
DESIGN AND CONSTRUCTION OF ALGEBRAIC
CODES FOR ENHANCING INFORMATION INTEGRITY

IN DATA STORAGE SYSTEMS

Thesis
Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

RAJESH SHETTY K
Register No. EC06F01

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,
SURATHKAL, MANGALORE- 575 025

May - 2013

DECLARATION

 I hereby declare that the Research Thesis entitled Design and Construction

of Algebraic Codes for Enhancing Information Integrity in Data Storage Systems

which is being submitted to the National Institute of Technology Karnataka,

Surathkal in partial fulfillment of the requirements for the award of the Degree of

Doctor of Philosophy in Electronics and Communication Engineering is a

bonafide report of the research work carried out by me. The material contained in this

Research Thesis has not been submitted to any University or Institution for the award

of any degree.

RAJESH SHETTY K
EC06F01

Department of Electronics and Communication Engineering

Place: NITK, Surathkal

Date: 31- 05-2013

CERTIFICATE

This is to certify that the Research Thesis entitled “Design and Construction of

Algebraic Codes for Enhancing Information Integrity in Data Storage

Systems” submitted by Rajesh Shetty K (Register Number : EC06F01) as the

record of the research work carried out by him, is accepted as the Research

Thesis submission in partial fulfillment of the requirements for the award of

degree of Doctor of Philosophy.

Dr. U. Sripati Dr. Muralidhar Kulkarni
Research Guide Chairman, DRPC

Dedicated
to

Poojya Shree Bhagawan

 ii

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude and respect to my research advisor

Dr. U. Sripati for the guidance, encouragement, unflinching support, advice and help

during the period of my research. His undying inspiration and motivation has helped

me through the ups and downs of the rough terrain of the research path. This work has

taken shape because of his efforts and inputs.

I wish to express my gratitude to Dr. B. Shankarananda, my associate advisor, for

giving me an opportunity to pursue research work in the Department of Electronics &

Communication at NITK, Surathkal.

I am thankful to Dr. Muralidhar Kulkarni, Head of the Department of Electronics and

Communication, for his support and encouragement.

I would like to thank my ex-HOD Dr. Sumam David for her help, advice and constant

support during this period.

I would also like to acknowledge my doctoral committee members, Dr. B. R. Shankar

and Dr. John D’Souza for reading and evaluating my research reports as well as for

their precious time, suggestions, feedback and interest in this work.

I would also like to express my sincere thanks to Sri. N. Vinaya Hegde, President of

Nitte Education Trust and Chancellor Nitte University for all his support and

encouragement throughout my career.

Special thanks to my friends, Prashantha Kumar, Ramakrishna for all the discussions

and help. I would also like to express my gratitude to all the staff members (teaching

and non teaching) of Electronics and Communication Department at NITK, Suratkal

for their help and support.

 iii

Most of all, I wish to thank my parents, my wife Mamatha, for the love,

encouragement, moral and emotional support, patience as well as to my daughter

Sumedha for bringing joy and happiness in our lives.

 Rajesh Shetty K

 iv

ABSTRACT

 Data storage devices have become ubiquitous in present day information driven

society. It is essential that storage devices exhibit very high levels of data integrity.

Therefore, data integrity is a fundamental aspect of storage, security and reliability.

NAND and NOR Flash memories [Chen, Y. 2008], [Mielke, N et al. 2008], [Gal, E.

et al. 2005], [Jiang, A et al. 2010] are widely used for data storage because of their

compactness and low power consumption. Data stored in non-volatile memory is

usually critical to proper system operation, and corruption of data can lead to system

failure. Hence data corruption is a major concern in applications that rely on non-

volatile memory for long-term data storage. Many techniques have been employed to

improve the reliability of these devices. These techniques can be divided into two

categories. In the first approach, improvements are carried out in the fabrication

process to reduce the Raw Bit Error Rate (RBER). The second option is to use Error

Correction Techniques to improve the RBER level to levels that are deemed

acceptable to most users [Sun, F. et al. 2007], [Sun,F et al. 2006], [Chen, Y. and

Parhi, K. 2004], [Mielke, N. et al. 2008].

Error Control Code (ECC) techniques (i.e., techniques capable of detecting and

correcting errors in processed and stored data by using redundant bits in addition to

information bits according to a given coding strategy) [Pless, V. and Huffman, W.C.

1998] have been commonly used at board level for many years to enhance the

reliability of memory systems [Bertozzi, D. et al. 2005]. However, as memory chips

become denser, they also become more prone to errors, as a consequence of both the

reduced cell size and the increased cell count within a single die. Moreover, read and

write operations are made more critical by both technology scaling down and higher

speed requirements. On the other hand, higher and higher reliability is required for

storage systems in a large variety of applications.

Generally high storage density is achieved by reducing the size of the elementary

memory cell. However, for non-volatile memories, some physical phenomena makes

 v

an aggressive reduction of the memory cell size difficult [Atwood, G. et al. 1997],

[Wang, Z. and Karpovsky, M. 2011]. An alternative solution to reduce the cost per

bit and increase the storage density is to adopt the multilevel approach. It consists of

placing a multiplicity of charge amount in the floating gate, thus allowing the cell to

store more than one bit. However, the multilevel storage requires the consideration of

three basic issues:

(i) accuracy of write operation (necessary to place the correct amount of charge of

the floating gate).

(ii) precision of the charge sensing (required to discriminate the different

threshold voltages).

(iii) stability of charge over an extended time period. Although Multi Level Cell

(MLC) memory has higher density than Single Level Cell (SLC) memory,

MLC is more vulnerable to errors because small fluctuation of the charge

amount in the floating gate and slight variation of gate voltage result in

misreading of stored data [Sun, F. et al. 2007], [Sun,F et al. 2006], [Maeda, Y

et al. 2009], [Lin, H et al. 2002], [Ankolekar, P. P et al.2010].

ECC is a cost effective method to enhance the integrity of data storage systems. Very

stringent values of application BER, which would ordinarily require complex and

expensive fabrication techniques as well as expensive materials, can be met very

easily by employing ECC. Storage devices characterized by high RBER values can be

made to yield application BERs as small as desired by the use of suitable ECC

techniques. The fraction of erroneous bits that remain uncorrected after applying ECC

constitute the uncorrectable bit error rate (UBER). UBER is a useful reliability metric

for data storage devices and is used to specify the data corruption rate in the

information given to the user after correction by ECC algorithms. ECC algorithms

can also correct errors that may manifest at any later stage during the life of the

device. Hence use of ECC techniques has been widely accepted by the semiconductor

manufacturing industry to enhance the RBER to levels demanded by applications.

In this thesis, we have made an attempt to synthesize a number of codes for use in

data storage systems with error correcting capability exceeding the state of art as

 vi

specified in the industry documentation. In the initial part of the thesis, the focus is

on the synthesis of codes for enhancing data integrity in flash memories composed of

SLCs. While studying the flash memory organization, two memory models, namely

Memory model 1 and Memory model 2 are identified and the codes are synthesized

separately for these memory models. As compared to the current standard, [Mehnert,

A. 2008] where six bits in errors can be corrected over a span of 4096 information bits

(one sector), we propose codes that can correct up to nine bits in error per sector. The

various generator polynomials are computed. As the performance of the error control

code improves with increase in length, we were motivated to consider the

combination of two sectors to constitute the information block. For this scenario, we

propose codes that can correct up to eighteen bits in error over a span of 8192 bits

(two sectors). Further, using Memory model 2, we have synthesized and proposed

codes that can correct up to eighteen bits in errors per sector. The performance of

these codes is quantified by computing values of the probability of decoding error.

To summarize, the main objective of this work has been to design, construct and

synthesize a large group of codes which can be used to enhance the data integrity

levels associated with flash memory devices so as to make them useful in a wider

class of applications. With a view to make these synthesized codes, readily acceptable

to industry, we have strictly adhered to the memory architecture specified in the

literature.

 vii

 Table of Contents

Chapter

 Content
Page

No.

Acknowledgements

Abstract

ii

 iv

1

Introduction

1

1.1 Introduction 1

1.2

 Motivation for the use of Error Control Coding in Storage

Systems
5

1.3

1.4

1.5

1.6

 Flash Memory Organization

Flash memory Structure and Characteristics

Scope of the research work presented in the thesis

Organization of the thesis

6

12

13

13

2 Mathematical Background

15

2.1 Cyclic Codes

15

 2.1.1 Linear Cyclic Block Codes 15

 2.1.2 Group 16

 2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

Irreducible Polynomial

Primitive Polynomial

Minimal Polynomial

Conjugates of Field Elements

Cyclotomic Cosets

17

17

17

18

19

2.2 Bounds on Codes 20

 viii

 2.2.1

2.2.2

Definition

Definition

21

22

 2.2.3 Definition

22

3 Application of Error Control Codes to Single Level

Cells

 23

3.1 Introduction 23

3.2

 Synthesis of BCH Codes 23

 3.2.1 Memory Model 1 23

 3.2.2 Two sectors as one Information Block 31

 3.2.3 Memory Model 2 40

3.3 Synthesis of RS Codes for Memory Model 1 50

3.4 Synthesis of RS Codes for Memory Model 2 52

4 Application of Error Correction Codes for Multi Level
Cells

55

4.1

4.2

 Introduction

Modeling of Multi Level Cell as a Channel

55

56

4.3 Code Synthesis for Multi Level Flash 63

4.3.1

4.3.2

4.3.3

RS Codes

8-level MLC

16-level MLC

64

65

78

5 Decoder Architecture and Interleaver 85

5.1 Decoder Architecture 85

 ix

5.2 Code Synthesis using LDPC Codes 90

5.3 Application of LDPC Codes to Flash Memory 94

 5.3.1 Code Synthesis for Memory Model 1 94

 5.3.2 Code Synthesis for Memory Model 2 95

 5.3.3 Code Synthesis for Multi Level Flash Memories 96

5.4 Interleaver 98

6 Conclusion 111

 6.1 Summary of the Results 111

 6.2 Directions for Future Research 113

References

115

 Publications Based on the Research Work Described in

this Thesis.

123

 x

List of Figures

Figure

No.

Title Page No.

 1.1 Raw Bit Error Rate versus Post-ECC Bit Error 3

 1.2 Flash Memory Cell 12

 3.1 Performance of BCH Codes for enhancing data integrity

in Flash memories for memory model 1

 30

 3.2 Performance of BCH Codes for enhancing data integrity

in Flash memories for memory model 1

 50

 4.1 Schematic relation between control voltage and drain-

source current in 4-level memory cell

 57

 4.2 Probability density functions in 4-level cell 58

 4.3 Probability density functions in 8-level cell 69

 4.4 Performance of t = 18 BCH code for MLC (4-level)

Memory model 1

 72

 4.5 Performance of t = 36 BCH code for MLC (4-level)
Memory model 2

 73

 4.6 Performance of t = 27 BCH code for MLC (8-level)
Memory model 1

 73

 4.7 Performance of t = 54 BCH code for MLC (8-level)
Memory model 2

 74

 4.8 Probability density functions for 16-level cell 78

 4.9 Performance of t = 34 BCH code for MLC (16-level)
Memory model 1

 80

 4.10 Performance of t = 68 BCH code for MLC (16-level)
Memory model 2

 81

 5.1 Decoding Architecture 86

 5.2 Tanner graph corresponding to parity check matrix 92

 5.3 A 3x3 Block Interleaver and Deinterleaver 101

 5.4 A Cross Interleave circuit with corresponding
Deinterleaver

 102

 5.5 Representation of two sectors, each with 512 bytes of data
and 16 bytes of overhead

 104

 xi

List of Tables

Table No.

Title

Page No.

1 Memory Organization for 2GB flash drive

 6

3.1 Number of overhead bits required for various values of t
(Memory model 1)

 29

3.2 Number of overhead bits required for various values of t
(Combining two sectors as one information block)

 39

3.3 Number of overhead bits required for various values of t
(Memory model 2)

 49

4.1 Mapping between readout voltage and symbol stored in
MLC

 57

4.2 Computed values of RSER and probability of decoding
error for 4-level MLC

 71

4.3 Computed values of RSER and probability of decoding
error for 8-level MLC

 71

5.1 Values of various parameters 89

 xii

List of Abbreviations

AG

AWGN

Algebraic Geometry

additive white Gaussian noise

BCH Bose-Chaudhury-Hocquenghem

BER

BIOS

ECC

EPROM

ISI

LCM

LDPC

ML

MLC

RBER

RS

RSER

SEU

SLC

UBER

USER

bit error rate

basic input output system

error control coding

erasable programmable read only memory

inter symbol interference

least common multiple

low density parity check

maximum likelihood

multi level cell

raw bit error rate

Reed-Solomon

raw symbol error rate

single event upset

single level cell

uncorrectable bit error rate

uncorrectable symbol error rate

 xiii

List of Notations

qF Galois field)(qGF

C Cyclic code

H parity check matrix

G generator matrix

P sub-matrix

I identity matrix

n codeword length

k dimension of the code

c Codeword

r Redundancy

mind minimum distance of the code

t error correcting capability

 design distance

)(xg generator polynomial

S Syndrome

rW row weight of parity check matrix

cW column weight of parity check matrix

 1

Chapter 1

Introduction

1.1 Preliminaries

The revolution in the area of communication and the advent of internet has produced

enormous demand for increase in information storage capacity and density.

Physical/Media improvements along with sophisticated signal processing and coding

techniques have played a critical role in the constant augmentation of

storage/communication channel capacities [Costello, D. and Forney, D. 2007]. Every

computer memory and data storage system has adopted some type of error detection or

error correction code in order to enhance system reliability. The reliability levels required

by the storage devices are extremely high. This is because, unlike communication

systems, retransmission is generally not possible. It is expected that the user will be able

to save data and be able to retrieve it perfectly at any time whenever required.

Storage devices have become an integral part of modern electronic, communication and

computing devices. Today, a number of portable hand held devices are required to

perform complex mathematical computations. They are also intelligent enough to

communicate with each other. The processor performing complex computations has to be

supported by storage devices possessing very high level of data integrity. Designers of

storage devices have employed many techniques to improve the capacity and reliability

of these devices. In recent years, increasingly sophisticated Error Control Coding (ECC)

algorithms have been employed to increase the reliability levels of data storage systems.

By definition, a storage device is designed to store and retain information without

corruption for long period of time. However, all storage devices have the potential to

return information different from what was originally stored. Data integrity is a

fundamental aspect of storage security and reliability. NAND Flash memories [Choi, H.et

 2

al. 2010], [Liu, W. et al. 2006], [Sun, F et al. 2006] are widely employed for data storage

because of their compactness, low power, low cost, high data throughput and reliability.

Scaling and MLC technology have enabled NAND flash memories to replace hard disk

drives (HDD) in portable devices and in some computers.

Data stored in the nonvolatile memory is usually critical to proper system operation, and

corruption of that data can lead to system failure, hardware damage, and even unsafe

operating conditions. Hence data corruption is a major concern in applications that rely

on nonvolatile memory for long-term data storage. By implementing proper data

protection techniques, both in hardware and software, the chances of data corruption can

be greatly reduced. One of the most efficient methods is the use of ECC. In data storage

applications/systems, it is important that we are able to save the data and retrieve it

correctly without any errors. It is the art of ECC that makes it possible. Permanent and

temporal faults are the major sources of errors in modern digital storage systems

[Yamada, J. 1987]. Power supply break down, defective open or short circuits, open

lines, electron migration etc. can cause permanent faults. Permanent faults lead to hard

errors; they therefore affect the system functions for a long period of time. Temporal

faults can be transient or intermittent [Massengill, L.W. 1996]. Transient faults occur

randomly and externally because of external noise, namely electromagnetic waves and

particles such as  particles and neutrons. Intermittent faults occur randomly but

internally because of unstable or marginally stable hardware, varying hardware or

software state as a function of load, or signal coupling between adjacent signal lines.

Some of the intermittent faults may be due to glitches which are unpredictable spike

noise pulses occurring and propagated especially in large combinational digital circuits

[Calvel, P. et al. 1994]. Temporal faults lead to soft errors and these interrupt system

functions for a very short period of time. In today’s ultra-high density RAMs, it has been

recognized that multiple cosmic ray induced transient errors are a serious problem [Lo,

J.C and Fujiwara, E. 2005], [Fujiwara, E. 2006]. Hence error control algorithms with

 3

error detecting/correcting capabilities are required in data storage systems/applications to

preserve data integrity.

With the addition of error detection and correction, the risk of system failure due to data

corruption in a nonvolatile memory can be minimized. Like HDDs, NAND memories are

not intrinsically error-free but rely on ECC to correct raw bits. During process of data

readout, the fraction of bits that contain incorrect data (prior to application of ECC) is

called the raw bit error rate (RBER) [Mielke, N. et al. 2008]. The residual error rate

(pertaining to data that remains uncorrected) after applying ECC is called the

uncorrectable bit error rate (UBER) [Mielke, N. et al. 2008]. UBER is a useful reliability

metric for mass storage devices such as HDDs and flash memory devices. UBER is used

to specify the data-corruption rate after the application of ECC algorithm. The

relationship between RBER and UBER for error control algorithms having differing error

correcting capabilities is shown in Figure 1.1 [Cooke, J. 2007]. It is observed that, as

RBER increases, matching the ECC to the target BER of the application become more

important.

Figure1.1: Raw Bit Error Rate versus Post-ECC Bit Error [Cooke, J. 2007]

 4

A huge number of crucial documents containing privileged and sensitive information are

routinely transacted using digital communication systems in the modern era. This

information is often conveyed over open channels and stored in digital media. These

transactions often have little tolerance for error. Therefore, reliability and accuracy are

essential to flash memories. Data can be verified immediately after it is written, but this

process will not identify bit errors that may manifest later. To ensure long-term data

integrity, modern storage and information processing devices must also use a suitable

Error Control Code.

ECC schemes supplement user data with parity bits which store enough extra information

for the data to be reconstructed if one or more bits are corrupted. Many ECC algorithms

have been employed to correct errors in storage systems [Carrasco, R.A. and Johnston,

M. 2008], [Cassuto, Y. et al. 2010], [Chen, Y. and Parhi, K. 2004], [Fujiwara, E. 2006],

[Im, S. and Shin, D. 2009], [Lin, H., Chen, T. and Chang, J. 2002], [Micheloni, R et al.

2008]. We have synthesized a number of codes with error correcting capabilities

exceeding the state of art in our work. We have developed a suitable architecture for the

VLSI implementation of encoder/decoder modules of these codes.

Finite fields are the key tool in the design of powerful linear block codes. The theory of

finite fields as applicable to the study of ECC is discussed in [Wicker, S.B. 1995],

[Blahut, R.E. 2003] and [Moon, T.K. 2006].

1.2 Motivation for the use of Error Control Codes in Storage Systems

As the recording density increase, a very large number of bits have to be packaged into a

very small physical area. Consequently, the physical space available to accommodate a

bit has become smaller and smaller over the years with increase in storage density. This

results in Inter Symbol Interference (ISI) in the sense that the detection of an information

bit (or symbol) is influenced by bits (or symbols) that are present in the recording

 5

medium in the immediate vicinity. This problem becomes acute when the recording

density increases. The use of powerful error control algorithms can protect the integrity

of user information against errors caused by ageing, wear out due to repeated read and

write operations and manufacturing defects. In this work we are proposing several error

control codes based on Bose-Chaudhury-Hocquenghem (BCH) and Reed-Solomon (RS)

codes for use in semiconductor memories. BCH codes are considered to be good linear

error correction codes because of their rich algebraic structure which enables the

synthesis of simple and elegant encoding/ decoding algorithms. Further, the scheme of

BCH coding and decoding integrated with interleaving can correct both the random errors

and the burst errors. As compared to the current standard [Mehnert, A. 2008], where six

bits in error can be corrected over a span of 4096 information bits, we propose codes that

can correct eight and nine errors (t = 8, t = 9). Memory is organized into blocks, pages

and sectors (Refer Table 1 which gives the organization of a 2GB Flash memory device).

There are two memory models proposed in semiconductor data storage industry which

are widely used in current practice. The smallest unit is a sector. In Memory model 1,

each sector has 512 bytes reserved for storing user information and 16 bytes reserved for

storing parity check information. In Memory model 2, each sector has 512 bytes reserved

for storing user information and 32 bytes reserved for storing parity check (redundant)

information.

1.3 Flash Memory Organization

A look at how flash memory is organized reveals some of the challenges involved in

managing flash memory. The smallest logical/administrative unit is a sector. Each sector

contains a storage area (512 bytes) plus a small overhead area (16 bytes). Sectors are

grouped into pages, and blocks include multiple pages (32 pages of 512 bytes or more

recently, 64 pages of 2048 bytes). Blocks contain a defined number of sectors, and there

are typically 1000 to 8000 blocks per chip. Table 1 shows memory organization for a

2 GB flash device.

 6

Table 1: Memory organization for a 2 GB flash drive

ECC is performed on a bit/byte level within sectors. Depending on cell structure and

quality, this task is becoming more important in flash devices. We have attempted to

synthesize suitable BCH and RS codes for use in flash memories for ensuring data

integrity. We have developed suitable decoding architecture to perform decoding

operations for these codes. The choice of the error control code to be used in a particular

application depends upon many factors. These are:

(i) Organization of information and overhead data in the storage devices.

