reconstruction is quantified using various statistical measures. We consider the

following measures for comparing and quantifying the reconstruction capabilities of

different methods under consideration. Though, the perspective results are evident
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from the figures shown in favor of different methods, proper quantification is necessary

to comment on the performance of various filters. We will be using these measure in

subsequent chapters, for quantifying various methods considered in the literature and

the ones proposed as a part of this thesis.

1.4.1 Signal-to-noise Ratio (SNR)

The Signal-to-Noise Ratio (SNR) is a commonly used measure to quantify the denois-

ing capability of a filter (Russ 2007, Gonzalez and Woods 2001). The SNR is defined

as:

SNR = 10 log10
(

σ2
f/σ

2
n

)

, (1.58)

where σ2
f is the variance of the noise free image and σ2

n is the variance of the noise. A

larger SNR value indicates a better image-denoising capacity.

1.4.2 Pratt’s Figure of Merit (FOM)

The efficiency of any enhancement method is measured in terms of its capability to

retain the edges while removing the noise. The edge preservation capability of various

enhancement methods are compared using Pratt’s Figure Of Merit(FOM) (Pratt 1977)

defined as:

FOM =
1

max{N̂ , Nideal}

N̂
∑

i=1

1

1 + d2iα
, (1.59)

where N̂ and Nideal are the number of detected and ideal edge pixels, respectively, di

is the Euclidean distance between the ith detected edge pixel and the nearest ideal

edge pixel, and α is a constant typically set to 1/9. FOM ranges between 0 and

1, with unity for ideal edge detection. We apply Canny edge detector (Canny 1986)

for locating the edges. The standard deviation of the Gaussian kernel in the Canny

detector is chosen as σ = 0.1.

1.4.3 Structural SIMilarity Index (SSIM)

The structure similarity (SSIM) index is used to compare the luminance, contrast and

structure of two different images (Wang and Bovik 2004). The motivation to use this

approach is to find a more direct way to compare the structures of the reference and the

distorted images. This new framework for the design of image quality measures was
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proposed, based on the assumption that the human visual system is highly adapted

to extract structural information from the viewing field, the SSIM is formulated as:

SSIM(x, y) =
(2µxµy + C1)× (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (1.60)

where x and y denote the content of local windows in original and reconstructed

images respectively, σxy is the covariance of x and y, σ2
x and σ2

y denotes the variance

of x and y respectively and C1 = (k1L)
2, C2 = (k2L)

2 where L is the dynamic range

of pixels values ([0-255] for 8 bit gray scale image), k1 = 0.01 and k2 = 0.03 are

constants. The measure is applied for non-overlapping windows in both the images

(original and reconstructed). In this thesis work we measure mean-SSIM (MSSIM)

which is an index to evaluate the overall image quality. It is defined as:

MSSIM(X, Y ) =
1

M

M
∑

j=1

SSIM(xj , yj), (1.61)

where X and Y are the original and reconstructed images respectively; xj and yj de-

note the content of the jth local window in reference and distorted images respectively

and M is the number of local windows in the image.

1.4.4 Contrast-to-Noise Ratio (CNR)

One of the widely used quality measures for measuring the contrast enhancement

capability of the filter in hand is, Contrast-to-Noise Ratio (CNR) (Geissler et al. 2007).

CNR measures the contrast enhancing capacity of the filter. Contrast to noise ratio

is the relationship of signal intensity differences between two regions, scaled to image

noise. Improving CNR increases perception of the distinct differences between two

areas of interest. CNR can be evaluated for two regions of interest (say the object

and the background) using the equation:

CNR =
µo − µb
√

σ2
b + σ2

o

, (1.62)

where µo, µb are the mean of object and background pixels and σ2
o , σ

2
b are the variances

of object and background pixels, respectively. The CNR value indicates the change

in contrast of two different regions. As the noise in the regions reduces, the contrast
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between the regions increases and therefore CNR also increases. Similarly the CNR

increases with increase in the contrast between regions. Therefore, CNR is a summary

of SNR and contrast.

1.4.5 Peak Signal to Noise Ratio (PSNR)

The mean square error (MSE) is an effective statistical measuring standard to quantify

the performance of a reconstruction method under consideration. MSE gives a clear

understanding of how far the actual images are, from the reconstructed ones. So does

the PSNR. MSE and PSNR are formulated as:

MSE =
1

n×m

m−1
∑

i=0

n−1
∑

j=0

[u(i, j)− u0(i, j)]2 , (1.63)

and PSNR is defined in terms of MSE as:

PSNR = 10log10
(

MAX2
u/MSE

)

, (1.64)

where n × m is the image size and MAXu is the maximum gray-value of the image

(generally taken as 255 in case of gray-level/RGB images). The unit is measured in

decibel (dB). The value PSNR indicates the quality of reconstruction or extent of

noise removing capability of the filter under consideration. The higher value of PSNR

signifies a better reconstruction capacity of the filter in hand. As the amount of noise

decreases in an image the PSNR value increases.

1.5 ORGANIZATIONAND CONTRIBUTION OF

THE THESIS

In this thesis we try to address shortcomings of some of the Variational and PDE based

methods proposed in the literature for image denoising, restoration and inpainting.

In the first place, the second-order diffusion filters approximate the observed image

with piece-wise linear images when they evolve with respect to time. This type of

approximation causes visual discrepancies in the filtered output image. Secondly these

filters takes large number of iterations to converge to the desirable solution even when

the time step is chosen appropriately. Moreover, some of the second-order diffusion
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filters proposed in the previous works use a variation of mean curvature to drive the

diffusion process (or diffuses based on the mean curvature). This causes the filter

to slash-out some of the features having non-zero mean curvature values, like curved

edges, corners etc., during the evolution process. In this thesis we design methods

(filters) to address the defects of these filters in an effective way. The rest of the

chapters in this thesis are organized as follows.

A regularized time dependent second-order anisotropic switching filter is devised in

Chapter 2. This filter catalyzes the diffusion process by relaxing the condition for the

stability and diffuses anisotropically only in the areas with high frequency information

and diffuses like a Laplacian isotropic filter in the smooth or homogeneous areas. The

filter behaves very well with the natural images.

In Chapter 3 we introduce an enhancement filter based on the Gauss curvature.

The diffusion process in this filter is driven by Gauss curvature value at each pixel and

a coupled stable hyperbolic shock filter enhances the image edges (while diffusing out

the noise). The filter preserves and enhances the features even with non-zero mean

curvature values. However, the noise features are removed effectively.

A third-order Gauss curvature driven image inpainting filter is proposed in Chap-

ter 4. This PDE reconstructs images from their degraded observations and inpaints

the desired domain. Since Gauss curvature drives the whole evolution process, the

image features with non-zero mean curvature values are preserved while the image

is being reconstructed (from blurred and noisy observations) or inpainted. In the

non-inpainting domain the filter gets transformed to a normal TV image restoration.

In Chapter 5 we propose a fourth-order anisotropic denoising and deblurring filter

which can address some of the issues with the commonly used fourth-order filters like

You-Kaveh filter (You and Kaveh 2000), Tai filter (Lysaker et al. 2003) and Hajiaboli

filter (Hajiaboli 2010). The proposed filter will diffuse anisotropically by preserving

the planar approximation and ramp edges in the images while enhancing the high-

frequency components present in the images.

We conclude this thesis in Chapter 6 throwing highlights on possible future works

and describing the pros and cones of the methods proposed and contributed as a part

of this thesis work. All the methods proposed are numerically verified and results are

compared and analyzed in each chapters for the respective methods.
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Chapter 2

VARIATIONAL METHODS FOR

IMAGE RESTORATION

2.1 INTRODUCTION

Partial Differential Equations (PDE’s) and Variational Methods are widely used for

image denoising and deblurring (refer Kornprobst et al. (1997), Rudin et al. (1992),

Chan et al. (2001), Lysaker et al. (2003) and You and Kaveh (2000) for details). In

PDE based methods, the image gets evolved with respect to time. The evolution even-

tually results in simplification or enhancement of the image features. The variational

methods seeks to minimize the corresponding energy functional and regularizes the dif-

fusive and reactive (fidelity) terms in the functional, using a regularization parameter

(Rudin et al. 1992). Regularized solutions were provided for some of the PDE based

image simplification and enhancement methods as well (Lysaker et al. 2003, Weickert

1997, Catte et al. 1992). Peter et al. (2010) proposed a regularization method based

on the Non-Local Means (NLM) (Buades et al. 2005) filter. In this work the authors

combine the NLM filter with a deblurring term to reconstruct the images. PDE and

variational methods are quite well known for handling the ill-posed problems like de-

blurring and denoising, because the uniqueness and the stability of the solution can

be derived effectively.

We recall from Chapter 1, the commonly used functionals for regularization are

Tikhonov and TV. However, Tikhonov based functional uses L2 norm, which penalizes

much on the image edges. In other-words, L2 norms do not encourage discontinuities

in the solution. Therefore, Tikhonov regularization method is not widely used in
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image processing. TV based approaches use a TV norm, which allows discontinu-

ities in the solution, thus helps in retaining the edges in the image while denoising

them. Nonetheless, the evolution of the non-linear PDE associated with the TV reg-

ularization functional converges slowly and the convergence heavily depends on the

time step parameter. This drawback of TV was addressed to a considerable extent in

Marquiana and Osher (2000).

Besides the slow convergence, another major shortcoming of TV based regulariza-

tion methods (being second order diffusion methods) is the staircase effect. The TV

based techniques (like other second order diffusion methods) approximate the homoge-

neous areas in the image with constant intensity patches that causes a visual discrep-

ancy called staircase effect. Many methods were proposed subsequently in the litera-

ture to address the staircase effect. Majority of these methods rely on the energy func-

tionals with higher-order evolution PDE (You and Kaveh 2000, Lysaker et al. 2003).

However, the higher-order PDEs when used in the evolution equations, may result in

an over-smoothed resultant image (with blurred edges). Another improved method

was proposed by Wei and Xu (2009) and Blomgren et al. (1997), in these works, the

authors proposed a regularization functional, which is a convex combination of TV

and L
2 norms, together with a parameter to select the contribution of each of these

norms. This method could address the issue due to the staircase effect to a consid-

erable limit, by providing a better approximation of the homogeneous areas in the

images. Nevertheless, this method also has a slow convergence rate and the stabil-

ity of the solution depends highly on the time step parameter of the evolution PDE.

Another noticeable issue with TV based and Tikhonov based methods is that even

though the energy functional is convex, the Euler-Lagrange equations associated with

the energy functional is non-linear and are generally ill-conditioned.

Many implicit and semi-implicit iterative solutions were proposed in the literature

for solving this non-linear PDE, refer Chan and Mulet (1999) and Vogel and Oman

(1996) for details. The implicit solution proposed by (Chan and Mulet 1999) uses

a primal-dual quadratic method and the linear semi-implicit method proposed by

Vogel and Oman (1996), uses a fixed-point iteration method. These methods provide

a faster convergence at the cost of high computational complexity. Moreover, in

implicit methods one has to solve a system of linear equations in each iterations to

find the desired solution. Therefore, in case of restoration problems (when the problem

is ill-posed) the computational cost is moderately high (Vogel and Oman 1996).
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The overheads due to the slow convergence of the TV based methods were ad-

dressed by Marquiana and Osher (2000). In Marquiana and Osher (2000), the au-

thors proposed a model based on the level-set motion and established that the steady

state can be reached quickly by the explicit time marching scheme. In this model the

diffusion term is Mean Curvature Motion (MCM). We recall from Chapter 1 that,

MCM is a purely anisotropic diffusion method, in which the level-lines move with a

speed proportional to their mean curvature in the direction normal to the level-curves.

Hence, the diffusion takes place along the direction of the level-lines, not across it.

This property of the filter is desirable in the regions of the images dominated by edges,

finer details and textures; whereas, it is rather a liability in the smooth or homoge-

neous areas. In the homogeneous areas the anisotropic diffusion pretends to form

constant intensity patches resulting in the staircase effect (You and Kaveh 2000).

All these facts (mentioned above) motivate one to propose a time dependent cur-

vature based image reconstruction method, whose steady state is attained quickly by

explicit time marching method. The filter proposed in this chapter denoises anisotrop-

ically in the areas dominated by the edges and isotropically on the homogeneous areas.

The switching of this filter between anisotropic and isotropic behaviors is based on

the local image gradient features. The isotropic diffusion on the homogeneous areas

approximates the filter to a “Laplacian” filter. One can easily see that the energy

functional associated with the “Laplacian” is induced by a L
2 norm. In other-words,

for the energy functional with L
2 norm, the Euler-Lagrange equation consists of a

“Laplacian” operator. As we have already mentioned in Chapter 1, though the L
2

norm penalizes more on the image edges, but rarely leads to the formation of constant

patches, that results in a staircase effect. However, the areas in the image dominated

by the edges and finer details (like textures), the diffusion process gets transformed to

an anisotropic one and does not diffuse at-all in the direction of the gradient; making

the edges intact even after many iterations. The experimental results provided show

the capability of the method to reduce staircase effect while deblurring and denoising

the images.

The rest of this chapter is organized in three sections. Section 2.2 explains the

background of regularization methods for image reconstruction. The proposed model

and the numerical implementations are described in Section 2.3. Section 2.4 gives

a detailed explanation and inferences regarding the results and the experiments con-

ducted.
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2.2 REGULARIZATION APPROACHES FOR IM-

AGE ENHANCEMENT

A mathematical formulation for image degradation model was provided in Chapter 1

equation (1.1). We recall the model:

Ku+ n = u0,

all the symbols have same meaning as in (1.1). Further assuming the operator K as

translational invariant, linear and bounded, (1.1) can be reformulated as a convolution

operation with k as the PSF defined in (1.3). Now, the reconstruction problem is to

determine the original image u from the observed blurred and noisy image u0. As

pointed out in Chapter 1, this problem belongs to an ill-posed one in the sense of

Hadamard (1953). Therefore, the usual way to solve this problem is to employ some

regularization approaches.

2.2.1 Regularization methods

Fourier transform based regularization filters (FFT-REG-Filter) were used earlier, for

deblurring and denoising the images (Bertero and Boccacci 1998), and can be read as:

û(ω) =
û0(ω)k̂(ω)

‖k̂(ω)‖2 + λ
, (2.1)

where x̂ denotes the Fourier transform of the function x, λ is a positive regularization

parameter, ‖.‖ denotes the usual Euclidean norm and ω denotes a frequency variable.

The solution is obtained in the frequency domain. The other symbols in (2.1) are as

in (1.1) (refer Appendix A-3 for details on derivation of (2.1)). Here one can see

that, the solution is defined in the space that allows discontinuities. Hence the image

gets deblurred, but hardly denoised. Therefore, the obvious alternative is to use the

Sobolev regularization filter (SOB-REG-Filter) (Bertero and Boccacci 1998), which is

defined in a space that does not allow the discontinuities in the function. The Sobolev

filter can be written as:

û(ω) =
û0(ω)k̂(ω)

‖k̂(ω)‖2 + λS(ω)
, (2.2)
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here the notations have the same meaning as in (2.1), the term S(ω) = ‖ω‖2 is the

Fourier transform of the “Laplacian” of the image function u. This filter denoises the

image well but penalizes more on the edge features. Therefore, the filters in (2.1)

and (2.2) do not provide satisfactory reconstruction results (refer Appendix A-3 for

detailed derivation of (2.2)).

A statistical regularization filter named Weiner filter (Wiener Norbert 1949) is a

popular image restoration filter. An optimal Weiner filter in Fourier domain is given

as:

W (ω) =
K(ω)∗Suu

|K(ω)|2Suu + Snn

=
K(ω)∗

|K(ω)2|+ rω
, (2.3)

where K∗ is the adjoint of the matrix K (associated with the operator). Suu and Snn

are the variances of data and noise, respectively and ω is a frequency variable. The

noise variance Snn can be assumed to be σ2. Since the signal variance Suu is bounded,

the regularizer rω is bounded well above zero. The filter is assumed to produce an

optimal result under the following conditions.

1. The operator K is shift invariant and the PSF is known in advance.

2. Both noise and image have to be wide-sense homogeneous and wide-sense sta-

tionary1, and the statistical properties of Snn and Suu are known in advance.

An improved version of Weiner filter is proposed in Hillery and Chin (1991) and Lee

(1980). However, the Weiner filter is a least square error minimization filter which

performs a linear estimation of the image, refer Appendix A-3 for derivation of Weiner

filter. Furthermore, one can identify that the least square approximations are well

defined in a space that does not allow discontinuities in the solution, therefore the

filtered images appears considerably smoothened (this fact is visible in the results

provided in the later section, in favour of this method). Moreover, Weiner filter

requires the variances of the noise free signal and the noise for its computation, which

may not be available in all practical scenarios.

All the above regularization methods are non-iterative in nature and when they

are applied to the non-linear deblurring problem they don’t perform well. To solve

1The signal is wide-sense stationary if ,∀k,m
• E[uk] = E[u0]

• Rx(k,m) = Rx(m− k),

where Rx(k) is the even auto-correlation function, uk is the image and u0 is the initial image.
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such non-linear problems iterative regularization approaches are quite often employed.

We discuss some iterative regularization methods in the following paragraphs.

Tikhonov regularization or penalized least squares is a widely used iterative regular-

ization approach (Tikhonov and Arsenin 1977). This method uses the regularization

functional: J(u) = ‖∇u‖2
L2. Thus with the help of (1.43), the restoration problem

can be stated as:

min
u

∫

Ω

‖∇u‖2
L2 dxdy; subject to

1

2
‖k ∗ u− u0‖2L2 − |Ω|σ2 = 0. (2.4)

The “Lagrangian” of (2.4) is:

∫

Ω

‖∇u‖2
L2 dxdy +

λ

2

(
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2

)

. (2.5)

The minimization problem can be read as:

J(u) =
λ

2

(
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2

)

+

∫

Ω

‖∇u‖2
L2dxdy, (2.6)

where λ is the regularization parameter (Lagrange multiplier) and ∇u is the gradient

of the image function u. The first term in (2.6) is a reactive or fidelity term and the

second one is a diffusion 2 (refer to Appendix A-3 for derivation of the fidelity term).

Both the terms in (2.6) are well defined in the space :

W 1,2(Ω) = {u ∈ L2(Ω);∇u ∈ L2(Ω)2}. (2.7)

The problem inf{J(u), u ∈ W 1,2} admits a unique solution characterized by the

following Euler-Lagrange (E-L) equation:

λk ∗ (k ∗ u− u0)−∇2u = 0, (2.8)

where ∇2u denotes the “Laplacian” of u. Now the gradient descent equation is:

∂u

∂t
= ∇2u− k ∗ (k ∗ u− u0). (2.9)

2The diffusion term does the denoising and fidelity term ensures a minimum deviation of solution
image from the actual one.
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This PDE is a Boundary Value problem with Neumann boundary condition (1.30)

and the initial condition (1.31). The parameter λ is updated in each iteration of the

process using the following expression:

λ(t) =

∫

Ω
k ∗ (k ∗ u− u0) (uxx + uyy) dxdy
∫

Ω
(k ∗ (k ∗ u− u0))2dxdy

. (2.10)

This provides a dynamic procedure for restoration. As t → ∞, the steady state

solution gives the restored image. Since, the “Laplacian” operator is isotropic in

nature (as we have already discussed in Chapter 1), the process will diffuse in all

directions with equal magnitude, which eventually results in a smoothed output image.

Therefore, Tikhonov based regularization is not well suited for images with sharp

discontinuities (edges or finer-details). Furthermore, as already discussed in Chapter

1, the L
p norm with p = 2 removes the noise but penalizes more on the gradients

corresponding to the edges. Another observation made is; as p decrease from 2 to 1,

the edge preserving capacity of the filter gradually increases, with the maximum value

when p = 1.

