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ABSTRACT

In this thesis we consider nonlinear ill-posed operator equations of the form F (x) =

f, that arise from the study of nonlinear inverse problems, where F : X → X is a

nonlinear monotone operator defined on a real Hilbert space X. In applications, instead

of f, usually only noisy data f δ are available. Then the problem of recovery of the

exact solution x̂ from noisy equation F (x) = f δ is ill-posed, in the sense that a small

perturbation in the data can cause large deviation in the solution. Thus the computation

of a stable approximation for x̂ from the solution of F (x) = f δ, becomes an important

issue in ill-posed problems, and the regularization techniques have to be taken into

account. Approximation methods are an attractive choice since they are straightforward

to implement, for getting the numerical solution of nonlinear ill-posed problems. Thus in

the last few years more emphasis was put on the investigation of iterative regularization

methods.

We consider Newton type iterative regularization methods and their finite dimen-

sional realizations, for obtaining approximation for x̂ in the Hilbert space and Hilbert

scales settings. We use the adaptive scheme of Pereverzyev and Schock (2005), for

choosing the regularization parameter.

Keywords: Ill-posed nonlinear equations, Regularization, Hilbert scales,

Monotone operator, Newton-Lavrentiev method, Adaptive parameter choice.
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Chapter 1

INTRODUCTION

The field of inverse problems is a wide and important area in applied mathematics

and other sciences that has been rapidly growing over the last decades. The reason

for the increasing interest is due to the wide variety of applications in sciences and

engineering. This thesis is devoted to the mathematical theory of iterative regularization

methods for nonlinear ill-posed problems that arise from the study of nonlinear inverse

problems, with special emphasis on the development of parameter choice and stopping

rules which leads to optimal convergence rates. We specifically present Newton-type

iterative regularization method for approximately solving the ill-posed equation F (x) =

f, when the operator F is nonlinear and monotone, from the perspective of our research

program.

1.1 GENERAL INTRODUCTION

In this thesis we consider the nonlinear equation

F (x) = f (1.1.1)

that arise from the study of nonlinear inverse problems, where F : D(F ) ⊆ X → X

is a nonlinear monotone operator defined on X. Throughout the thesis 〈., .〉 and ‖.‖
respectively stand for the inner product and the corresponding norm in the real Hilbert

space X.

Inverse problems are problems where causes for a desired or an observed effect are

to be determined. They have, always driven by applications, been studied for nearly

a century now. An important feature, both theoretically and numerically, of inverse

problems is their ill-posedness. Many problems which appear in science and engineering

1



2 Chapter 1

( eg: Signal and Image Processing, Computerized Tomography and Heat conduction,

etc.) can be formulated as an equation of the form (1.1.1). In general the equation

(1.1.1) is not well-posed in the sense proposed by Hadamard (1923) given in Definition

1.3.1 below. We study the operator equation (1.1.1) with a noisy data f δ in place of the

exact data f satisfying ‖f − f δ‖ ≤ δ with the known noise level δ.

The ill-posed problems are generally handled using the regularization techniques.

The process of obtaining a stable approximate solution for (1.1.1) is called a regulariza-

tion method. In a regularization method, the ill-posed equation is replaced by a family

of well-posed equations based on a regularization parameter. A regularization method

for (1.1.1) with f δ in place of f is said to be convergent, if the regularized solutions

converge in the norm to a solution of (1.1.1) as δ tends to zero.

We will first set up the definitions and notations and then introduce the formal

notion and difficulties encountered when one tries to solve (1.1.1).

1.2 DEFINITIONS AND NOTATIONS

Throughout this thesis X is a real Hilbert space, 〈., .〉, ‖.‖, D(F ) and BL(X, Y ) stand

respectively for the inner product, the corresponding norm, the domain of F and the set

of all bounded linear operators from X to Y. Also, δ0, ρ, γ, γρ, εh, ε0 and q are generic

constants which may take different values at different occasions.

Definition 1.2.1. (Fréchet derivative) Let F be an operator mapping a Hilbert space

X into a Hilbert space Y . If there exists a bounded linear operator L : X → Y such that

lim

‖h‖ → 0

‖F (x0 + h)− F (x0)− L(h)‖
‖h‖

= 0,

then F is said to be Fréchet differentiable at x0 and the bounded linear operator F ′(x0) :=

L is called the first Fréchet derivative of F at x0.

Definition 1.2.2. (Monotone operators) Let F : D(F ) ⊆ X → X be an operator defined

on a real Hilbert space X. Then F is said to be monotone if 〈F (x) − F (y), x − y〉 ≥

0,∀x, y ∈ D(F ).
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1.3 ILL-POSED PROBLEMS

Hadamard’s concept of a well posed problem, reflected the idea that any mathematical

model of a physical phenomena must have the properties of existence, uniqueness and

stability of the solution.

Now we shall formally define the concept of well-posedness.

Definition 1.3.1. (Well-posed) Let F : D(F ) ⊆ X → Y be an operator (linear or

nonlinear) between Hilbert spaces X and Y. The equation (1.1.1) is said to be well-posed

if the following three conditions hold.

1. (1.1.1) has a solution

2. (1.1.1) cannot have more than one solution

3. the solution x of (1.1.1) depends continuously on the data f.

In the operator theoretic language the above conditions together means that F is a

bijection and F−1 is a continuous operator.

The equation (1.1.1) is said to be ill-posed if it is not well-posed.

We give examples for ill-posed problems.

Example 1.3.1. Exponential growth model (see, Groetsch (1993)): For a given c > 0,

consider the problem of determining x(t), t ∈ (0, 1), in the initial value problem

dy

dt
= x(t)y(t), y(0) = c, (1.3.2)

where y ∈ L2[0, 1]. This problem can be written as an operator equation of the form

(1.1.1), where F : L2[0, 1]→ L2[0, 1] is defined by

F (x)(t) = ce
∫ t
0 x(s)ds, x ∈ L2[0, 1], t ∈ (0, 1).
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It can be seen from the following argument that the problem is ill-posed. Suppose,

in place of an exact data y, we have a perturbed data

yδ(t) := y(t)eδsin( t
δ2

), t ∈ (0, 1).

Then, from (1.3.2), the solution corresponding to yδ(t) is given by

xδ(t) :=
d

dt
log(yδ(t)), t ∈ (0, 1).

Note that,

‖y − yδ‖2 → 0 as δ → 0.

But

xδ(t)− x(t) =
d

dt
log(eδsin

t
δ2 ) =

d

dt
(δsin

t

δ2
),

so that

‖xδ − x‖2
2 =

1

4
sin

2

δ2
+

1

2δ2
→∞ as δ → 0.

Hence, the solution does not depend continuously on the given data and thus the problem

is ill-posed.

Example 1.3.2. The Vibrating String (see, Groetsch (1993)): The free vibration of a

nonhomogeneous string of unit length and density distribution ρ(x) > 0, 0 < x < 1, is

modeled by the partial differential equation

ρ(x)utt = uxx;

where u(x, t) is the position of the particle x at time t. Assume that the ends of the

string are fixed and u(x, t) satisfies the boundary conditions

u(0, t) = 0, u(1, t) = 0.

Assuming the solution u(x, t) is of the form

u(x, t) = y(x)r(t),
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one observes that y(x) satisfies the ordinary differential equation

y
′′

+ ω2ρ(x)y = 0 (1.3.3)

with boundary conditions

y(0) = 0, y(1) = 0.

Suppose the value of y at certain frequency ω is known, then by integrating equation

(1.3.3) twice, first from zero to s and then from zero to one, we obtain

∫ 1

0

y′(s;ω)ds− y′(0;ω) + ω2

∫ 1

0

∫ s

0

ρ(x)y(x;ω)dxds = 0.

∫ 1

0

(1− s)ρ(s)y(s;ω)ds =
y′(0;ω)

ω2
. (1.3.4)

The inverse problem here is to determine the variable density ρ of the string, satisfying

(1.3.4) for all allowable frequencies ω.

Example 1.3.3. Simplified Tomography (see, Groetsch (1993)): Consider a two di-

mensional object contained within a circle of radius R. The object is illuminated with a

radiation of density I0. As the radiation beams pass through the object it absorbs some

radiation. Assume that the radiation absorption coefficient f(x, y) of the object varies

from point to point of the object. The absorption coefficient satisfies the law

dI

dy
= −fI

where I is the intensity of the radiation. By taking the above equation as the definition

of the absorption coefficient, we have

Ix = I0e
−

∫ y(x)
−y(x) f(x,y)dy
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where y =
√
R2 − x2. Let p(x) = ln( I0

Ix
), i.e.,

p(x) =

∫ y(x)

−y(x)

f(x, y)dy.

Suppose that f is circularly symmetric, i.e., f(x, y) = f(r) with r =
√
x2 + y2, then

p(x) =

∫ R

x

2r√
r2 − x2

f(r)dr. (1.3.5)

The inverse problem is to find the absorption coefficient f satisfying the equation (1.3.5).

Example 1.3.4. Nonlinear singular integral equation (see, Buong (1998)): Consider

the nonlinear singular integral equation in the form

∫ t

0

(t− s)−λx(s)ds+K(x(t)) = f0(t), 0 < λ < 1, (1.3.6)

where f0 ∈ L2[0, 1] and the nonlinear function K(t) satisfies the following conditions:

• |K(t)| ≤ a1 + a2|t|, a1, a2 > 0,

• K(t1) ≤ K(t2)⇐⇒ t1 ≤ t2, and

• K is differentiable.

Thus, K is a monotone operator from X = L2[0; 1] into X∗ = L2[0; 1]. In addition,

assume that K is a compact operator. Then the equation (1.3.6) is an ill-posed problem,

since the operator F defined by

Fx(t) =

∫ t

0

(t− s)−λx(s)ds,

is compact.

It is clear from the definition of ill-posed problems, that if (1.1.1) is ill-posed then

(1.1.1) need not have a solution in the usual sense. So one has to modify the notion of

a solution.
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1.4 GENERALIZED INVERSE AND GENERAL-

IZED SOLUTION

If f /∈ R(F ), the range of F, then clearly (1.1.1) has no solution and hence the equa-

tion (1.1.1) is ill-posed. In such a case we may broaden the notion of a solution in a

meaningful sense. For F ∈ BL(X, Y ) and f ∈ Y, an element u ∈ X is said to be a least

square solution of (1.1.1) if

‖F (u)− f‖ = inf{‖F (x)− f‖ : x ∈ X}.

Observe that if F is not one-one, then the least square solution (cf. Groetsch (1984))

u, if exists, is not unique since u+ v is also a least square solution for every v ∈ N(F ),

the null space of F. The following theorem provides a characterization of least square

solutions.

Theorem 1.4.1. (see, Groetsch (1993), Theorem 1.3.1) For F ∈ BL(X, Y ) and f ∈ Y,

the following are equivalent.

(i) ‖F (u)− f‖ = inf{‖F (x)− f‖ : x ∈ X}

(ii) F ∗F (u) = F ∗f

(iii) F (u) = Pf

where P : Y → Y is the orthogonal projection onto R(F ).

From (iii) it is clear that (1.1.1) has a least square solution if and only if Pf ∈ R(F ).

i.e., if and only if f belongs to the dense subset R(F ) +R(F )⊥ of Y. By Theorem 1.4.1

it is clear that the set of all least square solutions is a closed convex set and hence by

Theorem 1.1.4 in Groetsch (1977), there is a unique least square solution of smallest

norm. For f ∈ R(F ) + R(F )⊥, the unique least square solution of minimal norm of

(1.1.1) is called the generalized solution or the pseudo solution of (1.1.1). It can be

easily seen that the generalized solution belongs to the subspace N(F )⊥ of X. The map

F † : D(F †) := R(F ) + R(F )⊥ → X which assigns each f ∈ D(F †) with the unique



8 Chapter 1

least square solution of minimal norm is called the generalized inverse or Moore-Penrose

inverse of F. Note that if f ∈ R(F ) and if F is injective then the generalized solution

of (1.1.1) is nothing but the solution of (1.1.1). If F is bijective then it follows that

F † = F−1.

Theorem 1.4.2. (see, Nair (2009), Theorem 4.4) Let F ∈ BL(X, Y ). Then F † :

D(F †) := R(F ) + R(F )⊥ → X is closed densely defined operator and F † is bounded

if and only if R(F ) is closed.

If the equation (1.1.1) is ill-posed then one would like to obtain the generalized solu-

tion of (1.1.1). But by Theorem 1.4.2, the problem of finding the generalized solution of

(1.1.1) is also ill-posed, i.e., F † is discontinuous if R(F ) is not closed. This observation

is important since a wide class of operators of practical importance, especially compact

operators of infinite rank falls into this category (see, Groetsch (1993)). Further in

application the data f may not be available exactly. So one has to work with an ap-

proximation f δ of f. If F † is discontinuous then for f δ close to f, the generalized solution

F †f δ, even when it is defined need not be close to F †f. To manage this situation the so

called regularization procedures have to be employed in order to obtain approximations

for F †f.

1.5 REGULARIZATION METHOD

Definition 1.5.1. A family of operators {Rα : 0 < α ≤ α0} is called a regularization

method for the problem (1.1.1) with f in range of F, if there exists a parameter choice

rule α = α(δ, f δ) such that

lim

δ → 0
sup

{
‖Rα(δ,fδ)f

δ − F †f‖ : f δ ∈ Y, ‖f − f δ‖ ≤ δ
}

= 0.

1.5.1 Regularization principle and Tikhonov regularization

Let us first consider the problem of finding the generalized solution of (1.1.1) with

F ∈ BL(X, Y ) and f ∈ D(F †). For δ > 0, f δ ∈ Y be an inexact data such that
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‖f − f δ‖ ≤ δ. By a regularization of equation (1.1.1) with f δ in place of f we mean

a procedure of obtaining a family (xδα) of vectors in X such that each xδα, α > 0 is a

solution of a well posed equation and xδα → F †f as α→ 0, δ → 0.

A regularization method which has been studied most extensively is the so called

Tikohonov regularization (see, Groetsch (1984)) introduced in the early sixties, where

xδα is taken as the minimizer of the functional Jδα(x), where

Jδα(x) = ‖F (x)− f δ‖2 + α‖x‖2. (1.5.7)

The fact that xδα is the unique solution of the well-posed equation

(F ∗F + αI)xδα = F ∗f δ

is included in the following well known result (see, Nair (2009)).

Theorem 1.5.1. (cf. Nair (2009), Theorem 4.9) Let F ∈ BL(X, Y ). For each α > 0

there exists unique xδα ∈ X which minimizes the functional Jδα(x) in (1.5.7). Moreover

the map f δ → xδα is continuous for each α > 0 and

xδα = (F ∗F + αI)−1F ∗f δ.

1.5.2 Lavrentiev regularization method

If X = Y and F is a positive self-adjoint operator on X, then one may consider (see,

Bakushinskii (1965)) a simpler regularization method to solve equation (1.1.1), where

the family of vectors wδα, satisfying

(F + αI)wδα = f δ, (1.5.8)

is considered to obtain approximations for F †f. Note that for positive self-adjoint oper-

ator F, the ordinary Tikhonov regularization applied to (1.1.1) results in a more com-

plicated equation (F 2 + αI)xδα = Ff δ than (1.5.8). Moreover it is known (see, Schock

(1985)) that the approximation obtained by regularization procedure (1.5.8) has better

convergence properties than the approximation obtained by Tikhonov regularization. As

in Groetsch and Guacaneme (1987), we call the above regularization procedure which

gives the family of vectors wδα in (1.5.8), the simplified regularization of (1.1.1).
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One of the prime concerns of regularization methods is the convergence of xδα (wδα in

the case of simplified regularization) to F †f, as α→ 0 and δ → 0. It is known that (see,

Groetsch (1984)) if R(F ) is not closed then there exist sequences (δn) and αn = α(δn)

such that δn → 0 and αn → 0 as n → ∞ but the sequence (xδnαn) diverges as δn → 0.

Therefore it is important to choose the regularization parameter α depending on the

error level δ and also possibly on f δ, say α := α(δ, f δ) such that α(δ, f δ) → 0 and

xδα → F †f as δ → 0. Practical considerations suggest that it is desirable to choose the

regularization parameter at the time of solving xδα using a so called a posteriori method

which depends on f δ as well as on δ (see, Pereverzyev and Schock (2005)). For our work

we have used the adaptive selection of parameter proposed by Pereverzyev and Schock

(2005). Before explaining this procedure in detail we shall briefly refer to the topic of

Tikhonov regularization for a nonlinear ill-posed operator equation.

For the equation (1.1.1) with F a nonlinear operator, the least square solution x̂ is

defined by the requirement

‖F (x̂)− f‖ = inf
x∈D(F )

‖F (x)− f‖ (1.5.9)

and an x0 minimum norm solution should satisfy (1.5.9) (see, Engl et al. (1989)) and

also

‖x̂− x0‖ = min{‖x− x0‖ : F (x) = f, x ∈ D(F )}

here x0 is some initial guess. Such a solution:

• need not exist

• need not be unique, even when it exists (see, Scherzer et al. (1993)).

(Let S := {x : F (x) = f}. Then S is closed and convex if F is monotone and continuous

(see, e.g., Ramm (2007)) and hence has a unique element of minimal norm, denoted by

x̂ such that F (x̂) = f.)

Tikhonov regularization for nonlinear ill-posed problem (1.1.1) provides approximate

solutions as solutions of the minimization problem JδF (x), where

JδF (x) = ‖F (x)− f δ‖2 + α‖x− x0‖2, α > 0.

If xδα is an interior point of D(F ), then the regularized approximation xδα satisfies the

normal operator equation

F ′∗(x)[F (x)− f δ] + α(x− x0) = 0



Chapter 1 11

of the Tikhonov functional JδF (x). Here F ′∗(.) is the adjoint of the Fréchet derivative F ′(.)

of F. For the special case when F is a monotone operator the least squares minimization

(and hence the use of adjoint) can be avoided and one can use the simpler regularized

equation

F (x) + α(x− x0) = f δ. (1.5.10)

The method in which the regularized approximation xδα is obtained by solving the

singularly perturbed operator equation (1.5.10) is called the method of Lavrentiev reg-

ularization (see, Lavrentiev (1967)), or sometimes the method of singular perturbation

(see, Liu and Nashed (1996)).

1.5.3 Regularization parameter selection

In general a regularized solution xδα can be written as xδα = Rαf
δ, where Rα is a regular-

ization function. A regularization method consists not only of a choice of regularization

functions Rα but also of a choice of the regularization parameter α. A choice α = αδ of

the regularization parameter may be made in either an a priori or a posteriori way (see,

Groetsch (1993)).

Suppose there exists a function ϕ : (0, a] → (0,∞) with a ≥ ‖F ′(x̂)‖ and v ∈ X

such that

x0 − x̂ = ϕ(F ′(x̂))v, (1.5.11)

where x0 is an initial guess, x̂ is the solution of (1.1.1) and F ′(x̂) is the Fréchet derivative

of F at x̂ and

‖x̂−Rαf‖ ≤ ϕ(α),

then ϕ is called a source function and the condition (1.5.11) is called source condition.

Note that (see, Groetsch (1993)) the choice of the parameter αδ depends on the

unknown source conditions. In applications, it is desirable that α is chosen independent

of the source function ϕ, but may depend on the data (δ, f δ), and consequently on the

regularized solutions. For linear ill-posed problems there exist many such a posteriori

parameter choice strategies. These strategies include the ones proposed by Archangeli

(see, Groetsch and Guacaneme (1987), Guacaneme (1990), George and Nair (1993) and

Tautenhahn (2002)).

Pereverzyev and Schock (2005), considered an adaptive selection of the parameter

which does not involve even the regularization method in an explicit manner. Let us
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briefly discuss this adaptive method in a general context of approximating an element

x̂ ∈ X by elements from a set {xδα : α > 0, δ > 0}.
Suppose x̂ ∈ X is to be approximated by using elements xδα for α > 0, δ > 0. Assume

that there exist increasing functions ϕ(t) and ψ(t) for t > 0 such that

lim
t→o

ϕ(t) = 0 = lim
t→o

ψ(t)

and

‖x̂− xδα‖ ≤ ϕ(α) +
δ

ψ(α)
,

for all α > 0, δ > 0. Here, the function ϕ may be associated with the unknown element

x̂, whereas the function ψ may be related to the method involved in obtaining xδα. Note

that the quantity ϕ(α) + δ
ψ(α)

attains its minimum for the choice α := αδ such that

ϕ(αδ) = δ
ψ(αδ)

, that is for

αδ = (ϕψ)−1(δ)

and in that case

‖x̂− xδα‖ ≤ 2ϕ(αδ).

The above choice of the parameter is a priori in the sense that it depends on the unknown

functions ϕ and ψ.

In an a posteriori choice, one finds a parameter αδ without making use of the un-

known source function ϕ such that one obtains an error estimate of the form

‖x̂− xδαδ‖ ≤ cϕ(αδ),

for some c > 0 with αδ = (ϕψ)−1(δ). The procedure in Pereverzyev and Schock (2005)

starts with a finite number of positive real numbers, α0, α1, α2, . . . , αN , such that

α0 < α1 < α2 < · · · < αN .

The following theorem is essentially a reformulation of a theorem proved in Pereverzyev

and Schock (2005).

Theorem 1.5.2. (cf. George and Nair (2008), Theorem 4.3, Semenova (2010), Theo-

rem 3.1) Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ
ψ(αi)

and for

some µ > 1,

ψ(αi) ≤ µψ(αi−1) ∀i ∈ {0, 1, 2, · · · , N}.
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Let

l := max

{
i : ϕ(αi) ≤

δ

ψ(αi)

}
< N,

k := max

{
i : ‖xδαi − x

δ
αj
‖ ≤ 4

δ

ψ(αj)
, ∀j = 0, 1, · · · , i

}
.

