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ABSTRACT OF THE THESIS

In this research work, we have extended the concept of harmonious colorings, complete

colorings and set colorings of graphs to directed graphs.

A harmonious coloring of any digraph D is an assignment of colors to the

vertices of D and the color of an arc is defined to be the ordered pair of colors to

its end vertices such that all arc colors are distinct. The proper harmonious

coloring number is the least number of colors needed in such a coloring. Also, we

obtain a lower bound for the proper harmonious coloring of any digraphs and regular

digraphs and investigate the proper harmonious coloring number of some classes of

digraphs.

A complete coloring of a digraph D is a proper vertex coloring of D such that,

for any ordered pair of colors, there is at least one arc of D whose endpoints are

colored with this pair of colors. The achromatic number of D is the maximum

number of colors in a proper complete coloring of D. We obtain an upper bound for

the achromatic number of digraphs. Also, we find the achromatic number of some

classes of digraphs.

We have extended the concept of set colorings of graphs to set colorings of di-

graphs. We have given some necessary conditions for a digraph to admit a strong set

coloring (proper set coloring). We will characterize strongly (properly) set colorable

digraphs. Also, we find the construction of strongly (properly) set colorable directed

caterpillars.

Keywords: Harmonious colorings, proper harmonious coloring number, com-

plete colorings, achromatic number, strong (proper) set coloring, digraphs.
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Chapter 1

Introduction

From Euler’s solution to Konigsberg’s Seven-Bridge problem (Euler 1741) to the

present world wide web, graphs have been emerged as strong mathematical tools in

many applications. The definition of a graph is very simple, but the theory developed

based on it, is extremely vast. Some of the important topics of interest in graph

theory include algebraic graph theory, coloring, domination, labeling, extremal graph

theory and many more.

1.1 Preliminaries

In this section we record the definitions and results that are required for our study.

For graph theoretic terminology, we refer (Harary 1972), (West 2003) and

(Chartrand and L.Lesniak 2004).

A graph G is a finite non-empty set of objects called vertices together with a

set of unordered pairs of distinct vertices of G, called edges. The vertex set and the

edge set of G are denoted by V (G) and E(G) respectively. A graph H is called a

subgraph of a graph G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). If e = uv is an edge

of G, we say that u and v are adjacent and that each vertex is incident with e. The

degree of a vertex v in graph G, denoted by deg v, is the number of edges incident

with v. A graph G is called r- regular if deg v = r for each v ∈ V (G). A vertex

1
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v is called a pendant vertex if deg v = 1 and an isolated vertex if deg v = 0.

An edge e in a graph G is called a pendant edge if it is incident with a pendant

vertex. A subset S of V is called an independent set of G of no two vertices of S

are adjacent in G. The largest number of vertices in such a set is called the point

independence number of G. An independent set of lines of G has no two of its

lines adjacent and the maximum cardinality of such a set is the line independence

number . A collection of independent lines of a graph G is called a matching of G

since it establishes a pairing of the vertices incident to them. |V (G)| = n is called the

order of G and |E(G)| = m is called the size of G. A graph of order n and size m

is called a (n,m) graph. The sum of the degrees of the vertices of a graph G is twice

the number of edges, that is,
∑
deg v = 2m, where the summation is taken over all

vertices v of G.

An edge with identical ends is called a loop and an edge with distinct ends, a

link. A graph is simple if it has no loops and no two of its links join the same

pair of vertices. A simple graph in which each pair of distinct vertices is joined by

an edge is called a complete graph . An empty graph is one with no edges. The

complement G of a graph G also has V (G) as its vertex set, but two vertices are

adjacent in G if and only if they are not adjacent in G.

A bipartite graph is one whose vertex set can be partitioned into two subsets X

and Y , so that each edge has one end in X and the other end in Y . Such a partition

(X, Y ) is called a bipartition of the graph. A complete bipartite graph is a simple

bipartite graph with bipartition (X,Y ) in which each vertex of X is joined to each

vertex of Y . If |X| = a and |Y | = b, such a graph is denoted by Ka,b. The graph that

can be drawn in the plane without crossing the edges is known as planar graph .

A digraph D consists of a finite set V of vertices and a collection of ordered

pairs of distinct vertices. Any such pair (u, v) is called an arc of D. The arc (u, v)

goes from u to v and is incident with u and v. We also say that u is adjacent

to v and v is adjacent from u. The outdegree od(v) of a vertex v is the number
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of vertices adjacent from it and the indegree id(v) of a vertex v is the number of

vertices adjacent to it. A source in D is a vertex with indegree 0; a sink is the

vertex with outdegree 0.

A digraph D is called symmetric if, whenever (u, v) is an arc of D, then (v, u)

is also an arc of D. A digraph D is called an asymmetric digraph or an oriented

graph if whenever (u, v) is an arc of D, then (v, u)is not an arc of D. A digraph D

is complete if for every two distinct vertices u and v of D, at least one of the arcs

(u, v) and (v, u) is present in D. The complete symmetric digraph of order n

has both arcs (u, v) and (v, u) for every two distinct vertices u and v. A complete

asymmetric digraph is called a tournament . The underlying graph of a digraph

D is that graph obtained by replacing each arc (u, v) or symmetric pairs (u, v), (v, u)

of arcs by the edge uv. A digraph D is called regular of degree r or r-regular if

od v = id v = r for every vertex v of D.

A (directed) walk in a digraph is an alternating sequence of vertices and arcs,

v0, x1, v1, ..., xn, vn in which each arc xi is (vi−1, vi). The length of such a walk is the

number of occurrences of arcs in it. A closed walk has the same first and last vertex

and a spanning walk contains all the vertices. A trail is a walk in which all arcs

are distinct and a path is a walk in which all vertices are distinct. A nontrivial closed

trail of a digraph D is referred to as a circuit of D, and a circuit with all vertices

distinct (except the first and the last) is called a cycle . A semiwalk is again an

an alternating sequence v0, x1, v1, ..., xn, vn of vertices and arcs, but each arc xi may

be either (vi−1,i ) or (vi,i−1 ). A semipath , semicycle , and so forth, are defined

as expected. An acyclic digraph contains no directed cycles. A digraph is called

an out-tree if exactly one vertex has indegree 0 and all others have indegree 1. A

digraph is called an in-tree if exactly one vertex has outdegree 0 and all others have

outdegree 1.

An eulerian trail of a digraph D is an open trail of D containing all of the

arcs and vertices of D, and an eulerian circuit is a circuit containing every arc
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and vertex of D. A digraph that contains an eulerian circuit is called an eulerian

digraph .

Many combinatorial decision problems (those having a “yes” or “no” answer) are

difficult to solve but once a solution is revealed, it is easy to verify the same. For

example, the problem of determining whether a given graph G is k-colorable for some

integer k ≥ 3 is difficult to solve, that is, it is difficult to determine whether there

exists a k-coloring of G. However, it is easy to verify that a given coloring of G is

a k-coloring. It is only necessary to show that no more than k distinct colors are

used and that adjacent vertices are assigned distinct colors. The collection of all such

difficult-to-solve but easy-to-verify problems is denoted byNP(Chartrand and Zhang

2009). The collection of all decision problems that can be solved in polynomial time

is denoted by P . The problems in the set NP have only one property in common with

the problems belonging to the set P, namely: Given a solution to a problem in either

set, the solution can be verified in polynomial time. Thus P⊆NP.

A problem is NP-hard if a polynomial-time algorithm for it could be used to

construct a polynomial-time algorithm for each problem in NP. It is NP-complete

if it belongs to NP and is NP-hard. The NP-complete problems are among the most

difficult in the set NP and can be reduced from and to all other NP-complete problems

in polynomial time.

1.2 Graphs and applications

1.2.1 Graph theory in computer science

• Trees and graphs as data structures.

• Inter connection networks in parallel computing.

• Inter connection networks in distributed computing.
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• VLSI chips and PCBs.

• Optimal non-standard encoding of integers.

• Radar type codes.

• Self-orthogonal codes, a class of convolutional codes.

• Synchset codes.

• Missile guidance codes.

• The graph model.

1.2.2 Sociology

Suppose that the communication among a group of fourteen persons in a society is

represented by the graph in Figure 1.1, where the vertices represent the persons and

an edge represents the communication link between its two end vertices. Since the

graph is connected, we know that all the members can be reached by any member,

either directly or through some other members. But it is also important to note that

the graph is a tree-minimally connected. The group cannot afford to lose any of the

communication links.

5

6 7 8 9

14

13

121110

4

321

Figure 1.1: Communication link among 14 persons.



Introduction 6

1.2.3 Chemistry

Given a chemical substance and some of its properties such as molecular weight,

chemical composition, mass spectrum etc., the chemist would like to find out if this

substance is a known compound. If he is able to identify this compound, he may

like to know some additional properties of the compound, or if the compound is

“new” he would like to know its structure, and then include it in the dictionary of

known compounds. It is therefore essential to have a standard representation for a

compound, and the representation must be compact, unambiguous, and amenable to

classification.

In 1857, Arthur Cayley discovered trees while he was trying to count the number

of structural isomers of the saturated hydrocarbons CkH2k+2. He used a connected

graph to represent the CkH2k+2 molecule. Corresponding to their chemical valencies,

a carbon atom was represented by a vertex of degree four and a hydrogen atom by a

vertex of degree one. The total number of vertices in such a graph is p = 3k + 2 and

the total number of edges is q = 3k+1. Since the graph is connected and the number

of edges is one less than the number of vertices, it is a tree. Thus the problem of

counting structural isomers of a given hydrocarbon becomes the problem of counting

trees. For example, the structural graph of aminoacetone C3H7NO is shown in Figure

1.2. For compactness the hydrogen atoms are omitted as they are implied by every

unused valence of the other atoms.

O

NCCC

Figure 1.2: Structure of aminoacetone.
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1.2.4 Graph theory in Operations Research

Graph theory is a very natural and powerful tool in Combinatorial Operations Re-

search. The traveling salesman problem, finding the shortest spanning tree in a

weighted graph, obtaining an optimal matching of jobs and men and locating the

shortest path between two vertices in a graph are some examples of the uses of graph

theory in operations research. One of the most popular and successful applications of

networks in operations research is in the planning and scheduling of large complicated

projects. The two best known names in this connection are Critical Path Method and

Program Evaluation and Review Technique.

1.2.5 Ambiguities in X-ray Crystallography

Determination of crystal structures from X-ray diffraction data has long been a con-

cern of crystallographers. These inherent ambiguities in the X-ray analysis of crystal

structures have been studied by Patterson (1944), Garrido (1951) and Franklin (1974).

Research into these ambiguities is concerned with determination of arrangements of

set of points from a knowledge of the vector distances for these points. Extensive

results for the case of an infinity of points arranged periodically have been achieved

by Patterson and Garrido.

1.2.6 Communication network labeling

In a small communication network, it may be desirable to assign each user terminal a

“node number”, subject to the constraint that all the resulting edges receive distinct

numbers. In this way, the numbers of any two communicating terminals automatically

specify the link number of the connecting path; and conversely, the path number

uniquely corresponds to the pair of user terminals which it interconnects. Properties

of a potential numbering system for such networks have been explored under the guise



Introduction 8

of gracefully numbered graphs. That is, the properties of graceful graphs provide

design parameters for an appropriate communication network. For example, the

maximum number of links in a network with m transmission centres can be shown to

be asymptotically limited to not more than 2
3
of all possible links when m is large.

1.2.7 Linguistics

Graphs have been used in linguistics to depict parsing diagrams. The vertices repre-

sent words and word strings and the edges represent certain syntactical relationships

between them. A set of words (vocabulary) and a set of rules (grammar) for forming

strings (sentences) characterize a language. The language then is a set of all legal

strings so generated. One problem in computational linguistics is to identify whether

or not a given string belongs to a language, whose vocabulary and grammar are given.

1.2.8 Social relations

In 1936, Lewin (1936) proposed that the “life space” of an individual can be rep-

resented by a planar map. In such a map, the regions would represent the various

activities of a person, such as his work environment, his home and his hobbies. It

was pointed out that Lewin was actually dealing with graphs. This viewpoint led the

psychologist at the Research Centre for Group Dynamics to another psychological in-

terpretation of a graph in which people are represented by vertices and interpersonal

relations by edges. Such relations include love, hate, communication and power.

Graph theory has also been used in Economics, Logistics, Cybernetics, Artificial

Intelligence, Pattern Recognition, Genetics, Reliability Theory, Fault Diagnosis in

Computers and the study of Martian Canals.
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1.3 Graph colorings

The Four Color Problem

Can the countries of every map be colored with four or fewer col-

ors so that every two countries with a common boundary are colored

differently?

While this problem may seem nothing more than a curiosity, it is precisely this

problem that would prove to intrigue so many for so long and whose attempted solu-

tions would contribute so significantly to the development of the area of Mathematics

known as Graph Theory and especially to the subject of graph colorings.

Coloring the regions, vertices and edges of maps and planar graphs, inspired by the

desire to solve the Four Color Problem, has progressed far beyond this - to coloring

more general graphs and even to reinterpreting what is meant by coloring.

There is little doubt that the best known and most studied area within graph

theory is coloring. With its origins embedded in attempts to solve the famous Four

Color Problem, graph colorings has become a subject of great interest, largely because

of its diverse theoretical results, its unsolved problems, and its numerous applications.

There are three types of colorings.

1. Vertex Colorings.

2. Region Colorings in the case of planar graphs.

3. Edge Colorings.

The problems in graph colorings that have received the most attention involve

coloring the vertices of a graph. Furthermore, the problems in vertex colorings that

have been studied most often are those referred to as proper vertex colorings.

A proper vertex coloring of a graph G is an assignment of colors to the vertices

of G, one color to each vertex, so that adjacent vertices are colored differently. When

it is understood that we are dealing with a proper vertex coloring, we ordinarily refer
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to this more simply as a coloring of G. While the colors used can be elements of

any set, actual colors (such as red, blue, green and yellow) are often chosen only

when a small number of colors are being used; otherwise, positive integers (typically

1, 2, ..., k for some positive integer k) are commonly used for the colors. A reason for

using positive integers as colors is that we are often interested in the number of colors

being used. Thus, a (proper) coloring can be considered as a function c : V (G)→ N

(where N is the set of positive integers) such that c(u) ̸= c(v) if u and v are adjacent

in G. If each color used is one of k given colors, then we refer to the coloring as a

k-coloring . In a k-coloring, we may then assume that it is the colors 1, 2, ..., k that

are being used. A graph G is k-colorable if there exists a k-coloring of G. The

minimum positive integer k for which G is k-colorable is the chromatic number of

G.

Let G be a plane graph. Then G is k-region colorable if each region of G can

be assigned one of k given colors so that neighboring (adjacent) regions are colored

differently.

An edge coloring of a graph G is an assignment of colors to the edges of G,

one color to each edge. If adjacent edges are assigned distinct colors, then the edge

coloring is a proper edge coloring . A proper edge coloring that uses colors from a

set of k colors is a k-edge coloring .

There is no general formula for the chromatic number of a graph. Consequently, we

will often be concerned and must be content with (1) determining the chromatic

number of some specific graphs of interest or of graphs belonging to some

classes of interest and (2) determining upper and/or lower bounds for the

chromatic number of a graph.
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1.4 Harmonious colorings of graphs

Definition 1.4.1. A harmonious coloring (Hopcroft and Krishnamoorthy 1983) of

a graph G is an assignment of colors to the vertices of G and the color of an edge is

defined to be the unordered pair of colors to its end vertices such that all edge colors

are distinct. The harmonious coloring number is the least number of colors in such

a coloring and is denoted by h(G).

Example:

10

9

7

6

5

4

3 21

8

Figure 1.3: A harmonious coloring of Petersen Graph

1.4.1 A brief review of harmonious colorings

The first paper on harmonious graph coloring was published in 1982 by Frank et al.

(1982). However, the proper definition of this notion is due to Hopcroft and Krishnamoorthy

(1983) in 1983. In the same paper they have proved that determining the harmonious

coloring number of a graph is NP-hard.
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In general the harmonious coloring problem has been viewed as an Eulerian path

decomposition of graphs. Whenever such a decomposition is possible, it is possible

to find the harmonious coloring number of graphs.

The concept of harmonious coloring led to following two categories of problems:

(i) Finding the exact harmonious coloring number if it can be found.

The following results gives the classes of graphs for which the harmonious coloring

number has been found by different authors.

• For any graph G of order n and diameter at most two, we have h(G) = n. Also,

h(G) = n for almost all graphs (Miller and Pritikin 1991).

• The harmonious coloring number of a path Pn on n vertices given by

h(Pn)=

{
2k if

(
2k−1
2

)
< n− 1 ≤

(
2k
2

)
− (k − 1),

2k + 1 if
(
2k
2

)
− (k − 1) < n− 1 ≤

(
2k+1
2

)
.

in (Miller and Pritikin 1991).

The following result is another view of the harmonious coloring number of a path on

n vertices and was given by Mitchem (1989).

• Let Pn be a path on n vertices. Let k be the smallest integer such that
(
k
2

)
≥

n−1. If k is odd or if k is even and n−1 =
(
k
2

)
−j, where j = 1

2
(k−2), k

2
, ..., k−2,

then h(Pn) = k. Otherwise h(Pn) = k + 1.

Georges (1995) extended the above result to determine the harmonious coloring num-

ber of a collection of disjoint paths.

• LetX = {P 1, P 2, ..., P n} be a collection of nontrivial disjoint paths where P i has

ai edges,1 ≤ i ≤ n. Let k be the smallest positive integer such that
∑n

i=1 ai ≤(
k
2

)
. If k is odd, then h(X) = k. If k is even and

∑n
i=1 ai ≤

(
k
2

)
− k

2
+min{n, k

2
},

then h(X) = k, otherwise h(X) = k + 1.

• Let bPn denote the graph that is b disjoint copies of Pn. Let k be the smallest

integer such that b(n − 1) ≤
(
k
2

)
. If k is odd, then h(bPn) = k. If k is even
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and 2b(n− 2) ≤ k(k − 2), then h(bPn) = k, otherwise h(bPn) = k + 1 (Georges

1995).

The following result due to Mitchem (1989) is on harmonious coloring number of a

tree of order n.

• Let k be the least integer such that
(
k
2

)
≥ n − 1. Then for each t, k ≤ t ≤ n,

there is a tree T of order n such that h(T ) = t.