Another improved regularization method was proposed in Rudin et al. (1992) (ROF-

Model). This method uses a Total Variational (TV) functional in place of J(u), i.e.,

J(u) = TV (u) =

∫

Ω

‖∇u‖ dxdy =

∫

Ω

√

u2x + u2y dxdy. (2.11)

Among all the norms, only the TV norm allows discontinuities in the solution and

therefore, with the help of TV norm, one can recover images without losing majority of

edge features present in them. The ROF model can be written in energy minimization

form as:

min
u

∫

Ω

‖∇u‖TV dxdy (2.12)

subject to

(

1

2
‖k ∗ u− u0‖2L2 − |Ω|σ2

)

= 0.

The “Lagrangian” of (2.12) is written as:

∫

Ω

‖∇u‖TV dxdy +
λ

2

(
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2

)

. (2.13)
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The energy functional for ROF model can be read as:

J(u) =
λ

2

(
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2

)

+

∫

Ω

‖∇u‖TV dxdy. (2.14)

Here ‖.‖TV is the TV norm associated with the image function u. The Euler-Lagrange

equation associated with this energy functional can be written as:

λk ∗ (k ∗ u− u0)−∇.
( ∇u
‖∇u‖

)

= 0. (2.15)

The gradient descent equation is:

∂u

∂t
= ∇.

( ∇u
‖∇u‖

)

− λk ∗ (k ∗ u− u0) (2.16)

At steady state the PDE defined in (2.16) can be written as:

− λk ∗ (k ∗ u− u0) +∇.
( ∇u
‖∇u‖

)

= 0. (2.17)

One can easily find that (2.17) is degenerating when 1/∇u→ 0. Hence, it is common

to perturb the initial value of the TV norm with a small positive quantity β. With

the perturbation defined above the TV norm is modified as:

∫

Ω

√

‖∇u‖2 + βdxdy, (2.18)

where β is a small positive parameter. Hereafter we denote this perturbed TV norm

by:
∫

Ω
‖∇u‖β dxdy. The parameter λ is updated using the equation:

λ(t) =

∫

Ω
k ∗ (k ∗ u− u0)

(

∂
∂x

ux√
u2
x+u2

y

+ ∂
∂y

uy√
u2
x+u2

y

)

dxdy
∫

Ω
(k ∗ (k ∗ u− u0))2dxdy

. (2.19)

The above expression for λ is obtained by multiplying (2.15) with k ∗ u − u0 and

integrating over the image domain. We recall that, as t → ∞, the steady state

solution approaches the original image. The natural choice of the space in which the
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terms in (2.14) are well defined is:

V = {u ∈ L2(Ω);∇u ∈ L1(Ω)2}. (2.20)

Many methods were suggested in the literature to solve the Euler-Lagrange equa-

tion in (2.17), see Chan and Mulet (1999) and Chan and Mullet (1996). All these

methods belong to the time-dependent approximation of the ill-conditioned E-L equa-

tion in (2.17). Both the approaches in Chan and Mulet (1999) and Chan and Mullet

(1996) are inefficient, because the steady state is reached in a very small time step,

when the explicit scheme is used. The following formulation is due to Rudin et al.

(1992).

un+1
t − unt
∆t

= −λk ∗ (k ∗ unt − u0) +∇.
(

∇un
‖∇un‖β

)

, (2.21)

with the initial condition (1.31) and the boundary condition (1.30). As t increases

we obtain the restored versions of the input image. The evolution equation in (2.21)

converges very slowly. The diffusion term in (2.21) is parabolic and is singular for

smaller values of ‖∇u‖. Hence, it would be beneficial to put a restriction on the

time step parameter in order to ensure the stability in the evolution process. This is

described by CFL condition defined in (1.21)

In Marquiana and Osher (2000) (MO-based model), the authors relax this CFL

condition, in order to avoid the difficulties due to the time step constraints. The

method in Marquiana and Osher (2000) is a time-dependent model that accelerates

the movement of level-curves of u and regularizes the diffusion term in a non-linear

way. In the work Marquiana and Osher (2000), the authors propose to multiply the

steady state E-L equation in (2.17) with the magnitude of the gradient, the model can

be read as:

0 = −‖∇u‖λ k ∗ (k ∗ u− u0) + ‖∇u‖∇.
(

∇u
‖∇u‖β

)

, (2.22)

with the boundary condition in (1.30) and the initial condition in (1.31). One can

easily observe in (2.22) that, the diffusion term is purely a Mean Curvature Motion

(MCM) (Marquiana and Osher 2000). In MCM the level curves move towards the

zeros of k ∗u−u0, with a speed proportional to their mean curvatures. Therefore, the

noise gets diffused at a faster rate and the steady-state is attained quickly. The areas

where k ∗ u − u0 is zero or in the homogeneous areas, only the anisotropic diffusion
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(induced by MCM) will be active (the effect of fidelity term will be zero), whereas, at

the non-zero points of k ∗u−u0, the fidelity term will have a contribution regularized

by the magnitude of the gradient. This would eventually retain and sharpen the edges

while denoising the images. Analytically it can be shown that this solution procedure

approaches the same steady state as in (2.17), whenever u has non-zero gradient. The

scalar (gradient) multiplication of (2.17) at steady state, does not affect the expression

to evaluate λ. Therefore, the same expression in (2.19) can be used for evaluating and

updating λ, in each iteration.

The anisotropic nature of MCM forces the filter to diffuse only in the direction

tangent to the level curve, because MCM has a component only along the tangent and

the component normal to the curve is zero. This property of MCM is highly desirable

in the areas of the image dominated by the high frequency components (or edges and

finer details). However, in the constant intensity areas MCM will results in forming

constant intensity patches causing the staircase effect.

2.3 SWITCHING ANISOTROPIC ENHANCEMENT

MODEL (SAEM)

After due consideration of the facts discussed above, we propose to couple the fidelity

term in (2.22) with a diffusion term, which behaves like MCM in the areas of the image

dominated by edges and finer details and like a “Laplacain” filter in the homogeneous

intensity areas. The proposed model results in enhancement of edges, while removing

the noise in an anisotropic manner. The proposed method can be mathematically

formulated as:

ut = −λ‖∇u‖k ∗ (k ∗ u− u0) + c (φτ (‖∇u‖σ)uηη + uξξ) , (2.23)

where ξ is the direction along the level-curve and η is the direction along the gradient.

The function φτ : R → {0, 1} is defined as: φτ(x) = 1 if x < τ , zero otherwise.

Here ‖∇u‖σ is the gradient magnitude of the Gaussian convolved version of the image

(with the standard deviation σ). One can easily observe from (2.23) that, in constant

intensity areas the function φ(.) will return a value one and the diffusion term will

transform to an ordinary “Laplacian” filter ∇2u, which is isotropic. Therefore, the

diffusion term is: uξξ + uηη. Note that, the term uξξ in (2.23) denotes MCM. In the
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regions dominated by edges and finer details, the function φτ(x) returns a value zero,

this transforms the filter to a MCM(uξξ). As already mentioned, the MCM filter is a

anisotropic filter that approaches the steady state at a faster rate.

The parameter τ in the function φτ (.) is a gradient threshold parameter. This

parameter provides necessary inputs to the filter to switch between isotropic and

anisotropic behavior. When the value of τ is kept very low (near to zero), the filter

switches to a “Laplacian” filter, only in the constant intensity areas. Whereas, when

the value of τ is quite high, then some of the edge features having the gradient mag-

nitude value less than τ will get smoothed out. As, the smooth regions always need

not be constant intensity regions, the switching of the filter may not give impressive

results, if the value of τ is kept very low. Therefore, one should give due care while

selecting the value of τ for obtaining proper results.

The scalar regularization parameter λ controls the smoothing and fidelity charac-

teristics of the filter. When λ is very small, then the noise features remains not much

affected by the diffusion flow. But when λ is quite large then denoising happens to a

considerable extend and the stability and fidelity of the filter will be largely affected.

Since, the restored version of the image changes in each iteration of the evolution pro-

cess, the parameter λ also needs to be updated in each iteration based on the restored

version of the image. Therefore, λ is evaluated and updated in each iteration using

(2.19). The evaluated value λ(t) denotes the scalar regularization parameter at the

tth iteration. The parameter c determines the magnitude of diffusion. The magnitude

of diffusion increases with increase in the value of c. An analysis of the effect of each

parameter on the filtered results is done in Section 2.4.2.

The anisotropic diffusion term in (2.23) will not result in approximating the homo-

geneous regions with constant patches, which eventually results in the staircase effect.

Since, the filter does not have any component in the direction of the gradient (in the

high gradient regions in the image), the high frequency components like the edges and

the finer details are not severely affected by the diffusion flow. The proposed filter can

still relax on the CFL condition as in (2.22). This filter speeds-up the level curves of

the image function u and regularizes the parabolic diffusion term in a non-linear way.

The initial condition (1.31) and the boundary condition (1.30) are assumed for this

PDE as well.
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2.3.1 Numerical implementations

The gradient descent scheme is used for solving the PDE in (2.23), see Section (1.2.1.4)

for details on the scheme. Explicit Euler schemes are followed for discretizing the PDE

in (2.23), the details were provided in Section (1.2.1.5). Since the fidelity term (the

second term) in (2.23) is hyperbolic, the usual central difference scheme may not help

in getting a proper result. This scheme will be highly unstable and may not converge.

So we use the upwind scheme proposed in Osher and Sethian (1988) for solving the

diffusion term (which has an hyperbolic term) in (2.23). The scale space parameter

h is assumed to be 1 and ∆t is the time step. Using the upwind for solving ‖∇u‖ in
(2.23) will result in the following expressions.

‖∇u‖ =
√

D2
x +D2

y, (2.24)

where Dx = minmod(u+x (x, y), u
−
x (x, y)), Dy = minmod(u+y (x, y), u

−
y (x, y)) and the

minmod operator is defined as:

minmod(x, y) =

{

min(‖x‖, ‖y‖) if xy > 0,

0 Otherwise.

The first order forward, backward and central difference operators are as follows:

u+x (x, y) = u(x+ 1, y)− u(x, y), u−x (x, y) = u(x, y)− u(x− 1, y), (2.25)

ux(x, y) = (u+x + u−x )/2, u
+
y (x, y) = u(x, y + 1)− u(x, y),

u−y (x, y) = u(x, y)− u(x, y − 1), uy(x, y) = (u+y + u−y )/2. (2.26)

Using the explicit Euler equation with finite central difference scheme for rest of the

terms in differential equation in (2.23) will yield the following finite differences:

uηη =
uxx|ux|2 + 2uxyuxuy + uyy|uy|2

1 + |ux|2 + |uy|2
, (2.27)

and uξξ is discretized as :

uxx|uy|2 − 2uxyuxuy + uyy|ux|2
1 + |ux|2 + |uy|2

. (2.28)
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where

uxx = u(x+ 1, y)− 2u(x, y) + u(x− 1, y),

uyy = u(x, y + 1)− 2u(x, y) + u(x, y − 1),

uxy = (ux(x+ 1, y)− uy(x, y − 1))/2. (2.29)

With the help of above discretizations, we can discretize the PDE in (2.23):

un+1 = un −∆t× (λ‖∇un‖k ∗ (k ∗ un − u0)
+ c(φt(‖∇un‖σ)uηη + uξξ)). (2.30)

2.3.2 The stopping rule

A number of stopping rules were proposed for determining the optimal number of

iteration to get the desired results. Many of them rely on the normalized mean

square error in the subsequent iterations or absolute error in each iterations etc., see

Rudin et al. (1992), Lysaker et al. (2003) and Lee and Seo (2005). Here we propose

to use the Normalized Relative Root Mean Square Error (NRRMSE) in each iteration

to put a hold on the iteration process. The NRRMSE is a measure to indicate the

Root Mean Square Error in each iteration for a particular method. The NRRMSE

keeps on decreasing in each iteration during the diffusion process as the filtered image

approaches the original one. NRRMSE is defines as:

NRRMSE = |RMSEi − RMSEi+1|/RMSEi+1, (2.31)

where RMSEi denotes the Root Mean Square Error in the ith iteration. RMSE for a

M ×N image is defined as:

RMSEi =

(

1

N ×M

N
∑

i=1

M
∑

j=1

(uio(i, j)− u(i, j))2
)1/2

, (2.32)

where uio is the observed image at ith iteration and u is the actual image. When the

noise gets smoothed out the reconstructed image gets closer to the original one. The

NRRMSE keeps on decreasing with each iteration and becomes less than a threshold

t after a finite number of iterations. The infimum of the values of n, for which the
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NRRMSE becomes less than the threshold t is taken as the optimal iteration number.

The reconstruction will be optimal when the iteration number is fixed this way. The

graph in Figure 2.1 shows the optimal iteration number for different methods existing

in the literature and for the method proposed in this chapter (SAEM). In Figure 2.1(A)

we plot the NRRMSE of different methods along with the SAEM, for different iteration

numbers. In Figure 2.1(A) the variation of NRRSE against the number of iterations is

not clearly visible for MO-based and the SAEM method, so we plot these two methods

separately in Figure 2.1(B). The images shown in Figures 2.2, 2.3, 2.5, 2.6,2.7 and 2.8

are taken after the corresponding optimal number of iterations for each method. The

threshold for calculating iteration number based on the NRRMSE in (2.31) is chosen

as 0.4× 10−4 and the value of parameter σ in (2.23) is chosen to be 4.

2.3.3 Algorithm to implement the method

The algorithm in Algorithm 1 gives a clear understanding of the method proposed in

Section 2.3.

Algorithm 1 Switching anisotropic filter.

1: u0 ← Image corrupted by noise and blur.
2: λ← Scalar positive value calculated based on (2.19).
3: Evaluate uηη by (2.27) and uξξ by (2.28) and ‖∇u‖ by (2.24).
4: ǫ← small scalar positive value
5: Take a very small time step ∆t, that satisfy the CFL condition defined in (1.21).
6: NRRMSEi ← 0
7: Evaluate NRRMSEi+1 using (2.31) for the initial noisy image u0.
8: while |NRRMSEi+1 −NRRMSEi| ≥ ǫ do. ⊲ Iterate till the NRRMSE of

successive iterations is less than ǫ
9: NRRMSEi ← NRRMSEi+1. ⊲ Assign the current NRRMSE value to the

previous one.
10: Evaluate for un+1 using (2.30).
11: NRRMSEi+1 ← The NRRMSE calculated for the newly computed image

un+1
t , and update λ based on (2.19).

12: end while
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Figure 2.1: (A) NRRMSE plotted for different methods for the image “phantom”; (B)
NRRMSE plotted for MO-Based and the SAEM against the number of iterations.
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2.4 RESULTS AND DISCUSSIONS

We have used standard test images “Lena”, “phantom” ,“mri”, “hibiscus”, “woman”

and “boat” to test the performance of various methods existing in the literature and

the one proposed in this chapter (SAEM). The images “Lena”, “phantom”, “mri”,

“hibiscus”, “boat” and “woman” belong to different classes; “Lena” and “woman”

are partially textured image with homogeneous intensity regions, “phantom” is a

constant intensity image with different constant intensity regions, “mri” and “boat”

are partially textured image with abundant gray-level variations and “hibiscus” is

a vector valued(color) image. These six test images are chosen to demonstrate the

capability of the methods under comparison to handle different kinds of images. Note

that, the test images are degraded using a blurring kernel with mean zero and standard

deviation σ=4 and a Gaussian white noise (independent of the data), resulting in a

noisy image with Signal-to-Noise Ratio (SNR) of 10dB. The regularization parameter

λ is fixed as 0.1 for non-iterative methods like FFT-REG and SOB-REG, whereas

for iterative regularization methods this parameter is evaluated dynamically (in each

iterations) using (2.19). Furthermore, all the test images are normalized in the range

[0-1] in all the experiments. We use three qualitative measures Contrast-to-Noise Ratio

(CNR) (Gonzalez and Woods 2001), Pratt’s Figure of Merit (FOM) (Pratt 1977) and

Mean Structural SIMilarity (MSSIM) index (Wang and Bovik 2004) to measure the

quality of the filtered images, quantitatively. The time step parameter ∆t is evaluated

as: 1
1+λ/ǫ

. The parameter ǫ is used to regularize the gradient (to avoid blowing up of

the values at the zero gradient areas), the parameter is fixed as 0.04 and the value of

parameter c in (2.23) is kept as 1 in all our experiments. However, we have shown the

effect of all these parameters on the filtered output by varying their values.

In each experiment, the performance of the SAEM is compared to that of other fil-

ters like: FFT regularization filter (FFT-REG) (Bertero and Boccacci 1998), Sobolev

regularization filter (SOB-REG) (Bertero and Boccacci 1998), optimal Weiner filter,

Tikhonov regularization method (Tikhonov and Arsenin 1977), TV-Regularization

model (Rudin et al. 1992) and the model proposed by Marquiana and Osher (MO)

(Marquiana and Osher 2000). The performance of each method is quantified percep-

tually (in figures) and quantitatively (in Tables and Graphs). Here we remark that,

since this chapter mainly focuses on iterative regularization methods, the results of

non-iterative methods are not explicitly shown under all experimental set-ups. How-
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ever, we observe that the performance of the non-iterative methods considered here are

considerably inferior to the iterative ones. The results are demonstrated, compared

and analyzed in the subsequent sections.

2.4.1 Quality metrics

The statistical measures like CNR, FOM and MSSIM are employed here to measure

the quality of reconstruction of various methods under consideration. In general these

measures highlight the contrast enhancing and edge and structure preserving capa-

bilities of the filters under consideration. The details of CNR, FOM and SSIM are

already discussed in Sections 1.4.4, 1.4.2 and 1.4.3 of Chapter 1, respectively.

2.4.2 Analysis and discussions

Figures 2.2 and 2.3 are the output images after applying different filters in the litera-

ture and the one proposed in this chapter on the test images “Lena” and “phantom”,

respectively. The fact that the SAEM (image in Figures 2.2 I and 2.3 I) well preserves

the edges and finer details (while denoising the image), is quite evident from these

images. A textured portion from the image “Lena” (after applying various filtering

methods) is enlarged and shown in Figure 2.4 for better visibility. From these enlarged

portions, we observe that, the capability of the SAEM to retain the finer details and

edges is better in comparison to the other methods, whose output is shown in the

same figure. We present the response of the SAEM along with the other relevant

methods in the literature, when applied to the textured medical image “mri” and the

color image “hibiscus” in Figures 2.5 and 2.6, respectively. From these two output

images we can arrive at the conclusion that the SAEM can handle textured and color

images, the same way it handles the other aforementioned images. Furthermore, the

results for partially textured images “woman” and “boat” are provided in Figures 2.7

and 2.8, respectively.

A one dimensional row profile from the image “’Lena” is shown in Figures 2.9

and 2.10. The 200th row is captured from the original, noisy and filtered images.

This profile gives a clear understanding of the filtering process. We have plotted

three row profiles in each graph in Figures 2.9 and 2.10. The profiles in each graph

correspond to the original image shown in red continuous line, the blurred and noisy

image is shown as dotted black line and the filtered output shown as an intermediate
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dotted blue line. Each graph shown in the figure highlights the output of a specific

filtering method used. From these graphs, we infer that the filtering methods like

Tikhonov and Sobolev smooths-out the high frequency components corresponding to

the edges and finer details. The Tikhonov and Sobolev filters are defined on a space,

which does not allow discontinuities in the solutions, and hence the filtered images

appear smooth/blurred. However, the noise features are removed effectively by these

filters. The other filters, viz. TV, MO and SAEM are defined on a space which allows

discontinuities in the solution. Therefore, these filters retain the edges while denoising

the images. Among the methods that allow discontinuities in the solution space,

the SAEM well preserves the edges and finer details due to the switching behavior

of the filter based on the underlying local gradient features. The demonstration in

Figure 2.10 C substantiates the above fact.

For analyzing the quantitative measures like CNR, FOM and SSIM, we have used

the test image “phantom”. The response of the methods, for other test images are

similar to that of the image “phantom”. Therefore, the resultant images (filtered

output images) are not shown explicitly for other test images. Similarly the qualitative

measures (discussed above) are tabulated and shown in tables for the test images

“Lena”, “phantom”, “mri” and “hibiscus” at a specific SNR value. The other test

images (“boat” and “woman”) are found to follow similar characteristics as far as

these measures are concerned. In the same manner, the graph showing the variation

of the qualitative measures (CNR, FOM and SSIM), for different noise levels (of input

images) are demonstrated only for the image “phantom”. The result for other test

images follow the same pattern as that of the image “phantom”.