Then l ≤ k and

‖x̂− xδαk‖ ≤ 6µϕ(αδ), αδ := (ϕψ)−1(δ).

1.5.4 Iterative regularization methods and convergence rate

The last few years, many authors (see, Bakushinskii (1992), Hanke et al. (1995), Hanke

(1997a), Hanke (1997b), Blaschke et al. (1997), Kaltenbacher (1997), Ramlau (1997),

Ramlau (2003) and George (2010)) considered iterative methods for solving (1.1.1). An

iterative method with iterations defined by

xδn+1 = Φ(xδn, · · · , xδ0, f δ), xδ0 = x0

for a known function Φ together with a stopping rule which determines a stopping index

kδ ∈ N is called an iterative regularization method if ‖xδkδ − x̂‖ → 0, δ → 0 (see, Mahale

and Nair (2009)). Here x0 ∈ D(F ) is a known initial approximation of the solution x̂.

A sequence (xn) in X with limxn = x∗ is said to be convergent of order p > 1, if

there exist positive reals β, γ, such that for all n ∈ N

‖xn − x∗‖ ≤ βe−γp
n

. (1.5.12)

If the sequence (xn) has the property that ‖xn− x∗‖ ≤ βqn, 0 < q < 1 then (xn) is said

to be linearly convergent. For an extensive discussion of convergence rate (see, Ortega

and Rheinboldt (1970), Kelley (1995)).

1.6 OUTLINE OF THE THESIS

Chapter 1: In this chapter we present a general introduction to the problem, some

known examples of nonlinear ill-posed problems and some well known results and back-

ground materials related to the thesis.
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Chapter 2: We consider an iterative regularization method TSMNLM (Two Step Mod-

ified Newton Lavrentiev Method) for approximating the zero xδα of (1.5.10) defined by:

yδn,α = xδn,α −R−1
α (x0)[F (xδn,α)− f δ + α(xδn,α − x0)] (1.6.13)

and

xδn+1,α = yδn,α −R−1
α (x0)[F (yδn,α)− f δ + α(yδn,α − x0)] (1.6.14)

where xδ0,α := x0 and Rα(x0) = F ′(x0) + αI.

We prove that under a general source condition on x0−x̂ the error ‖x̂−xδn,α‖ between

the regularized approximation xδn,α and the solution x̂ is of optimal order.

The regularization parameter α in this chapter as well as in the other chapters are

selected from a finite set

DN(α) := {αi = µiα0, i = 0, 1, · · · , N} (1.6.15)

where µ > 1 and α0 > 0.

We prove that

‖xδnδ,αk − x̂‖ = O(ψ−1(δ)),

where the stopping index nδ and the regularization parameter αk are selected according

to the adaptive method.

Also in this chapter we consider the finite dimensional approximation of TSMNLM.

Analogous to the iterative scheme (1.6.13) and (1.6.14), we define the iterative sequence

to obtain an approximate solution for the equation (1.5.10), in the finite dimensional

subspace of X as:

yh,δn,α = xh,δn,α −R−1
α (xh,δ0,α)Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)]

and

xh,δn+1,α = yh,δn,α −R−1
α (xh,δ0,α)Ph[F (yh,δn,α)− f δ + α(yh,δn,α − x0)]

where xh,δ0,α := Phx0 is the projection of the initial iterate x0 on to R(Ph) , the range

of Ph and Rα(x) := PhF
′(x)Ph + αPh with α > α0 > 0. Here {Ph}h>0 be a family

of orthogonal projections on X and the regularization parameter α is chosen from the

finite set defined in (1.6.15), according to the adaptive method. A numerical example

and the corresponding computational results are exhibited to confirm the reliability and

effectiveness of our method.
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Chapter 3: In this chapter, we present Cubically converging two step Newton Lavren-

tiev Method (CNLM) and its finite dimensional realization for finding an approximate

solution for equation (1.1.1).

Numerical example and the corresponding computational results are presented.

Chapter 4: In this chapter, we suggest and analyze another iterative method and its

finite dimensional realization for obtaining an approximate solution for nonlinear ill-

posed operator equation (1.1.1), and prove that the methods converge locally quarticaly

to xδα. We also obtain an optimal order error estimate by choosing the regularization

parameter α according to the adaptive method considered by Perverzev and Schock

(2005). Numerical results were provided.

Chapter 5: In this chapter, we consider the variant of the method (1.6.13) and (1.6.14)

defined by

yδn,α,s = xδn,α,s − (F ′(x0) + αLs)−1[F (xδn,α,s)− f δ + αLs(xδn,α,s − x0)]

and

xδn+1,α,s = yδn,α,s − (F ′(x0) + αLs)−1[F (yδn,α,s)− f δ + αLs(yδn,α,s − x0)]

in the setting of Hilbert scales {Xr}r∈R generated by a densely defined, linear, un-

bounded, strictly positive self adjoint operator L : D(L) ⊂ X → X. Where xδ0,α,s := x0,

is the initial approximation for the solution x̂ of (1.1.1). We selected the regulariza-

tion parameter α using adaptive method and obtained an optimal order error estimate.

The sequence in this chapter converges linearly to the solution xδα,s of the equation

F (xδα,s) + αLs(xδα,s − x0) = f δ.

Chapter 6: We conclude the thesis in this chapter, by highlighting the scope for some

future works.

� 2 �
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Chapter 2

MODIFIED NEWTON METHOD
FOR NONLINEAR LAVRENTIEV
REGULARIZATION

In this chapter a Two Step Modified Newton Lavrentiev Method (TSMNLM) is consid-

ered for obtaining an approximate solution for the nonlinear ill-posed equation F (x) = f

when the available data are f δ with ‖f − f δ‖ ≤ δ and the operator F is monotone. The

derived error estimate under a general source condition on x0 − x̂ is of optimal order,

here x0 is the initial guess and x̂ is the actual solution. The regularization parame-

ter is chosen according to the adaptive method considered by Pereverzyev and Schock

(2005). We consider also the finite dimensional approximation of the TSMNLM. A nu-

merical example and the corresponding computational results are exhibited to confirm

the reliability and effectiveness of our method.

2.1 INTRODUCTION

For monotone operators one usually uses the Lavrentiev regularization method (see, Jaan

and Tautenhahn (2003); Pereverzyev and Schock (2005); Semenova (2010)) for solving

(1.1.1). In this method the regularized approximation xδα is obtained by solving the

operator equation (1.5.10). It is known (cf. Tautenhahn (2002), Theorem 1.1) that the

equation (1.5.10) has a unique solution xδα ∈ Br(x̂) := {x ∈ X : ‖x − x̂‖ < r} ⊂ D(F )

for any α > 0 provided r = ||x0 − x̂‖ + δ/α. The optimality of the Lavrentiev method

was proved in Tautenhahn (2002) under a general source condition on x0 − x̂. However

the main drawback here is that, the regularized equation (1.5.10) remains nonlinear and

17
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one may have difficulties in solving them numerically. Thus in the last few years more

emphasis was put on the investigation of iterative regularization methods (see, Blaschke

et al. (1997); Deuflhard et al. (1998); Jin.Qi-Nian (2000a,b); Mahale and Nair (2003);

George (2006); George and Nair (2008)). In this chapter we consider a modified form of

the method considered in George and Elmahdy (2012), but we analyze the method as

a Two Step Modified Newton Lavrentiev Method (TSMNLM). The proposed analysis

is motivated by the Two Step Directional Newton Method (TSDNM) considered in

Argyros and Hilout (2010), for approximating a zero x∗ of a differentiable function F

defined on a convex subset D of a Hilbert space H with values in R. The TSMNLM for

approximating the zero xδα of (1.5.10) is defined by:

yδn,α = xδn,α −R−1
α (x0)[F (xδn,α)− f δ + α(xδn,α − x0)] (2.1.1)

and

xδn+1,α = yδn,α −R−1
α (x0)[F (yδn,α)− f δ + α(yδn,α − x0)] (2.1.2)

where xδ0,α := x0 and Rα(x0) = F ′(x0) + αI. Here the regularization parameter α is

chosen from the finite set

DN(α) = {αi : 0 < α0 < α1 < α2 < · · · < αN}. (2.1.3)

The plan of this chapter is as follows. In section 2.1, we introduce the Two Step

Modified Newton Lavrentiev Method (TSMNLM) and prove that the method converges

to a solution of the equation

F (x) + α(x− x0) = f δ (2.1.4)

in section 2.2. The error analysis under a general source condition is considered in

section 2.3, precisely we consider an a priori parameter choice in section 2.3.1 and the

balancing principle (adaptive method) considered by Pereverzyev and Schock (2005), in

section 2.3.2. Section 2.4 deals with projection method and its convergence. In section

2.5 we consider the error analysis in finite dimensional case. Section 2.6 deals with

the implementation of adaptive parameter choice strategy. Finally an example and the

computational results are given in section 2.7.

2.2 CONVERGENCE ANALYSIS FOR TSMNLM

We need the following assumptions for the convergence analysis of TSMNLM.
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Assumption 2.2.1. (see, Semenova (2010)) F possesses a locally uniformly bounded

Fréchet derivative F ′(.) at all x in the domain D(F ) i.e., ‖F ′(x)‖ ≤ CF , x ∈ D(F )

for some constant CF .

Assumption 2.2.2. (cf. Semenova (2010), Assumption 3) There exists a constant

k0 > 0, r > 0 such that for every x, u ∈ Br(x0) ∪Br(x̂) ⊂ D(F ) and v ∈ X, there exists

an element Φ(x, u, v) ∈ X such that

[F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x− u‖.

Hereafter we assume that δ0 <
α0

4k0
, for some α0 > 0 and ‖x0 − x̂‖ ≤ ρ where

ρ ≤

√
1 + (1

2
− 2k0δ0

α0
)− 1

k0

. (2.2.5)

Let

eδn,α := ‖yδn,α − xδn,α‖, ∀n ≥ 0 (2.2.6)

and

γρ :=
δ0

α0

+
k0

2
ρ2 + ρ. (2.2.7)

For convenience, we use the notation xn, yn and en for xδn,α, y
δ
n,α and eδn,α respectively.

Lemma 2.2.1. Let δ ∈ (0, δ0], Assumption 2.2.2 hold and γρ be as in (2.2.7). Then

e0 ≤ γρ.

Proof. Observe that

e0 = ‖y0 − x0‖

= ‖R−1
α (x0)(F (x0)− f δ)‖

= ‖R−1
α (x0)[F (x0)− F (x̂)− F ′(x0)(x0 − x̂) + F ′(x0)(x0 − x̂) + F (x̂)− f δ]‖

= ‖R−1
α (x0)[

∫ 1

0

(F ′(x0 + t(x̂− x0))− F ′(x0))(x0 − x̂)dt+ F ′(x0)(x0 − x̂)

+F (x̂)− f δ]‖.
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Now, since ‖R−1
α (x0)F ′(x0)‖ ≤ 1, we have

e0 ≤ ‖
∫ 1

0

Φ(x0 + t(x̂− x0), x0, x0 − x̂)‖dt+ ‖x0 − x̂‖+ ‖R−1
α (x0)(F (x̂)− f δ)‖

≤ k0

2
‖x0 − x̂‖2 + ‖x0 − x̂‖+

1

α
‖F (x̂)− f δ‖

≤ k0

2
ρ2 + ρ+

δ

α

≤ k0

2
ρ2 + ρ+

δ0

α0

= γρ.

The last step follows from (2.2.5).

Let

q = k0r. (2.2.8)

Then γρ
1−q < r, if

r ∈

(
1−

√
1− 4k0γρ

2k0

,
1 +

√
1− 4k0γρ

2k0

)
. (2.2.9)

Theorem 2.2.2. Let yn, xn and en be as in (2.1.1), (2.1.2) and (2.2.6) respectively

with δ ∈ (0, δ0] and α ∈ DN(α). Let γρ, q and r be as in (2.2.7), (2.2.8) and (2.2.9)

respectively. Then

(a) ‖xn − yn−1‖ ≤ q‖yn−1 − xn−1‖;

(b) ‖yn − xn‖ ≤ q2‖yn−1 − xn−1‖;

(c) en ≤ q2nγρ;

(d) xn, yn ∈ Br(x0).

Proof. Observe that if xn, yn ∈ Br(x0), then by Assumption 2.2.2 we have

xn − yn−1 = yn−1 − xn−1 −R−1
α (x0)[F (yn−1)− F (xn−1) + α(yn−1 − xn−1)]

= R−1
α (x0)[Rα(x0)(yn−1 − xn−1)− (F (yn−1)− F (xn−1))− α(yn−1 − xn−1)]

= R−1
α (x0)

∫ 1

0

[F ′(x0)− F ′(xn−1 + t(yn−1 − xn−1))](yn−1 − xn−1)dt

= R−1
α (x0)F ′(x0)

∫ 1

0

Φ(x0, xn−1 + t(yn−1 − xn−1), yn−1 − xn−1)dt
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and hence,

‖xn − yn−1‖ ≤ k0r‖yn−1 − xn−1‖. (2.2.10)

Again observe that if xn, yn ∈ Br(x0), by Assumption 2.2.2 and (2.2.10) we have

yn − xn = xn − yn−1 −R−1
α (x0)[F (xn)− F (yn−1) + α(xn − yn−1)]

= R−1
α (x0)[Rα(x0)(xn − yn−1)− (F (xn)− F (yn−1))− α(xn − yn−1)]

= R−1
α (x0)

∫ 1

0

[F ′(x0)− F ′(yn−1 + t(xn − yn−1)](xn − yn−1)dt

= R−1
α (x0)F ′(x0)

∫ 1

0

Φ(x0, yn−1 + t(xn − yn−1), xn − yn−1)dt

and hence,

‖yn − xn‖ ≤ k0r‖xn − yn−1‖ ≤ q2‖yn−1 − xn−1‖. (2.2.11)

Thus if xn, yn ∈ Br(x0) then (a) and (b) follows from (2.2.10) and (2.2.11) respectively.

Now using induction we shall prove that xn, yn ∈ Br(x0). Note that x0, y0 ∈ Br(x0) and

hence by (2.2.10)

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖

≤ (1 + q)e0

≤ e0

1− q
≤ γρ

1− q
< r

i.e., x1 ∈ Br(x0), again by (2.2.11)

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖

≤ q2e0 + (1 + q)e0

≤ e0

1− q
≤ γρ

1− q
< r

i.e., y1 ∈ Br(x0). Suppose xk, yk ∈ Br(x0) for some k > 1. Then since

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖ (2.2.12)
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we shall first find an estimate for ‖xk+1 − xk‖. Note that by (a) and (b) we have

‖xk+1 − xk‖ ≤ ‖xk+1 − yk‖+ ‖yk − xk‖

≤ (q + 1)‖yk − xk‖

≤ (1 + q)q2ke0.

Therefore by (2.2.12) we have

‖xk+1 − x0‖ ≤ (1 + q)[q2k + q2(k−1) + · · ·+ 1]e0 (2.2.13)

≤ (1 + q)

[
1− q2k+1

1− q2

]
e0

≤ e0

1− q
≤ γρ

1− q
< r.

So by induction xn ∈ Br(x0) for all n ≥ 0. Again by (a), (b) and (2.2.13) we have

‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖

≤ q2k+2e0 + (1 + q)[q2k + q2(k−1) + · · ·+ 1]e0

≤ (1 + q)

[
1− q2k+3

1− q2

]
e0

≤ e0

1− q
≤ γρ

1− q
< r.

Thus yk+1 ∈ Br(x0) and hence by induction yn ∈ Br(x0) for all n ≥ 0. This completes

the proof of the theorem.

The main result of this section is the following theorem.

Theorem 2.2.3. Let yn and xn be as in (2.1.1) and (2.1.2) respectively and assumptions

of Theorem 2.2.2 hold. Then (xn) is Cauchy sequence in Br(x0) and converges to xδα ∈

Br(x0). Further F (xδα) + α(xδα − x0) = f δ and

‖xn − xδα‖ ≤
q2nγρ
1− q

.
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Proof. Using the relation (b) and (c) of Theorem 2.2.2, we obtain

‖xn+m − xn‖ ≤
m−1∑
i=0

‖xn+i+1 − xn+i‖

≤
m−1∑
i=0

(1 + q)en+i

≤
m−1∑
i=0

(1 + q)q2(n+i)e0

≤ (1 + q)q2n

[
1− q2m

1− q2

]
e0

≤ q2n

1− q
e0

≤ q2n

1− q
γρ.

Thus xn is a Cauchy sequence in Br(x0) and hence it converges, say to xδα ∈ Br(x0).

Observe that

‖F (xn)− f δ + α(xn − x0)‖ = ‖Rα(x0)(xn − yn)‖

≤ ‖Rα(x0)‖‖xn − yn‖

≤ (CF + α)q2nγρ. (2.2.14)

Now by letting n→∞ in (2.2.14) we obtain F (xδα)−f δ+α(xδα−x0) = 0. This completes

the proof.

2.3 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS

The objective of this section is to obtain an error estimate for ‖xn − x̂‖ under the

following assumption on x0 − x̂.

Assumption 2.3.1. (see, Semenova (2010)) There exists a continuous, strictly mono-

tonically increasing function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying lim
λ→0

ϕ(λ) =
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0 and v ∈ X with ‖v‖ ≤ 1 such that

x0 − x̂ = ϕ(F ′(x̂))v

and

sup

λ ≥ 0

αϕ(λ)

λ+ α
≤ ϕ(α), ∀λ ∈ (0, a].

Remark 2.3.1. It can be seen that functions

ϕ(λ) = λν , λ > 0

for 0 < ν ≤ 1 and

ϕ(λ) =


(ln 1

λ
)−p , 0 < λ ≤ e−(p+1)

0 , otherwise

for p ≥ 0 satisfy the Assumption 2.3.1 (see, Nair and Ravishankar (2008)).

We will be using the error estimates in the following Proposition, which can be found

in Tautenhahn (2002) , for our error analysis.

Proposition 2.3.2. (cf. Tautenhahn (2002), Proposition 3.1) Let F : D(F ) ⊆ X → X

be a monotone operator in X and let x̂ ∈ D(F ) be a solution of (1.1.1). Let xα be

the unique solution of (1.5.10) with f in place of f δ and xδα be the unique solution of

(1.5.10). Then

‖xδα − xα‖ ≤
δ

α

and

‖xα − x̂‖ ≤ ‖x0 − x̂‖.

Theorem 2.3.3. (cf. Tautenhahn (2002), Theorem 3.3 or Semenova (2010), Proposi-

tion 4.1) Let Assumption 2.2.1, Assumption 2.2.2, Assumption 2.3.1 and assumptions
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in Proposition 2.3.2 be satisfied. Then

‖xα − x̂‖ ≤ (k0r + 1)ϕ(α).

Combining the estimates in Proposition 2.3.2, Theorem 2.2.3 and Theorem 2.3.3 we

obtain the following;

Theorem 2.3.4. Let xn be as in (2.1.2) and let assumptions in Theorem 2.2.3 and

Theorem 2.3.3 be satisfied. Then

‖xn − x̂‖ ≤
q2nγρ
1− q

+ (k0r + 1)

[
ϕ(α) +

δ

α

]
.

Let

C̄ := max

{
γρ

1− q
, k0r

}
+ 1, (2.3.15)

and let

nδ := min

{
n : q2n ≤ δ

α

}
. (2.3.16)

Theorem 2.3.5. Let xn be as in (2.1.2). Let assumptions in Theorem 2.3.4 be satisfied.

Let C̄ be as in (2.3.15) and nδ be as in (2.3.16). Then

‖xnδ − x̂‖ ≤ C̄

[
ϕ(α) +

δ

α

]
. (2.3.17)

2.3.1 A priori choice of the parameter

Note that the error estimate ϕ(α) + δ
α

in (2.3.17) is of optimal order if α := αδ satisfies,

ϕ(αδ)αδ = δ.

Now using the function ψ(λ) := λϕ−1(λ), 0 < λ ≤ a we have δ = αδϕ(αδ) =

ψ(ϕ(αδ)), so that αδ = ϕ−1(ψ−1(δ)). In view of the above observations and (2.3.17) we

have the following;

Theorem 2.3.6. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and let assumptions in Theorem

2.3.5 hold. For δ > 0, let α := αδ = ϕ−1(ψ−1(δ)). Let nδ be as in (2.3.16), then

‖xnδ − x̂‖ = O(ψ−1(δ)).
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2.3.2 An adaptive choice of the parameter

In this subsection, we present a parameter choice rule based on the adaptive method

studied in Pereverzyev and Schock (2005); George and Nair (2008). Let

DN(α) := {αi = µiα0, i = 0, 1, · · · , N}

where µ > 1, α0 > 0 and let

ni := min

{
n : q2n ≤ δ

αi

}
.

Then for i = 0, 1, · · · , N, we have

‖xni − xδαi‖ ≤
δ

αi
, ∀i = 0, 1, · · ·N.

Let xi := xδni,αi . We select the regularization parameter α = αi from the set DN(α)

and operate only with corresponding xi, i = 0, 1, · · · , N.

The proof of the following theorem is analogous to the proof of the Theorem 4.3 in

George and Nair (2008). But for the sake of completeness we provide the proof.

Theorem 2.3.7. Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ
αi
.

Let assumptions of Theorem 2.3.5 and Theorem 2.3.6 hold and let

l := max

{
i : ϕ(αi) ≤

δ

αi

}
< N,

k := max

{
i : ‖xi − xj‖ ≤ 4C̄

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
.

Then l ≤ k and

‖x̂− xk‖ ≤ cψ−1(δ)

where c = 6C̄µ.

