
DESIGN AND CONSTRUCTION OF ALGEBRAIC 
CODES FOR ENHANCING INFORMATION INTEGRITY  

IN DATA STORAGE SYSTEMS 
 
 
 

Thesis 
Submitted in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 
 

by 

RAJESH SHETTY K 
Register No. EC06F01 

 

 

 

 

 
 

 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,  
SURATHKAL, MANGALORE- 575 025 

 
May - 2013 



 

 
DECLARATION 

 
 
 
 I hereby declare that the Research Thesis entitled Design and Construction 

of Algebraic Codes for Enhancing Information Integrity in Data Storage Systems 

which is being submitted to the National Institute of Technology Karnataka, 

Surathkal in partial fulfillment of the requirements for the award of the Degree of 

Doctor of Philosophy in Electronics and Communication Engineering is a 

bonafide report of the research work carried out by me. The material contained in this 

Research Thesis has not been submitted to any University or Institution for the award 

of any degree. 

 

 

 
 

 

 

 

RAJESH SHETTY K 
EC06F01 

Department of Electronics and Communication Engineering 

 

 

 

 

 

 

 
   

 

Place: NITK, Surathkal 

Date: 31- 05-2013 



 



 

CERTIFICATE 
 

 

This is to certify that the Research Thesis entitled “Design and Construction of 

Algebraic Codes for Enhancing Information Integrity in Data Storage 

Systems” submitted by Rajesh Shetty K  (Register Number : EC06F01)  as the 

record of the research work carried out by him, is accepted as the Research 

Thesis submission in partial fulfillment of the requirements for the award of 

degree of  Doctor of Philosophy.  

 

 

 

Dr. U. Sripati                                   Dr. Muralidhar Kulkarni                             
Research Guide                                         Chairman, DRPC                         
      
                                                  

 

 
 

 
 

 

 

 

                        
                                                                                       

 

 

 
 



 

 
 
 
 
 
 
 
 

Dedicated  
to  

Poojya Shree Bhagawan 
     



 ii 

ACKNOWLEDGEMENTS 
 

 
I would like to express my deep sense of gratitude and respect to my research advisor 

Dr. U. Sripati for the guidance, encouragement, unflinching support, advice and help 

during the period of my research. His undying inspiration and motivation has helped 

me through the ups and downs of the rough terrain of the research path. This work has 

taken shape because of his efforts and inputs. 

 

I wish to express my gratitude to Dr. B. Shankarananda, my associate advisor, for 

giving me an opportunity to pursue research work in the Department of Electronics & 

Communication at NITK, Surathkal. 

 

I am thankful to Dr. Muralidhar Kulkarni, Head of the Department of Electronics and 

Communication, for his support and encouragement. 

 

I would like to thank my ex-HOD Dr. Sumam David for her help, advice and constant 

support during this period. 

 

I would also like to acknowledge my doctoral committee members, Dr. B. R. Shankar 

and Dr. John D’Souza for reading and evaluating my research reports as well as for 

their precious time, suggestions, feedback and interest in this work.  

 

I would also like to express my sincere thanks to Sri. N. Vinaya  Hegde, President of 

Nitte Education Trust and Chancellor Nitte University for all his support and 

encouragement throughout my career. 

 

Special thanks to my friends, Prashantha Kumar, Ramakrishna for all the discussions 

and help. I would also like to express my gratitude to all the staff members (teaching 

and non teaching) of Electronics and Communication Department at NITK, Suratkal 

for their help and support. 

 



 iii 

Most of all, I wish to thank my parents, my wife Mamatha, for the love, 

encouragement, moral and emotional support, patience as well as to my daughter 

Sumedha for bringing joy and happiness in our lives.  

 

                                                                                                   Rajesh Shetty K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 iv 

ABSTRACT 

 

 Data storage devices have become ubiquitous in present day information driven 

society. It is essential that storage devices exhibit very high levels of data integrity. 

Therefore, data integrity is a fundamental aspect of storage, security and reliability. 

NAND and NOR Flash memories [Chen, Y. 2008], [Mielke, N et al. 2008], [Gal, E.  

et al.  2005], [Jiang, A et al. 2010] are widely used for data storage because of their 

compactness and low power consumption. Data stored in non-volatile memory is 

usually critical to proper system operation, and corruption of data can lead to system 

failure. Hence data corruption is a major concern in applications that rely on non-

volatile memory for long-term data storage. Many techniques have been employed to 

improve the reliability of these devices. These techniques can be divided into two 

categories. In the first approach, improvements are carried out in the fabrication 

process to reduce the Raw Bit Error Rate (RBER). The second option is to use Error 

Correction Techniques to improve the RBER level to levels that are deemed 

acceptable to most users [Sun, F. et al. 2007], [Sun,F et al. 2006], [Chen, Y. and 

Parhi, K. 2004], [Mielke, N. et al. 2008]. 