The CNR for various methods are tabulated in Table 2.1. From the table it is quite

evident that the SAEM enhances the contrast better compared to the other existing

methods. The CNR is calculated for the images after applying the desired filter till

the stopping rule (given in Section 2.3.2) is satisfied. We measured the CNR for the

region R1 (in the foreground) taking R2 in the background as shown in Figure 2.11

(A). Similarly the CNR is measured for the region R3 taking R2 in the background.

The graph in Figure 2.11 (B) shows the variation of CNR for different methods at

different noise variances (for the input image “phantom”). From this graph one can

easily make out that the SAEM improves the CNR at various levels of noise variances.

Pratt’s FOM measures the edge preserving capability of methods. As mentioned
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Table 2.1: The CNR of various methods compared with the SAEM. The SNR of the
noisy image: 10 dB.

Images Noisy TV Tikhonov MO SAEM

Lena 13.5 12.05 13.6 14.1 16.07
phantom 20.8 33.6 30.7 40.48 66.48

mri 22.1 34.3 29.7 38.9 67.4
hibiscus 20.1 33.8 30.7 41.9 69.4

earlier, Canny edge detector (Canny 1986) is used to localize the edges in the original

and reconstructed images, respectively. The parameter (variance) of Canny edge

detector is chosen to be 0.1 for our experiments. Table 2.2 shows the numerical

results of Pratt’s FOM on the filtered images (and the noisy image); which are filtered

using various methods in the literature and the SAEM. The values in Table 2.2 are in

support of the claim that, the SAEM preserves and enhances the edges as compared

to the other methods in the literature. We plot the variation of FOM measured

under different noise levels (for the input image), for various methods described in

the literature and the SAEM in Figure 2.12. The graph is quite self explanatory,

regarding the performance of the SAEM. Further, the result of Canny edge detector

on the filtered outputs are shown in Figure 2.13. The output image after applying

Canny edge detector on the image filtered with the SAEM, is shown in Figure 2.13 I.

In this image, one can observe that the edges are preserved and the noise features are

removed well, in comparison to the other filters.

Table 2.2: The FOM of various methods compared with the SAEM . For the images
corrupted by SNR 10dB.

Images Noisy TV Tikhonov MO SAEM

Lena 0.503 0.410 0.530 0.492 0.582
phantom 0.516 0.449 0.421 0.5254 0.740

mri 0.546 0.519 0.441 0.614 0.751
hibiscus 0.513 0.499 0.411 0.554 0.810

The MSSIM shows the structure preserving capability of the method in hand. The

structural similarity index is a key measure to identify the structure preserving capa-

bility of the methods. The SSIM values are tabulated in Table 2.3 for different input

images filtered with various methods in the literature and the SAEM. It is obvious
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from this table, that the SAEM can well preserve the structural details as compared

to other methods in the literature. We plot the variation of MSSIM measured under

different noise levels for various methods described in the literature and the SAEM in

Figure 2.14. This provides a better analysis on the performance of the SAEM.

Table 2.3: The MMSIM of various methods compared with the SAEM. The SNR of
the noisy image: 10 dB.

Images Noisy TV Tikhonov MO SAEM

Lena 0.669 0.588 0.658 0.652 0.685
phantom 0.656 0.751 0.647 0.698 0.919

mri 0.666 0.821 0.747 0.798 0.891
hibiscus 0.716 0.751 0.672 0.718 0.909

The effect of various parameters in the SAEM in (2.23) on the filtered images

are shown in Figure 2.15. We have used three different parameters to control the

magnitude of diffusion and regularize the filter. The parameter λ is evaluated adap-

tively as discussed earlier. The other two parameters c and τ are fixed based on the

experimental values. The effect of these parameters on the filtered output is shown

in Figure 2.15. The Figure 2.15 A, shows the original image and Figures 2.15 B-D

show the outputs for various values of the gradient threshold parameter τ . It is evi-

dent from these figures that, the increase in value of τ causes a better smoothing in

the homogeneous image areas. The value of τ decides the switching threshold for the

filter. If it is quite high then, for the gradient values less than the threshold value,

the filter will act as a “Laplacian” and smooths out those gradients. We show the

result of the filter for three different threshold values (τ = 5, 15 and 25). The effect

of parameter c on the filtered output is shown in Figures 2.15 E-G. The magnitude

of diffusion is directly proportional to the value of c. The filtered outputs for three

different c values (for c = 0.2, 0.9 and 1.5) are shown in Figures 2.15 E-G. The figure

with c = 0.2 is not denoised properly. Whereas, the output for c = 1.5 shows a better

denoised image.

From the results demonstrated in terms of visual and quantitative measures, it

can be easily verified that the proposed method (SEAM) restores various images with

different features at a better way as compared to other relevant methods in the state-

of-the-art image restoration.
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A B C

D E F

G H I

Figure 2.2: Results of various filters applied on the image “Lena”:(A) Original image;
(B) Blur and noisy image (out of focus blur generated using Gaussian kernel, SNR of
noisy image is 10dB); (C) After applying FFT-REG Filter; (D) After applying SOB-
REG-Filter; (E) Result of Weiner filter; (F) After applying Tikhonov method; (G)
Result of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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A B C

D E F

G H I

Figure 2.3: Results of various filters applied on the image “phantom”:(A) Original
image; (B) Blur and noisy image (out of focus blur is generated using Gaussian kernel,
SNR of noisy image is 10 dB); (C) After applying FFT-REG Filter; (D) After applying
SOB-REG Filter; (E) Result of Weiner filter (F) After applying Tikhonov method; (G)
Result of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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A B C D

E F G H

Figure 2.4: A textured portion of the image “Lena” enlarged (for original and filtered
images):(A) Original image; (B) Blur and noisy image (out of focus blur generated
using Gaussian kernel, SNR of noisy image is 10dB); (C) After applying FFT-REG
Filter; (D) After applying SOB-REG-Filter; (E)After applying Tikhonov method; (F)
Result of Applying TV Model; (G) Result of MO-Model; (H) Result of the SAEM.
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A B C

D E F

G H I

Figure 2.5: Results of various filters applied on the image “mri”:(A) Original image;
(B) Blur and noisy image (out of focus blur is generated using Gaussian kernel, SNR of
noisy image is 10 dB); (C) After applying FFT-REG Filter; (D) After applying SOB-
REG Filter; (E) Result of Weiner filter (F) After applying Tikhonov method; (G) Result
of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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A B C

D E F

G H I

Figure 2.6: Results of various filters applied on the image “hibiscus”:(A) Original
image; (B) Blur and noisy image (out of focus blur is generated using Gaussian kernel,
SNR of noisy image is 10 dB); (C) After applying FFT-REG Filter; (D) After applying
SOB-REG Filter; (E) Results of Weiner filter (F) After applying Tikhonov method; (G)
Result of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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A B C

D E F

G H I

Figure 2.7: Results of various filters applied on the image “woman”:(A) Original
image; (B) Blur and noisy image (out of focus blur generated using Gaussian kernel,
SNR of noisy image is 10dB); (C) After applying FFT-REG Filter; (D) After applying
SOB-REG-Filter; (E) Result of Weiner filter; (F) After applying Tikhonov method; (G)
Result of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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A B C

D E F

G H I

Figure 2.8: Results of various filters applied on the image “boat”:(A) Original image;
(B) Blur and noisy image (out of focus blur generated using Gaussian kernel, SNR of
noisy image is 10dB); (C) After applying FFT-REG Filter; (D) After applying SOB-
REG-Filter; (E) Result of Weiner filter; (F) After applying Tikhonov method; (G)
Result of Applying TV Model; (H) Result of MO-Model; (I) Result of the SAEM.
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Figure 2.9: 1D profile of original, noisy and reconstructed images (after applying):
(A) FFT-REG Filter; (B) SOB-REG-Filter (C) Tikhonov Filter
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Figure 2.10: 1D profile of original (Image “Lena” row:200), noisy and reconstructed
images after applying : (A) TV Filter; (B) MO-Filter (C) The proposed filter.
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Figure 2.11: (A) The regions selected for conducting CNR testing (B) CNR plotted
against the SNR for the image ”phantom”.
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Figure 2.12: Pratt’s FOM plotted against SNR for the image ”phantom”.

62



2.4. RESULTS AND DISCUSSIONS

A B C

D E F

G H I

Figure 2.13: The result of CANNY edge detector applied on the image “Lena” (filtered
using different methods):(A) Original image; (B) Blur and noisy image (out of focus
blur generated using Gaussian kernel, SNR of noisy image is 10dB); (C) After applying
FFT-REG Filter; (D) After applying SOB-REG-Filter; (E) Result of Weiner filter; (F)
After applying Tikhonov method; (G) Result of Applying TV Model; (H) Result of
MO-Model; (I) Result of the SAEM.
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Figure 2.14: MSSIM plotted against SNR for the image ”phantom”.
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Figure 2.15: SAEM applied on image “Lena” with various values for the parameters:
(A) The original uncorrupted image; (B, C and D) shows the output images for three
different values for the threshold parameter τ = 5, τ = 15, τ = 25, respectively; (E, F
and G) shows the output images for three different values for the parameter c = 0.2,
c = 0.9, c = 1.5, respectively.
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Chapter 3

CURVATURE DRIVEN IMAGE

ENHANCEMENT

3.1 INTRODUCTION

Image enhancement demands a special attention in the day-today imaging activi-

ties. Due to the overwhelming demand for the processing of images captured under

poor conditions, image enhancement remains as an unavoidable pre-processing step.

In Chapter 1, we had introduced the denoising and enhancing capabilities of the

non-linear second-order diffusion filters, which are parabolic PDE’s. The enhancing

capability as a consequence of backward diffusion (in Perona-Malik filter) makes it

less preferable due to the unstable nature of the process in many practical situations.

This unstable process (the backward diffusion) leads to a non-unique solution (Hollig

1983) and thereby directing to an undesired result.

In many practical applications the images are degraded by the devise artifacts,

which causes blur (out-of-focus or motion) in the captured images. In such cases, the

enhancement of the edges and the other finer details would be necessary to justify

a proper image reconstruction. A general mathematical image degradation model

was discussed in (1.1). Assuming the linearity and shift-invariance of the operator in

(1.1), this operator can be considered as a convolution operator, which is generally

a blurring operator causing an out-of focus blur in the degraded image. Hence, the

image enhancement or reconstruction aims at recovering the original image from the

observed one, assuming the operator to be linear and noise as independent of data.

In this model the imaging system artifacts are assumed to cause an out-of-focus-blur
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in the sensed image. Therefore, deblurring becomes a trivial process. The deblurring

can be observed as an inverse operation of convolution (which causes the blurring),

consequently the deblurring process becomes a deconvolution operation.

Shock filters were introduced in the literature to enhance the image edges and

other detailed features without causing any theoretical instabilities (Osher and Rudin

1990). These filters can be approximated to deconvolution filters, which can restore

the images from the blurred ones. These filters belong to a class of hyperbolic PDEs,

which never results an inverse diffusion. Merely using shock filters may not serve the

purpose of image enhancement due to the fact that, in most of the practical imaging

applications, the images are corrupted by noise as well. Hence, these filters enhance

the noise along with the edges, where they tend to give a shock. Another notable

achievement in this direction was the introduction of shock filters coupled with dif-

fusion, see Alvarez and Mazorra (1994) and Gilboa et al. (2002). These filters can

denoise images, while preserving and enhancing some of the semantically important

image features. But most shock filters that couple a diffusion term (which are pro-

posed in the literature), use one of the variations of Mean Curvature Motion (MCM)

(Marquiana and Osher 2000) as the diffusion term. MCM based diffusion eventually

results in smoothening of the features with non-zero mean curvature values.

All these facts motivate in proposing an enhancing filter with a curvature driven

diffusion term, which can reconstruct the images from the blurred and noisy ones.

Among the curvature driven techniques, Gauss curvature driven technique is more

suitable due to its capability to preserve structures with non-zero mean curvature

values. Therefore, in this chapter we propose to use a shock filter coupled with a

Gauss curvature driven diffusion term to enhance the images. The noise will always

have a non-zero Gauss curvature value, hence it gets removed in the evolution process

effectively. Moreover, some structures with low gradient magnitudes, that are not well

preserved by other curvature-based diffusion processes are preserved by the Gauss

curvature flow and enhanced by shock component in the proposed filter. The filter

is also equipped with a time dependent function in the shock term, which controls

the extent of shock and diffusion during various stages of the evolution process. The

details are provided in the following sections. The experimental results are provided in

section 3.4 and compared with the most relevant state-of-the-art image enhancement

methods.

Rest of the chapter is organized in three sections. Section 3.2 explains the history of
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curvature driven diffusion methods, its mathematical formulations and the advantages

of using them for denoising. In section 3.3 the details of the proposed curvature

driven enhancement and its numerical implementations are highlighted. The results

and discussions of the curvature driven enhancement methods are done in section 3.4.

3.2 CURVATURE DRIVEN DIFFUSION METH-

ODS AND SHOCK FILTERS

The non-stable nature of the backward-diffusion process in Perona and Malik (1990)

makes it not much suited for image enhancement. There are many alternative solutions

suggested by researchers to address the setbacks of Perona-Malik filter, see Weickert

(1997), Catte et al. (1992) and Alvarez et al. (1992) for details. Curvature based

and curvature-driven methods were also fine-tuned to address the above mentioned

drawback.

3.2.1 Curvature driven methods

Use of geometric properties of the image, incorporated in PDEs for noise removal has

captured the attention of researchers recently, details can be found in Lee and Seo

(2005) and Chan et al. (2002). Most commonly used geometric features are curva-

ture of the level curve and mean curvature of the surface. Note that, here image is

considered as a two-dimensional plane in the three-dimensional space. In all these

schemes, that use the local geometric features for noise removal, noise is considered

to have high mean curvature and are effectively removed by the mean curvature flow.

However, many important image features having non zero local mean curvatures also

get removed. Use of curvature terms as a conductance function for driving the diffu-

sion was first proposed for image inpainting by Chan et al. (2002). The same can be

extended to the denoising process as well. A curvature driven min/max flow method

was also introduced for image denoising, refer Malladi et al. (1996) for details. But

the mean curvature flow does not fit to be a good driving function in many practical

situations, where the images have curvy edges, corners etc. For these features, the

mean curvature value is non-zero. Since, the speed of diffusion is controlled by the

magnitude of mean curvature value, the diffusion adversely affects these features.

Gauss curvature was introduced to image denoising by Lee and Seo (2005), for
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addressing the drawbacks (that are already mentioned above) of the mean curvature

driven diffusion method. Gauss curvature being the product of principal curvatures,

we recall from Chapter 1 that, Gauss curvature is zero at a point, where any of the

principal curvatures is zero. Whereas the mean curvature is the mean of the principal

curvatures, which becomes zero when all of the principal curvatures are zero. So,

the Gauss curvature can be used as a conductance term in the diffusion process for

preserving curvy edges, corners and other features with non-zero mean curvature, we

refer to Lee and Seo (2005) for details. Since the Gauss curvature function is a non-

decreasing monotone function, the evolution will never result in a backward diffusion,

which is ill-posed in nature. Hence, using the curvature driven diffusion term in place

of the coefficient of diffusion, the flux function will be monotonic in behavior and the

solution will be unique, therefore, the problem will be well-posed. From the above facts

one can easily infer that, the curvature driven diffusion will never enhance the image

features because of the monotonic nature of the flux function. As mentioned earlier

in this chapter, many of the images that are being commonly processed, demands

an enhancement in addition to the denoising. In such scenarios curvature-driven

diffusion alone may not serve the purpose of a credible image enhancement. Therefore,

hyperbolic filters are introduced in the literature to enhance the images in a more

stable manner. Such stable enhancing filters are elaborated in the following section.

3.2.2 Shock filters

Shock filters are used widely for image enhancement because these filters are stable

in nature (Osher and Rudin 1990). The following properties of the filter makes it a

good choice for image enhancement.

1. The shocks are developed at the inflection points (second derivatives) while the

local extrema remain unchanged in each evolution.

2. No new local extrema is introduced as a part of evolution and the steady state

solution will have discontinuities at the inflection points.

These properties approximate this filter to a deconvolution filter, which can deblur

the images, refer Gilboa et al. (2002) for details.

The idea of shock filter is based on hyperbolic equations theory. For 1D signals or

2D images, φ(u,∇u,∇2u) = ζux, where ζ is a constant, ux denotes the first derivative
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of u along the direction x, ∇u and ∇2u denote the gradient and “Laplacian” of

the image u, respectively. For any general image processing problem, φ denotes the

function that represents the rate of change of the image function du
dt
. Hence, the

solution for the equation du
dt

= φ(u,∇u,∇2u) under the boundary condition in (1.30)

and the initial condition in (1.31) is u(x, t) = u0(x + at), where a is the speed of

translation of the solution. The idea behind the shock filter is to make the speed of

translation depend on the image structure uxx in case of 1D signals and uηη in case of

2D images. Here η = ∇u/‖∇u‖ denotes the direction along the gradient ∇u. Now,

replacing the speed of translation a with −sign(uηη), for 2D images we obtain the

expression of the “classical” shock filter in Rudin et al. (1992):

ut = −sign(uηη)‖∇u‖, (3.1)

where ut stands for
∂u
∂t
, ‖.‖ denotes the Euclidean norm and sign function is defined

as:

sign(x) =











−1 if x < 0

0 if x = 0

+1 if x > 0

. (3.2)

All the sign functions used throughout this thesis are as defined above. One of

the major drawbacks of the classical shock filter is its inefficiency to distinguish the

inflection points caused due to the noise from that due to the edges. Eventually the

classical shock filter in (3.1) enhances the noise along with the edges.

3.2.2.1 Shock coupled diffusion filters

Many improvements were suggested for “classical” shock filter in (3.1), we refer to

Alvarez and Mazorra (1994), Brockett and Maragos (1992) and Coulon and Arridge

(2000) for details. The Laplacian of Gaussian (LOG) as a shock term is one of

such improvements; but the smoothing capacity of the filter is tightly coupled with

the spread of the Gaussian kernel σ. This filter tends to ignore the noise features

smaller than σ and if σ is large, then the filter will smooth-out many of the inflection

points that belong to the images along with the noise. This defect was addressed

adequately by Alvarez and Mazorra (1994). They proposed to use a curvature based

diffusion along with the shock term to suppress the noise enhancing property of the

“classical” shock filter in (3.1). The evolution equation for the filter considered in
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Alvarez and Mazorra (1994) is:

ut = −sign(Gσ ∗ uηη)‖∇u‖+ λuξξ, (3.3)

here λ denotes the control parameter, which is a positive scalar value that controls

the magnitude of diffusion, Gσ ∗ u denotes the Gaussian (with standard deviation

σ) convolved version of the image u, η is the direction along the gradient and ξ is

the direction perpendicular to the gradient. This anisotropic filter acts like, a ”shock“

filter in the direction of gradient and a diffusion filter in the direction perpendicular to

the gradient. The term ut = uξξ denotes Mean Curvature Motion (MCM). Borrowing

the concepts from differential geometry one can define MCM as:

uξξ = ‖∇u‖div
( ∇u
‖∇u‖

)

, (3.4)

we refer to Marquiana and Osher (2000) for details. In MCM each of the level curves

in the image move in the direction normal to it, at a speed proportional to their mean

curvature values.

3.2.3 Curvature-driven diffusion

We recall from subsection 1.3.1.1 that, the curvature driven diffusion controls the

speed of diffusion process based on the curvature at any point and commonly used

curvatures are the curvature of the level curve and mean curvature of the surface.