Proof. To see that l ≤ k, it is enough to show that, for i = 1, 2, · · · , N,

ϕ(αi) ≤
δ

αi
=⇒ ‖xi − xj‖ ≤ 4C̄

δ

αj
, ∀j = 0, 1, · · · , i− 1.
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For j ≤ i, by Theorem 2.3.5 we obtain,

‖xi − xj‖ ≤ ‖xi − x̂‖+ ‖xj − x̂‖

≤ C̄

[
ϕ(αi) +

δ

αi

]
+ C̄

[
ϕ(αj) +

δ

αj

]
≤ C̄

[
2
δ

αi
+ 2

δ

αj

]
≤ 4C̄

δ

αj
so, l ≤ k.

Now, ‖x̂− xk‖ ≤ ‖x̂− xl‖+ ‖xl − xk‖

≤ C̄

[
2
δ

αl
+ 4

δ

αl

]
≤ 6C̄

δ

αl

≤ 6C̄µ
δ

αδ
(∵ αδ < αl+1 < µαl)

≤ cψ−1(δ).

This completes the proof.

2.4 PROJECTION METHOD AND ITS CONVER-

GENCE

Let {Ph}h>0 be a family of orthogonal projections on X. Let, ∀x ∈ D(F ), εh :=

‖F ′(x)(I − Ph)‖. And {bh : h > 0} be such that lim
h→0

‖(I−Ph)x0‖
bh

= 0 and lim
h→0

bh = 0. We

assume that εh → 0 as h → 0. The above assumption is satisfied if, Ph → I pointwise

and if F ′(x) is a compact operator. Further we assume that εh ≤ ε0, bh ≤ b0 and

δ ∈ (0, δ0].

Analogous to the iterative scheme (2.1.1) and (2.1.2), we define the iterative sequence

to obtain an approximate solution for the equation (1.5.10), in the finite dimensional

subspace of X as:

yh,δn,α = xh,δn,α −R−1
α (xh,δ0,α)Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)] (2.4.18)

and

xh,δn+1,α = yh,δn,α −R−1
α (xh,δ0,α)Ph[F (yh,δn,α)− f δ + α(yh,δn,α − x0)] (2.4.19)
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where xh,δ0,α := Phx0 is the projection of the initial iterate x0 on to R(Ph), the range of

Ph and Rα(x) := PhF
′(x)Ph + αPh with α > α0 > 0. Here the regularization parameter

α is chosen from the finite set defined in (2.1.3).

Note that, even though the proposed method has local linear convergence, it requires,

for its merit, the computation of the Fréchet derivative F ′(.) only at Phx0.

We need the following assumptions for the convergence analysis.

Let

eh,δn,α := ‖yh,δn,α − xh,δn,α‖, ∀n ≥ 0. (2.4.20)

Hereafter we assume that b0 <

√
1+( 1

2(1+
ε0
α0

)2
− 2k0δ0

(1+
ε0
α0

)α0
)−1

k0
, δ0 <

α0

4k0(1+
ε0
α0

)
for some α0 > 0

and ‖x0 − x̂‖ ≤ ρ where

ρ ≤

√
1 + ( 1

2(1+
ε0
α0

)2
− 2k0δ0

(1+
ε0
α0

)α0
)− 1

k0

− b0.

Let

γρ := (1 +
ε0

α0

)

[
k0

2
(ρ+ b0)2 + (ρ+ b0)

]
+
δ0

α0

. (2.4.21)

Lemma 2.4.1. Let x ∈ D(F ). Then ‖R−1
α (x)PhF

′(x)‖ ≤ (1 + ε0
α0

).

Proof. Note that,

‖R−1
α (x)PhF

′(x)‖ = sup
‖v‖≤1

‖(PhF ′(x)Ph + αPh)
−1PhF

′(x)v‖

= sup
‖v‖≤1

‖(PhF ′(x)Ph + αPh)
−1PhF

′(x)(Ph + I − Ph)v‖

≤ sup
‖v‖≤1

‖(PhF ′(x)Ph + αPh)
−1PhF

′(x)Phv‖

+ sup
‖v‖≤1

‖(PhF ′(x)Ph + αPh)
−1PhF

′(x)(I − Ph)v‖

≤ (1 +
εh
α

)

≤ (1 +
ε0

α0

).

Lemma 2.4.2. Let e0 = eh,δ0,α and γρ be as in (2.4.21). Then e0 ≤ γρ.
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Proof. Observe that,

e0 = ‖yh,δ0,α − x
h,δ
0,α‖

= ‖R−1
α (Phx0)Ph[F (Phx0)− f δ]‖

= ‖R−1
α (Phx0)Ph[F (Phx0)− F (x̂)− F ′(Phx0)(Phx0 − x̂)

+F ′(Phx0)(Phx0 − x̂) + F (x̂)− f δ]‖

= ‖R−1
α (Phx0)Ph[

∫ 1

0

(F ′(x̂+ t(Phx0 − x̂))− F ′(Phx0))(Phx0 − x̂)dt

+F ′(Phx0)(Phx0 − x̂) + F (x̂)− f δ]‖

= ‖R−1
α (Phx0)PhF

′(Phx0)[

∫ 1

0

Φ(x̂+ t(Phx0 − x̂), Phx0, Phx0 − x̂)dt

+(Phx0 − x̂)] +R−1
α (Phx0)Ph(F (x̂)− f δ)‖

and hence by Assumption 2.2.2, Lemma 2.4.1 and the relation ‖R−1
α (Phx0)‖ ≤ 1

α
, we

have

e0 ≤ (1 +
ε0

α0

)

[
k0

2
‖Phx0 − x̂‖2 + ‖Phx0 − x̂‖

]
+
δ

α

= (1 +
ε0

α0

)

[
k0

2
‖Phx0 − x0 + x0 − x̂‖2 + ‖Phx0 − x0 + x0 − x̂‖

]
+
δ

α

≤ (1 +
ε0

α0

)

[
k0

2
(ρ+ bh)

2 + (ρ+ bh)

]
+
δ

α

≤ (1 +
ε0

α0

)

[
k0

2
(ρ+ b0)2 + (ρ+ b0)

]
+
δ0

α0

= γρ.

Let

q = (1 +
ε0

α0

)k0r. (2.4.22)

Then γρ
1−q < r, if

r ∈

1−
√

1− 4k0(1 + ε0
α0

)γρ

2k0(1 + ε0
α0

)
,
1 +

√
1− 4k0(1 + ε0

α0
)γρ

2k0(1 + ε0
α0

)

 . (2.4.23)

Theorem 2.4.3. Let yh,δn,α, x
h,δ
n,α and eh,δn,α be as in (2.4.18), (2.4.19) and (2.4.20) respec-

tively with δ ∈ (0, δ0] and α ∈ DN(α). Let γρ, q and r be as in (2.4.21), (2.4.22) and

(2.4.23) respectively. Then

(a) ‖xh,δn,α − y
h,δ
n−1,α‖ ≤ q‖yh,δn−1,α − x

h,δ
n−1,α‖;
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(b) ‖yh,δn,α − xh,δn,α‖ ≤ q2‖yh,δn−1,α − x
h,δ
n−1,α‖;

(c) eh,δn,α ≤ q2nγρ;

(d) xh,δn,α, y
h,δ
n,α ∈ Br(Phx0).

Proof. Observe that if xh,δn,α, y
h,δ
n,α ∈ Br(Phx0), then by Assumption 2.2.2 we have

xh,δn,α − y
h,δ
n−1,α = yh,δn−1,α − x

h,δ
n−1,α −R−1

α (Phx0)Ph[F (yh,δn−1,α)− F (xh,δn−1,α)

+α(yh,δn−1,α − x
h,δ
n−1,α)]

= R−1
α (Phx0)[(Rα(Phx0)− αPh)(yh,δn−1,α − x

h,δ
n−1,α)

−Ph(F (yh,δn−1,α)− F (xh,δn−1,α))]

= R−1
α (Phx0)Ph

∫ 1

0

[F ′(Phx0)− F ′(xh,δn−1,α + t(yh,δn−1,α − x
h,δ
n−1,α))]

×(yh,δn−1,α − x
h,δ
n−1,α)dt

= R−1
α (Phx0)PhF

′(Phx0)

∫ 1

0

Φ(Phx0, x
h,δ
n−1,α + t(yh,δn−1,α − x

h,δ
n−1,α),

yh,δn−1,α − x
h,δ
n−1,α)dt

and hence,

‖xh,δn,α − y
h,δ
n−1,α‖ ≤ (1 +

ε0

α0

)k0r‖yh,δn−1,α − x
h,δ
n−1,α‖. (2.4.24)

Again observe that if xh,δn,α, y
h,δ
n,α ∈ Br(Phx0), by Assumption 2.2.2 and (2.4.24) we have

yh,δn,α − xh,δn,α = xh,δn,α − y
h,δ
n−1,α −R−1

α (Phx0)Ph[F (xh,δn,α)− f δ + α(xh,δn,α − Phx0)]

= R−1
α (Phx0)[(Rα(Phx0)− αPh)(xh,δn,α − y

h,δ
n−1,α)

−Ph(F (xh,δn,α)− F (yh,δn−1,α))]

= R−1
α (Phx0)Ph

∫ 1

0

[F ′(Phx0)− F ′(yh,δn−1,α + t(xh,δn,α − y
h,δ
n−1,α)]

×(xh,δn,α − y
h,δ
n−1,α)dt

= R−1
α (Phx0)PhF

′(Phx0)

∫ 1

0

Φ(Phx0, y
h,δ
n−1,α + t(xh,δn,α − y

h,δ
n−1,α),

xh,δn,α − y
h,δ
n−1,α)dt

and hence,

‖yh,δn,α − xh,δn,α‖ ≤ (1 +
ε0

α0

)k0r‖xh,δn,α − y
h,δ
n−1,α‖

≤ q2‖yh,δn−1,α − x
h,δ
n−1,α‖. (2.4.25)
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Thus if xh,δn,α, y
h,δ
n,α ∈ Br(Phx0) then (a) and (b) follow from (2.4.24) and (2.4.25) respec-

tively. And by Lemma 2.4.2 and (2.4.25), (c) follows. Now using induction we shall

prove that xh,δn,α, y
h,δ
n,α ∈ Br(Phx0). Note that xh,δ0,α, y

h,δ
0,α ∈ Br(Phx0) and hence by (2.4.24)

‖xh,δ1,α − Phx0‖ ≤ ‖xh,δ1,α − y
h,δ
0,α‖+ ‖yh,δ0,α − x

h,δ
0,α‖

≤ (1 + q)e0

≤ e0

1− q
≤ γρ

1− q
< r

i.e., xh,δ1,α ∈ Br(Phx0), again by (2.4.25)

‖yh,δ1,α − Phx0‖ ≤ ‖yh,δ1,α − x
h,δ
1,α‖+ ‖xh,δ1,α − Phx0‖

≤ q2e0 + (1 + q)e0

≤ e0

1− q
≤ γρ

1− q
< r

i.e., yh,δ1,α ∈ Br(Phx0). Suppose xh,δk,α, y
h,δ
k,α ∈ Br(Phx0) for some k > 1. Then since

‖xh,δk+1,α − Phx0‖ ≤ ‖xh,δk+1,α − x
h,δ
k,α‖+ ‖xh,δk,α − x

h,δ
k−1,α‖+ · · ·+ ‖xh,δ1,α − Phx0‖ (2.4.26)

we shall first find an estimate for ‖xh,δk+1,α − x
h,δ
k,α‖. Note that by (a) and (b) we have

‖xh,δk+1,α − x
h,δ
k,α‖ ≤ ‖xh,δk+1,α − y

h,δ
k,α‖+ ‖yh,δk,α − x

h,δ
k,α‖

≤ (q + 1)‖yh,δk,α − x
h,δ
k,α‖

≤ (1 + q)q2ke0.

Therefore by (2.4.26) we have

‖xh,δk+1,α − Phx0‖ ≤ (1 + q)[q2k + q2(k−1) + · · ·+ 1]e0 (2.4.27)

≤ (1 + q)

[
1− q2k+1

1− q2

]
e0

≤ e0

1− q
≤ γρ

1− q
< r.
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So by induction xh,δn,α ∈ Br(Phx0) for all n ≥ 0. Again by (a), (b) and (2.4.27) we have

‖yh,δk+1,α − Phx0‖ ≤ ‖yh,δk+1,α − x
h,δ
k+1,α‖+ ‖xh,δk+1,α − Phx0‖

≤ q2k+2e0 + (1 + q)[q2k + q2(k−1) + · · ·+ 1]e0

≤ (1 + q)

[
1− q2k+3

1− q2

]
e0

≤ e0

1− q
≤ γρ

1− q
< r.

Thus yh,δk+1,α ∈ Br(Phx0) and hence by induction yh,δn,α ∈ Br(Phx0) for all n ≥ 0. This

completes the proof of the theorem.

The main result of this section is the following theorem.

Theorem 2.4.4. Let yh,δn,α and xh,δn,α be as in (2.4.18) and (2.4.19) respectively and as-

sumptions of Theorem 2.4.3 hold. Then (xh,δn,α) is Cauchy sequence in Br(Phx0) and

converges to xh,δα ∈ Br(Phx0). Further Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ and

‖xh,δn,α − xh,δα ‖ ≤ Cq2n

where C = γρ
(1−q) .

Proof. Using the relation (b) and (c) of Theorem 2.4.3, we obtain

‖xh,δn+m,α − xh,δn,α‖ ≤
m−1∑
i=0

‖xh,δn+i+1,α − x
h,δ
n+i,α‖

≤
m−1∑
i=0

(1 + q)eh,δn+i,α

≤
m−1∑
i=0

(1 + q)q2(n+i)e0

≤ (1 + q)q2n

[
1− q2m

1− q2

]
γρ

≤ Cq2n.

Thus (xh,δn,α) is a Cauchy sequence in Br(Phx0) and hence it converges, say to xh,δα ∈
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Br(Phx0). Observe that,

‖Ph[F (xh,δn,α)− f δ + α(xh,δn,α − x0)]‖ = ‖Rα(xh,δ0,α)(xh,δn,α − yh,δn,α)‖

≤ ‖Rα(xh,δ0,α)‖‖xh,δn,α − yh,δn,α‖

= ‖(PhF ′(xh,δ0,α)Ph + αPh)‖eh,δn,α
≤ (CF + α)q2nγρ. (2.4.28)

Now by letting n→∞ in (2.4.28) we obtain

Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ. (2.4.29)

This completes the proof.

2.5 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS FOR PROJECTION METHOD

The objective of this section is to obtain an error estimate for ‖xh,δn,α − x̂‖ under the

Assumption 2.2.1 and Assumption 2.2.2.

Proposition 2.5.1. Let F : D(F ) ⊆ X → X be a monotone operator in X. Let xh,δα be

the solution of (2.4.29) and xhα := xh,0α . Then

‖xh,δα − xhα‖ ≤
δ

α
.

Proof. The result follows from the monotonicity of F and the relation;

Ph[F (xh,δα )− F (xhα) + α(xh,δα − xhα)] = Ph(f
δ − f).

Theorem 2.5.2. Let ρ < 2
k0(1+

ε0
α0

)
and x̂ ∈ D(F ) be a solution of (1.1.1). And let As-

sumption 2.2.1, Assumption 2.2.2 and the assumptions in Proposition 2.5.1 be satisfied.

Then

‖xhα − x̂‖ ≤ C̃
[
ϕ(α) +

εh
α

]
where C̃ := max{1,ρ+‖x̂‖}

1−(1+
ε0
α0

)
k0
2
ρ
.
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Proof. Let M :=
∫ 1

0
F ′(x̂+ t(xhα − x̂))dt. Then from the relation

Ph[F (xhα)− F (x̂) + α(xhα − x0)] = 0

we have

(PhMPh + αPh)(x
h
α − x̂) = Phα(x0 − x̂) + PhM(I − Ph)x̂.

Hence,

xhα − x̂ = [(PhMPh + αPh)
−1Ph − (F ′(x̂) + αI)−1]α(x0 − x̂)

+(F ′(x̂) + αI)−1α(x0 − x̂) + (PhMPh + αPh)
−1PhM(I − Ph)x̂

= (PhMPh + αPh)
−1Ph[F

′(x̂)−M +M(I − Ph)]

×(F ′(x̂) + αI)−1α(x0 − x̂) + (F ′(x̂) + αI)−1α(x0 − x̂)

+(PhMPh + αPh)
−1PhM(I − Ph)x̂

= ζ1 + ζ2 (2.5.30)

where ζ1 := (PhMPh + αPh)
−1Ph[F

′(x̂)−M +M(I − Ph)](F ′(x̂) + αI)−1α(x0 − x̂) and

ζ2 := (F ′(x̂) + αI)−1α(x0 − x̂) + (PhMPh + αPh)
−1PhM(I − Ph)x̂.

Observe that,

‖ζ1‖ = ‖(PhMPh + αPh)
−1Ph

∫ 1

0

[F ′(x̂)− F ′(x̂+ t(xhα − x̂))]dt

×(F ′(x̂) + αI)−1α(x0 − x̂)‖

+‖(PhMPh + αPh)
−1PhM(I − Ph)(F ′(x̂) + αI)−1α(x0 − x̂)‖

≤ ‖(PhMPh + αPh)
−1Ph

∫ 1

0

[F ′(x̂+ t(xhα − x̂))(Ph + I − Ph)

φ(x̂, x̂+ t(xhα − x̂), (F ′(x̂) + αI)−1α(x0 − x̂))]dt‖+
εh
α
ρ

≤ (1 +
εh
α

)
k0

2
ρ‖xhα − x̂‖+

εh
α
ρ

≤ (1 +
ε0

α0

)
k0

2
ρ‖xhα − x̂‖+

εh
α
ρ (2.5.31)

and

‖ζ2‖ ≤ φ(α) +
εh
α
‖x̂‖. (2.5.32)

The result now follows from (2.5.30), (2.5.31) and (2.5.32).

Theorem 2.5.3. Let xh,δn,α be as in (2.4.19). And the assumptions in Theorem 2.4.4 and

Theorem 2.5.2 hold. Then

‖xh,δn,α − x̂‖ ≤ Cq2n + max{1, C̃}
[
ϕ(α) +

δ + εh
α

]
.
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Proof. Observe that,

‖xh,δn,α − x̂‖ ≤ ‖xh,δn,α − xh,δα ‖+ ‖xh,δα − xhα‖+ ‖xhα − x̂‖

so, by Proposition 2.5.1, Theorem 2.4.4 and Theorem 2.5.2 we obtain,

‖xh,δn,α − x̂‖ ≤ Cq2n +
δ

α
+ C̃

[
ϕ(α) +

εh
α

]
≤ Cq2n + max{1, C̃}

[
ϕ(α) +

δ + εh
α

]
.

Let

nδ := min

{
n : q2n ≤ δ + εh

α

}
(2.5.33)

and

C0 = C + max{1, C̃}. (2.5.34)

Theorem 2.5.4. Let xh,δnδ,α be as in (2.4.19) and the assumptions in Theorem 2.5.3 be

satisfied. And let nδ and C0 be as in (2.5.33) and (2.5.34) respectively. Then

‖xh,δnδ,α − x̂‖ ≤ C0

[
ϕ(α) +

δ + εh
α

]
. (2.5.35)

2.5.1 A priori choice of the parameter

Note that the error estimate ϕ(α) + δ+εh
α

in (2.5.35) is of optimal order if αδ := α(δ, h)

satisfies, ϕ(αδ)αδ = δ + εh.

Now as in section 2.3.1, using the function ψ(λ) := λϕ−1(λ), 0 < λ ≤ a we have

δ + εh = αδϕ(αδ) = ψ(ϕ(αδ)), so that αδ = ϕ−1(ψ−1(δ + εh)).

Theorem 2.5.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a and the assumptions in Theorem

2.5.4 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ + εh)) and let nδ be as in (2.5.33). Then

‖xh,δnδ,α − x̂‖ = O(ψ−1(δ + εh)).
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2.5.2 An adaptive choice of the parameter

In this method, the regularization parameter α is selected from some finite set

DN(α) := {αi = µiα0, i = 0, 1, · · · , N}

where µ > 1, α0 > 0 and let

ni := min

{
n : q2n ≤ δ + εh

αi

}
.

Then for i = 0, 1, · · · , N, we have

‖xh,δni,αi − x
h,δ
αi
‖ ≤ C

δ + εh
αi

, ∀i = 0, 1, · · ·N.

Let xi := xh,δni,αi , i = 0, 1, · · · , N. Proof of the following theorem is analogous to the

proof of the Theorem 2.3.7.

Theorem 2.5.6. Assume that ∃ i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ+εh
αi
. Let the

assumptions of Theorem 2.5.4 and Theorem 2.5.5 hold and let

l := max

{
i : ϕ(αi) ≤

δ + εh
αi

}
< N,

k := max{i : ‖xi − xj‖ ≤ 4C0
δ + εh
αj

, j = 0, 1, 2, · · · , i}.

Then l ≤ k and

‖x̂− xk‖ ≤ cψ−1(δ + εh)

where c = 6C0µ.

2.6 IMPLEMENTATION OF ADAPTIVE CHOICE

RULE

Following steps are involved in implementing the adaptive choice rule:

• Choose α0 > 0 such that δ0 <
α0

4k0(1+
ε0
α0

)
and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, · · · , N.

Finally the adaptive algorithm associated with the choice of the parameter specified in

Theorem 2.5.6 involves the following steps:
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2.6.1 Algorithm

1. Set i = 0.

2. Choose ni = min
{
n : q2n ≤ δ+εh

αi

}
.

3. Solve xi := xh,δni,αi by using the iteration (2.4.18) and (2.4.19).

4. If ‖xi − xj‖ > 4C0
δ+εh
αj

, j < i, then take k = i− 1 and return xk.