 

Error Control Code (ECC) techniques (i.e., techniques capable of detecting and 

correcting errors in processed and stored data by using redundant bits in addition to 

information bits according to a given coding strategy) [Pless, V. and Huffman, W.C. 

1998] have been commonly used at board level for many years to enhance the 

reliability of memory systems [Bertozzi, D. et al. 2005]. However, as memory chips 

become denser, they also become more prone to errors, as a consequence of both the 

reduced cell size and the increased cell count within a single die. Moreover, read and 

write operations are made more critical by both technology scaling down and higher 

speed requirements. On the other hand, higher and higher reliability is required for 

storage systems in a large variety of applications. 

 

Generally high storage density is achieved by reducing the size of the elementary 

memory cell. However, for non-volatile memories, some physical phenomena makes 
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an aggressive reduction of the memory cell size difficult [Atwood, G. et al. 1997], 

[Wang, Z. and  Karpovsky, M. 2011]. An alternative solution to reduce the cost per 

bit and increase the storage density is to adopt the multilevel approach. It consists of 

placing a multiplicity of charge amount in the floating gate, thus allowing the cell to 

store more than one bit. However, the multilevel storage requires the consideration of 

three basic issues:  

(i) accuracy of write operation (necessary to place the correct amount of charge of 

the floating gate). 

(ii)  precision of the charge sensing (required to discriminate the different 

threshold voltages). 

(iii) stability of charge over an extended time period. Although Multi Level Cell 

(MLC) memory has higher density than Single Level Cell (SLC) memory, 

MLC is more vulnerable to errors because small fluctuation of the charge 

amount in the floating gate and slight variation of gate voltage result in 

misreading of stored data [Sun, F. et al. 2007], [Sun,F et al. 2006], [Maeda, Y 

et al. 2009], [Lin, H et al. 2002], [Ankolekar, P. P et al.2010].  

 

ECC is a cost effective method to enhance the integrity of data storage systems. Very 

stringent values of application BER, which would ordinarily require complex and 

expensive fabrication techniques as well as expensive materials, can be met very 

easily by employing ECC. Storage devices characterized by high RBER values can be 

made to yield application BERs as small as desired by the use of suitable ECC 

techniques. The fraction of erroneous bits that remain uncorrected after applying ECC 

constitute the uncorrectable bit error rate (UBER). UBER is a useful reliability metric 

for data storage devices and is used to specify the data corruption rate in the 

information given to the user after correction by ECC algorithms.  ECC algorithms 

can also correct errors that may manifest at any later stage during the life of the 

device. Hence use of ECC techniques has been widely accepted by the semiconductor 

manufacturing industry to enhance the RBER to levels demanded by applications. 

 

In this thesis, we have made an attempt to synthesize a number of codes for use in 

data storage systems with error correcting capability exceeding the state of art as 
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specified in the industry documentation.  In the initial part of the thesis, the focus is 

on the synthesis of codes for enhancing data integrity in flash memories composed of 

SLCs. While studying the flash memory organization, two memory models, namely 

Memory model 1 and Memory model 2 are identified and the codes are synthesized 

separately for these memory models. As compared to the current standard, [Mehnert, 

A. 2008] where six bits in errors can be corrected over a span of 4096 information bits 

(one sector), we propose codes that can correct up to nine bits in error per sector. The 

various generator polynomials are computed. As the performance of the error control 

code improves with increase in length, we were motivated to consider the 

combination of two sectors to constitute the information block. For this scenario, we 

propose codes that can correct up to eighteen bits in error over a span of 8192 bits 

(two sectors). Further, using Memory model 2, we have synthesized and proposed 

codes that can correct up to eighteen bits in errors per sector. The performance of 

these codes is quantified by computing values of the probability of decoding error. 

 

To summarize, the main objective of this work has been to design, construct and 

synthesize a large group of codes which can be used to enhance the data integrity 

levels associated with flash memory devices so as to make them useful in a wider 

class of applications. With a view to make these synthesized codes, readily acceptable 

to industry, we have strictly adhered to the memory architecture specified in the 

literature. 
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Chapter 1 

Introduction 
 
1.1  Preliminaries 
 
The revolution in the area of communication and the advent of internet has produced 

enormous demand for increase in information storage capacity and density. 

Physical/Media improvements along with sophisticated signal processing and coding 

techniques have played a critical role in the constant augmentation of 

storage/communication channel capacities [Costello, D. and Forney, D. 2007]. Every 

computer memory and data storage system has adopted some type of error detection or 

error correction code in order to enhance system reliability. The reliability levels required 

by the storage devices are extremely high. This is because, unlike communication 

systems, retransmission is generally not possible. It is expected that the user will be able 

to save data and be able to retrieve it perfectly at any time whenever required. 