(ii) Types of errors (i.e. whether the error mechanism generates random errors or

burst errors.

(iii) Computational complexity permitted by architecture of storage devices. All

mathematical operations have to be performed by suitable hardware. An

additional arithmetic processor to handle encoding/decoding operations will

usually not be feasible.

(iv) Decoding delay (latency) versus computational complexity. Decoding can be

considered on a page by page basis. However complexity of computation is

high because of large size of data block and corresponding need to do

computations in a large field 82F (or larger). To avoid excessive computational

complexity, we have devised codes where one sector or at most two sectors

are encoded into one codeword.

Sector size 512 bytes
Sectors/page 8
Pages/block 64

Page size 4 KB
Block size 256 KB
Blocks/die 4096
Dies/chip 2

Total capacity 2 GB

 7

A significant difference between the BCH and RS codes is the basic correction unit. The

BCH code corrects bits, while the Reed-Solomon code corrects symbols. Therefore, a

BCH code corrects t bit errors, while the Reed-Solomon code over mF2
 corrects t symbols

of s bit errors, which can be a variable number of bits: from t bits if errors occur in

different symbols up to st bits in case errors occur consecutively. Reed-Solomon codes

generally have a greater correction capability for burst type errors while BCH codes

possess simpler decoding architectures and can correct random errors efficiently. As the

trend in semiconductor memory design continues towards higher chip density and large

storage capacity, ECCs are becoming most cost effective means of maintaining a high

level of system reliability [Bertozzi, D. et al. 2005]. A memory system can be made fault

tolerant with the application of an error-correcting code; i.e., the mean time between

“failures” of a properly designed memory system can be significantly increased with

ECC. In this context, a system “fails” only when the errors exceed the error correcting

capability of the code. Also, in order to optimize data integrity, the ECC should have the

capability of correcting error patterns that are most likely to occur.

A bursty channels is defined as a channel over which errors tend to occur in bunches or

“bursts” as opposed to the random patterns. Bursty channels usually contain some error

causing agents in the physical medium whose effective time constant exceeds the symbol

transmission rate of the channel. A random error correcting code can correct up to t

symbol errors per code word, regardless of the placement of these errors. Both random

and burst errors are encountered in data storage systems. Burst errors are frequently

encountered in optical storage systems (e.g., Compact Disc (CD), DVDs etc). Without

error correcting codes, digital audio/video/data storage would not be technically feasible.

The recording channel in a CD play back system consists of a transmitting laser and the

disc to be recorded. The play back channel consists of the recorded disc and a photo-

detector. Assuming that the player is working properly, the primary contributor to errors

on this channel is contamination of the surface of the disc. As the surface contamination

 8

affects an area that is usually quite large compared to the surface used to record a single

bit, channel errors occur in bursts when the disc is played.

The various computer applications for error control can be grouped into four categories:

memory (random access memory and read-only memory), disk storage, tape storage, and

inter-processor communication. Each type of communication has its unique characteristic

and requires the use of certain types of codes. The earliest memory storage units were

mechanical relays. The contents of these relays could be verified through visual

inspection. Simple parity check codes provided error detection in these systems. The

relays were replaced by ferrite cores in which the magnetic field could be induced and its

orientation read. The core memory had to be refreshed periodically and their contents

verified to see if any errors had crept in since the last refresh cycle.

Semiconductor memory is currently the predominant choice for random access and read-

only memory applications. Read/write errors in semiconductor memory are generally

labeled as either “hard” or “soft” errors. Hard errors are device failures that are

permanent, while soft errors are transient, and are sometime called “single event upsets”

(SEUs). SEUs are frequently caused by radiation; atomic particles leave an ion trail, or

“tunnel” as they pass through a device substrate. SEUs can also be caused by electronic

transients induced by lighting, adjacent electrical machinery, and the ionic scintillation

generated by thermonuclear weapons. Some of these error sources can also cause hard

failures. Magnetic disks have been traditionally used for mass storage applications. As

with the Compact Disc, these storage devices involve moving media and/or record/read

heads. Though not as prone to radiation-induced SEUs as semiconductor memory, disks

do suffer from burst errors caused by surface contamination and material defects.

Magnetic tape suffers from error-causing mechanisms similar to those encountered in

magnetic and optical disk systems. In addition, the flexibility of the magnetic tape can

create its own unique set of problems. In most digital systems the data on the tape is

 9

organized in parallel tracks that run the length of the tape, hence contaminants tend to

corrupt one track or a small number of adjacent tracks during the reading process.

Semiconductor memories can be divided into two major categories: RAM and ROM. The

category of non-volatile memories [Ricco, B. et al. 1998] includes all the memory

devices whose content can be changed electrically but is held when the power supply is

switched off. The history of non-volatile memories began in the seventies, with the

introduction of the first EPROM (Erasable Programmable Read Only Memory). Since

then, non-volatile memories have always been considered one of the most important

families of semiconductor devices. With the introduction of non-volatile Flash memories

into portable products like mobile phones, palmtop, digital cameras and so on, the market

of these memories has seen a staggering increase. Flash memories are non-volatile

memories characterized by the fact that the erase operation (writing of the logic “1”)

must occur simultaneously on a set of cells, called sector or block; the program operation

instead (writing of the logic “0”) acts on the single cell. These devices have become the

most widely used non-volatile electronic memories. It would not be an exaggeration to

state that Flash memories are a milestone in the development of the data storage

technology. The applications of flash memories have expanded widely in recent years,

and flash memories have become the dominating member in the family of non-volatile

memories. Compared to magnetic recording and optical recording, flash memories are

more suitable for many mobile-embedded and mass-storage applications. The reasons

include their high speed, physical robustness, and easy integration with circuits. The

representation of data plays a key role in storage systems. Like magnetic recording and

optical recording, flash memories have their own distinct properties, including block

erasure, iterative cell programming, etc. These distinct properties introduce very

interesting information representation and coding problems that address many aspects of

a successful storage system, such as efficient data modification, error correction, etc.

Actually, the name “flash” is associated with the speed at which large data blocks can be

erased which is similar to that of the flash of a camera. In contrast, old-style EEPROM

 10

allows only the simultaneous erasure of bytes. For these reasons, flash memories are

becoming dominant as secondary memory devices in digital cameras, digital audio

players, mobile phones, and PC basic input/output system (BIOS) chips. A flash memory

is an array of cells that consist of floating gate transistors. Information is stored as an

electric charge in each cell.

The increase of the storage density and the reduction of the cost per bit of flash memories

were traditionally achieved by the aggressive scaling of the memory cell transistor until

the MLC technology was developed and implemented in 1997 [Atwood, G. et al. 1997],

[Wang, Z. and Karpovsky, M. 2011]. In MLC devices [Grossi, M. et al. 2003], a cell can

assume several possible voltage levels.

The amount of charge in a cell determines its threshold voltage, which can be measured.

The operation of injecting charge into a cell is called writing (or programming),

removing charge is called erasing, and measuring the charge level is called reading. If we

use two discrete charge levels to store data, the cell is called SLC and can store one bit. If

we use 2Q discrete charge levels to store data, the cell is called MLC and can store

Q2log bits. A prominent property of flash memories is block erasure. In a flash memory,

cells are organized as blocks, each containing about 510 cells. While it is relatively easy

to inject charge into a cell, to remove charge from any cell, the whole block containing it

must be erased to the ground level (and then reprogrammed). This is called block erasure.

The block erasure operation not only significantly reduces speed, but also reduces the

lifetime of the flash memory [Atwood, G et.al 1997]. This is because a block can only

endure about 64 1010  erasures, after which the block may break down. Since the

breaking down of a single block can make the whole memory stop working, it is

important to balance the erasures performed to different blocks. This is called wear

leveling. A commonly used wear leveling technique is to balance erasures by moving

data among the blocks, especially when the data are revised [Gal, E et al. 2005].

 11

For the Flash memories currently in the market, the architectures used are NOR and

NAND flash memories [Ricco, B. et al. 1998], [Bez, R. et al. 2003], [Gal, E. et al. 2005],

[Jiang, A. et al. 2010]. A NOR flash memory allows random access to its cells. NAND

flash partitions every block into multiple sections called pages, and a page is the unit of a

read or write operation. Compared to NOR flash, NAND flash may be much more

restrictive on how its pages can be programmed, such as allowing a page to be

programmed only a few times before erasure [Gal, E. et al. 2005]. However, NAND

flash enjoys the advantage of higher cell density. Between them, NAND flash is currently

used much more often due to its higher data density.

However, there remain many technical challenges in flash memories. Adding charge to a

single cell is easy, but removing charge from a cell requires erasing the entire block

containing that cell and reprogramming all cells in that block. These block erasures are

time-consuming and can also cause physical degradation and shorten memory life.

Therefore, it is important to reduce the frequency of block-erasures [Gal, E. and Toledo,

S. 2005]. Coding techniques have been introduced to accomplish this. A variety of coding

schemes for flash memories were introduced such as floating codes [Jiang, A. et al.

2010], [Mahadavifar, H. et al. 2009], buffer codes [Bohossian, V. et al. 2007], [Jiang, A.

et al. 2009a], trajectory codes [Jiang, A. et al. 2009b], multidimensional flash codes

[Yaakobi, E. et al. 2008], and rank modulation codes [Jiang, A. et al. 2009], [Wang, Z.

and Bruck, J. 2010].

Error control codes are widely used in almost all digital communications. This is due to

the higher performance that the market demands for achieving reliable communications

over noisy channels. BCH codes, a very important family of block codes that can be

decoded using algebraic techniques with affordable complexity, have been in wide use

for decades, especially in storage channels in various forms either as Hamming codes or

as Reed-Solomon (RS) codes. BCH codes are in wide use in concatenated coding

techniques, concatenated either with Convolutional codes or with other block codes such

 12

as Low-density parity check (LDPC) codes [Ryan,W. E. and Lin, S]. Second generation

Digital Video Broadcast (DVB) standards are adopting BCH codes as part of their

concatenated coded strategy. Binary BCH codes have some advantages over RS codes,

especially if the noise is random. The read channel in a MLC based flash memory

exhibits a random noise channel and BCH is a favorite code for error correction in flash

memory products.

1.4 Flash Memory Structure and Error Characteristics [Maeda, Y. et al. 2009]

 (a) Structure (b) Program (c) Erase

Figure 1.2: Flash Memory Cell

Figure 1.2 shows flash cell structure having control gate, floating gate, source and drain.

The floating gate is insulated from the substrate. The cell is programmed by applying a

high voltage to the control gate, which moves electrons from the substrate into the

floating gate. The cell is erased by applying a high voltage to the substrate, which

removes electrons from the floating gate. In order to read out the data from the cell, the

charge level of the floating gate is identified by applying specific voltages to the control

gate. If the floating gate has few electrons, the drain-source current flows with a low

control gate voltage, while if the floating gate has many electrons, the drain-source

current flows only when the control gate voltage is sufficiently high.

Conventional SLC can hold two distinct levels of charge, and hence it can store one bit of

data in each memory cell, while a MLC can reliably hold Q = 2b levels of charge, and

Control gate

Floating gate

D S D S D S Substrate

 13

hence it can store b bits of data, where b is typically 2 or 3 [Rossi, D. et al. 2002], [Rossi,

D. et al. 2003], [Gregori, S. et al. 2003], [Sun, F et al. 2007], [Maeda, Y. et al. 2009].

Although MLC memory has higher density than SLC memory, MLC is more vulnerable

to errors because small fluctuation of the charge amount in the floating gate and slight

variation of gate voltage can result in misreading of stored data. Multilevel flash memory

cells have found application in efforts to increase density of bits per unit area in recent

years [Lin, H. et al. 2002].

1.5 Scope of the research work presented in the thesis

Our aim is to synthesize high rate (hence efficient) algebraic codes for enhancing data

integrity in storage systems. In the initial part of our work, we have concentrated on the

synthesis of codes for enhancing data integrity in Flash memories composed of SLCs. In

the second part, we have synthesized the codes applicable in memories composed of

MLCs. Here we have considered cells with four levels, eight levels and sixteen levels.

Channel Matrices, also called P-matrices which quantify the probability of various forms

of error in MLCs have been quantified. These give insight into the type of errors that can

occur in MLCs. We have also investigated the role of interleavers to improve data

integrity during occurrence of burst errors in storage devices. Mainly, block interleavers

and convolutional interleavers are considered for the analysis. Further, we have also

analyzed and adapted the decoder architecture for the codes synthesized by us. This

decoder makes use of inversion free Berlekamp - Massey algorithm.

1.6 Organization of the thesis

The contents of this thesis are organized into chapters as follows: Chapter 2 provides a

brief overview of the necessary mathematical background. We have provided a brief

description of finite fields because traditional BCH codes are constructed over finite

fields. The BCH bound has been invoked in the design of BCH codes. Synthesis of BCH

codes and RS codes for different memory models as applicable to single level cells are

discussed in Chapter 3. In this chapter, we have also obtained the performance plots of

 14

the codes that are synthesized. In Chapter 4, we have discussed the modeling of

multilevel cell as a channel and synthesized codes for different memory models as

applicable to multilevel cells. A suitable decoder architecture based on the inversion less

Berlekemp-Massey algorithm has been adapted to study the decoding in Chapter 5. The

use of interleavers and its ability to enhance data integrity is also discussed in this

chapter. Further the codes are also synthesized using LDPC and the reason for not

adapting these codes in flash memory is highlighted. We conclude the thesis in Chapter 6

by summarizing the obtained results, and giving some directions for further research

work in this area.

 15

Chapter 2

Mathematical background

2.1 Cyclic Codes

Cyclic codes have been to be a constant focus of interest for mathematicians and

engineers for the past five decades. Cyclic codes [Lin, S. and Costello, D. 2004], [Moon,

T.K. 2006] are important practical error control codes for a variety of reasons. Cyclic

codes are a class of error correcting codes that can be efficiently encoded and decoded

using simple shift registers and combinatorial elements, on the basis of their

representation using polynomials. Within the family of cyclic codes there are certain

special families of codes that are extremely powerful. These include the Golay, BCH and

the RS codes.

Definition 2.1.1 – Linear Cyclic Block Codes [Wicker, S.B. 1995]

An (n, k) linear block code C is said to be cyclic if for every code word

 ),.......,(110 ncccc C, there is also a code word  ).,,.........,,(2101 nn ccccc C. The

code word c is a right cyclic shift of the code word c. Since c has been arbitrarily

selected from among the code words in C, it follows that all n of the distinct cyclic shifts

of c must also be code words in C.

The key to the underlying structure of cyclic codes lies in the association of a code

polynomial 1
1

2
210)(

 n
n xcxcxccxc with every code word c =

),....,,.........,,(12210 nn ccccc C. If C is a q-ary (n, k) code, then the collection of code

words in C forms a vector space of dimension k within the space of all n-tuples over qF .

 16

  

)().................,.........,,(

1.2)()...........,.........,,(

)().........,.........,,(

)().......,.........,,(

121
)(

2
3012

)2(

1
2101

)1(

1210

xcccccc

xcccccc
xcccccc

xcccccc

k
knknknkn

k

nnn

nn

n



















1

1
3

2
2

10
2

1
3

2
2

10

1
1

2
210

...............)(

................)(

......................)(















n
n

n
n

n
n

xcxcxcxcxcx
xcxcxcxcxxc
xcxcxccxc

 (2.2)

Hence, it may be concluded that

)()1mod()(

)()1mod()(
)()1mod()(

22

1

xcxxcx

xcxxcx
xcxxxc

knk

n

n









 (2.3)

Set: A set is an arbitrary collection of objects, or elements, without any predefined

operation between set elements. A set may be finite, countably infinite, or uncountably

infinite. The primary characteristic of a set is its cardinality, which is defined as the

number of objects/elements contained in the set.

Group: A group is a set of objects G on which a binary operation '' has been defined.

The binary operation takes any two elements in G and generates as its result an element

that is also in G.

Definition 2.1.2 - Group:

A set G on which a binary operation '' is defined is called a group if the following

conditions are satisfied.

(i) The binary operation '' is associative.

(ii) G contains an element e such that for any a in G, aaeea  . This

element e is called an identity element of G.

 17

(iii) For any element a in G, there exists another element a in G such that

eaaaa  . The element a is called an inverse of a.

(iv) A group G is said to be commutative (or Abelian) if its binary operation

'' satisfies a '' b=b '' a.

Definition 2.1.3 – Irreducible polynomial

A polynomial)(xf is said to be irreducible in the field qF if it cannot be factored into a

product of polynomials with coefficients in qF . It can be easily verified that the

polynomials 12  xx and 13  xx are irreducible over][2 xF .

Definition 2.1.4 – Primitive polynomial

An irreducible polynomial)(xp is said to be primitive if the smallest positive integer ‘n’

for which 1)(nxxp is .1 mpn

i.e., 1)(1 mpxxp and)(xp 1nx for .1 mpn

A primitive polynomial for mq
F is the minimal polynomial of some primitive element of

mq
F . It is the polynomial of smallest non-zero degree with coefficients from qF having a

certain primitive element of mq
F as a root.

12  xx and 13  xx are examples of polynomials that are irreducible as well as

primitive. They are used to generate the finite fields 22F and 32F respectively.

Definition 2.1.5 - Minimal polynomial

Let  be a primitive element in the field mq
F . The minimal polynomial of  with

respect to qF is the smallest degree nonzero polynomial)(xp in][xFq such that

.0)(p

 18

Definition 2.1.6– Conjugates of Field Elements

Let  be an element of mq
F . Then the conjugates of  with respect to qF are

..,.........,,
32 qqq  . Since the field is finite, this process cannot keep yielding new

elements indefinitely.

Let us consider an example to illustrate this. The elements of 32F are

 65432
2

,,,,,,1,03 F . Here q = 2 and m = 3. The conjugates of  are:













82

42

22

3

2

1

,

Therefore the distinct conjugates of  in 32F are 2 and 4 . Conjugates of  with

respect to qF form a set which is called the conjugacy class of  with respect to qF . The

conjugacy class of  is    424222 ,,,,
21

  .

Determining the conjugates of ,3

 
 
   
    3248323

5124323

623

323

3

2

1

0

















Therefore the conjugacy class of 32
3 F is  563 ,,  . Hence we write the conjugacy

classes of 32F are        56342 ,,,,,,1,0  .

Theorem 2.1.1: Let  be an element of

.mqF Let)(xp be the minimal polynomial of 

with respect to qF . The roots of)(xp are exactly the conjugates of  with respect to qF .

Let 32F . The conjugacy class of  is  42 ,,  . So the minimal polynomial of 

is .1))()(()(342  xxxxxxp 

 19

Example 2.1.1: The minimal polynomials of the elements in 32F with respect to 2F .

Exponential Representation Polynomial Representation
0 1
1 
2 2
3 1
4  2
5 12 
6 12 

0 0

The eight elements are arranged in conjugacy classes and their minimal polynomials are

computed as follows:

Conjugacy Class Minimal Polynomial
 0 xxxM )0()(*

 10  1)1()(0  xxxM

 42 ,,  1))()(()(342
1  xxxxxxM 

},,{ 563  1))()(()(23563
3  xxxxxxM 

Definition 2.1.7– Cyclotomic Cosets [Wicker,S.B. 1995]

The cyclotomic cosets modulo n with respect to qF are partitioning of the integers

 1,......,1,0 n into the sets of the form 132 ,,.........,,, daqaqaqaqa . The cyclotomic

cosets modulo n with respect to qF thus contain the exponents of the n distinct powers of

a primitive thn root of unity with respect to qF . Referring to the example 2.1.1, the

conjugacy class and the cyclotomic cosets are shown below.

Conjugacy Class Cyclotomic Cosets
 10   0

 42 ,,   4,2,1

},,{ 563   5,6,3

 20

The most commonly used cyclic error correcting codes are the BCH and Reed-Solomon

codes. Hence these codes may be specified by a generator polynomial. A BCH code over

qF of length n capable of correcting at least t errors is synthesized as follows [Wicker,

S.B. 1995]:

(i) Determine the smallest m such that mqF has a primitive nth root of unity  .

(ii) Select a non-negative integer b. Frequently, b = 1.

(iii) List the 2t consecutive powers of  .

 121,,.........,  tbbb 

 The minimal polynomial with respect to qF of each of these powers of  are

 determined.

(iv) The generator polynomial g(x) is the least common multiple (LCM) of these

 minimal polynomials. The code is a (n, n- deg(g(x)) cyclic code.

2.2 Bounds on Codes [Moon, T.K., 2006]

Let C be an (n ,k) block code with minimum distance mind over a field with q elements

with redundancy r = n – k. There are relationships that must be satisfied among the code

length n, the dimension k, the minimum distance mind , and the field size q.

Theorem 2.2.1- (The Singleton bound). The minimum distance for an (n, k) linear code

is bounded by

 1min  knd (2.4)

Proof

An (n, k) linear code has a parity check matrix H with n – k linearly independent rows.

Since the row rank of a matrix is equal to its column rank, rank (H) = n – k. Any

collection of 1 kn columns must therefore be linearly dependent. Thus, the minimum

distance cannot be larger than 1 kn .