5. Else set i = i+ 1 and go to Step 2.

2.7 NUMERICAL EXAMPLE

We apply the algorithm by choosing a sequence of finite dimensional subspace (Vn)

of X with dimension of Vn = n + 1. Precisely we choose Vn as the linear span of

{v1, v2, · · · , vn+1} where vi, i = 1, 2, · · · , n + 1 are the linear splines in a uniform grid

of n + 1 points in [0, 1]. Note that xh,δn,α, y
h,δ
n,α ∈ Vn. So yh,δn,α =

∑n+1
i=1 ξ

n
i vi and xh,δn,α =∑n+1

i=1 η
n
i vi, where ξni and ηni , i = 1, 2, · · · , n+ 1 are some scalars. Then from (2.4.18) we

have

(PhF
′(xh,δ0,α)Ph + αPh)(y

h,δ
n,α − xh,δn,α) = Ph[f

δ − F (xh,δn,α) + α(xh,δ0,α − xh,δn,α)]. (2.7.36)

Observe that (yh,δn,α − xh,δn,α) is a solution of (2.7.36) if and only if

(ξn − ηn) = (ξn1 − ηn1 , ξn2 − ηn2 , · · · , ξnn+1 − ηnn+1)T

is the unique solution of

(Qn + αBn)(ξn − ηn) = Bn[µ̄n − Fh1 + α(X0 − η̄n)] (2.7.37)

where

Qn = [〈F ′(xh,δ0,α)vi, vj〉], i, j = 1, 2 · · · , n+ 1

Bn = [〈vi, vj〉], i, j = 1, 2 · · · , n+ 1

µ̄n = [f δ(t1), f δ(t2), · · · , f δ(tn+1)]T

Fh1 = [F (xh,δn,α)(t1), F (xh,δn,α)(t2), · · · , F (xh,δn,α)(tn+1)]T

X0 = [x0(t1), x0(t2), · · · , x0(tn+1)]T
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and t1, t2, · · · , tn+1 are the grid points. Further from (2.4.19) it follows that

(PhF
′(xh,δ0,α)Ph + αPh)(x

h,δ
n+1,α − yh,δn,α) = Ph[f

δ − F (yh,δn,α) + α(xh,δ0,α − yh,δn,α)] (2.7.38)

and hence (xh,δn+1,α − yh,δn,α) is a solution of (2.7.38) if and only if

(ηn+1 − ξn) = (ηn+1
1 − ξn1 , ηn+1

2 − ξn2 , · · · , ηn+1
n+1 − ξnn+1)T

is the unique solution of

(Qn + αBn)(ηn+1 − ξn) = Bn[µ̄n − Fh2 + α(X0 − ξ̄n)] (2.7.39)

where Fh2 = [F (yh,δn,α)(t1), F (yh,δn,α)(t2), · · · , F (yh,δn,α)(tn+1)]T .Note that (2.7.37) and (2.7.39)

are uniquely solvable as Qn is positive definite matrix (i.e., xQnx
T > 0 for all non-zero

vector x) and Bn is an invertible matrix.

Example 2.7.1. (see Semenova (2010), section 4.3) Let F : D(F ) ⊆ H1(0, 1) −→

L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u(s)3ds,

where

k(t, s) =


(1− t)s, 0 ≤ s ≤ t ≤ 1

(1− s)t, 0 ≤ t ≤ s ≤ 1

.

Then for all x(t), y(t) : x(t) > y(t) :

〈F (x)− F (y), x− y〉 =

∫ 1

0

[∫ 1

0

k(t, s)(x(s)3 − y(s)3)ds

]
(x− y)(t)dt ≥ 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)u(s)2w(s)ds. (2.7.40)
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Note that for u, v > 0,

[F ′(v)− F ′(u)]w = 3

∫ 1

0

k(t, s)[v(s)2 − u(s)2]w(s)ds

:= F ′(u)Φ(v, u, w)

where Φ(v, u, w) =

[
v(s)2

u(s)2
− 1

]
w(s).

So Φ(v, u, w) satisfies Assumption 2.2.2 (see, Scherzer et al. (1993), Example 2.7).

In our computation, we take f(t) = t−t11
110

and f δ = f + δ. Then the exact solution

x̂(t) = t3.

We use

x0(t) = t3 +
3

56
(t− t8)

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ = ϕ(F ′(x̂))1

where ϕ(λ) = λ.

Observe that while performing numerical computation on finite dimensional subspace

(Vn) of X, one has to consider the operator PnF
′(.)Pn instead of F ′(.), where Pn is the

orthogonal projection on to Vn. Thus incurs an additional error ‖PnF ′(.)Pn − F ′(.)‖ =

O(‖F ′(.)(I − Pn)‖).

Let ‖F ′(.)(I−Pn)‖ ≤ εn. For the operator F ′(.) defined in (2.7.40), εn = O(n−2) (cf.

Groetsch et al. (1982)). Thus we expect to obtain the rate of convergence O((δ + εn)
1
2 ).

We choose α0 = (1.5)δ, µ = 1.5 and q = 0.51. The results of the computation (four

decimal places) are presented in Table 2.1. The plots of the exact solution and the
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approximate solution xh,δn,α obtained for n = 2i, i = 3, · · · , 10 are given in Figures 2.1

through 2.8.

n k nk δ + εn αk ‖xk − x̂‖ ‖xk−x̂‖
(δ+εn)1/2

8 2 3 0.1016 0.3428 0.2634 0.8266
16 2 3 0.1004 0.3388 0.1962 0.6191
32 2 3 0.1001 0.3378 0.1429 0.4518
64 2 3 0.1000 0.3376 0.1036 0.3275
128 2 3 0.1000 0.3375 0.0755 0.2387
256 2 3 0.1000 0.3375 0.0560 0.1772
512 2 3 0.1000 0.3375 0.0430 0.1360
1024 2 3 0.1000 0.3375 0.0347 0.1096

Table 2.1: Iterations and corresponding error estimates

Figure 2.1: Curves of the exact and approximate solutions when n=8

The last column of the Table 2.1 shows that the error ‖xk − x̂‖ is of O((δ + εn)
1
2 ).
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Figure 2.2: Curves of the exact and approximate solutions when n=16

Figure 2.3: Curves of the exact and approximate solutions when n=32
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Figure 2.4: Curves of the exact and approximate solutions when n=64

Figure 2.5: Curves of the exact and approximate solutions when n=128
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Figure 2.6: Curves of the exact and approximate solutions when n=256

Figure 2.7: Curves of the exact and approximate solutions when n=512
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Figure 2.8: Curves of the exact and approximate solutions when n=1024

� 2 �



Chapter 3

TWO STEP NEWTON TYPE
ITERATIVE METHOD FOR THE
APPROXIMATE
IMPLEMENTATION OF
LAVRENTIEV
REGULARIZATION

In this chapter we present a semilocal convergence analysis of two step Newton Lavren-

tiev method for solving ill-posed operator equations in a Hilbert space setting. Using

a two-step analysis we obtained local cubic convergence. We provide also the finite

dimensional realization of the method considered. The test example provided endorses

the reliability and effectiveness of our method.

3.1 INTRODUCTION

In this chapter, we consider a Cubic convergence yielding Newton Lavrentiev Method

(CNLM) for approximately solving the nonlinear ill-posed operator equation (1.1.1).

Instead of (2.1.1) and (2.1.2) we consider the following (CNLM):

ỹδn,α = x̃δn,α −R−1
α (x̃δn,α)[F (x̃δn,α)− f δ + α(x̃δn,α − x0)] (3.1.1)

and

x̃δn+1,α = ỹδn,α −R−1
α (x̃δn,α)[F (ỹδn,α)− f δ + α(ỹδn,α − x0)] (3.1.2)

45
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where

Rα(x) = F ′(x) + αI, (3.1.3)

x̃δ0,α := x0 and the regularization parameter α is chosen from (2.1.3) for approximating

(2.1.4).

Note that with the above notation

‖R−1
α (x)F ′(x)‖ ≤ 1. (3.1.4)

The plan of this chapter is as follows. In section 3.1, we introduce (CNLM) and prove

that the method converges cubically to a solution of the equation F (x)+α(x−x0) = f δ in

section 3.2. The error analysis under a general source condition is considered in section

3.3. Projection scheme of CNLM is considered in section 3.4 and the corresponding error

analysis is given in section 3.5. Section 3.6 deals with the implementation of adaptive

parameter choice strategy. An example and the computational results are given in

section 3.7.

3.2 NEWTON LAVRENTIEV METHOD

Let

σ̃δn,α := ‖ỹδn,α − x̃δn,α‖, ∀n ≥ 0 (3.2.5)

and for 0 < k0 ≤ 1, let g : (0, 1)→ (0, 1) be the function defined by

g(t) =
k2

0

8
(4 + 3k0t)t

2 ∀t ∈ (0, 1). (3.2.6)

Hereafter we assume that δ0 < α0 for some α0 > 0 and ‖x0 − x̂‖ ≤ ρ where

ρ ≤

√
1 + 2k0(1− δ0

α0
)− 1

k0

.

Let

γρ :=
k0

2
ρ2 + ρ+

δ0

α0

. (3.2.7)

Remark 3.2.1. Note that we use the condition 0 < k0 ≤ 1, to ensure that g(γρ) < 1 for

γρ < 1. Thus if k0 > 1, then choose ρ, such that g(γρ) =
k20
8

(4 + 3k0γρ)γ
2
ρ < 1, so that

one can avoid the restriction k0 ≤ 1.
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For convenience, we use the notation x̃n, ỹn and σ̃n for x̃δn,α, ỹ
δ
n,α and σ̃δn,α respectively.

Theorem 3.2.2. Let ỹn and x̃n be as in (3.1.1) and (3.1.2) respectively with δ ∈ (0, δ0]

and let σ̃n, g and γρ be as in equation (3.2.5), (3.2.6) and (3.2.7) respectively. Let

Assumption 2.2.2 hold. Then

(a) ‖x̃n − ỹn−1‖ ≤ k0σ̃n−1

2
‖ỹn−1 − x̃n−1‖;

(b) ‖x̃n − x̃n−1‖ ≤ (1 + k0σ̃n−1

2
)‖ỹn−1 − x̃n−1‖;

(c) ‖ỹn − x̃n‖ ≤ g(σ̃n−1)‖ỹn−1 − x̃n−1‖;

(d) g(σ̃n) ≤ g(γρ)
3n , ∀n ≥ 0;

(e) σ̃n ≤ g(γρ)
(3n−1)/2γρ ∀n ≥ 0.

Proof. Observe that

x̃n − ỹn−1 = ỹn−1 − x̃n−1 −R−1
α (x̃n−1)[F (ỹn−1)− F (x̃n−1) + α(ỹn−1 − x̃n−1)]

= R−1
α (x̃n−1)[(Rα(x̃n−1)− αI)(ỹn−1 − x̃n−1)− (F (ỹn−1)− F (x̃n−1))]

= R−1
α (x̃n−1)

∫ 1

0

[F ′(x̃n−1)− F ′(x̃n−1 + t(ỹn−1 − x̃n−1))](ỹn−1 − x̃n−1)dt

and hence by Assumption 2.2.2 and (3.1.4), we have

‖x̃n − ỹn−1‖ ≤ ‖
∫ 1

0

Φ(x̃n−1, x̃n−1 + t(ỹn−1 − x̃n−1), ỹn−1 − x̃n−1)dt‖

≤ k0

2
‖ỹn−1 − x̃n−1‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖x̃n − x̃n−1‖ ≤ ‖x̃n − ỹn−1‖+ ‖ỹn−1 − x̃n−1‖.

To prove (c) we observe that

ỹn − x̃n = x̃n − ỹn−1 −R−1
α (x̃n)[F (x̃n)− f δ + α(x̃n − x0)]

+R−1
α (x̃n−1)[F (ỹn−1)− f δ + α(ỹn−1 − x0)]

= x̃n − ỹn−1 −R−1
α (x̃n)[F (x̃n)− F (ỹn−1) + α(x̃n − ỹn−1)]

+[R−1
α (x̃n−1)−R−1

α (x̃n)][F (ỹn−1)− f δ + α(ỹn−1 − x0)]
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= R−1
α (x̃n)[Rα(x̃n)(x̃n − ỹn−1)− (F (x̃n)− F (ỹn−1))− α(x̃n − ỹn−1)]

+[R−1
α (x̃n−1)−R−1

α (x̃n)][F (ỹn−1)− f δ + α(ỹn−1 − x0)]

and hence

σ̃n ≤ ‖R−1
α (x̃n)

∫ 1

0

[F ′(x̃n)− F ′(ỹn−1 + t(x̃n − ỹn−1)](x̃n − ỹn−1)dt‖

+‖R−1
α (x̃n)[F ′(x̃n)− F ′(x̃n−1)]R−1

α (x̃n−1)[F (ỹn−1)− f δ + α(ỹn−1 − x0)]‖

≤ ‖R−1
α (x̃n)

∫ 1

0

[F ′(x̃n)− F ′(ỹn−1 + t(x̃n − ỹn−1))](x̃n − ỹn−1)dt‖

+‖R−1
α (x̃n)(F ′(x̃n)− F ′(x̃n−1))(ỹn−1 − x̃n)‖

≤ ‖
∫ 1

0

Φ(x̃n, ỹn−1 + t(x̃n − ỹn−1), x̃n − ỹn−1)dt‖+ ‖Φ(x̃n, x̃n−1, ỹn−1 − x̃n)‖

≤ k0

2
‖x̃n − ỹn−1‖2 + k0‖x̃n − x̃n−1‖‖x̃n − ỹn−1‖.

The last but one step follows from the Assumption 2.2.2 and (3.1.4). Therefore by (a)

and (b) we have (see, Argyros and Hilout (2010))

σ̃n ≤
(
k2

0

2
+

3k3
0

8
‖ỹn−1 − x̃n−1‖

)
‖ỹn−1 − x̃n−1‖3

≤ g(σ̃n−1)σ̃n−1. (3.2.8)

This completes the proof of (c). Now since for µ ∈ (0, 1), g(µt) ≤ µ2g(t), for all t ∈ (0, 1),

by (3.2.8) and Lemma 2.2.1 with γρ as in (3.2.7) we have,

g(σ̃n) ≤ g(σ̃0)3n ≤ g(γρ)
3n

and

σ̃n ≤ g(σ̃n−1)σ̃n−1

≤ g(σ̃0)3n−1

g(σ̃n−2)σ̃n−2

≤ g(σ̃0)3n−1

g(σ̃0)3n−2

g(σ̃n−3)σ̃n−3

≤ g(σ̃0)3n−1+3n−2+···+1σ̃0

≤ g(σ̃0)(3n−1)/2σ̃0

≤ g(γρ)
(3n−1)/2γρ.

The last step follows from the relation σ̃0 = e0 and Lemma 2.2.1 with γρ as in (3.2.7).

This completes the proof of the theorem.
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Theorem 3.2.3. Let 0 < g(γρ) < 1, r = [ 1
1−g(γρ)

+ k0
2

γρ
1−g(γρ)2

]γρ and the assumptions of

Theorem 3.2.2 hold. Then x̃n, ỹn ∈ Br(x0), for all n ≥ 0.

Proof. By induction we shall prove ‖x̃n − x0‖ ≤
∑n−1

i=0 [1 + k0σ̃0
2
g(σ̃0)i]g(σ̃0)iσ̃0 and

x̃n, ỹn ∈ Br(x0), for all n ≥ 0. Note that σ̃0 = e0, so by Lemma 2.2.1 with γρ as in

(3.2.7) and (b) of Theorem 3.2.2 we have

‖x̃1 − x0‖ ≤ [1 +
k0

2
σ̃0]σ̃0 (3.2.9)

≤ [1 +
k0

2
γρ]γρ

< r

i.e., ‖x̃1 − x0‖ ≤ [1 + k0σ̃0
2

]σ̃0 and x̃1 ∈ Br(x0). Again note that by Lemma 2.2.1 with γρ

as in (3.2.7), (c) of Theorem 3.2.2 and (3.2.9), we have

‖ỹ1 − x0‖ ≤ ‖ỹ1 − x̃1‖+ ‖x̃1 − x0‖

≤ [1 + g(σ̃0) +
k0

2
σ̃0]σ̃0

≤ [1 + g(γρ) +
k0

2
γρ]γρ

< r

i.e., ỹ1 ∈ Br(x0).

Suppose

‖x̃k − x0‖ ≤
k−1∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0 (3.2.10)

and x̃k, ỹk ∈ Br(x0). Then by Lemma 2.2.1 with γρ as in (3.2.7), (b) of Theorem 3.2.2

and (3.2.10), we have

‖x̃k+1 − x0‖ ≤ ‖x̃k+1 − x̃k‖+ ‖x̃k − x0‖

≤ (1 +
k0

2
σ̃k)σ̃k +

k−1∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0

≤ [1 +
k0

2
g(σ̃0)kσ̃0]g(σ̃0)kσ̃0 +

k−1∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0

≤
k∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0 (3.2.11)



50 Chapter 3

≤
k∑
i=0

[1 +
k0γρ

2
g(γρ)

i]g(γρ)
iγρ

≤
[

1

1− g(γρ)
+
k0

2

γρ
1− g(γρ)2

]
γρ

< r.

So, by induction ‖x̃n − x0‖ ≤
∑n−1

i=0 [1 + k0σ̃0
2
g(σ̃0)i]g(σ̃0)iσ̃0 and x̃n ∈ Br(x0), for all

n ≥ 0. Again by Lemma 2.2.1 with γρ as in (3.2.7), (c) of Theorem 3.2.2 and (3.2.11),

we have

‖ỹk+1 − x0‖ ≤ ‖ỹk+1 − x̃k+1‖+ ‖x̃k+1 − x0‖

≤ g(σ̃k)σ̃k +
k∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0

≤ g(σ̃0)k+1σ̃0 +
k∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)i]g(σ̃0)iσ̃0

≤
k+1∑
i=0

g(σ̃0)iσ̃0 +
k∑
i=0

k0

2
g(σ̃0)2i(σ̃0)2

≤
k+1∑
i=0

g(γρ)
iγρ +

k∑
i=0

k0

2
g(γρ)

2i(γρ)
2

≤
[

1

1− g(γρ)
+
k0

2

γρ
1− g(γρ)2

]
γρ

< r.

Thus ỹk+1 ∈ Br(x0) and hence by induction ỹn ∈ Br(x0), for all n ≥ 0. This completes

the proof.

The main result of this section is the following theorem.

Theorem 3.2.4. Let ỹn and x̃n be as in (3.1.1) and (3.1.2) respectively with δ ∈ (0, δ0]

and assumptions of Theorem 3.2.3 hold. Then (x̃n) is Cauchy sequence in Br(x0) and

converges to xδα ∈ Br(x0). Further F (xδα) + α(xδα − x0) = f δ and

‖x̃n − xδα‖ ≤ Ce−γ3n

where C =
[

1
1−g(γρ)3

+ k0γρ
2

1
1−(g(γρ)2)3

g(γρ)
3n
]
γρ and γ = − log g(γρ).
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Proof. Using the relation (b) and (e) of Theorem 3.2.2, we obtain

‖x̃n+m − x̃n‖ ≤
m−1∑
i=0

‖x̃n+i+1 − x̃n+i‖

≤
m−1∑
i=0

[1 +
k0σ̃0

2
g(σ̃0)3n+i ]g(σ̃0)3n+iσ̃0

= [1 +
k0σ̃0

2
g(σ̃0)3n ]g(σ̃0)3nσ̃0 + [1 +

k0σ̃0

2
g(σ̃0)3n+1

]g(σ̃0)3n+1

σ̃0 + · · ·

+[1 +
k0σ̃0

2
g(σ̃0)3n+m ]g(σ̃0)3n+mσ̃0

≤ [(1 + g(σ̃0)3 + g(σ̃0)32 + · · ·+ g(σ̃0)3m) +
k0σ̃0

2
(1 +

(g(σ̃0)2)3 + (g(σ̃0)2)32 + · · ·+ (g(σ̃0)2)3m)g(σ̃0)3n ]g(σ̃0)3nσ̃0

≤ Cg(σ̃0)3n

≤ Cg(γρ)
3n

≤ Ce−γ3n .

Thus x̃n is a Cauchy sequence in Br(x0) and hence it converges, say to xδα ∈ Br(x0).

Observe that

‖F (x̃n)− f δ + α(x̃n − x0)‖ = ‖Rα(x̃n)(x̃n − ỹn)‖

≤ ‖Rα(x̃n)‖‖x̃n − ỹn‖

≤ (CF + α)g(σ̃0)3nσ̃0

≤ (CF + α)g(γρ)
3nγρ. (3.2.12)

Now by letting n→∞ in (3.2.12) we obtain F (xδα) + α(xδα − x0) = f δ. This completes

the proof.

Hereafter we assume that

ρ ≤ r. (3.2.13)

Remark 3.2.5. Note that (3.2.13) is satisfied if 4(1−g(γρ)2)2

9γ4ρ

[
2(1− δ0

α0
)− 3γ2ρ

1−g(γρ)2

]
≤

k0 ≤ 1. Further observe that 0 < g(γρ) < 1 and hence γ > 0. So by (1.5.12), sequence

(x̃n) converges cubically to xδα.
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3.3 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS

The objective of this section is to obtain an error estimate for ‖x̃δn,α− x̂‖ under a source

condition on x0 − x̂.

Combining the estimates in Proposition 2.3.2, Theorem 2.3.3 and Theorem 3.2.4 we

obtain the following;

Theorem 3.3.1. Let x̃n be as in (3.1.2) and let assumptions in Proposition 2.3.2,

Theorem 2.3.3 and Theorem 3.2.4 be satisfied. Then

‖x̃n − x̂‖ ≤ Ce−γ3n + C1

[
ϕ(α) +

δ

α

]

where C1 = k0r + 1.