The following is the corollary of the above result.

• Let n ≤ m ≤
(
n
2

)
. Let k be the smallest integer such that

(
k
2

)
≥ m. Then for

any t, k ≤ t ≤ n, there exists a graph G with n vertices and m edges such that

h(G) = t.

The harmonious coloring number of a cycle on n vertices is given in the following

theorem.

• Let r+ s = n where 3 ≤ r ≤ s and let k be the least integer such that
(
k
2

)
≥ n.

If k is odd and n ̸=
(
k
2

)
− i where i = 1 or 2, then h(Cn) = h(Cr ∪ Cs) = k. If

k is even and n ̸=
(
k
2

)
− i where i = 0, 1, ..., k

2
− 1, then h(Cn) = k. Otherwise

h(Cn) = k + 1 (Mitchem 1989).

The extension of the above result to the collection of disjoint cycles was given by

Georges (1995).

• Let X = {C1, C2, ..., Ck} be a collection of disjoint cycles where C i has ci

edges,1 ≤ i ≤ k, and let n be the smallest integer such that
∑k

i=1 ci ≤
(
n
2

)
. If n

is odd and n ≥ 2k + 3, then h(X) = h(Cp), where p =
∑n

i=1 ci

We know that for a complete graphKn on n vertices, the harmonious coloring number

is equal to the number of vertices, i.e. h(Kn) = n. The following theorem due

to Georges (1995) gives the harmonious coloring number of a collection of disjoint

complete graphs which have an arbitrary number of vertices.
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• Let X = {K1, K2, ..., Kn} be a collection of disjoint complete graphs where Ki

has ki vertices, i = 1, 2, ..., n. If mini{ki} ≥ n− 1, then h(X) =
∑n

i=1 ki −
(
n
2

)
.

The next result follows as an immediate corollary of the above theorem.

• Let bKn denote the graph that consists of b disjoint copies of complete graphs

on n vertices. Then for any 1 ≤ b ≤ n + 1, it follows that h(bPn) = k. If k is

even and 2b(n− 2) ≤ k(k − 2), then h(bKn) = bn−
(
b
2

)
(Georges 1995).

The harmonious coloring number of the disjoint union of two arbitrary complete

bipartite graphs is given in (Georges 1995) as follows:

• Let r, s, p and q be positive integers with r = max{r, s, p, q}. Then

h(Kr,s ∪Kp,q)=

{
r + s if r ≥ p+ q,

s+ p+ q if r < p+ q.

(ii) If finding the harmonious coloring number is hard or traceable, then

we can compute upper and lower bounds and the results so obtained in

this view are general in nature.

The following results have been obtained or improved by many authors.

• For any graph G with n vertices and maximum degree ∆(G) = ∆, h(G) ≤

(∆2 + 1)⌈
√
n⌉ (Lee and Mitchem 1987).

• Let bKn denote the graph formed from b disjoint copies of the complete graph

Kn. Then h(bKn) ≤ (n2 − 2n+ 2)⌈
√
bn⌉ (Lee and Mitchem 1987).

In 1991, Zhikang Lu provided an upperbound which is an improvement on the bound

given by Lee and Mitchem. McDiarmid and Xinhua also improved on this bound

independently in the same year. The following is due to Lu (1993).

• For any graph G with order n and maximum degree ∆(G) = ∆, h(G) ≤

2∆⌊
√
n⌋.
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Let δ̂ be the maximum of the minimum degrees, taken over all induced subgraphs of

a graph G. It is clear to see that δ̂ ≤ ∆. McDiarmid and Xinhua (1991) proved that

• Let G be a graph with δ̂ ≤ α ≤ ∆ and let 4α∆ ≤ n− 1. Then

h(G) ≤ 2
√
α∆(n− 1)− 7

8
α∆+ (∆− α)(δ̂ − 1) + 1.

We can use the above result to prove the following two theorems which gives two

upper bounds for h(G) (McDiarmid and Xinhua 1991).

• For any nontrivial graph G with n vertices, m edges and maximum degree

∆(G) = ∆, h(G) ≤ 2∆
√
n− 1.

• For any nontrivial graph G with n vertices, m edges and maximum degree

∆(G) = ∆,

h(G) ≤

 33
16

√
δ̂∆(n− 1) if δ̂ > 8,

2

√
δ̂∆(n− 1) δ̂ ≤ 8.

We can deduce the following result from the above theorem.

• If T is a nontrivial tree of order n, then h(T ) ≤ 2
√
∆n.

In 1994, Krasikov and Roditty (1994) improved the upper bound originally given by

Lee and Mitchem and that has already been improved by Zhikang Lu as well as

McDiarmid and Xinhua.

• For any graph G of order n, h(G) ≤ ⌈n
t
⌉, where t = max{1, ⌈ 1

4n
(∆ + 1 +√

(∆ + 1)2 + 8n)⌉ − 1}. Moreover, there is a harmonious coloring of G with

⌈n
t
⌉ colors such that each color contains at most t vertices.

Edwards and McDiarmid (1994) gave following upper bound for the harmonious col-

oring number of any graph G.

• Let G be any graph with m edges and with maximum degree ∆. Then for any

integer k ≥ 2,

h(G) ≤ max{|V(k)|, 2
√

2m(k − 1) + (2k − 3)∆}.
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If k = 2 in the above result, we have the following corollary ( Edwards and McDiarmid

1994).

• For any tree T with m edges, h(T ) ≤ 2
√
2m+∆.

Edwards (1998) proved the following result.

• Let G be a graph with n vertices and m edges. Let k = δ̂(G). Let r =

⌈
√

8m(k+∆)+A2

2
+ A

2
⌉, where A = (2∆k +∆2 − k2). Then h(G) ≤ r.

1.4.2 Applications of harmonious colorings of graphs

The harmonious coloring problem has several applications.

• Harmonious coloring problem has potential applications in communication net-

works (i.e. transportation networks, computer networks etc.), since requesting

each edge to have a unique color that depends on the assignment of colors on

the vertices can be translated as assigning codes to the network nodes such that

each communication link can be distinguished.

• Kubale (2004) considers radio navigation systems (aviation guiding systems in

bad weather conditions or in case of invisibility on ground objects) as a possible

area for application of harmonious coloring number. The airway network system

consists of several airways. We could place one radio beacon on each terminal

point of each airway and an aircraft can determine its position by counting the

frequencies of the two beacons. For safety reasons no two proximate beacons

should be assigned the same frequency and no two airways can have radio

beacons sending same signals on both end points. In order to minimize the

number of frequencies that can be used in the beacons, we should consider an

optimal harmonious coloring on the graph where nodes represent the positions

of the radio beacons and edges represent the airways.
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• Cichelli (1980) investigates the potential applications of harmonious coloring

problem in data compression (design of minimal perfect hash functions).

1.5 Complete coloring of graphs and achromatic

number

Definition 1.5.1. A complete coloring of a graph G is a proper vertex coloring of G

such that, for any pair of colors, there is at least one edge of G whose endpoints are

colored with this pair of colors. The achromatic number of G, denoted ψ(G), is the

greatest number of colors in a complete coloring of G.

Example:

5

3

1

2

3

2

4 45

1

Figure 1.4: A complete coloring of Petersen Graph
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1.5.1 A brief review of complete colorings and achromatic

number

The achromatic number was introduced by Harary et al. (1967) in 1967. They con-

sidered homomorphisms from a graph G onto a complete graph Kn. A homomor-

phism from a graph G to a graph G′ is a function ϕ : V (G) → V (G′) satisfying

u ∼ v ⇒ ϕ(u) ∼ ϕ(v), ∀u, v ∈ G. This induces an obvious mapping from E(G) to

E(G′). It is easy to see that a complete coloring of G with n colors corresponds

precisely to a complete homomorphism of G onto Kn. i.e. one whose induced

edge mapping maps E(G) onto E(Kn). They considered the largest n for which

such homomorphism exists. This was later named the achromatic number ψ(G) by

Harary and Hedetniemi (1970).

Determining the achromatic number of a graph is shown to be NP-hard for

general graphs by Yannakakis and Gavril (1980) and it is further shown to be NP-

hard when restricted to bipartite graphs (Farber et al. 1986), to the family that is

the intersection of cographs and interval graphs (Bodlaender 1989) and even trees

(Cairnie and Edwards 1997) and in 2007, NP-completeness was shown for the re-

stricted cases of bipartite permutation and quasi-threshold graphs (Asdre and Nikolopoulos

2007).

The problem of determining the achromatic number on paths was given by

Krysta and Lorys (2006). Let q(m) be the greatest integer number l such that m ≥(
l
2

)
and q(m) = ⌊1+

√
1+8m
2
⌋.

• Let Pm be a path of m edges. If q(m) is odd or q(m) is even and m ≥ q(m)2

2
− 1

then ψ(Pm) = q(m) else ψ(Pm) = q(m)− 1.

The simplest upperbound for ψ(G) is due to Harary and Hedetniemi (1970).

• For any graph G, ψ(G) ≤ αo(G) + 1 where αo(G) is the size of the minimum

vertex cover of G.
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The best possible upper and lower bounds for the achromatic number of the disjoint

union G ∪H of two graphs G and H is given by Hell and Miller (1992).

• For any two graphs G and H, max{ψ(G), ψ(H)} ≤ ψ(G ∪H) ≤ ψ(G) · ψ(H).

In the same paper Hell and Miller gave the best possible lower bound for the product

of two graphs.

• For graphs G and H, ψ(G×H) ≥ ψ(G) + ψ(H) unless (assuming without loss

of generality that ψ(H) ≤ ψ(G))

(i) ψ(H) = 3 and ψ(G) ≤ 5, in which case ψ(G×H) ≥ ψ(G) + ψ(H)− 1.

(ii) ψ(H) = 2, in which case ψ(G×H) ≥ ψ(G) + ψ(H)− 2.

For achromatic number, the best lower bound for trees is that of Farber et al. (1986)

They show that extending a tree by a fairly small number of edges must increase the

achromatic number and so obtain a recurrence which leads to an upper bound for the

number of edges of a tree with maximum degree at most d and achromatic number

at most k.

• Let T be a tree with m edges, maximum degree at most d and satisfying ψ(T ) ≤

k. Then

m ≤

{
(k − 1)d+

(
k−1
2

)
if k ≤ d,

(k − 1)k +
(
d−1
2

)
if k ≥ d.

• Let T be a tree with m edges and maximum degree ∆. Then ⌊3
2
+(m−

(
∆−1
2

)
−

3
4
)
1
2 ⌋ ≤ ψ(T ) ≤ q(m).

An approximation algorithm is one which delivers an approximate solution to a prob-

lem. For a maximization problem such as the determination of achromatic number,

an algorithm has approximation ratio α if it always produces a solution whose value

is at least 1
α
of the optimum.

Chaudhary and Vishwanathan (2001) gave a polynomial time approximation algo-

rithm for the achromatic number with approximation ratio O(n/
√
log n). For graphs

of girth at least 7, they gave a simple algorithm with approximation ratio O(n7/20).
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1.5.2 Applications of complete colorings of graphs

Complete coloring problem can be directly applicable in network design, specifically

in clustering (Halldorsson 2004). A desired property when building networks is that

of having small diameter while the graph is as sparse as possible. Namely, we should

like to have small diameter inside the clusters and as few edges as possible connecting

different clusters while maintaining high connectivity. Consider an existing network

that we would like to cluster. Obtain a maximum complete partition. The clusters

can be obtained directly from the color classes. A large number of clusters implies

a small number of machines inside each cluster. This makes it possible to add fast

(but expensive) means of communication inside each cluster. Furthermore, since the

coloring is complete, communication between clusters can be performed directly for

every pair of clusters.

At this point it is worth noticing that both problems are hard even when restricted

to many graph families in which NP-hard problems usually become tractable. There

are a few families for which we can have exact solutions in polynomial time including

paths, cycles, unions of paths and cycles, stars, complete graphs, complete bipartite

graphs and threshold graphs.

It is interesting to notice that a harmonious coloring of a subgraph H of G cannot

easily be extended to a coloring of G. On the contrary it might be the case that

even introducing new colors is not enough to extend a coloring of H to a coloring of

G. That is because we might have two vertices u and v that were assigned the same

colors but are both neighbors of some vertex w in graph G. But a complete coloring

with k colors of a graph H can be easily extended to a complete coloring with k colors

of a supergraph G of H.
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Example:

4 3

21

2 3

21

Figure 1.5: A harmonious and complete coloring of a graph

1.6 Set colorings of graphs

The notion of set coloring of a graph has been introduced by Hegde (2009) in 2009.

Acharya (1983) has initiated a general study of labeling of the vertices and the edges

of a graph using subsets of a set and indicated their potential application in a variety

of other areas of human enquiry.

Let X be a nonempty set of colors, 2X denote the set of all possible combinations

of colors (or power set) of X and Y (X) = 2X \ ∅. For any two subsets A and B of

X, let A ⊕ B denote the symmetric difference of A, B and be given by A ⊕ B =

(A ∪B)− (A ∩B).

Given a (p, q) graph G = (V,E) and a nonempty set X of colors, we define a

function f on the vertex set V of G as an assignment of subsets of X to the vertices

of G, and given such a function f on the vertex set V we define f⊕ on the set of edges

E as an assignment of the colors f⊕(e) = f(u)⊕ f(v) to the edge e = uv of G.

Let f(G) = {f(u) : u ∈ V } and f⊕(G) = {f⊕(e) : e ∈ E}. We call f a set

coloring of G if both f(G) and f⊕(G) are injective functions. A graph is called set

colorable if it admits a set coloring.
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A set coloring f of G is called a strong set coloring if f(G) and f⊕(G) are

disjoint subsets of X and further, they form a partition of Y (X). If G admits such a

coloring then G is called a strongly set colorable graph.

A set coloring f is called a proper set coloring if f⊕(G) = Y (X). If a graph G

admits such a set coloring, then it is called a proper set colorable graph.

The set coloring number σ(G) of a graph G is the least cardinality of a set X with

respect to which G has a set coloring. Further if f : V → 2X is a set coloring of G

with |X| = σ(G), we call f an optimal set coloring of G.

Figure 1.6 gives examples of (a) strongly, (b) properly, (c) non-strongly and non-

properly set colorable graphs.

{1, 2, 3}

{1, 2} {3}

{2}{1}
{4}

{3} {2}

{1}

{1, 2, 3, 4}

(a) (b) (c)

Figure 1.6: Stongly, Properly, Non-strongly and non-properly set colored graphs

Boutin et al. (2010) considered the problem on paths and complete binary trees,

and showed that it can be reduced to the computation of a transversal in a special

Latin square, i.e., the XOR table. Also they investigated a variation of the problem

called strong set coloring and provided an exhaustive list of all graphs being strongly

set colorable with at most 4 colors.

Balister et al. (2011) disproved a conjecture that the path P2n−1 is strongly set

colorable for n ≥ 5. Also they proved another conjecture of Hegde on a related type

of set coloring of complete bipartite graphs.



Introduction 23

1.7 Outline of the Thesis

In Chapter 2, we define harmonious colorings of digraphs. We obtain a lower bound

for the proper harmonious coloring number and investigate the proper harmonious

coloring number of some classes of digraphs.

In Chapter 3, we obtain a lower bound for the proper harmonious coloring number

of r-regular digraphs and investigate the same for regular digraphs such as oriented

torus and circulant digraph.

In Chapter 4, we define complete colorings of digraphs. We obtain an upper bound

for the achromatic number of digraphs. Also we find the achromatic number of some

classes of digraphs.

In Chapter 5, we define set coloring of digraphs. Some necessary conditions have

been given for a digraph to admit a strong set coloring (proper set coloring). We

characterize strongly (properly) set colorable digraphs such as directed stars, directed

bistars etc. Also, we find the construction of strongly (properly) set colorable cater-

pillars.

In Chapter 6, we give a conclusion and scope for future research.



Chapter 2

Harmonious Colorings of Digraphs

A coloring of a graph can be described by a function that maps pieces of a graph

(vertices - vertex coloring, edges - edge coloring or both) into some set of numbers

(possibly N, Z or even R) usually called colors, such that some property is satisfied.

In this chapter we focus on a type of vertex coloring called harmonious coloring of

directed graphs. Also, we obtain the lower bound for the harmonious coloring number

of digraphs and investigate the same for different types of digraphs.

2.1 Introduction

The following is an extension of harmonious colorings to directed graphs.

Definition 2.1.1. Let D be a directed graph with n vertices and m arcs. A function

f : V (D)→ {1, 2, ..., k}, where k ≤ n is said to be a harmonious coloring of D if

for any two arcs (x, y) and (u, v) of D, the ordered pair (f(x), f(y)) ̸= (f(u), f(v)).

If the pair (i, i) is not assigned, then f is called a proper harmonious coloring of

D. The minimum k for which D admits a proper harmonious coloring is called the

proper harmonious coloring numberof D and is denoted by −→χh(D).

24
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Example:

4

5

2

5

1

3

2 41

3

Figure 2.1: A proper harmonious coloring of oriented Petersen graph.

In the above figure a proper harmonious coloring of oriented Petersen graph is

displayed.

There are two lower bounds for proper harmonious coloring number of D. Denote

the maximum indegree or outdegree of any vertex v of D by ∆ and the number of

arcs of D by m.

(i) Any vertex and all of its neighbors must receive distinct colors, and thus

−→χh(D) ≥ ∆+ 1.

Also, the proper harmonious coloring number ofD cannot be greater than the number

of vertices of D. Let n be the number of vertices of D. Then −→χh(D) ≤ n.

Thus, ∆ + 1 ≤ −→χh(D) ≤ n.

(ii) There must be at least as many pairs of colors as there are arcs. In a proper

harmonious k- coloring, the number of possible pairs of colors is k(k − 1). Since the

number of arcs, m in D must be less than or equal to the total number of possible

pairs of colors, it follows that

m ≤ k(k − 1)

i.e., m < k(k − 1) + 1

i.e., k(k − 1) ≥ m
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i.e., k2 ≥ m+ k

i.e., k2 > m

i.e., k >
√
m.

In the next section, we improve the above lower bound.

2.2 Lower bound for the proper harmonious col-

oring number of digraphs

The following theorem gives a lower bound for the proper harmonious coloring num-

ber.