 

Storage devices have become an integral part of modern electronic, communication and 

computing devices. Today, a number of portable hand held devices are required to 

perform complex mathematical computations. They are also intelligent enough to 

communicate with each other. The processor performing complex computations has to be 

supported by storage devices possessing very high level of data integrity. Designers of 

storage devices have employed many techniques to improve the capacity and reliability 

of these devices. In recent years, increasingly sophisticated Error Control Coding (ECC) 

algorithms have been employed to increase the reliability levels of data storage systems. 

 

By definition, a storage device is designed to store and retain information without 

corruption for long period of time. However, all storage devices have the potential to 

return information different from what was originally stored. Data integrity is a 

fundamental aspect of storage security and reliability. NAND Flash memories [Choi, H.et 
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al. 2010], [Liu, W. et al. 2006], [Sun, F et al. 2006]  are widely employed for data storage 

because of their compactness, low power, low cost, high data throughput and reliability. 

Scaling and MLC technology have enabled NAND flash memories to replace hard disk 

drives (HDD) in portable devices and in some computers.   

 

Data stored in the nonvolatile memory is usually critical to proper system operation, and 

corruption of that data can lead to system failure, hardware damage, and even unsafe 

operating conditions. Hence data corruption is a major concern in applications that rely 

on nonvolatile memory for long-term data storage. By implementing proper data 

protection techniques, both in hardware and software, the chances of data corruption can 

be greatly reduced. One of the most efficient methods is the use of ECC. In data storage 

applications/systems, it is important that we are able to save the data and retrieve it 

correctly without any errors. It is the art of ECC that makes it possible. Permanent and 

temporal faults are the major sources of errors in modern digital storage systems 

[Yamada, J. 1987]. Power supply break down, defective open or short circuits, open 

lines, electron migration etc. can cause permanent faults.  Permanent faults lead to hard 

errors; they therefore affect the system functions for a long period of time. Temporal 

faults can be transient or intermittent [Massengill, L.W. 1996].  Transient faults occur 

randomly and externally because of external noise, namely electromagnetic waves and 

particles such as  particles and neutrons. Intermittent faults occur randomly but 

internally because of unstable or marginally stable hardware, varying hardware or 

software state as a function of load, or signal coupling between adjacent signal lines. 

Some of the intermittent faults may be due to glitches which are unpredictable spike 

noise pulses occurring and propagated especially in large combinational digital circuits 

[Calvel, P. et al. 1994]. Temporal faults lead to soft errors and these interrupt system 

functions for a very short period of time.  In today’s ultra-high density RAMs, it has been 

recognized that multiple cosmic ray induced transient errors are a serious problem [Lo, 

J.C and Fujiwara, E. 2005], [Fujiwara, E. 2006].  Hence error control algorithms with 
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error detecting/correcting capabilities are required in data storage systems/applications to 

preserve data integrity.   

 

With the addition of error detection and correction, the risk of system failure due to data 

corruption in a nonvolatile memory can be minimized. Like HDDs, NAND memories are 

not intrinsically error-free but rely on ECC to correct raw bits. During process of data 

readout, the fraction of bits that contain incorrect data (prior to application of ECC) is 

called the raw bit error rate (RBER) [Mielke, N. et al. 2008]. The residual error rate 

(pertaining to data that remains uncorrected) after applying ECC is called the 

uncorrectable bit error rate (UBER) [Mielke, N. et al. 2008]. UBER is a useful reliability 

metric for mass storage devices such as HDDs and flash memory devices. UBER is used 

to specify the data-corruption rate after the application of ECC algorithm. The 

relationship between RBER and UBER for error control algorithms having differing error 

correcting capabilities is shown in Figure 1.1 [Cooke, J. 2007]. It is observed that, as  

RBER increases, matching the ECC to the target BER of the application become more 

important. 

 
Figure1.1: Raw Bit Error Rate versus Post-ECC Bit Error [Cooke, J. 2007] 
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A huge number of crucial documents containing privileged and sensitive information are 

routinely transacted using digital communication systems in the modern era. This 

information is often conveyed over open channels and stored in digital media. These 

transactions often have little tolerance for error. Therefore, reliability and accuracy are 

essential to flash memories. Data can be verified immediately after it is written, but this 

process will not identify bit errors that may manifest later. To ensure long-term data 

integrity, modern storage and information processing devices must also use a suitable 

Error Control Code. 