 21

A code for which 1min  knd is called a maximum distance separable (MDS) code.

Theorem 2.2.2 - (The Hamming Bound). A t-error correcting q-ary code C must have

redundancy r satisfying

),(log tnVr qq (2.5)

Proof

Each of M spheres in C has radius t. The spheres do not overlap, or else it would not be

possible to decode t errors. The total number of points enclosed by the spheres must be
nq . We must have

n

q qtnMV ),((2.6)

where),(tnVq is the number of points in a Hamming sphere of radius 



 


2

1mindt

so

),(tnV

M
q

q

n


 (2.7)

from which the result follows by taking qlog of both sides. A code satisfying the

Hamming bound with equality is said to be a perfect code. In this section, we are seeking

theoretical limits without regard to the feasibility of a code for any particular use.

Definition 2.2.1

 Let),(mindnAq be the maximum number of codewords in any code over qF of length n

with minimum distance mind . For a linear code the dimension of the code is

).,(log mindnAk qq

 22

Definition 2.2.2

For a code with length n and minimum distance mind , let nd /min be the relative

distance of the code. For a code with relative distance , the distance is

)1(min Onnd  

Definition 2.2.3

 Let

   8.2,(log1suplim)(nnA

n qq

n

q 





For a linear code,),(log mindnAqq is the dimension of the code and),(log1
mindnA

n qq is

the code rate, so)( q is the maximum possible code rate that an arbitrary long code

can have while maintaining a relative distance . We call this the asymptotic rate.

The functions),(mindnAq and)( q are not known in general, but the upper and lower

bounds on these functions can be established. For example, the Singleton bound can be

expressed in terms if these functions as

1

min
min),( dn

q qdnA (2.9)

and, asymptotically,

   1)(q (2.10)

Many of the bounds presented here are expressed in terms of)( q . A lower bound is

the Gilbert-Varshamov bound. As upper bounds on)( q , we have the Hamming and

the Singleton bounds, the Plotkin bound, the Elias bound, and the McEliece-Rodemich-

Rumsey-Welch bound.

 23

Chapter 3

Application of Error Correcting Codes to Single Level Cells

3.1 Introduction

In Chapter 1, we had discussed memory organization where we had specified the manner

in which sectors, pages and blocks are integrated to give rise to a Flash memory device. It

was mentioned that two memory models have been extensively discussed in literature

[Mehnert, A. 2008]. Accordingly, let us consider the first model (Memory model 1) with

512 bytes of data and 16 bytes of overhead.

512 bytes

(4096 bits)

16 bytes
(128 bits)

 k information bits)(kn  overhead bits

The design of BCH codes has been discussed in [Chapter 2, section 2.1]. As discussed

there, to design a BCH code of length n, we choose the smallest m such that n|qm-1,

where q is a power of prime. In practical applications usually q = 2. Hence we choose the

smallest m such that n| 2m-1. BCH codes, take advantage of a useful result that ensures a

minimum “design distance  ”, given a particular constraint on the generator polynomial.

3.2 Synthesis of BCH Codes

3.2.1 Memory model 1

The BCH Bound:

 To recapitulate, let C be a q-ary (n, k) cyclic code with a generator polynomial g(x). Let

m be a multiplicative order of q modulo n (mq
F is thus the smallest extension field of qF

 24

that contains a primitive thn root of unity). Let  be a primitive nth root of unity. Select

g(x) to be a minimal-degree polynomial in qF such that

0)(..............)()()(221    bbbb gggg for some integers 0b and

.1 g(x) thus has)1( consecutive powers of  as zeros. If these requirements are

taken care of, the code C defined by g(x) has minimum distance mind . The parameter

 is the design distance of the BCH code defined by the generator polynomial g(x).

A (n, k) block code is characterized by the value of n, k. The process used for synthesis of

codes is as follows:

(i) Based on the value of knkn ),,(represents the number of parity symbols

(n > k). Choose the smallest value of m such that 12| mn (i.e. if k = 4096 bits

= 122 , then shortest primitive length BCH code with n > 4096 is 81911213 n

bits).

(ii) Select the appropriate extension field of 2F in which the primitive nth root of

unity can be found (in this case 132F).

(iii) Determine the conjugacy classes and associated minimal polynomials.

(iv) Synthesize generator polynomial by following requirements of BCH bound.

Let the natural length 81911213 n . The elements of 132F are

132F = { 819032,..........,.........,,,1,0  }. We have used the primitive polynomial

13431)(xxxxxp  , to generate the representation of the elements of 132F .The

conjugacy classes are listed below.

1. { 409620481024512256128643216842 ,,,,,,,,,,,,  }

2. { 40976144307215367683841929648241263 ,,,,,,,,,,,,  }

3. { 40982049512025601280640320160804020105 ,,,,,,,,,,,,  }

4. { 409961457168358417928964482241125628147 ,,,,,,,,,,,,  }

 25

5. { 4100205010254608230411525762881447236189 ,,,,,,,,,,,,  } (3.1)

6. { 410161463073563228161408704352.17688442211 ,,,,,,,,,,,,  }

7. { 410220515121665633281664832416208104522613 ,,,,,,,,,,,,  }

8. { 410361477169768038401920960480240120603015 ,,,,,,,,,,,,  }

9. { 410420521026513435221761088544272136683417 ,,,,,,,,,,,,  }

 10. { 4105614830741537486424321216608304152763819 ,,,,,,,,,,,,  }

Corresponding to each conjugacy class is a minimal polynomial. This polynomial has the

elements of the conjugacy class as its roots. For example, the minimal polynomial of

conjugacy class 1 is specified as,

)(
1

))()()((
))()()()()()()()((

1

1343

409620481024512

256128643216842

xM
xxxx

xxxx
xxxxxxxxx












 (3.2)

Similarly, the minimal polynomial of conjugacy class 2 is specified as

)(
1

))()()()((
))()()()()()()((

3

13109754

4097614430721536768

3841929648241263

xM
xxxxxxx

xxxxx
xxxxxxxx












 (3.3)

The minimal polynomial of the conjugacy classes listed in (3.1) is enumerated in (3.4).
1343

1 1)(xxxxxM 

13109754
3 1)(xxxxxxxxM 

1311874
5 1)(xxxxxxxM 

131098632
7 1)(xxxxxxxxxM 

13128765
9 1)(xxxxxxxM  (3.4 a)

 26

139875
11 1)(xxxxxxxM 

13126543

13 1)(xxxxxxxM 

 13975432
15 1)(xxxxxxxxxM  (3.4 b)

 13111098765432
17 1)(xxxxxxxxxxxxxM 

 131211953
19 1)(xxxxxxxM 

Let the requirement be to synthesize a t = 8 BCH code with k = 4096 bits per sector. As

per the BCH bound, the design distance .1712  t Assuming b = 1 (narrow sense

BCH code) the required roots of)(xg are: }...,..........,.........,,{ 232  b

  5.3},,,,,,,,,,,,,,,{ 1615141312111098765432 

Hence)(xg is computed as the LCM of the minimal polynomials of the required roots.

For correction of 8-bit (t = 8), the generator polynomial

   6.3)(),(),(),(),(),(),(),()(15131197531 xMxMxMxMxMxMxMxMLCMxg 

Therefore, the generator polynomial)(xg for t = 8 is

1041009896959493929188848279

787770696867656459585249

484742414038323130262423

221815141312119851)(

xxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg









 (3.7)

Here the degree)}({ xg = 104 = n – k.)(xg will define a (8191, 8087) BCH code. This

code has to be shortened.

n – k = 104, n = k + 104. But k = 4096. Hence n = 4200.

To be used in this application meeting the requirements of memory model 1, the BCH

code with parameters (8191, 8087) has to be shortened by eliminating 3991 (i.e. 8087 –

4096) higher order positions which are set to zero. After this we obtain a shortened

(8191-3991, 8087-3991) = (4200, 4096) BCH code.

 27

Hence, for t = 8, the parameters of shortened BCH code are (4200, 4096).

The encoding process is briefly explained below. The message polynomial is expressed

as
1

1
2

210)(
 k

k xuxuxuuxu

 8086
8086

4096
4096

4095
4095

2
210 xuxuxuxuxuu  (3.8)

Since the sector has only 4096 bits, the positions 80864096 uu are occupied by zeros.

Effectively 4095
4095

2
210)(xuxuxuuxu  (3.9)

Pre multiplying)(xu by 104xx kn 

)(104 xux 8190
8086

4200
4096

4199
4095

106
2

105
1

104
0 xuxuxuxuxuxu  (3.10)

 Again the coefficients 080864095  uu  .

Dividing)(104 xux by)(xg and extracting the remainder,

)()()()()(
)()()()(

104

104

xvxgxaxuxxr
xrxgxaxux





 (3.11)

The negative sign is ignored because the computation is 2F , in which subtraction is same

as addition.

8190

8086
4200

4096
4199

4095
104

0
103

103
2

210 xuxuxuxuxrxrxrr 

 redundant bits message bits zeros

Similarly for t = 9, the design distance ,1912  t ,1b 182 b .

Hence the required roots are:

},,,,,,,,,,,,,,,,,{ 18171615141312111098765432 

Therefore,

 28

   12.3)(),(),(),(),(),(),(),(),()(1715131197531 xMxMxMxMxMxMxMxMxMLCMxg 

117115114112

11110710510310196919089878685

848382817876727170696765

646360595855545149474544

403937363332313029262523

2120191817131097651)(

xxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxg













 (3.13)

Let us now consider synthesis of a BCH code characterized by t = 9. According to the

requirement of the BCH bound, the required roots are

 },,,,,,,,,,,,,,,,,{ 18171615141312111098765432  .

Hence, degree {g(x)} = 117 = n – k. This implies, n = k + 117 = 4096 + 117 = 4213 bits.

The original BCH code over 132F has a natural length n = 8191. We need to start with a

primitive BCH code with parameters (8191, 8191-117) = (8191, 8074). Again, k = 4096

bits. So, 8074 – 4096 = 3978.

Therefore the parameters of the shortened BCH code are:

 (8191 – 3978, 8074 – 3978) = (4213, 4096).

For t = 10, the design distance ,2112  t ,1b 202 b .

Hence the required roots are:

},,,,,,,,,,,,,,,,,,,{ 201918171615141312111098765432 










)(),(),(),(

),(),(),(),(),(),(
)(

19171513

1197531

xMxMxMxM
xMxMxMxMxMxM

LCMxg (3.14)

 29

130129126124123121

118115114113111110109108103102100

979590898887868380797773

706766656362605958575149

474544363432302928272625

191716131210987631)(

xxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg













 (3.15)

Here degree {)(xg } = 130 = n – k,

n = k + 130 = 4096 + 130 = 4226 bits. Since the original length of the BCH code over

132F is 8191, we have to start with a primitive BCH code with parameters (8191, 8191-

130) = (8191, 8061). As per the memory model in discussion, k= 4096 bits. Therefore,

8061 – 4096 = 3965. Therefore the parameters of the shortened BCH code are (4226,

4096). The memory model 1 allocates an overhead of 16 bytes (128 bits) for each sector

(512 bytes). The number of overhead bits required equals degree)}({ xg . Table 3.1

summarizes the results of the synthesis.

Table 3.1. Number of overhead bits required for various values of t (Memory model 1)

The BCH code capable of correcting 8t errors requires 104 bits of overhead and the

BCH code capable of correcting 9t errors requires 117 bits. These requirements are

easily met by the given memory model where 128 bits are available for storing redundant

bits generated by the error control code. However the BCH code specified by (3.15) for

10t requires 130 bits of overhead which is not supported in this model.

t Number of overhead bits
required (degree{g(x)})

8 104

9 117

10 130

 30

10
-7

10
-6

10
-5

10
-4

10
-45

10
-40

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

RBER

P
ro

ba
bi

lit
y

of
 d

ec
od

in
g

er
ro

r

t=6
t=8
t=9
t=10

Figure 3.1: Performance of BCH Codes for enhancing Data Integrity in Flash memories

for Memory model 1

The probability of decoding error which can also be called as UBER associated with a

code that can correct t errors can be expressed as

    kn
n

tk

k
errordecoding RBERRBER

k
n

P 











  1

1

The performance of theses codes is shown in Figure 3.1. We observe that the t = 9 code

can transform a RBER of 510 to an UBER of 2110 . Similarly, it can be observed that the

same RBER can be transformed to an UBER of 1813 10,10  and 2310 by the codes with

t = 6, t = 8 and t = 10 respectively. To be able to use this code we require overhead space

of 17 bytes per sector, which is not available in this memory model. Hence, with the use

of BCH codes, it is not possible to correct more than t = 9 errors per sector with memory

model 1. Generally, the performance of an Error Control Code improves with increase in

its length. This gives us the motivation to consider combining two sectors to constitute

the information block which gives rise to one codeword. One codeword comprises of two

 31

information bearing sectors (1024 bytes) and the corresponding overhead is increased to

32 bytes. We have investigated the possibility of constructing more powerful BCH codes

with this adaptation.

3.2.2 Two Sectors as one Information Block

Suppose the contents of two sectors are taken as one information block, we have 1024

bytes of information and 32 bytes of overhead. We wish to design a shortened BCH code

to meet this requirement.

1024 bytes
(8192 bits)

32 bytes
(256 bits)

 k information bits kn  overhead bits

The number of information bits k = 8192. Hence n > 8192. We have to start with a

primitive BCH code of length .163831214 n A primitive th)12(14  root of unity can

be found in 142
F . Hence the roots of)(xg can be located in this field.

256832  kn bits, 1612725616383256  nk bits.

Parameters of the original BCH code over 142F are (16383, 16127).

For t = 16, design distance 12  t = 33, ,1b 322 b

Required roots are:

},,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

323130292827262524232221

201918171615141312111098765432





Similarly for t = 17, design distance ,3512  t ,1b 342 b .

 32

Hence the required roots are:

},,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

3433323130292827262524232221

201918171615141312111098765432





The required roots for other values of t can similarly be computed by invoking the BCH

bound.

The conjugacy classes for 142F are enumerated in (3.16).

1. { },,,,,,,,,,,,, 8192409620481024512256128643216842 

2. { 8193122886144307215367683841929648241263 ,,,,,,,,,,,,,  }

3. { 81944097102402049512025601280640320160804020105 ,,,,,,,,,,,,,,  }

4. { 819512289143367168358417928964482241125628147 ,,,,,,,,,,,,,  }

5. { 81964098204992164608230411525762881447236189 ,,,,,,,,,,,,,  }

6. { 819712290614511264563228161408704352.17688442211 ,,,,,,,,,,,,,  }

7. { 819840991024113312665633281664832416208104522613 ,,,,,,,,,,,,,  }

8. { 8199122911433715360768038401920960480240120603015 ,,,,,,,,,,,,,  } (3.16)

9. { 82004100205010258704435221761088544272136683417 ,,,,,,,,,,,,,  }

10. { 820112308615430779728486424321216608304152763819 ,,,,,,,,,,,,,  }

11. { 8202410110242512110752537626881344672336168844221 ,,,,,,,,,,,,,  }

12. { 82031229314338716911776588829441472736368184924623 ,,,,,,,,,,,,,  }

13. { 8204410220519217128006400320016008004002001005025 ,,,,,,,,,,,,,  }

14. { 820512294614711265138246912345617288644322161085427 ,,,,,,,,,,,,,  }

15. { 820641031024313313148487424371218569284642321165829 ,,,,,,,,,,,,,  }

16. { 8207122951433915361158727936396819849924962481246231 ,,,,,,,,,,,,,  }

17. { 820841042052102651384484224211210565282641326633 ,,,,,,,,,,,,,  }

18. { 82091229661483074153789604480224011205602801407035 ,,,,,,,,,,,,,  }

19. { 82104105102445122256194724736236811845922961487437 ,,,,,,,,,,,,,  }

 33

20. { 821112297143407170358599844992249612486243121567839 ,,,,,,,,,,,,,  }

21. { 82124106205392184609104965248262413126563281648241 ,,,,,,,,,,,,,  }

22. { 8213122986149112665633110085504275213766883441728643 ,,,,,,,,,,,,,  }

The corresponding minimal polynomials obtained are:

1413653
37

1413116542
35

141210876432
33

141211109743
31

1413118532
29

14131087
27

141312111076
25

14119652
23

141110842
21

14116
19

141110875432
17

14111098752
15

1413121110965
13

1486
11

141211532
9

1412987654
7

141097643
5

14852
3

14106
1

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

xxxxxxxM

xxxxxxxxxM
xxxxxxxxxxxM

xxxxxxxxxM

xxxxxxxxxM
xxxxxxxM

xxxxxxxxxM
xxxxxxxM
xxxxxxxM

xxxxxM

xxxxxxxxxxxM
xxxxxxxxxM
xxxxxxxxxM

xxxxxM

xxxxxxxM
xxxxxxxxxM

xxxxxxxxxM

xxxxxxM
xxxxxM







































 (3.17)

The generator polynomial for codes designed to handle two sectors as one information

block is computed by evaluating the LCM of minimal polynomials corresponding to the

required roots.

 34

(i) for t =16,

 18.3
)(),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

3129272523211917

15131197531










xMxMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg

Therefore,

224223222

219218213210203202198197196190187

185183181177176174171168164162159

158153151149145143140136133126124

123120118115114113112110109108107

1061051041031021009897969594

938988878681807978767472

716867625855545351484746

454342403935323129272523

171614131210976321)(

xxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxxg





















 (3.19)

Here degree)}({ xg = 224 = n – k, n = k + 224 = 8192 + 224 =8416 bits. Since the

original length of the BCH code over 142F is 214 – 1 =16383, the primitive BCH code will

have the parameter (16383, 16383 – 224) = (16383, 16159).

Since k = 8192 bits, 16159 – 8192 =7967 bits. Therefore the parameters of the

shortened BCH code are (8416, 8192).

Since (n – k) = 256 and degree)}({ xg = 224, the code can correct sixteen bit errors.

(ii) for t = 17,


















)(),(),(),(
),(),(),(),(),(),(

),(),(),(),(),(),(),(
)(

33312927

252321191715

131197531

xMxMxMxM
xMxMxMxMxMxM

xMxMxMxMxMxMxM
LCMxg

 (3.20)

 35

Therefore

238237235232231229228226224221

219217216214213212211210209208201199193

189188185184183179176175174172169167164

163162161160157155154153149148145144138

137133130129128126125124123122121119115

110109107106102999897969592919087

8683818076757372716867666564

6260575347464342403938363534

29272623212015111087521)(

xxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxg



















 (3.21)

In this case degree)}({ xg = 238 = n – k. n = k + 238 = 8192 + 238 = 8430 bits.

Therefore the primitive code parameter is (16383, 16383 – 238) = (16383, 16145).

Since k = 8192, 16145 – 8192 = 7953. Therefore the parameters of the shortened BCH

code are (8430, 8192). Since degree)}({ xg < (n –k), the code can correct up to seventeen

bits in error over two sectors.

(iii) for t = 18, the design distance ,3712  t ,1b 362 b .

 Hence the required roots are:

},,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

36353433323130292827262524232221

201918171615141312111098765432






















)(),(),(
),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

353331

29272523211917

15131197531

xMxMxM
xMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg

 (3.22)

 36

252250242241239236235233

230228227226224219218217216214211

208203202200197195193192191187184

179178177173172170169168165164163

161158156155153150149148146141140

138137133132130127125124122121120

1191181161121091081051041029998

979491908583828079777573

727067656261605958545350

494443424140393433322320

191614131110987631)(

xxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxxg























 (3.23)

Here degree)}({ xg = 252 = n – k. n = k + 252 = 8192 + 252 = 8444 bits. Therefore

the primitive code parameter is (16383, 16383 – 252) = (16383, 16131). According to the

memory model considered, k = 8192. Hence 16,131 – 8192 = 7939. Therefore the

parameters of the shortened BCH code are (8444, 8192). Since degree {)(xg } < (n –k),

the overhead requirements of the code can be satisfied by the architecture and the code

can support correction of up to eighteen bits in error over two sectors.

(iv) for t = 19, ,3912  t ,1b 382 b .

 Hence the required roots are:

},,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

383736353433323130292827262524232221

201918171615141312111098765432





 24.3
)(),(),(),(

),(),(),(),(),(),(),(
),(),(),(),(),(),(),(),(

)(

37353331

29272523211917

15131197531


















xMxMxMxM
xMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg

 37

 

266265264263

258257254253251247244242241238233231

230228226225221220217212211210209201

199198196192191190189188187185176172

170167164161158157154152151150149148

147146144140139137136134131130128121

11711511310910710610510410210110098

95949390868584838281807978

75747170676361605857555450

49484746454342403937343026

25201918161413108752

25.3

1)(

xxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxg























It is to be noted that degree)}({ xg = 266 = n – k. n = k + 266 = 8192 +266 = 8458 bits.

 Primitive code parameter is (16383, 16383 – 266) = (16383, 16117).

k = 8192, 16117 – 8192 = 7925.

Parameters of shortened BCH code are: (8458, 8192).

Since degree)}({ xg > 256 (i.e. n – k value as per the model), a 19t error correcting

BCH code has a overhead requirement that cannot be supported with this memory model.