The mean curvature is defined in (1.56). The mean curvature used as a conductance

term in diffusion, namely Mean Curvature Driven Diffusion (MCDD) was proposed

for image inpainting by Chan et al. (2002). This method is mathematically modeled

as:
∂u

∂t
= ∇. (χ(M)∇u) (3.5)

where M is the mean curvature, defined in terms of finite central difference scheme

as:

M =
u2xuyy − 2uxuyuxy + u2yuxx

1 + u2x + u2y
, (3.6)

here ux = ∂u
∂x
, uy = ∂u

∂y
, uxx = ∂2u

∂x2 , uxy = ∂2u
∂x∂y

, uyy = ∂2u
∂y2

and χ(.) is a monotonically

increasing function of mean curvature M . Other symbols are as in (1.28).

One of remarkable features of mean curvature flow is, it eventually results in
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smoothing of all the features at a speed proportional to their mean curvatures and

further results in shrinking the level-lines to circular points and vanish in a finite time.

This property makes this method non-suitable in many practical scenarios, because

the images may have structures like curvy edges corners etc., with non-zero mean

curvature values. These structures will eventually fade-out at a speed proportional to

their mean curvatures.

It was proposed in Lee and Seo (2005) to use Gauss curvature instead of Mean

curvature for driving the diffusion process. A notable improvement of Gauss curvature

over the mean curvature is, its ability to preserve structures having non zero mean

curvature. This is due to the property that: the Gauss curvature is the product

of principal curvatures and defined as (1.57). The Gauss curvature driven diffusion

formulated by Lee and Seo (2005) is read as:

∂u

∂t
= ∇. (χ(G)∇u) , (3.7)

where G is the Gauss curvature at surface z = u(x, y) and χ is a monotonically

increasing function of G. Here G is defined as:

G =
uxxuyy − u2xy
(1 + u2x + u2y)

2
. (3.8)

Further, note that χ : R → {R+} ∪ {0} is a non-negative real valued function. The

test for critical point can be done based on the numerator of the expression in (3.8).

Let D = uxxuyy − u2xy, if D < 0 then, the image surface has a saddle point. If

D > 0 and uxx > 0 then, it has a local maximum and if D > 0 and uxx < 0 then, a

local minimum exists. The conductance function χ(.) controls the speed of diffusion

process. At the point where Gauss curvature value is zero the function returns a value

zero and consequently the diffusion stops, ultimately preserving those structures. This

diffusion process is named as Gauss Curvature Driven Diffusion (GCDD). In the case

of noise; the Gauss curvature will have non-zero value because none of the principal

curvatures will be zero. This results in smoothing-out the noise present in the images.

A fourth-order Gauss curvature driven diffusion method was proposed for image

denoising. In this work we proposed a fourth-order diffusion filter, which uses a

function of Gauss curvature as the conductance term to control the magnitude of

diffusion. As already mentioned in Chapter 1, the fourth-order PDE performs a planar
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approximation of the observed image. And this provides a good natural appearance

to the filtered output image. The Gauss curvature based conductance term preserves

curvy edges, ramps and corners. The formulation of the filter considered is:

∂u

∂t
= −∇2

(

χ(G)∇2u(x, y)
)

, (3.9)

where G is defined in (3.8). We choose the function χ(x) = ‖x‖/max(‖x(i, j)‖), ∀i,j ,
as the conductance term. This method is a fourth-order generalization of the second-

order method described in Lee and Seo (2005). This filter can preserve the curved

edges and corners, while denoising images and does not result in a staircase effect

caused due to the piece-wise approximation of the image. However, this fourth-order

filter doesn’t enhance the edges. Moreover, in the fourth-order evolution the image

features gets slightly blurred 1.

Though, the curvature driven diffusion with Gauss curvature as the conductance

term (as discussed above) can remove noise effectively, it lacks the ability to enhance

the edges because the curvature driven diffusion in general hardly results in an inverse

diffusion. The conductance function (in this case) is an increasing function, therefore,

the flux function will be monotonically increasing and this will forbid an inverse dif-

fusion. In many practical applications the images need to be enhanced along with the

noise removal. Therefore, a shock coupled Gauss curvature driven diffusion filter is

proposed in the next section for enhancing the image features while denoising them

effectively.

3.3 GAUSS CURVATURE DRIVEN IMAGE EN-

HANCEMENT (GCDIE)

Although, the filter in (3.3), denoises the images, while giving a shock to the edges

present in the images, it fails to stop the diffusion process on the edges. This causes

a smoothing of edges and finer details along with the noise. Note that, the diffusion

term in (3.3) is MCM as defined in (1.55). As discussed earlier, in MCM each of the

level-lines in the image try to evolve continuously and shrink to a point. Furthermore,

the convex level lines remain convex during the evolution process and non-convex lines

1As the order of PDE increases the smoothness in the filtered output also increases. Since, the
order reflects the extend of continuity which in fact reflects the smoothness in the image.
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become convex after finite number of evolutions. Hence, it is quite natural to couple

a curvature driven diffusion term along with the shock term to control the magnitude

of diffusion based on the underlying image features. Here, we propose to replace the

MCM term in (3.3) with a GCDD term in (3.7), which stops the evolution of level

curves at the places having zero Gauss curvature values. The shock term in the filter

will enhance the edge features making them sharper. The shock coupled diffusion

filter given in (3.3) can be reformulated with proposed modification as:

ut = −
2

π
arctan(Gσ ∗ uηηp(t))‖∇u‖+ λc∇. (χ(G)∇u) . (3.10)

The arctan function is a smoothly varying “soft sign function” which gives a more

natural appearance to the enhanced image (cf. Gilboa et al. (2002)), therefore we

use this function instead of the sign function in (3.3). The sign function defined in

(3.2) is a discontinuous function whereas the arctan function is a continuously varying

function in the open interval (−π/2,+π/2) for the real input values. Therefore, the

arctan function behaves smoothly for the input quantity Gσ ∗ uηηp(t), which is real.

The shock component present in filter (3.10) is the product of arctan of the Gaussian

smoothed version of uηη and the magnitude of the gradient image. Therefore, the

arctan function will return smaller values (close to zero) for the features with small

Gσ ∗ uηηp(t) values and a value close to one for the features with high values of

Gσ ∗ uηηp(t). Hence, the image regions with low gradient magnitude (homogeneous

areas) will have less response to the shock term as compared to the high gradient areas

(edges and finer components). This property of the filter results in an enhancement of

edges in the image. The magnitude of diffusion purely depends on the Gauss curvature

value, thus this filter retains the features even with non-zero mean curvature values.

Here c is a scalar constant parameter that controls the magnitude of diffusion. The

term Gσ denotes the Gaussian convolved version of the image u as defined in (1.25).

Here p : R+ → (0, 1] is a non-decreasing function of time defined as:

p(t) =

{

n×∆t if n×∆t < 0.5

1 otherwise.
(3.11)

where n = 1, 2, 3..., is the iteration number and ∆t is the time step. Note that the

the function p(t) inside the shock term is to control the extend of shock and diffusion

during the early phases of evolution. When p(t) is small then the contribution of shock
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will be minimum whereas the diffusion will be prominent. In other words during the

early phases of evolution the noise will be dominant hence, the application of shock

term helps only to enhance noise inflection points (making the images more noisy).

This problem is addressed to an extent by the inclusion of a time dependent function

in the shock term, here we use a non-decreasing piece-wise linear function as defined

in (3.11). Incorporating this function of time with the shock term can considerably

reduce the effect of shock during the initial stages of evolution. The function p(.)

returns small values much less than one (<< 1) during the initial stages of evolution

(iteration), making magnitude of the shock very less. Therefore, the filter acts like

a normal anisotropic diffusion filter. After a finite number of iterations the function

p(.) always returns a value ’1’. Thereafter, the filter behaves like a shock coupled

diffusion filter. The parameter λ is a scalar parameter, which is positive and controls

the magnitude of diffusion and shock (based on the image features). The parameter

λ is evaluated and updated in each iteration with the following expression:

λ =

∫

Ω
2
π
arctan(Gσ ∗ uηηp(t))‖∇u‖dxdy
∫

Ω
c∇. (χ(G)∇u) dxdy . (3.12)

The above expression is obtained by re-arranging the terms in (3.10) (at the steady

state) and integrating over the image domain.

All other terms in (3.10) are as defined in (3.3) and (3.7). The filter in (3.10) does

not introduce any local extrema points and the total variation is not increasing, hence

over and under-shoots never occurs in these filters. Furthermore, the shock component

is hyperbolic hence the solution will be stable (Osher and Rudin 1990). The function

χ(G) (in the diffusion component) is a monotonically increasing function and therefore,

the flux function (χ(G)∇u) will be monotonically increasing and therefore an inverse

diffusion does not happen.

3.3.1 Numerical implementations

We use the explicit Euler numerical schemes for solving the PDEs given in (3.10).

Since the shock filters are hyperbolic PDEs, the usual central difference scheme may

not help in getting a proper result. This scheme will be highly unstable and may not

converge. So we use the upwind scheme proposed in Osher and Sethian (1988), see

Section 2.3.1 for details. The scale space parameter h is assumed to be 1 and ∆t is
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the time step. The detailed formulation of hyperbolic term can be found in Chapter

2, Section 2.3.1. With the help of finite central difference schemes discussed in Section

2.3.1 one can discretize (3.10) as follows:

un+1 = un −∆t× 2

π
arctan

(

Gσ ∗
(

unxx|unx|2 + 2unxyu
n
xu

n
y + unyy|uny |2

1 + |unx|2 + |uny |2
)

p(t)

)

×
√

D2
x +D2

y +∆t× λ∇. (χ(G)∇un(x, y)) . (3.13)

The term Gσ is the Gaussian convolved version of the image u, as defined in (1.25).

The expression ∇. (χ(G)∇u(x, y)) is discretized using backward and forward difference

formula as given below:

∇. (χ(G)∇u(x, y)) = (χ
(

Gi+ 1

2
,j

)

ui+1,j + χ
(

Gi− 1

2
,j

)

ui−1,j

+ χ
(

Gi,j+ 1

2

)

ui,j+1 + χ
(

Gi,j− 1

2

)

ui,j−1)

− (χ
(

Gi+ 1

2
,j

)

+ χ
(

Gi− 1

2
,j

)

+ χ
(

Gi,j+ 1

2

)

+ χ
(

Gi,j− 1

2

)

). (3.14)

3.3.2 Algorithm to implement the method

The algorithm in Algorithm 2 gives a clear understanding of the method proposed in

Section 3.3.

Algorithm 2 GCDIE Algorithm.

1: u0 ← Image corrupted by noise and blur.
2: Evaluate the scalar regularization parameter λ using (3.12).
3: Evaluate uηη by (2.27), ‖∇u‖ by (2.24) and ∇. (χ(G)∇u(x, y)) by (3.14).
4: Take a very small time step ∆t, that satisfy the CFL condition defined in (1.21).
5: FOMi ← 0
6: Evaluate FOMi+1 using (1.59) for the initial noisy image u0.
7: while FOMi+1 − FOMi < 0 do. ⊲ Iterate till the FOM decreases in the

consecutive iterations
8: FOMi ← FOMi+1. ⊲ Assign the current FOM value to the previous one.
9: Evaluate for un+1 using the explicit method in (3.13).
10: FOMi+1 ← The FOM calculated for the newly computed image un+1.
11: Update λ using (3.12).
12: end while
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3.4 EXPERIMENTAL RESULTS AND DISCUS-

SIONS

We used the standard test images “Lena”, “Woman”, “phantom”, “hibiscus” and

“boat” to test and compare the performance of various methods under consideration

and the one proposed in this chapter. These input images are corrupted by addi-

tive random Gaussian noise, making the Signal-to-Noise Ratio (SNR) of the noisy

images: 12dB and we choose a value of 4 for the standard deviation σ in the Gaussian

smoothing function G, given in (3.10). We have generated an out-of focus blur for

the image using a Gaussian smoothing function with standard deviation σ = 4. The

input images are normalized for their gray values in the range [0-1]. The scale space

parameter h = 1 and the time step ∆t = 0.1. The diffusivity function χ(.) in (3.10)

is considered as χ(x) = ‖x‖/max(‖x(i, j)‖), ∀i,j , which is real and non-negative. The

function p(t) used in (3.10) is a non decreasing function of time which returns a value

in the range (0,1] as already defined in (3.11). Though, it is visually obvious from

the results that the proposed method outperforms the similar kinds of methods in

the recent literature, the reconstruction has to be quantified numerically. Therefore,

statistical quality measures are employed for quantifying reconstruction capabilities

of various methods. These measures are outlined in the following section.

3.4.1 Quality Measures

We use the statistical quality measures like SNR, FOM and MSSIM to quantify the

restoring capacity of the filter. These measures highlight the edge and structure

preserving capability of the filter under consideration. The details of SNR, FOM and

MSSIM are already given in Sections 1.4.1, 1.4.2 and 1.4.3 of Chapter 1, respectively.

3.4.2 Results and analysis

Figure 3.1 shows the results of the proposed method and existing methods in the

literature, when applied on the image “Lena”. It is evident from the figure that

the proposed method preserves and enhances curvy edges and corners (structures

having non-zero mean curvature values) present in the image. Figure 3.2 shows some

enlarged portions of the image in Figure 3.1, after applying the proposed method

and the method using the mean curvature as the control function. It is quite evident
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that the features with non-zero curvature values (curvy edges and corners) are well

enhanced by the proposed method. Especially the parts like lips, eyebrows, hair etc,

are intact even after many iterations, whereas the MCM based methods smoothen-

out these features. Figure 3.3 shows a row-profile of the above mentioned image, we

have chosen 100th row with 100 columns, the profile clearly shows the denoising and

deblurring capability of the proposed method. In Figure 3.3(a) the row-profile of the

original and the blurred & noisy signal are shown. In Figure 3.3(b) the performance of

Alvarez shock filter (Alvarez and Mazorra 1994) is shown and it is quite obvious from

this figure; the method has smoothened out the signal and many sharp edge features

have been removed in the evolution process. In Figure 3.3(c) the result of the proposed

method is shown. From this figure one can confirm that the proposed method has

denoised the signal/image and has preserved and enhanced some of the high frequency

features like edges and fine-details. Similar observations are made about another test

image “Woman”, the results are analogous to the ones that are discussed about the

image “Lenna”. For this image also the proposed method retains and enhances the

edges better, compared to the other methods under consideration. The results of

applying different methods for the image “Woman” are shown in Figure 3.4 and some

enlarged portions of the degraded and reconstructed images are shown in Figure 3.5

The number of iterations n for each method is selected based on Pratt’s FOM

(1.59), in each iteration. One can easily observe that the FOM increases with the

increase in iteration up to a certain limit and then it decreases gradually. The iteration

corresponding to the maximum FOM value is taken as an ideal choice for the number

of iterations n. As we have already observed, the measure FOM directly implies the

edge preserving capability of a method. So the number of iterations n in each method

is based on this Adaptive Selection Principle (ASP). The FOM plotted against the

number of iterations for image “Lena” and “Woman” are shown in Figure 3.6(A) and

Figure 3.6(B), respectively. All the results shown in Figures 3.1 and 3.4 are captured

after the number of iterations evaluated based on this ASP. The number of iterations

chosen for Alvarez, GCDD and proposed model are 80, 110 and 90, respectively (for

the image Lena).

We measure the performance of the proposed method and the methods already

existing in literature with quality measures like Pratt’s FOM and MSSIM. The edge

preserving capability of the filter is measured by Pratt’s FOM as defined in (1.59).

The structural similarity is measured in terms of luminance, contrast and the
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structure. We use MSSIM in (1.61) for measuring the structural similarity. These

measures are tabulated in Table 3.1 for the image “Lena” and in Table 3.2 for the image

“woman”. From Tables 3.1 and 3.2 one can see that out of all the methods tabulated;

the proposed method is having good response in terms of FOM and MSSIM when

tested for images “Lena” and “Woman”. Hence the structure and edge preserving

capabilities of the method is superior to the other tabulated methods.

Table 3.1: Comparison of FOM & MSSIM for the image “Lena”: using different
methods in the literature.

METHODS FOM MSSIM

Alvarez Model 0.87 0.51
GCDD 0.42 0.41

Proposed GCDIE Model 0.91 0.64

Table 3.2: Comparison of FOM & MSSIM for the image “woman”: using different
methods in the literature.

METHODS FOM MSSIM

Alvarez Model 0.89 0.52
GCDD 0.45 0.38

Proposed GCDIE Model 0.93 0.61

Similar experiments were performed for the other test images “phantom”, “hi-

biscus” and “boat” the filtered outputs are displayed in Figures 3.9, 3.10 and 3.11,

respectively. However we observed that the statistical quality measures for these test

images follow a similar pattern as that of the other test images “Lena” and “woman”

(whose results are already demonstrated), therefore these measures are not explicitly

provided here.

We repeated the experiments with different noise levels. The results (in graphs)

of applying FOM at different SNR values (noise variances) are shown for the image

“Lena” and “Woman” in Figure 3.7(A) and Figure 3.7(B), respectively. Similarly

the results (in graphs) of applying MSSIM for the two test images at different SNR

values are given in Figure 3.8(A) and Figure 3.8(B). The graphs shown in Figure 3.7

and Figure 3.8 are the graphical representation of FOM and MSSIM for various SNR

values. From these graphs one can easily confirm that the proposed method has better
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FOM and MSSIM values at all different levels of SNR values. Further we show the

responses of various filters for different input images (phantom, hibiscus and boat)

in Figures 3.9, 3.10 and 3.11, respectively. All these provided results endorse on the

capability of the method to retain the edges while denoising the images and also

enhancing the luminance and contrast of the images.

So we conclude that the Gauss curvature driven diffusion coupled with the shock

filter proposed in this chapter is as efficient method for restoring images from their

degraded (blurred and noisy) observations. Furthermore, this proposed model pre-

serves semantic structures even with non-zero curvature values that are present in the

images. This fact is quite evident in the results demonstrated.
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A B

C D

E

Figure 3.1: Image “Lena”:(A) Original image; (B) Blur and noisy image (out of focus
blur generated using Gaussian kernel with standard deviation σ = 4, SNR of noisy
image is 12dB); (C) After applying Alvarez model (MCM as diffusion Term); (D) After
applying GCDD without shock; (E)After applying the proposed GCDIE Method.
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A B

C

Figure 3.2: Image “Lena”:(A) Selected portions of the filtered image using Alvarez
method Alvarez and Mazorra (1994); (B) Selected portions of the image after applying
the proposed method; (C)The enlarged selected portions : (a), (b) & (c) Portions of the
original; (d), (e) & (f) Result of applying MCM based method; (g), (h) & (i) Result of
applying the proposed method.
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Figure 3.3: The row profile of the image “Lena” :(A) Original and Blurred-noisy
signals; (B) Original and Reconstructed signals using Alvarez model; (C) Original and
Reconstructed signals using Proposed GCDIE Method.
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A B

C D

E

Figure 3.4: Image “woman”:(A) Original image; (B) Blur and noisy image (out of
focus blur generated using Gaussian kernel with σ = 4, SNR of noisy image is 12dB);
(C) After applying Alvarez model (MCM as diffusion Term); (D) After applying GCDD
without shock; (E) After applying the proposed GCDIE method.
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A B

C

Figure 3.5: Image “woman”:(A) Selected portions of the filtered image using Alvarez
model Alvarez and Mazorra (1994) method; (B) Selected portions of the image after
applying the proposed method; (C)The enlarged selected portions : (a) & (d) Parts of
original image; (b) & (e) Result of applying the proposed method; (c) & (f) Result of
applying MCM based method.
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Figure 3.6: (A) FOM plotted against the Number of iterations for the image “Lena”;
(B)FOM plotted against the Number of iterations for the image “Woman”.
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Figure 3.7: The plot showing Pratt’s FOM measured under various methods (under
consideration) for two different images (A) Pratt’s-FOM plotted against the SNR for
the image “Lena”; (B) Pratt’s-FOM plotted against the SNR for the image “Woman”.
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Figure 3.8: The plot showing MSSIM measured under various methods (under con-
sideration) for two different images(A) MSSIM plotted against the SNR for the image
“Lena”; (B) MSSIM plotted against the SNR for the image “Woman”.