Let

C̄ := max{C, k0r}+ 1, (3.3.14)

and let

nδ := min

{
n : e−γ3n ≤ δ

α

}
. (3.3.15)

Theorem 3.3.2. Let xδα be the unique solution of (2.1.4) and x̃n be as in (3.1.2). Let

assumptions in Theorem 3.3.1 be satisfied. Let C̄ and nδ be as in (3.3.14) and (3.3.15)

respectively. Then

‖x̃nδ − x̂‖ ≤ C̄

[
ϕ(α) +

δ

α

]
. (3.3.16)

3.3.1 A priori choice of the parameter

In view of the observations in section 2.3.1 of Chapter 2 and (3.3.16) we have the

following.
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Theorem 3.3.3. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assumptions in Theorem

3.3.2 hold. For δ > 0, let α := αδ = ϕ−1(ψ−1(δ)) and let nδ be as in (3.3.15). Then

‖x̃nδ − x̂‖ = O(ψ−1(δ)).

3.3.2 An adaptive choice of the parameter

Let

DN(α) := {αi = µiα0, i = 0, 1, · · · , N}

where µ > 1, α0 > 0 and let

ni := min

{
n : e−γ3n ≤ δ

αi

}
.

Then for i = 0, 1, · · · , N, we have

‖x̃δni,αi − x
δ
αi
‖ ≤ c

δ

αi
, ∀i = 0, 1, · · ·N.

Let x̃i := x̃δni,αi . We select the regularization parameter α = αi from the set DN(α)

and operate only with corresponding x̃i, i = 0, 1, · · · , N. The proof of the following

theorem is analogous to the proof of the Theorem 2.3.7.

Theorem 3.3.4. Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ
αi
.

Let assumptions of Theorem 3.5.2 and Theorem 3.5.3 hold and let

l := max

{
i : ϕ(αi) ≤

δ

αi

}
< N,

k := max

{
i : ‖x̃i − x̃j‖ ≤ 4C̄

δ

αj
, j = 0, 1, 2, · · · , i

}
.

Then l ≤ k and

‖x̂− x̃k‖ ≤ cψ−1(δ)

where c = 6C̄µ.
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3.4 PROJECTION METHOD AND ITS CONVER-

GENCE

The purpose of this section is to obtain an approximate solution for the equation (2.1.4),

in the finite dimensional subspace of X.

Let x̃h,δ0,α := Phx0 be the projection of the initial guess x0 on to R(Ph), the range of

Ph and let Rα(x) := PhF
′(x)Ph+αPh with α > α0 > 0. We define the iterative sequence

as:

ỹh,δn,α = x̃h,δn,α −R−1
α (x̃h,δn,α)Ph[F (x̃h,δn,α)− f δ + α(x̃h,δn,α − x0)] (3.4.17)

and

x̃h,δn+1,α = ỹh,δn,α −R−1
α (x̃h,δn,α)Ph[F (ỹh,δn,α)− f δ + α(ỹh,δn,α − x0)]. (3.4.18)

Note that the iteration (3.4.17) and (3.4.18) are the finite dimensional realization of the

iteration (3.1.1) and (3.1.2). We will be selecting the parameter α = αi from some finite

set defined in (2.1.3) using the adaptive method considered by Perverzev and Schock in

Pereverzyev and Schock (2005).

Let

σ̃h,δn,α := ‖ỹh,δn,α − x̃h,δn,α‖, ∀n ≥ 0 (3.4.19)

For 0 < k0 < min

{
1,

√
8

(1+
ε0
α0

)
√

4+3(1+
ε0
α0

)

}
, let g̃ : (0, 1) → (0, 1) be the function defined

by

g̃(t) =
k2

0

8
(1 +

ε0

α0

)2

[
4 + 3k0(1 +

ε0

α0

)t

]
t2 ∀t ∈ (0, 1). (3.4.20)

Hereafter we assume that b0 <

√
1+

2k0
(1+

ε0
α0

)
(1− δ0

α0
)−1

k0
, δ0 < α0 for some α0 > 0 and ‖x0 −

x̂‖ ≤ ρ where

ρ ≤

√
1 + 2k0

(1+
ε0
α0

)
(1− δ0

α0
)− 1

k0

− b0.

Let

γρ := (1 +
ε0

α0

)[
k0

2
(ρ+ b0)2 + (ρ+ b0)] +

δ0

α0

. (3.4.21)

Lemma 3.4.1. Let ỹh,δn,α, x̃h,δn,α and σ̃h,δn,α be as in (3.4.17), (3.4.18) and (3.4.19) respec-

tively with δ ∈ (0, δ0]. And let Assumption 2.2.2 hold. Then
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(a) ‖x̃h,δn,α − ỹ
h,δ
n−1,α‖ ≤ k0

2
(1 + ε0

α0
)σ̃h,δn−1,α‖ỹ

h,δ
n−1,α − x̃

h,δ
n−1,α‖;

(b) ‖x̃h,δn,α − x̃
h,δ
n−1,α‖ ≤ (1 + k0

2
(1 + ε0

α0
)σ̃h,δn−1,α)‖ỹh,δn−1,α − x̃

h,δ
n−1,α‖;

Proof. Observe that

x̃h,δn,α − ỹ
h,δ
n−1,α = ỹh,δn−1,α − x̃

h,δ
n−1,α −R−1

α (x̃h,δn−1,α)Ph[F (ỹh,δn−1,α)− F (x̃h,δn−1,α)

+α(ỹh,δn−1,α − x̃
h,δ
n−1,α)]

= R−1
α (x̃h,δn−1,α)[(Rα(x̃h,δn−1,α)− αPh)(ỹh,δn−1,α − x̃

h,δ
n−1,α)

−Ph(F (ỹh,δn−1,α)− F (x̃h,δn−1,α))]

= R−1
α (x̃h,δn−1,α)Ph

∫ 1

0

[F ′(x̃h,δn−1,α)− F ′(x̃h,δn−1,α + t(ỹh,δn−1,α − x̃
h,δ
n−1,α))]

×(ỹh,δn−1,α − x̃
h,δ
n−1,α)dt

and hence by Assumption 2.2.2 and Lemma 2.4.1, we have

‖x̃h,δn,α − ỹ
h,δ
n−1,α‖ ≤ ‖(1 +

ε0

α0

)

×
∫ 1

0

Φ(x̃h,δn−1,α, x̃
h,δ
n−1,α + t(ỹh,δn−1,α − x̃

h,δ
n−1,α), ỹh,δn−1,α − x̃

h,δ
n−1,α)dt‖

≤ k0

2
(1 +

ε0

α0

)‖ỹh,δn−1,α − x̃
h,δ
n−1,α‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖x̃h,δn,α − x̃
h,δ
n−1,α‖ ≤ ‖x̃h,δn,α − ỹ

h,δ
n−1,α‖+ ‖ỹh,δn−1,α − x̃

h,δ
n−1,α‖.

Theorem 3.4.2. Let Assumption 2.2.2 hold. Let ỹh,δn,α and x̃h,δn,α be as in (3.4.17) and

(3.4.18) respectively with δ ∈ (0, δ0] and let σ̃h,δn,α, g̃ and γρ be as in equation (3.4.19),

(3.4.20) and (3.4.21) respectively. Then

(a) ‖ỹh,δn,α − x̃h,δn,α‖ ≤ g̃(σ̃h,δn−1,α)‖ỹh,δn−1,α − x̃
h,δ
n−1,α‖;

(b) g̃(σ̃h,δn,α) ≤ g̃(γρ)
3n , ∀n ≥ 0;

(c) σ̃h,δn,α ≤ g̃(γρ)
(3n−1)/2γρ ∀n ≥ 0.
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Proof. Observe that

ỹh,δn,α − x̃h,δn,α = x̃h,δn,α − ỹ
h,δ
n−1,α −R−1

α (x̃h,δn,α)Ph[F (x̃h,δn,α)− f δ + α(x̃h,δn,α − x0)]

+R−1
α (x̃h,δn−1,α)Ph[F (ỹh,δn−1,α)− f δ + α(ỹh,δn−1,α − x0)]

= x̃h,δn,α − ỹ
h,δ
n−1,α −R−1

α (x̃h,δn,α)Ph[F (x̃h,δn,α)− F (ỹh,δn−1,α) + α(x̃h,δn,α − ỹ
h,δ
n−1,α)]

+[R−1
α (x̃h,δn−1,α)−R−1

α (x̃h,δn,α)]Ph[F (ỹh,δn−1,α)− f δ + α(ỹh,δn−1,α − x0)]

= R−1
α (x̃h,δn,α)[(Rα(x̃h,δn,α)− αPh)(x̃h,δn,α − ỹ

h,δ
n−1,α)− Ph(F (x̃h,δn,α)− F (ỹh,δn−1,α))]

+[R−1
α (x̃h,δn−1,α)−R−1

α (x̃h,δn,α)]Ph[F (ỹh,δn−1,α)− f δ + α(ỹh,δn−1,α − x0)]

and hence

σ̃h,δn,α ≤ ‖R−1
α (x̃h,δn,α)Ph

∫ 1

0

[F ′(x̃h,δn,α)− F ′(ỹh,δn−1,α + t(x̃h,δn,α − ỹ
h,δ
n−1,α)](x̃h,δn,α − ỹ

h,δ
n−1,α)dt‖

+‖R−1
α (x̃h,δn,α)[F ′(x̃h,δn,α)− F ′(x̃h,δn−1,α)]R−1

α (x̃h,δn−1,α)

Ph[F (ỹh,δn−1,α)− f δ + α(ỹh,δn−1,α − x0)]‖

≤ ‖R−1
α (x̃h,δn,α)Ph

∫ 1

0

[F ′(x̃h,δn,α)− F ′(ỹh,δn−1,α + t(x̃h,δn,α − ỹ
h,δ
n−1,α))](x̃h,δn,α − ỹ

h,δ
n−1,α)dt‖

+‖R−1
α (x̃h,δn,α)Ph[F

′(x̃h,δn,α)− F ′(x̃h,δn−1,α)](ỹh,δn−1,α − x̃h,δn,α)‖

≤ (1 +
ε0

α0

)‖
∫ 1

0

Φ(x̃h,δn,α, ỹ
h,δ
n−1,α + t(x̃h,δn,α − ỹ

h,δ
n−1,α), x̃h,δn,α − ỹ

h,δ
n−1,α)dt‖

+(1 +
ε0

α0

)‖Φ(x̃h,δn,α, x̃
h,δ
n−1,α, ỹ

h,δ
n−1,α − x̃h,δn,α)‖

≤ (1 +
ε0

α0

)

[
k0

2
‖x̃h,δn,α − ỹ

h,δ
n−1,α‖2 + k0‖x̃h,δn,α − x̃

h,δ
n−1,α‖‖x̃h,δn,α − ỹ

h,δ
n−1,α‖

]
.

The last but one step follows from the Assumption 2.2.2 and Lemma 2.4.1. Therefore

by (a) and (b) of Lemma 3.4.1 we have,

σ̃h,δn,α ≤ (1 +
ε0

α0

)2

[
k2

0

2
+

3k3
0

8
(1 +

ε0

α0

)‖ỹh,δn−1,α − x̃
h,δ
n−1,α‖

]
‖ỹh,δn−1,α − x̃

h,δ
n−1,α‖3

≤ g̃(σ̃h,δn−1,α)σ̃h,δn−1,α. (3.4.22)

This completes the proof of (a). Now since for µ ∈ (0, 1), g̃(µt) ≤ µ2g̃(t), for all t ∈ (0, 1),

by Lemma 2.4.2 with γρ as in (3.4.21) and (3.4.22) we have,

g̃(σ̃h,δn,α) ≤ g̃(σ̃0)3n ≤ g̃(γρ)
3n
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and

σ̃h,δn,α ≤ g̃(σ̃h,δn−1,α)σ̃h,δn−1,α

≤ g̃(σ̃0)3n−1

g̃(σ̃h,δn−2,α)σ̃h,δn−2,α

≤ g̃(σ̃0)3n−1+3n−2+···+1σ̃0

≤ g̃(σ̃0)(3n−1)/2σ̃0

≤ g̃(γρ)
(3n−1)/2γρ.

This completes the proof of the Theorem.

Theorem 3.4.3. Let r = [ 1
1−g̃(γρ)

+ k0
2

(1+ ε0
α0

) γρ
1−g̃(γρ)2

]γρ and the assumptions of Theorem

3.4.2 hold. Then x̃h,δn,α, ỹ
h,δ
n,α ∈ Br(Phx0), for all n ≥ 0.

Proof. Note that by Lemma 2.4.2 with γρ as in (3.4.21) and (b) of Lemma 3.4.1 we

have

‖x̃h,δ1,α − Phx0‖ = ‖x̃h,δ1,α − x̃
h,δ
0,α‖

≤ [1 +
k0

2
(1 +

ε0

α0

)σ̃0]σ̃0 (3.4.23)

≤ [1 +
k0

2
(1 +

ε0

α0

)γρ]γρ

< r

i.e., x̃h,δ1,α ∈ Br(Phx0). Again note that by Lemma 2.4.2 with γρ as in (3.4.21), (a) of

Theorem 3.4.2 and (3.4.23) we have

‖ỹh,δ1,α − Phx0‖ ≤ ‖ỹh,δ1,α − x̃
h,δ
1,α‖+ ‖x̃h,δ1,α − Phx0‖

≤ [1 + g̃(σ̃0) +
k0

2
(1 +

ε0

α0

)σ̃0]σ̃0

≤ [1 + g̃(γρ) +
k0

2
(1 +

ε0

α0

)γρ]γρ

< r

i.e., ỹh,δ1,α ∈ Br(Phx0). Further by Lemma 2.4.2 with γρ as in (3.4.21), (b) of Lemma 3.4.1
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and (3.4.23) we have

‖x̃h,δ2,α − Phx0‖ ≤ ‖x̃h,δ2,α − x̃
h,δ
1,α‖+ ‖x̃h,δ1,α − Phx0‖

≤ [1 +
k0

2
(1 +

ε0

α0

)σ̃h,δ1,α]σ̃h,δ1,α + [1 +
k0

2
(1 +

ε0

α0

)σ̃0]σ̃0

≤ [1 +
k0

2
(1 +

ε0

α0

)g̃(σ̃0)σ̃0]g̃(σ̃0)σ̃0 + [1 +
k0

2
(1 +

ε0

α0

)σ̃0]σ̃0

≤ [1 + g̃(σ̃0) +
k0

2
(1 +

ε0

α0

)σ̃0(1 + g̃(σ̃0)2)]σ̃0 (3.4.24)

≤ [1 + g̃(γρ) +
k0

2
(1 +

ε0

α0

)γρ(1 + g̃(γρ)
2)]γρ

< r

and by Lemma 2.4.2 with γρ as in (3.4.21), (a) of Theorem 3.4.2 and (3.4.24) we have

‖ỹh,δ2,α − Phx0‖ ≤ ‖ỹh,δ2,α − x̃
h,δ
2,α‖+ ‖x̃h,δ2,α − Phx0‖

≤ g̃(σ̃h,δ1,α)σ̃h,δ1,α + [1 + g̃(σ̃0) +
k0

2
(1 +

ε0

α0

)σ̃0(1 + g̃(σ̃0)2)]σ̃0

≤ g̃(σ̃0)4σ̃0 + [1 + g̃(σ̃0) +
k0

2
1 +

ε0

α0

)σ̃0(1 + g̃(σ̃0)2)]σ̃0

≤ [1 + g̃(σ̃0) + g̃(σ̃0)2 +
k0

2
(1 +

ε0

α0

)σ̃0(1 + g̃(σ̃0)2)]σ̃0

≤ [1 + g̃(γρ) + g̃(γρ)
2 +

k0

2
(1 +

ε0

α0

)γρ(1 + g̃(γρ)
2)]γρ

< r

i.e., x̃h,δ2,α, ỹ
h,δ
2,α ∈ Br(Phx0). Continuing this way one can prove that x̃h,δn,α, ỹ

h,δ
n,α ∈ Br(Phx0),

∀n ≥ 0. This completes the proof.

The main result of this section is the following theorem.

Theorem 3.4.4. Let ỹh,δn,α and x̃h,δn,α be as in (3.4.17) and (3.4.18) respectively with

δ ∈ (0, δ0] and assumptions of Theorem 3.4.3 hold. Then (x̃h,δn,α) is Cauchy sequence in

Br(Phx0) and converges to xh,δα ∈ Br(Phx0). Further Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ

and

‖x̃h,δn,α − xh,δα ‖ ≤ Ce−γ3n

where C = [ 1
1−g̃(γρ)3

+ k0
2
γρ(1 + ε0

α0
) 1

1−(g̃(γρ)2)3
g̃(γρ)

3n ]γρ and γ = − log g̃(γρ).
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Proof. Using the relation (b) of Lemma 3.4.1 and (c) of Theorem 3.4.2, we obtain

‖x̃h,δn+m,α − x̃h,δn,α‖ ≤
m−1∑
i=0

‖x̃h,δn+i+1,α − x̃
h,δ
n+i,α‖

≤
m−1∑
i=0

[
1 +

k0

2
(1 +

ε0

α0

)σ̃0g̃(σ̃0)3n+i
]
g̃(σ̃0)3n+iσ̃0

≤ [(1 + g̃(σ̃0)3 + g̃(σ̃0)32 + · · ·+ g̃(σ̃0)3m) +
k0

2
(1 +

ε0

α0

)σ̃0(1 +

(g̃(σ̃0)2)3 + (g̃(σ̃0)2)32 + · · ·+ (g̃(σ̃0)2)3m)g̃(σ̃0)3n ]g̃(σ̃0)3nσ̃0

≤ Cg̃(γρ)
3n

≤ Ce−γ3n .

Thus x̃h,δn,α is a Cauchy sequence in Br(Phx0) and hence it converges cubically, say, to

xh,δα ∈ Br(Phx0). Observe that

‖Ph(F (x̃h,δn,α)− f δ + α(x̃h,δn,α − x0))‖ = ‖Rα(x̃h,δn,α)(x̃h,δn,α − ỹh,δn,α)‖

≤ ‖Rα(x̃h,δn,α)‖‖x̃h,δn,α − ỹh,δn,α‖

= ‖(PhF ′(x̃h,δn,α)Ph + αPh)‖σ̃h,δn,α
≤ (CF + α)g̃(γρ)

3n−1
2 γρ. (3.4.25)

Now by letting n→∞ in (3.4.25) we obtain

Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ.

This completes the proof.

3.5 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS FOR PROJECTION METHOD

Theorem 3.5.1. Let x̃h,δn,α be as in (3.4.18). And the assumptions in Theorem 2.5.2 and

Theorem 3.4.4 hold. Then

‖x̃h,δn,α − x̂‖ ≤ Ce−γ3n + max{1, C̃}
[
ϕ(α) +

δ + εh
α

]
.
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Proof. Observe that,

‖x̃h,δn,α − x̂‖ ≤ ‖x̃h,δn,α − xh,δα ‖+ ‖xh,δα − x̃hα‖+ ‖x̃hα − x̂‖

so, by Proposition 2.5.1, Theorem 2.5.2 and Theorem 3.4.4 we obtain,

‖x̃h,δn,α − x̂‖ ≤ Ce−γ3n +
δ

α
+ C̃

[
ϕ(α) +

εh
α

]
≤ Ce−γ3n + max{1, C̃}

[
ϕ(α) +

δ + εh
α

]
.

Let

nδ := min

{
n : e−γ3n ≤ δ + εh

α

}
(3.5.26)

and

C0 = C + max{1, C̃}. (3.5.27)

Theorem 3.5.2. Let x̃h,δnδ,α be as in (3.4.18) and the assumptions in Theorem 3.5.1 be

satisfied. And let nδ and C0 be as in (3.5.26) and (3.5.27) respectively. Then

‖x̃h,δnδ,α − x̂‖ ≤ C0

[
ϕ(α) +

δ + εh
α

]
.

3.5.1 A priori choice of the parameter

Theorem 3.5.3. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a and the assumptions in Theorem

3.5.2 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ + εh)) and let nδ be as in (3.5.26). Then

‖x̃h,δnδ,α − x̂‖ = O(ψ−1(δ + εh)).

3.5.2 An adaptive choice of the parameter

Let DN(α) := {αi = µiα0, i = 0, 1, · · · , N} where µ > 1, α0 > 0 and let ni :=

min
{
n : e−γ3n ≤ δ+εh

αi

}
. Then for i = 0, 1, · · · , N, we have

‖x̃h,δni,αi − x̃
h,δ
αi
‖ ≤ C

δ + εh
αi

, ∀i = 0, 1, · · ·N.
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Let x̃i := x̃h,δni,αi , i = 0, 1, · · · , N. We select the regularization parameter α = αi from

the set DN(α) and operate only with corresponding x̃i, i = 0, 1, · · · , N.
Proof of the following theorem is analogous to the proof of Theorem 2.3.7.

Theorem 3.5.4. Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ+εh
αi
.

Let assumptions of Theorem 3.5.2 and Theorem 3.5.3 hold and let

l := max

{
i : ϕ(αi) ≤

δ + εh
αi

}
< N,

k := max
{
i : ‖x̃i − x̃j‖ ≤ 4C0

δ+εh
αj

, j = 0, 1, 2, · · · , i
}
. Then l ≤ k and ‖x̂ − x̃k‖ ≤

cψ−1(δ + εh) where c = 6C0µ.

3.6 IMPLEMENTATION OF ADAPTIVE CHOICE

RULE

The balancing algorithm associated with the choice of the parameter specified in Theo-

rem 3.4.2 involves the following steps:

• Choose α0 > 0 such that δ0 < α0 and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, · · · , N.

3.6.1 Algorithm

1. Set i = 0.

2. Choose ni := min
{
n : e−γ3n ≤ δ+εh

αi

}
.

3. Solve x̃i := x̃h,δni,αi by using the iteration (3.4.17) and (3.4.18).

4. If ‖x̃i − x̃j‖ > 4C0
δ+εh
αj

, j < i, then take k = i− 1 and return x̃k.

5. Else set i = i+ 1 and go to Step 2.
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3.7 NUMERICAL EXAMPLE

In this section we consider the problem studied in Example 2.7.1 for illustrating the

algorithm considered in section 3.6.1. We apply the algorithm by choosing a sequence

of finite dimensional subspace (Vn) of X as in section 2.7.