Theorem 2.2.1. For any digraph D, −→χh(D) ≥ ⌈1+
√
4m+1
2
⌉, where m is the number of

arcs of D.

Proof. Let D be a digraph. Then D is colored with k colors using proper harmo-

nious coloring. Then the possible number of ordered pairs is k(k − 1).

∴ m ≤ k(k − 1).

i.e., k2 − k −m ≥ 0.

i.e., k ≥ 1+
√
4m+1
2

.

∴ k ≥ ⌈1+
√
4m+1
2
⌉.

�

Definition 2.2.2. A directed path is called unipath if id(v) = od(v) = 1 for every

vertex v except the first and last vertex of the directed path.

Definition 2.2.3. A directed cycle is called unicycle if id(v) = od(v) = 1 for any

vertex v of the directed cycle.
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In general, the proper harmonious coloring problem has been viewed as an Eulerian

path decomposition of graphs. Whenever such a decomposition possible, it is possible

to find the proper harmonious coloring number of graphs ( Hopcroft and Krishnamoorthy

1983).

Let D(G) be a symmetric digraph of an undirected graph G. Then to find a

proper harmonious coloring of any digraph D with n vertices, it is sufficient to find a

closed trail of length n in D(G) and the number of vertices of D(G) gives the proper

harmonious coloring number of D.

Example:

Let D(G) =
←→
K 4, a complete symmetric digraph with 4 vertices.

4 3

21 

Figure 2.2: Complete symmetric digraph
←→
K4.

Let the closed trail be 1− 3− 2− 3− 4− 2− 1− 2− 4− 1− 4− 3− 1. Then this

closed trail can be used to find the proper harmonious coloring of the unipath
−→
P 13

with 13 vertices and unicycle
−→
C 12 with 12 vertices. (See Figure 2.3)

Thus, to find a proper harmonious coloring of any digraph D with n vertices, it is

sufficient to find a closed trail traversing through all the arcs at least once of length

n in D(G) and the number of vertices of D(G) gives the proper harmonious number

of D.
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444 333 222 11 11

24323

1 1

24143

(a)

(b)

Figure 2.3: A proper harmonious coloring of (a) unipath
−→
P13; (b) unicycle

−→
C12.

In the next section, we determine the proper harmonious coloring number of some

familiar classes of digraphs.

2.3 Proper harmonious coloring number of some

classes of digraphs

We first consider the proper harmonious coloring number of a unipath
−→
P n on n

vertices. We start with the following result for a unipath on n vertices.

Theorem 2.3.1. Let
−→
P n be a unipath with n vertices. Then −→χh(

−→
P n) = ⌈

1+
√

1+4(n−1)

2
⌉.

Proof. Since unipath
−→
P n contains (n − 1) arcs, −→χh(

−→
P n) ≥ ⌈

1+
√

1+4(n−1)

2
⌉. Let

k = ⌈1+
√

1+4(n−1)

2
⌉. Then, (k − 1)(k − 2) + 1 < n ≤ k(k − 1) + 1.

Consider a complete symmetric digraph
←→
K k with k vertices. Then

←→
K k contains

k(k − 1) arcs. To find the proper harmonious coloring of
−→
P n, it is sufficient to

find an Eulerian path of length (n − 1) traversing through the arcs of
←→
K k, where

(k − 1)(k − 2) + 1 < n ≤ k(k − 1) + 1.
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We need to prove that there exists an Eulerian path of length k(k − 1). We shall

prove this by mathematical induction. For k = 2 the result holds. Assume that the

result is true for k = m. i.e. there exists an Eulerian path of length m(m − 1) in
←→
K m. Consider

←→
K m and a vertex v. Then joining v to all the vertices of

←→
K m in

both directions, we get
←→
K m+1. Let u1, u2, ..., um be the vertices of

←→
K m. Let um be

the end vertex of the Eulerian path of length m(m− 1) (Consequently it is the first

vertex). Then traverse along the path um v u1 v u2 v...um−1 v um and see that it is

the extension of the Eulerian path obtained from
←→
K m (of length m(m− 1)), so that

the length of the path obtained is m(m− 1) + 2m = m(m+ 1).

Hence by the principle of mathematical induction, the result holds.

�
Figure 2.4 is an illustration of the above result.

1231321

Figure 2.4: A proper harmonious coloring of
−→
P7.

Theorem 2.3.2. Let D =
−→
P 1

∪−→
P 2

∪
· · ·

∪−→
P i be a union of disjoint unipaths, where

−→
P j has j vertices for j = 1, 2, · · · , i. Then −→χh(D) = k = ⌈1+

√
2i2−2i+1
2

⌉.

Proof. Let D =
−→
P 1

∪−→
P 2

∪
· · ·

∪−→
P i. Then D has i(i+1)

2
vertices and i(i−1)

2
arcs.

We know that k ≥ ⌈1+
√
4m+1
2
⌉, where m is the number of arcs.

=⇒ k ≥ ⌈1+
√

4i(i−1)
2

+1

2
⌉

=⇒ k ≥ ⌈1+
√
2i2−2i+1
2

⌉.

We shall prove that k = ⌈1+
√
2i2−2i+1
2

⌉.

The proper harmonious coloring number of D is equivalent to the proper harmonious

coloring number of a unipath
−→
Pt, where

−→
Pt is the unipath obtained by adjoining

the endvertex of
−→
Pj and the starting vertex of

−−→
Pj+1 for j = 1, 2, · · · , i − 1. Since

−→
Pt contains i(i−1)

2
+ 1 vertices,

−→
Pt can be colored with k = ⌈1+

√
2i2−2i+1
2

⌉ colors (by
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Theorem 2.3.1). Let a1, a2, · · · , at be the minimal sequence of colors assigned to the

vertices of unipath
−→
Pt. Note that a1, a2, · · · , at are not distinct. Now assign the colors

a (j−1)(j−2)
2

+1
, a (j−1)(j−2)

2
+2
, · · · , a j(j−1)

2
+1

to the vertices of
−→
Pj, for j = 1, 2, · · · , i. Note

that the color of the end vertex of
−→
Pj (1 ≤ j < i)

= a j(j−1)
2

+1

= a (j+1−1)(j+1−2)
2

+1

= the color of the starting vertex of
−→
P j+1 (j < j + 1 ≤ i).

Hence, −→χh(D) = −→χh(
−→
Pt) = ⌈1+

√
2i2−2i+1
2

⌉.

�
Figure 2.5 is an illustration of the above result.

15234514

4261356646253

324166543312211

Figure 2.5: A proper harmonious coloring of union of disjoint unipaths.

Theorem 2.3.3. Let
−→
C n be a unicycle with n vertices, then,

−→χh(
−→
C n)=


k + 1 for n = k(k − 1)− 1,

k otherwise,

where k = ⌈1+
√
4n+1
2
⌉ for (k − 1)(k − 2) + 1 ≤ n ≤ k(k − 1).

Proof. Since a unicycle
−→
C n contains n arcs, −→χh(

−→
C n) = k ≥ ⌈1+

√
4n+1
2
⌉. Let

k = ⌈1+
√
4n+1
2
⌉. Then (k − 1)(k − 2) + 1 ≤ n ≤ k(k − 1).

It is equivalent to prove that there exists an Eulerian circuit with n arcs and k vertices

for (k − 1)(k − 2) + 1 ≤ n ≤ k(k − 1) except for n = k(k − 1)− 1.

We know that a digraph D has an Eulerian circuit if and only if id (v) = od (v) for
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every vertex v. For n = k(k − 1) − 1, the possible degree sequence (k vertices) is

(k−1), (k−1), ..., (k−1), (k−2). But there exists no such digraph. (For otherwise, let

v be the vertex with id (v) = od (v) = k−2. Since degree of each of the other vertex is

k−1, every other vertex has an arc to v so that id (v) = k−1, a contradiction.) Thus,

we require one more additional color to color the vertices of
−→
C n when n = k(k−1)−1.

Hence −→χh(
−→
C n) = k + 1, for n = k(k − 1)− 1.

Consider a complete symmetric digraph
←→
K k with k vertices. In

←→
K k, id (v) = od (v) =

k− 1 for all v. Hence
←→
K k is Eulerian. Therefore, we have the result for n = k(k− 1).

Remove an Eulerian cycle of length i, where i = 2, 3, 4, ..., (2k − 3) from
←→
K k. Then

we get an Eulerian cycle of length k(k − 1) − 2, k(k − 1) − 3, ..., (k − 1)(k − 2) + 1.

Since we are removing a cycle, the equation id (v) = od (v) remains unchanged for

the vertices lying on the cycle. (When we remove an outgoing arc, we remove an

incoming arc and vice versa.)

Therefore, the resulting cycle is also an Eulerian circuit. Hence −→χh(
−→
C n) = k, for

(k − 1)(k − 2) + 1 ≤ n ≤ k(k − 1) except for n = k(k − 1)− 1.

�
Figures 2.6 and 2.7 are the illustrative examples of the above result.

24323

1 1

24143

Figure 2.6: A proper harmonious coloring of
−→
C12.

Theorem 2.3.4. Let D =
−→
C 3

∪−→
C 4

∪
· · ·

∪−→
C i be a union of disjoint unicycles,

where
−→
C j has j vertices for j = 3, 4, · · · , i. Then −→χh(D) = k = ⌈1+

√
2i2+2i−11

2
⌉.

Proof. Let D =
−→
C 3

∪−→
C 4

∪
· · ·

∪−→
C i. Then D has (i−2)(i+3)

2
vertices and (i−2)(i+3)

2

arcs.
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15432

1

32524

Figure 2.7: A proper harmonious coloring of
−→
C11.

We know that k ≥ ⌈1+
√
4m+1
2
⌉, where m is the number of arcs.

=⇒ k ≥ ⌈1+
√

4(i−2)(i+3)
2

+1

2
⌉

=⇒ k ≥ ⌈1+
√
2i2+2i−11

2
⌉ = t.

To prove that k = t.

Consider the complete symmetric digraph
←→
K t. Since

←→
K t is Eulerian, it can be

partitioned into cycles (from Theorem 4.4 of Chartrand and L.Lesniak (2004)). It

can be proved by induction that
←→
K t can be partitioned such that the partition include

cycles of length 3,4,...,i. The vertices of these cycles give the harmonious coloring of

D. Hence the harmonious coloring number of D is k ≤ t.

∴ k = t.

i.e. −→χh(D) = ⌈1+
√
2i2+2i−11

2
⌉. �

Figure 2.8 is an illustration of the above result.
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Figure 2.8: A proper harmonious coloring of union of disjoint unicycles.
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Theorem 2.3.5. Let
←→
C n be a symmetric cycle with n vertices. Then, −→χh(

←→
C n) ≥

k = ⌈1+
√
8n+1
2
⌉. In particular,

−→χh(
←→
C n)=



n for n = 3, 4.

k for k2 − 4k + 5 ≤ 2n ≤ k(k − 1) k ≥ 5 and k is odd.

k + 1 for 2n = k(k − 1)− j, j = 2, 4 k ≥ 5 and k is odd.

k for k2 − 3k + 4 ≤ 2n ≤ k(k − 2) k ≥ 6 and k is even.

It is similar to the harmonious coloring number of undirected cycle which is proved

by Frank et al. (1982).

Figure 2.9, Figure 2.10, Figure 2.11 and Figure 2.12 are the illustrative examples

of the above result.

43

21 

Figure 2.9: A proper harmonious coloring of
←→
C4 .

 

6253

1

5432

Figure 2.10: A proper harmonious coloring of
←→
C9 .
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5432

1 2

4135

Figure 2.11: A proper harmonious coloring of
←→
C10.

 

61532

1 4

26543

Figure 2.12: A proper harmonious coloring of
←→
C12.

Definition 2.3.6. A directed graph in which the underlying graph is a star is known

as a directed star.

Theorem 2.3.7. −→χh(
−→
S n) = max[id (v), od (v)]+ 1, where

−→
S n is a directed star with

n vertices and v is the central vertex.

Proof. Let
−→
S n be a directed star where n is the number of vertices. Let v be the

central vertex. Let there be s incoming arcs to v and t outgoing arcs from v. Label

the central vertex v as 1.

Case (i) Let s > t. Then the incoming arcs to v will be (2, 1), (3, 1), ..., (s+1, 1) and

the outgoing arcs from v will be (1, 2), (1, 3), ..., (1, t).

∴ −→χh(
−→
S n) = s+ 1.

Case (ii) Let t > s. Then the outgoing arcs from v will be (1, 2), (1, 3), ..., (1, t + 1)

and the incoming arcs to v will be (2, 1), (3, 1), ..., (s, 1).

∴ −→χh(
−→
S n) = t+ 1.

From the above two cases, we can conclude that

−→χh(
−→
S n) = max[id (v), od (v)] + 1. �
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Figure 2.13 is an illustration of the above result.
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Figure 2.13: Proper harmonious coloring of
−→
S5.

Definition 2.3.8. A directed wheel
−→
Wn with n vertices is a graph obtained from

the directed cycle
−→
C n−1 and K1, by joining every vertex of

−→
C n−1 to the vertex of K1,

where the directed cycle
−→
C n−1 is called the rim and the arcs joining to K1 are called

the spokes. The vertex of K1 is called the central vertex. If the rim of a directed

wheel is a unicycle, then the wheel is called unicyclic.

Theorem 2.3.9. Let
−→
Wn be a unicyclic wheel with n vertices and let v be the central

vertex. Then

(i) −→χh(
−→
W 4) = (id (v) + od (v) + 1).

(ii) For n = 5 and 6

−→χh(
−→
W n)=


n if id (v) = 0 or od (v) = 0,

id (v) + od (v) otherwise.

(iii) For n ≥ 7, −→χh(
−→
W n) = max[id (v), od (v)] + 1.
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Proof. (i) and (ii)can be easily verified.

(iii) Let
−→
Wn be a unicyclic wheel, where n ≥ 7. The total number of arcs of the wheel

is 2(n − 1). Let v = v1 be the central vertex and let v2, v3, ..., vn be the vertices on

the circumference of the wheel. Let there be s incoming arcs to v and t outgoing arcs

from v. Label the vertex v1 as 1.

Case (i) Let s > t. Label the tails of the incoming arcs to v as 2, 3, ..., s+ 1 so that

the incoming arcs to v will be (2, 1), (3, 1), ..., (s+1, 1) and also label the heads of the

outgoing arcs from v as 2, 3, ..., s + 1, (s + 1 > t) provided the adjacent vertices on

the circumference of the wheel will not get the same color. Hence the outgoing arcs

from v will be (1, 2), (1, 3), ..., (1, s+ 1).

∴ −→χh(
−→
W n) = s+ 1.

Case (ii) Let t > s. Label the heads of the outgoing arcs from v as 2, 3, ..., t + 1 so

that the outgoing arcs from v will be (1, 2), (1, 3), ..., (1, t+1) and also label the tails

of the incoming arcs to v as 2, 3, ..., t+ 1, (t+ 1 > s) provided the adjacent vertices

on the circumference of the wheel will not get the same color. Hence the incoming

arcs to v will be (2, 1), (3, 1), ..., (t+ 1, 1).

∴ −→χh(
−→
W n) = t+ 1.

From case (i) and case (ii), it follows that

−→χh(
−→
W n) = max[id (v), od (v)] + 1.

�
Figure 2.14, Figure 2.15 and Figure 2.16 are the illustrative examples of the above

result.
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Figure 2.14: Proper harmonious coloring of
−→
W4.
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Figure 2.15: Proper harmonious coloring of
−→
W5.
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Figure 2.16: Proper harmonious coloring of
−→
W7.
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Theorem 2.3.10. For any n-ary out-tree
−→
T n,

−→χh(
−→
T n) = k ≤ n⌊ l

2 ⌋+1−1
n−1

, where l is the level of the tree.

Proof. Let
−→
T n be the n-ary out-tree of level l, l = 1, 2, ....

It is enough to prove the result for complete n-ary out-tree
−→
T n. i.e. To prove that

−→χh(
−→
T n) = k = n⌊ l

2 ⌋+1−1
n−1

for complete n-ary out-tree,
−→
T n. There are

nl−1
n−1

vertices and

n(nl−1−1)
n−1

arcs in
−→
T n. We color the vertices of n-ary tree as follows:

Color the root vertex as 1. In level 2 there are n vertices. Color the vertices as

2, 3, ..., n + 1. Hence the total number of colors used in level 2 is n + 1. In level 3,

color the vertices as follows:

L(vi)=

{
j if j ≤ k + 1

j + 1 if j > k + 1,

where i = kn + j, k = 0, 1, 2, ..., n − 1, j = 1, 2, ..., n and vi are the vertices of

level 3. Hence in level 3, the total number of colors required is n + 1. Now in level

4, color the vertices adjacent to 1 as n + 2, n + 3, ..., 2n + 1; 2n + 2, 2n + 3, ..., 3n +

1; ...; n2 +2, n2 +3, ..., n(n+1)+ 1. Use the same colors for the vertices adjacent to

2, 3, ..., n+ 1. Hence in level 4, n2 additional colors are required to color the vertices.

In the next level, one can observe that all the vertices adjacent to the vertices colored

with n+ 2, n + 3, ..., n(n+ 1) + 1 can be colored as 1, 2, ..., n. In this level, we don’t

require any additional colors to color the vertices. Continuing in this way, one can

observe that the number of colors used in any odd level l is less than or equal to the

number of colors used till the l − 1 level and the graph is harmonious.

We shall prove the theorem by mathematical induction on the level l. For l = 1, one

can easily see that k = 1.

Assume that the result is true for some level l = m.

i.e., k = n⌊m
2 ⌋+1−1
n−1

.

Now, to prove that the result is true for l = m+ 1,

i.e., to prove that k = n⌊m+1
2 ⌋+1−1
n−1

,

we shall consider 2 cases.
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Case (i) Let l = m be even. Then m + 1 is odd. Also, the number of colors used

in any odd level is less than or equal to the number of colors used till the previous

level (i.e. even level) except for level 1. Also, the number of colors added in level m

is equal to n
m
2 . We know that the number of colors sufficient in level m+ 1 is equal

to the number of colors used in level m as m is even.

Now, by induction hypothesis, the number of colors used in level m is k = n⌊m
2 ⌋+1−1
n−1

.