87



CHAPTER 3. CURVATURE DRIVEN IMAGE ENHANCEMENT

A B

C D

E

Figure 3.9: Image “phantom”:(A) Original image; (B) Blur and noisy image (out of
focus blur generated using Gaussian kernel with standard deviation σ = 4, SNR of noisy
image is 12dB); (C) After applying Alvarez model (MCM as diffusion Term); (D) After
applying GCDD without shock; (E) After applying the proposed GCDIE Method.

88



3.4. EXPERIMENTAL RESULTS AND DISCUSSIONS

A B

C D

E

Figure 3.10: Image “hibiscus”:(A) Original image; (B) Blur and noisy image (out of
focus blur generated using Gaussian kernel with standard deviation σ = 4, SNR of noisy
image is 12dB); (C) After applying Alvarez model (MCM as diffusion Term); (D) After
applying GCDD without shock; (E) After applying the proposed GCDIE Method.
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A B

C D

E

Figure 3.11: Image “boat”:(A) Original image; (B) Blur and noisy image (out of focus
blur generated using Gaussian kernel with standard deviation σ = 4, SNR of noisy
image is 12dB); (C) After applying Alvarez model (MCM as diffusion Term); (D) After
applying GCDD without shock; (E) After applying the proposed GCDIE Method.

90



Chapter 4

CURVATURE DRIVEN IMAGE

INPAINTING

4.1 INTRODUCTION

Inpainting, a set of techniques for making undetectable modifications to images, is as

ancient as art itself. Applications of image inpainting range from the removal of an

object from a scene to the retouching of damaged painting or photograph. Inpainting

can be done by using information from surrounding areas and merging the inpainted

region into the image so seamlessly that a typical viewer is not aware of it. Inpainting

can even be used to reverse deterioration or reconstruct damaged portions in images

(e.g., cracks in photographs, scratches and dust spots in film), or to add or remove

elements (e.g., stamped dates, red-eye, etc.) from photographs. In any case, the goal

is to produce a modified image in which the inpainted portions remain un-noticeable to

the naked eyes. The reconstructed image quality depends mainly on the underlying

image features. If the inpainting domain is small compared to the image domain

and the gray-level oscillations are minimal (or the image is less textured) then the

inpainted image looks more natural. Since texture is a measure of image coarseness,

smoothness and regularity, the images with texture contain regions characterized more

by variation in the intensity values than by a single one.

Many digital inpainting algorithms have been proposed lately in the literature (see

Chan and Shen (2001a), Bertalmio et al. (2001) and Shen (2003)). A broad classifi-

cation for inpainting methods would be, statistical based (Shen 2003) and PDE or

Variational based. PDE and variational based methods have recently became popular
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among the researchers due to the stability in the solution and well defined theoretical

background for uniqueness and existence of the solution.

Rest of the chapter is organized in four sections. In Section 4.2 an introduction to

the PDE based inpainting methods is provided. In Section 4.3 variational inpainting

methods are highlighted. In Section 4.4 a Gauss curvature driven inpainting method

is proposed and its numerical implementations are discussed. Experimental results

and observations are detailed in Section 4.5.

4.2 PDE BASED INPAINTING METHODS

Second-order diffusion methods can be used for image inpainting. Linear diffusion is

the oldest and most widely explored diffusion method which is well-defined in the space

of square integrable functions (L2) and the solution does not allow discontinuities. If

differentiability is imposed on the input image, then the solution will be well defined

in the Sobolev space. A Sobolev inpainting filter can be formulated as:

∂u
∂t

= uxx + uyy if x ∈ Ω′

u = u0 if x /∈ Ω′ . (4.1)

One can notice that uxx + uyy = uξξ + uηη (we use these notations interchangeably),

where uηη and uξξ are the second order derivatives in the direction along the gra-

dient and across it (see the expressions (2.27) and (2.28)). The symbol Ω′ denotes

the inpainting domain and x /∈ Ω′ implies the non-inpainting domain (which is the

complement of the inpainting domain). A Sobolev inpainting aims at interpolating

the missing information based on the linear diffusion process. The method is isotropic

and as mentioned above the solution will be smooth in nature.

Motivated by the anisotropic nature of the non-linear diffusion filter named Perona

Malik filter (Perona and Malik 1990), it was used for inpainting images. Unlike linear

diffusion filters the Perona-Malik filter doesn’t weaken the edge features in the image.

The non-linear Perona-Malik inpainting filter is defined as:

∂u
∂t

= ∇. (c(‖∇u‖)∇u) if x ∈ Ω′

u = u0 if x /∈ Ω′ , (4.2)

where c(.) stands for the coefficient of diffusion, which is a function of absolute gradient
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of the image, refer Perona and Malik (1990) for more details on this filter. Though,

this parabolic PDE retains the edges and finer details in due course of its evolution, it

conditionally switches to an unstable enhancement during the inverse diffusion process

(this phenomenon was already discussed in Chapter 1).

4.3 VARIATIONAL INPAINTING METHODS

The idea of inpainting is to interpolate the damaged or intended image domain (in-

painting domain) Ω′ in an image u ⊂ R
2, based on the information from u on the

boundary pixels δΩ′ of Ω′ and pixels in the surrounding band of Ω′. Figure 4.1 shows

a pictorial representation of the inpainting domain. Variational based inpainting meth-

ods try to minimize an energy functional which eventually results in a restored version

of the observed (damaged/degraded) image.

minu

∫

Ω′
J(u)dxdy

subject to ‖u− u0‖2 = 0.
(4.3)

where u and u0 are the original and reconstructed images, respectively. Here the

functional J(u) is to be minimized subject to the constraint. Hence the minimization

Figure 4.1: Image inpainting domain.
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problem can be reformulated using a Lagrange function as:

E(u, λ) =

∫

Ω′

J(u)dxdy + λ

∫

Ω

(u− u0)2dxdy, (4.4)

where λ denotes a scalar regularization parameter. In fact the second term in (4.4)

is a reactive (fidelity) term which is bound to be active only in the non-inpainting

domain.

Many functionals have been proposed in the literature based on their reconstruc-

tion capabilities. The first kind of functional proposed was based on the Tikhonov

regularization method (Tikhonov and Arsenin 1977). Here the functional is the L
2

norm of the gradient: ‖∇u‖2. Using this functional, (4.4) can be modified as:

E(u, λ) =

∫

Ω′

‖∇u‖2dxdy + λ/2

∫

Ω

(u− u0)2dxdy. (4.5)

Now to solve this Lagrange functional or to find the minimum of the functional E the

corresponding Euler-Lagrange (E-L) equation needs to be solved. The local extrema

of the functional can be represented by the steady state of the corresponding Euler-

Lagrange equation. Since the functional in (4.5) is convex (refer Appendix A-4 for

details), the local extrema correspond to the local minimum or the desired solution.

The second term in (4.5) refers to the fidelity term, which ensures that, the deviation of

the solution image from the original one is minimal. The E-L equation corresponding

to (4.5) is:

−∇2u+ λ(u− u0) = 0, (4.6)

The gradient descent solution is:

∂u

∂t
= ∇2u− λ(u− u0) (4.7)

The PDE follows the boundary condition in (1.30) and initial condition (1.31). The

solution belongs to L2 space. Assuming the continuity of the function u, the solution

will be well defined in W 1,2 (Sobolev) space. Using this variational method for image

inpainting results in the following equations (we remark that here the reactive term
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is not used for inpainting):

∂u
∂t

= ∇2u if x ∈ Ω′

u = u0 if x /∈ Ω′ . (4.8)

Here x is assumed to be a pixel in the image. Discretization of (4.8) using explicit

Euler scheme, with finite central difference results in (the space steps ∆x and ∆y are

taken as 1):

ut+1 = ut +∆t× ((uxx + uyy)), (4.9)

where ut is the image function at the tth iteration, ∆t is the time step. The second-

order derivatives along x and y directions are discretized as follows:

uxx = ux+1,y − 2ux,y + ux−1,y, (4.10)

and

uyy = ux,y+1 − 2ux,y + ux−1,y (4.11)

This method interpolates the images and provides a good approximation to the orig-

inal image. However, the filter is equipped with a Laplacian operator ∇2, which is

significantly isotropic and results in smoothing-out the image features like edges and

finer details.

An anisotropic model based on the Total Variation (TV) norm was proposed for

image inpainting in Chan and Shen (2001b). This model is a generalization of the

Total Variational model proposed in Rudin et al. (1992) for denoising. The TV based

model retains the edges while diffusing the images. The energy functional proposed

by Rudin et al. (1992) for denoising the images (with reference to inpainting) is:

E(u, λ) =

∫

Ω′

‖∇u‖dxdy + λ/2

∫

Ω

(u− u0)2dxdy, (4.12)

where
∫

Ω
‖∇u‖dxdy is the TV-norm of the functional ‖∇u‖. By minimizing the

energy functional E in (4.12) with respect to u will result in the desired solution. The

second term in (4.12) refers to the fidelity term as defined above. The solution is

defined in the space where the Total Variations are bounded or in a space of bounded

variation. Since the functional
∫

Ω
‖∇u‖dxdy is convex (refer Appendix A-4 for details

and derivations), the minimization results in an unique solution. Using this method
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for image inpainting yields the following equation (reactive term in the E-L equation

is omitted for inpainting):

∂u
∂t

= ∇.
(

∇u
ǫ+‖∇u‖

)

if x ∈ Ω′,

u = u0 if x /∈ Ω′.
. (4.13)

The boundary condition (1.30) and the initial condition (1.31) remains applicable for

this PDE as well. The parameter ǫ is to avoid division by zero in the constant intensity

regions, where ‖∇u‖ tends to zero. The parameter λ is evaluated and updated in each

iteration based on the procedure in Rudin et al. (1992). Discretization of (4.13) using

explicit Euler scheme, with finite central difference results in (the space steps ∆x and

∆y are taken as 1):

ut+1 = ut +∆t×
(uxxu

2
y − 2uxyuxuy + uyyu

2
x)

(ǫ+ ux2 + u2y)
3/2

, (4.14)

where uxx and uyy are defined as in (4.10) and (4.11), respectively. The mixed deriva-

tive is defined as

uxy = 1/4× (ux+1,y+1 + ux−1,y−1 − ux+1,y−1 − ux−1,y+1). (4.15)

Even though TV- based methods are stable and provide unique solutions, the textures

and finer details are severely affected by the diffusion flow. Despite preserving the

edges while diffusing the data, TV-based diffusion flow will eventually result in forming

constant patches in the filtered output ( causing staircase effect).

Second-order variational methods (like TV based models) have drawbacks as in the

connection of edges over large distances or the smooth propagation of level lines (sets

of image points with constant gray-value) into the damaged domain. In an attempt to

solve both the connectivity principle and the so called staircase effect resulting from

second order image diffusions, a number of third and fourth order diffusions have been

suggested for image inpainting.

Variational third order approach is also used in image inpainting, Curvature Driven

Diffusion (CDD) method is a good example (Chan and Shen 2001a). The evolution
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PDE for CDD is read as:

∂u
∂t

= ∇.
[

g(|K|)
‖∇u‖∇u

]

if x ∈ Ω′

u = u0 if x /∈ Ω′
. (4.16)

Here g(|K|) is a non increasing function (similar to (1.29)) of the curvature of the level

curve: K, defined as:

K = ∇.
( ∇u
‖∇u‖

)

, (4.17)

with the initial condition (1.31) and boundary condition (1.30). While realizing the

Connectivity Principle in visual perception, (i.e., level lines are connected also across

large inpainting domains) the level lines are still interpolated linearly (which may

result in corners in the level lines along the boundary of the inpainting domain) in

this model.

A further refinement of the CDD model was done by Chan and Shen (2001) to-

wards restoring blurred and noisy non-textured images. In this model the authors

proposed to combine the fidelity term in (4.12) with the CDD term. The fidelity

characteristics are bound to be active on the non-inpainting domain and CDD will

be driving the inpainting process in the inpainting domain. This model will approach

to the TV model by Rudin et al. (1992) in the non-inpainting domain and acts like a

CDD in the inpainting domain. This model can be precisely formulated as:

∂u
∂t

= ∇.
(

G(x,|K|)∇u
‖∇u‖

)

− λǫ(x)(u− u0), (4.18)

where

G(x, |K|) =
{

1 x /∈ Ω′

g(|K|) x ∈ Ω′ , (4.19)

and

λǫ(x) =

{

λ x /∈ Ω′

0 x ∈ Ω′ , (4.20)

where λ is a regularization parameter described in ROF model (Rudin et al. 1992).

The existence of a TV inpainting in Ω′, which does an inpainting inside the do-

main Ω′ and noise cleaning outside the domain is proved in the THEOREM 4.5 in

Chan and Shen (2001). To be precise this model behaves like a CDD model in the
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inpainting domain and a TV denoising model outside the inpainting domain. Though

this model can handle inpainting the noisy and damaged images, it suffers from the

same issues, as those of the CDD model.

In another work Chan et al. (2002) re-investigated the proposal of Masnou and Morel

(1998) on image interpolation based on Euler’s elastica energy. For any value of p > 1

one can define the p-elastica energy as:

Jp[u] =

∫

Ω

(a+ bKp)‖∇u‖dxdy, (4.21)

here a and b are constants and K is the curvature. It has been proved in Chan et al.

(2002) (THEOREM 4.6), that the optimal choice of p is in the open interval (1,3),

for any value of p ≥ 3 the energy functional J [u] becomes unbounded. Choosing

p = 2 in (4.21), it becomes a Euler-elastica model. This elastica model is thoroughly

analyzed in Masnou and Morel (1998) for image interpolation and was adopted by

Chan et al. (2002) for image inpainting . This model was proposed, to address the

issues of curvature driven diffusion considered by Chan and Shen (2001a).

The most natural approach to solve the inpainting problem is to mimic how pro-

fessional image restorators inpaint manually. As discussed in Bertalmio et al. (2000),

authors extend edges from the boundary of Ω′, connect these extended edges, and

then fill in intra-regions accordingly. This idea has been found to produce satisfactory

results (Bertalmio et al. 2000, 2001). To justify this theoretically, we may have to

introduce few more notions. First, isophotes are level lines of equal gray-levels. The

direction of the isophotes can be interpreted as:

∇⊥u,

where ∇⊥u = (−∂y, ∂x) is the direction of the smallest change and the smoothness is

interpreted as

∇2u,

where ∇2u is the Laplacian operator. In view of ∇⊥u and ∇2u, in order to obtain a

good restoration one can: propagate ∇2u in the direction of ∇⊥u from the boundary

of Ω′, when all the information is propagated, the level-lines of ∇2u become parallel to

∇⊥u, which is the desired solution Bertalmio et al. (2000). See Figure 4.2 for a visual

representation. Therefore, mathematically the inpainting problem can be expressed
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as:
∂u
∂t

= ∇∇2u.∇⊥u if x ∈ Ω′

u = u0 if x /∈ Ω′ . (4.22)

In Bertalmio et al. (2000), the authors iteratively propagate ∇2u in the direction of

∇⊥u until the steady state is obtained, i.e, ∂u
∂t

= 0 in (4.22).

In Chan et al. (2002), the authors present the fourth order elastica inpainting

PDE which combines CDD and the transport process of Bertalmio et al. (2000). The

proposed energy functional can be read as:

J(u) =

∫

Ω′

(a+ b|K|2)‖∇u‖+ λ/2

∫

Ω̄

(u− u0)2dxdy. (4.23)

Here Ω̄ denotes the non-inpainting domain. Here we remark that, x /∈ Ω′ implies

x ∈ Ω̄. The Euler-Lagrange (EL) equation corresponding to the energy functional

(4.23) can be solved using the steepest descent method:

∂u

∂t
= ∇.~V − λǫ(x)(u− u0), (4.24)

where ~V is defined as:

~V = (a+ b|K|2)~n− 2b

‖∇u‖
∂K

∂~t
‖∇u‖~t, (4.25)

Figure 4.2: The smoothness information propagated in the direction of isophotes.
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where ~t and ~n are the vectors tangent and normal to the level lines. In this model

the level lines are connected by minimizing the integral over their length and their

squared curvature within the inpainting domain. This leads to a smooth connection

of level lines also over large distances.

One of the major issues with the curvature based (CDD) (4.18) and mean-curvature

based (4.23) diffusion methods is that, they diffuse based on the mean curvature of the

level-curve. During this evolution process the features like curved edges and corners

tends to become more curvy and vanish after a finite number of evolution.

In this chapter we propose to inpaint a blurred and noisy image without degrading

the features with non-zero mean curvature values. Unlike the mean curvature driven

diffusion process the proposed method does not affect the curvy edges and corners.

4.4 GAUSS CURVATURE DRIVEN IMAGE IN-

PAINTING

In this model we propose to drive the diffusion process using a Gauss-curvature driven

diffusion process as discussed in Section 3.3. The Gauss-curvature driven diffusion

process will retain the structures even with non-zero mean curvature values. The

proposed filter is also equipped with a deblurring term which deblurs the images with

a known blurring kernel. Now the problem is to inpaint blurry and noisy images

without affecting the curvy edges and corners present in the images. So, the degraded

image to be inpainted can be written as (we recall the image degradation model from

Chapter 1):

u0 = k ∗ u+ n. (4.26)

The symbols are in same sense as in (1.1). The image u0 is a degraded image that

needs to be denoised, deblurred and inpainted. The inpainting domain is assumed to

be known prior. The energy functional associated with the reconstruction problem

can be defined as:

J(u) =

∫

Ω′

ψ(‖∇u‖)dxdy + λ/2

(
∫

Ω̄

(k ∗ u− u0)2dxdy − |Ω|σ2

)

(4.27)

where |Ω| is the total number of pixels in the image, σ2 is the noise variance and λ is

the regularization parameter, ψ(.) is the potential function and the gradient of which
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is the flux function φ(.) defined as:

∇(ψ(‖∇u‖)) = φ(∇u) = f(G)∇u. (4.28)

Here G is the Gaussian curvature as given in (3.8). In our experiments we assume

f(G) = |G|, where |.| denotes the absolute value. Since the flux function is an increas-

ing function of Gauss curvature the associated energy functional becomes convex.

Now the inpainting problem can be observed as an energy minimization problem

for the functional J(u) defined in (4.27). The inpainting or reconstruction model can

be formulated as the Euler-Lagrange equation for the unconstrained minimization

problem defined in (4.27) with the boundary condition (1.30) and initial condition

(1.31), at steady-state the solution approaches the original one or the minimum is

obtained:
∂u
∂t

= ∇.
[

χ(x,G)∇u
‖∇u‖

]

− λǫ(x)k ∗ (k ∗ u− u0). (4.29)

Here, the function χ(.) follows the definition:

χ(x, G) =

{

1 if x /∈ Ω′

f(G) if x ∈ Ω′ , (4.30)

where λǫ(.) is the regularization parameter as defined in (4.20), k is a Gaussian kernel.

Note, x /∈ Ω′ denotes the pixel that belongs to the image domain Ω but not inpainting

domain Ω′ 1.

4.4.1 Numerical implementations

We use explicit Euler scheme for discretizing the problem in (4.29). Using the central

difference scheme, the second derivatives along x and y can be written as in (2.29).

The expression ∇. (f(G)∇u(x, y)) is discretized using backward and forward difference

1Here we remark that, x /∈ Ω′ implies x ∈ Ω̄.
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formula as given below:

∇. (f(G)∇u(x, y)) = (f
(

Gi+ 1

2
,j

)

ui+1,jf
(

Gi− 1

2
,j

)

ui−1,j

+ f
(

Gi,j+ 1

2

)

ui,j+1f
(

Gi,j− 1

2

)

ui,j−1)

− (f
(

Gi+ 1

2
,j

)

+ f
(

Gi− 1

2
,j

)

+ f
(

Gi,j+ 1

2

)

+ f
(

Gi,j− 1

2

)

), (4.31)

where G is defined as in (3.8). Implementation of other terms using the explicit central

differencing scheme is already discussed, therefore, it is skipped here for brevity. The

convolution in (4.29) (which is in spatial domain) is implemented as multiplication in

Fourier domain.