However, if the memory allocated to store redundant overhead bits is increased from 32

to 34 bits then this solution can be employed. Further, in a similar manner, we have also

worked out the generator polynomials of BCH codes capable of correcting ,21,20t and

22 errors per 1024 bytes which can be used if memories with higher data integrity are

required. However, this will necessitate the use of a greater overhead allocation for

storing redundant bits generated by the code.

(v) for t = 20, the design distance ,4112  t ,1b 402 b .

Hence the required roots are: }...,,.........,,{ 4032  .

 38

280275274273271267265263261

257256255253251249243240239238237

236235231229228227226225224223222

220218216215214213212209208207205

203202200198195194193192189184183

181179178174172171169167162161159

157156153152150149148143141139137

136135132130129127126125124122121

12011911811611411311010510110099

959392919084828079777673

696865646260565251504948

464442414038363533302927

242320161514986431)(

xxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg



























 (3.26)

In this case, degree)}({ xg = 280 = (n – k). n = k + 280 = 8192 +280 =8472 bits.

Primitive code parameter is (16383, 16383 – 280) = (16383, 16103).

k = 8192, 16103– 8192 = 7911.

Parameters of shortened BCH code are: (8472, 8192).

(vi) for t = 21, the design distance ,4312  t ,1b 422 b .

294292291287286281280279276

275272270267266265261260259258257256255

254252251250248247239236235234232229227

224223221220217215214212211209208206204

201195193191189185180178175174173172165

1641631581571561511451141137133132131129

126125124123122121119118115113112109107

10599979190888685848379777675

7371706968666261595756555351

5049484746444139383634322928

2721191615131211108761)(

xxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxg























 (3.27)

 39

(vii) for t = 22, the design distance ,4512  t ,1b 442 b

308307304303300

299297296294293290289288286285280279274

273272269268267263262261256254253252250

249248246244243242241238235234233232231

230229228227226225223219218211210207206

205203198196193192191190189186184180179

177176175172171170169168167165162157156

155154153152151150149147146142141139136

129126125123122121117113109108106105103

9995949291908887868584838280

7877767574737270696765625957

5655545351484543413735343230

29262520191615131296431)(

xxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxg



























 (3.28)

Table 3.2 shows the summary of the results obtained after synthesizing the codes by

taking two information sectors as one information block. The codes specified in the

shaded blocks cannot be supported by the device architecture.

 Table 3.2. Number of overhead bits required for various values of t
 (Combining two sectors as one information block)

t Number of overhead bits
required (degree{g(x)})

16 224
17 238
18 252
19 266
20 280
21 294
22 308

 40

3.2.3 Memory Model 2

Let us consider the second model (memory model 2) with 512 bytes of data and 32 bytes

of overhead. The natural length 1213 n = 8191 bits.

Choosing n = 8192 – 1 = 8191 =)12(13  .

7935,256  kkn .

Parameters of this code are (8191, 7935).

From the model, n = k + 256 = 4096 + 256 = 4352.

)4096,4352(),(kn .

Therefore the required shortened BCH code is (4352, 4096).

It is known that b = 1, design distance 12  t .

For t = 15, 12  t = 31.

Required roots are: { 30232 ..,.........,,   b } .

Similarly, for t = 16, the required roots are :{ 32232 ..,.........,,   b }

 for t = 17, the required roots are :{ 34232 ..,.........,,   b }

 for t = 18, the required roots are :{ 36232 ..,.........,,   b }

 for t = 19, the required roots are :{ 38232 ..,.........,,   b }

 for t = 20, the required roots are :{ 40232 ..,.........,,   b }

 for t = 21, the required roots are :{ 42232 ..,.........,,   b }

 for t = 22, the required roots are :{ 44232 ..,.........,,   b }

512 bytes
(4096 bits)

32 bytes
(256 bits)

 k information bits (n – k) overhead bits

 41

Conjugacy classes of the elements of 132
F are listed in (3.1). The conjugacy classes of the

remaining elements in 132F are listed below.

10. { 4106205351222561537226881344672336168844221 ,,,,,,,,,,,,  }

11. { 4107614971703585588829441472736368184924623 ,,,,,,,,,,,,  }

12. { 41082054102746096400320016008004002001005025 ,,,,,,,,,,,,  }

13. { 41096150307556336912345617288644322161085427 ,,,,,,,,,,,,  }

14. { 41102055512366577424371218569284642321165829 ,,,,,,,,,,,,  }

15. { 41116151717176817936396819849924962481246231 ,,,,,,,,,,,,  } (3.29)

16. { 4112205610285142574224211210565282641326633 ,,,,,,,,,,,,  }

17. { 411366152307615387694480224011205602801407035 ,,,,,,,,,,,,  }

18. { 411420575124256212814732236811845922961487437 ,,,,,,,,,,,,  }

19. { 411561537172358617934992249612486243121567839 ,,,,,,,,,,,,  }

20. { 411620581029461023055248262413126563281648241 ,,,,,,,,,,,,  }

21. { 411761543077563428175504275213766883441728643 ,,,,,,,,,,,,  }

The minimal polynomials are shown in equation (3.4). The other minimal polynomials

obtained are:

1387432
37

131211987543
35

1311105432
33

131211108632
31

131211109862
29

13129842
27

13121086432
25

13121152
23

1312118764
21

1)(

1)(
1)(

1)(
1)(

1)(
1)(

1)(
1)(

xxxxxxxM

xxxxxxxxxxxM
xxxxxxxxxM

xxxxxxxxxM
xxxxxxxxxM

xxxxxxxM
xxxxxxxxxM

xxxxxxxM
xxxxxxxxxM



















 (3.30 a)

 42

 
13121110865432

43

1311987652
41

131210987654
39

1)(

b30.31)(
1)(

xxxxxxxxxxxM

xxxxxxxxxM
xxxxxxxxxxxM







The generator polynomial for codes designed by considering memory model 2 is

computed by evaluating the LCM of minimal polynomials corresponding to the required

roots

(i) For t = 15










)(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

29272523211917

15131197531

xMxMxMxMxMxMxM
xMxMxMxMxMxMxMxM

LCMxg
 (3.31)

Therefore,

195194192190189

188186185184183182181178176175174173169

168167165159157151146144143141139135134

132127125123122120114113110109107105104

10310210110096959290868483817978

7674726866646362616056555350

4947454441403938373534323130

29282419171513111085431)(

xxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxg

















 (3.32)

In this case degree)}({ xg =195 = n – k.

42911954096195  kn bits.

 Primitive code parameter over 132F : (8191, 8191 – 195) = (8191, 7996)

k = 4096  7996 – 4096 =3900.

 The shortened BCH code has the parameter:

 (8191 – 3900, 7996 – 3900) = (4291, 4096)

Since degree)}({ xg < (n – k), a 15t error correcting BCH code can be supported by

this memory model.

 43

(ii) For t = 16

 33.3
)(),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

3129272523211917

15131197531










xMxMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg

208207206203201200199197196195194193189

188187186185184179178176175173172171170

169167166162160158157153152151149148146

144143142141140139137136133127126125124

123122121120114113112111110109108106105

1041031019997949088878685848382

8180737069676665646361605756

5453525147454241323130272624

23222015141312111087641)(

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxg



















 (3.34)

In this case degree {)(xg } = 208 = n – k. n = k + 208 = 4096 + 208 = 4304.

 Primitive code parameter over 132F : (8191, 8191 – 208) = (8191, 7983).

k = 4096  7983 – 4096 =3887.

 The shortened BCH code has the parameters:

 (8191 – 3887, 7983 – 3887) = (4304, 4096)

Since degree)}({ xg < (n – k), a t = 16 error correcting BCH code can be supported by

this model.

(iii) For t = 17


















)(),(),(),(
),(),(),(),(),(),(

),(),(),(),(),(),(),(
)(

33312927

252321191715

131197531

xMxMxMxM
xMxMxMxMxMxM

xMxMxMxMxMxMxM
LCMxg

 (3.37)

 44

221220

213211209205203202200195193191189188187

183182181180178174173171166165163162161

159157156155154152148146145144142141140

138136132128127126123121120117116115114

1131121101061051041021019998979594

9392898681787370666564636261

5954525147464441393835343231

2928252418171512107321)(

xx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxxg



















 (3.36)

In this case degree {g(x)} =221 = n – k.

n = k + 221 = 4096 + 221 = 4317.

 Primitive code parameter over 132
F : (8191, 8191 – 221) = (8191, 7970)

k = 4096  7970 – 4096 =3874

 The shortened BCH code has the parameter:

 (8191 – 3874, 7970 – 3874) = (4317, 4096).

Since degree {)(xg } < (n – k), a t = 17 error correcting BCH code can be supported by

this model.

(iv) For t = 18


















)(),(),(),(
),(),(),(),(),(),(),(

),(),(),(),(),(),(),(
)(

35333129

27252321191715

131197531

xMxMxMxM
xMxMxMxMxMxMxM

xMxMxMxMxMxMxM
LCMxg

 (3.37)

 45

234231230227225219217216215213212206

204203202200198197196194192191188

184181180175173172171170168167166

165164163159158155154150149146144

143142140138136135133131130127126

125123118117115114112109107105104

10210198949392888580797877

757473727069686662615450

484745423936332827251918

171413121110965431)(

xxxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg





















 (3.38)

Here degree)}({ xg = 234 = n – k.  n = k + 234 = 4096 + 234 = 4330.

Primitive code parameter over 132
F : (8191, 8191 – 234) = (8191, 7957)

k = 4096.  7957 – 4096 =3861

 The shortened BCH code has the parameter:

 (8191 – 3861, 7957 – 3861) = (4330, 4096).

Since degree)}({ xg < (n – k), a t = 18 error correcting BCH code can be supported by

this memory model.

(v) For t = 19


















)(),(),(),(),(),(
),(),(),(),(),(),(

),(),(),(),(),(),(),(
)(

373533312927

252321191715

131197531

xMxMxMxMxMxM
xMxMxMxMxMxM

xMxMxMxMxMxMxM
LCMxg

 (3.39)

 46

247244243242241240239236233232

230229227225223221213211209208206205203

200197195192191190189188181174173170169

168166165164162161160159157156154152147

145144143140137136133130129128126125124

12111911711610910810510410310210110099

9895938986807976757468676160

5855544746414037363534323130

262119181615141312109621)(

xxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxg



















 (3.40)

In this case degree)}({ xg = 247 = kn 

 43432474096247  kn

 Primitive code parameter over 132F : (8191, 8191 – 247) = (8191, 7944)

4096k  7944 – 4096 = 3848

 The shortened BCH code has the parameter:

 (8191 – 3848, 7944 – 3848) = (4343, 4096)

Since degree)()}({ knxg  , a t = 19 error correcting BCH code can be supported by

this model.

(vi) For t = 20


















)(),(),(),(),(),(),(
),(),(),(),(),(),(

),(),(),(),(),(),(),(
)(

39373533312927

252321191715

131197531

xMxMxMxMxMxMxM
xMxMxMxMxMxM

xMxMxMxMxMxMxM
LCMxg

 (3.41)

 47

260259256255253250249245242240238237

235233231230228227226225223222221220

217216214213207205203202201199195192

191190189186184183182181179178176175

172171170168167166164163156150148146

144143142140138135133132130128123121

12011611511311211110910810710610196

95949290878684828180777271

70696359585756525148474442

40373533292826252322212019

181713111097654321)(

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxxg























 (3.42)

Here degree)}({ xg = 260 = n – k.

 43562604096260  kn

 Primitive code parameter over 132F : (8191, 8191 – 260) = (8191, 7931)

k = 4096  7931 – 4096 =3835

 Hence, the shortened BCH code has the parameter are:

 (8191 – 3835, 7931 – 3835) = (4356, 4096)

Since degree)}({ xg > (n – k), a t = 20 error correcting BCH code cannot be supported

by this memory model. However, if overhead space is increased to 33 bytes, this code can

still be used. Further, we have also worked out the generator polynomials of BCH codes

capable of correcting 21t and 22 errors per 512 bytes which can be used if memories

with higher data integrity are required. However, this will necessitate the use of a greater

overhead allocation for storing redundant bits generated by the code.

(vii) For t = 21


















)(),(),(),(),(
),(),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

4139373533

3129272523211917

15131197531

xMxMxMxMxM
xMxMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg (3.43)

 48

273272271270268267

265263262261259258257255251246

235230228227226223219217216215214212211

210208207206203201199197194192191189187

185184183181180177174173168163162161159

155154153150149147144143141140136133128

127123120119116113111106105102979493

9089888685828177747368676664

6362595857545248474644413837

323130262318151298751)(

xxxxxx
xxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxg





















 (3.44)

Here degree)}({ xg = 273 = n – k.  n = k + 273 = 4096 + 273 = 4369

 Primitive code parameter over 132F : (8191, 8191 – 273) = (8191, 7918)

 k = 4096  7918 – 4096 = 3822

 The shortened BCH code has the parameter:

 (8191 – 3822, 7918 – 3822) = (4369, 4096)

(viii) For t = 22


















)(),(),(),(),(),(),(
),(),(),(),(),(),(),(

),(),(),(),(),(),(),(),(
)(

43413937353331

29272523211917

15131197531

xMxMxMxMxMxMxM
xMxMxMxMxMxMxM

xMxMxMxMxMxMxMxM
LCMxg

 (3.45)

 49

286284282277276274273272269268266265264

263262260259258253252250249247245242

241238237232231227226224223222221219

217212211204201200195194193191190189

1881871851841831821778177175174173170

169165164162160158156155153151147144

135133131124123119116114111109105104

1031021011009594939189888786

838278757369686763565553

514845444241393634333230

29252217161587521)(

xxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg























 (3.46)

Now, for t =22, degree)}({ xg = 286 = n – k.

 n = k + 286 = 4096 + 286 = 4382.

 Primitive code parameter over 132F : (8191, 8191 – 286) = (8191, 7905)

k = 4096  7905 – 4096 = 3809

 The shortened BCH code has the parameter: (8191 – 3809, 7905 – 3809)

 = (4382, 4096)

Table 3.3. Number of overhead bits required for various values of t (Memory model 2)

T Number of

overhead bits
required

(degree{g(x)})

Shortened BCH
code parameter

15 195 (4291, 4096)
16 208 (4204, 4096)
17 221 (4317, 4096)
18 234 (4330, 4096)
19 247 (4343, 4096)
20 260 (4356, 4096)
21 273 (4369, 4096)
22 286 (4382, 4096)

 50

Table 3.3 shows the summary of the results obtained after synthesizing the codes by

considering memory model 2. The performance of these codes is shown in Figure 3.2.

10
-7

10
-6

10
-5

10
-4

10
-3

10-80

10-70

10
-60

10-50

10-40

10
-30

10-20

10-10

100

RBER

P
ro

ba
bi

lit
y

of
 d

ec
od

in
g

er
ro

r t=16
t=17
t=18

Figure 3.2: Performance of BCH Codes for enhancing Data Integrity in Flash memories

for Memory model 2

3.3 Synthesis of RS Code for Memory Model 1

(i) Sector size = 512 bytes, Overhead = 16 bytes

Consider the architecture of memory model 1, where, each sector is further partitioned

into four subsectors, each with 128 bytes of information and 4 bytes of overhead.

128 bytes

128 bytes

128 bytes

128 bytes

4 bytes

4 bytes

4 bytes

4 bytes

 51

Natural length of a RS code over 82F , 128 n .

4 kn bytes. This leads to the selection of (255, 251) RS code over 82
F .

2
22

1min 



 





 


kndt

For t = 2, we have 8 bit symbols. Therefore the shortened RS code over 82F is

(132, 128).

,512  t ,1b 42 b .

So the required roots are }.,,.........,{ 22  b = },,,{ 432 

)47.3(
))()()(()(
11623122163304

432









xxxx
xxxxxg

This is of the form 1)(1
2

2
3

3
4  xgxgxgxxg

Since RS codes are cyclic codes, encoding in systematic form is analogous to the binary

encoding procedure. One can think of shifting a message polynomial, m(x), into the

rightmost k stages of a codeword register and then appending a parity polynomial, p(x),

by placing it in the leftmost kn  stages. So the steps are:

(i) Compute)(xmx kn .

(ii) Divide)(xmx kn by the generator polynomial)(xg and compute the

remainder.

 i.e.)()()()(xrxgxqxmx kn  ,

where)(xq is the quotient and)(xr is the remainder.

(iii) Compute)()(xrxmx kn  .

(ii) Another type of partition can also be thought of. In this case, the sector is partitioned

into two sub-sectors, each containing 256 bytes of information and 8 bytes of overhead.

This is illustrated below.

 52

In this solution, it should be noted that each symbol used in the RS code is 9 bits

wide. Each information block consists of 228 nine bit symbols. The first 228 symbols

comprise of user data. The last symbol has five bits of user data to which four

additional bits are padded. The original RS code over 92F has length 129 n = 511.

Therefore the primitive length RS code has parameters (511, 504).

81228235min d nine bit symbols.

3
2

1min 



 


dt nine bit symbols. ,712  t 62 b

So the required roots are },........,{ 22  b = },,,,,{ 65432 

))()()()()(()(65432   xxxxxxxg

 2912982763373417851762547   xxxxxxx (3.48)

This is of the form 01
2

2
3

3
4

4
5

5
6

6
7 gxgxgxgxgxgxgx 

This is shortened to (235, 228).

3.4 Synthesis of RS code for Memory Model 2

256 bytes = 2048 bits

256 bytes = 2048 bits

8 bytes = 64 bits

8 bytes = 64 bits

128 bytes

128 bytes

128 bytes

128 bytes

8 bytes

8 bytes

8 bytes

8 bytes

 53

In memory model 2, k = 512 bytes and overhead)(kn  = 32 bytes. So if each sector is

partitioned into four subsectors, then each subsector will have 128k bytes and

8)( kn bytes.

bytesnkkn 1368128,128,8 

,91  kn 4
2





  knt .

The original RS code over 82F has length 255128' n . Hence the code has the
parameters (255, 247). The shortened RS code over 82

F has parameters (136, 128).
Design distance 82,912   bt
Required roots are: }..,,.........,{ 22  b = },,,,,,,{ 8765432 

))()()()()()()(()(8765432   xxxxxxxxxg
 37224283172471517864472278   xxxxxxxx (3.49)

This is of the form 372

2
3

3
4

4
5

5
6

6
7

7
8  xgxgxgxgxgxgxgx

Thus, this chapter has been devoted to the synthesis of various BCH and RS codes which

can be employed to protect information integrity in Single level Cell (SLC) based Flash

memories. In the next chapter, we will focus our attention to the synthesis of codes which

can be used to protect information integrity on Multi Level Cell (MLC) based Flash

memories.

 54

This page is intentionally left blank

 55

Chapter 4

Application of Error Correcting Codes to Multi Level Cells

4.1 Introduction

In recent years, flash memory has been increasingly used in many embedded systems.

This is because the performance and capacity of NAND flash memory has improved over

the years. Hard disk drive (HDD) based storage devices can save large amounts of data at

low price, but they have disadvantages such as large size, lesser durability, high power

consumption and long response time. Flash memory has been appropriated for small

portable devices because it overcomes these disadvantages. However, Flash devices

have not achieved the reliability of their HDD counterparts. Attempts have been made by

many researchers to address the reliability problem by incorporating powerful ECC

algorithms [Agarwal, A. et al. 2005], [Slayman, C.W. 2005], [Bajura, M et al. 2007]. In

this chapter, we have proposed a few solutions to mitigate this problem.

MLC flash memories have replaced SLC flash memories in some applications in recent

years. Because multiple bits are stored per memory cell in MLC flash memory, there is

an improvement in the storage density. Unfortunately, this is accompanied by an increase

in the probability of error. This means as the number of distinct levels that can be stored

in a cell increases, one can expect an increase in the RBER. Hence powerful ECC

algorithms that can detect and correct these error patterns have to be developed and

deployed if MLC devices are to find widespread acceptability.

Details of flash memory organization and its structure and characteristics have been

discussed in Chapter 1. As mentioned there, conventional SLC can hold two distinct

levels of charge, and hence it can store one bit of data in each memory cell, while a MLC

can reliably hold Q = 2b levels of charge, and hence it can store b bits of data, where b is

typically 2 or 3 [Rossi, D. and Metra, C. 2003], [Rossi, D. et al. 2001], [Sun, F.et al.

 56

2007], [Sun, F. et al. 2006]. Although MLC memory has higher density than SLC

memory, MLC is more vulnerable to errors because small fluctuation of the charge

amount in the floating gate and slight variation of gate voltage result in misreading of

stored data. Multilevel flash memory cells have found application in efforts to increase

density of bits per unit area [Lin, H. et al. 2002] in recent years.

4.2 Modeling of Multi Level Cell as a Channel

In this section, we describe the modeling of MLC cell as a channel. This will allow us to

quantify the performance of these codes and measure the degree of improvement in data

integrity provided by the use of these codes. In MLC memory devices, b-bits of data are

stored in a single cell by designing the cell to hold Q = 2b distinct levels of charge in the

floating gate. The amount of charge residing on the floating gate is identified by

observing the relation between the control gate voltage, VCG and the current value from

the drain to source, ID. Figure 4.1 [Maeda, Y. et al. 2009] depicts schematic relation

between the control gate voltage and the drain-source current ID where Q = 22 = 4.