Here, ⌊m+1
2
⌋ = ⌊m

2
⌋ as m is even. Hence the number of colors used in level m+1 will

be, k = n⌊m+1
2 ⌋+1−1
n−1

.

Case (ii) Let l = m be odd. Then m + 1 is even. The number of colors added in

level m is n
m−1

2 . Hence the number of colors added in level m + 1 is n
m+1

2 . Also, by

induction hypothesis, the number of colors used in level m is k = n⌊m
2 ⌋+1−1
n−1

.

Hence the number of colors used in level m+ 1 is

k = n⌊m
2 ⌋+1−1
n−1

+ n
m+1

2

⇒ k = n(m−1
2 +1)−1
n−1

+ n
m+1

2 (as m is odd, ⌊m
2
⌋ = m−1

2
)

i.e., k = n
m+3

2 −1
n−1

i.e., k = n
m+1

2 +1−1
n−1

i.e., k = n⌊m+1
2 ⌋+1−1
n−1

[as m is odd, m+1
2

= ⌊m+1
2
⌋].

Therefore, the result is true for level l = m+ 1.

Hence, by the principle of mathematical induction, the result follows for complete

n-ary out-tree
−→
T n of level l. This proves that for any n-ary out-tree

−→
T n

−→χh(
−→
T n) = k ≤ n⌊ l

2 ⌋+1−1
n−1

.

�
Figure 2.17 is an illustration of the above result.

Definition 2.3.11. An alternating Eulerian trail of a digraph D is an open trail

of D including all the arcs and vertices of D such that any two arcs consecutive on

the trail have opposite direction.



Harmonious Colorings of Digraphs 40

1

2

431

5 6 7 5 6 7 8 9 10 

3

421

8 9 10 8 9 10 5 6 7

4

321

11 12 13 5 6 7 8 9 10 

Figure 2.17: A proper harmonious coloring of
−→
T3 of level 4.

Lemma 2.3.12. If G is a connected (undirected) non-bipartite graph in which every

vertex has even degree, then the symmetric digraph D(G) obtained from G has an

alternating closed Eulerian trail.

Proof. Let G be a connected (undirected) non-bipartite graph in which every

vertex has even degree. Since G is non-bipartite, it has a cycle of odd length. Also,

since all the vertices of G are of even degree, G is Eulerian. That is G has a closed

Eulerian trail say, T . Consider the symmetric digraph D(G) obtained from G by

replacing each undirected edge by a pair of edges with opposite orientations. Since

G has a closed Eulerian trail T , we get a closed Eulerian trail in D(G) in which the

adjacent edges have opposite direction as follows:

Suppose G has m edges. Then there exists two cases.

Case (i) Let m be odd.

We obtain the required alternating closed Eulerian trail in D(G) by traversing T twice

in the same direction but using the edges of alternating direction.
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Case (ii) Let m be even.

We observe that T must visit some vertex v twice with an odd number of edges

between the visits (otherwise G would be bipartite). Hence we get T as v0 =

v, v1, · · · , vi = v, vi+1, · · · , vm = v, where i is odd. Then the required alternating

closed Eulerian trail is v0 = v → v1 ← · · · → vi = v ← v1 → · · · ← vi = v → vi+1 ←

· · · → vm = v ← vi+1 → · · · ← vm = v.

�
As a consequence of the above lemma, we have the following lemma.

Lemma 2.3.13. The alternating cycle on n vertices can be colored with k colors if

there is a connected (undirected) non-bipartite graph G, with every vertex having even

degree and with k vertices and n
2
edges.

ALTERNATING PATHS

Definition 2.3.14. An alternating path
−−→
APn with n vertices is an oriented path

in which any two arcs consecutive on the path have opposite direction.

Theorem 2.3.15. Let
−−→
APn be an alternating path. Then

−→χh(
−−→
APn)=


k + 1 if k is even and k2 − 2k + 3 ≤ n ≤ k2 − k + 1

k otherwise,

where k = ⌈1+
√

1+4(n−1)

2
⌉.

Proof. Since
−−→
APn is an alternating path with n vertices and n−1 arcs, by Theorem

2.2.1, we get −→χh(
−−→
APn) ≥ k. When −→χh(

−−→
APn) = k, it follows that k2 − 3k + 4 ≤ n ≤

k2 − k + 1.

Let G be a connected (undirected) non-bipartite graph in which every vertex has even

degree. Then to find the proper harmonious coloring of
−−→
APn, it is sufficient to find an

alternating Eulerian trail of length n, by traversing in the same direction but using
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arcs of opposite direction in D(G). Consider a complete undirected graph Kk with k

vertices.

Case (i) Let k be odd and let G = Kk. Then G contains k(k−1)
2

edges. Since G

is non-bipartite and all the vertices are of even degree, G has an undirected closed

Eulerian trail T . Then by Lemma 2.3.12, we obtain the required alternating closed

Eulerian trail in D(G).

Case (ii) Let k be even.

Case (a) Let k = 4 and let v1, v2, v3 and v4 be the vertices of K4. Then we can find

an alternating Eulerian trail in
←→
K4 as follows: v1 → v2 ← v3 → v1 ← v2 → v4 ←

v1 → v3 ← v4 → v1.

Case (b) Let k ≥ 6 and let G = Kk \M , where M is the matching of size k/2 (k

should be at least 6 so that G is not bipartite). Then G will have k vertices and k2−2k
2

edges. Also, all the vertices of G are of even degree. Hence G has an undirected closed

Eulerian trail T . As m will be even for any value of k, by Lemma 2.3.12, we can find

an alternating closed Eulerian trail in D(G) and the length of this alternating closed

Eulerian trail is 2(
(
k
2

)
− k/2) = k2 − 2k. Regarding this as an open alternating trail,

we can clearly add one further arc to one end of it in D(G) using one edge of the

matching in one direction. Hence we will get an alternating Eulerian trail of length

k2 − 2k + 1.

We know that since k colors are used to color the vertices of
−−→
APn of length n − 1,

there will be k(k − 1) ordered pairs of colors. In
−−→
APn, at each vertex there will be

either two incoming arcs or two outgoing arcs except for the first and the last vertex.

Hence it requires even number of ordered pairs at each vertex. There will be k − 1

ordered pairs associated with each color. When k is even, k−1 will be odd and hence

we cannot use k − 1 ordered pairs of one particular color. That is only k2 − 2k + 1

ordered pairs of colors will be used when k is even. Hence when k is even, for an

alternating path with more than k2 − 2k + 2 vertices, we require k + 1 colors. Hence

the proof.
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�
Figures 2.18, 2.19 and 2.20 are the illustrative examples of the above result.

4 13524514352451321321

Figure 2.18: A proper harmonious coloring of
−→
AP 21.

1431421321

Figure 2.19: A proper harmonious coloring of
−→
AP 10.

41652463165246315432154321

Figure 2.20: A proper harmonious coloring of
−→
AP 26.

ALTERNATING CYCLES

Definition 2.3.16. An alternating cycle
−−→
ACn with n vertices is an oriented cycle

in which any two arcs consecutive on the cycle have opposite direction.

Let k = ⌈1+
√
4n+1
2
⌉, where n is the number of vertices of the alternating cycle

−−→
ACn.

Let
←→
Kk be a complete symmetric digraph. Then we have the following results:

Lemma 2.3.17. Let the alternating cycle
−−→
ACn be a subgraph of

←→
Kk of length n. Then

every vertex of
−−→
ACn in

←→
Kk has even indegree and outdegree.

Proof. Let
−−→
ACn be any alternating cycle of length n in

←→
Kk. By definition, an

alternating cycle is a cycle in which any two consecutive arcs have opposite directions.

Hence any vertex of
−−→
ACn in

←→
Kk should have either two incoming arcs or two outgoing

arcs. Hence every vertex of
−−→
ACn will have even indegree and outdegree. Hence the

proof.

�
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Lemma 2.3.18. Let the alternating cycle
−−→
ACn be a subgraph of

←→
Kk. When k is odd,

for n = k(k − 1) − 2,
−−→
ACn cannot be colored with k colors and hence requires k + 1

colors.

Proof. Let us assume that k(k−1)−2 vertices can be colored with k colors. Then

in
←→
Kk, the possible degree sequence of the outgoing arcs will be (k − 1, k − 1, ...(k −

1)times, k− 3). Then corresponding to this degree sequence of outgoing arcs, we get

the degree sequence of the incoming arcs as (k− 1, k− 1, ...(k− 2)times, k− 2, k− 2).

Hence there exists at least two vertices having odd indegrees, a contradiction by

Lemma 2.3.17. Thus, at least k + 1 colors are required.

�

Lemma 2.3.19. Let
−−→
ACn be an alternating cycle with n vertices. Then when k is

even, k(k − 2) + 2 ≤ n ≤ k(k − 1) vertices cannot be colored with k colors and hence

requires k + 1 colors.

Proof. The total indegree and the total outdegree of those vertices of the alternat-

ing cycle having any particular color must both be even (by Lemma 2.3.17) and so if

k is even, they cannot exceed (k − 2) (as there are only (k − 1) ordered pairs of one

particular color). It follows that there can be at most k(k− 2) arcs in the alternating

cycle with k colors. Hence for
−−→
ACn with n vertices, where k(k−2)+2 ≤ n ≤ k(k−1),

we require one more additional color to color the vertices.

�
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Theorem 2.3.20. Let
−−→
ACn be an alternating cycle with n vertices, where n is even.

Then

−→χh(
−−→
ACn)=



k for k = odd and n = (k − 1)(k − 2) + 2, ..., k(k − 1)− 4, k(k − 1)

k + 1 for k = odd and n = k(k − 1)− 2

k for k = even and n = (k − 1)(k − 2) + 2, ..., k(k − 2)

k + 1 for k = even and n = k(k − 2) + 2, k(k − 2) + 4, ..., k(k − 1).

Proof. Since an alternating cycle
−−→
ACn contains n arcs, by Theorem 2.2.1, we get

−→χh(
−−→
ACn) ≥ k. When −→χh(

−−→
ACn) = k, it follows that (k− 1)(k− 2) + 2 ≤ n ≤ k(k− 1).

Let G be a connected (undirected) non-bipartite graph in which every vertex has even

degree. Consider a complete undirected graph Kk with k vertices.

Case (i) Let k be odd.

Case (a) Let n = k(k − 1), k ≥ 3 and let G = Kk. Then G contains k(k−1)
2

edges.

Since G is non-bipartite and all the vertices are of even degree, G has an undirected

closed Eulerian trail T . Then by Lemma 2.3.13, we can find an alternating cycle of

length n.

Case (b) Let n = (k − 1)(k − 2) + 2, · · · , k(k − 1)− 6, k ≥ 5 and let G = Kk \ Ct,

where Ct is a cycle with t vertices, t = 3, 4, · · · , k − 2. Then G has k(k−1)−2t
2

edges,

where t = 3, 4, · · · , k − 2. Also, G is non-bipartite and all the vertices of G are of

even degree. Hence G has an undirected closed Eulerian trail T . Then by Lemma

2.3.13, we obtain the required alternating cycle of length n.

Case (c) Let n = k(k − 1) − 4, k ≥ 5. Let v1, v2, v3, · · · , vk be the vertices of

Kk. Let G = Kk \ C4, where C4 is a cycle v1, v2, v3, v4, v1 of length 4. Then G has

k(k−1)
2
− 4 edges. Also, G is non-bipartite and all the vertices of G are of even de-

gree. Hence G has an undirected closed Eulerian trail T . Then by Lemma 2.3.13, we

obtain the alternating closed Eulerian trail of length k(k − 1)− 8 in D(G). Suppose

the alternating closed Eulerian trail contains · · · → v1 ← · · · , and add in the arcs

v1 ← v2 → v3 ← v4 → v1. Then we obtain the required alternating closed Eulerian
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trail of length k(k − 1)− 4.

Case (ii) Let k be even and let G1 = Kk \M1, where M1 is the matching of size k/2

(k should be at least 6 so that G1 is not bipartite).

Case (a) When n = k(k − 2) and k = 4, we can color the vertices of
−−→
AC8 as given

below:

143

1 2

432

Figure 2.21: A proper harmonious coloring of
−→
AC8.

Case (b) Let n = k(k − 2), k ≥ 6 and let G = G1. Then G is non-bipartite and

all the vertices of G are of even degree. Hence G has an undirected closed Eulerian

trail T . Also G contains k2−2k
2

edges. Then by Lemma 2.3.13, we obtain the required

alternating cycle of length k2 − 2k.

Case (c) Let n = (k − 1)(k − 2) + 2, (k − 1)(k − 2) + 4, · · · , k(k − 1) − 6, k ≥ 10

and let G = G1 \ Ct, where Ct is a cycle with t vertices, t = 3, 4, · · · , (k
2
− 2). Then

G has k2−2(k−t)
2

edges for t = 3, 4, · · · , (k
2
− 2). Also, G is non-bipartite and all the

vertices of G are of even degree. Hence G has an undirected closed Eulerian trail T .

Then by Lemma 2.3.13, we obtain the required alternating cycle of length n.

Case (d) Let n = k(k − 2) − 4, k ≥ 8 and let G2 = Kk \M2, where M2 is the

matching of size k
2
− 2 (k should be at least 6 so that G2 is not bipartite). Then

G = G2 \ 2P3, where P3 is a path of length 2 and the end vertices of both the paths

are the vertices which are not the adjacent vertices of the edges of the matching. Also,

both the paths are distinct and passes through the vertex which is incident with the

edge of the matching. The following sketch illustrates G when k = 8.
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Then G has k(k−1)−k−4
2

edges. Also, G is non-bipartite and all the vertices of G

are of even degree. Hence G has an undirected closed Eulerian trail T . Then by

Lemma 2.3.13, we obtain the required alternating cycle of length n.

Case(e) Let n = k(k−2)−2, k ≥ 6 and let G3 = Kk\M3, whereM3 is the matching

of size k
2
− 1 (k should be at least 6 so that G3 is not bipartite). Then G = G3 \ P3,

where P3 is a path of length 2 and the end vertices of P3 are the vertices which are

not the adjacent vertices of the edges of the matching. Also, it passes through the

vertex which is incident with the edge of the matching. Consider the sketch below as

an example of G for the case when k = 6.

Then G has k(k−1)−k−2
2

edges. Also, G is non-bipartite and all the vertices of G are

of even degree. Hence G has an undirected closed Eulerian trail T . Then by Lemma

2.3.13, we obtain the required alternating alternating cycle of length n.

We can conclude the result using Lemma 2.3.18 and Lemma 2.3.19.
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�
Figures 2.22, 2.23, 2.24 and 2.25 are the illustrative examples of the above result.

1

1

33524

1 1

55432

524

432

Figure 2.22: A proper harmonious coloring of
−→
AC20.

 

3

4

3

3

5465

1 1

6126

24

52

Figure 2.23: A proper harmonious coloring of
−→
AC18.

1

3

6

1

44256

1 6

35432

256

154

3

2

Figure 2.24: A proper harmonious coloring of
−→
AC24.

 

4

1

1243

2 5

4531

Figure 2.25: A proper harmonious coloring of
−→
AC12.



Chapter 3

Harmonious Colorings of Regular
Digraphs

Though determining the proper harmonious coloring number is NP-hard in general,

there are families of digraphs for which this number is easy to calculate and the

corresponding optimal coloring is well known.

In this chapter, we obtain a lower bound for the proper harmonious coloring num-

ber of regular digraphs and investigate the same for some classes of regular digraphs.

3.1 Introduction

In this chapter, we have further extended the concept of proper harmonious coloring

number of a directed graph to all oriented graphs of an underlying undirected graph

as follows:

Let G be an underlying undirected graph. Let O be an orientation of the edges of

G. Denote the directed graph with orientation O as G(O). Since there are 2|E| edges,

there exist 2|E| different directed graphs say G(O1), G(O2), G(O3), ..., G(O2|E|). Let hi

denote the harmonious coloring number of G(Oi), 1 ≤ i ≤ 2|E|. Define h = mini hi

as the harmonious coloring number of the oriented graph O(G) and denote it by

−→χh(O(G)).

49
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The following theorem gives a lower bound for −→χh(D) which we have already

proved in Chapter 2.

Theorem 3.1.1. For any digraph D, −→χh(D) ≥ ⌈1+
√
4m+1
2
⌉, where m is the number of

arcs of D.

Let G be an undirected graph. For any orientation O of the edges of G, G(O) is

a directed graph. Since Theorem 3.1.1 is true for G(O) for any arbitrary orientation

O, the following result holds good.

Corollary 3.1.2. Let G be any undirected graph. Then −→χh(O(G)) ≥ ⌈1+
√
4m+1
2
⌉,

where m is the number of edges of G.

3.2 Lower bound for −→χh of regular digraphs

In this section, we obtain a lower bound for proper harmonious coloring number of

regular digraphs. We have already determined our first lower bound for digraphs

in Chapter 2. We now give another lower bound for −→χh(D), where D is a regular

digraph.

Theorem 3.2.1. Let D be an r- regular digraph of order n. Then −→χh(D) ≥ ⌈1+
√
1+4rn
2

⌉.

Proof. Let D be harmoniously colored with k colors. There exists at least one

color class, say X, that contains at least n
k
vertices. For, if every color class contains

less than n
k
vertices, then the number of vertices in D is less than n, which is a

contradiction. Let N(X) denote the neighbourhood of the color class X. Since D

is regular of degree r and no two vertices in the same color class have a common

inneighbour or outneighbour, it follows that there are at least r(n
k
) vertices in N(X).

Each of these vertices must be assigned a distinct color. Thus the total number of
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colors is k ≥ |N(X)|+ 1.

This implies k2 − k − rn ≥ 0.

Therefore, (k − (1+
√
1+4rn
2

))(k − (1−
√
1+4rn
2

)) ≥ 0

But (k − (1−
√
1+4rn
2

)) > 0 and hence (k − (1+
√
1+4rn
2

)) ≥ 0

Thus, −→χh(D) ≥ ⌈1+
√
1+4rn
2

⌉.

�

Remark 3.2.2. When r = 1, −→χh(D) ≥ ⌈1+
√
1+4n
2
⌉.

But r = 1 implies that D is the unicycle
−→
Cn with n vertices. Also, in Chapter 2, we

have already proved that for k = ⌈1+
√
4n+1
2
⌉,

−→χh(
−→
C n)=


k + 1 if n = k(k − 1)− 1,

k if n = (k − 1)(k − 2) + 1, ..., k(k − 1)− 2, k(k − 1).