4.5 EXPERIMENTAL RESULTS AND DISCUS-

SIONS

4.5.1 Experimental set-up

The standard test images like “hibiscus”, “parrot”, “woman”, “Lena”, “boat” and

“phantom” are used to test and compare the performance of the method with some of

the relevant methods discussed in the literature. The test images are degraded using

an out-of-focus blur and a Gaussian additive noise (with variance 0.01). The blurring

kernel is chosen to be a Gaussian kernel with standard deviation σ = 4 The degraded

image has a PSNR value 8.5dB. The convolution operation is implemented using

FFT multiplication. All the test images (which are gray scale images with intensity

values in the range [0-255]) are normalized in the range [0-1] for our experiments.

The test images are cropped to the size 256x256 pixels. The test images “hibiscus”,

“woman”,“Lena”, “boat” and “phantom” are subjected to random data loss of 75%

and the images are inpainted to compensate for the data loss of 75%. Image “parrot”

is inpainted for removing the cage bars in the input image.

We use the quality measures like PSNR, FOM and SSIM to quantify the quality

of reconstruction. The details of these measures can be found in Chapter 1, Section

1.4.
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4.5.2 Results and analysis

The resulting images after applying different inpainting methods are given in Figures

4.3, 4.4 and 4.5 for the images hibiscus, parrot, woman, respectively. The test images

woman and hibiscus show the reconstruction capacity of various inpainting methods

under consideration. These two images are subjected to random data loss (of 75%) and

a Gaussian noise is added into these images (with mean zero and variance 0.01). The

image parrot is shown to demonstrate the inpainting capacity of the filter; the image

is equipped with an inpainting domain which covers the cage-bars in the input image.

From these three figures (viz. Figures 4.3, 4.4 and 4.5) the fact that, the proposed

method reconstructs and inpaints the images is substantiated, without further doubts.

A B C

D E F

Figure 4.3: Image ’hibiscus’ (Original and reconstructed ones): (A) Original Image;
(B) Image with data lost from random pixels (75%) and corrupted by a Gaussian noise
with mean zero and variance: σ2 = 0.01; (and blurred); (C) result of applying Perona-
Malik method; (D) result of TV based method; (E) result of CDD method; (F) result
of the proposed method.

The selected portions from image “hibiscus” and “woman” are enlarged for bet-
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A B C

D E F

Figure 4.4: Image ’parrot’] (Original and inpainted) ones: (A) Original Image; (B)
Image with the mask in the domain to be inpainted, corrupted by a Gaussian noise with
mean zero and variance: σ2 = 0.01 ; (and blurred) (C) result of applying Perona-Malik
method; (D) result of TV based method; (E) result of CDD method; (F) result of the
proposed method.

ter visibility in Figures 4.6 and 4.7, respectively. From these enlarged portions one

can analyze that the proposed method has preserved features with non-zero mean

curvature values (viz. curvy edges, corners etc.).

Furthermore the figures Figures Lena, boat and phantom were also tested with the

methods under consideration and the results are shown in Figures 4.8, 4.9 and 4.10,

respectively. The statistical mesures are not provided explicitly for these images for

the reason that they follow the patter similar to the other images.

The highest values of PSNR obtained for various test images after applying differ-

ent methods under consideration are tabulated in Table 4.1. The PSNR values keep

on increasing in each iteration as the filtered image approaches the original one The

proposed method improves the PSNR value of the degraded image at a better rate

compared to its counterparts. PSNR of the noisy input image is 8.5 dB. The results

are shown for the various test images at a fixed input PSNR value. The characteris-
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A B C

D E F

Figure 4.5: Image ’woman’ (Original and reconstructed ones): (A) Original Image; (B)
Image with data lost from random pixels (75%) and corrupted by a Gaussian noise with
mean zero and variance: σ2 = 0.01 (and blurred); (C) result of applying Perona-Malik
method; (D) result of TV based method; (E) result of CDD method; (F) result of the
proposed method.

tics follow the same pattern for any PSNR values of the input images. Therefore, the

explicit result is shown only for a single input PSNR value. The MSE values are also

determined for various test images with different PSNR values. The result for MSE is

the inverse of the result for PSNR. Since, the images are normalized the numerator of

expression (1.63) becomes unity and therefore, the MSE and PSNR become inverses

of each-other. For the above reason, results are not shown explicitly for MSE, but

PSNR. The SNR values of various filtered images (restored using different filters) are

tabulated in Table 4.2

Pratt’s Figure of Merit (FOM) for various test images under different methods is

shown in Table 4.3 . The proposed method is giving good response in terms of FOM

as compared to the other methods proposed in the literature. In addition to the above

three measures we measure the Mean-SSIM for various test images reconstructed using

different methods under consideration, the values are shown in Table 4.4. The values
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Figure 4.6: Image “hibiscus”:(A) Original Image; (B) (a) Selected portions of the
image inpainted using TV filter (b) selected portion filtered using CDD based inpainting;
(c) & (f) Result of applying proposed method.

Table 4.1: PSNR for the inpainted images (PSNR for the input image is :8.5dB).

Images SOB TV CDD The proposed method
Hibiscus 29.23 29.88 29.92 32.23
Parrot 28.42 29.22 28.35 31.33
Woman 28.44 29.35 28.45 31.68

are in favor of the proposed method. In other words the proposed method preserves

important structures in the course of evolution.

We have tested the performace of our method with various test images for a random

data lose (of the input image) up to 90% and we observed that the reconstructed

images are of distinguishable quality up to this level of data lose, beyond which the

restored image is highly degraded, see Figure 4.11.

In this chapter a third-order Gauss curvature driven inpainting was adopted for

inpainting or reconstructing the images from their damaged observations. The method

proposed was indented to handle the structures with non-zero mean curvature values

with a special care.
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Figure 4.7: Image “Woman”:(A) Image woman; (B) (a)& (d) Selected portions of the
image inpainted using TV filter (b) selected portion filtered using CDD based inpainting;
(c) Result of applying proposed method.

Table 4.2: SNR for the inpainted images (SNR for the input image is :1.52dB).

Images SOB TV CDD The proposed method
Hibiscus 14.23 15.68 16.72 18.73
parrot 14.42 16.21 17.85 19.13
Woman 13.43 15.45 17.35 18.18

Table 4.3: Pratt’s FOM for the inpainted images (PSNR for the input image is :8.5dB).

Image SOB TV CDD The proposed method
Hibiscus 0.76 0.87 0.85 0.91
Parrot 0.78 0.85 0.81 0.88
Woman 0.77 0.89 0.87 0.90

Table 4.4: MSSIM for the inpainted images (PSNR for the input image is :8.5dB).

Image SOB TV CDD The proposed method
Hibiscus 0.79 0.77 0.78 0.82
Parrot 0.72 0.74 0.75 0.79
Woman 0.74 0.75 0.74 0.81
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A B C

D E F

Figure 4.8: Image ’lena’ (Original and reconstructed ones): (A) Original Image; (B)
Image with data lost from random pixels (75%) and corrupted by a Gaussian noise with
mean zero and variance: σ2 = 0.01 (and blurred); (C) result of applying Perona-Malik
method; (D) result of TV based method; (E) result of CDD method; (F) result of the
proposed method.
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A B C

D E F

Figure 4.9: Image ’boat’ (Original and reconstructed ones): (A) Original Image; (B)
Image with data lost from random pixels (75%) and corrupted by a Gaussian noise with
mean zero and variance: σ2 = 0.01 (and blurred); (C) result of applying Perona-Malik
method; (D) result of TV based method; (E) result of CDD method; (F) result of the
proposed method.

109



CHAPTER 4. CURVATURE DRIVEN IMAGE INPAINTING

A B C

D E F

Figure 4.10: Image ’phantom’ (Original and reconstructed ones): (A) Original Image;
(B) Image with data lost from random pixels (75%) and corrupted by a Gaussian noise
with mean zero and variance: σ2 = 0.01 (and blurred); (C) result of applying Perona-
Malik method; (D) result of TV based method; (E) result of CDD method; (F) result
of the proposed method.

A B C

D E F

G H I

Figure 4.11: Outputs of CDD and the proposed method applied on the image “woman”
for various data lose. (A) (D) (G) The images with 87 %, 90% and 92% data loss (B)
(E) and (H) Inpainted using CDD method (C)(F)and (I) Inpainted using the proposed
method.
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Chapter 5

FOURTH-ORDER PDE FOR

IMAGE ENHANCEMENT

5.1 INTRODUCTION

The fourth-order diffusion filters were introduced in the literature to handle the stair-

case effect caused due to the piece-wise approximation of the observed image by the

second-order diffusion filters. However, the smoothness of the filtered images increases

with the order of the filter. Moreover, the fourth order filters alone cannot handle

the enhancement requirement, where the images are degraded by the device artifacts

(causing blurness in the image). Therefore, coupling the fourth-order diffusion filter

along with the stable hyperbolic shock filter can improve the enhancement capacity of

the fourth-order filter to a large extent. The detailed description of hyperbolic shock

filters were presented in Chapter 3. A controlled application of shock and diffusion

can effectively transform the images into a considerable enhanced ones.

Many of the filters that couple a diffusion term and a shock term, use a variation of

Mean Curvature Motion(MCM) in place of the diffusion term, (see Alvarez and Mazorra

(1994) and Gilboa et al. (2002)). The MCM was introduced to image processing by

Marquiana and Osher (2000). As already discussed in Chapter 1, in the MCM model,

each of the level curves in the image evolves with the speed proportional to their

mean curvature and eventually results in making the curved edges more curvy until

it vanishes to a point. In addition to this, all the second-order diffusion methods in-

cluding MCM approximates the observed image with piece-wise constant images and

the evolution eventually results in forming constant patches in the filtered image. As
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already explained in the previous chapter this defect is known as staircase effect.

In this chapter, we propose a fourth-order diffusion coupled shock filter to denoise

and deblur the images. By combining the fourth-order diffusion along with the shock

term, we can exploit the characteristics inherent in fourth-order diffusion filters to

denoise the image while enhancing the edge features by the shock term. The exper-

imental results are provided for textured and non-textured images and the results

of the proposed filter are compared qualitatively and quantitatively with the most

relevant image enhancement methods in the literature.

Rest of the chapter is organized in three sections. Section 5.2 gives a mathematical

background of fourth-order denoising filters and their properties. Section 5.3 highlights

the proposed method and its numerical implementations. Section 5.4 elaborates on

the experimental results and their comparison with the existing methods for image

enhancement.

5.2 FOURTH-ORDER DENOISING FILTERS

The second-order non-linear diffusion methods are devised in such a way that they

diffuse in the homogeneous regions at a faster rate as compared to non-homogeneous

ones. All the second-order non-linear diffusion methods approximate the observed im-

age with piece-wise constant images. The PDE evolution eventually results in forming

piece-wise patches during the early stages of evolution and finally these patches com-

bine to form a level image. This level image is the only minimum of the energy func-

tional associated with the second-order PDE. Similarly, during the inverse diffusion

any piece-wise constant image is a global minimum of the energy functional, therefore

the blocks will appear in the early stages of evolution and they remain without any

change during the course of evolution.

As discussed in Chapter 1, Section 1.2.3, the fourth-order diffusion filters were

introduced to handle the hazards due to the staircase effect (You and Kaveh 2000,

Lysaker et al. 2003). Moreover, due to the convex nature of the energy functional the

solution is unique (see Appendix A-3).

Even-though the fourth-order PDE equation in (1.36) is capable of removing the

noise by penalizing less on the edges and without causing any staircase effect, the

convergence rate is very slow for this PDE. Besides, the ramp edges are not well

preserved in the evolution process, see Hajiaboli (2009) for details. These two issues
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of (1.36) were addressed by Hajiaboli (2009). In Hajiaboli (2009), the author replaces

the Laplacian of the image in the diffusion coefficient function with the gradient

magnitude of the image. The diffusion equation considered in Hajiaboli (2009) is:

∂u

∂t
= −∇2

(

c (‖∇u‖)∇2u
)

, (5.1)

where c(.) is a non-increasing function bounded in (0,1]. Here c(.) is defined as:

c(‖∇u‖) = 1

1 + (‖∇u‖/κ)2 . (5.2)

The filter in (5.1) can still support the planar approximation of the image removing

the staircase effect. The ramp preservation capacity of the filter can be explained by

considering the fact that: ∂u
∂t
→ 0 as ∇u→ 0 (refer Hajiaboli (2009) for details).

The filter given by (5.1) can address the slow convergence rate of (1.36) and also

preserves the ramp edges. However, the isotropic nature of this filter makes it a second

choice, when it comes to the denoising of images with edges and textures. The edge

descriptor (∇2u) in this case is the Laplacian operator, which is isotropic in nature and

diffuses in all directions equally. Another improved filter was proposed in Hajiaboli

(2010), which is a fourth-order generalization of a second-order filter proposed in

Carmona and Zhong (1998). The filter proposed in Hajiaboli (2010), uses directional

derivatives for smoothing the images in place of the Laplacian operator. This results

in different diffusion magnitudes in different directions and ensures that the speed

of diffusion is more along the edges than across them. The aforementioned property

makes it an anisotropic filter which can remove the noise effectively in all the regions

including the edges, penalizing less on the edge features. This modified filter can be

formulated as:
∂u

∂t
= −∇2c1 (c2uηη + c3uξξ) , (5.3)

where c1, c2 and c3 are the diffusivity functions which control the amount of diffusion in

different directions. Here η represents the direction along the gradient, ξ the direction

along the isophotes and uξξ denotes the MCM and as defined in (3.4). The diffusivity

functions can be appropriately tuned to get different magnitudes of diffusion in dif-

ferent directions. In Hajiaboli (2010), the author has chosen c1 = c2 = c(‖∇u‖) and
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c3 = 1. With these substitutions, (5.3) can be rewritten as:

∂u

∂t
= −∇2

(

c(‖∇u‖)2uηη + c(‖∇u‖)uξξ
)

, (5.4)

where c(.) is a non-increasing function as in (5.2) and c(‖∇u‖) = 1 when ‖∇u‖ = 0

(in the homogeneous areas). Under this condition, the diffusion equation transforms

to:
∂u

∂t
= −∇2(uηη + Iuξξ). (5.5)

From the above equation one can find that the filter in (5.4) acts like an isotropic

filter in the smooth (homogeneous) areas where ‖∇u‖ = 0. When c(‖∇u‖) 6= 1 the

filter will act like an anisotropic filter with varying diffusion magnitudes in different

directions. Furthermore, it can be easily observed that c(‖∇u‖)2 ≤ c(‖∇u‖) because
c(‖∇u‖) ≤ 1, hence, the speed of diffusion will be more in the direction of isophotes

as compared to the direction of the gradient.

However, none of the filters discussed above does a real enhancement to the image

edges or details. Though these filters denoise images preserving the planar approxi-

mations, they hardly are capable of enhancing the image features. The enhancement

may be unavoidable, in cases where the images are captured with defective sensors

causing blurness in the sensed images.

5.3 THE FOURTH-ORDER ENHANCEMENT FIL-

TER (FOEF)

All the facts discussed above motivated us to use a fourth-order diffusion term in

(5.4) along with the shock term to enhance images. This shock coupled diffusion filter

can denoise the images anisotropically while preserving the edges (including ramp

edges), without causing any staircase effect and will attain steady state at a faster

rate. Hence, we propose to fit this fourth-order diffusion term in (5.4) along with

a modified version of the shock term proposed in Alvarez and Mazorra (1994). The

proposed filter can be modeled as:

ut = −
2

π
arctan(Gσ ∗ uηη × p(t))‖∇u‖

− λ∇2
(

c(‖∇u‖)2uηη + c(‖∇u‖)uξξ
)

, (5.6)
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where Gσ ∗ uηη is the Gaussian convolved (with the spread of the Gaussian kernel σ)

version of uηη and p(.) is as defined in (3.11). We recall from Chapter 3, Section 3.3,

the arctan function is a “soft sign function” which provides a more natural appearance

to the enhanced image (Gilboa et al. 2002), therefore, this function is used instead of

the sign function in (3.3). The parameter λ is a positive scalar value, which controls

the magnitude of shock and diffusion. The function c(.) is a non-increasing function

as defined in (5.2). The terms uηη and uξξ are the second-order directional derivatives

along the gradient and the isophotes, respectively. The other notations are as in

(3.3). The function p(t) inside the arctan function controls the effect of shock during

the early stages of evolution. During the initial phases of evolution the function

p(.) returns a value much smaller than one and after a finite number of iterations

the function p(.) always returns ’1’. Thereafter, the filter acts like a shock coupled

diffusion filter regularized by the control parameter λ. The parameter λ is evaluated

and updated in each iteration using the expression:

λ =

∫

Ω
2
π
arctan(Gσ ∗ uηη × p(t))‖∇u‖

∫

Ω
∇2 (c(‖∇u‖)2uηη + c(‖∇u‖)uξξ)

. (5.7)

5.3.1 Numerical implementations

The gradient descent scheme is used for solving the PDE in (5.6), see Section (1.2.1.4)

for details on the scheme. Explicit Euler schemes are followed for discretizing the PDE,

the details were provided in Section (1.2.1.5). However, the Euler schemes works well

with Parabolic PDE’s, whereas they tends to react poorly to the Hyperbolic PDE as far

as stability is concerned. Therefore, to solve the hyperbolic term (shock term) in the

proposed PDE (FOEF) upwind scheme is used. The hyperbolic PDE implementation

is already discussed in Section (2.3.1) in Chapter 2, therefore we refer to the section

for details.

The explicit Euler equation with finite central difference scheme is used for the

diffusion term in (5.6).

Let g(‖∇u‖) = c(‖∇u‖)2uηη + c(‖∇u‖)uξξ,
then

∇2gnx,y = gnx+1,y + gnx−1,y + gnx,y+1 + gnx,y−1 − 4gnx,y. (5.8)

With the help of above discretization one can write the discretization for the filter in
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(5.6).

un+1
t = un −∆t× ((2/π)arctan

(

Gσ ∗ unηη × p(t)
)

|∇un|
+ λ∇2

(

c(‖∇un‖)2unηη + c(‖∇un‖))unξξ
)

, (5.9)

we recall that, uηη is discretized as in (2.27), uξξ is discretized as (2.28) and ‖∇u‖ is
defined as (2.24) (hyperbolic shock filters are discretized using upwind scheme).

5.3.2 Algorithm to implement the method

The following algorithm (Algorithm 3) gives a clear understanding of the method

proposed in Section 5.3.

Algorithm 3 Fourth-order Enhancement Algorithm.

1: u0 ← Image corrupted by noise and blur.
2: λ← Scalar positive value evaluated using (5.7).
3: Evaluate uηη by (2.27), |∇u| by (2.24), uξξ by (2.28) and ∇2(gn(x, y)) by (5.8).
4: Evaluate c(‖∇u‖) and c(‖∇u‖)2 by equation (5.2).
5: Take a very small time step ∆t, that satisfy the CFL condition in (1.21).
6: SNRi ← 0
7: Evaluate SNRi+1 using (1.58) for the initial noisy image u0.
8: while SNRi+1 − SNRi < 0 do. ⊲ Iterate till the SNR decreases in the

consecutive iterations
9: SNRi ← SNRi+1. ⊲ Assign the current SNR value to the previous one.

10: Evaluate for un+1 using the explicit method in (5.9).
11: SNRi+1 ← The SNR calculated for the newly computed image un+1.
12: Update λ using (5.7)
13: end while

5.4 EXPERIMENTAL RESULTS AND DISCUS-

SIONS

We used a synthetic image “phantom” (a constant intensity image), a natural image

“Lena” (a partially textured image) , two partially textured natural images “Woman”,

“Boat” and a color image “hibiscus” to test the performance of our algorithm. In all

the experiments the intensity values of the images are normalized to the range [0-1].
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Though the quality of the filtered output can be visually compared, we provide quan-

titative measurements for the performance of various methods cited in this work along

with the proposed one (FOEF). We use three different image quality metrics Signal-

to-Noise Ratio (SNR), Pratt’s Figure of Merit (FOM) (Pratt 1977) and Structural

Similarity Index Metric (SSIM) (Wang and Bovik 2004) to compare the performance

of our method to the other relevant methods in the literature.