  
ECC schemes supplement user data with parity bits which store enough extra information 

for the data to be reconstructed if one or more bits are corrupted. Many ECC algorithms     

have been employed to correct errors in storage systems [Carrasco, R.A. and Johnston, 

M. 2008], [Cassuto, Y. et al. 2010], [Chen, Y. and Parhi, K. 2004], [Fujiwara, E. 2006], 

[Im, S. and Shin, D. 2009], [Lin, H., Chen, T. and Chang, J. 2002], [Micheloni, R et al. 

2008]. We have synthesized a number of codes with error correcting capabilities 

exceeding the state of art in our work. We have developed a suitable architecture for the 

VLSI implementation of encoder/decoder modules of these codes.  

 

Finite fields are the key tool in the design of powerful linear block codes. The theory of 

finite fields as applicable to the study of ECC is discussed in [Wicker, S.B. 1995], 

[Blahut, R.E. 2003] and [Moon, T.K. 2006].  

 

 

1.2  Motivation for the use of Error Control Codes in Storage Systems 
 
As the recording density increase, a very large number of bits have to be packaged into a 

very small physical area. Consequently, the physical space available to accommodate a 

bit has become smaller and smaller over the years with increase in storage density. This 

results in Inter Symbol Interference (ISI) in the sense that the detection of an information 

bit (or symbol) is influenced by bits (or symbols) that are present in the recording 



 5 

medium in the immediate vicinity. This problem becomes acute when the recording 

density increases. The use of powerful error control algorithms can protect the integrity 

of user information against errors caused by ageing, wear out due to repeated read and 

write operations and manufacturing defects. In this work we are proposing several error 

control codes based on Bose-Chaudhury-Hocquenghem (BCH) and Reed-Solomon (RS) 

codes for use in semiconductor memories. BCH codes are considered to be good linear 

error correction codes because of their rich algebraic structure which enables the 

synthesis of simple and elegant encoding/ decoding algorithms. Further, the scheme of 

BCH coding and decoding integrated with interleaving can correct both the random errors 

and the burst errors. As compared to the current standard [Mehnert, A. 2008], where six 

bits in error can be corrected over a span of 4096 information bits, we propose codes that 

can correct eight and nine errors (t = 8, t = 9). Memory is organized into blocks, pages 

and sectors (Refer Table 1 which gives the organization of a 2GB Flash memory device). 

There are two memory models proposed in semiconductor data storage industry which 

are widely used in current practice. The smallest unit is a sector. In Memory model 1, 

each sector has 512 bytes reserved for storing user information and 16 bytes reserved for 

storing parity check information. In Memory model 2, each sector has 512 bytes reserved 

for storing user information and 32 bytes reserved for storing parity check (redundant) 

information. 

 
 
1.3  Flash Memory Organization 
 
A look at how flash memory is organized reveals some of the challenges involved in 

managing flash memory. The smallest logical/administrative unit is a sector. Each sector 

contains a storage area (512 bytes) plus a small overhead area (16 bytes). Sectors are 

grouped into pages, and blocks include multiple pages (32 pages of 512 bytes or more 

recently, 64 pages of 2048 bytes). Blocks contain a defined number of sectors, and there 

are typically 1000 to 8000 blocks per chip. Table 1 shows memory organization for a  

2 GB flash device. 
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Table 1: Memory organization for a 2 GB flash drive 
  

 

 

 

 

 

 

 

ECC is performed on a bit/byte level within sectors. Depending on cell structure and 

quality, this task is becoming more important in flash devices. We have attempted to 

synthesize suitable BCH and RS codes for use in flash memories for ensuring data 

integrity. We have developed suitable decoding architecture to perform decoding 

operations for these codes. The choice of the error control code to be used in a particular 

application depends upon many factors. These are: 

 

(i) Organization of information and overhead data in the storage devices. 

(ii) Types of errors (i.e. whether the error mechanism generates random errors or 

burst errors. 

(iii) Computational complexity permitted by architecture of storage devices. All 

mathematical operations have to be performed by suitable hardware. An 

additional arithmetic processor to handle encoding/decoding operations will 

usually not be feasible. 

(iv) Decoding delay (latency) versus computational complexity. Decoding can be 

considered on a page by page basis. However complexity of computation is 

high because of large size of data block and corresponding need to do 

computations in a large field 82F (or larger). To avoid excessive computational 

complexity, we have devised codes where one sector or at most two sectors 

are encoded into one codeword. 