Let G be an undirected graph. Consider all orientations of edges of G such that

G(O) is regular. Since Theorem 3.2.1 is true for all orientations of G, we have the

following result.

Corollary 3.2.3. Let G be an undirected 2r-regular graph. Then −→χh(O(G)) ≥ ⌈1+
√
1+4rn
2

⌉.

In the next sections, we determine the proper harmonious coloring number of some

classes of regular digraphs such as Torus and Circulant digraphs.
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3.3 Proper harmonious coloring number of Torus

Definition 3.3.1. An n-dimensional torus is defined as an interconnection structure

that has k0× k1× · · ·× kn−1 nodes, where ki is the number of nodes in ith dimension.

Each node in the torus is identified by an n-coordinate vector (x0, x1, · · · , xn−1), where

0 ≤ xi ≤ ki − 1. Two nodes (x0, x1, · · · , xn−1) and (y0, y1, · · · , yn−1) are connected if

and only if there exists an i such that xi = (yi ± 1)mod ki and xj = yj for all j ̸= i.

Theorem 3.3.2. Let T be an undirected n×n torus. Then −→χh(O(T )) = k+1, where

k = ⌈1+
√
1+8n2

2
⌉.

Proof. By Theorem 3.2.1, −→χh(O(T )) ≥ k = ⌈1+
√
1+8n2

2
⌉.

Let O be the orientation of T such that all the horizontal cycles are unidirected in

the clockwise sense and all the vertical cycles are unidirected in the clockwise sense

to obtain the orientation O(T ) (See Figure 3.1).

Horizonntal cyclee

VVertical ccycle

Figure 3.1: Orientation O(T ) for 4× 4 torus.
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Consider a complete symmetric digraph
←→
K k+1 with k(k+1) arcs. Label the vertices

of
←→
K k+1 as 1, 2, ..., k + 1. Let v1, v2, v3, ..., vn(n+1), v1 be a closed trail

−→
W of length

n(n+1) in
←→
K k+1. Then to find the proper harmonious coloring of O(T ), it is sufficient

to find a closed trail
−→
W of length n(n + 1) in

←→
K k+1 traversing through the arcs of

←→
K k+1 at most once

(For example, consider
←→
K 6, complete symmetric digraph with 6 vertices. Let the

closed trail be 1−2−3−5−3−4−5−4−2−6−4−3−1. Now, this closed trail can

be used to find the proper harmonious coloring of an oriented Torus(3, 3)(See Figure

3.2).)

 

6

5

4

3

2

1

6

54

4

3

2

3
21

(b) (a) 

Figure 3.2: (a) Closed trail
−→
W in

←→
K 6; (b) Oriented Torus(3, 3).

with the following conditions:

• In
−→
W , the label of the vertex v2= the label of the vertex vn(n−1)+n, the label of

the vertex v3= the label of the vertex vn(n−2)+(n−1), the label of the vertex v4=

the label of the vertex vn(n−3)+(n−2), ..., the label of the vertex vn= the label of

the vertex vn+2.

• In
−→
W , the arcs (vn+2, v2n+3); (v2n+3, v3n+4); (v3n+4, v4n+5);...;(vn2 , v1); (vn+3, v2n+4);



Harmonious colorings of regular digraphs 54

(v2n+4, v3n+5);...; (vn2+1, v2); (vn+4, v2n+5); (v2n+5, v3n+6);...; (vn2+2, v3);...; (v2n, v3n+1);

(v3n+1, v4n+2); (v4n+2, v5n+3);...; (vn2+(n−2), vn−1) do not exist.

• Also in
−→
W , the arcs (v1, vn+2); (v2, vn+3); (v3, vn+4); ...; (vn−1, v2n) do not exist.

(See Figure 3.3)

V
2n+4

V
n(n+1)

V
n(n+1)-1 V

4n+3
V
3n+2 V

2n+1

V
n+5

V
n+4

V
n+3

V
n+2V

2n+3
V
3n+4

V
n(n-2)+(n-1)V

n(n-1)+n

V
n+1

V
2n+2V

3n+3
V
n(n-2)+(n-2)

V
n(n-1)+(n-1)Vn

V4

V3

V2

V1 

Figure 3.3: Oriented Torus(n, n).

There exists at least one such closed trail in
←→
K k+1 satisfying the above conditions.

Further, −→χh(O(T )) ̸= k as the number of ordered pairs obtained from these k colors

are not sufficient to label any n × n grid O(T ) with distinct ordered pairs. Thus

−→χh(O(T )) = k + 1.

�
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3.4 Proper harmonious coloring number of Circu-

lant digraph

The circulant is a natural generalization of the double loop net work and was first

considered by Wong and Coppersmith (1974). Circulant graphs have been used

for decades in the design of computer and telecommunication networks due to their

optimal fault-tolerance and routing capabilities (Boesch and Wang 1985). It is also

used in VLSI design and distributed computation (Bermond et al. 1995; Beivide et al.

1991; Wilkov 1972). Theoretical properties of circulant graphs have been studied ex-

tensively and surveyed by Bermond et al. (1995). Every circulant graph is a vertex

transitive graph and a Cayley graph (Xu 2001). Most of the earlier research concen-

trated on using the circulant graphs to build interconnection networks for distributed

and parallel systems (Bermond et al. 1995; Boesch and Wang 1985).

The following definition of a circulant digraph was given by Elspas and Turner

(1970).

Definition 3.4.1. A circulant digraph, denoted by
−→
Gn(S), where S ⊆ {1, 2, · · · , n−

1}, n ≥ 2, is defined as a digraph consisting of the vertex set V = {0, 1, · · · , n− 1}

and the arc set E = {(i, j) : there is s ∈ S such that j − i ≡ s(mod n)}.

The directed cycle {0, 1, 2, · · · , n− 1} is called the outer cycle. All other cycles

are called inner cycles.

The digraph shown in Figure 3.4 is
−→
G8(1, 3). It is clear that

−→
Gn(1) is the unicycle

−→
Cn and

−→
Gn(1, 2, · · · , n− 1) is a complete digraph

−→
Kk.
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Figure 3.4: Circulant digraph
−→
G8(1, 3).

Theorem 3.4.2. Let
−→
Gn(1, 2) be a circulant digraph with n vertices. Then k ≤

−→χh(
−→
Gn(1, 2)) ≤ k + 1 for k = ⌈1+

√
1+8n
2
⌉.

Proof. Clearly
−→
Gn(1, 2) is 2-regular digraph. Then by Theorem 3.2.1, −→χh(

−→
Gn(1, 2)) ≥

k = ⌈1+
√
1+8n
2
⌉.

Let
←→
K k+1 be a complete symmetric digraph with k(k + 1) arcs. Label the vertices

of
←→
K k+1 as 1, 2, ..., k + 1. To find the proper harmonious coloring of

−→
Gn(1, 2), it is

sufficient to find a closed trail, say,
−→
W of length 2n traversing through the arcs of

←→
K k+1 at most once.

(For example, consider
←→
K 6, complete symmetric digraph with 6 vertices. Let the

closed trail be 1− 2− 3− 1− 4− 5− 3− 6− 5− 1− 3− 4− 3− 5− 2− 1− 5− 6− 1.

Now, this closed trail can be used to find the proper harmonious coloring of a circu-

lant digraph
−→
G9(1, 2). (See Figure 3.5))

Then there exists two cases:

Case (i) Let n be odd. Then in
−→
Gn(1, 2), there exists only one inner cycle. Let

v1, v2, v3, ..., vn, v1 be any closed trail
−→
W of length n in

←→
K k+1 traversing through the
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Figure 3.5: (a) Closed trail
−→
W in

←→
K 6; (b) Circulant digraph

−→
G9(1, 2).

arcs of
←→
K k+1 at most once with the following conditions:

• If (vi, vj) and (vj, vk) are any two adjacent arcs in
−→
W , then the arc (vi, vk) does

not exist in
−→
W for any i, j, k, 1 ≤ i ≤ n, 1 ≤ j ≤ n, 1 ≤ k ≤ n. Also there

shouldn’t be any two arcs having arcs labels (vi, vk) in
−→
W .

• The arc (vn, v2) does not exist in the closed trail
−→
W .(See Figure 3.6)

There exists at least one such closed trail in
←→
K k+1 satisfying the above conditions.

Case (ii) Let n be even. Then in
−→
Gn(1, 2), there exist two inner cycles. Let

v = v1, v2, v3, ..., vn−1, vn = v, vn+1, vn+2, ..., v 3n
2
−1, v 3n

2
, v 3n

2
+1, ..., v2n−1, v2n, v2n+1 = v

be any closed trail
−→
W of length 2n in

←→
K k+1 traversing through the arcs of

←→
K k+1 at

most once with the following condition:

• In
−→
W , the label of the vertex v1= the label of the vertex vn= the label of the

vertex v2n+1, the label of the vertex v3= the label of the vertex vn+1, the label

of the vertex v5= the label of the vertex vn+2, ..., the label of the vertex vn−1=

the label of the vertex v 3n
2
−1,the label of the vertex v2= the label of the vertex
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Figure 3.6: Circulant digraph
−→
Gn(1, 2).

v 3n
2
+1, the label of the vertex v4= the label of the vertex v 3n

2
+2, the label of the

vertex v6= the label of the vertex v 3n
2
+3, ..., the label of the vertex v 3n

2
= the

label of the vertex v2n.(See Figure 3.7)

There exists at least one such closed trail in
←→
K k+1 satisfying the above condition.

�
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Figure 3.7: Circulant digraph
−→
Gn(1, 2).



Chapter 4

Complete Colorings of Digraphs

The proper vertex coloring of a graph G in which we are most interested are those

use the smallest number of colors. In graph theory, complete coloring is the opposite

of harmonious coloring in the sense that it is a vertex coloring in which every pair of

colors appears on at least one pair of adjacent vertices. The achromatic number of a

graph G is the maximum number of colors possible in any complete coloring of G.

In this chapter we focus on a type of vertex coloring called complete colorings of

digraphs. Also, we obtain an upper bound for the achromatic number of digraphs

for which complete coloring is possible and investigate the same for different types of

digraphs.

4.1 Introduction

The following is an extension of complete colorings to directed graphs.

Definition 4.1.1. Let D be a directed graph with n vertices and m arcs. A function

g : V (D) → {1, 2, ..., k}, where k ≤ n is called a complete coloring of D if and

only if for each ordered pair (c, c′) of colors, there is an arc (u, v) of D such that

(g(u), g(v)) = (c, c′). If the pair (i, i) is not assigned, then g is called a proper complete

60
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coloring of D. The maximum k for which D admits a proper complete coloring is

called the achromatic number of D and is denoted by
−→
ψ (D).

In Figure 4.1, complete coloring of oriented Petersen graph is displayed.

3

4

4

2

3

4

3 21

1

Figure 4.1: A proper complete coloring of oriented Petersen graph.

Example:

(a) (b)

Figure 4.2: (a) Oriented path; (b) Unicyclic wheel
−→
W4.

From Figure 4.2, one can see that not every digraph has a proper complete coloring

and hence it is interesting to investigate the complete coloring of digraphs.

In the next section, we give an upper bound for the achromatic number of digraphs

for which complete coloring is possible.
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4.2 Upper bound for the achromatic number of

digraphs

The following theorem gives an upper bound for
−→
ψ (D).

Theorem 4.2.1. If a digraph D has a proper complete coloring, then
−→
ψ (D) ≤

⌊1+
√
4m+1
2
⌋, where m is the number of arcs of D.

Proof. Let D be a digraph having m arcs with proper complete coloring using k

colors. We know that the possible number of ordered pairs is k(k − 1).

∴ m ≥ k(k − 1).

⇒ k2 − k −m ≤ 0.

⇒ k ≤ 1+
√
4m+1
2

.

∴ k ≤ ⌊1+
√
4m+1
2
⌋.

�
The following corollary gives an upper bound for the achromatic number of regular

digraphs.

Corollary 4.2.2. Let D be an r- regular digraph of order n. Then
−→
ψ (D) ≤ ⌊1+

√
1+4rn
2

⌋.

Proof. Let D be proper completely colored with k colors. Since D is r - regular,

it has m = rn arcs. Then from Theorem 4.2.1, it follows that
−→
ψ (D) ≤ ⌊1+

√
1+4rn
2

⌋.

�
In general, the proper complete coloring problem has been viewed as an Eule-

rian path decomposition of digraphs. Whenever such a decomposition possible, it is

possible to find the proper complete coloring of digraphs.

Let D(G) be a symmetric digraph of any undirected graph G. Then to find a

proper complete coloring of any digraph D with n vertices, it is sufficient to find a
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closed walk traversing through all the arcs at least once of length n in D(G) and the

number of vertices of D(G) gives the achromatic number of D.

Example:

Let D(G) =
←→
K 5, a complete symmetric digraph with 5 vertices.

5

4 3

2

1 

Figure 4.3: Complete symmetric digraph
←→
K5.

Let the closed walk be 1 − 2 − 3 − 4 − 5 − 1 − 3 − 5 − 2 − 4 − 1 − 5 − 4 − 3 −

2− 1− 4− 2− 5− 3− 1. This closed walk can be used to find the proper complete

coloring of the unipath
−→
P 21 with 21 vertices and unicycle

−→
C 20 with 20 vertices. (See

Figure 4.4)

Thus, to find a proper complete coloring of any digraph D with n vertices, it is

sufficient to find a closed walk traversing through all the arcs at least once of length

n in D(G) and the number of vertices of D(G) gives the achromatic number of D.

In the next section, we determine the achromatic number of some familiar classes

of digraphs.
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5432
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Figure 4.4: A proper complete coloring of (a)
−→
P21; (b)

−→
C20.

4.3 Achromatic number of some classes of digraphs

Definition 4.3.1. Let D1 and D2 be any digraphs. A homomorphism (Hell and Nesetril

2004) of D1 to D2, written as f : D1 → D2 is a mapping f : V (D1) → V (D2) such

that (f(u), f(v)) ∈ E(D2) whenever (u, v) ∈ E(D1).

We first consider the achromatic number of a unipath
−→
P n on n vertices.

Theorem 4.3.2. Let
−→
Pn be a unipath with n vertices, where n ≥ 3, then

−→
ψ (
−→
Pn) =

⌊1+
√

4(n−1)+1

2
⌋.

Proof. Since unipath
−→
P n contains (n − 1) arcs, by Theorem 4.2.1,

−→
ψ (
−→
P n) ≤

⌊1+
√

4(n−1)+1

2
⌋. Let k = ⌊1+

√
4(n−1)+1

2
⌋. Then, k(k − 1) + 1 ≤ n < k(k + 1) + 1.

There are two inequalities to prove. One follows directly from Theorem 4.2.1, the
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other from the fact that a complete symmetric digraph
←→
K k on k vertices is (k − 1)-

regular and so has an Eulerian cycle. Thus, if n − 1 ≥ k(k − 1), the path can be

mapped homomorphically onto
←→
K k in such a way that its arcs are mapped onto

the Eulerian cycle. Indeed, if
−→
P n = v0, v1, · · · , vn−1 and if the Eulerian cycle is

u0, u1, · · · , uk(k−1)−1, then the mapping ϕ : V (
−→
P n) → V (

←→
K k) given by ϕ(vi) =

ui(mod k(k−1)) gives the proper complete coloring of the unipath
−→
P n.

�
Figure 4.5 is an illustration of the above result.

1231321

Figure 4.5: A proper complete coloring of
−→
P7.

Lemma 4.3.3. If G is a connected (undirected) non-bipartite Eulerian graph, then

the symmetric digraph D(G) obtained from G has an alternating closed Eulerian trail.

We have already proved the above lemma in Chapter 2.

Remark 4.3.4. The lemma still follows if G is a connected (undirected) loopless

multigraph.

Next, we consider the achromatic number of an alternating path
−→
APn on n ver-

tices.

Theorem 4.3.5. Let
−−→
APn be an alternating path with n vertices and n ≥ 7. Then

−→
ψ (
−−→
APn)=


k − 1 when k is even and k2 − k + 1 ≤ n ≤ k2 − 1

k otherwise,

where k = ⌊1+
√

1+4(n−1)

2
⌋.
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Proof. Since
−−→
APn is an alternating path with n vertices and n−1 arcs, by Theorem

4.2.1,
−→
ψ (
−−→
APn) ≤ ⌊

1+
√

1+4(n−1)

2
⌋. Let k = ⌊1+

√
1+4(n−1)

2
⌋. Then k(k − 1) + 1 ≤ n ≤

k(k + 1).

Let G be a connected (undirected) non-bipartite graph with all degrees even. Then to

find the proper complete coloring of
−−→
APn, it is sufficient to find an alternating Eulerian

trail in D(G) of length n and the number of vertices of D(G) gives the achromatic

number of
−−→
APn. Consider a complete undirected graph Kk with k vertices.

Case (i) Let k be odd and let G = Kk. Then G contains m = k(k−1)
2

edges. Since

G is non-bipartite and all the vertices are of even degree, G has an undirected closed

Eulerian trail T . Then by Lemma 4.3.3, we obtain the required alternating closed

Eulerian trail in D(G).

Case (ii) Let k be even and let G be a graph obtained by adding a matching of size

k/2 to Kk. Then G will have k vertices and m = k2

2
edges. Also, all the vertices

of G are of even degree. Hence G has an undirected closed Eulerian trail T . As m

will be even for any value of k, by Lemma 4.3.3, we can find an alternating closed

Eulerian trail
−→
AT in D(G) such that the last arc of

−→
AT is the arc of the matching and

the length of this alternating closed Eulerian trail
−→
AT is 2(

(
k
2

)
+ k/2) = k2. Since we

don’t require alternating closed Eulerian trail, we can remove the last arc of
−→
AT (since

it is the arc of the matching and as it is repeated) so that we obtain the required

alternating Eulerian trail of length k2 − 1.