During the read operation, a gradually increasing gate to source voltage (CGV) is applied

and the drain to source current (DI) is monitored. When the value of DI just exceeds THI ,

further increment in CGV is stopped. This value of CGV denotes the read out voltage
iRV . It

can be inferred from Figure 4.1 that as the charge level in the floating gate is increased,

larger control gate voltages (CGV) have to be applied before significant drain-source

current can flow. As can be seen from the Figure 4.1, if the charge level in the floating

gate corresponds to level 3, then the drain-source current (DI) exceeds the threshold

value (THI) only when 3THCG VV  . The charge amount levels in Q-level cell are

expressed by integers {0,1,…….., Q-1}. For a charge amount level i, threshold voltage

VTHi , is determined as the minimum control gate voltage VCG which gives the drain-

source current ID greater than ITH . From Figure 4.1, it is apparent that VTH0 <VTH1 <.........
 <

VTHQ-1. ITH is a predetermined threshold drain-source current. In a Q-level MLC the

distinct symbols that can be stored are 0,1,2,….., Q-1. During the read process, the

 57

mapping between the readout voltage
iRV and the symbol present in the location being

accessed can be specified as in Table 4.1.

Figure 4.1: Schematic relation between control voltage and drain-source current in 4-
level memory cell.

Table 4.1: Mapping between the readout voltage
iRV and the symbol stored in MLC

Range of

iRV Symbols

0
0 THR VV

i
 0

10 THRTH VVV
i
 1

21 THRTH VVV
i
 2







QiQ THRTH VVV 
1

 Q-1

The probability distribution of the readout voltages
iRV is usually approximated by

Gaussian distribution [Maeda, Y. and Kaneko, H. 2009], [Sun, F. et al. 2006], [Sun, F.et

al. 2007] whose probability density function is defined as follows:

ID

Level
 0

Level
 2

ITH

VTH0 VTH1 VTH2 VTH3

Level
 1

Level
 3

VCG

 58

2

2

2

)(

22
1)(i

iir

i

v

i

Ri evp 








 (4.1)

Here, i and i are the mean and standard deviation of VTHi respectively.

iRv represents

the sample value of the readout voltage
iRV . The variance i (which is a measure of the

width of the Gaussian curve in Figure 4.2) is an indication of the likelihood of the stored

data being read erroneously. A large value of i indicates that the probability of reading

back a symbol that is different from that which was written into that location is relatively

large. Thus, a large value of  gives rise to a large value of RSER.

Figure 4.2: Probability density functions in 4-level cell [Maeda, Y. et al. 2009], [Sun, F.
et al. 2007].

Figure 4.2 represents the typical probability distribution associated with the readout

voltage corresponding to the four different stored symbols in a 4-level cell. The two inner

distributions have the same standard deviation, denoted as  , the standard deviations of

the outer two distributions are 5.1 and 2.1 respectively. Since standard deviations of

)(0 iRvP and)(1 iRQ vP  are usually larger than that of)(
iRi vP [Gregori, S. et al. 2003],

[Sun, F et al. 2007], [Maeda, Y. et al. 2009] the errors in MLC cannot be expressed by

any conventional channel model, such as additive white Gaussian noise (AWGN)

 59

channel. Thus a suitable channel matrix has to be determined to describe the various

errors encountered during reading process in a MLC and their relative probabilities of

occurrence.

The error probabilities in the MLC are expressed by the following channel matrix:





























1,11,10,1

1,11,10,1

1,01,00,0

QQQQ

Q

Q

ppp

ppp
ppp

P









 (4.2)

where jip , indicates the probability that cell data of original level i is read out as level j.

Here, iip , is the probability that the original data of level i is read out without any error.

Under the assumption of the Gaussian distribution, the probability jip , is calculated as

 



jR

jR

V

V
iji dxxPp

1

)(, (4.3)

where  ,1,........,1,0,  Qji ,

1


RV 
1QRV .

The channel matrices computed for different values of  for a four level MLC is shown

in (4.5) – (4.13). A sample calculation showing the steps used to compute the entries of

the P matrix for 2.0 is worked out.

Computation of Threshold voltage for a 4-level MLC

,5.20  ,45.01  ,19.11  0.32 

For = ,20.0 ,5.10   ,1  

2
0

2
0

2
)(

2
0

0
2

1)(








x

exP and
2
1

2
1

2
)(

2
1

1
2

1)(








x

exP

Solving two equations, the value of x (

0THV) is obtained.

 60

2
0

2
0

2
)(

2
0

0
2

1)(








x

exP =
2
1

2
1

2
)(

2
1

1
2

1)(








x

exP

1

0

2
)(

2
)(

2
1

1

2
0

2
0


















x

x

e

e

 









 



 2

1

2
1

2
0

2
0

2
)(

2
)(





 xx

e
1

0














 





)04.0(2
)45.0(

)09.0(2
)5.2(22 xx

e = 1.5

 28184.1x

The channel matrix for Q = 4 level cell memory is calculated as follows.




































3,3
16106278

17
2,2

16134

13416
1,1

17

1998216
0,0

101.1104.1106.8
103.9103.1109.2
107.3103.1106.8
105.2105103.1

p
p

p
p

P (4.4)

Here the standard deviations of the threshold voltages are assumed to be

12.0,1.0,15.0 3210   and the averages 19.1,45.0,50.2 210   and

33  . The readout voltages are 27.1
0

THV , 37.0
1
THV and 01.2

2
THV . The above

channel matrix shows that, MLC suffers from asymmetric errors in which error

probability between adjacent levels is high, while that between separate levels is

relatively low. The channel matrix (P) computed for different values of  is enumerated

below:

 61

For 01447.2,37.0,27427.1,12.0
210
 THTHTH VVV




































1121085172.31002228.81047236.6
1019699.311014819.41017817.5

100035.51014932.41102456.3
100705.41055699.11089315.41

75194

121294

941212

1393712

P (4.6)

For 0157.2,37.0,27581.1,14.0

210
 THTHTH VVV




































11027975.21086358.41041905.3
1088968.111035449.21080174.9
1007205.11035449.211083252.1
1070494.71002922.81078008.21

947143

9970

6999

143439

P 4.7)

For 01582.2,37.0,27758.1,16.0

210
 THTHTH VVV





































1104803.11022396.51094897.2
1022571.111048769.11078837.5

10863.61048769.111015569.1
1079663.21093644.21075834.11

743110

7754

5477

79337

P (4.8)

For 01664.2,37.0,27959.1,18.0

210
 THTHTH VVV




































999997.01064944.21008814.21015173.1
1019042.2999995.01061237.21085622.3

108336.41061237.2999995.01002467.2
1007687.41050639.31009144.3999997.0

63487

6643

4366

63186

P (4.9)

 62

For 01756.2,37.0,28184.1,20.0
210
 THTHTH VVV




































999979.01012444.21003026.31069782.1
1075326.7999962.01006575.21017229.2
1083418.21006575.2999963.01059682.1
1051722.1105204.51044804..2999976.0

52871

5535

3555

51225

P (4.10)

For 01857.2,37.0,28342.1,22.0

210
 THTHTH VVV




































999892.01000587.11011624.1105859.1
1028665.899982.01067815.91019925.1

106122.11067815.9999829.01046101.7
1061787.51070432.11014856.1999885.0

42359

5529

2955

43184

P (4.11)

For 01968.2,37.0,28703.1,24.0

210
 THTHTH VVV




































999668.01032169.31036399.31004643.2
1073112.299941.01016964.31083274.2
1089531.31016964.3999439.01043666.2
1087378.11079231.71076713.3999623.0

42050

4425

2544

36164

P (4.12)

For 02089.2,37.0,28997.1,26.0

210
 THTHTH VVV




































998421.01020857.91088058.11076235.2
1097386.6998497.0100567.81025641.7
1001551.1100567.8998577.01017537.6
1026154.21026643.91059011.9999041.0

41743

4422

2144

31144

P (4.13)

 63

Let us assume that symbol i is written into a MLC cell and that the contents of this cell

are read out in error during a read cycle. As a result of the asymmetric error mechanism,

the probability of symbol i-1 or i+1 appearing at the MLC output is significantly higher

than the probability of any other symbol from the set of symbols that can be stored in the

MLC. This can also be inferred by a careful examination of the P matrices. To illustrate

this idea, let us examine the second row of any P matrix in equations (4.5) to (4.13). We

observe that the entry 2,2p takes on a value which is close to 1. The entries 1,2p and

3,2p have magnitudes which are significantly higher than the other entries in this row.

This implies that if symbol 1 is written into a cell which is read out in error, the erroneous

read out values are most likely to be symbol 0 or symbol 2. The probability of seeing any

other symbol at the output of this cell is vanishingly small. In general, for a Q-level cell,

the RSER (Raw Symbol Error Rate) can be computed as,

 





1

0

)/()()(
Q

i
iePiPeP (4.14)

where)/(ieP denotes the probability of reading out the contents of a cell in error when

symbol i has been written into the cell. Thus, for Q = 4, the equation representing the

RSER is computed as follows:

        3/)3(2/)2(1/)1(0/)0()(ePPePPePPePPeP  (4.15)

4.3 Code Synthesis for Multilevel Flash

Referring to memory model 1, (512 bytes of information and 16 bytes of overhead), with

Q = 2 level MLC, for t = 9, the shortened BCH code parameters are (4213, 4096) over

132F .

 421242114210543210 |.....................................||| vvvvvvvvv

 s0 s1 s2 ………………………………………………. s2106

 64

If Gray code is used to map binary 2 – tuples to symbols over 22
F , then an error event

(i.e, a symbol being readout in error) is almost always due to a single bit change in two

bit representation. Error events involving both the binary digits in error are extremely

improbable (i.e, the probability of such events are of the order of 8210 or smaller). Thus

by assigning Gray map to assign bit pattern to symbols, the (4213, 4096) binary BCH

code capable of correcting t = 9 errors over a span of 4213 bits can effectively correct

t = 9 symbol errors over a span of 2107 4-ary symbols.

Now combining two sectors, the memory model will have 1024 bytes (8192 bits) of

information and 32 bytes (256 bits) of overhead. If this model is used to synthesize the

codes for Q = 4 level MLC, then length of the code 163831214 n .Also, 256 kn .

For t = 18, the shortened BCH code parameters are (8444, 8192). This code can correct

eighteen single bit errors over a span of 8192 bits (one sector in Q = 2 case). It can also

correct eighteen symbols over a span of 8444 4-ary symbols with Gray mapping.

4.3.1 RS Codes

Referring to the memory model 1 (with 512 bytes of information and 16 bytes of

overheads), a t = 9 BCH code will have the parameters of (4213, 4096) after shortening.

So, in this case k = 512, n > 512, 1210 n = 1023. Let us synthesize a RS code

over 102F .

40968512512 k bits ~ 410 ten bit symbols.

Considering 122,1312,1,6   btbt . The generator polynomial is

))((

))()()()()()()()()(()(
1211

1098765432









xx
xxxxxxxxxxxg

1211961103692568400

7968644454194244367628618006)(

xxxxx
xxxxxxxxg








 (4.16)

 65

Here the degree of g(x) =12. Therefore, n – k = 12 ten bit symbols i.e. 120 bits. This code

is an n=422, k= 410, t=6 RS code over 102F . So, six symbols in errors can be corrected.

If two sectors are combined, then k = 1024 bytes = 8192 bits and n – k| max =32 bytes =

256 bits. The RS code should be from the field },.......,,,1,0{ 10222
210 F .

k = 819.2 ~ 820 ten bit symbols and n – k ~ 25 ten bit symbols.

For t = 12, ,2512  t 242 b .

Therefore,

))()()()()((
))()()()()()()()((
))()()()()()()()(()(

242322212019

181716151413121110

98765432













xxxxxx
xxxxxxxxx

xxxxxxxxxxg

242316

2222421704203931918518475175621625415363

142341336612475124751138610100994938130

79486940532457331052917212866)(

xx
xxxxxxxx

xxxxxxxx
xxxxxxxxg

















 (4.17)

Here degree of g(x) = 24 = n – k. Since k = 820, n = 24 + k = 844. The suitable code is

(844, 820) RS code over 102F , with t = 12. The code can correct twelve ten bit symbols

over a span of 844 ten bit symbols.

4.3.2 Code synthesis for 8-level MLC

Let us consider 8-level MLC flash with memory model 1 architecture.

512 bytes
(4096 8-ary cells)

4096 x 3 = 12288 bits

16 bytes

16x8x3 =
384 bits

 66

In this case k = 12288 and n – k| max = 384.

163831214 n

Let t = 25, b = 1, ,5112  t .502 b

The required roots are: }.,,.........,,{ 5032  . After deriving the conjugacy classes, the

minimal polynomials that are obtained are listed in equation (4.18).

14131210842
43

141211987653
41

141310632
39

1413653
37

1413116542
35

141210876432
33

141211109743
31

1413118532
29

14131087
27

141312111076
25

14119652
23

141110842
21

14116
19

141110875432
17

14111098752
15

1413121110965
13

1486
11

141211532
9

1412987654
7

141097643
5

14852
3

14106
1

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

1)(

xxxxxxxxxM
xxxxxxxxxxxM

xxxxxxxM
xxxxxxxM

xxxxxxxxxM
xxxxxxxxxxxM

xxxxxxxxxM

xxxxxxxxxM
xxxxxxxM

xxxxxxxxxM

xxxxxxxM
xxxxxxxM

xxxxxM
xxxxxxxxxxxM

xxxxxxxxxM
xxxxxxxxxM

xxxxxM
xxxxxxxM

xxxxxxxxxM
xxxxxxxxxM

xxxxxxM
xxxxxM













































 (4.18 a)

 67

 

14121097532
53

1413111098753
51

1411109653
49

14131284
47

14131187632
45

1)(
1)(

b18.41)(
1)(

1)(

xxxxxxxxxM
xxxxxxxxxxxM

xxxxxxxxxM
xxxxxxxM

xxxxxxxxxM











Therefore,

350349347345343341339337334333

332330328327326325324322321319318

317316311310308307306305303302301

299298295294293291290287286284280

278277271269265264263261260259257

255254253252251250248248247246243

242241240239238237236235233232231

229227225224222221219217213210207

206204201198196195194193192191190

189186184183180179177176174169168

164163160158155151149148147145144

140138137136135131128127125124122

116115114110109108106104103102101

10095939287828177767370

6964636059585655545250

4947464544434139383629

2827221916131196531)(

xxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxxg



































 (4.19)

Let t = 26, b = 1, ,5312  t .522  b
The required roots are:  5232 ,,.........,,  and the generator polynomial is

 68

364362360359354349348347

346344343342341340339338334333328

326325324321318317315313310309308

307303302301300298297296294293291

286285284283282281275274273272270

261260257256255254253252248247243

242240239238235234232231230229228

226223222219218217216215214211208

207206205202200198196191190188187

186185183182179177175174171170168

167166165163161160159155149148146

144140139137136132129128127126124

122118116114113112108107105104102

101100999895949391290898887

858483827978747271696564

636261595857565553524946

444140393635333029282726

2522212016141398641)(

xxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxg





































 (4.20)

Let t = 27, b = 1, ,5512  t .542 b
The required roots are:  5432 ,,.........,,  . Hence the generator polynomial is

 69

378374371370367366363360351349

348345344342340339338337335334333

331328324322318313312311309306305

301296295294292291290288287285284

282281280279275274273272269268266

264263261260259257256255254251250

249248247242240239236234231230228

224223222213212208207198197196195

192190187186185183175174173172171

170169164161158156155154150147143

142141138135134133132131129128127

126121120119118116114113112108107

10510410210110099989594939289

878685848382797674737170

676665646059585756555352

515046444137353433313029

2725241913111086521)(

xxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxg



































 (4.21)

Figure 4.3: Probability density functions in 8-level cell.

 70

Fig.4.3 describes the probability density functions in 8-level cell [Maeda, Y. et al. 2009].

The P matrix computed for for Q = 8 with 1.0 and 0.125 is shown below.

P =



























































999998.01095368.11053853.61038296.31086579.11002694.100
1061598.1999975.01030072.21014291.11039358.11086903.21014323.90
1063694.71030072.2999954.01030072.21014291.11039358.11086903.21020627.1

103582.81014291.11030072.2999954.01030072.21014291.11039358.1106336.1
103291.11039358.11014291.11030072.2999954.01030072.2101429.1104329.3
103151.41086903.21039358.1101429.11030072.2999954.01030072.2102268.1

01014323.91086903.21039358.11014291.11030072.2999864.01012569.1
1027304.61095744.11002884.81021766.51054008.51003571.1107355.1999826.0

63378143228

653492179295

34553492179288

9834553492174

1869234553489

30417992345532

295179923454

2892041398646184

P

=


























































999866.01014381.11023245.91018713.81025828.11014117.301075438.3
1042013.9999349.01057061.51086053.61093461.4104515.11023893.11037229.1
1067256.51057061.5998886.01057061.51086053.61093461.4104515.11056757.5
1088831.11086053.61057061.5998886.01057061.51086053.61093461.41020572.8
1054507.21093461.41086053.61057061.5998886.01057061.51086053.61054982.4

102832.1104515.11093461.41086053.61057061.5998886.01057061.51003822.1
1034423.21060277.1104515.11093461.41086053.61057061.5998007.01043598.1
1024794.71010971.11016947.1100542.81073652.31025568.110224214.2997758.0

4225192147291

542360115214277

85442360115186

6963442360113

1206023442358

1951256023444

289189115602343

186131895630123

RSER can be computes as follows:

)7/()7()6/()6()5/()5()4/()4(
)3/()3()2/()2()1/()1()0/()0()(

ePPePPePPePP
ePPePPePPePPeP




Assuming that symbols 0 – 7 can exist with equal apriori probability in the cell,

8
1)7(.)1()0( PPP  , the RSER simplifies to,

 












)7/()6/()5/()4/(
)3/()2/()1/()0/(

8
1)(

ePePePeP
ePePePeP

eP (4.23)

The probability of the decoding error associated with a code that can correct t errors can

be expressed as

 71

 P decoding error =   knk
n

tk
RSERRSER

k
n 










)1(
1

 (4.24)

Probability of decoding error computed for different values of  are shown in Table 4.2

and Table 4.3.

Table 4.2: Computed values of RSER and Probability of decoding error for 4-level MLC

Table 4.3: Computed values of RSER and Probability of decoding error for 8-level MLC

Hence in majority of the cases a symbol error is due to one bit in the representation of the

symbol being readout erroneously. Error events involving more than one binary digit in

σ RSER Probability of decoding
error (Memory model 1)
 for code with parameters

(8444, 8192)
&

t = 18

Probability of decoding
error (Memory model 2)
 for code with parameters

(8696, 8192) &
 t = 36

0.18 3.7951x10-6 3.1822x10-46 1.0053x10-99
0.19 1.1577x10-5 4.7775x10-37 7.8451x10-81
0.20 3.0135x10-5 3.2230x10-29 1.5854x10-65
0.21 6.8909x10-5 1.5793x10-22 2.2225x10-52
0.22 1.4162x10-4 7.7686x10-17 4.5486x10-41
0.23 2.6632x10-4 4.6789x10-12 2.2312x10-31
0.24 4.6489x10-4 3.8230x10-8 3.7709x10-23
0.25 7.4679x10-4 3.3731x10-5 1.4532x10-16
0.26 1.1015x10-3 8.2444x10-4 1.4151x10-10

σ RSER Probability of decoding
error (Memory model 1)
for code with parameters

(12666, 12288)
&

t = 27

Probability of decoding
error (Memory model 2)
for code with parameters

(13044, 12288)
 &

 t = 54
0.1 6.4951x10-9 6.0980x10-33 3.3642x10-78

0.11 2.5685x10-4 3.0872x10-17 2.0185x10-46
0.12 7.5244x10-4 9.0401x10-7 1.7272x10-23
0.125 1.1821x10-3 1.6625x10-3 4.5435x10-15

 72

error are highly improbable. Hence we have estimated the value of the UBER as the same

as Uncorrectable Symbol Error Rate (USER) which is calculated from (4.24). This can

be observed by an examination of the P matrices (4.5) - (4.13). Let us examine the

second row of (4.10). We see that if symbol 1 is written into the cell, the probability of it

being read out as symbol 0 or 2 is of the order of 510 while the probability of the

contents being read out as symbol 3 is of the order of 3510 . Thus by assigning Gray map

to assign bit pattern to symbols, the (8444, 8192) binary BCH code capable of correcting

t = 9 bit errors over a span of 8444 bits can effectively correct t = 9 symbol errors over a

span of 4222 4-ary symbols. The performance plots of the codes synthesized are shown

in Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7. It is observed that as vrange/sigma

increases, the values of UBER becomes smaller and smaller with the use of these codes.