 

Sector size 512 bytes 
Sectors/page 8 
Pages/block 64 

Page size 4 KB 
Block size 256 KB 
Blocks/die 4096 
Dies/chip 2 

Total capacity 2 GB 
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A significant difference between the BCH and RS codes is the basic correction unit. The 

BCH code corrects bits, while the Reed-Solomon code corrects symbols. Therefore, a 

BCH code corrects t bit errors, while the Reed-Solomon code over mF2
 corrects t symbols 

of s bit errors, which can be a variable number of bits: from t bits if errors occur in 

different symbols up to st bits in case errors occur consecutively. Reed-Solomon codes 

generally have a greater correction capability for burst type errors while BCH codes 

possess simpler decoding architectures and can correct random errors efficiently. As the 

trend in semiconductor memory design continues towards higher chip density and large 

storage capacity, ECCs are becoming most cost effective means of maintaining a high 

level of system reliability [Bertozzi, D. et al. 2005]. A memory system can be made fault 

tolerant with the application of an error-correcting code; i.e., the mean time between 

“failures” of a properly designed memory system can be significantly increased with 

ECC. In this context, a system “fails” only when the errors exceed the error correcting 

capability of the code. Also, in order to optimize data integrity, the ECC should have the 

capability of correcting error patterns that are most likely to occur.   

 

A bursty channels is defined as a channel over which errors tend to occur in bunches or 

“bursts” as opposed to the random patterns. Bursty channels usually contain some error 

causing agents in the physical medium whose effective time constant exceeds the symbol 

transmission rate of the channel. A random error correcting code can correct up to t 

symbol errors per code word, regardless of the placement of these errors. Both random 

and burst errors are encountered in data storage systems. Burst errors are frequently 

encountered in optical storage systems (e.g., Compact Disc (CD), DVDs etc). Without 

error correcting codes, digital audio/video/data storage would not be technically feasible.  

The recording channel in a CD play back system consists of a transmitting laser and the 

disc to be recorded. The play back channel consists of the recorded disc and a photo-

detector.  Assuming that the player is working properly, the primary contributor to errors 

on this channel is contamination of the surface of the disc. As the surface contamination 
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affects an area that is usually quite large compared to the surface used to record a single 

bit, channel errors occur in bursts when the disc is played. 

 

The various computer applications for error control can be grouped into four categories: 

memory (random access memory and read-only memory), disk storage, tape storage, and 

inter-processor communication. Each type of communication has its unique characteristic 

and requires the use of certain types of codes. The earliest memory storage units were 

mechanical relays. The contents of these relays could be verified through visual 

inspection. Simple parity check codes provided error detection in these systems. The 

relays were replaced by ferrite cores in which the magnetic field could be induced and its 

orientation read. The core memory had to be refreshed periodically and their contents 

verified to see if any errors had crept in since the last refresh cycle.  

 

Semiconductor memory is currently the predominant choice for random access and read-

only memory applications. Read/write errors in semiconductor memory are generally 

labeled as either “hard” or “soft” errors. Hard errors are device failures that are 

permanent, while soft errors are transient, and are sometime called “single event upsets” 

(SEUs). SEUs are frequently caused by radiation; atomic particles leave an ion trail, or 

“tunnel” as they pass through a device substrate.  SEUs can also be caused by electronic 

transients induced by lighting, adjacent electrical machinery, and the ionic scintillation 

generated by thermonuclear weapons. Some of these error sources can also cause hard 

failures. Magnetic disks have been traditionally used for mass storage applications. As 

with the Compact Disc, these storage devices involve moving media and/or record/read 

heads. Though not as prone to radiation-induced SEUs as semiconductor memory, disks 

do suffer from burst errors caused by surface contamination and material defects. 

 

Magnetic tape suffers from error-causing mechanisms similar to those encountered in 

magnetic and optical disk systems. In addition, the flexibility of the magnetic tape can 

create its own unique set of problems. In most digital systems the data on the tape is 
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organized in parallel tracks that run the length of the tape, hence contaminants tend to 

corrupt one track or a small number of adjacent tracks during the reading process. 

 

Semiconductor memories can be divided into two major categories: RAM and ROM. The 

category of non-volatile memories [Ricco, B. et al. 1998] includes all the memory 

devices whose content can be changed electrically but is held when the power supply is 

switched off.  The history of non-volatile memories began in the seventies, with the 

introduction of the first EPROM (Erasable Programmable Read Only Memory). Since 

then, non-volatile memories have always been considered one of the most important 

families of semiconductor devices. With the introduction of non-volatile Flash memories 

into portable products like mobile phones, palmtop, digital cameras and so on, the market 

of these memories has seen a staggering increase. Flash memories are non-volatile 

memories characterized by the fact that the erase operation (writing of the logic “1”)  

must occur simultaneously on a set of cells, called sector or block; the program operation 

instead (writing of the logic “0”) acts on the single cell. These devices have become the 

most widely used non-volatile electronic memories. It would not be an exaggeration to 

state that Flash memories are a milestone in the development of the data storage 

technology. The applications of flash memories have expanded widely in recent years, 

and flash memories have become the dominating member in the family of non-volatile 

memories. Compared to magnetic recording and optical recording, flash memories are 

more suitable for many mobile-embedded and mass-storage applications. The reasons 

include their high speed, physical robustness, and easy integration with circuits. The 

representation of data plays a key role in storage systems. Like magnetic recording and 

optical recording, flash memories have their own distinct properties, including block 

erasure, iterative cell programming, etc. These distinct properties introduce very 

interesting information representation and coding problems that address many aspects of 

a successful storage system, such as efficient data modification, error correction, etc. 