As k colors are used to color the vertices of
−−→
APn of length n − 1, there are k(k − 1)

ordered pairs of colors. In
−−→
APn, at each vertex there will be either two incoming arcs

or two outgoing arcs except for the first and the last vertex. Hence there should be

even number of ordered pairs having one particular color. There are k − 1 ordered

pairs associated with each color. When k is even, k−1 will be odd and hence in order

to use all the ordered pairs of one particular color, we have to repeat some ordered

pairs. Hence for k colors, we must repeat k − 1 ordered pairs (since first and last

vertex doesn’t have two incoming or two outgoing arcs). Thus, when k is even, for
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an alternating path with less than k2 − 1 vertices, we require k − 1 colors. Hence
−→
ψ (
−−→
APn) = k − 1 when k is even and k2 − k + 1 ≤ n ≤ k2 − 1.

�
Figures 4.6, 4.7 and 4.8 display an example of a proper complete coloring of

−→
AP 21,

−→
AP 16 and

−→
AP 13 respectively.

4 13524514352451321321

Figure 4.6: A proper complete coloring of
−→
AP 21.

3413412423124231

Figure 4.7: A proper complete coloring of
−→
AP 16.

 

1321321321321

Figure 4.8: A proper complete coloring of
−→
AP 13.

Theorem 4.3.6. Let
−→
C n be a unicycle with n vertices, where n ̸= 3, 5 and 7. Then,

for k = ⌊1+
√
4n+1
2
⌋, k ≥ 3,

−→
ψ (
−→
C n)=


2 if n = 4

k for n = k(k − 1), k(k − 1) + 2, k(k − 1) + 3, ..., k(k + 1)− 1

k − 1 for n = k(k − 1) + 1, n ̸= 7.

Proof. When n = 3, 5, 7, there exists at least one arc in
−→
C n for which the ordered

pair (i, i) appears. Thus it is not possible to color the vertices with proper complete

coloring in these cases.
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One can easily verify that
−→
ψ (
−→
C n) = 2 if n = 4.

Since a unicycle
−→
C n contains n arcs, by Theorem 4.2.1,

−→
ψ (
−→
Cn) = k ≤ ⌊1+

√
4n+1
2
⌋. Let

k = ⌊1+
√
4n+1
2
⌋. Then k(k−1) ≤ n ≤ k(k+1)−1. To prove the result, it is enough to

show that there exists a closed walk of length at least n traversing through all the arcs

at least once in
←→
K k, for k(k − 1) ≤ n ≤ k(k + 1)− 1. In

←→
K k, id(v) = od(v) = k − 1

for all v. Hence
←→
K k is Eulerian. Hence we can find a closed walk of length k(k − 1)

and the number of vertices of
←→
K k gives the achromatic number. Thus

−→
ψ (
−→
C n) = k

for n = k(k − 1). Then starting from the end vertex of the closed walk obtained in
←→
K k as above, traverse through 2, 3, 4, ..., 2k− 1 arcs which makes a closed walk with

the starting point and is of length k(k − 1) + 2, k(k − 1) + 3, ..., k(k + 1)− 1. Hence
−→
ψ (
−→
C n) = k for n = k(k − 1) + 2, k(k − 1) + 3, · · · , k(k + 1)− 1.

When n = k(k − 1) + 1, we cannot find a closed walk of length n in
←→
K k. For,

if it is possible to find a closed walk of length n, then for k vertices, the indegree

sequence of arcs is equal to the outdegree sequence of the arcs which is equal to

(k − 1, k − 1, k − 1, ..., k − 1, k). But there exists no such graph. Hence when n =

k(k−1)+1, we require only k−1 colors. That is,
−→
ψ (
−→
C n) = k−1 for n = k(k−1)+1.

�
Figures 4.9 and 4.10 are the illustrative examples of the above result.

31432

1 2

42143

Figure 4.9: A proper complete coloring of
−→
C12.
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1

31213

1

2

Figure 4.10: A proper complete coloring of
−→
C13.

Theorem 4.3.7. Let
−−→
ACn be an alternating cycle with n vertices, where n is even

and n ≥ 6. Then

−→
ψ (
−−→
ACn)=


k − 1 when k is even and k(k − 1) ≤ n ≤ k2 − 2

k otherwise,

where k = ⌊1+
√
1+4n
2
⌋.

Proof. Since
−−→
ACn is an alternating cycle with n vertices and n arcs, by Theorem

4.2.1,
−→
ψ (
−−→
ACn) ≤ ⌊1+

√
1+4n
2
⌋. Let k = ⌊1+

√
1+4n
2
⌋. Then k(k − 1) ≤ n ≤ k(k + 1)− 2.

Let G be a connected (undirected) non-bipartite Eulerian graph. Then to find the

proper complete coloring of
−−→
ACn, it is sufficient to find an alternating closed Eulerian

trail in D(G) of length n and the number of vertices of D(G) gives the achromatic

number of
−−→
APn. Consider a complete undirected graph Kk with k vertices.

Case (i) Let k be odd and G = Kk. Then G contains m = k(k−1)
2

edges. Since G

is non-bipartite and all the vertices are of even degree, G has an undirected closed

Eulerian trail T . Then by Lemma 4.3.3, we obtain the required alternating closed

Eulerian trail in D(G).

Case (ii) Let k be even and let G be a graph obtained by adding a matching of size

k/2 to Kk. Then G will have k vertices and m = k2

2
edges. Also, all the vertices

of G are of even degree. Hence G has an undirected closed Eulerian trail T . As m
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will be even for any value of k, by Lemma 4.3.3, we can find an alternating closed

Eulerian trail in D(G) and the length of this alternating closed Eulerian trail is

2(
(
k
2

)
+ k/2) = k2.

As k colors are used to color the vertices of
−−→
ACn of length n, there are k(k−1) ordered

pairs of colors. In
−−→
ACn, at each vertex there will be either two incoming arcs or two

outgoing arcs. Hence there should be even number of ordered pairs of one particular

color. There are k−1 ordered pairs associated with each color. When k is even, k−1

will be odd and hence in order to use all the ordered pairs of one particular color,

we have to repeat some ordered pairs. Hence for k colors, we must repeat k ordered

pairs. Thus, when k is even, for an alternating cycle with less than k2 vertices, we

require k−1 colors. Hence
−→
ψ (
−−→
ACn) = k−1 when k is even and k(k−1) ≤ n ≤ k2−2.

�
Figures 4.11, 4.12 and 4.13 are illustrative examples of the above result.

1

1

33524

1 1

55432

524

432

Figure 4.11: A proper complete coloring of
−→
AC20.

4

1

23143

1 4

22423

1

3

Figure 4.12: A proper complete coloring of
−→
AC16.
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3123

Figure 4.13: A proper complete coloring of
−→
AC14.

Theorem 4.3.8. Let
−→
Sn be a directed star with n vertices. Then

−→
ψ (
−→
Sn) = 2 except

when id(v) = 0 or od(v) = 0, where v is the central vertex.

Proof. Let
−→
S n be a directed star, where n is the number of vertices. The maximum

number of colors in a complete coloring of a directed star is 2 since if the central vertex

v of a directed star is colored i, at best the ordered pairs (i, j) and (j, i) can appear

for some (many) j, but no other pairs. The maximum is clearly reached if and only

if neither the indegree nor the outdegre is 0.

�
Figure 4.14 is an illustration of the above result.

1

2

2

2

2

1

2

2

2

2

1

2

2

2

2

Figure 4.14: Proper complete coloring of
−→
S5.
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Theorem 4.3.9. Let
−→
Wn be a unicyclic wheel with odd number of vertices n and

id(v) = od(v) for the central vertex v. Then
−→
ψ (
−→
W n) = k for k2 − 3k + 3 ≤ n ≤

k2 − k − 1, where k ≥ 3.

Proof. Let
−→
Wn be a unicyclic wheel where n ≥ 5 and n is odd (otherwise id(v) ̸=

od(v), where v is the central vertex). The total number of arcs of the wheel is 2(n−1).

Case (i) Let k = 3. Then n = 5 and we can color the vertices of
−→
W5 as given below:

1

3 2

32

Figure 4.15: A proper complete coloring of
−→
W5.

Case (ii) Let k > 3. To find the proper complete coloring of the wheel
−→
Wn, first we

find the proper complete coloring of the rim. Consider a complete symmetric digraph
←→
K k−1. Then the proper complete coloring of the vertices of the rim of the wheel

−→
Wn

is same as finding a closed walk (cycle) of length n − 1 traversing through all the

arcs of
←→
K k−1 at least once. Since in

←→
K k−1, id(v) = od(v) = k − 2 for any vertex

v,
←→
K k−1 is Eulerian. Hence we can find a closed walk of length (n − 1) traversing

through all the vertices of
←→
K k−1 when n = k2 − 3k + 3. Then starting from the end

vertex of the closed walk obtained in
←→
K k−1 as above, traverse through 2, 4, 6, ..., 2k−4

arcs which makes a closed walk with the starting point and is of length n − 1 when

k2−3k+3 ≤ n ≤ k2−k−1 . Hence we have a complete coloring of the rim of the wheel
−→
Wn. Add one more vertex to

←→
K k−1. Then this vertex replaces the central vertex of the
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wheel
−→
Wn. Let v1, v2, ..., vk−1 be the vertices of

←→
K k−1 and vk be the additional vertex.

Then by joining the vertices v1, v2, ..., vk−1 of
←→
K k−1 with vk in both the directions, we

get n−1 ordered pairs (v1, vk), (v2, vk), ..., (vk−1, vk), (vk, v1), (vk, v2), ..., (vk, vk−1)

when n = k2 − 3k + 3. One can see that the inwardly and outwardly directed spokes

are distributed around the wheel. For k2 − 3k + 3 < n ≤ k2 − k − 1, repeat joining

the vertices in both the directions to get the length as (n− 1). Hence by combining

both, we get the complete coloring of the unicyclic wheel
−→
Wn.

One can see that if we use an additional color, all the ordered pairs of colors cannot

be assigned to the arcs of
−→
Wn to obtain a proper complete coloring. Hence it requires

only k colors.

�
Figure 4.16 is an illustration of the above result.

1

3

2

4

2

4

3

Figure 4.16: A proper complete coloring of
−→
W7.
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Theorem 4.3.10. For a complete binary out-tree
−→
T of level l, where l is even and

l = 4, 6, ..., then
−→
ψ (
−→
T ) = 2

l
2 − 1. (Note that the level of the tree

−→
T starts from

1,2,...)

Proof. When l = 2, we cannot color the vertices of a binary out-tree
−→
T to obtain

a complete coloring of
−→
T . Also, we can observe that from level 2x to level 2x + 2,

x = 2, 3, ..., we require at most 2x additional colors to obtain a complete coloring at

level 2x+ 2. As l is even, let l = 2x, where x = 2, 3, .... We shall prove the result by

mathematical induction on x. When x = 2 (l = 4), as there are 14 arcs, we require

only 3 colors for complete coloring. i.e.
−→
ψ (
−→
T ) = 2

4
2 − 1 = 22 − 1 = 3. Assume that

the result is true for x = m. i.e.
−→
ψ (
−→
T ) = 2

2m
2 −1 = 2m−1 for level 2m. To prove that

−→
ψ (
−→
T ) = 2m+1− 1 for level 2(m+ 1). We know that from level 2m to level 2(m+ 1),

it requires 2m additional colors. Also, for level 2m, by induction hypothesis, we use

2m− 1 colors. Hence for level 2(m+1),
−→
ψ (
−→
T ) = 2m− 1+2m = 2.2m− 1 = 2m+1− 1.

Hence by the principle of mathematical induction, the result holds.

If we use one more additional color, all the ordered pairs of colors cannot be

assigned to the arcs of
−→
T to obtain a proper complete coloring. Hence it requires

only 2
l
2 − 1 colors.

�
Figure 4.17 is an illustration of the above result.
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Figure 4.17: A proper complete coloring of
−→
T of level 4.

Circulant Digraphs

Next, we find the achromatic number of circulant digraphs
−→
Gn(1, 2).

Theorem 4.3.11. Let
−→
Gn(1, 2) be a circulant digraph with n vertices, n ≥ 6 and

n ̸= 7. Then for k = ⌊1+
√
1+8n
2
⌋, k ≥ 4

−→
ψ (
−→
Gn(1, 2))=


k − 1 when k is odd and n = k2−k+2

2

k − 1 when k is even and k(k−1)
2
≤ n ≤ k2−2

2
, n ̸= 7

k otherwise.

Proof. When n = 7, it is not possible to find the achromatic number of
−→
G7(1, 2)

as the arc (i, i) appears at least once.

Clearly
−→
Gn(1, 2) is 2-regular digraph. Then by Corollary 4.2.2,

−→
ψ (
−→
Gn(1, 2)) ≤ k =

⌊1+
√
1+8n
2
⌋.

Let
←→
K k be a complete symmetric digraph with k(k − 1) arcs. Label the vertices of

←→
K k as 1, 2, ..., k. To find the proper complete coloring of

−→
Gn(1, 2), it is sufficient to
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find a closed walk,say,
−→
W of length 2n traversing through all the arcs of

←→
K k at least

once.

(For example, consider
←→
K 4, complete symmetric digraph with 4 vertices. Let the

closed walk be 1− 2− 3− 4− 1− 3− 4− 2− 3− 1− 3− 1− 4− 3− 2− 4− 3− 2− 1.

Now, this closed walk can be used to find the proper complete coloring of a circulant

digraph
−→
G9(1, 2). (See Figure 4.18))

 

3

2

4

3 1

4

3

2

1

4 3

21 

(a) (b)

Figure 4.18: (a) Closed walk
−→
W in

←→
K 4; (b) Circulant digraph

−→
G9(1, 2).

Let v1, v2, v3, ..., vn−1, vn be the vertices of
−→
Gn(1, 2).

Case (i) Let n be odd. Then in
−→
Gn(1, 2), let v1, v2, v3, ..., vn−1, vn, v1 be the outer

cycle and there exists only one inner cycle, say, v = vn+1, vn+2, ..., v2n, v2n+1 = v.

Then one can see that v = v1, v2, v3, ..., vn−1, vn, v = vn+1, vn+2, ..., v2n, v2n+1 = v is a

closed walk
−→
W of length 2n in

←→
K k traversing through all the arcs of

←→
K k at least once

with the following condition:

In
−→
W , the label of the vertex v1= the label of the vertex vn+1= the label of the vertex

v2n+1, the label of the vertex v3= the label of the vertex vn+2, the label of the vertex

v5= the label of the vertex vn+3, ..., the label of the vertex vn= the label of the vertex

v 3n+1
2

, the label of the vertex v2= the label of the vertex v 3n+3
2

, the label of the vertex
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v4= the label of the vertex v 3n+5
2

, the label of the vertex v6= the label of the vertex

v 3n+7
2

, ..., the label of the vertex vn−1= the label of the vertex v2n (See Figure 4.19).

That is, there exists at least one such closed walk
−→
W in

←→
K k satisfying the above

condition.

 

( V
n+3

 )

( V
n+2

 )

 

 

( V
n+1

 )

V
n-1

V
6

V
5

V
4

V
3

V
2

V
1

 
 

Figure 4.19: Circulant digraph
−→
Gn(1, 2).

Case (ii) Let n be even. Then in
−→
Gn(1, 2), there exist two inner cycles. Let

v = v1, v2, v3, ..., vn−1, vn = v, vn+1, vn+2, ..., v 3n
2
−1, v 3n

2
, v 3n

2
+1, ..., v2n−1, v2n, v2n+1 = v

be any closed walk
−→
W of length 2n in

←→
K k traversing through all the arcs of

←→
K k at

least once with the following condition:

In
−→
W , the label of the vertex v1= the label of the vertex vn= the label of the vertex

v2n+1, the label of the vertex v3= the label of the vertex vn+1, the label of the vertex

v5= the label of the vertex vn+2, ..., the label of the vertex vn−1= the label of the

vertex v 3n
2
−1, the label of the vertex v2= the label of the vertex v 3n

2
+1, the label of

the vertex v4= the label of the vertex v 3n
2
+2, the label of the vertex v6= the label

of the vertex v 3n
2
+3, ..., the label of the vertex v 3n

2
= the label of the vertex v2n (See

Figure 4.20). That is, there exists at least one such closed walk
−→
W in

←→
K k satisfying

the above condition.
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Figure 4.20: Circulant digraph
−→
Gn(1, 2).

When k is odd, for n = k2−k+2
2

, we cannot color the vertices of
−→
Gn(1, 2) with k colors

as all the ordered pairs of colors cannot be assigned to the vertices of
−→
Gn(1, 2) to

obtain a proper complete coloring. (Since either all the ordered pairs of colors cannot

be assigned to colors the vertices of
−→
Gn(1, 2) or the ordered pair (i, i) of one particular

color appears on at least one arc of
−→
Gn(1, 2).)

As k colors are used to color the vertices of
−→
Gn(1, 2), there are k(k− 1) ordered pairs

of colors. In
−→
Gn(1, 2), at each vertex there will be two incoming arcs and two outgoing

arcs. Hence there should be even number of ordered pairs having one particular color.

There are k − 1 ordered pairs associated with each color. When k is even, k − 1 will

be odd and hence in order to use all the ordered pairs of one particular color, we have

to repeat some ordered pairs. Hence for k colors, we must repeat k ordered pairs.

Thus, when k is even, for a circulant digraph with less than k2

2
vertices, we require

k − 1 colors. Hence the proof.

�
Figures 4.21 and 4.22 are illustrative examples of the above result.
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Figure 4.21: A proper complete coloring of
−→
G 11(1, 2).
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Figure 4.22: A proper complete coloring of
−→
G 6(1, 2).



Chapter 5

Set Colorings of Digraphs

The notion of set coloring of a graph was introduced in 2009 by Hegde (2009). In

its original version, both vertices and edges of an undirected graph are colored with

finite sets of positive integers. The color of an edge (u, v) is given by the symmetric

difference of the colors of u and v. A graph is said to be set colorable if there exists

an assignment of colors on the vertices such that both conditions are fulfilled:

(i) all the colors on the vertices are distinct

(ii) all the colors on the edges are distinct.

In this chapter we focus on a type of vertex coloring called set colorings of digraphs.

We give some necessary conditions for a digraph to admit a strong set coloring (proper

set coloring). We characterize strongly (properly) set colorable digraphs such as di-

rected stars, directed bistars etc. Also, we find the construction of strongly (properly)

set colorable directed caterpillars.

5.1 Introduction

We have extended the idea of set coloring to directed graphs as follows:

Let X be a nonempty set of colors, 2X denote the set of all possible combinations

of colors (or power set) of X and Y (X) = 2X \ ∅.