13.6 13.8 14 14.2 14.4 14.6 14.8 15
10-40

10-30

10-20

10-10

100

vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

4 level memory model 1

(8444,8192)BCH code with t=18

Figure 4.4: Performance of t = 18 BCH code for MLC (4-level)

 73

13.6 13.8 14 14.2 14.4 14.6 14.8 15
10-80

10
-60

10-40

10
-20

10
0

vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

4 level memory model 2

(8696,8192)BCH code with t=36

Figure 4.5: Performance of t = 36 BCH code for MLC (4-level)

16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

8 level memory model 1

(12666,12288)BCH code with t=27

Figure 4.6: Performance of t = 27 BCH code for MLC (8-level)

 74

16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
10-80

10-70

10-60

10-50

10-40

10-30

10-20

10-10

vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

8 level memory model 2

(13044,12288)BCH code with t=54

Figure 4.7: Performance of t = 54 BCH code for MLC (8-level)

 From Table 4.2, we infer that in the case of 4-level MLC, use of codes based on Memory

model 1 can enhance device reliability significantly for values of 22.0 . Use of codes

based on Memory model 2 can improve device reliability even when  increases to 0.25.

Similarly from Table 4.3, we infer that for 8-level MLC, use of suitable codes based on

Memory model 1 can enhance device reliability for values of 11.0 . Codes based on

Memory model 2 can improve reliability even when value of  increases to 0.125. The

generator polynomials computed are shown in (4.25), (4.26), (4.27), (4.28).

 75

For t = 18

252250242241239236235233

230228227226224219218217216214211208

203202200197195193192191187184179178

177173172170169168165164163161158156

155153150149148146141140138137133132

130127125124122121120119118116112109

108105104102999897949190858382

8079777573727067656261605958

5453504944434241403934333223

20191614131110987631)(

xxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

xxxxxxxxxxxxxxg





















 (4.25)

For t = 27

378374371370367366363360

351349348345344342340339338337335334

333331328324322318313312311309306305

301296295294292291290288287285284282

281280279275274273272269268266264263

261260259257256255254251250249248247

242240239236234231230228224223222213

212208207198197196195192190187186

185183175174173172171170169164161158

156155154150147143142141138135134133

132131129128127126121120119118117115

114113111105104103102101100989796

94939289878685848382797674

73717067666566605958575655

5352515046444341373534333130

292725241913111086521)(

xxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxg

































 (4.26)

 76

For t = 36

504501500499496495494493492491489483

477476475474472471470469467466465

461459458456455454453450448447446

445442441440438437436435434433432

428426425423421419413410409408407

406405404403402398394391389386381

378375372368364362360353348347345

343342341339334332330328327326325

324323322317314313312310309305304

303301296295294293291290286284281

280279271268267266263262260257256

253251250249247243242241238237236

235230227226225224223219218217213

210208207206204203202200197196195

193191190185184183181179178176175

174173172166163162161160157156154

152151150149145143142141140138137

136135134133131130129127125123120

1191161071029998969592919089

888685838281797876706867

646261605952504947454342

414039373534322926232120

191817161412116531)(

xxxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg















































 (4.27)

 77

For t = 54

756755752751749748746743742741739738737

734733731730729728727725724723722721720

717716709708705704703699698697696695694

691690688684683682679678677675672671669

666659657655654647643642640638637636634

633632629628627626625624623619613610607

605598597596594593590588585584583582579

577575574571564560558555553552550549548

547546544541540538536533529528527525524

523522520519518517515514512510509508506

505504500499497496494493492491490488487

485484483482480479478477475474473472470

464462461459458456453451450449447444441

440439438436434433432430429428427426424

423422420418414412411410408404402396395

393390387386385384383382381379378377376

375374373371370368366363361360359358356

353350349346345344343341339338335332331

330329327325324319318317313310309307306

304303302300299297296292289285283282281

278276275274273272269268267266265264262

260259257256254252251249245244243239236

235234230229228225224223222221220218215

214213212210207203199198195194189188186

185183178172164163160155153152148147143

140138135133132128127125124123121120118

115114113109108107106100999695939290

898583828178777670696563626059

575554535048454342393837333231

30242321191716141295431)(

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxg





























































 (4.28)

 78

4.3.3 Code synthesis for 16-level MLC

Consider 16-level MLC flash with memory model 1 architecture.

512 bytes

(4096 16-ary cells)
4096 x 4 = 16384 bits

16 bytes
16x8x4= 512

bits

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

threshold voltage

th
re

sh
ol

d
vo

lta
ge

 p
ro

ba
bi

lit
y

di
st

rib
ut

io
n

probability distribution for 16 level cell

Figure 4.8: Probability distribution for 16-level cell

We have investigated that the best possible BCH code in 16 level flash memory with

memory model 1 is the shortened (16894, 16384) over 152F with error correcting

capability t = 34. Here degree {g(x)} = 510 = n – k, hence n = k + 510 = 16384 + 510 =

16894. Therefore the primitive BCH code parameters are

)32257,32767()51032767,32767(

 79

 k = 16384. Hence, 32257 – 16384 = 15873. Therefore the parameters of the shortened

BCH code are (16894, 16384). Since degree {g(x)} = 510 < 512, the overhead

requirements of the code can be met by the Memory model 1. Hence, for t = 34, the

parameters of shortened BCH code are n=16894, k=16384. The BCH code specified by

these parameters can correct t = 34 errors over a span of one sector (5124 8=16384

bits) in 16 level flash memory.

RBER can be computed as follows:

)15/()15()14/()13()12/()12(
)11/()11()10/()10()9/()9()8/()8(

)7/()7()6/()6()5/()5()4/()4(
)3/()3()2/()2()1/()1()0/()0()(

ePPePPePP
ePPePPePPePP

ePPePPePPePP
ePPePPePPePPeP







Assuming that symbols 0 – 16 can exist with equal probability in the cell,























)15/()14/()13/()12/(
)11/()10/()9/()8/()7/()6/(

)5/()4/()3/()2/()1/()0/(

8
1)(

ePePePeP
ePePePePePeP

ePePePePePeP
eP (4.29)

Consider 16-level MLC flash with memory model 2 architecture.

512 bytes
(4096 16-ary cells)

4096 x 4 = 16384 bits

32 bytes
32x8x4= 1024

bits

We investigated that the best possible BCH code in 16 level flash memory with memory

model 2 is the shortened (17404, 16384) over 152F with error correcting capability t =

68. Here degree {g(x)} = 1020 = n – k, hence n = k + 1020 = 16384 + 1020 = 17404.

Therefore the primitive BCH code parameters are

)31747,32767()102032767,32767(

 80

k = 16384, 31747– 16384 = 15404. Therefore the parameters of the shortened BCH code

are (17404, 16384). Since degree {g(x)} = 1020 < 1024, the overhead requirements of the

code can be met by the Memory model 2. Hence, for t = 68, the parameters of shortened

BCH code are n = 17404 and k = 16384. The BCH code specified by these parameters

can correct t = 68 errors over a span of one sector (512 48=16384 bits) in 16-level

flash memory. The performance plots of 16-level flash are shown in Fig.4.9 and Fig.4.10.

The generator polynomial for t = 34 BCH code is computed and is shown in (4.30) and

the generator polynomial for t = 68 BCH code is computed and is shown in (4.31).

20 20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
10

-100

10
-80

10
-60

10
-40

10
-20

10
0

Vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

16 level memory model 1

(16894,16384)BCH code with t=34

Figure 4.9: Performance of t = 34 BCH code for MLC (16-level) Memory model 1

 81

20 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9
10-80

10
-70

10
-60

10
-50

10-40

10
-30

10
-20

10
-10

Vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g
er

ro
r

16 level memory model 2

(16894,16384)BCH code with t=68

Figure 4.10: Performance of t = 68 BCH code for MLC (16-level) Memory model 2

 82

510507506505504503502501500499497

491490489487486482481476473471470

465463462459458454453448447446443

441440438437434429426425424423422

420419417416415413412411409407406

404403402400399395394393392391388

385383381376375370361360357351350

347346342341339337336335334332331

329328324323321320319316315314312

311309308307305304303301296294292

291290287283275273271270269268267

262255253252250249247244243240239

238234231229228227225222218216215

214212207203198196194193192191190

189188186183182180177175174173171

169168165162161160157156155154153

152151150144143142139138137136132

128127125124123122112111110109108

10710099989594939291908886

858281807675747372706968

676665636261605857555450

484746454442393836352524

232221201716134321)(

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg















































 (4.30)

 83

540539537536535533532

527526525523522521520519518517515

508505504502500497494491490488487

483481475474470469465464463462460

457456455454453452451449448446445

444443440437436432431430429428425

424421420417415411409408407406405

404403401400399398394391389383382

378375374372371369368367366363360

358357354353352349346345344343341

339338337336333332331329327326325

324323321319317315314313312311309

305303301300296295294293292287286

285283282281277275274272269268267

264263262260259255253251248247243

240238235234233231229228226225224

221218217216215211210206202200199

198197196195194191189187186185181

180179172171170168166165164163159

156155154153152151150148145143142

140138137136133132131127126124123

1201141121029894938987868483

78747269676665646261605854

53525150494847444341383633

2826242214131287521)(

xxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxx
xxxxxxxxxxxxx

xxxxxxxxxxxxg



















































 (4.31)

This chapter has been devoted to the synthesis of various BCH and RS codes which can

be employed to protect information integrity in Multi level Cell (MLC) based Flash

memories. The next chapter is focused on the decoder architecture and an insight to

LDPC codes followed by interleavers.

 84

This page is intentionally left blank

 85

Chapter 5

Decoder Architecture and Interleaver

5.1 Decoder architecture

The iterative algorithm discovered by Berlekamp and Massey for the decoding of BCH

codes is the best known technique for finding the error-locator polynomial [Chen, Y. and

Parhi, K. 2004], [Sun, F. et al. 2006]. The computation of inverses in a finite field

needed in the original Berlekamp – Massey method is a complex and time consuming

exercise. An inversion less decoding method for binary BCH codes was proposed [Reed,

I.S. et al. 1991] to simplify the Berlekamp – Massey algorithm. Here, we have adapted

this algorithm to obtain decoding architectures which are suitable for use in Flash

memory applications. The algorithm is briefly described below.

Let)()0(D be the error locator polynomial,)()0(D be the previous polynomial,

)()0(D be the length of LFSR and)(k be the scaling factor.

Let us assume the initial values to be)()0(D = 1,)()0(D = 1,)()0(D = 0,)(k = 1.

The following recursive procedure is used to compute the LFSR. If the syndrome kS is

unknown, stop; otherwise define the discrepancy,

 



 

)(

0

)()1(
k

j
jk

k
j

k S


 (5.1)

Using the knowledge of)1(k , the polynomial)()(Dk is updated as,

 DDDD kkkkk  )()()()()1()()()1( (5.2)

Further, the previous polynomial)()(Dk is updated as,


















kandD
korDD

D kkk

kkk
k

)()1()(

)()1()(
)1(

20),(
20),(

)(







 (5.3)

 86

T0 T1 T2t-1

s0 s1 s2t-1

s0

s1

s2t-

0 1

0 1 12 t

 K

Decision



SW0 SW1 SW2t-1

SWx

0

0 12 t

1

SWy

0 0 1 1

Sequence
of

Syndromes

Now the length)(k is updated as,


















kandk
kor

kkk

kkk
k

)()1()(

)()1()(
)1(

20)1(
20






 (5.4)

Finally, the scaling factor)(k is updated as,


















kand
kor

kkk

kkk
k

)()1()1(

)()1()(
)1(

20
20







 (5.5)

Figure 5.1: Decoder architecture

 87

Figure 5.1 shows the decoder architecture. There are 12 t switches in the circuit. Each

switch can be in position A or B (position 0 or 1). The operation of the circuit is as

follows:

(i) During initialization the switches are to be connected to position A. Once this is done

the discrepancy is computed.

(ii) With switches SW0, SW1, ……., SW2t-1 in position A, update the value of the

 register. i.e. compute  )1(
12

)1(
1

)1(
0 ,........,, t

(iii) For the given value of k (now k = 0) check whether kk )(2 . If 0)1(k and

kl k )(2 , keep the position of the unchanged at position A. Upon applying the CLK

signal, the contents of the  register shifts one position to the right. Thus

)()()0()1(DDD   .

(iv) Switch SWx is in position A. Hence upon application of CLK,)0()1(  .

(v) Switch SWy is in position A. Hence upon application of CLK,)0()1(ll  .

(vi) On the other hand, if 0)1(k or kl k )(2 , push switches to position B.

In this case,

)0(
2

)1(
2

)0(
1

)1(
1

)0(
0

)1(
0













(vii) Switch SWy is shifted to position B. Hence)1(l is updated by

 11101)0( lk . Thus)1(l =1.

(viii) Switch SWx is shifted to position B. Hence,)2()2( 

 This sequence is repeated.

The following example illustrates the working of this algorithm.

Example: Consider a t = 2 BCH code with length n = 15, over 42F . Choosing b = 1,

,512  t 42 b .

Therefore the required roots are: .,,, 432 

 88

Let the received word be 137)(xxxr  .

The syndromes are:

552284
4

539213
3

1026142
2

5137
1

)(

)(
)(

)(

















rS

rS
rS
rS

 (5.6)

When k = 0,

01 5

11

0

0

)0(

0

)()1()1(
)0(

 





  SSS
j

jjkb

l

j

k
j

k

 DDDDDD 55)0()1(0)0()1(1.111)()()( 

The conditions to be checked are:

 (i) kor kk )()1(20 

 (ii) kand kk )()1(20 

Since 0)1( and 02)0( (i.e.) k ,

Previous polynomial 1)()()0()1( DD 

Update of length 101)10()0()1( 

Scaling factor 5)1()1()( D

When k = 1,

01 5510

2

1

0

)0(

0

)()2()1(
)1(

 





   j
j

jjkb

l

j

k
j

k SS

Since the discrepancy ,0)2( 22)1( i.e. > k

 DDDDDD 10555)1()2()1()1()2()1()()()( 

 DDDD )()()1()2(

 1)1()2( 

5)1()2( 

 89

When k = 2,

 013

1

0

)2()3( 

 j
j

j S

Since 01)3( and 22)2( (i.e. k),

2101055)2()3()2()2()3()()()()(DDDDDDD  

 DDD 105)2()3()()( 

 213)1()2()3(  k

 1)3()3( 

When k = 3,
 0)4(

210210)3()4()3()3()4()(1)()()(DDDDDDDD  

Table 5.1 shows the various values obtained during each iteration in the above example.

Table 5.1: Values of various parameters

k)(k)()(Dk)()(Dk)(k)(k
0 - 1 1 0 1
1 5 D51  1 1 5
2 0 D105   D 1 5
3 1 210 DD  D105   2 1
4 0 - - - -

Therefore, the error location polynomial is 210)4()()(DDDD  

0)(
)(
)(
)(

1)(
)(

0)(

168108

8147107

2126106

5105105

84104

463103

42102





























Therefore, 2 and 8 are zeros of)(D . These points to errors at locations 13x and 2x
respectively.

 90

137)(xxxe  (5.7)

5.2 Code synthesis using LDPC Codes

Low-density parity-check (LDPC) codes are a class of linear block codes. The name

comes from the characteristic of their parity-check matrix which contains only a few 1’s

in comparison to the number of 0’s. Their main advantage is that they provide a

performance which is very close to the capacity for a lot of different channels and linear

time complex algorithms for decoding. Furthermore they are suited for implementations

that make heavy use of parallelism.

They were first introduced by Gallager in his Ph.D thesis in 1960. But due to the

computational effort in implementing coder and encoder for such codes and the

introduction of Reed-Solomon codes, they were mostly ignored until about fifteen years

ago.

The feature of LDPC codes [Ryan, W. E. and Lin, S] to perform near the Shannon limit

of a channel exists only for large block lengths. For example there have been simulations

that perform within 0.04 dB of the Shannon limit at a bit error rate of 610  with block

length of 710 . An interesting fact is that those high performance codes are irregular. The

large block length results also in large parity-check and generator matrices. The

complexity of multiplying a codeword with a matrix depends on the amount of 1’s in the

matrix. If we put the sparse matrix H in the form][IPT via Gaussian elimination the

generator matrix G can be calculated as P][IG  . The sub-matrix P is generally not

sparse so that the encoding complexity will be quite high. Since the complexity grows,

even sparse matrices do not result in a good performance if the block length gets very

high. So iterative decoding (and encoding) algorithms are used. Those algorithms

perform local calculations and pass those local results via messages. This step is typically

repeated several times. The term “local calculations” already indicates that a divide and

 91

conquer strategy, which separates a complex problem into manageable sub-problems, is

realized. A sparse parity-check matrix now helps this algorithm in several ways. First it

helps to keep both the local calculations simple and also reduces the complexity of

combining the sub-problems by reducing the number of needed messages to exchange all

the information. Furthermore, it is observed that iterative decoding algorithms of sparse

codes perform very close to the optimal Maximum Likelihood (ML) decoder.

Basically there are two different possibilities to represent LDPC codes. Like all linear

block codes they can be described via matrices. The second possibility is a graphical

representation.

Matrix Representation

The following matrix is an example for a low-density parity-check matrix. The matrix

defined in equation (5.8) is a parity-check matrix with dimension n ×m for a (8, 4) code.

We can now define two numbers describing this matrix. rW for the number of 1’s in each

row and cW for the columns. For a matrix to be called low-density the two conditions

cW << n and rW << m must be satisfied.



















01011001
11100100
00100111
10011010

 (5.8)

Graphical Representation

Tanner introduced an effective graphical representation for LDPC codes. Tanner graphs

are bipartite graphs. That means that the nodes of the graph are separated into two

distinctive sets and edges are only connecting nodes of two different types. The two types

 92

of nodes in a Tanner graph are called variable nodes (v-nodes) and check nodes (c-

nodes). Figure 5.2 is an example for such a Tanner graph and represents the same code as

the matrix in 5.8. The creation of such a graph is rather straight forward. It consists of m

check nodes (the number of parity bits) and n variable nodes (the number of bits in a

codeword). Check node if is connected to variable node jc if the element ijh of H is a 1.

The marked path 22512 cfcfc  is an example for a short cycle. Those should

usually be avoided since they are bad for decoding performance.

Figure 5.2: Tanner graph corresponding to the parity check matrix in Equation (5.8).

Regular and irregular LDPC Codes

A LDPC code is called regular if cW is constant for every column and cr WW  is also

constant for every row. The example matrix from equation (5.8) is regular with 2cW

and 4rW . It is also possible to see the regularity of this code while looking at the

graphical representation. There is the same number of incoming edges for every v-node

and also for all the c-nodes. If H is low density but the numbers of 1’s in each row or

column aren’t constant the code is called a irregular LDPC code.

0f 1f 2f 3f

0c 1c 2c 3c 4c 5c 6c 7c

c-nodes

v-nodes

 93

Gallager construction of parity check matrix (H)

In this method of construction, the parity check matrix (H) is constructed as follows. The

original parity check matrix (H) is divided into '' cW sub-matrices as follows:



























































cW

3

2

1

H

H

H

H

Η

The sub-matrix 1H is given by

































11........110000.....................................00000
00..........001......11..................................00000

0000......................000011..........1100.........00
0000...............................000000011..........11







Number of one’s in each row = rW

 94

The matrix 2H is random permutations of columns of 1H

The matrix 3H is another random permutation of columns of 1H

The matrix
cWH is another random permutation of columns of 1H

In this way Parity check matrix can be constructed using Gallager approach.

5.3 Application of LDPC Codes to Flash Memories

We synthesized regular LDPC codes for the available standard memory models. In

memory model 1, each sector has 512 bytes reserved for storing information and 16 bytes

reserved for storing parity check information. In memory model 2, each sector has 512

bytes reserved for storing information and 32 bytes reserved for storing parity check

(redundant) information.

Regular LDPC codes are characterized by three parameters.

(i) Block length (n)

(ii) Each column of parity check matrix should have the same weight cW

(iii) Each row of parity check matrix should have the same weight rW

5.3.1 Code synthesis for Memory Model 1

For this model, we have number of information bits/sector k =512 bytes = 4096 bits.

Number of Parity bits/sector)(kn  = 16 bytes = 128 bits.

Total number of bits/sector = 528 bytes = 4224 bits.

For LDPC codes,

 Rate of the code
r

c

W
W

n
kR  1

For the given model, n = 4224 bits and k = 4096 bits. Hence,

4224
40961 

r

c

W
W

 95

Simplifying the above equation

 ==>
4224
40961

r

c

W
W

 (5.9)

 ==> cr WW 33
Assuming ,4cW 13243333  cr WW

Therefore the code parameters are:

Block length n = 4224,

Weight of each column of parity check matrix 4cW

Weight of each row of parity check matrix 132rW

Hence we have (4224, 4, 132) regular LDPC code. We have generated full rank sparse

parity check matrix of order 4224128 for above specified code using Gallager

construction of parity check matrix

5.3.2 Code synthesis for Memory Model 2

For memory model 2, we have number of information bits/sector k = 512 bytes = 4096

bits.

Number of Parity bits/sector)(kn  = 32 bytes = 256 bits.

Total number of bits/sector = 544 bytes = 4352 bits.