Actually, the name “flash” is associated with the speed at which large data blocks can be 

erased which is similar to that of the flash of a camera. In contrast, old-style EEPROM 
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allows only the simultaneous erasure of bytes. For these reasons, flash memories are 

becoming dominant as secondary memory devices in digital cameras, digital audio 

players, mobile phones, and PC basic input/output system (BIOS) chips. A flash memory 

is an array of cells that consist of floating gate transistors. Information is stored as an 

electric charge in each cell. 

 

The increase of the storage density and the reduction of the cost per bit of flash memories 

were traditionally achieved by the aggressive scaling of the memory cell transistor until 

the MLC technology was developed and implemented in 1997 [Atwood, G. et al. 1997], 

[Wang, Z. and  Karpovsky, M. 2011]. In MLC devices [Grossi, M. et al. 2003], a cell can 

assume several possible voltage levels. 

 

The amount of charge in a cell determines its threshold voltage, which can be measured. 

The operation of injecting charge into a cell is called writing (or programming), 

removing charge is called erasing, and measuring the charge level is called reading. If we 

use two discrete charge levels to store data, the cell is called SLC and can store one bit. If 

we use 2Q  discrete charge levels to store data, the cell is called MLC and can store 

Q2log bits. A prominent property of flash memories is block erasure. In a flash memory, 

cells are organized as blocks, each containing about 510 cells. While it is relatively easy 

to inject charge into a cell, to remove charge from any cell, the whole block containing it 

must be erased to the ground level (and then reprogrammed). This is called block erasure. 

The block erasure operation not only significantly reduces speed, but also reduces the 

lifetime of the flash memory [Atwood, G et.al 1997]. This is because a block can only 

endure about 64 1010  erasures, after which the block may break down. Since the 

breaking down of a single block can make the whole memory stop working, it is 

important to balance the erasures performed to different blocks. This is called wear 

leveling. A commonly used wear leveling technique is to balance erasures by moving 

data among the blocks, especially when the data are revised [Gal, E et al. 2005].  
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For the Flash memories currently in the market, the architectures used are NOR and 

NAND flash memories [Ricco, B. et al. 1998], [Bez, R. et al. 2003], [Gal, E. et al.  2005], 

[Jiang, A. et al. 2010].  A NOR flash memory allows random access to its cells. NAND 

flash partitions every block into multiple sections called pages, and a page is the unit of a 

read or write operation. Compared to NOR flash, NAND flash may be much more 

restrictive on how its pages can be programmed, such as allowing a page to be 

programmed only a few times before erasure [Gal, E. et al.  2005]. However, NAND 

flash enjoys the advantage of higher cell density. Between them, NAND flash is currently 

used much more often due to its higher data density. 

 

However, there remain many technical challenges in flash memories. Adding charge to a 

single cell is easy, but removing charge from a cell requires erasing the entire block 

containing that cell and reprogramming all cells in that block. These block erasures are  

time-consuming and can also cause physical degradation and shorten memory life. 

Therefore, it is important to reduce the frequency of block-erasures [Gal, E. and Toledo, 

S. 2005]. Coding techniques have been introduced to accomplish this. A variety of coding 

schemes for flash memories were introduced such as floating codes [Jiang, A. et al.  

2010],  [Mahadavifar, H. et al. 2009], buffer codes [Bohossian, V. et al.  2007], [Jiang, A. 

et al. 2009a], trajectory codes [Jiang, A. et al. 2009b], multidimensional flash codes 

[Yaakobi, E. et al. 2008], and rank modulation codes [Jiang, A. et al. 2009], [Wang, Z. 

and Bruck, J. 2010]. 

 

Error control codes are widely used in almost all digital communications. This is due to 

the higher performance that the market demands for achieving reliable communications 

over noisy channels. BCH codes, a very important family of block codes that can be 

decoded using algebraic techniques with affordable complexity, have been in wide use 

for decades, especially in storage channels in various forms either as Hamming codes or 

as Reed-Solomon (RS) codes. BCH codes are in wide use in concatenated coding 

techniques, concatenated either with Convolutional codes or with other block codes such 
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as Low-density parity check (LDPC) codes [Ryan,W. E. and Lin, S]. Second generation 

Digital Video Broadcast (DVB) standards are adopting BCH codes as part of their 

concatenated coded strategy. Binary BCH codes have some advantages over RS codes, 

especially if the noise is random. The read channel in a MLC based flash memory 

exhibits a random noise channel and BCH is a favorite code for error correction in flash 

memory products. 