80
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Let D = (V,E) be a digraph with n vertices and m arcs and let X be a nonempty

set of colors. We define a function f on the vertex set V of D as an assignment of

subsets of X to the vertices of D and given such a function f on the vertex set V , we

define f ∗ on the set of arcs E as an assignment of the colors f ∗(e) = f(v)− f(u) to

the arc e = (u, v) of D.

Definition 5.1.1. Let f(D) = {f(u) : u ∈ V } and f ∗(D) = {f ∗(e) : e ∈ E}. We call

f a set coloring of D if both f(D) and f ∗(D) are injective functions. A digraph is

called set colorable if it admits a set coloring.

Definition 5.1.2. A set coloring f of D is called a strong set coloring if f(D) ∩

f ∗(D) = ∅ and f(D) ∪ f ∗(D) = Y (X). If D admits such a coloring then D is called

a strongly set colorable digraph.

Definition 5.1.3. A set coloring f is called a proper set coloring if f ∗(D) =

Y (X). If a digraph D admits such a set coloring, then it is called a proper set

colorable digraph.

The set coloring number σ(D) of a digraph D is the least cardinality of a set X

with respect to which D has a set coloring. Further if f : V → 2X is a set coloring of

D with |X| = σ(D), we call f an optimal set coloring of D.

Figure 5.1 gives examples of (a) strongly, (b) properly, (c) non-strongly and non-

properly set colorable digraphs.

Theorem 5.1.4. For any digraph D, ⌈log2(m+1)⌉ ≤ σ(D) ≤ n− 1, where m and n

are the number of arcs and vertices of D respectively and ⌈x⌉ denotes the least integer

not less than the real number x and the bounds are best possible.
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{1, 2} {2, 3} 

{1, 3} 

{1, 3} 

{2, 3} {1, 2} 

{3}

{3}

{2}

{2}

{1}

{1}

{1, 2, 3} 

{1, 2, 3} 

{1, 2, 4} 

{2, 4} 

{2, 3} 

{3, 4} 

{1, 3} 

{1, 4} 

{1, 2} 

{3}

{1}

{4}

{2}

{2, 3, 4} 

{1, 2, 3} 

{1, 2, 3, 4} 

{1, 3, 4}

(a)
(b)

(c)

Figure 5.1: Stongly, Properly, Non-strongly and non-properly set colored digraphs

In the next section, we give some necessary conditions for the strong and proper

set colorings of digraphs

5.2 Necessary conditions for strong (proper) set

colorings of digraphs

Since all the nonempty subsets have to appear in any strong set coloring of a (n,m)-

digraph D, a necessary condition for D to be strongly set colorable is that n+m+1 =

2k, for the positive integer |X| = k. This necessary condition immediately yields that

any oriented cycle is not strongly set colorable. Also, we observe that the above
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condition is not sufficient for saying that a digraph D is strongly set colorable as a

unipath of length 7 satisfies the condition for k = 4, but one can verify that it is not

strongly set colorable.

Similarly, a necessary condition for D to be properly set colorable is that m+1 =

2k, where m is the number of arcs and |X| = k. From the necessary condition it

follows that any oriented cycles of lengths not equal to 2k − 1 are not properly set

colorable.

Let D(V,E) be any digraph and let K1 be the complete graph with one vertex say

v. Then we define the digraph D +K1 as D ∪K1 together with all the arcs joining

from the vertex v to the vertices of V .

The following result gives a natural link between strongly set colorable and prop-

erly set colorable digraphs.

Theorem 5.2.1. A digraph D is strongly set colorable if and only if D +K1 has a

proper set coloring F such that F (v) = ϕ.

Proof. Let f be a strong set coloring of D. Then, define the restricted map F by

F (u)=

{
f(u) if u ∈ V,
ϕ if u = v.

Since f is a strong set coloring of D, the arcs of D + K1 having the form (v, u),

where u ∈ V (D) will receive f(u). So F turns out to be a required proper set

coloring of D +K1.

Conversely, if D1 = D +K1 has a proper set coloring F with F (v) = ϕ, then the

removal of v from D1 obviously results in a strong set coloring of D.

�
The following results give stronger necessary conditions for a strong (proper) set

coloring of digraphs.
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Theorem 5.2.2. Every strongly set colorable digraph D has a sink.

Proof. Let D be a digraph with a strong set coloring f with respect to a set X

having k colors. Since D is strongly set colorable, either the full set X is obtained

on the arc or assigned to any vertex of D. As the empty set cannot be assigned to

any vertex of D, one can observe that the full set X cannot be obtained on any arc

of D. Hence the set X has to be assigned to a vertex, say v of D. Then we have two

cases, namely, od(v) ≥ 1 or od(v) = 0. Suppose od(v) ≥ 1, that is if u be any vertex

of D such that (v, u) is an arc in D, then f ∗((v, u)) = f(u)− f(v) = f(u)−X = ϕ, a

contradiction as D is strongly set colorable. Therefore, od(v) = 0. As the set X has

to be assigned to a vertex only, v has to be a sink. Hence every strongly set colorable

digraph D has a sink.

�

Corollary 5.2.3. Symmetric digraphs, complete symmetric digraphs and conservative

digraphs are not strongly set colorable.

Theorem 5.2.4. Every properly set colorable digraph has a source and a sink.

Proof. Let the digraph D have a proper set coloring f with respect to a set

X of cardinality k. Let {v1, v2, ..., vn} be the vertices of D such that f(vi) = Ai,

1 ≤ i ≤ n and Ai ∈ Y (X) ∪ ϕ. As D is properly set colorable, we have f ∗(D) =

{Aj − Ai : (vi, vj) ∈ E} = Y (X). Let A be the full set of X and B be the empty

set of X. By the definition of f ∗, A can appear on the arc (u, v), where u, v ∈ V (D)

only if f(v) = A and f(u) = B. Suppose assume that id(u) ≥ 1. That is, if u

is any vertex of D such that for any vertex w in D, (w, u) is an arc in D, then

f ∗(e) = f(u)− f(w) = B − f(w) = ϕ which is not possible. Hence id(u) = 0. Hence

B can be assigned to a vertex only if it is a source. Also, assume that od(v) ≥ 1.

That is, if v is any vertex of D such that for any vertex y in D, (v, y) is an arc in D,

then f ∗(e) = f(y) − f(v) = f(y) − A = ϕ which is not possible. Hence od(v) = 0.



Set Colorings of Digraphs 85

Hence A can be assigned to a vertex only if it is a sink. Hence every properly set

colorable digraph has a source and a sink.

�
In the next section, we characterize the strong (proper) coloring of some familiar

classes of digraphs.

5.3 Characterization of strong (proper) coloring of

some classes of digraphs

We start with the following result for a unipath on n vertices.

Theorem 5.3.1. No unipath of length greater than or equal to 2 is properly set

colorable.

Proof. Let
−→
Pn be a unipath with n vertices. For the unipath

−→
Pn to be properly set

colorable, all the non empty subsets of X should appear on the arcs. It is possible

only when the full set is assigned to the sink and the empty set is assigned to the

source. But for a unipath of length greater than or equal to 2, it is not possible as

all the non empty subsets will not appear on the arcs. Hence it is not properly set

colorable.

�
Figure 5.2 is an illustration of a semipath of length 3 which is properly set col-

orable.

{2} {1} {1, 2} 

{1} {2} {1, 2}

Figure 5.2: Proper set coloring of a directed path
−→
P 3.
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Theorem 5.3.2. Let
−→
Sn be a directed star with n vertices in which either id(v) = 0

or od(v) = 0, where v is the central vertex. Then
−→
Sn is strongly set colorable if and

only if n = 2k−1.

Proof. Let
−→
Sn be a directed star with n vertices in which either id(v) = 0 or

od(v) = 0, where v is the central vertex. Let
−→
Sn be a digraph with strong set coloring f

with respect to a setX having k colors. Then it follows that |V (
−→
Sn)|+|E(

−→
Sn)| = 2k−1.

i.e., n+ n− 1 = 2k − 1.

i.e., n = 2k−1.

Conversely, let
−→
Sn be a directed star with n vertices, where n = 2k−1.

Case (i) Let id(v) = 0, where v is the central vertex of
−→
Sn. Let X = {1, 2, ..., k}

and S = {a}, a ∈ X. Assign the set S to the central vertex and the subsets of

X containing the element a to the remaining vertices of
−→
Sn in a one-to-one manner.

Then it can be easily verified that the assignment is a strong set coloring of
−→
Sn.

Case (ii) Let od(v) = 0, where v is the central vertex of
−→
Sn. Let X = {1, 2, ..., k} and

assign the set X to the central vertex. One can observe that, when the set difference

is applied from the set X to (k− 2) - element subsets, we obtain 2 - element subsets,

(k− 3) - element subsets, we obtain 3 - element subsets,..., ( (k−2)
2

) - element subsets,

we obtain ( (k+2)
2

) - element subsets when k is even and ( (k−1)
2

) - element subsets, we

obtain ( (k+1)
2

) - element subsets when k is odd.

Case (a) Let k be odd. Then assign (k − 1) - element subsets, (k − 2) - element

subsets, (k−3) - element subsets,..., ( (k−1)
2

) - element subsets to the remaining 2k−1−1

vertices. Then it is easy to verify that the assignment is a strong set coloring of
−→
Sn

when k is odd.

Case (b) Let k be even. Then assign (k − 1) - element subsets, (k − 2) - element

subsets, (k − 3) - element subsets,..., half of (k
2
) - element subsets to the remaining

2k−1 − 1 vertices of
−→
Sn. Then it is easy to verify that the assignment is a strong set

coloring of
−→
Sn when k is even. �
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Figure 5.3 displays the strong set coloring of a directed star
−→
S8 when (a) id(v) = 0;

(b) od(v) = 0, where v is the central vertex.
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{1, 3, 4} 

{1, 2, 4} 

{1, 2, 3} 

{1, 2, 3, 4} 

{1}

{2, 3} 

{2, 4} 

{3, 4} 
{2}

{3}

{4}

{1, 4} 

{1, 3} 

{1, 2} 

{1}

{1, 3, 4} 

{1, 2, 4} 

{1, 2, 3} 

{2, 3, 4} 

{1, 2, 3, 4} 

(a) (b)

Figure 5.3: Strong set coloring of
−→
S8.

Theorem 5.3.3. Let
−→
Sn be a directed star with the central vertex v such that either

id(v) = 0 or od(v) = 0. Then
−→
Sn is properly set colorable if and only if n = 2k.

Proof. Let
−→
Sn be a directed star with n vertices and (n − 1) arcs. Let v be the

central vertex of
−→
Sn. Let

−→
Sn be be a properly set colorable digraph with respect to a

set X having k colors. Then |E(
−→
Sn)| = 2k − 1. This implies

n− 1 = 2k − 1.

i.e., n = 2k.

Conversely, let
−→
Sn be a directed star with n vertices such that n = 2k. Let v be the

central vertex of
−→
Sn.

Case (i) Let id(v) = 0. Let X = {1, 2, ..., k}. Assign the empty set to the central

vertex v and the remaining subsets of X to the remaining vertices of
−→
Sn. Then one

can observe that the non empty subsets of X will appear on the arcs. Hence
−→
Sn is
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properly set colorable.

Case (ii) Let od(v) = 0. Let X = {1, 2, ..., k} and assign the set X to the central

vertex and the remaining subsets of X to the remaining vertices of
−→
Sn. Then one can

observe that the nonempty subsets of X will appear on the arcs. Hence
−→
Sn is properly

set colorable.

�
Figure 5.4 displays the proper set coloring of a directed star

−→
S8 when (a) id(v) = 0;

(b) od(v) = 0, where v is the central vertex.

{2, 3} 

{1, 3} 

{1, 2} 
{3}

{2}

{1}

{2, 3} 

{1, 3} 

{1, 2} 

{1, 2, 3} 

{3}

{2}

{1}

{1, 2, 3} 

{1}

{2}

{3}
{1, 2} 

{1, 3} 

{2, 3} 

{2, 3} 

{1, 3} 

{1, 2} 

{1, 2, 3} 

{3}

{2}

{1}

{1, 2, 3} 

(a) (b)

Figure 5.4: Proper set coloring of
−→
S8.

Definition 5.3.4. Let
−→
K 1,n be a directed star such that od(v) = 0, where v is the

central vertex. Then
−→
B n,n is a digraph obtained from two copies of

−→
K 1,n by joining

the vertices of maximum degree by an arc, which is called a directed bistar.

Next, we characterize the strong (proper) set coloring of directed bistar.
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Theorem 5.3.5. A directed bistar
−→
B n,n is strongly set colorable if and only if n =

2k−2 − 1.

Proof. A directed bistar
−→
B n,n has 2(n+1) vertices and 2(n+1)−1 arcs. Let

−→
B n,n

be a strongly set colorable digraph with respect to a set X having k colors. Then

|V (
−→
B n,n)|+ |E(

−→
B n,n)| = 2k − 1

=⇒ 2(n+ 1) + 2(n+ 1)− 1 = 2k − 1

=⇒ n = 2k−2 − 1.

Conversely, let
−→
B n,n be a directed bistar such that n = 2k−2−1. Let X = {1, 2, ..., k}.

Also, let X1 = {1, 2, ..., k}, the full set of X and X2 = a subset containing k − 1

elements of X which doesn’t contain the element a, a ∈ X. When we apply the set

difference from the set X to (k − 2) - element subsets, we get 2 - element subsets,

(k − 3) - element subsets, we get 3 - element subsets, ..., (k−2
2
) - element subsets,

we get (k+2
2
) - element subsets when k is even and (k−1

2
) - element subsets, we get

(k+1
2
) - element subsets when k is odd. Assign the set X1 to the sink of

−→
B n,n, that

is a vertex say, v of
−→
B n,n when od(v) = 0. Also, assign the set X2 to the vertex say

u which is adjacent to v and id(u) = n and od(u) = 1. Assign all the subsets of X

which contains the element a, except the singleton set a, to the remaining vertices of
−→
B n,n. Then one can observe that the elements on the arcs are the subsets of set X.

Hence
−→
B n,n is strongly set colorable.

�
Figure 5.5 is an illustration of the above result.

Theorem 5.3.6. A directed bistar
−→
B n,n is properly set colorable if and only if n =

2k−1 − 1.

Proof. A directed bistar
−→
B n,n has 2(n + 1) vertices and 2(n + 1) − 1 arcs. Let

−→
B n,n be properly set colorable digraph with respect to a set X having k colors. Then

|E(
−→
B n,n)| = 2k − 1. This implies
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{1, 5}

{1, 4}

{1, 3}

{1, 2}

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 4, 5} {1, 3, 4, 5}

{1, 4, 5}

{1, 3, 5}

{1, 3, 4}

{1, 2, 5}

{1, 2, 4}

{1, 2, 3}

{2, 3, 4, 5}

{1, 2, 3, 4, 5}

Figure 5.5: Strong set coloring of
−→
B 7,7.

2(n+ 1)− 1 = 2k − 1.

i.e., =⇒ n = 2k−1 − 1.

Conversely, let
−→
B n,n be a directed bistar such that n = 2k−1−1. Let X = {1, 2, ..., k}.

Also, let X1 = {1, 2, ..., k}, the full set of X and X2 = a subset containing k − 1

elements of X which doesn’t contain the element a, a ∈ X. Then assign the set X1

to the sink of
−→
B n,n, that is a vertex say, v of

−→
B n,n where od(v) = 0. Also, assign

the set X2 to the vertex say u which is adjacent to v and id(u) = n and od(u) = 1.

Assign all the subsets of X which contains the element a to the sources of the vertex

u and the other subsets (the subsets of X that doesn’t contain the element a) to the

sources of the vertex v. Then one can observe that the elements on the arcs are the

subsets of set X. Hence
−→
B n,n is properly set colorable.

�
Figure 5.6 is an illustration of the above result.
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{1}

{1, 2}

{1, 3}

{1, 4}

{1, 2, 3}

{1, 2, 4}

{1, 3, 4} {3, 4}

{2, 4}

{2, 3}

{4}

{3}

{2}

{2, 3, 4}

{1, 2, 3, 4}

Figure 5.6: Proper set coloring of
−→
B 7,7.

Theorem 5.3.7. Let
−→
T l
n be a directed complete n-ary tree with the orientation either

from the vertices of level l to the vertices of level l+1 or vice versa and l denotes the

level of the tree , l = 1, 2, .... Then
−→
T l
n is strongly set colorable if and only if n = 2α−1

and l = 2, where α is any positive integer.

Proof. We know that
−→
T l
n has nl−1

n−1
vertices and n(nl−1−1)

n−1
arcs. Suppose that D =

−→
T l
n

is strongly set colorable with respect to a set X of cardinality k. Then we obtain

|V (D)|+ |E(D)| = 2k − 1. This implies that

(
nl − 1

n− 1
) + (

n(nl−1 − 1)

n− 1
) = 2k − 1.

i.e.,
2nl − n− 1

n− 1
= 2k − 1.
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i.e.,
nl − 1

n− 1
= 2k−1. (5.3.1)

i.e.,

nl = 2k−1(n− 1) + 1. (5.3.2)

Since 2k−1(n−1) is always even, the right hand side of (5.3.2) is odd. Hence left hand

side of (5.3.2) also should be odd. But, when n is even, nl is even and hence (5.3.2)

doesn’t hold. Hence n should be even. Therefore, equation(5.3.1) holds only if n is

odd. Thus, no complete n-ary tree D is strongly set colorable when n is even. Also,

from (5.3.1), it follows that n is odd and hence l is even. Thus, from nl−1
n−1

= 2k−1, we

obtain (1 + n+ n2 + ...+ nl−1) = 2k−1 or

(1 + n)(1 + n2 + n4 + ...+ nl−2) = 2k−1 (5.3.3)

which implies that (1 + n) = 2α, α is a positive integer. Thus from equation(5.3.3),

we obtain

(1 + n2 + n4 + ...+ nl−2) = 2k−α−1. (5.3.4)

One can write equation(5.3.4) as (1 + n2)(1 + n4 + n8 + ... + nl−4) = 2k−α−1 which

implies that 1 + n2 = 2β. Substituting the value of n from (1 + n) = 2α, we obtain

1 + (2α − 1)2 = 2β.

i.e., 22α − 2α+1 + 2 = 2β.

i.e., 22α−1 − 2α + 1 = 2β−1.

i.e., 22α−1 − 2β−1 = 2α − 1 which implies that 2α − 1 is even or α = 0 or n = 0, a

contradiction. Thus, 1 + n = 2α or n = 2α − 1. Also, from equation(5.3.4) we obtain

1 + 2(k−α−1) or m = α + 1 and also l = 2.
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Conversely, suppose that n = 2α − 1 and l = 2. Then D reduces to a star K1,2α−1.