Example 3.7.1. In our computation, we take the kernel as in Example 2.7.1,

f(t) =
6sin(πt) + sin3(πt)

9π2

and f δ = f + δ. Then the exact solution

x̂(t) = sin(πt).

We use

x0(t) = sin(πt) +
3[tπ2 − t2π2 + sin2(πt)]

4π2

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ = ϕ(F ′(x̂))
1

4

where ϕ(λ) = λ.

We choose α0 = 1.1(δ + εn), µ = 1.1, ρ = 0.1, γρ = 0.766 and g(γρ) = 0.461. The

results of the computation are presented in Table 3.1. The plots of the exact solution

and the approximate solution obtained are given in Figures 3.1 through 3.8.
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n k nk δ + εn αk ‖x̃k − x̂‖ ‖x̃k−x̂‖
(δ+εn)1/2

8 2 1 0.0135 0.0180 0.0356 0.3068
16 2 1 0.0134 0.0178 0.0432 0.3737
32 2 1 0.0133 0.0178 0.0450 0.3897
64 2 1 0.0133 0.0177 0.0455 0.3938
128 2 1 0.0133 0.0177 0.0456 0.3948
256 25 2 0.0133 0.1589 0.0456 0.3950
512 25 2 0.0133 0.1589 0.0456 0.3951
1024 25 2 0.0133 0.1589 0.0456 0.3951

Table 3.1: Iterations and corresponding error estimates

Figure 3.1: Curves of the exact and approximate solutions when n=8
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Figure 3.2: Curves of the exact and approximate solutions when n=16

Figure 3.3: Curves of the exact and approximate solutions when n=32
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Figure 3.4: Curves of the exact and approximate solutions when n=64

Figure 3.5: Curves of the exact and approximate solutions when n=128



66 Chapter 3

Figure 3.6: Curves of the exact and approximate solutions when n=256

Figure 3.7: Curves of the exact and approximate solutions when n=512
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Figure 3.8: Curves of the exact and approximate solutions when n=1024

� 2 �
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Chapter 4

NEWTON TYPE METHODS FOR
LAVRENTIEV
REGULARIZATION OF
NONLINEAR ILL-POSED
OPERATOR EQUATIONS

A two step method, yielding cubic convergence was considered in Chapter 3, for solving

nonlinear ill-posed operator equation F (x) = f. It is assumed that the available data

is f δ with ‖f − f δ‖ ≤ δ and F : D(F ) ⊆ X → X is a nonlinear monotone operator

defined on a real Hilbert space X. The method considered in this chapter converges

quarticaly to the unique solution of the equation F (x) +α(x−x0) = f δ (x0 is the initial

guess). We consider, also a finite dimensional realization of the method. An example is

provided to show the efficiency of the proposed method.

4.1 INTRODUCTION

This chapter is devoted to suggest a new Newton type iterative method for apporoxi-

mating a solution of the equation (1.1.1). The method converges locally quarticaly. The

proposed method for approximating the zero of (2.1.4) is defined as:

wδn,α = uδn,α −R−1
α (uδn,α)[F (uδn,α)− f δ + α(uδn,α − x0)] (4.1.1)

and

uδn+1,α = wδn,α −R−1
α (wδn,α)[F (wδn,α)− f δ + α(wδn,α − x0)]. (4.1.2)

69
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where Rα(x) is as in (3.1.3) and uδ0,α := x0 is the known initial guess of the solution x̂.

We will be selecting the parameter α = αi from some finite set defined in (2.1.3) using

the adaptive method suggested by Pereverzyev and Schock (2005).

The organization of this chapter is as follows. Section 4.2 describes the conver-

gence analysis of the method, section 4.3 deals with the error analysis carried out by

choosing the regularization parameter according to the balancing principle suggested by

Pereverzyev and Schock (2005). Finite dimensional realization of the method is consid-

ered in section 4.4. The error analysis in finite dimensional case is given in section 4.5.

Section 4.6 gives the algorithm for implementing the proposed method, and in section

4.7 we illustrate the method through an example.

4.2 CONVERGENCE ANALYSIS

Let

σδn,α := ‖wδn,α − uδn,α‖, ∀n ≥ 0 (4.2.3)

and for 0 < k0 <
2
3
, let ḡ : (0, 1)→ (0, 1) be the function defined by

ḡ(t) =
27k3

0

8
t3 ∀t ∈ (0, 1). (4.2.4)

Note that σδ0,α = e0, and hence by Lemma 2.2.1 with γρ as in (3.2.7) σδ0,α ≤ γρ.

Lemma 4.2.1. Let wδn,α, uδn,α and σδn,α be as in (4.1.1), (4.1.2) and (4.2.3) respectively

with δ ∈ (0, δ0]. And let Assumption 2.2.2 hold. Then

(a) ‖uδn,α − wδn−1,α‖ ≤ 3k0
2

(σδn−1,α)2 and

(b) ‖uδn,α − uδn−1,α‖ ≤
(

1 +
3k0σδn−1,α

2

)
σδn−1,α.

Proof. Observe that,

uδn,α − wδn−1,α = wδn−1,α − uδn−1,α −R−1
α (wδn−1,α)[F (wδn−1,α)− f δ + α(wδn−1,α − x0)]

+R−1
α (uδn−1,α)[F (uδn−1,α)− f δ + α(uδn−1,α − x0)]
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= wδn−1,α − uδn−1,α

−R−1
α (wδn−1,α)[F (wδn−1,α)− F (uδn−1,α) + α(wδn−1,α − uδn−1,α)]

+[R−1
α (uδn−1,α)−R−1

α (wδn−1,α)][F (uδn−1,α)− f δ + α(uδn−1,α − x0)]

= R−1
α (wδn−1,α)[F ′(wδn−1,α)(wδn−1,α − uδn−1,α)− (F (wδn−1,α)− F (uδn−1,α))]

+R−1
α (wδn−1,α)[F ′(wδn−1,α)− F ′(uδn−1,α)](uδn−1,α − wδn−1,α)

:= Γ1 + Γ2 (4.2.5)

where Γ1 = R−1
α (wδn−1,α)[F ′(wδn−1,α)(wδn−1,α − uδn−1,α)− (F (wδn−1,α)− F (uδn−1,α))]

and Γ2 = R−1
α (wδn−1,α)[F ′(wδn−1,α)− F ′(uδn−1,α)](uδn−1,α − wδn−1,α).

Note that,

‖Γ1‖ = ‖R−1
α (wδn−1,α)

∫ 1

0

[F ′(wδn−1,α)− F ′(uδn−1,α + t(wδn−1,α − uδn−1,α))]

×(wδn−1,α − uδn−1,α)dt‖

= ‖R−1
α (wδn−1,α)F ′(wδn−1,α)×∫ 1

0

φ(uδn−1,α + t(wδn−1,α − uδn−1,α), wδn−1,α, u
δ
n−1,α − wδn−1,α)dt‖

≤ k0

2
‖wδn−1,α − uδn−1,α‖2 (4.2.6)

the last step follows from the Assumption 2.2.2 and (3.1.4). Similarly,

‖Γ2‖ = ‖R−1
α (wδn−1,α)[F ′(wδn−1,α)− F ′(uδn−1,α)](uδn−1,α − wδn−1,α)‖

= ‖R−1
α (wδn−1,α)F ′(wδn−1,α)φ(uδn−1,α, w

δ
n−1,α, u

δ
n−1,α − wδn−1,α)‖

≤ k0‖wδn−1,α − uδn−1,α‖2. (4.2.7)

Now (a) follows from (4.2.5), (4.2.6) and (4.2.7), and (b) follows from (a) and the triangle

inequality;

‖uδn,α − uδn−1,α‖ ≤ ‖uδn,α − wδn−1,α‖+ ‖wδn−1,α − uδn−1,α‖.

Theorem 4.2.2. Let wδn,α, uδn,α be as in (4.1.1) and (4.1.2) respectively with δ ∈ (0, δ0]

and γρ, σ
δ
n,α and ḡ be as in equation (3.2.7), (4.2.3) and (4.2.4) respectively. Then

(a) ‖wδn,α − uδn,α‖ ≤ ḡ(σδn−1,α)σδn−1,α;

(b) ḡ(σδn,α) ≤ ḡ(γρ)
4n , ∀n ≥ 0;
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(c) σδn,α ≤ ḡ(γρ)
(4n−1)/3γρ ∀n ≥ 0.

Proof. We have,

wδn,α − uδn,α = uδn,α − wδn−1,α −R−1
α (uδn,α)[F (uδn,α)− f δ + α(uδn,α − x0)]

+R−1
α (wδn−1,α)[F (wδn−1,α)− f δ + α(wδn−1,α − x0)]

= uδn,α − wδn−1,α −R−1
α (uδn,α)[F (uδn,α)− F (wδn−1,α) + α(uδn,α − wδn−1,α)]

+[R−1
α (uδn−1,α)−R−1

α (uδn,α)][F (wδn−1,α)− f δ + α(wδn−1,α − x0)]

= R−1
α (uδn,α)[F ′(uδn,α)(uδn,α − wδn−1,α)− (F (uδn,α)− F (wδn−1,α))]

+R−1
α (uδn,α)[F ′(uδn,α)− F ′(wδn−1,α)](wδn−1,α − uδn,α)

:= Γ3 + Γ4 (4.2.8)

where Γ3 = R−1
α (uδn,α)[F ′(uδn,α)(uδn,α − wδn−1,α)− (F (uδn,α)− F (wδn−1,α))]

and Γ4 = R−1
α (uδn,α)[F ′(uδn,α)− F ′(wδn−1,α)](wδn−1,α − uδn,α).

Analogous to the proof of (4.2.6) and (4.2.7) one can prove that

‖Γ3‖ ≤
k0

2
‖uδn,α − wδn−1,α‖2 (4.2.9)

and

‖Γ4‖ ≤ k0‖uδn,α − wδn−1,α‖2. (4.2.10)

Now (a) follows from the Lemma 4.2.1, (4.2.8), (4.2.9) and (4.2.10). Again, since for

µ ∈ (0, 1), ḡ(µt) = µ3ḡ(t), for all t ∈ (0, 1), by (a) we get,

ḡ(σδn,α) ≤ ḡ(σ0)4n (4.2.11)

and σδn,α ≤ ḡ(σδn−1,α)σδn−1,α

≤ ḡ(σ0)4n−1

ḡ(σδn−2,α)σδn−2,α

≤ ḡ(σ0)4n−1

ḡ(σ0)4n−2

ḡ(σδn−3,α)σδn−3,α

≤ ḡ(σ0)4n−1+4n−2+···+1σ0

≤ ḡ(σ0)(4n−1)/3σ0 (4.2.12)

provided σδn,α < 1. But σδn,α < 1 by Lemma 2.2.1 with γρ as in (3.2.7), (4.2.4) and

(4.2.12). Now (b) and (c) follow from Lemma 2.2.1 with γρ as in (3.2.7), (4.2.11),

(4.2.12) and the relation ḡ(σ0) ≤ ḡ(γρ). This completes the proof of the theorem.

Theorem 4.2.3. Suppose 0 < ḡ(γρ) < 1 , r =
[

1
1−ḡ(γρ)

+ 3k0
2

γρ
1−ḡ(γρ)2

]
γρ and let assump-

tions of Theorem 4.2.2 hold. Then uδn,α, w
δ
n,α ∈ Br(x0) for all n ≥ 0.
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Proof. Note that by (b) of Lemma 4.2.1 we have,

‖uδ1,α − x0‖ ≤ [1 +
3k0

2
σ0]σ0 (4.2.13)

≤ [1 +
3k0

2
γρ]γρ

< r

i.e., uδ1,α ∈ Br(x0). Again note that from (a) of Theorem 4.2.2 and (4.2.13) we get,

‖wδ1,α − x0‖ ≤ ‖wδ1,α − uδ1,α‖+ ‖uδ1,α − x0‖

≤ ḡ(σ0)σ0 + (1 +
3k0

2
σ0)σ0

≤ [1 + ḡ(σ0) +
3k0

2
σ0]σ0

≤ [1 + ḡ(γρ) +
3k0

2
γρ]γρ

< r

i.e., wδ1,α ∈ Br(x0). Further by (b) of Lemma 4.2.1 and (4.2.13) we have,

‖uδ2,α − x0‖ ≤ ‖uδ2,α − uδ1,α‖+ ‖uδ1,α − x0‖

≤ (1 +
3k0

2
σδ1,α)σδ1,α + (1 +

3k0

2
σ0)σ0

≤ [1 +
3k0

2
ḡ(σ0)σ0]ḡ(σ0)σ0 + (1 +

3k0

2
σ0)σ0

≤ [1 + ḡ(σ0) +
3k0

2
σ0(1 + ḡ(σ0)2)]σ0 (4.2.14)

≤ [1 + ḡ(γρ) +
3k0

2
γρ(1 + ḡ(γρ)

2)]γρ

< r

and by (a) of Theorem 4.2.2 and (4.2.14) we have,

‖wδ2,α − x0‖ ≤ ‖wδ2,α − uδ2,α‖+ ‖uδ2,α − x0‖

≤ ḡ(σδ1,α)σδ1,α + [1 + ḡ(σ0) +
3k0

2
σ0(1 + ḡ(σ0)2)]σ0

≤ ḡ(σ0)5σ0 + [1 + ḡ(σ0) +
3k0

2
σ0(1 + ḡ(σ0)2)]σ0

≤ [1 + ḡ(σ0) + ḡ(σ0)5 +
3k0

2
σ0(1 + ḡ(σ0)2)]σ0

≤ [1 + ḡ(σ0) + ḡ(σ0)2 +
3k0

2
σ0(1 + ḡ(σ0)2)]σ0

≤ [1 + ḡ(γρ) + ḡ(γρ)
2 +

3k0

2
γρ(1 + ḡ(γρ)

2)]γρ < r
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i.e., uδ2,α, w
δ
2,α ∈ Br(x0). Continuing this way one can prove that uδn,α, w

δ
n,α ∈ Br(x0),

∀n ≥ 0. This completes the proof.

The main result of this section is the following theorem.

Theorem 4.2.4. Let 0 < ḡ(γρ) < 1, wδn,α and uδn,α be as in (4.1.1) and (4.1.2) respec-

tively with δ ∈ (0, δ0] and assumptions of the Theorem 4.2.3 hold. Then (uδn,α) is Cauchy

sequence in Br(x0) and converges to xδα ∈ Br(x0). Further F (xδα) +α(xδα−x0) = f δ and

‖uδn,α − xδα‖ ≤ Ce−γ4n

where C =
[

1
1−ḡ(γρ)4

+ 3k0γρ
2

1
1−(ḡ(γρ)2)4

ḡ(γρ)
4n
]
γρ and γ = − log ḡ(γρ).

Proof. Using the relation (b) of Lemma 4.2.1 and (c) of Theorem 4.2.2, we obtain,

‖uδn+m,α − uδn,α‖ ≤
m−1∑
i=0

‖uδn+i+1,α − uδn+i,α‖

≤
m−1∑
i=0

[
1 +

3k0σ0

2
ḡ(σ0)4n+i

]
ḡ(σ0)4n+iσ0

≤ [(1 + ḡ(σ0)4 + ḡ(σ0)42 + · · ·+ ḡ(σ0)4m) +
3k0σ0

2

(1 + (ḡ(σ0)2)4 + (ḡ(σ0)2)42 + · · ·+ (ḡ(σ0)2)4m)ḡ(σ0)4n ]ḡ(σ0)4nσ0

≤ [(1 + ḡ(γρ)
4 + ḡ(γρ)

42 + · · ·+ ḡ(γρ)
4m) +

3k0γρ
2

(1 + (ḡ(γρ)
2)4 + (ḡ(γρ)

2)42 + · · ·+ (ḡ(γρ)
2)4m)ḡ(γρ)

4n ]ḡ(γρ)
4nγρ

≤ Cḡ(γρ)
4n

≤ Ce−γ4n .

Thus uδn,α is a Cauchy sequence in Br(x0) and hence it converges, say, to xδα ∈ Br(x0).

Observe that,

‖F (uδn,α)− f δ + α(uδn,α − x0)‖ = ‖Rα(uδn,α)(uδn,α − wδn,α)‖

≤ ‖Rα(uδn,α)‖‖uδn,α − wδn,α‖

≤ (CF + α)ḡ(σ0)4nσ0

≤ (CF + α)ḡ(γρ)
4nγρ. (4.2.15)

Now by letting n→∞ in (4.2.15) we obtain F (xδα) + α(xδα − x0) = f δ. This completes

the proof.
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4.3 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS

The objective of this section is to obtain an error estimate for ‖uδn,α− x̂‖ under a source

condition on x0 − x̂.
Combining the estimates in Proposition 2.3.2, Theorem 2.3.3 and Theorem 4.2.4 we

obtain the following;

Theorem 4.3.1. Let uδn,α be as in (4.1.2) and let assumptions in Proposition 2.3.2,

Theorem 2.3.3 and Theorem 4.2.4 be satisfied. Then

‖uδn,α − x̂‖ ≤ Ce−γ4n + C1

[
ϕ(α) +

δ

α

]

where C1 = k0r + 1.

Let

C̄ := max{C, k0r)}+ 1, (4.3.16)

and let

nδ := min

{
n : e−γ4n ≤ δ

α

}
. (4.3.17)

Theorem 4.3.2. Let uδnδ,α be as in (4.1.2) with n = nδ and the assumptions in Theorem

4.3.1 be satisfied. Let C̄ be as in (4.3.16) and nδ be as in (4.3.17). Then

‖uδnδ,α − x̂‖ ≤ C̄

[
ϕ(α) +

δ

α

]
.

4.3.1 A priori choice of the parameter

Theorem 4.3.3. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assumptions in Theorem

4.3.2 hold. For δ > 0, let α := αδ = ϕ−1(ψ−1(δ)) and let nδ be as in (4.3.17). Then

‖uδnδ,α − x̂‖ = O(ψ−1(δ)).
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4.3.2 An adaptive choice of the parameter

Let

DN(α) := {αi = µiα0, i = 0, 1, · · · , N}

where µ > 1.

Let

ni := min

{
n : e−γ4n ≤ δ

αi

}
.

Then for i = 0, 1, · · · , N, we have

‖uδni,αi − x
δ
αi
‖ ≤ C

δ

αi
, ∀i = 0, 1, · · ·N.

Let ui := uδni,αi . In this Chapter we select α = αi from the set DN(α) for computing

ui, for each i = 0, 1, · · · , N.
Proof of the following theorem is analogous to the proof of Theorem 2.3.7.

Theorem 4.3.4. Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ
αi
.

Let assumptions of Theorem 4.3.2 and Theorem 4.3.3 hold and let

l := max

{
i : ϕ(αi) ≤

δ

αi

}
< N,

k := max

{
i : ‖ui − uj‖ ≤ 4C̄

δ

αj
, j = 0, 1, 2, · · · , i− 1

}
.

Then l ≤ k and ‖x̂− uk‖ ≤ cψ−1(δ) where c = 6C̄µ.

4.4 PROJECTION METHOD AND ITS CONVER-

GENCE

We consider the following sequence defined iteratively by

wh,δn,α = uh,δn,α −R−1
α (uh,δn,α)Ph[F (uh,δn,α)− f δ + α(uh,δn,α − x0)] (4.4.18)

and

uh,δn+1,α = wh,δn,α −R−1
α (wh,δn,α)Ph[F (wh,δn,α)− f δ + α(wh,δn,α − x0)] (4.4.19)
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where Rα(x) := PhF
′(x)Ph + αPh and uh,δ0,α := Phx0, for obtaining an approximation

for xδα in the finite dimensional subspace R(Ph) of X. Note that the iteration (4.4.18)

and (4.4.19) are the finite dimensional realization of the iteration (4.1.1) and (4.1.2) in

section 4.1. We will be selecting the parameter α = αi from some finite set defined in

(2.1.3) using the adaptive method considered by Pereverzyev and Schock (2005).

Let

σh,δn,α := ‖wh,δn,α − uh,δn,α‖, ∀n ≥ 0 (4.4.20)

and for 0 < k0 <
2

3(1+
ε0
α0

)
, let τ : (0, 1)→ (0, 1) be the function defined by

τ(t) =
27k3

0

8
(1 +

ε0

α0

)3t3 ∀t ∈ (0, 1). (4.4.21)

Lemma 4.4.1. Let wh,δn,α, uh,δn,α and σh,δn,α be as in (4.4.18), (4.4.19) and (4.4.20) respec-

tively with δ ∈ (0, δ0]. And let Assumption 2.2.2 hold. Then

(a) ‖uh,δn,α − w
h,δ
n−1,α‖ ≤ 3k0

2
(1 + ε0

α0
)(σh,δn−1,α)2 and

(b) ‖uh,δn,α − u
h,δ
n−1,α‖ ≤ (1 + 3k0

2
(1 + ε0

α0
)σh,δn−1,α)σh,δn−1,α.