We have

 Rate of the code
r

c

W
W

n
kR  1

For the given model, n = 4352 bits and k = 4096 bits

Hence we have
4352
40961 

r

c

W
W

 ==>
4352
40961

r

c

W
W (5.10)

 ==> cr WW 17

 96

Assuming ,4cW 68417 rW

Therefore the code parameters are

Block length n = 4352

Weight of each column of parity check matrix 4cW

Weight of each row of parity check matrix 68rW

Hence we have (4352, 4, 68) regular LDPC code. We have generated full rank sparse

parity check matrix of order 4352256 for above specified code using Gallager

construction of parity check matrix.

5.3.3 Code Synthesis for Multi Level Flash Memories

4-level MLC with Memory Model 1

Here each cell will hold 2 bits and hence by taking one sector at a time to synthesize

regular LDPC codes we have number of information bits/sector = 8192 and number of

parity bits/sector = 256. Since the ratio of information bits to the total bits remains

unchanged, the condition between row weight rW and column weight cW of parity check

matrix remains same as single level cell (SLC) i.e. cr WW 33 . Assuming 4cW which

gives 132rW and total bits n = 8448. Hence this results (8448, 4, 132) regular LDPC

code and the order of parity check matrix is 8448256 .

8-level MLC with Memory Model 1

 In this case each cell will hold 3 bits and hence by taking one sector at a time to

synthesize regular LDPC code we have number of information bits/sector = 12288 and

number of parity bits/sector = 384. Since the ratio of information bits to the total bits

remains unchanged, the condition between row weight rW and column weight cW

remains of parity check matrix remains same as single level cell(SLC) i.e. rW = cW33 .

Assuming cW = 4 which gives rW = 132 and total bits n = 12672. Hence this results

(12672, 4, 132) regular LDPC code and the order of parity check matrix is 12672384 .

 97

16-level MLC with Memory Model 1

In this case each cell will hold 4 bits and hence by taking one sector at a time to

synthesize regular LDPC code we have number of information bits/sector=16384 and

number of parity bits/sector=512. Since the ratio of information bits to the total bits

remains unchanged, the condition between row weight rW and column weight cW of

parity check matrix remains same as SLC i.e. rW = cW33 . Assuming 4cW which

gives 132rW and total bits n = 16896. Hence this results (16896, 4, 132) regular

LDPC code and the order of parity check matrix is 16896512 . We have generated full

rank sparse parity check matrices for all the above specified codes using Gallager

construction of parity check matrix.

4-level MLC Memory Model 2

 In this case each cell will hold 2 bits and hence by taking one sector at a time to

synthesize regular LDPC code we have number of information bits/sector = 8192 and

number of parity bits/sector = 512. Since the ratio of information bits to the total bits

remains unchanged, the condition between row weight rW and column weight cW of

parity check matrix remains same as SLC i.e. cr WW 17 . Assuming 4cW which

gives 68rW and total bits n = 8704. Hence this results (8704, 4, 68) regular LDPC

code and the order of matrix is 8704512 .

8-level MLC Memory Model 2

In this case each cell will hold 3 bits and hence by taking one sector at a time to

synthesize regular LDPC code we have number of information bits/sector = 12288 and

number of parity bits/sector = 768. Since the ratio of information bits to the total bits

remains unchanged, the condition between row weight rW and column weight cW of

parity check matrix remains same as SLC i.e. cr WW 17 . Assuming 4cW gives

 98

68rW and total bits n =13056. Hence this results (13056, 4, 68) regular LDPC code

and the order of matrix is 13056768 .

16-level MLC Memory Model 2

 In this case each cell will hold 4 bits and hence by taking one sector at a time to

synthesize regular LDPC code we have number of information bits/sector = 16384 and

number of parity bits/sector = 1024. Since the ratio of information bits to the total bits

remains unchanged, the condition between row weight rW and column weight cW of

parity-check matrix remains same as SLC i.e. cr WW 17 . Assuming 4cW which

gives 68rW and total bits n = 17408. Hence this results (17408, 4, 68) regular LDPC

code and the order of matrix is 174081024 .

We have generated full rank sparse parity check matrices for all the above specified

codes using Gallager construction of parity check matrix.

5.4 Interleavers

A bursty channel is defined as a channel over which errors tend to occur in bunches, or

“bursts”, as opposed to random patterns associated with a Bernoulli distributed process.

Bursty channels usually contain some error causing agent in the physical medium whose

effective time constant exceeds the symbol transmission rate of the channel. For example

a scratch on a Compact Disc may obscure several consecutive bits on each of the adjacent

tracks, thus causing multiple error bursts when the disc is played.

Most binary block codes have been designed as random error correcting. A random error

correcting code can correct up to t symbol errors per code word, regardless of the

placement of those errors. A problem arises with these codes whenever the channel

encountered in the application is bursty. An error burst focuses several symbol errors

within a small number of received codewords, while the other codewords may not be

corrupted by any errors at all. The performance of convolutional code is also sensitive to

 99

bursty channels. In the decoding of convolutional codes, error event occur whenever the

received codeword is closer to an incorrect code word than the codeword that was

transmitted. A convolutional code may be able to correct an arbitrarily large number of

well spaced-errors, while at the same time unable to handle a short burst.

An Interleaver is a device that rearranges the ordering of a sequence of symbols in some

one-to-one deterministic manner. Alternately, an Interleaver [Wicker, S. B. 1995] can be

viewed as device that mixes up the symbols from several codewords so that the symbols

from any given code word are well separated during transmission. Associated with any

interleaver is a de-interleaver, which is the device that restores the reordered sequence to

its original ordering. When the codewords are reconstructed by the deinterleaver, error

bursts introduced by the channel are broken up and spread across several codewords. The

interleaver/deinterleaver pair thus creates an effectively random channel. Interleavers and

deinterleavers have a variety of applications in cryptography and communication

technology.

In many of the applications to communication technology, interleaving is used as an

adjunct to coding for error correction. One technique which is useful for some types of

burst error channels is to insert an interleaver between the channel encoder and the

channel. The interleaver redistributes the channel symbols so that the symbols from a

codeword are mutually separated by somewhat more than the length of a typical burst of

errors. Thus, interleaving effectively makes the channel appear like a random error

channel to the decoder.

Block and cross-interleave are the most frequently used types of interleavers. The cross-

interleave is sometimes called a convolutional or periodic interleaver. An)(mn block

interleaver and the corresponding deinterleaver are shown in Figure. The two circuits are

identical, each consisting of n rows of m memory elements. The coded data stream is

read into the block interleaver rows in the order noted in the figure. The interleaver

 100

contents are then read by columns. Any two adjacent symbols at the input are thus

separated by)1(n other symbols at the output. The row length m is frequently selected

so that each row holds an entire codeword. A burst of b errors causes a maximum of 





n
b

errors to occur in one or more codewords. The efficiency of an interleaver can be

measured in a number of ways. Efficiency  may be defined to be the ratio of the length

of the smallest burst of errors that can cause the error correcting capability t of the code

to be exceeded to the number of memory elements used in the interleaver. Thus, for an

)(mn block interleave we have mtnmnt //)1( .

A cross-interleave circuit is shown in Figure 5.3. The circuit is characterized by the index

m, the number of delay lines. Each block D corresponds to a D-symbol delay. The input

symbols are read onto the delay lines in the order shown in the Figure 5.3. The output of

the delay line is read in the same order. Consider a pair of consecutive input symbols 0x

and 1x . These two symbols are placed on adjacent delay lines one with delay tD and the

other with delay .)1(Dt  When 0x reaches the output position of its delay line, 1x will

still be D delay elements short of the output of its own line. After 0x is read, all of the m

delay line outputs are read D times before 1x is output. Thus there are mD symbols

separating adjacent codeword symbols at the output of the interleaver.

Suppose that m is chosen so that it equals or exceeds the length of the codewords. Each

symbol in a codeword is placed on a different delay line. At the output of the interleaver,

the codeword symbols will appear in order, with each symbol separated from its

neighbor(s) in the codeword by mD symbols from mD other codewords.

 101

Figure 5.3: A 33 Block Interleaver and Deinterleaver

0 1 2

3 4 5

6 7 8

Interleaver
output

Interleaver
input

 ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx

Deinterleaver
output

Deinterleaver
input

6 7 8

3 4 5

0 1 2

 ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx

 ,,,,,,,,,,,,,, 131691215258147036 xxxxxxxxxxxxxx

 102

  ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx

Figure 5.4: A Cross Interleave circuit and corresponding Deinterleaver (m = 4, D =1
symbol)

Interleaver
output

D

D D

D D D

0

1

2

3

0

3

1

2

 ,,,,,,,,,,,,,, 912125852149630 xxxxxxxxxxxxxx 

D D D

D D

D

0

1 1

0

2 2

3
3

 ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx

Interleaver
input

Deinterleaver
input

Deinterleaver
output

 103

A length b burst of errors may thus cause  )1/(mDb errors in one or more codewords.

Given a t-error correcting code, decoder errors are possible when the length of the error

bursts equals or exceeds .1)1)(1( tmD

The efficiency of the cross-interleaver is [Wicker, S.B. 1995]]

 11.5
1

2

2
)1(
)1(

)]1(210[
1)1)(1(








 








m

t
Dmm

ttmD
Dm

tmD




The cross-interleaver is thus slightly more than twice as efficient as the block interleaver.

Let us consider a (260, 255) RS code over 82F . Let t = 2. Therefore, the design distance

.512  t This code is shortened to (132, 128) over 82F . As per memory model 1,

one sector holds 4096 bits of information (512 bytes) and 128 bits redundancy (16

bytes). Each sector is now divided into four partitions, with n – k = 4 bytes.

128 bytes 4 bytes
128 bytes 4 bytes
128 bytes 4 bytes
128 bytes 4 bytes

We see that each partition has 128 information bytes and 4 bytes of overhead. Let the

contents of these partitions be respectively represented by 3210 ,,, PPPP . The symbols

(bytes) contained in these partitions may be represented as,

 131,3130,3129,3128,3127,32,31,30,33

131,2130,2129,2128,2127,2,2,21,20,22

131,1130,1129,1128,1127,12,11,10,11

131,0130,0129,0128,0127,02,01,00,00

,,,,,,,
,,,,,,,,

,,,,,,,,
,,,,,,,,

vvvvvvvvP
vvvvvvvvP

vvvvvvvvP
vvvvvvvvP

















 (5.12)

While writing data into the memory, we pass it through a block interleaver which

reorders the data and writes into the memory in the following way.

 104

[1,31,21,11,00,30,20,10,0 ,,,,,, vvvvvvvv  ,,,, 127,3127,2127,1127,0 vvvv

],,,,,,, 131,3131,2131,1131,0128,3128,2128,1128,0 vvvvvvvv  (5.13)

Let us assume that an error burst involving eight consecutive bytes in a sector has

occurred. As an example, let us consider that 1,31,21,11,00,30,20,10,0 ,,,,,, vvvvvvvv  are in

error. Now, while reading from the memory these symbols are read in the following

manner.

 131,3130,3129,3128,3127,32,31,30,3

131,2130,2129,2128,2127,22,21,20,2

131,1130,1129,1128,1127,12,11,10,1

131,0130,0129,0128,0127,02,01,00,0

,,,,,,,,

,,,,,,,,

,,,,,,,,

,,,,,,,,

vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv









 (5.14)

It is observed that even though eight consecutive bytes per sector are in error, after

deinterleaving these erroneous symbols are redistributed so that each code word contains

only two erroneous symbols. These errors can be easily corrected by the RS code.

However, we should note that a burst of length containing nine or more symbols in error

after redistribution by the deinterleaver will result in erroneous decoding because under

these circumstances, it cannot be guaranteed that the number of symbols in error in each

codeword is less than or equal to two.

Let us now consider the case where we increase the interleaving depth to accommodate

two sectors (as represented in Figure 5.5). Let the codewords contained in these sectors

be labeled as .,,,,,,, 76543210 CCCCCCCC These code words can be represented as

shown in (5.15)

Figure 5.5: Representation of two sectors, each with 512 bytes of data and 16 bytes of
overhead

128 bytes 4 bytes
128 bytes 4 bytes
128 bytes 4 bytes
128 bytes 4 bytes

128 bytes 4 bytes
 128 bytes 4 bytes
128 bytes 4 bytes
128 bytes 4 bytes

 105

 131,7128,7127,75,74,73,72,71,70,77

131,6128,6127,65,64,63,62,61,60,66

131,5128,5127,55,54,53,52,51,50,55

131,4128,4127,45,44,43,42,41,40,44

131,3128,3127,35,34,33,32,31,30,33

131,2128,2127,25,24,23,22,21,20,22

131,1128,1127,15,14,13,12,11,10,11

131,0128,0127,05,04,03,02,01,00,00

,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,

,,,,,,,,,,
,,,,,,,,,,

,,,,,,,,,,
,,,,,,,,,,

vvvvvvvvvC
vvvvvvvvvC
vvvvvvvvvC
vvvvvvvvvC

vvvvvvvvvC
vvvvvvvvvC

vvvvvvvvvC
vvvvvvvvvC

































 (5.15)

These symbols are interleaved and written into memory in the following sequences.









131,7131,6131,5131,4131,3131,2131,1131,0

128,7128,6128,5128,4128,3128,2128,1128,0127,7127,6127,5

127,4127,3127,2127,1127,02,72,62,52,42,32,22,12,0

1,71,61,51,41,31,21,11,00,70,60,50,40,30,20,10,0

,,,,,,,
,,,,,,,,,,,

,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,

vvvvvvvv
vvvvvvvvvvv

vvvvvvvvvvvvv
vvvvvvvvvvvvvvvv

 (5.16)

If there are sixteen consecutive bytes in errors say

 2,72,62,52,42,32,22,12,01,71,61,51,41,3,1,21,11,0 ,,,,,,,,,,,,,, vvvvvvvvvvvvvvvv  (5.17)

then upon reading from the memory (deinterleaving) it is observed that there are only

two bytes of error per codeword.

 

131,7128,7127,75,74,73,72,71,70,77

131,6128,6127,65,64,63,62,61,60,66

131,5128,5127,55,54,53,52,51,50,55

131,4128,4127,45,44,43,42,41,40,44

131,3128,3127,35,34,33,32,31,30,33

131,2128,2127,25,24,23,22,21,20,22

131,1128,1127,15,14,13,12,11,10,11

131,0128,0127,05,04,03,02,01,00,00

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

18.5,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

































 106

From this example, it is clear that as a result of the doubling of the interleaver depth,

burst errors involving up to sixteen symbols could be corrected. Hence, a doubling of the

interleaving depth results in a doubling of the length of bursts that can be corrected.

We have additionally considered the use of convolutional interleavers in this application

and quantified the improvement in the burst error correcting capabilities of the code with

these adaptations. The structure of convolutional interleaver (cross interleaver) is shown

in Figure 5.4. Let us consider a (7, 3) RS code over 32
F with an error correcting capability

t = 2. It is shown in [Wicker, S.B. 1995] that the burst error correcting capability of a

convolutional interleaver with interleaving depth m and error correcting capability t is

quantified as

 1)1)(1( tmDB (5.19)

where D denotes one symbol delay. If we choose m = n = 7, then the burst error

correcting capability B = 9. Let us consider nine successive codewords produced by the

code as shown in (5.20).

6,85,84,83,82,81,80,88

6,75,74,73,72,71,70,77

6,65,64,63,62,61,60,66

6,55,54,53,52,51,50,55

6,45,44,43,42,41,40,44

6,35,34,33,32,31,30,33

6,25,24,23,22,21,20,22

6,15,14,13,12,11,10,11

6,05,04,03,02,01,00,00

,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,

,,,,,,
,,,,,,

vvvvvvvP
vvvvvvvP
vvvvvvvP
vvvvvvvP
vvvvvvvP

vvvvvvvP
vvvvvvvP

vvvvvvvP
vvvvvvvP



















 (5.20)

This is presented to the convolutional interleaver in the following order,

 107

6,146,136,126,116,106,96,86,76,66,56,46,36,26,16,0

5,145,135,125,115,105,95,85,75,65,55,45,35,25,15,0

4,144,134,124,114,104,94,84,74,64,54,44,34,24,14,0

3,143,133,123,113,103,93,83,73,63,53,43,33,23,13,0

2,142,132,122,112,102,92,82,72,62,52,42,32,22,12,0

1,141,131,121,111,101,91,81,71,61,51,41,31,21,11,0

0,140,130,120,110,100,90,80,70,60,50,40,30,20,10,0

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

 (5.21)

After interleaving, the data is available at the output of the interleaver in the following

order as shown in (5.22). This is fed to the channel which might exhibit bursty behavior.











6,85,94,103,112,121,130,14

6,75,84,93,102,111,120,136,65,74,83,92,101,110,12

6,55,64,73,82,91,100,116,45,54,63,72,81,90,10

6,35,44,53,62,71,80,96,25,34,43,52,61,70,8

6,15,24,33,42,51,60,76,05,14,23,32,41,50,6

vvvvvvv
vvvvvvvvvvvvvv

vvvvvvvvvvvvvv
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

 (5.22)

Let us assume that during readout, the symbols are affected by a burst of error spanning

nine successive symbols represented by

 1,120,136,65,74,83,92,101,110,12 vvvvvvvvv  (5.23)

After deinterleaving, these erroneous symbols are redistributed back so that no more than

two erroneous symbols are present per codeword. Thus the entire error burst can be

corrected. This process is illustrated in (5.24) and the error location after deinterleaving is

shown in (5.25).

 108

6,86,76,66,56,46,36,26,16,0

5,95,85,75,65,55,45,35,25,1

4,104,94,84,74,64,54,44,34,2

3,113,103,93,83,73,63,53,43,3

2,122,112,102,92,82,72,62,52,4

1,131,121,111,101,91,81,71,61,5

0,140,130,120,110,100,90,80,70,6

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

 (5.24)

The output of the deinterleaver is











6,145,144,143,142,141,140,14

6,135,134,133,132,131,130,136,125,124,123,122,121,120,12

6,115,114,113,112,111,110,116,105,104,103,102,101,100,10

6,95,94,93,92,91,90,96,85,84,83,82,81,80,8

6,75,74,73,72,71,70,76,65,64,63,62,61,60,6

vvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

 (5.25)

Considering the case when m = 4, the burst error correcting capability is 6. Let us

consider the codewords as in (5.20). These codewords are presented to the interleaver

with a depth of interleaving of four as follows:

5,61,64,50,53,46,32,35,21,24,10,13,0

4,60,63,56,42,45,31,34,20,23,16,02,0

3,66,52,55,41,44,30,33,26,12,15,01,0

2,65,51,54,40,43,36,22,25,11,14,00,0

vvvvvvvvvvvv

vvvvvvvvvvvv

vvvvvvvvvvvv

vvvvvvvvvvvv

 (5.26)

 109

After interleaving, the data is available as

.........4,50,63,66,60,53,56,52,63,46,42,55,5

6,32,45,41,52,35,31,44,45,21,34,30,41,24,20,33,3

4,10,23,26,20,13,16,12,23,06,02,15,1







vvvvvvvvvvvv

vvvvvvvvvvvvvvvv
vvvvvvvvvvvv

 (5.27)

Let us assume that during readout, the symbols are affected by a burst of error spanning

six successive symbols represented by

5,41,52,35,31,44,4 vvvvvv 

This is presented to the deinterleaver.

4,50,53,46,32,35,21,24,10,13,0

0,63,56,42,45,31,34,20,23,16,0

3,66,52,55,41,44,30,33,26,12,1

6,62,65,51,54,40,43,36,22,25,1

vvvvvvvvvv

vvvvvvvvvv

vvvvvvvvvv

vvvvvvvvvv

 (5.28)

The output of the deinterleaver is

.........4,53,52,51,50,56,45,44,43,42,41,40,4

6,35,34,33,32,31,30,36,25,24,23,22,21,20,26,15,1





vvvvvvvvvvvv

vvvvvvvvvvvvvvvv

 (5.29)

After deinterleaving, these erroneous symbols are redistributed such that one or at the

most two symbols per codeword are in error. This shows that integration of coding and

decoding with interleaver helps in improving the data integrity of the device.

This chapter has been devoted to the study of the decoder architecture and investigation

of the role of interleavers to improve the data integrity when burst errors occur in storage

systems. In the next chapter highlights the conclusion with the summary of the research

results and scope for future work.

 110

This page is intentionally left blank

 111

Chapter 6

Conclusion

6.1 Summary of the Results

The research work forming the body of this thesis started with a study of array codes

[Roth, R. M. 1991] with an idea to apply them to correct burst errors in data storage

systems. During this phase, we studied the rank distance properties of  knn , array

codes and their applications. We started our study of flash memory architecture with a

view to apply  knn , array codes for error detection and correction. However, we found

that the device architecture does not support the use of array codes readily. Traditionally

flash memories were designed using SLC as building blocks. SLC can store one bit of

information. In recent years, (after 2010), the focus of researchers has shifted to the

design of flash memories based on MLC. MLC can store more than one bit of

information. MLC’s that can store two bits, three bits and four bits of information per cell

have been discussed in literature. There are two models which define the amount of

overhead (in terms of redundant bits) that is used to protect the information stored in each

sector. These models have been referred to in the thesis as Memory model 1 and Memory

model 2 respectively. A perusal of technical literature revealed that BCH codes have been

extensively used to detect and correct in flash memories. In 2008 [Mehnert, A. 2008],

[Chen, Y, 2008], the state of art employed a BCH code that could correct six errors over a

span of one sector (4096 bits). A detailed study of device architecture and an

understanding of the structure of the BCH codes revealed that the device architecture has

enough redundancy to support a more powerful BCH code. In chapter 3, we have

synthesized BCH codes that can correct as many as eight bits and nine bits in error over

the span of one sector. We also have attempted to synthesize codes with greater error

correcting capability by combining two sectors. These results have been obtained for

memory model 1. Further we have synthesized BCH codes that can correct up to eighteen

bits in errors over a span of one sector by using the architecture specified in Memory

model 2.