5.4.1 Image quality measures

Statistical quality measures are used to quantify the restoring capacity of the filter

under consideration. Here, we employ the measures like SNR, FOM and M-SSIM.

These measures highlight the edge and structure preserving capability of the filter

under consideration. The details of SNR, FOM and SSIM are given in Sections 1.4.1,

1.4.2 and 1.4.3 of Chapter 1, respectively.

5.4.2 Experimental set-up

The test images are corrupted by Gaussian noise making the SNR of the noisy image

8 dB and we have chosen a value 4 for the standard deviation σ in the Gaussian

smoothing function G in the expression (5.6). A blurred image (out-of-focus blur)

is generated using a Gaussian smoothing function with standard deviation σ = 4.

The scale space parameter h = 1. The time step ∆t = 0.01 for all the fourth-order

methods except the fourth-order regularization method in Lysaker et al. (2003). For

this method the time step is chosen as ∆t = 0.002, because the method is highly

sensitive to the time step.

In each experiment, the performance of the proposed method (FOEF) was com-

pared to that of other filters like: fourth-order denoising by You and Kaveh (2000),

regularized fourth-order denoising technique by Lysaker et al. (2003), the modified

fourth-order method proposed by Hajiaboli (2009) and Hajiaboli (2010) and the shock

filter proposed by Alvarez and Mazorra (1994). The performance of each method is

quantified in terms of different quality measures defined above and are demonstrated

and compared in the subsequent sections.
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5.4.3 Results and analysis

The visual results of applying different enhancement techniques on the image “phan-

tom” image is shown in Figure 5.1C-5.1G. This image is a non-textured image with

constant intensity regions. The “phantom” image consists of regions with different

contrast and geometric shapes. We choose the value 0.006 for the parameter λ in

our experiments. The blurred and noisy image (shown in Figure 5.1B) is used as an

input to different image enhancement methods in the literature along with the one

proposed in this chapter. The output results shown are quite in favor of the claim

that, the FOEF method enhances the edges and denoises the image better than the

other methods shown in the results.

The results of different methods in the literature along with the FOEF when

applied to a partially textured natural image “Lena” is shown in Figure 5.2C-5.2G.

The results of various methods including the FOEF applied on the natural images

“Woman” and “Boat” are shown in Figures 5.3 and 5.4, respectively. Finally a color

image (“hibiscus“) is tested and the results are provided in Figure 5.5. This image

shows the response of various filters to the color image. One can visualize from the

Figures 5.1, 5.2 , 5.3, 5.5, 5.4 and 5.5 that the FOEF performs better (in terms of

enhancement) than the other methods.

The experiments are conducted for various noise levels. Figure 5.6 shows the

perspective results of various filters applied to the image “phantom” corrupted by

three different noise-levels. The filtered results are shown for the input noise level 6dB,

7dB and 9dB, respectively. The noisy image is shown in the first column of Figure 5.6

and consecutive columns show the results of various methods in the literature. The

last column (F), (F1) and (F2) shows the result of the FOEF. The FOEF performs

better compared to the other methods, in all the different input noise levels.

Figure 5.7 shows enlarged portions (textured and homogeneous regions) of the

image “Lena”, “Woman” and “Boat” after applying various enhancement methods.

Two portions from the image “Lena” and one portion each from image “Woman”

and “Boat” are enlarged for a better visibility. The first row shows a highly textured

region taken from the image “Lena” and the second one shows a smooth gray level

portion from the same image. The third and fourth rows display smooth and partially

textured portions of images “Woman” and “Boat”, respectively. The first column

in Figure 5.7, shows the portions of the original image. The second column shows

the distorted input image and subsequent columns show the image (portions) after
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applying various filtering methods. The third column in this figure is the result of

Alvarez model (Alvarez and Mazorra 1994). In this particular output image; shown

in the second column of Figure 5.7, one can notice that even though the edges are

enhanced the noise features are still present in the filtered output. The reason is;

in Alvarez model the shock component will be active right from the initial stages

of the filtering process and this will result in enhancing the noise components along

with the edges. The fourth to sixth columns in Figure 5.7 are the results of the

methods You-Kaveh (You and Kaveh 2000), Tai (Lysaker et al. 2003) and Hajiaboli

(Hajiaboli 2010), respectively. In all these results one fact is evident: the images are

denoised at the cost of weakening the edges. In the FOEF (the output is shown in the

last column of Figure 5.7 ) the noise features are considerably removed, because the

time dependent function inside the shock term suppresses the effect of shock in the

earlier stages of evolution; consequently the noise features gets only diffused during

the early stages of evolution process. The edges are enhanced well and noise features

are removed considerably in the FOEF.

The optimal number of iterations n 1 for each method at a given noise level (here we

have chosen the SNR of initial noisy image as 8dB) is decided based on the SNR values.

The iteration number corresponding to the optimal SNR value is taken as the optimal

iteration number. The graph in Figure 5.8 shows a plot of SNR against the number of

iterations for the image “Phantom”, the change in SNR with the number of iterations

follow the same characteristics for other input images as well. Hence, we only tabulate

the optimal number of iterations corresponding to each SNR value for different input

images. The optimal iteration numbers obtained based on the SNR values are shown

in Tables 5.1, 5.2, 5.3 and 5.4, for the input test images “Phantom”,“Lena”, “Woman”

and “Boat”, respectively. All the images shown in Figures 5.1, 5.2, 5.3, 5.4 and 5.5

are taken after the corresponding optimal number of iterations.

Table 5.1: The optimal number of iterations for different methods for various noise
levels (SNR in dB) for the image “Phantom”.

METHODS SNR=6dB SNR=7dB SNR=8dB SNR=9dB SNR=10dB

You Kaveh 150 140 135 130 126
Hajiaboli 120 111 104 96 90

Proposed Method (FOEF) 61 52 43 36 31

1The iteration number chosen to get optimal performance.
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Table 5.2: The optimal number of iterations for different methods for various noise
levels (SNR in dB) for the image :“Lena”.

METHODS SNR=6dB SNR=7dB SNR=8dB SNR=9dB SNR=10dB

You Kaveh 250 235 208 200 190
Hajiaboli 220 205 190 178 170

Proposed Method (FOEF) 120 110 102 89 80

Table 5.3: The optimal number of iterations for different methods for various noise
levels (SNR in dB) for the image :“Woman”.

METHODS SNR=6dB SNR=7dB SNR=8dB SNR=9dB SNR=10dB

You Kaveh 230 225 200 190 178
Hajiaboli 210 200 191 180 168

Proposed Method (FOEF) 109 100 92 81 70

We recall from Chapter 2, the NRRMSE shows the accuracy of the method to

properly reconstruct images. During the diffusion process NRRMSE keeps on de-

creasing as the solution image approaches the original one. From Figure 5.9 one can

notice that, NRRMSE corresponding to the FOEF is decreasing initially and then it is

increasing after some iterations, whereas, for Alvarez model NRRMSE first increases

and then it decreases, this effect is due to the shock component present in the filter. In

the FOEF the shock will not have significant contribution during the initial stages of

evolution therefore, only diffusion will happen, this causes the NRRMSE to decrease

considerably during the initial stages of evolution whereas, in Alvarez model the shock

will be dominant even during the initial stages of evolution. This causes the NRRMSE

to increase for first few iterations and then decrease, thereafter.

The Pratt’s Figure of Merit (FOM) for the images “Phantom” and “Lena” filtered

using different filters (including the FOEF), for various SNR values of the input noisy

image are plotted in the graph given in Figures 5.10 and 5.11, respectively. The num-

ber of iterations for each method (at various SNR values) for the images “Phantom”

and “Lena” are selected based on Table 5.1 and 5.2, respectively. From these graphs

one can observe that the edge preserving capacity of the FOEF is better compared to

the other methods. The results of applying the Canny edge detector (with σ = 0.1) on

images filtered using various method are shown in Figure 5.12. Figure 5.12 A shows

the result of edge detection method applied on the original image. Figure 5.12 B

shows the result for blurred and noisy image. Figure 5.12 C-5.12 F shows the results
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Table 5.4: The optimal number of iterations for different methods for various noise
levels (SNR in dB) for the image :“Boat”.

METHODS SNR=6dB SNR=7dB SNR=8dB SNR=9dB SNR=10dB

You Kaveh 240 235 220 201 188
Hajiaboli 221 202 185 176 168

Proposed Method (FOEF) 119 107 96 88 79

of the edge detection method applied on the filtered outputs of various methods. The

edges detected for the image filtered using the FOEF (shown in Figure 5.12 G) are

more robust than that of the other methods (shown in Figure 5.12 C-5.12 F).

Similarly the structural similarity index measured for the images “Phantom” and

“Lena” filtered using different methods (including the proposed one), for various SNR

values of the input noisy image are plotted in the graph given in Figures 5.13 and 5.14,

respectively. The number of iterations for each method (at various SNR values) are

selected based on Table 5.1 and 5.2 for images “Phantom” and “Lena”, respectively.

From these figures it could be easily verified that the FOEF has good contrast, illu-

mination and the structure preserving capabilities as compared to the other methods.

From all the measures described above we have experimentally (both visually and

quantitatively) demonstrated that the FOEF enhances the contrast, texture and edge

features present in the image, while reducing the noise effectively. Figures shown in

favor of the FOEF especially the one that enlarged the constant intensity portion gives

a clear understanding that the proposed method does not contaminate the constant

intensity regions with small intensity patches (that causes a visual discrepancy).

Please note that, the quality measures are not provided explicitly for the images

“Woman”, “Boat” and “hibiscus” for the reason that, the measures are similar in

characteristic to the image “Lena” (all these images fall into the category of partially

textured natural image).
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A B C

D E F

G

Figure 5.1: Image “Phantom”:(A) Original image; (B) Blur and noisy image
(out of focus blur: SNR 8dB); (C) After Applying Second-order shock proposed
by Alvarez and Mazorra (1994); (D) After applying Fourth-order method proposed
by You and Kaveh (2000); (E) After applying Fourth-order method proposed by
Lysaker et al. (2003); (F) After applying method by Hajiaboli (2010); (G) After ap-
plying the FOEF Method.
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A B C

D E F

G

Figure 5.2: Image “Lena”:(A) Original image; (B) Blur and noisy image (out
of focus blur: SNR 8dB); (C) After Applying Second-order shock proposed by
Alvarez and Mazorra (1994); (D) After applying Fourth-order method proposed
by You and Kaveh (2000); (E) After applying Fourth-order method proposed by
Lysaker et al. (2003); (F)After applying method by Hajiaboli (2010); (G) After ap-
plying the FOEF Method.
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A B C

D E F

G

Figure 5.3: Image “Woman”:(A) Original image; (B) Blur and noisy image
(out of focus blur: SNR 8dB) (C) After Applying Second-order shock proposed
by Alvarez and Mazorra (1994); (D) After applying Fourth-order method proposed
by You and Kaveh (2000); (E) After applying Fourth-order method proposed by
Lysaker et al. (2003); (F)After applying method by Hajiaboli (2010); (G) After ap-
plying the FOEF Method.
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A B C

D E F

G

Figure 5.4: Image “Boat”:(A) Original image; (B) Blur and noisy image (out
of focus blur: SNR 8dB) (C) After Applying Second-order shock proposed by
Alvarez and Mazorra (1994); (D) After applying Fourth-order method proposed
by You and Kaveh (2000); (E) After applying Fourth-order method proposed by
Lysaker et al. (2003); (F)After applying method by Hajiaboli (2010); (G) After ap-
plying the FOEF.
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A B C

D E F

G

Figure 5.5: Image “hibiscus”:(A) Original image; (B) Blur and noisy image
(out of focus blur: SNR 8dB); (C) After Applying Second-order shock proposed
by Alvarez and Mazorra (1994); (D) After applying Fourth-order method proposed
by You and Kaveh (2000); (E) After applying Fourth-order method proposed by
Lysaker et al. (2003); (F) After applying method by Hajiaboli (2010); (G) After ap-
plying the FOEF Method.
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A B C D E F

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

Figure 5.6: Filtered results at different noise levels:(A), (A1) & (A2) The blur-noisy
image with SNR 6dB, 7dB and 9dB, respectively; (B), (B1) & (B2) After Applying
Second-order shock proposed by Alvarez and Mazorra (1994); (C), (C1) & (C2) After
applying Fourth-order method proposed by You and Kaveh (2000); (D), (D1) & (D2)
After applying Fourth-order method proposed by Lysaker et al. (2003); (E), (E1) &
(E2) After applying method by Hajiaboli (2010); (F), (F1) & F(2) After applying the
FOEF.
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A B C D E F G

A1 B1 C1 D1 E1 F1 G1

A2 B2 C2 D2 E2 F2 G2

A3 B3 C3 D3 E3 F3 G3

Figure 5.7: The enlarged portions of the images “Lena”, “Woman” and “Boat”, filtered
with different methods: A, A1, A2 & A3 Original images; B, B1, B2 & B3 Noisy Image;
C, C1, C2 & C3 Alvarez model; D, D1, D2 & D3 Method in You and Kaveh (2000);
E, E1, E2 & E3 Method in Lysaker et al. (2003); F, F1, F2 & F3 Method in Hajiaboli
(2010);G, G1, G2 & G3 The FOEF.
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Figure 5.8: The Signal-to-Noise Ratio (SNR) plotted in each iterations for the image
“Phantom”: SNR of the initial noisy image 8dB.
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Figure 5.9: Normalized Root Mean Square Error plotted against the number of itera-
tions for various methods including the proposed (FOEF) one for the image “phantom”
(SNR of the noisy image is 10dB).
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Figure 5.10: Pratt’s Figure of Merrit (FOM) plotted for different SNR values (in dB)
of the noisy image (Image: “Phantom”).
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Figure 5.11: Pratt’s Figure of Merrit (FOM) plotted for different SNR values (in dB)
of the noisy image (Image: “Lena”).
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A B C

D E F

G

Figure 5.12: Result of canny edge detector applied on ”Phantom“ after filtering
with various methods :(A) Original image; (B) Blur and noisy image (out of focus
blur: SNR 8dB); (C) Alvarez Model; (D) You and Kaveh (2000) Method; (E) Model in
Lysaker et al. (2003); (F) Hajiaboli (2010) Model; (G) FOEF Model.
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Figure 5.13: Structural Similarity Index (SSIM) plotted for different SNR values (in
dB) of the noisy image (Image: “Phantom”).
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Figure 5.14: Structural Similarity Index (SSIM) plotted for different SNR (in dB)
values of the noisy image (Image: “Lena”).
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Chapter 6

CONCLUDING REMARKS AND

FUTURE WORKS

In this thesis we have proposed three image enhancement methods and one image

inpainting method based on variational/PDE approaches. These methods are gen-

eralized PDE solutions to both images and signals. Though we have presented the

results in terms of natural images these filters can very well be applied for special

kinds of images used for medical or satellite applications. These PDE’s are gener-

alized frameworks for image enhancement and they can be modified for specialized

purpose based on the application under consideration.

6.1 FEATURES OF THE FILTERS PROPOSED

IN THE THESIS

In Chapter 2 we have introduced a time-dependent anisotropic diffusion model for

image restoration. The model attains a stable state at a faster rate as compared to

other models in the literature for image enhancement. This model diffuses isotropically

in the constant-intensity areas and anisotropically in the areas dominated by edges

and finer details. The response of the filter is analyzed using different kinds of images

having different magnitudes of high oscillatory features. And the filter is found capable

of preserving and enhancing edges and other high frequency information present in

the input images. Furthermore, the filter is applied on vector-valued (color) images as

well. The results shown in the the result section of this chapter clearly demonstrate
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the capacity of the filter to properly enhance textured, partially textured, constant-

intensity and color images with utmost attention to the edge and finer details (while

denoising them). The behavior of the method is analyzed for different parameters used

for fine-tuning the performance of the filter. Under the various conditions mentioned

above, the filter is found to behave robustly in reconstructing the images. Finally, the

quantitative and qualitative results are in favor of the claim that the proposed method

deblurs and denoises the images very well, as compared to the other enhancement

methods considered in this chapter.

In Chapter3 we proposed a modification to the existing diffusion coupled shock

filter in Alvarez and Mazorra (1994). This proposed filter results in enhancing some

of the important edges present in images when a denoising is performed. The method

makes use of Gauss curvature for driving the diffusion process. This will result in pre-

serving the features with non-zero mean curvature values and the shock term present

in the filter enhances the edge features and finer details present in the images. A

time dependent function is introduced in the shock term of the filter to appropriately

control the extend of shock and diffusion during various stages of evolution. The com-

parative results in terms of quantitative and qualitative measurements are provided in

the result section of this chapter. The proposed filter is found effective in preserving

curvy edges and corners present in the input images as evident from the provided

results.

In Chapter 4 a third-order Gauss curvature driven diffusion method is introduced

for image inpainting/reconstruction. This method inpaints the desired image domain

preserving the curvy edges and corners present in the images. In the non-inpainting

domain this filter acts like a normal TV based diffusion filter. This method would

be useful when the inpainting domain consist of many curvy edges and corners. The

method is devised for handling blurred and noisy images. Therefore, this method can

restore the images from their blurred and noisy observation along with inpainting the

desired domain. The results shown in favour of the proposed method substantially

highlights the capability of the filter to preserve curvy structures present in the images.

In Chapter 5 a fourth-order anisotropic diffusion cum shock filter is proposed.

The proposed method can enhance the semantic features like edges, finer details and

textures, while denoising the images. The filter proposed here employs a planar ap-

proximation instead of piece-wise approximation resulting is a natural outlook to the

filtered image. The denoising and enhancing capacity of the filter is controlled using a
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positive scalar regularization parameter. The anisotropic nature of the filter is man-

aged by a diffusion coefficient function, defined using an absolute value of the gradient

image. The diffusion coefficient function controlled by the absolute gradient image,

catalyzes the diffusion process, helping in attaining the solution state at a faster rate,

when compared to many other prominent fourth-order methods in the literature. The

proposed filter preserves the planar approximation, thereby reducing the chance of a

staircase effect as in the second order methods that uses a piece-wise constant approx-

imation. The iteration process is controlled using the SNR values in each iteration.

The evolution proceeds as long as the SNR increases monotonically and stops at point

when it decreases. Since, the iteration process is controlled dynamically the optimal

results are obtained. The method proposed in this chapter is compared with all the

relevant image enhancement methods in the literature using the visual results and

widely used statistical qualitative measures like SNR, Pratt’s FOM and MSSIM. The

pictorial and tabulated measures are highly in favor of the proposed method. The

proposed method is tested for both textured and non-textured images (including ar-

tificial and natural images) at various noise variances and the experimental results

provided substantially proves the efficiency and effectiveness of the proposed method.

All the proposed filters (detailed in chapters 2, 3, 4 and 5) are implemented using

MATLAB 7.9.0.529 (R2009b) (for 32-bit glinx86), tested and compared with the rel-

evant state-of-the art techniques for image enhancement. The pros and cons of each

filter is analyzed and the applicability of the concerned filter is demonstrated with

different input images with various kinds of image features. A detailed analysis and

experimentation on the filters were provided in the respective chapters.

6.2 SCOPES FOR FUTURE WORK

Image restoration, enhancement, inpainting etc. are inverse problems. Their solutions

always demand a scope for further improvement. The main idea of the regularization

methods is to reduce the approximation error 1. In fact it is hard to devise an approx-

imation method which nullifies this error. Therefore, there is always a scope for doing

a further refinement on the existing methods in terms of accuracy and performance.