Proof. Observe that,

uh,δn,α − w
h,δ
n−1,α = wh,δn−1,α − u

h,δ
n−1,α −R−1

α (wh,δn−1,α)Ph[F (wh,δn−1,α)− f δ + α(wh,δn−1,α − x0)]

+R−1
α (uh,δn−1,α)Ph[F (uh,δn−1,α)− f δ + α(uh,δn−1,α − x0)]

= wh,δn−1,α − u
h,δ
n−1,α

−R−1
α (wh,δn−1,α)Ph[F (wh,δn−1,α)− F (uh,δn−1,α) + α(wh,δn−1,α − u

h,δ
n−1,α)]

+[R−1
α (uh,δn−1,α)−R−1

α (wh,δn−1,α)]Ph[F (uh,δn−1,α)− f δ + α(uh,δn−1,α − x0)]

= R−1
α (wh,δn−1,α)Ph[F

′(wh,δn−1,α)(wh,δn−1,α − u
h,δ
n−1,α)− (F (wh,δn−1,α)− F (uh,δn−1,α))]

+R−1
α (wh,δn−1,α)Ph(F

′(wh,δn−1,α)− F ′(uh,δn−1,α))(uh,δn−1,α − w
h,δ
n−1,α)

:= Γ1 + Γ2 (4.4.22)

where Γ1 = R−1
α (wh,δn−1,α)Ph[F

′(wh,δn−1,α)(wh,δn−1,α − u
h,δ
n−1,α)− (F (wh,δn−1,α)− F (uh,δn−1,α))] and

Γ2 = R−1
α (wh,δn−1,α)Ph[F

′(wh,δn−1,α)− F ′(uh,δn−1,α)](uh,δn−1,α − w
h,δ
n−1,α).
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Note that,

‖Γ1‖ = ‖R−1
α (wh,δn−1,α)Ph

∫ 1

0

[F ′(wh,δn−1,α)− F ′(uh,δn−1,α + t(wh,δn−1,α − u
h,δ
n−1,α))]

×(wh,δn−1,α − u
h,δ
n−1,α)dt‖

= ‖R−1
α (wh,δn−1,α)PhF

′(wh,δn−1,α)×∫ 1

0

[φ(uh,δn−1,α + t(wh,δn−1,α − u
h,δ
n−1,α), wh,δn−1,α, u

h,δ
n−1,α − w

h,δ
n−1,α)]dt‖

≤ k0

2
(1 +

ε0

α0

)‖wh,δn−1,α − u
h,δ
n−1,α‖2 (4.4.23)

the last step follows from the Assumption 2.2.2 and Lemma 2.4.1. Similarly,

‖Γ2‖ ≤ k0(1 +
ε0

α0

)‖wh,δn−1,α − u
h,δ
n−1,α‖2. (4.4.24)

So, (a) follows from (4.4.22), (4.4.23) and (4.4.24). And (b) follows from (a) and the

triangle inequality;

‖uh,δn,α − u
h,δ
n−1,α‖ ≤ ‖uh,δn,α − w

h,δ
n−1,α‖+ ‖wh,δn−1,α − u

h,δ
n−1,α‖.

Theorem 4.4.2. Let wh,δn,α, uh,δn,α be as in (4.4.18) and (4.4.19) respectively with δ ∈ (0, δ0]

and γρ, σ
h,δ
n,α and τ be as in equation (3.4.21), (4.4.20) and (4.4.21) respectively. Then

(a) ‖wh,δn,α − uh,δn,α‖ ≤ τ(σh,δn−1,α)σh,δn−1,α;

(b) τ(σh,δn,α) ≤ τ(γρ)
4n , ∀n ≥ 0;

(c) σh,δn,α ≤ τ(γρ)
4n−1

3 γρ ∀n ≥ 0.

Proof. We have,

wh,δn,α − uh,δn,α = uh,δn,α − w
h,δ
n−1,α −R−1

α (uh,δn,α)Ph[F (uh,δn,α)− f δ + α(uh,δn,α − x0)]

+R−1
α (wh,δn−1,α)Ph[F (wh,δn−1,α)− f δ + α(wh,δn−1,α − x0)]

= uh,δn,α − w
h,δ
n−1,α

−R−1
α (uh,δn,α)Ph[F (uh,δn,α)− F (wh,δn−1,α) + α(uh,δn,α − w

h,δ
n−1,α)]

+[R−1
α (wh,δn−1,α)−R−1

α (uh,δn,α)]Ph[F (wh,δn−1,α)− f δ + α(wh,δn−1,α − x0)]

= R−1
α (uh,δn,α)Ph[F

′(uh,δn,α)(uh,δn,α − w
h,δ
n−1,α)− (F (uh,δn,α)− F (wh,δn−1,α))]

+R−1
α (uh,δn,α)Ph[F

′(uh,δn,α)− F ′(wh,δn−1,α)](wh,δn−1,α − uh,δn,α)

:= Γ3 + Γ4 (4.4.25)
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where Γ3 = R−1
α (uh,δn,α)Ph[F

′(uh,δn,α)(uh,δn,α − w
h,δ
n−1,α)− (F (uh,δn,α)− F (wh,δn−1,α))]

and Γ4 = R−1
α (uh,δn,α)Ph[F

′(uh,δn,α) − F ′(wh,δn−1,α)](wh,δn−1,α − uh,δn,α). Analogous to the proof

of (4.4.23) and (4.4.24) one can prove that

‖Γ3‖ ≤
k0

2
(1 +

ε0

α0

)‖uh,δn,α − w
h,δ
n−1,α‖2 (4.4.26)

and

‖Γ4‖ ≤ k0(1 +
ε0

α0

)‖uh,δn,α − w
h,δ
n−1,α‖2. (4.4.27)

Now (a) follows from the Lemma 4.4.1, (4.4.25), (4.4.26) and (4.4.27). Again, since for

µ ∈ (0, 1), τ(µt) = µ3τ(t), for all t ∈ (0, 1), by (a) we get,

τ(σh,δn,α) ≤ τ(σ0)4n (4.4.28)

and

σh,δn,α ≤ τ(σh,δn−1,α)σh,δn−1,α ≤ τ(σ0)4n−1

τ(σh,δn−2,α)σh,δn−2,α

≤ τ(σ0)4n−1

τ(σ0)4n−2

τ(σh,δn−3,α)σh,δn−3,α

≤ τ(σ0)4n−1+4n−2+···+1σ0

≤ τ(σ0)
4n−1

3 σ0 (4.4.29)

provided σh,δn,α < 1. But σh,δn,α < 1 by Lemma 2.4.2 with γρ as in (3.4.21), (4.4.21) and

(4.4.29). Now (b) and (c) follow from Lemma 2.4.2 with γρ as in (3.4.21), (4.4.28),

(4.4.29) and the relation τ(σ0) ≤ τ(γρ). This completes the proof of the theorem.

Theorem 4.4.3. Suppose 0 < τ(γρ) < 1 , r =
[

1
1−τ(γρ)

+ 3k0
2

(1 + ε0
α0

) γρ
1−τ(γρ)2

]
γρ and let

assumptions of Theorem 4.4.2 hold. Then uh,δn,α, w
h,δ
n,α ∈ Br(Phx0) for all n ≥ 0.

Proof. Note that by (b) of Lemma 4.4.1 we have,

‖uh,δ1,α − Phx0‖ = ‖uh,δ1,α − u
h,δ
0,α‖

≤ [1 +
3k0

2
(1 +

ε0

α0

)σ0]σ0 (4.4.30)

≤ [1 +
3k0

2
(1 +

ε0

α0

)γρ]γρ

< r
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i.e., uh,δ1,α ∈ Br(Phx0). Again note that from (a) of Theorem 4.4.2 and (4.4.30) we get

‖wh,δ1,α − Phx0‖ ≤ ‖wh,δ1,α − u
h,δ
1,α‖+ ‖uh,δ1,α − Phx0‖

≤ τ(σ0)σ0 + (1 +
3k0

2
(1 +

ε0

α0

)σ0)σ0

≤ (1 + τ(σ0) +
3k0

2
(1 +

ε0

α0

)σ0)σ0

≤ (1 + τ(γρ) +
3k0

2
(1 +

ε0

α0

)γρ)γρ

< r

i.e., wh,δ1,α ∈ Br(Phx0). Further by (b) of Lemma 4.4.1 and (4.4.30) we have

‖uh,δ2,α − Phx0‖ ≤ ‖uh,δ2,α − u
h,δ
1,α‖+ ‖uh,δ1,α − Phx0‖

≤ (1 +
3k0

2
(1 +

ε0

α0

)σh,δ1,α)σh,δ1,α + (1 +
3k0

2
(1 +

ε0

α0

)σ0)σ0

≤ (1 +
3k0

2
(1 +

ε0

α0

)τ(σ0)σ0)τ(σ0)σ0 + (1 +
3k0

2
(1 +

ε0

α0

)σ0)σ0

≤ (1 + τ(σ0) +
3k0

2
(1 +

ε0

α0

)σ0(1 + τ(σ0)2))σ0 (4.4.31)

≤ (1 + τ(γρ) +
3k0

2
(1 +

ε0

α0

)γρ(1 + τ(γρ)
2))γρ

< r

and by (a) of Theorem 4.4.2 and (4.4.31) we have

‖wh,δ2,α − Phx0‖ ≤ ‖wh,δ2,α − u
h,δ
2,α‖+ ‖uh,δ2,α − Phx0‖

≤ τ(σh,δ1,α)σh,δ1,α + (1 + τ(σ0) +
3k0

2
(1 +

ε0

α0

)σ0(1 + τ(σ0)2))σ0

≤ τ(σ0)5σ0 + (1 + τ(σ0) +
3k0

2
(1 +

ε0

α0

)σ0(1 + τ(σ0)2))σ0

≤ (1 + τ(σ0) + τ(σ0)5 +
3k0

2
(1 +

ε0

α0

)σ0(1 + τ(σ0)2))σ0

≤ (1 + τ(σ0) + τ(σ0)2 +
3k0

2
(1 +

ε0

α0

)σ0(1 + τ(σ0)2))σ0

≤ (1 + τ(γρ) + τ(γρ)
2 +

3k0

2
(1 +

ε0

α0

)γρ(1 + τ(γρ)
2))γρ

< r

i.e., uh,δ2,α, w
h,δ
2,α ∈ Br(Phx0). Continuing this way one can prove that uh,δn,α, w

h,δ
n,α ∈

Br(Phx0),∀n ≥ 0. This completes the proof.

The main result of this section is the following theorem.
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Theorem 4.4.4. Let 0 < τ(γρ) < 1, wh,δn,α and uh,δn,α be as in (4.4.18) and (4.4.19)

respectively with δ ∈ (0, δ0] and assumptions of the Theorem 4.4.3 hold. Then (uh,δn,α) is

Cauchy sequence in Br(Phx0) and converges to xh,δα ∈ Br(Phx0). Further ‖uh,δn,α−xh,δα ‖ ≤

Ce−γ4n and Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ where γ = − log τ(γρ) and

C =

[
1

1− τ(γρ)4
+

3k0γρ
2

(1 +
ε0

α0

)
1

1− (τ(γρ)2)4
τ(γρ)

4n
]
γρ.

Proof. Using the relation (b) of Lemma 4.4.1 and (c) of Theorem 4.4.2, we obtain

‖uh,δn+m,α − uh,δn,α‖ ≤
m−1∑
i=0

‖uh,δn+i+1,α − u
h,δ
n+i,α‖

≤
m−1∑
i=0

[
1 +

3k0σ0

2
(1 +

ε0

α0

)τ(σ0)4n+i
]
τ(σ0)4n+iσ0

≤ [(1 + τ(σ0)4 + τ(σ0)42 + · · ·+ τ(σ0)4m) +
3k0σ0

2
(1 +

ε0

α0

)

(1 + (τ(σ0)2)4 + (τ(σ0)2)42 + · · ·+ (τ(σ0)2)4m)τ(σ0)4n ]τ(σ0)4nσ0

≤ [(1 + τ(γρ)
4 + τ(γρ)

42 + · · ·+ τ(γρ)
4m) +

3k0γρ
2

(1 +
ε0

α0

)

(1 + (τ(γρ)
2)4 + (τ(γρ)

2)42 + · · ·+ (τ(γρ)
2)4m)τ(γρ)

4n ]τ(γρ)
4nγρ

≤ Cτ(γρ)
4n

≤ Ce−γ4n .

Thus uh,δn,α is a Cauchy sequence in Br(Phx0) and hence it converges, say, to xh,δα ∈
Br(Phx0). Observe that

‖Ph[F (uh,δn,α)− f δ + α(uh,δn,α − x0)]‖ = ‖Rα(uh,δn,α)(uh,δn,α − wh,δn,α)‖

≤ ‖Rα(uh,δn,α)‖‖uh,δn,α − wh,δn,α‖

= ‖(PhF ′(uh,δn,α)Ph + αPh)‖σh,δn,α
≤ ‖(PhF ′(uh,δn,α)Ph + αPh)‖τ(σ0)4nσ0

≤ (CF + α)τ(γρ)
4nγρ. (4.4.32)

Now by letting n→∞ in (4.4.32) we obtain

Ph[F (xh,δα ) + α(xh,δα − x0)] = Phf
δ.

This completes the proof.
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4.5 ERROR BOUNDS UNDER SOURCE CONDI-

TIONS FOR PROJECTION METHOD

The objective of this section is to obtain an error estimate for ‖uh,δn,α− x̂‖ under a source

condition on x0 − x̂. The proof of the following theorem is analogous to the proof of

Theorem 3.5.1, so the proof is omitted.

Theorem 4.5.1. Let uh,δn,α be as in (4.4.19), and let assumptions in Theorem 2.5.2 and

Theorem 4.4.4 hold. Then

‖uh,δn,α − x̂‖ ≤ Ce−γ4n + max{1, C̃}
[
ϕ(α) +

δ + εh
α

]
.

Let

nδ := min

{
n : e−γ4n ≤ δ + εh

α

}
(4.5.33)

and

C0 = C + max{1, C̃}. (4.5.34)

Theorem 4.5.2. Let uh,δnδ,α be as in (4.4.19) and the assumptions in Theorem 4.5.1 be

satisfied. And let nδ and C0 be as in (4.5.33) and (4.5.34) respectively. Then

‖uh,δnδ,α − x̂‖ ≤ C0

[
ϕ(α) +

δ + εh
α

]
.

4.5.1 A priori choice of the parameter

Theorem 4.5.3. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assumptions in Theorem

4.5.2 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ + εh)) and let nδ be as in (4.5.33). Then

‖uh,δnδ,α − x̂‖ = O(ψ−1(δ + εh)).
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4.5.2 An adaptive choice of the parameter

Let

DN(α) := {αi = µiα0, i = 0, 1, · · · , N}

where µ > 1, α0 > 0 and let

ni := min

{
n : e−γ4n ≤ δ + εh

αi

}
.

Then for i = 0, 1, · · · , N, we have

‖uh,δni,αi − x
h,δ
αi
‖ ≤ C

[
δ + εh
αi

]
, ∀i = 0, 1, · · ·N.

Let ui := uh,δni,αi . We select the regularization parameter α = αi from the set DN(α) and

operate only with corresponding ui, i = 0, 1, · · · , N.
Proof of the following theorem is analogous to the proof of Theorem 2.3.7.

Theorem 4.5.4. Assume that there exists i ∈ {0, 1, 2, · · · , N} such that ϕ(αi) ≤ δ+εh
αi
.

Let assumptions of Theorem 4.5.2 and Theorem 4.5.3 hold and let

l := max

{
i : ϕ(αi) ≤

δ + εh
αi

}
< N,

k := max
{
i : ‖ui − uj‖ ≤ 4C0

[
δ+εh
αj

]
, j = 0, 1, 2, · · · , i

}
.

Then l ≤ k and ‖x̂− uk‖ ≤ cψ−1(δ + εh) where c = 6C0µ.

4.6 IMPLEMENTATION OF ADAPTIVE CHOICE

RULE

Finally the balancing algorithm associated with the choice of the parameter specified in

Theorem 4.4.2 involves the following steps:

• Choose α0 > 0 such that δ0 < α0 and µ > 1.

• Choose αi := µiα0, i = 0, 1, 2, · · · , N.
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4.6.1 Algorithm

1. Set i = 0.

2. Choose ni := min
{
n : e−γ4n ≤ δ+εh

αi

}
.

3. Solve ui := uh,δni,αi by using the iteration (4.4.18) and (4.4.19).

4. If ‖ui − uj‖ > 4C0

(
δ+εh
αj

)
, j < i, then take k = i− 1 and return uk.

5. Else set i = i+ 1 and go to Step 2.

4.7 NUMERICAL EXAMPLE

Once again in this section we consider the problem studied in Example 2.7.1 for illus-

trating the algorithm considered in section 4.6.1. We apply the algorithm by choosing

a sequence of finite dimensional subspace (Vn) of X as in section 2.7.

Example 4.7.1. Here also we take the kernel as in Example 2.7.1, f δ = f + δ, where

f(t) = 6cos(πt)+cos3(πt)+14t−7
9π2 . Then the exact solution x̂(t) = cos(πt).

We use x0(t) = cos(πt) + 3[tπ2−t2π2−sin2(πt)]
4π2 as our initial guess, so that the function

x0 − x̂ satisfies the source condition x0 − x̂ = ϕ(F ′(x̂))1
4

where ϕ(λ) = λ.

We choose α0 = (1.1)(δ + εh), µ = 1.1, ρ = 0.11, γρ = 0.7818 and g(γρ) = 0.99. The

results of the computation are presented in Table 4.1. The plots of the exact solution

and the approximate solution obtained are given in Figures 4.1 through 4.8.
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n k nk δ + εh αk ‖uk − x̂‖ ‖uk−x̂‖
(δ+εh)1/2

8 2 4 0.0135 0.0180 0.3648 3.1407
16 2 4 0.0134 0.0178 0.2515 2.1751
32 2 4 0.0133 0.0178 0.1792 1.5516
64 2 4 0.0133 0.0177 0.1287 1.1141
128 2 4 0.0133 0.0177 0.0936 0.8103
256 2 4 0.0133 0.0177 0.0697 0.6033
512 2 4 0.0133 0.0177 0.0539 0.4664
1024 2 4 0.0133 0.0177 0.0439 0.3799

Table 4.1: Iterations and corresponding error estimates

Figure 4.1: Curves of the exact and approximate solutions when n=8
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Figure 4.2: Curves of the exact and approximate solutions when n=16

Figure 4.3: Curves of the exact and approximate solutions when n=32
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Figure 4.4: Curves of the exact and approximate solutions when n=64

Figure 4.5: Curves of the exact and approximate solutions when n=128



88 Chapter 4

Figure 4.6: Curves of the exact and approximate solutions when n=256

Figure 4.7: Curves of the exact and approximate solutions when n=512
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Figure 4.8: Curves of the exact and approximate solutions when n=1024

� 2 �
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Chapter 5

NEWTON LAVRENTIEV
REGULARIZATION FOR
ILL-POSED OPERATOR
EQUATIONS IN HILBERT
SCALES

In this chapter we present a two step method for approximately solving the ill-posed

operator equation F (x) = f, in the setting of Hilbert scales. Here F : D(F ) ⊆ X → X,

is a nonlinear monotone operator defined on a real Hilbert space X. Also we derive the

error estimates by selecting the regularization parameter α according to the adaptive

method suggested in Pereverzyev and Schock (2005). The error estimate obtained in

the setting of Hilbert scales {Xr}r∈R generated by a densely defined, linear, unbounded,

strictly positive self adjoint operator L : D(L) ⊂ X → X is of optimal order.

5.1 INTRODUCTION

This Chapter is devoted to the study of nonlinear ill-posed operator equation

F (x) = f, (5.1.1)

where F : D(F ) ⊂ X → X is a nonlinear monotone operator in the setting of Hilbert

scale. Here, D(F ) is the domain of F and X is a real Hilbert space with inner product

〈., .〉 and corresponding norm ‖.‖. Throughout this Chapter we assume the existence of

an x0-MNS, x̂ for exact data f, i.e.,

F (x̂) = f

91



92 Chapter 5

and the element x0 is assumed to be known. Further we assume that f δ ∈ X are the

available noisy data with ‖f − f δ‖ ≤ δ.

In this Chapter we consider, the Hilbert scales variant of (2.1.1) and (2.1.2) for

obtaining better convergence rates.

The Chapter is organized as: In Section 5.2, we give the preliminaries. The proposed

method is given in section 5.3, the error estimates, adaptive parameter choice is given

in section 5.4.

5.2 PRELIMINARIES

Let L : D(L) ⊂ X → X be a densely defined unbounded self adjoint strictly positive

operator. We consider a Hilbert scales {Xr}r∈R (see, Natterer (1984), Tautenhahn

(1996), Neubauer (2000), Egger and Neubauer (2005), Qi-Nian and Tautenhahn (2011))

induced by L, i.e., Xr is the completion of D := ∩∞k=0D(Lk) with respect to the Hilbert

space norm

‖x‖r = ‖Lrx‖, r ∈ R.

Throughout this Chapter we will be using the following assumptions.

Assumption 5.2.1. There exist constants a ≥ 0, 0 < m ≤M <∞ such that

m‖h‖−a ≤ ‖F ′(x0)h‖ ≤M‖h‖−a, h ∈ X.

Note that the above assumption is weaker than the Assumption 3(a) in Qi-Nian and

Tautenhahn (2011). Let

As = L−
s
2F ′(x0)L−

s
2 ,

f(ν) = min{mν ,Mν} and g(ν) = max{mν ,Mν}, ν ∈ R, |ν| ≤ 1. The following

proposition is important for proving the results in this chapter.

Proposition 5.2.1. (See George and Nair (1997), Proposition 3.1) For s ≥ 0 and

|ν| ≤ 1,

f(
ν

2
)‖x‖− ν

2
(s+a) ≤ ‖Aν/2s x‖ ≤ g(

ν

2
)‖x‖− ν

2
(s+a), x ∈ X.



Chapter 5 93

Using the above proposition, we prove the following lemma, which is used extensively

to prove the results of this chapter.

Lemma 5.2.2. Let Assumption 5.2.1 hold. Then for all h ∈ X,

‖(F ′(x0) + αLs)−1F ′(x0)h‖ ≤ ψ(s)‖h‖,where ψ(s) =
g( s

2(s+a)
)

f( s
2(s+a)

)
.

Proof. Note that,

‖(F ′(x0) + αLs)−1F ′(x0)h‖ = ‖L
−s
2 (As + αI)−1AsL

s
2h‖

≤ 1

f
(

s
2(s+a)

)‖A s
2(s+a)
s (As + αI)−1AsL

s
2h‖

≤ 1

f
(

s
2(s+a)

)‖(As + αI)−1As‖‖A
s

2(s+a)
s L

s
2h‖

≤ ψ(s)‖h‖.