 

1.4  Flash Memory Structure and Error Characteristics [Maeda, Y. et al. 2009]  
 

 
           (a) Structure                                (b) Program                              (c) Erase 
 

Figure 1.2: Flash Memory Cell  
 

Figure 1.2 shows flash cell structure having control gate, floating gate, source and drain. 

The floating gate is insulated from the substrate. The cell is programmed by applying a 

high voltage to the control gate, which moves electrons from the substrate into the 

floating gate. The cell is erased by applying a high voltage to the substrate, which 

removes electrons from the floating gate.  In order to read out the data from the cell, the 

charge level of the floating gate is identified by applying specific voltages to the control 

gate. If the floating gate has few electrons, the drain-source current flows with a low 

control gate voltage, while if the floating gate has many electrons, the drain-source 

current flows only when the control gate voltage is sufficiently high. 

 

Conventional SLC can hold two distinct levels of charge, and hence it can store one bit of 

data in each memory cell, while a MLC can reliably hold Q = 2b levels of charge, and 

Control gate 

Floating gate 

D S D S D S Substrate 
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hence it can store b bits of data, where b is typically 2 or 3 [Rossi, D. et al. 2002], [ Rossi, 

D. et al. 2003], [Gregori, S. et al. 2003], [Sun, F et al. 2007], [Maeda, Y. et al. 2009]. 

Although MLC memory has higher density than SLC memory, MLC is more vulnerable 

to errors because small fluctuation of the charge amount in the floating gate and slight 

variation of gate voltage can result in misreading of stored data. Multilevel flash memory 

cells have found application in efforts to increase density of bits per unit area in recent 

years [Lin, H. et al. 2002]. 

 

1.5  Scope of the research work presented in the thesis 

Our aim is to synthesize high rate (hence efficient) algebraic codes for enhancing data 

integrity in storage systems. In the initial part of our work, we have concentrated on the 

synthesis of codes for enhancing data integrity in Flash memories composed of SLCs. In 

the second part, we have synthesized the codes applicable in memories composed of  

MLCs. Here we have considered cells with four levels, eight levels and sixteen levels. 

Channel Matrices, also called P-matrices which quantify the probability of various forms 

of error in MLCs have been quantified. These give insight into the type of errors that can 

occur in MLCs. We have also investigated the role of interleavers to improve data 

integrity during occurrence of burst errors in storage devices. Mainly, block interleavers 

and convolutional interleavers are considered for the analysis. Further, we have also 

analyzed and adapted the decoder architecture for the codes synthesized by us. This 

decoder makes use of inversion free Berlekamp - Massey algorithm. 

 

1.6  Organization of the thesis 

The contents of this thesis are organized into chapters as follows: Chapter 2 provides a 

brief overview of the necessary mathematical background. We have provided a brief 

description of finite fields because traditional BCH codes are constructed over finite 

fields. The BCH bound has been invoked in the design of BCH codes.  Synthesis of BCH 

codes and RS codes for different memory models as applicable to single level cells are 

discussed in Chapter 3. In this chapter, we have also obtained the performance plots of 
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the codes that are synthesized. In Chapter 4, we have discussed the modeling of 

multilevel cell as a channel and synthesized codes for different memory models as 

applicable to multilevel cells. A suitable decoder architecture based on the inversion less 

Berlekemp-Massey algorithm has been adapted to study the decoding in Chapter 5. The 

use of interleavers and its ability to enhance data integrity is also discussed in this 

chapter. Further the codes are also synthesized using LDPC and the reason for not 

adapting these codes in flash memory is highlighted. We conclude the thesis in Chapter 6 

by summarizing the obtained results, and giving some directions for further research 

work in this area.  
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Chapter 2 

Mathematical background 
 
2.1 Cyclic Codes 
 
Cyclic codes have been to be a constant focus of interest for mathematicians and 

engineers for the past five decades. Cyclic codes [Lin, S. and Costello, D. 2004], [Moon, 

T.K. 2006] are important practical error control codes for a variety of reasons. Cyclic 

codes are a class of error correcting codes that can be efficiently encoded and decoded 

using simple shift registers and combinatorial elements, on the basis of their 

representation using polynomials. Within the family of cyclic codes there are certain 

special families of codes that are extremely powerful. These include the Golay, BCH and 

the RS codes. 

 

Definition 2.1.1 – Linear Cyclic Block Codes [Wicker, S.B. 1995] 
 
An (n, k) linear block code C is said to be cyclic if for every code word 

  ),.......,( 110 ncccc  C, there is also a code word    ).,,.........,,( 2101 nn ccccc  C. The 

code word c  is a right cyclic shift of the code word c. Since c has been arbitrarily 

selected from among the code words in C, it follows that all n of the distinct cyclic shifts 

of c must also be code words in C. 