The proof follows from Theorem 5.3.2.

�
The following theorem can be proved using the analogous arguments as in Theorem

5.3.7.

Theorem 5.3.8. Let
−→
T l
n be a directed complete n-ary tree as defined in the previous

theorem. Then
−→
T l
n is properly set colorable if and only if n = 2α − 1 and l = 2, where

α is any positive integer.

In the next section, we give an embedding of a unicycle
−→
Cn with n vertices as an

induced subgraph of a strongly (properly) set colorable digraph.

5.4 Embedding of a unicycle as strongly (prop-

erly) set colorable digraph

Generally, the digraphs that cannot be strongly (properly) set colorable, can be em-

bedded as an induced subgraph of a strongly (properly) set colorable digraphs. One

can see that symmetric digraphs and complete symmetric digraphs cannot be embed-

ded as an induced subgraph of strongly (properly) set colorable digraphs.

In this section, we give an embedding of a unicycle as an induced subgraph of a

strongly (properly) set colorable digraph, thereby showing that strongly (properly)

set colorable digraphs cannot be characterized using forbidden subgraphs.

First, we give an embedding of a unicycle as an induced subgraph of a strongly

set colorable digraph.

Let
−→
Cn be a unicycle with n vertices. Let

−→
K 1,2n−1−n−1 be a directed star with

(2n−1 − n) vertices and od(v) = 0, where v is the central vertex. Since a unicycle is
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not strongly set colorable, consider the union of a unicycle
−→
Cn and the directed star

−→
K 1,2n−1−n−1 as D =

−→
Cn ∪

−→
K 1,2n−1−n−1. Then D can be strongly set colorable and

is disconnected and has two components. Let X be the set of n colors. Assign the

(n−1) - element subsets to the vertices of
−→
Cn, then the 1 - element (singleton) subsets

will be assigned on the arcs of
−→
Cn. Also, assign the set X to the central vertex of

−→
K 1,2n−1−n−1 and assign (n− 2) - element subsets, (n− 3) - element subsets,..., (n−2

2
)

- element subsets and half of (n
2
) - element subsets when n is even and ⌊n

2
⌋-element

subsets when n is odd and n ̸= 5 to the vertices of
−→
K 1,2n−1−n−1. Also, when n = 5,

assign (n− 2)-element subsets to the vertices of
−→
K 1,2n−1−n−1. The remaining subsets

of X will appear on the arcs of
−→
K 1,2n−1−n−1. Then one can observe that D is strongly

set colorable.

An illustrative example for the embedding of a unicycle
−→
C5 as an induced subgraph

of a strongly set colorable digraph is given in Figure 5.7.

 

{1, 2, 3, 4, 5}

{3, 4, 5}

{2, 4, 5}

{2, 3, 5}

{2, 3, 4}

{1, 4, 5}

{1, 3, 5}

{1, 3, 4}

{1, 2, 5}

{1, 2, 4}

{1, 2, 3}

{2, 3, 4, 5}

{1, 3, 4, 5} {1, 2, 4, 5}

{1, 2, 3, 5}

{1, 2, 3, 4} 

Figure 5.7: Strong set coloring of embedded unicycle
−→
C 5.

Next, we give an embedding of a unicycle as an induced subgraph of a properly

set colorable digraph.
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Let
−→
Cn be a unicycle with n vertices. Let

−→
K 1,2n−n−1 be a directed star with (2n−n)

vertices and od(v) = 0, where v is the central vertex. Since a unicycle is not properly

set colorable, consider the union of a unicycle
−→
Cn and the directed star

−→
K 1,2n−n−1

as D =
−→
Cn ∪

−→
K 1,2n−n−1. Then D can be properly set colorable and is disconnected

and has two components. Let X be the set of n colors. Assign the (n− 1) - element

subsets to the vertices of
−→
Cn, then the 1 - element (singleton) subsets will be assigned

on the arcs of
−→
Cn. Also, assign the set X to the central vertex of

−→
K 1,2n−n−1 and assign

all the remaining subsets of X (except (n − 1) - element subsets) to the vertices of
−→
K 1,2n−n−1. Then one can observe that D is properly set colorable.

An illustrative example for the embedding of a unicycle
−→
C4 as an induced subgraph

of a properly set colorable digraph is given in Figure 5.8.

  

{1, 2, 3, 4} 

{3, 4} 

{2, 4} 

{2, 3} 

{1, 4} {1, 3} 

{1, 2} 

{4} 

{3} 

{2} 

{1} 

{1, 2, 3} 

{2, 3, 4} {1, 3, 4} 

{1, 2, 4} 

Figure 5.8: Proper set coloring of embedded unicycle
−→
C 4.

In the next section, we give a construction of a bigger properly set colored digraph

from a properly set colored directed tree. Also, we give a construction of strongly

(properly) set colorable directed caterpillars.
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5.5 Construction of strongly (properly) set col-

orable directed caterpillars

Given below is a construction of a bigger properly set colored digraph from a properly

set colored directed tree.

Let
−→
T (V,E) be a properly set colorable directed tree with respect to a set X of

cardinality k. Let K1 be the complete graph with one vertex say v. Then we define

the digraph
−→
T +K1 as

−→
T ∪K1 together with all the arcs joining from the vertices

of V to the vertex v. Let X ′ be the set containing k + 1 elements. Now, assign the

set X ′ to the vertex v. As
−→
T is properly set colorable, all the subsets of X appear

on the vertices and all the nonempty subsets of X appear on the arcs of
−→
T . Now, in

−→
T +K1, one can observe that all the nonempty subsets of X ′ appear on the arcs of
−→
T +K1. Hence

−→
T +K1 is properly set colorable.

Next, we give the construction of strongly set colorable directed caterpillars.

Definition 5.5.1. A caterpillar is a tree which gives a path when all its pendant

vertices are deleted. A directed caterpillar is a oriented tree which gives a unipath

when all its pendant vertices (i.e. when either indegree = 1 or outdegree = 1) are

deleted.

Next, we give the construction of an infinite family of strongly set colorable di-

rected caterpillars are given below.

Let X1 be a nonempty set with |X1| = m1, where m1 ≥ 3 is a positive integer.

Consider the directed star K1,2m1−1−1 = T0(m1) (say) with id(v) = 0, where v is the

central vertex. Let v1, v2, · · · , v2m1−1−1 be the pendant vertices of T0(m1). We define

a mapping f1 : V (T0(m1))→ 2X1 as follows:

f1(v) = x0, where x0 ∈ X1

f1(vi) = Ar, where Ar is a subset ofX1 such that the element x0 ∈ Ar for i < 2m1−1−1.
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f1(v2m1−1−1) = X1.

Clearly, f1 and f ∗
1 are injective functions. Let X2 be a set of cardinality m2, where

m2 > m1. Introduce new vertices, say u1,1, u1,2, · · · , u1,k1 , where k1 = 2m2−1 − 2m1−1

and join each of them to v2m1−1−1 such that od(v2m1−1−1) = 0. Let the resulting

directed caterpillar be denoted by T1(m2) and define the mapping f2 : V (T1(m2))→

2X2 as follows:

f2(v) = x0 ∪m2 = A

f2(vi) = Ar ∪m2 = A′
r for i < 2m1−1 − 1.

f2(v2m1−1−1) = X1 ∪m2 = X2.

f2(u1,i′) = Br, where Br is a subset of X2 other than A′
r containing the element m2

for i′ < k1.

f2(u1,k1) = X2 − x0 = B.

Let f ∗
2 : E(T1(m2)) → 2X2 denote the induced edge function defined by f ∗

2 ((u, v)) =

f2(v)− f2(u), where (u, v) ∈ E(T1(m2)). Then one can easily verify that both f2 and

f ∗
2 are injective functions and hence T1(m2) is strongly set colorable.

Let X3 be a set of cardinality m3, where X1 ⊂ X2 ⊂ X3 and m1 < m2 < m3.

Now, change the direction of the arc (u1,k1 , v2m1−1−1) to (v2m1−1−1, u1,k1). Introduce

2m3−1−2m2−1 new vertices, say u2,1, u2,2, · · · , u2,k2 , where k2 = 2m3−1−2m2−1 and join

each of them to u1,k1 such that od(u1,k1) = 0. Let the resulting directed caterpillar be

denoted by T2(m3). Define the mapping f3 : V (T2(m3))→ 2X3 as follows:

f3(v) = A ∪m3 = A′.

f3(vi) = A′
r ∪m3 = A′′

r for i < 2m1−1 − 1.

f3(v2m1−1−1) = X2.

f3(u1,i′) = Br ∪m3 = B′
r for i

′ < k1.

f3(u1,k1) = B ∪ x0,m3 = X3.

f3(u2,i′′) = Cr, where Cr is a subset of X3 other than A′′
r and B′

r containing the

element m3 for i′′ < k2.

f3(u2,k2) = X3 − x0 = C.
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Let f ∗
3 : E(T2(m3)) → 2X3 denote the induced edge function defined by f ∗

3 ((u, v)) =

f3(v) − f3(u), where (u, v) ∈ E(T2(m3)). Then one can easily verify that T2(m3) is

strongly set colorable.

Next, change the direction of the arc (u2,k2 , u1,k1) to (u1,k1 , u2,k2). Introduce 2m4−1 −

2m3−1 new vertices, say u3,1, u3,2, · · · , u3,k3 , where k3 = 2m4−1 − 2m3−1 and join each

of them to u2,k2 such that od(u2,k2) = 0. Let X4 be a set of cardinality m4, where

X1 ⊂ X2 ⊂ X3 ⊂ X4 and m1 < m2 < m3 < m4. Let the resulting directed caterpillar

be denoted by T3(m4). Define the mapping f4 : V (T3(m4))→ 2X4 by

f4(v) = A′ ∪m4 = A′′.

f4(vi) = A′′
r ∪m4 = A′′′

r for i < 2m1−1 − 1.

f4(v2m1−1−1) = X2 ∪m4.

f4(u1,i′) = B′
r ∪m4 = B′′

r for i′ < k1.

f4(u1,k1) = X3.

f4(u2,i′′) = Cr ∪m4 = C ′
r, for i

′′ < k2.

f4(u2,k2) = C ∪ x0,m4 = C ′.

f4(u3,i′′′) = Dr, where Dr is a subset of X4 other than A′′′
r , B

′′
r and C ′

r containing the

element m4 for i′′′ < k3.

f4(u3,k3) = X4 − x0 = D.

Let f ∗
4 : E(T3(m4)) → 2X4 denote the induced edge function defined by f ∗

4 ((u, v)) =

f4(v)− f4(u), where (u, v) ∈ E(T3(m4)). Then one can easily verify that both f4 and

f ∗
4 are injective functions and hence T3(m4) is strongly set colorable.

We may iterate this procedure indefinitely to obtain the strongly set colorable directed

caterpillar at the nth step n = 1, 2, 3, · · · , where X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xn and

m1 < m2 < · · · < mn are chosen quite arbitrarily.

An illustrative example for the construction of strongly set colorable directed

caterpillar is given in Figure 5.9.
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{2, 3, 4, 5}

{1, 2, 3, 5}

{2, 3, 5}

{1, 3, 5}

{1, 2, 5}

{3, 4, 5}

{2, 4, 5}

{1, 2, 3, 4, 5}

{4, 5}

{3, 5}

{2, 5}

{1, 5}

{1, 2, 3, 4}

{1, 3, 4, 5}

{1, 2, 4, 5}

{1, 4, 5} 

Figure 5.9: Strongly set colorable directed caterpillar.

Construction of an infinite family of properly set colorable directed caterpillars

are given below.

Let X1 be a nonempty set with |X1| = m1, where m1 ≥ 2 is a positive integer.

Consider the directed star K1,2m1−1 = T0(m1) (say) with id(v) = 0, where v is the

central vertex. Let v1, v2, · · · , v2m1−1 be the pendant vertices of T0(m1). We define a

mapping F1 : V (T0(m1))→ 2X1 as follows:

F1(v) = ϕ

F1(vi) = Ar, where Ar is a nonempty subset of X1 such that Ar ̸= X1 for i < 2m1−1.

F1(v2m1−1) = X1.

Let X2 be a set of cardinality m2, where m2 > m1. Introduce new vertices, say

u1,1, u1,2, · · · , u1,k1 , where k1 = 2m2 − 2m1 and join each of them to v2m1−1 such that

od(v2m1−1) = 0. Let the resulting directed caterpillar be denoted by T1(m2) and define
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the mapping F2 : V (T1(m2))→ 2X2 as follows:

F2(v) = ϕ ∪m2 = A

F2(vi) = Ar ∪m2 = A′
r for i < 2m1 − 1.

F2(v2m1−1) = X1 ∪m2 = X2.

F2(u1,i′) = Br, where Br is a subset of X2 other than A′
r without containing the

element m2 and Br is not a (m2 − 1)-element subset of X2 for i′ < k1.

F2(u1,k1) = X2 −m2 = B.

Let F ∗
2 : E(T1(m2))→ 2X2 denote the induced edge function defined by F ∗

2 ((u, v)) =

F2(v)−F2(u), where (u, v) ∈ E(T1(m2)). Then one can easily verify that F ∗
2 = Y (X2).

Hence T1(m2) is properly set colorable.

Let X3 be a set of cardinality m3, where X1 ⊂ X2 ⊂ X3 and m1 < m2 < m3. Now,

change the direction of the arc (u1,k1 , v2m2−1) to (v2m2−1, u1,k1). Introduce 2m3 − 2m2

new vertices, say u2,1, u2,2, · · · , u2,k2 , where k2 = 2m3 − 2m2 and join each of them

to u1,k1 such that od(u1,k1) = 0. Let the resulting directed caterpillar be denoted by

T2(m3). Define the mapping F3 : V (T2(m3))→ 2X3 as follows:

F3(v) = A ∪m3 = A′.

F3(vi) = A′
r ∪m3 = A′′

r for i < 2m1 − 1.

F3(v2m1−1) = X2.

F3(u1,i′) = Br ∪m3 = B′
r for i

′ < k1.

F3(u1,k1) = B ∪m2,m3 = X3.

F3(u2,i′′) = Cr, where Cr is a subset of X3 other than A′′
r and B′

r without containing

the element m3 and Cr is not a (m3 − 1)-element subset of X3 for i′′ < k2.

F3(u2,k2) = X3 −m2 = C.

Let F ∗
3 : E(T2(m3))→ 2X3 denote the induced edge function defined by F ∗

3 ((u, v)) =

F3(v) − F3(u), where (u, v) ∈ E(T2(m3)). Then F ∗
3 = Y (X3) and hence T2(m3) is

properly set colorable.

Next, change the direction of the arc (u2,k2 , u1,k1) to (u1,k1 , u2,k2). Introduce 2
m4−2m3

new vertices, say u3,1, u3,2, · · · , u3,k3 , where k3 = 2m4 − 2m3 and join each of them to
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u2,k2 such that od(u2,k2) = 0. Let X4 be a set of cardinality m4, where X1 ⊂ X2 ⊂

X3 ⊂ X4 and m1 < m2 < m3 < m4. Let the resulting directed caterpillar be denoted

by T3(m4). Define the mapping F4 : V (T3(m4))→ 2X4 by

F4(v) = A′ ∪m4 = A′′.

F4(vi) = A′′
r ∪m4 = A′′′

r for i < 2m1 − 1.

F4(v2m1−1) = X2 ∪m4.

F4(u1,i′) = B′
r ∪m4 = B′′

r for i′ < k1.

F4(u1,k1) = X3.

F4(u2,i′′) = Cr ∪m4 = C ′
r, for i

′′ < k2.

F4(u2,k2) = C ∪m2,m4 = X4.

F4(u3,i′′′) = Dr, where Dr is a subset of X4 other than A′′′
r , B

′′
r and C ′

r without

containing the element m4 and Dr is not a (m4−1)-element subset of X4 for i
′′′ < k3.

F4(u3,k3) = X4 −m2 = D.

Let F ∗
4 : E(T3(m4))→ 2X4 denote the induced edge function defined by F ∗

4 ((u, v)) =

F4(v)−F4(u), where (u, v) ∈ E(T3(m4)). Then one can easily verify that F ∗
4 = Y (X4)

and hence T3(m4) is properly set colorable.

We may iterate this procedure indefinitely to obtain the properly set colorable directed

caterpillar at the nth step n = 1, 2, 3, · · · , where X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xn and

m1 < m2 < · · · < mn are chosen quite arbitrarily.

An illustrative example for the construction of properly set colorable directed

caterpillar is given in Figure 5.10.
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{3, 4} 

{1, 2, 4} 

{2, 3} 

{1, 3} 

{1, 2} 

{3} 

{2, 4} 

{1, 4} 

{1, 2, 3, 4} 

{4} 

{2} 

{1} 

{1, 2, 3} 

{2, 3, 4} 

{1, 3, 4} 

  

Figure 5.10: Properly set colorable directed caterpillar.



Chapter 6

Conclusion and scope for future
research

In this thesis harmonious colorings and complete colorings of graphs have been ex-

tended to directed graphs. In addition to some general results, proper harmonious

coloring number of several classes of digraphs, namely, oriented cycles, paths, n-ary

out-trees, wheels have been discussed. Some lower bound related results have been

proved with regard to proper harmonious coloring number of regular digraphs. Sim-

ilar results have been explored with regard to complete coloring of digraphs. It may

be noted that there is a strong relation between harmonious coloring and existence

of Eulerian cycles.

Set coloring of digraphs is an interesting extension of coloring wherein colors are

sets. Characterization of set coloring of certain classes of digraphs, Embedding of

unicycles in a set colored digraph and constructive set coloring of directed caterpillars

are some of the findings in the thesis.

The results proved in this thesis are of theoretical interest. Applicability of these

types of colorings may be explored as further study. Particularly since the harmonious

coloring and complete coloring distinguishes each edge, their applications may be

found in network communications.
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