The last step follows from the spectral properties of the self adjoint operator As, s > 0.

5.3 NEWTON LAVRENTIEV METHOD IN

In this section we consider the Hilbert scales variant of the method (2.1.1) and (2.1.2).

Define

yδn,α,s = xδn,α,s − (F ′(x0) + αLs)−1[F (xδn,α,s)− f δ + αLs(xδn,α,s − x0)] (5.3.2)

and

xδn+1,α,s = yδn,α,s − (F ′(x0) + αLs)−1[F (yδn,α,s)− f δ + αLs(yδn,α,s − x0)] (5.3.3)

where xδ0,α,s := x0, is the initial approximation for the solution x̂ of (5.1.1). We will be

selecting the regularization parameter α = αi from some finite set defined in (2.1.3).

We assume that F possesses a uniformly bounded Fréchet derivative F ′(x) for all

x ∈ D(F ) and F ′(x) satisfies the Assumption 2.2.2.

Let

eδn,α,s := ‖yδn,α,s − xδn,α,s‖, ∀n ≥ 0 (5.3.4)

HILBERT SCALES
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and let δ0 <
α

a
s+a
0

4k0ψ(s)ψ1(s)
for some α0 > 0, where ψ1(s) =

g( −s
2(s+a))

f( s
2(s+a))

.

Let ‖x̂− x0‖ ≤ ρ, with ρ ≤

√
1+[ 1

2ψ(s)2
− 2k0ψ1(s)δ0

ψ(s)α

a
s+a
0

]−1

k0
and

γρ :=
k0

2
ψ(s)ρ2 + ψ(s)ρ+

ψ1(s)δ0

α
a
s+a

0

. (5.3.5)

Further let q = ψ(s)k0r, (5.3.6)

where r ∈

(
1−

√
1− 4k0ψ(s)γρ
2k0ψ(s)

,
1 +

√
1− 4k0ψ(s)γρ
2k0ψ(s)

)
. (5.3.7)

Note that if q is as in (5.3.6), then q < 1.

Lemma 5.3.1. Let eδ0,α,s be as in (5.3.4). Then eδ0,α,s ≤ γρ.

Proof. Observe that

eδ0,α,s = ‖yδ0,α,s − xδ0,α,s‖

= ‖(F ′(x0) + αLs)−1(F (x0)− f δ)‖

= ‖(F ′(x0) + αLs)−1[F (x0)− F (x̂)− F ′(x0)(x0 − x̂)

+F ′(x0)(x0 − x̂) + F (x̂)− f δ]‖

= ‖(F ′(x0) + αLs)−1[

∫ 1

0

(F ′(x0 + t(x̂− x0))− F ′(x0))(x0 − x̂)dt

+F ′(x0)(x0 − x̂) + F (x̂)− f δ]‖

= ‖(F ′(x0) + αLs)−1F ′(x0)[

∫ 1

0

Φ(x0 + t(x̂− x0), x0, x0 − x̂)dt+ (x0 − x̂)]

+(F ′(x0) + αLs)−1(F (x̂)− f δ)‖

and hence by Assumption 2.2.2 and Lemma 5.2.2 we have,

eδ0,α,s ≤
k0

2
ψ(s)‖x0 − x̂‖2 + ψ(s)‖x0 − x̂‖+ ‖(F ′(x0) + αLs)−1(f − f δ)‖. (5.3.8)

Observe that,

‖(F ′(x0) + αLs)−1(f − f δ)‖ = ‖L
−s
2 (As + αI)−1L

−s
2 (f δ − f)‖

≤ 1

f
(

s
2(s+a)

)‖A s
2(s+a)
s (As + αI)−1L

−s
2 (f δ − f)‖
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=
1

f
(

s
2(s+a)

)‖(As + αI)−1A
s
s+a
s A

−s
2(s+a)
s L

−s
2 (f δ − f)‖

≤
g
(
−s

2(s+a)

)
f
(

s
2(s+a)

)α −as+a‖L
−s
2 (f δ − f)‖ s

2

≤ ψ1(s)δα
−a
s+a ≤ ψ1(s)δ0α

−a
s+a

0 . (5.3.9)

Now the result follows from (5.3.5), (5.3.8) and (5.3.9).

Theorem 5.3.2. Let yδn,α,s, x
δ
n,α,s and eδn,α,s be as in (5.3.2), (5.3.3) and (5.3.4) respec-

tively with δ ∈ (0, δ0] and α ∈ DN(α). Let γρ, q and r be as in (5.3.5), (5.3.6) and

(5.3.7) respectively. Then

(a) ‖xδn,α,s − yδn−1,α,s‖ ≤ q‖yδn−1,α,s − xδn−1,α,s‖;

(b) ‖yδn,α,s − xδn,α,s‖ ≤ q2‖yδn−1,α,s − xδn−1,α,s‖;

(c) eδn,α,s ≤ q2nγρ;

(d) xδn,α,s, y
δ
n,α,s ∈ Br(x0).

Proof. Observe that, if xδn,α,s, y
δ
n,α,s ∈ Br(x0), then

xδn,α,s − yδn−1,α,s = yδn−1,α,s − xδn−1,α,s − (F ′(x0) + αLs)−1[F (yδn−1,α,s)− F (xδn−1,α,s)

+αLs(yδn−1,α,s − xδn−1,α,s)]

= (F ′(x0) + αLs)−1[F ′(x0)(yδn−1,α,s − xδn−1,α,s)

−(F (yδn−1,α,s)− F (xδn−1,α,s))]

= (F ′(x0) + αLs)−1

∫ 1

0

[F ′(x0)− F ′(xδn−1,α,s + t(yδn−1,α,s − xδn−1,α,s))]

×(yδn−1,α,s − xδn−1,α,s)dt

= (F ′(x0) + αLs)−1F ′(x0)∫ 1

0

Φ(x0, x
δ
n−1,α,s + t(yδn−1,α,s − xδn−1,α,s), y

δ
n−1,α,s − xδn−1,α,s)dt,

so, by Assumption 2.2.2 and Lemma 5.2.2 we have,

‖xδn,α,s − yδn−1,α,s‖ ≤ ψ(s)k0r‖yδn−1,α,s − xδn−1,α,s‖. (5.3.10)
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This proves (a). Again observe that if xδn,α,s, y
δ
n,α,s ∈ Br(x0), by Assumption 2.2.2 and

(5.3.10) we have

yδn,α,s − xδn,α,s = xδn,α,s − yδn−1,α,s − (F ′(x0) + αLs)−1[F (xδn,α,s)− f δ + α(xδn,α,s − x0)]

= (F ′(x0) + αLs)−1[F ′(x0)(xδn,α,s − yδn−1,α,s)− (F (xδn,α,s)− F (yδn−1,α,s))]

= (F ′(x0) + αLs)−1

∫ 1

0

[F ′(x0)− F ′(yδn−1,α,s + t(xδn,α,s − yδn−1,α,s)]

(xδn,α,s − yδn−1,α,s)dt

= (F ′(x0) + αLs)−1F ′(x0)

∫ 1

0

Φ(x0, y
δ
n−1,α,s + t(xδn,α,s − yδn−1,α,s),

xδn,α,s − yδn−1,α,s)dt

and hence, by Lemma 5.2.2

‖yδn,α,s−xδn,α,s‖ ≤ ψ(s)k0r‖xδn,α,s−yδn−1,α,s‖ ≤ q2‖yδn−1,α,s−xδn−1,α,s‖. (5.3.11)

This proves (b) and (c) follows from (b).

Now using induction we shall prove that xδn,α,s, y
δ
n,α,s ∈ Br(x0). Note that x0, y

δ
0,α,s ∈

Br(x0) and hence by (5.3.10)

‖xδ1,α,s − x0‖ ≤ ‖xδ1,α,s − yδ0,α,s‖+ ‖yδ0,α,s − x0‖

≤ (1 + q)eδ0,α,s

≤
eδ0,α,s
1− q

≤ γρ
1− q

< r

i.e., xδ1,α,s ∈ Br(x0), again by (5.3.11)

‖yδ1,α,s − x0‖ ≤ ‖yδ1,α,s − xδ1,α,s‖+ ‖xδ1,α,s − x0‖

≤ q2eδ0,α,s + (1 + q)eδ0,α,s

≤
eδ0,α,s
1− q

≤ γρ
1− q

< r

i.e., yδ1,α,s ∈ Br(x0). Suppose xδk,α,s, y
δ
k,α,s ∈ Br(x0) for some k > 1.

Then since ‖xδk+1,α,s − x0‖ ≤ ‖xδk+1,α,s − xδk,α,s‖+ ‖xδk,α,s − xδk−1,α,s‖+ · · ·+ ‖xδ1,α,s − x0‖
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and by (a) and (b) we have,

‖xδk+1,α,s − xδk,α,s‖ ≤ ‖xδk+1,α,s − yδk,α,s‖+ ‖yδk,α,s − xδk,α,s‖

≤ (q + 1)‖yδk,α,s − xδk,α,s‖ ≤ (1 + q)q2keδ0,α,s.

Thus

‖xδk+1,α,s − x0‖ ≤ (1 + q)[q2k + q2(k−1) + · · ·+ 1]eδ0,α,s (5.3.12)

‖xδk+1,α,s − x0‖ ≤ (1 + q)

[
1− q2k+1

1− q2

]
eδ0,α,s

≤
eδ0,α,s
1− q

≤ γρ
1− q

< r.

So by induction xδn,α,s ∈ Br(x0) for all n ≥ 0. Again by (a), (b) and (5.3.12) we have,

‖yδk+1,α,s − x0‖ ≤ ‖yδk+1,α,s − xδk+1,α,s‖+ ‖xδk+1,α,s − x0‖

≤ q2k+2eδ0,α,s + (1 + q)[q2k + q2(k−1) + · · ·+ 1]eδ0,α,s

≤ (1 + q)

[
1− q2k+3

1− q2

]
eδ0,α,s

≤
eδ0,α,s
1− q

≤ γρ
1− q

< r.

Thus yδk+1,α,s ∈ Br(x0) and hence by induction yδn,α,s ∈ Br(x0) for all n ≥ 0. This

completes the proof.

Theorem 5.3.3. Let yδn,α,s and xδn,α,s be as in (5.3.2) and (5.3.3) respectively with

δ ∈ (0, δ0] and α ∈ DN(α) and let the assumptions of Theorem 5.3.2 hold. Then (xδn,α,s)

is a Cauchy sequence in Br(x0) and converges to xδα,s ∈ Br(x0). Further

F (xδα,s) + αLs(xδα,s − x0) = f δ (5.3.13)
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and

‖xδn,α,s − xδα,s‖ ≤ Cq2n

where C = γρ
1−q .

Proof. Using the relation (b) and (c) of Theorem 5.3.2, we obtain

‖xδn+m,α,s − xδn,α,s‖ ≤
m−1∑
i=0

‖xδn+i+1,α,s − xδn+i,α,s‖

≤
m−1∑
i=0

(1 + q)eδn+i,α,s

≤
m−1∑
i=0

(1 + q)q2(n+i)eδ0,α,s

≤ q2n

1− q
eδ0,α,s

≤ q2n

1− q
γρ.

Thus xδn,α,s is a Cauchy sequence in Br(x0) and hence it converges, say, to xδα,s ∈ Br(x0).

Observe that

‖F (xδn,α,s) + αLs(xδn,α,s − x0)− f δ‖ = ‖(F ′(x0) + αLs)(xδn,α,s − yδn,α,s)‖

≤ ‖(F ′(x0) + αLs)‖Xs→X‖xδn,α,s − yδn,α,s‖

≤ ‖(F ′(x0) + αLs)‖Xs→Xq2nγρ. (5.3.14)

Now by letting n→∞ in (5.3.14) we obtain F (xδα,s) + αLs(xδα,s − x0) = f δ.

5.4 ERROR BOUNDS AND PARAMETER

CHOICE IN HILBERT SCALES

In order to obtain error estimate in Hilbert scales an assumption of the form

x0 − x̂ ∈Mt,E = {x ∈ X : ‖x− x̂‖t ≤ E} (5.4.15)

is used (cf. George and Nair (1997), George and Nair (2003), George and Nair (2004),

Lu et al. (2010) and Jin and Tautenhahn (2011)). In this Chapter we use the following

general source condition on x0 − x̂.
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Assumption 5.4.1. There exists a continuous, strictly monotonically increasing func-

tion ϕ : (0, ‖As‖]→ (0,∞) satisfying;

(i) lim
λ→0

ϕ(λ) = 0,

(ii) sup
λ≥0

αϕ(λ)
λ+α

≤ ϕ(α) ∀λ ∈ (0, ‖As‖] and

(iii) there exists v ∈ X with ‖v‖ ≤ E1 such that A
s

2(s+a)
s L

s
2 (x0 − x̂) = ϕ(As)v

Remark 5.4.1. Note that if x0 − x̂ ∈Mt,E, then

∥∥∥∥A s−2t
2(s+a)
s L

s
2 (x0 − x̂)

∥∥∥∥ ≤ g

(
s− 2t

2(s+ a)

)
‖L

s
2 (x0 − x̂)‖t− s

2

≤ g

(
s− 2t

2(s+ a)

)
‖(x0 − x̂)‖t

≤ g

(
s− 2t

2(s+ a)

)
E.

So, A
s

2(s+a)
s L

s
2 (x0 − x̂) = A

t
(s+a)
s A

s−2t
2(s+a)
s L

s
2 (x0 − x̂)

:= ϕ(As)v

where ϕ(λ) = λ
t

s+a and v = A
s−2t

2(s+a)
s L

s
2 (x0 − x̂). In other words the 5.4.15 leads to the

Assumption 5.4.1.

Theorem 5.4.2. Suppose xδα,s is the solution of (5.3.13) and Assumption 2.2.2 and

Assumption 5.4.1 hold. Then ‖xδα,s − x̂‖ ≤ Cs

[
δ

α
a
s+a

+ ϕ(α)
]

where

Cs =
1

1− q
max

ψ1(s),
E1

f
(

s
2(s+a)

)
 .

Proof. Let M =
∫ 1

0
F ′(x̂ + t(xδα,s − x̂))dt. Since F (xδα,s) − f δ + αLs(xδα,s − x0) = 0, we

have,

xδα,s − x̂ = (F ′(x0) + αLs)−1[(f δ − f) + αLs(xδ0 − x̂) + (F ′(x0)−M)(xδα,s − x̂)]
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Thus by Lemma 5.2.2 and Assumption 2.2.2,

‖(xδα,s − x̂)‖ ≤ ‖(F ′(x0) + αLs)−1[(f δ − f) + αLs(x0 − x̂)

+(F ′(x0)−M)(xδα,s − x̂)]‖

≤ ψ1(s)
δ

α
a
s+a

+ ‖(F ′(x0) + αLs)−1αLs(x0 − x̂)‖+ q‖xδα,s − x̂‖.

So, the result follows, if we prove ‖(F ′(x0) + αLs)−1αLs(x0 − x̂)‖ ≤ E1

f( s
2(s+a)

)
ϕ(α). This

can be seen as follows.

‖(F ′(x0) + αLs)−1αLs(x0 − x̂)‖ = ‖αL
−s
2 (As + αI)−1L

s
2 (x0 − x̂)‖

≤ 1

f
(

s
2(s+a)

)‖α(As + αI)−1A
s

2(s+a)
s L

s
2 (x0 − x̂)‖

≤ 1

f
(

s
2(s+a)

)‖α(As + αI)−1ϕ(As)v‖

≤ E1ϕ(α)

f
(

s
2(s+a)

) .
The last step follows from the Assumption 5.4.1.

Note that the error estimate δ

α
a
s+a

+ϕ(α) in Theorem (5.4.2) attains minimum for the

choice α := α(δ, s, a) which satisfies ϕ(α) = α−a/(s+a)δ. Clearly α(δ, s, a) = ϕ−1(ψ−1
s,a(δ)),

where

ψs,a(λ) = λ[ϕ−1(λ)]a/(s+a), 0 < λ ≤ ‖As‖. (5.4.16)

The following Theorem is a consequence of Theorem 5.3.3 and Theorem 5.4.2.

Theorem 5.4.3. Let xδn,α,s be as in (5.3.3) and assumptions in Theorem 5.3.3 and

Theorem 5.4.2 hold. Then

‖x̂− xδn,α,s‖ ≤ Cq2n + Cs

[
δ

α
a
s+a

+ ϕ(α)

]
.

Theorem 5.4.4. Let xδn,α,s be as in (5.3.3) and the assumptions of Theorem 5.3.3 hold.

And let nk := min
{
n : q2n ≤ δ

α
a
s+a

}
. Then

‖x̂− xδnk,α,s‖ ≤ Cs

[
δ

α
a
s+a

+ ϕ(α)

]
,

where Cs = C + Cs.
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5.4.1 Adaptive scheme and stopping rule

Once again the selection of regularization parameter is done using the adaptive scheme

considered in Pereverzyev and Schock (2005). We use the same strategy suitably mod-

ified for the situation for choosing the parameter α.

For convience take xi,s := xδni,αi,s. Let i ∈ {0, 1, 2, · · · , N} and αi = µiα0 where

µ = η(1+s/a), η > 1 and α0 = δ(1+s/a). Let

l := max
{
i : ϕ(αi) ≤ α

−a/(s+a)
i δ

}
< N. (5.4.17)

and

k := max
{
i : ‖xδi,s − xδj,s‖ ≤ 4Csα

−a/(s+a)
j δ

}
, j = 0, 1, 2, · · · , i. (5.4.18)

Now we have the following.

Theorem 5.4.5. Let ψs,a, l and k be as in (5.4.16), (5.4.17) and (5.4.18) respectively.

Then l ≤ k; and

‖x̂− xδk,s‖ ≤ Cs,ηψ
−1
s,a(δ),

where Cs,η = Cs(6η−2)
(η−1)

.

Proof. To see that l ≤ k, it is enough to show that, for i = 1, 2, · · · , N,

ϕ(αi) ≤ α
−a/(s+a)
i δ =⇒ ‖xδi,s − xδj,s‖ ≤ 4Csα

−a/(s+a)
j δ, ∀j = 0, 1, · · · , i.

For j ≤ i, by Theorem 5.4.4

‖xδi,s − xδj,s‖ ≤ ‖xδi,s − x̂‖+ ‖x̂− xδj,s‖

≤ Cs

[
δ

α
a
s+a

i

+ ϕ(αi)

]
+ Cs

[
δ

αj
a
s+a

+ ϕ(αj)

]
≤ Cs

[
2α
−a/(s+a)
i δ + 2α

−a/(s+a)
j δ

]
≤ 4Csα

−a/(s+a)
j δ.

This proves the relation l ≤ k. Thus by the relation α
a/(s+a)
l+m = ηmα

a/(s+a)
l and by using
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triangle inequality successively, we obtain

‖x̂− xδk,s‖ ≤ ‖x̂− xδl,s‖+
k∑

i=l+1

‖xδi,s − xδi−1,s‖

≤ ‖x̂− xδl,s‖+
k−l−1∑
m=0

4Csα
−a/(s+a)
l η−mδ

≤ ‖x̂− xδl,s‖+
4ηCs
η − 1

α
−a/(s+a)
l δ. (5.4.19)

Therefore by (5.4.19) and Theorem 5.4.4 we have

‖x̂− xδk,s‖ ≤ Cs

[
δ

α
a
s+a

l

+ ϕ(αl)

]
+

4ηCs
η − 1

α
−a/(s+a)
l δ

≤ Cs,ηψ
−1
s,a(δ).
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Chapter 6

CONCLUDING REMARKS

In this thesis we focussed our attention exclusively on some iterative regularization

methods for solving nonlinear ill-posed operator equation

F (x) = f, (6.0.1)

where F : D(F ) ⊆ X → X is a nonlinear monotone operator defined on real Hilbert

space X.

Throughout this thesis we assume that the available data is f δ with ‖f − f δ‖ ≤ δ.

The approach was to construct an iterative sequence which converges to the unique

solution of F (x) + α(x − x0) = f δ. It is known that xδα is an approximation for the

solution x̂, for properly chosen parameter α.

In Chapter 2, we considered a Two Step Modified Newton Lavrentiev Method

(TSMNLM) which converges linearly to xδα and also the finite dimensional approxima-

tion of the iterative method TSMNLM. A numerical example and the corresponding

computational results are exibited to confirm the reliability and effectiveness of our

method.

In Chapter 3, we presented cubically converging Two Step Newton Lavrentiev Method

(CNLM) and its finite dimensional realization for finding an approximate solution for

a nonlinear ill-posed operator equation (6.0.1). The CNLM converges cubically to the

solution xδα (xδα is an approximation for the x0−minimal norm solution of (6.0.1)) of the

equation F (x) + α(x− x0) = f δ.

In Chapter 4, we have suggested and analyzed another iterative method and its finite

dimensional realization for obtaining an approximate solution for nonlinear ill-posed

operator equation (6.0.1), and proved that the methods converge locally quarticaly to

xδα. Numerical results were provided to show the efficiency of the method.

103



104 Chapter 6

In Chapter 5, we considered the Hilbert scale variant of the two step Newton method

considered in Chapter 2 for approximately solving the ill-posed operator equation (6.0.1).

The derived error estimate using a general source condition is of optimal order. The

sequence in this chapter converges linearly to the solution xδα,s of the equation F (xδα,s)+

αLs(xδα,s − x0) = f δ.

The regularization parameter α in all the chapters was selected according to the

adaptive method of Pereverzyev and Schock (2005).

The methods considered in this thesis for solving nonlinear ill-posed operator equa-

tions, by no means, is exhaustive. In future works, we would like to analyze the methods

in Chapter 3 and Chapter 4 in the Hilbert scale settings.
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