1The absolute difference between observed and actual data.
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6.2.1 Improvements to the methods proposed in the thesis

In Chapter 2 we had introduced a switching model which switches the norm from L2

to TV and vice-versa based on the image features like textures and constant intensity

regions. It was further proposed in Blomgren et al. (1997) to incorporate an adaptive

p norm which gets adapted based on the image features. In this way the one can make

the norm adapting to each pixel value instead of a scalar value for the whole image.

This could improve the visual results. However, the time complexity is more for this

approach. We need to calculate the p-norm value for each pixel in each iteration of

the diffusion process. A possible modification is to frame the regions into different

non-overlapping tiles and calculate a p-norm for each tiled region. This could improve

the performance by restricting the number of computations to the number of windows

(instead of number of pixels) for calculating the p norm. Moreover, the frame based

method is more logical than pixel based method, because the semantic features lie

over more than a few number of pixels so associating a single norm for the whole

frame/tile will give better justification. This work is under progress. Furthermore,

it is quite natural to improve the algorithm in terms of computation complexity by

adopting more sophisticated iterative schemes. We have adopted explicit time march-

ing scheme instead of this one can adopt implicit schemes as well.

Curvature driven diffusion/inpainting model

One of the trivial improvements would be adoption of sophisticated computation

schemes to speed-up the computation process. Another substantial improvement is in-

corporating the transport process described in Bertalmio et al. (2000) into the Gauss

curvature driven inpainting method this could improve the performance of inpainting

process in terms of accuracy and visual impressiveness. We have analyzed the math-

ematical aspects of this new filter and the work is in the final stage. Though we have

mainly focused on curvature driven methods for image inpainting, there are quite a

few avenues still to be explored in digital image inpaiting.

Higher-order diffusion schemes

Finally, it is widely known that as the order of diffusion process increases the ac-

curacy of approximation fades out. So the higher-order diffusion processes may not

give better results as compared to the second-order diffusion process. However, we

have reformulated the ordinary fourth-order diffusion methods to address this issue

by incorporating the shock component. Further improvements can be done for the

fourth-order methods in terms of computational speedup and visual accuracy.
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Appendix I

DERIVATIONS, PROOFS AND

MATLAB IMPLEMENTATION

A-1 THE EULER-LAGRANGE EQUATIONS

The general problem (assuming a single independent variable) is to find the function

y(x), that makes the following integral stationary (i.e., derivative vanishes):

I =

∫ x2

x1

F (x, y, y′)dx. (A.1)

Here F is a definite functional defined over the range x1 and x2. The starting point is

to represent the infinite set of curves passing through the given endpoints that differ

from the extremal curve by “small” amounts. These curves, Y (x), are represented by

perturbing the extremal curve, y(x), by a function η(x) that is zero at x1 and x2 and

is arbitrary between the endpoints.

Y (x) = y(x) + ǫη(x), (A.2)

where ǫ is a small positive scalar value. Differentiating (A.2) with respect to x yields:

Y ′(x) = y′(x) + ǫη′(x). (A.3)
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It is assumed that Y (x) is C2 continuous (y′′(x) is continuous). Now the problem is

to make I(ǫ) stationary when ǫ = 0, formally:

dI(ǫ)

dǫ
= 0, when ǫ = 0, (A.4)

where

I(ǫ) =

∫ x2

x1

F (x, Y, Y ′)dx. (A.5)

Differentiating (A.5) with respect to ǫ yields,

dI(ǫ)

dǫ
=

∫ x2

x1

(

∂F

∂Y

dY

dǫ
+
∂F

∂Y ′
dY ′

dǫ

)

dx. (A.6)

Substituting the derivatives of (A.1) and (A.2) wrt ǫ and setting the result to zero at

ǫ = 0 yields:

(

dI(ǫ)

dǫ

)

ǫ=0

=

∫ x2

x1

(

∂F

∂Y
η(x) +

∂F

∂Y ′η
′(x)

)

dx = 0. (A.7)

Since we consider ǫ = 0, thus Y = y

(

dI(ǫ)

dǫ

)

ǫ=0

=

∫ x2

x1

(

∂F

∂y
η(x) +

∂F

∂y′
η′(x)

)

dx = 0. (A.8)

Given the assumption that y(x) is C2 continuous, the second term of the integrand of

(A.8) can be integrated using integration by parts:

(

dI(ǫ)

dǫ

)

ǫ=0

=

∫ x2

x1

∂F

∂y
η(x)dx+

(

∂F

∂y′
η(x)|x2

x1
−
∫ x2

x1

d

dx

∂F

∂y′
η(x)dx

)

=

∫ x2

x1

∂F

∂y
η(x)dx+

(

0−
∫ x2

x1

d

dx

∂F

∂y′
η(x)dx

)

=

∫ x2

x1

(

∂F

∂y
η(x)− d

dx

∂F

∂y′
η(x)

)

dx

=

∫ x2

x1

(

∂F

∂y
− d

dx

∂F

∂y′

)

η(x)dx. (A.9)

Since η(x) is an arbitrary function, this forces the integrand within the brackets to

equal zero, i.e:
∂F

∂y
− d

dx

∂F

∂y′
= 0. (A.10)
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Figure A.1: The direction of vectors

The equation in (A.10) is known as the Euler Lagrange equation. In general for a

functional

E(u) =

∫

Ω

φ(|∇u|)dxdy, (A.11)

the minimum of the functional exists at a point u, if it satisfies the Euler-Lagrange

Equation:

div

(

φ′(|∇u|)
|∇u| ∇u

)

= 0, (A.12)

where φ′(.) stands for the first order derivative of the function φ(.). The derivation of

above Euler-Lagrange equation is skipped for brevity.

The decomposition of the expression in (A.12) in terms of tangent and normal

vectors can be written as:

φ′(|∇u|)
|∇u| UTT + φ′′(|∇u|)UNN = 0, (A.13)

where UTT and UNN are the vectors in tangent and normal directions, respectively.

Precisely for any point x ∈ R
2 , where |∇u| = 0, we can define the vectors N(x)

and T (x), which are normal and tangent to the level-curve as: T (x) = ∇u(x)
|∇u(x)| =

1
|∇u| × (ux, uy), where ux and uy are the first order derivatives of u in the direction x

and y respectively and N(x) is the tangent vector perpendicular to T (x) i.e. N(x) =
1

|∇u| × (−uy, ux). See Figure A.1 for details.

E-L equations for the functionals used in this thesis:

TV functional:

E(u) =

∫

Ω

|∇u|TV dxdy. (A.14)
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Here the functional can be written as φ(|∇u|) = |∇u|, or in general φ(x) = x where

x = |∇u|. Therefore, φ′(x) = 1 or φ′(|∇u|) = 1 and φ′′(x) = 0. With the help of

(A.12), we can write (A.14) as:

0 = div

(

1

|∇u|∇u
)

or

0 =
1

|∇u|UTT + 0× UNN .

Tikhnov Functional:

E(u) =

∫

Ω

|∇u|2
L2dxdy. (A.15)

Here the functional can be written as φ(|∇u|) = |∇u|2, or in general φ(x) = x2 where

x = |∇u|. Therefore, φ′(x) = 2x or φ′(|∇u|) = 2|∇u| and φ′′(x) = 2. With the help

of (A.12), we can write (A.15) as:

0 = div

( |∇u|
|∇u|∇u

)

=⇒ 0 = ∇u.(∇u)
=⇒ 0 = ∇2u

or

0 = UTT + UNN
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A-2 MATLAB IMPLEMENTATION FOR PERONA-

MALIK FILTER

==========================================================

function [Oimg]=SecNLFilter(Iimg)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Parameters Iimg: Input image

%% Oimg: Output image

%% The function inputs the filterd image

%%Perona-Malik Equation du/dt=div(c(|del u| del u)

%%Neumann boundary is assumed

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u0=im2double(Iimg);

dt=0.2; %time step

K=0.03; %contrast parameter

std_n=0.04;

randn(’seed’,1296);

noise=randn(size(u0))*std_n;

u=u0+noise;

n_iter=10;

for i=1:n_iter

gU=grad(u);

mod_gU=sqrt(gU(:,:,1).^2+gU(:,:,2).^2);

c_delu=1./(1+(mod_gU.^2./K^2));

u=u+dt*div(repmat(c_delu,[1 1 2]).*gU);

end

Oimg=u;

end

function [dfx]=div(Px)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Function to find the divergance of a vector field
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%% Px: vector component along x and Py vector component along y

%% dfx divergance of the vector field

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Py = Px(:,:,2);

Px = Px(:,:,1);

fx = Px-Px([1 1:end-1],:,:);

fy = Py-Py(:,[1 1:end-1],:);

fy(:,1,:) = Py(:,1,:); % boundary

fy(:,end,:) = -Py(:,end-1,:);

fx(1,:,:) = Px(1,:,:); % boundary

fx(end,:,:) = -Px(end-1,:,:);

dfx=fx+fy;

end

%-----------------------------

function [fx]=grad(M)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Function to find the gradient

%% fx(:,:,1) Gradient along x and fx(:,:,2) Gradient along y

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fx = ( M([2:end end],:,:)-M([1 1:end-1],:,:) )/2; % boundary

fx(1,:,:) = M(2,:,:)-M(1,:,:);

fx(end,:,:) = M(end,:,:)-M(end-1,:,:);

fy = ( M(:,[2:end end],:)-M(:,[1 1:end-1],:) )/2; % boundary

fy(:,1,:) = M(:,2,:)-M(:,1,:);

fy(:,end,:) = M(:,end,:)-M(:,end-1,:);

fx = cat(3,fx,fy);

end

%==============================================================
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A-3 DERIVATION OF THE FIDELITY TERM

The energy functional to be minimized takes the form:

min

∫

Ω

φ(|∇u|) dxdy (A.16)

subject to:

∫

Ω

(

1

2
(k ∗ u− u0)2dxdy − |Ω|σ2

)

= 0.

An image degradation problem can be abstractly formulated as:

k ∗ u+ n = u0

=⇒ k ∗ u− u0 = −n
=⇒ (k ∗ u− u0)2 = n2.

Taking expectation on both sides;

E(k ∗ u− u0)2 = E(n− 0)2,

here E(x) denotes the expectation of x, then (refer Rudin et al. (1992) for explana-

tions):
1

|Ω|

∫

Ω

1

2
(k ∗ u− u0)2dxdy = σ2,

where σ2 is the noise variance; the noise is assumed to have zero mean and |Ω| is the
total number of pixels in Ω, therefore,

∫

Ω

(k ∗ u− u0)2dxdy = |Ω|σ2 (A.17)

=⇒
∫

Ω

(k ∗ u− u0)2dxdy − |Ω|σ2 = 0.

Here
∫

Ω
(k∗u−u0)2dxdy is the L2-norm of the functional (k∗u−u0)2. This is generally

written as: ‖k ∗ u − u0‖2L2. Since |Ω|σ2 is a constant we can neglect this term while

taking the Euler-Lagrange (EL) equation of (A.16). Therefore, using (A.12) one can

easily derive the EL equation for (A.16) as:

div

(

φ′(|∇u|)
|∇u| ∇u

)

− λk ∗ (k ∗ u− u0) = 0. (A.18)
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Minimization in Fourier domain

We recall the degradation problem:

u0 = k ∗ u+ n, (A.19)

here ∗ is a convolution operation and k is kernel2.

FFT regularization

The classical minimization problem can be modeled as:

min
u

∫

Ω

‖u‖2dxdy (A.20)

subject to

∫

Ω

(u0 − k ∗ u)2dxdy = 0.

Taking the minimization problem in Fourier domain yields:

min
û

∫

Ω

‖ ˆu(ω)‖2dω (A.21)

subject to

∫

Ω

( ˆu0(ω)− ˆk(ω) ∗ ˆu(ω))2dω = 0,

where x̂ represents the Fourier domain representation of x. The unconstrained mini-

mization problem can be formulated as:

λ

∫

Ω

‖ ˆu(ω)‖2dω +

∫

Ω

( ˆu0(ω)− ˆk(ω) ˆu(ω))2dω = J(u), (A.22)

where λ is a scalar regularization parameter as described previously. The E-L equation

at steady state can be derived as:

ˆu(ω)λ+ (− ˆu0(ω) + ˆk(ω) ˆu(ω)) ˆk(ω) = 0 (A.23)

therefore,

ˆu(ω) =
ˆu0(ω) ˆk(ω)

‖ ˆk(ω)‖2 + λ
. (A.24)

2The shift invariance is assumed.
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Sobolev regularization

The functional to be minimized can be written as:

min
u

∫

Ω

‖∇u‖2dxdy (A.25)

subject to

∫

Ω

(u0 − k ∗ u)2dxdy = 0.

Taking the Fourier transform of ‖∇u‖2 yields (Gonzalez and Woods 2001):

‖ω‖2‖û(ω)‖2. (A.26)

Therefore, the unconstrained minimization problem in Fourier domain can be denoted

as:

J(u) = λ‖ω‖2
∫

Ω

‖ ˆu(ω)‖2dω +

∫

Ω

( ˆu0(ω)− ˆk(ω) ˆu(ω))2dω. (A.27)

The E-L equation can be written as:

ˆu(ω)λ‖ω‖2 + (− ˆu0(ω) + ˆk(ω) ˆu(ω)) ˆk(ω) = 0. (A.28)

Rearranging the terms in above equation results in:

ˆu(ω) =
ˆu0(ω) ˆk(ω)

‖ ˆk(ω)‖2 + λ‖ω‖2
. (A.29)

Taking ‖ω‖2 = S(ω) we can modify the above expression as:

ˆu(ω) =
ˆu0(ω) ˆk(ω)

‖ ˆk(ω)‖2 + λS(ω)
. (A.30)

Weiner /Least mean square error filter

The Fourier representation of the degradation problem in (1.1) can be written as:

û0 = k̂û+ n̂, (A.31)

taking 1/k̂ = ŵ, we can write:

|û− û0|2 = |û(1− ŵk̂)− ŵn̂|2. (A.32)
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The least square error minimization problem can be stated as:

∫

Ω

Erdxdy =

∫

Ω

min |û− û0|2dxdy, (A.33)

where Er is the squared error. Therefore (A.32) can be stated as:

∫

Ω

|û− û0|2dxdy =

∫

Ω

|û(1− ŵk̂)− ŵn̂|2dxdy. (A.34)

Now the sufficient condition for w to be the minimizer of Er is ∂Er/∂w = 0. The least

square estimate of (A.34) (taking the derivative with respect to w and rearranging

the terms) yields:

ŵ =
k̂∗|û|2

|û|2|k̂|2 + |n̂|2
. (A.35)

Taking Suu = |û|2, Snn = |n̂|2, K∗ = k̂∗ and ŵ = W , the above equation can be

written as:

W (ω) =
K(ω)∗Suu

|K(ω)|2Suu + Snn
. (A.36)
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A-4 CONVEXITY OF FUNCTIONALS

Convexity for the functionals

Here we try to prove the convexity of the functional used in this thesis:

Perona-Malik Functional

The energy functional can be stated as:

φ(|∇u|) =
∫

Ω

κ2

2
ln(k2 + ‖∇u‖2)dxdy, (A.37)

Theorem 3. The functional in (A.37) is convex if |∇u| ≤ κ.

Proof. To prove the convexity of the functional it is sufficient to prove that the second

order derivative of the functional is positive. One can easily note that:

φ′(|∇u|) = |∇u|
1 + |∇u|

κ2

(A.38)

and

φ′′(|∇u|) = 1− |∇u|2
κ2

(

1 + |∇u|2
κ2

)2 . (A.39)

For convexity φ′′(.) ≥ 0, for this condition to be valid (since denominator of the

expression is already positive):

1− |∇u|
2

κ2
≥ 0

=⇒ |∇u|2
κ2

≤ 1

=⇒ |∇u| ≤ κ.

Hence the proof.

TV-functional

The energy functional used in TV minimization problem in Rudin et al. (1992) is:

φ(|∇u|) = |∇u|. (A.40)
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This functional is convex (not in the strict sense) since φ′′(|∇u|) ≥ 0. Recall that the

sufficient condition for any function f(x) to be convex is its second derivative should

be greater than or equal to zero. However, the derivative does not exist at places

where |∇u| = 0, because

lim
x→0+

((φ(|∇u|)− φ(0))/|∇u|) = 1 6= lim
x→0−

((φ(|∇u|)− φ(0))/|∇u|) = −1. (A.41)

Therefore, it is always a good practice to perturb the absolute gradient ∇u with a

small positive constant β.

Tikhonov functional

The functional used in Tikhonov regularization (Tikhonov and Arsenin 1977) is:

φ(|∇u|) = |∇u|2. (A.42)

This functional is strictly convex since φ′′(|∇u|) = 2 > 0 and the derivative exists at

all the points.

In general for any functional φ(|∇u|) = |∇u|p when p > 1, the functional will be

convex and derivative exists at all the points. This functional is in general called the

p-Laplacian functional.

Fourth-order equations

The energy functional associated with the fourth-order PDE considered in You and Kaveh

(2000) is:

E(u) =

∫

Ω

φ(‖∇2u‖)dxdy, (A.43)

where

φ(‖∇2u‖) = ‖∇2u‖. (A.44)

Theorem 4. The above functional E(u) is convex when φ(.) is an increasing function

(extracted from You and Kaveh (2000) and provided for completeness).
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Proof. Let u1 and u2 be two images, then using Minkowski’s inequality (Naylor and Sell

1982) we can write:

|∇2[λu1 + (1− λ)u2] ≤ λ|∇2u1|+ (1− λ)|∇2u2|. (A.45)

Since we have assumed the strictly increasing nature of φ(.) we can write:

f(|∇2[λu1 + (1− λ)u2]) ≤ f(λ|∇2u1|+ (1− λ)|∇2u2|). (A.46)

From the convexity of f(.) one can derive:

f(λ|∇2u1|+ (1− λ)|∇2u2|) ≤ λf(|∇2u1|) + (1− λ)f(|∇2u2|). (A.47)

By combining A.47 and A.47 one can write:

f(|∇2[λu1 + (1− λ)u2]) ≤ λf(|∇2u1|) + (1− λ)f(|∇2u2|). (A.48)

Integrating A.48 over the image domain will give:

∫

Ω

f(|∇2[λu1+(1−λ)u2])dxdy ≤ λ

∫

Ω

f(|∇2u1|)+ (1−λ)
∫

Ω

f(|∇2u2|)dxdy, (A.49)

which is :

E(λu1 + (1− λ)u2) ≤ λE(u1) + (1− λ)E(u2). (A.50)

Therefore, E(u) is convex and hence the proof.
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A-5 Differential schemes

The differential scheme used for the diffusion term of the TV filter is discribed below,

the differenctial schemes for other filters are also derived in the same manner. The

TV filter is defined as:

ut = ∇.
∇u
|∇u| , (A.51)

where ∇ denotes the gradient operator and . denotes the inner product. The differ-

ential for of above equation is (here we are deriving the RHS of the above equation):

[

∂

∂x

∂

∂y

]

.

[

ux
(u2x + u2y)

(1/2)

uy
(u2x + u2y)

(1/2)

]T

, (A.52)

where ux and uy corresponds to the derivatives in x and y directions, respectively and

[.]T denotes the transpose of the vector field. The above equation can be writte as:

∂

∂x

ux
(u2x + u2y)

(1/2)
+

∂

∂y

uy
(u2x + u2y)

(1/2)
. (A.53)

Now we denote the numerator of the expression as Num and denominator as Den.

Now performing the differentiation and further simplification of the above equation

yields:

Num =
1

(u2x + u2y)
(1/2)

[

u2yuxx − 2uxuyuxy + u2xuyy
]

, (A.54)

Den = (u2x + u2y), (A.55)

Therefore, the TV model (curvature of the level curve) can be written using the

differential scheme as (Num/Den):

u2yuxx − 2uxuyuxy + u2xuyy

(u2x + u2y)
(3/2)

(A.56)

Similaly the mean curvature
(

|∇u|∇. ∇u
|∇u|

)

can be written in differetial form as:

u2yuxx − 2uxuyuxy + u2xuyy

(u2x + u2y)
. (A.57)
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