 112

A perusal of technical literature pertaining to flash memories after 2010 reveals that a

number of researchers are interested in designing MLC based flash memories. The basic

organization of the flash memory remains unaltered. This fact leads us to introspect as to

whether BCH codes could be synthesized to correct errors in MLC’s.

The errors in MLC cannot be expressed by any conventional channel model, such as

additive white Gaussian noise (AWGN) channel. Thus a suitable channel matrix has been

determined to describe the various errors encountered during reading process in a MLC

and their relative probabilities of occurrence. The channel matrices are computed for

different values of  for a four level MLC and eight level MLC. The channel matrices

computed show that MLC suffers from asymmetric errors.

Encoding of BCH codes is relatively simple process. As far as the decoding is

concerned, inversion free Berlekamp-Massey algorithm is used. We have employed this

architecture for the codes described in the thesis. Burst errors are the dominant mode of

errors in the storage systems. This can happen due to faulty sectors in a storage device

and can result in destruction of large blocks of data. To strengthen the error correction

codes so that it can meet the challenges posed by burst mode errors, interleaving is

necessary. We have employed both block interleaver and convolutional interleaver to

enhance error correction capability of various codes synthesized by us.

In conclusion, the work done in this thesis has yielded several BCH and RS codes that

can be employed to enhance the integrity of flash memory devices. A comparison with

the state of art reveals that these codes when employed can reduce the error rates in flash

memory significantly and hence make flash technology suitable for use in application

were data integrity is very critical. If sufficient improvement in flash memory reliability

can be achieved, they could be considered as worthy competitors to Hard Disk Drives.

 113

6.2 Directions for further research

Algebraic geometry (AG)[Silverman, J. H. and Tate, J. 1992], [Carrasco, R.A. and

Johnston, M. (2008)], [Blake, I. et al. 1998], [Shibuya, T. et al. 1996], [Shibuya, T. et al.

1997], [Johnston, M. et al. 2004] is a powerful mathematical tool for constructing very

long non-binary block codes with excellent parameters such as high code rate and large

Hamming distance. These codes are constructed from the affine points of an irreducible

projective curve and a set of rational functions defined on that curve. The length of an

AG code is equal to the number of affine points. However, constructing AG codes

requires an in-depth knowledge of the theory of algebraic geometry. The well known

Reed-Solomon codes are the simplest class of AG code, constructed from the affine

points of the projective line. Consequently, they have the shortest block lengths of all AG

codes, and there are not many Reed-Solomon codes that can be constructed. However,

Reed-Solomon codes are maximum distance separable (MDS) unlike other AG codes,

where the genus of the curve can reduce the actual minimum Hamming distance. Despite

this penalty, AG codes still have much larger minimum Hamming distances than Reed-

Solomon codes defined over the same finite field and consequently AG codes can correct

much longer bursts of errors, which are common in data storage systems. A disadvantage

of AG codes is their higher decoding complexity. AG codes could be a possible candidate

for the error correcting schemes in future data storage devices.

In chapter 3 and chapter 4 of the thesis, we have synthesized high rate long length BCH

codes for correcting errors encountered in SLC’s and MLC’s. Abelian codes constitute a

class of codes that includes cyclic codes as a special case. It has been shown by Berman

[Berman, S.D. 1967] that under certain conditions, general class of Abelian codes has

better error correction capability than the class of cyclic codes. Abelian codes are well

suited in applications that require the use of codewords having long length and high rate.

Therefore they are well suited for use in this application. However, a design procedure

such as the BCH bound in the case of cyclic codes which enables the ready design of

Abelian codes with good distance property is not available. If such a result allows the

 114

synthesis of Abelian codes with good distance property (the counterpart of the BCH

bound for Abelian codes) is discovered, then Abelian codes may find potential

application not only in this field but in any field that requires the use of high rate, long

length codes.

In chapter 5, we have discussed an inversion free Berlekamp-Massey decoding

architecture for decoding BCH codes. Most of the steps in decoding BCH and RS codes

are identical. The major difference is that error magnitudes have to be computed in case

of RS codes. In our study we have confined ourselves to the decoding of BCH codes with

the inversion free algorithm. Interested researchers can derive the steps required to apply

Forney’s algorithm (used to compute error magnitudes) and map them into simple steps

that can be carried out by digital hardware to complete the decoding of RS codes

proposed in the synthesis.

We have also synthesized several LDPC codes for use in this application by using

Gallager constructions. Theses have resulted in codes being specified by H matrix with

very large dimensions. This makes the process of evaluating the distance properties very

difficult. However, researchers can look at alternative approaches to synthesize LDPC

codes that may be useful in similar applications. In a similar manner, researchers could

also investigate possible use of Turbo codes in this application.

 115

References

Agarwal, A., Paul, B. C., Mukhopadhyay, S. and Roy, K. (2005). “Process variation in

embedded memories: failure analysis and variation aware architecture”, IEEE Journal on

Solid-Stae Circuits, Vol. 40, pp. 1804-1814.

Ankolekar, P. P., Isaac, R. and Bredow, J. W. (2010). “Multibit Error Correction

Methods for Latency Constrained Flash Memory Systems”, IEEE Trans. on Device and

Materials Reliability, Vol. 10, No. 1, pp. 33-39.

Atwood, G., Fazio, A., Mills, D.and Reaves, B. (1997). “Intel Strata memory technology

overview”, Intel Technology Journal., Vol. 1 [Online].

Available: http://www.intel.com/technology/itj/archive/1997.htm.

Bajura, M. et al. (2007). “Models and Algorithmic Limits for an ECC based APPROACH

TO Harden Sub-100-nm SRAMs”, IEEE Trans. Nuclear Science, Vol. 54, No. 4, pp.

935-945.

Berman, S. D. (1967). “On the theory of group codes”, Kibernetika, Vol. 3, No. 1, pp. 31-

39.

Berman, S. D. (1967). “Semisimple cyclic and Abelian codes”, Kibernetika, Vol.3, No.3,

pp. 21-30.

Bertozzi, D., Benini, L. and Micheli, G.D. (2005). “Error Control Schemes for On Chip

Communication Links: The Energy-Reliability Tradeoff”, IEEE Trans. On Computer-

Aided Design of Integrated Circuits and Systems, Vol.24, No.6.

Bez, R., Camerlenghi, E., Modelli, A. and Visconti, A. (2003). “Introduction to Flash

memory”, Proc. of the IEEE, Vol.91, No.4, pp.489-502.

 116

Blahut, R. E. (2003). “Algebraic Codes for Data Transmission”, First Edition, Cambridge

University Press.

Blake, I., Heegard, C., Hohold, T. and Wei, V. (1998). “Algebraic Geometry Codes”,

IEEE Trans. on Information Theory, Vol.44, No.6, pp. 2596-2618.

Bohossian, V., Jiang, A. and Bruck, J. (2007). “Buffer Codes for Asymmetric Multi-

Level Memory”, in Proc. IEEE Int. Symp. Information Theory (ISIT), France, pp. 1186-

1190.

Calvel, P. et al. (1994). “Space radiation evaluation of 16 Mbit DRAMs for mass memory

applications”, IEEE Transactions on Nuclear Science, pp. 576-593.

Carrasco, R. A. and Johnston, M. (2008). “Non-Binary Error Control Coding for

Wireless Communication and Data Storage”, John Wiley & Sons, Ltd.

Cassuto, Y., Schwartz, M., Bohossian, V. and Bruck, J. (2010). “Codes for assymetric

limited-magnitude errors with application to multilevel flash memories”, IEEE Trans.on

Information Theory, Vol.56, No.4, pp. 1582-1594.

Chen, Y. (2008). “Flash Memory Reliability”, NEPP 2008 Report, California Institute of

Technology.

Chen, Y. and Parhi, K. (2004). “Area efficient parallel decoder architecture for long BCH

codes”, Proceedings of IEEE International Conference on Speech and Signal Processing

(ICASSP’04), Vol 5, pp. V-73-76.

 117

Choi, H., Liu, W. and Sung, W. (2010). “VLSI Implementation of BCH Error Correction

for Multilevel Cell NAND Flash Memory”, IEEE Transactions on Very Large Scale

Integration Systems, Vol. 18, No. 5, pp. 843-847.

Cooke, J. (2007). “The Truth of NAND Flash Memory”, Micron Technology, Inc

available at http://download.micron.com/pdf/presentation/events/WinHEC.Cooke.pdf

Costello, D and Forney, D. (2007). “Channel Coding: The road to channel capacity”,

Proceedings of IEEE, Vol. 95, No. 6, pp. 1150-1177.

Fujiwara, E. (2006). “Code Design for Dependable Systems”, Wiley Interscience.

Gal, E. and Toledo, S. (2005). “Algorithms and data structures for flash memories”, ACM

Comput. Surv., Vol. 37, pp.138-163.

Gregori, S., Cabrini, A., Khouri, O. and Torelli,G. (2003). ‘On-Chip Error Correcting

Techniques for New-Generation Flash Memories’, Proceedings of IEEE, Vol. 91, No. 4,

pp. 602-616.

Jiang, A., Mateescu, R., Schwartz, M. and Bruck, J. (2009a). “Rank modulation for

flash memories,” IEEE Trans. Inf. Theory, Vol. 55, No. 6, pp. 2659–2673.

 Jiang, A., Langberg, M., Schwartz, M. and Bruck, J. (2009b). “Universal rewriting in

constrained memories,” in Proc. IEEE Int. Symp. Inf.Theory, Seoul, Korea, Jun.–July,

pp. 1219–1223.

Jiang, A., Mateescu, R., Yaakobi, E., Bruck, J., Siegel, P. H., Vardy, A. and Wolf, J. K.

(2010a). “Storage Coding for Wear Leveling in Flash Memories”, IEEE Transactions on

Information Theory, Vol. 56, No. 10, pp. 5290-5299.

 118

Jiang, A., Bohossian, V. and Bruck, J.(2010b). “Rewriting codes for joint information

storage in flash memories,” IEEE Trans. Inf. Theory, Vol. 56, No. 10, pp. 5300–5313.

Hsu, I. S., Reed, I. S., Truong, T.K., Wang, K., Yeh, C. S., Deutsch, L. J. (1984). “The

VLSI Implementation of a Reed-Solomon encoder using Berlekamps Bit-Serial

Multiplier Algorithm”, IEEE Trans. on Computers, Vol. c-33, No. 10, pp. 906-911.

Huang, Q., Lin, S. and Abdel-Ghaffer, K. A. S. (2011). “Error-Correcting Codes for

Flash Coding”, IEEE Trans. on Information Theory, Vol.57, No.9, pp.6097-6108.

Im, S. and Shin, D. (2009). “Storage architecture and software support for SLC/MLC

combined flash memory”, Proc. of 24th ACM Symposium on Applied Computing (SAC

’09), Honolulu, Hawaii, pp. 1664-1669.

Johnston, M., Carrasco, R.A. and Burrows, B.L.(2004). “Design of Algebraic geometric

codes over fading channels”, Electronics Letter, Vol. 40, No. 21.

Lin, H., Chen, T. and Chang, J. (2002). “Investigation of disturbance for new dual

floating gate multilevel flash cells’, Solid-State Electronics , Vol. 46, pp. 1145 – 1150.

Lin, S. and Costello, D. (2004). “Error Control Coding”, Second Edition, Prentice Hall.

Liu, W., Rhi, J. and Sung, W. (2006). “Low-power high-throughput BCH error correction

VLSI design for multi-level cell NAND flash memories”, in Proc. Int.Workshop SiPS,

2006, pp. 248-253.

Lo, J.C. and Fujiwara, E. (2005). “Transient behavior of the encoding/decoding circuits

of error control code”, Proc. IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems.

 119

MacKay, D. J. C. (2003). “Information Theory, Inference, and Learning Algorithm,

Cambridge University Press.

Maeda, Y. and Kaneko, H. (2009). “Error Control Coding for Multilevel Cell Flash

Memories Using Nonbinary Low-Density Parity-Check Codes”, 24th International

Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 367-375.

Mahdavifar, H., Siegel, P.H., Vardy, A., Wolf,J.K. and Yaakobi, E. (2009). “A nearly

optimal construction of flash codes,” in Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea,

June – July, pp. 1239–1243.

Massengill, L.W. (1996). “Cosmic and terrestrial single event radiation effects in

dynamic random access memories”, IEEE Transactions on Nuclear Science, pp. 576-

593.

Mehnert, A. (2008). “Managing Flash memory with intelligence”, Industrial Embedded

Systems E-Letter, March 2008 (Hyperstone GmbH).

Micheloni, R., Marelli, A. and Ravasio, R. (2008). “Error Correction Codes for Non-

Volatile Memories”, Springer.

Mielke, N., Marquart, T., Wu, N., Kessenich, J., Belgal, H., Schares, E., Trivedi, F.,

Goodness, E. and Nevill, L.R. (2008). “Bit Error Rate in NAND Flash Memories”, IEEE

46th Annual International Reliability Physics Symposium, pp. 9-19.

Moon, T, K. (2006). “Error Correction Coding”, Wiley Interscience.

Pless, V. and Huffman, W.C. (1998). “Handbook of Coding Theory”, Vol. 2, Elsevier.

 120

Reed, I. S., Shih, M. T. and Truong, T. K. (1991). “VLSI design of Inverse-free

Berlekamp-Massey algorithm”, IEEE proceedings-E, Vol. 138, No. 5, pp. 295-298.

Ricco, B., Torelli, G., Lanzoni, M., Manstretta, A., Maes, H.E., Montanari, D. and

Modelli, A. (1998). “Nonvolatile Multilevel Memories for Digital Applications”,

Proceedings of IEEE, Vol. 86, No. 12, pp. 2399-2421.

Rossi, D., Metra, C. and Ricco, B.(2002). “Fast and Compact Error Correcting Scheme

for Reliable Multilevel Flash Memories”, Proceedings of the Eighth International On-

Line Testing Workshop (IOLTW’02).

Rossi, D. and Metra, C. (2003). “Error Correcting Strategy for High Speed and High

Density Reliable Flash Memories”, Journal of Electronic Testing: Theory and

Applications, Vol. 19, pp. 511-521.

Roth, R. M. (1991). “Maximum-Rank Array Code and their application to Criss Cross

Error Correction”, IEEE Trans. on Information Theory, Vol. 37. pp.328-336.

Ryan, W. E. and Lin, S. (2009). “Channel Codes: Classical and Modern”, Cambridge

University Press.

Shao, H.M., Truong, T.K., Deutsch, L.J., Yuen, J.H. and Reed, I.S. (1985). “A VLSI

Design of a Pipeline Reed-Solomon Decoder”, IEEE Trans. on Computers, Vol. C-34,

No.5.

Silverman, J. H. and Tate, J. (1992). “Rational Points on Elliptic Curves”, Springer-

Verlag New York Inc.

 121

Shibuya, T., Matsumoto, R. and Sakaniwa, K. (1997). “Simple Estimation for Dimension

of Subfield Subcodes of AG Codes”, IEICE Trans. Fundamentals, Vol. E80-A, No. 11,

pp. 2058-2065.

Shibuya, T., Jinushi, H., Miura, S. and Sakaniwa, K. (1996). “On the performance of

Algebraic Geometric codes”, IEICE Trans. Fundamentals, Vol. E79-A, No. 6, pp.928-

937.

Slayman, C. W. (2005). “Cache and memory error detection, correction, and reduction

techniques for terrestrial servers and workstations”, IEEE Trans. on Devices and

Materials Reliability”, Vol. 5, pp. 397-404.

Sun, F., Devarajan, S., Rose, K. and Zhang, T.(2007). “Design of on-chip error correction

systems for multilevel NOR and NAND flash memories”, IET Circuits Devices Syst.,

Vol. 1, No.3, pp 241-249.

Sun, F., Rose, K. and Zhang, T. (2006). “On the use of Strong BCH Codes for improving

multilevel NAND flash memory storage capacity”, IEEE workshop on Signal Processing

Systems (SiPS): Design and Implementation.

Tanzawa, T., Tanaka, T., Takeuchi, K., Shirota, R., Aritome, S., Watanabe, H., Hemink,

G., Shimizu, K., Sato, S., Takeuchi, Y. and Ohuchi, K. (1997). “A Compact On-Chip

ECC for Low Cost Flash Memories”, IEEE journal on Solid State Circuits, Vol. 32, No.

5, pp. 662-669.

Wicker, S. B. (1995). “Error Control Systems for Digital Communication and Storage”,

Prentice Hall.

 122

Wang, Z. and Bruck, J. (2010). “Partial rank modulation for flash memories”, in

Proc. IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 13–18, pp. 864–868.

Wang, Z. and Karpovsky, M. (2012). “Nonlinear Multi-Error Correction Codes for

Reliable MLC NAND Flash Memories”, IEEE Transactions on VLSI Systems, Vol.20,

No. 7, pp. 1221-1234.

Yaakobi, E., Vardy, A., Siegel, P.H. and Wolf, J.K. (2008). “Multidimensional flash

codes,” in Proc. Annual Allerton Conf. Communication, Control and Computing,

Monticello, IL, Sep. 23–26, pp. 392–399.

Yamada,J. (1987). “Selector-line merged built-in ECC technique for DRAM’s”, IEEE

Journal of Solid State Circuits, Vol.SC-22, No.5, pp. 868-873.

 123

Publications Based on the Research Work Described in this Thesis

International Journal Papers

1. Rajesh Shetty K, Sripati U, Prashantha Kumar H, Shankarananda B, “Design and

Construction of Algebraic Codes for Enhancing Data Integrity in Flash Memories”,

International Journal of Advances in Communication Engineering, Vol. 2, No. 2,

ISSN: 0975-6094, pp. 51-56, July-December 2010.

2. Rajesh Shetty K, Ramakrishna, Sripati U, Prashantha Kumar H, “Design and

Construction of BCH Codes for Enhancing Data Integrity in Multilevel Flash

Memories”, International Journal of Information and Communication Technology,

Vol.4, Issue 1, pp.40-60, 2012 (InderScience Publications).

International Conference Papers

3. Rajesh Shetty K, Sripati U, Prashantha Kumar H, Shankarananda B, “Design and

Construction of Codes for MIMO Block Fading Channels”, Proceedings of

International Conference on Advanced Computing and Communication

(ICACC−2010), May 3-4, 2010, Amal Jyothi College of Engineering, Kanjirapally,

Kottayam), pp. 201-205 (secured best paper award).

4. Rajesh Shetty K, Sripati U, Prashantha Kumar H, Shankarananda B, “Synthesis of

BCH Codes for Enhancing Data Integrity in Flash Memories”, 5th International

Conference on Industrial and Information Systems (ICIIS−2010), 29th July to 1st

August 2010, National Institute of Technology Karnataka, Surathkal, pp.119-124

(Available on IEEE Xplore).

 124

This page is intentionally left blank

 125

Bio data of Rajesh Shetty K

Rajesh Shetty K
Department of Electronics & Communication Engineering,
N.M.A.M Institute of Technology, Nitte – 574 110.
Email : krshetty_nitte@yahoo.co.in

Qualifications:

 B.E (1990) (Electronics & Communication) – First Class
 N.M.A.M Institute of Technology, Nitte – 574 110.
 (Mangalore University)

 M.Tech (2004) (Digital Electronics & Advanced Communication)
 (Secured First Class with Distinction)
 National Institute of Technology Karnataka, Surathkal.

 Total experience: 22 years (Teaching 17 years and industry 5 years)

Duration Positions Held Employer
November 2013 to till date Associate Professor,

Dept. of E & C Engineering
N.M.A.M Institute of
Technology, Nitte – 574110.
Karkala Taluk, Udupi Dist

December 2004 to
October 2013

Asst. Professor,
Dept. of E & C Engineering

N.M.A.M Institute of
Technology, Nitte – 574110.
Karkala Taluk, Udupi Dist.

October 2000 to
November 2004

Lecturer, Sr.Lecturer,
Dept. of E & C Engineering

N.M.A.M Institute of
Technology, Nitte – 574110.
Karkala Taluk, Udupi Dist

December 1995 to
 October 2000

Sr. Engineer Eagle Sales Corporation,
R.M.R.Road, Bangalore -25.

November 1990 to
December 1995

Lecturer,
Dept. of E & C Engineering

N.M.A.M Institute of
Technology, Nitte – 574110.
Karkala Taluk, Udupi Dist.

No. of International Journal Publications: 9
No. of International Conference proceedings/ publications: 7
No. of National Conference proceedings / publications: 2
No. of Patent Applications filed: 2
No. of Expert Talk Delivered: 1
No. of Professional Training undergone: 1
No. of Workshops Attended: 3