 

The key to the underlying structure of cyclic codes lies in the association of a code 

polynomial 1
1

2
210 ...........)( 

 n
n xcxcxccxc  with every code word c = 

 ),....,,.........,,( 12210 nn ccccc  C.  If C is a q-ary (n, k) code, then the collection of code 

words in C forms a vector space of dimension k within the space of all n-tuples over qF . 
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Hence, it may be concluded that 
 

                            )()1mod()(

)()1mod()(
)()1mod()(

22

1

xcxxcx

xcxxcx
xcxxxc

knk

n

n









                                                        (2.3)

 

 

Set: A set is an arbitrary collection of objects, or elements, without any predefined 

operation between set elements. A set may be finite, countably infinite, or uncountably 

infinite. The primary characteristic of a set is its cardinality, which is defined as the 

number of objects/elements contained in the set. 

 

Group: A group is a set of objects G on which a binary operation ''  has been defined. 

The binary operation takes any two elements in G and generates as its result an element 

that is also in G. 

 

Definition 2.1.2 - Group:  

A set G on which a binary operation ''  is defined is called a group if the following 

conditions are satisfied. 

(i) The binary operation ''  is associative. 

(ii) G contains an element e such that for any a in G, aaeea  . This 

element e is called an identity element of G. 
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(iii) For any element a in G, there exists another element a  in G such that 

eaaaa  . The element a is called an inverse of a. 

(iv) A group G is said to be commutative (or Abelian) if its binary operation 

'' satisfies a '' b=b '' a. 

 

Definition 2.1.3 – Irreducible polynomial  

A polynomial )(xf  is said to be irreducible in the field qF if it cannot be factored into a 

product of polynomials with coefficients in qF . It can be easily verified that the 

polynomials 12  xx   and  13  xx  are irreducible over ][2 xF .   

               
Definition 2.1.4 – Primitive polynomial  

An irreducible polynomial )(xp  is said to be primitive if the smallest positive integer ‘n’ 

for which 1)( nxxp  is .1 mpn  

i.e., 1)( 1 mpxxp and  )(xp  1nx  for .1 mpn  

A primitive polynomial for mq
F  is the minimal polynomial of some primitive element of 

mq
F . It is the polynomial of smallest non-zero degree with coefficients from qF  having a 

certain primitive element of mq
F as a root.   

12  xx   and  13  xx  are examples of polynomials that are irreducible as well as 

primitive. They are used to generate the finite fields 22F and 32F  respectively.   

 

Definition 2.1.5 - Minimal polynomial 

Let   be a primitive element in the field  mq
F . The minimal polynomial of  with 

respect to qF  is the smallest degree nonzero polynomial )(xp  in ][xFq  such that 

.0)( p  
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Definition 2.1.6– Conjugates of Field Elements  

Let   be an element of mq
F . Then the conjugates of   with respect to qF  are 

..,.........,,
32 qqq   . Since the field is finite, this process cannot keep yielding new 

elements indefinitely.  

Let us consider an example to illustrate this. The elements of  32F  are 

 65432
2

,,,,,,1,03 F . Here q = 2 and m = 3. The conjugates of   are: 













82

42

22

3

2

1

,

 

 

Therefore the distinct conjugates of  in 32F  are 2  and 4 . Conjugates of   with 

respect to qF  form a set which is called the conjugacy class of   with respect to qF . The 

conjugacy class of   is    424222 ,,,,
21

  .  

Determining the conjugates of ,3  

 
 
   
    3248323

5124323

623

323

3

2

1

0

















 
 

Therefore the conjugacy class of 32
3 F  is  563 ,,  . Hence we write the conjugacy 

classes of 32F  are        56342 ,,,,,,1,0  . 

 
Theorem 2.1.1:  Let   be an element of 

.mqF  Let )(xp be the minimal polynomial of   

with respect to qF . The roots of )(xp are exactly the conjugates of  with respect to qF .  

Let 32F . The conjugacy class of  is  42 ,,  . So the minimal polynomial of   

is .1))()(()( 342  xxxxxxp   
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Example 2.1.1: The minimal polynomials of the elements in 32F  with respect to 2F . 
 

Exponential Representation Polynomial Representation 
0  1 
1    
2  2  
3  1  
4   2  
5  12   
6  12   

0 0 
 

The eight elements are arranged in conjugacy classes and their minimal polynomials are 

computed as follows: 

 

Conjugacy Class Minimal Polynomial 
 0  xxxM  )0()(*  

 10   1)1()(0  xxxM  

 42 ,,   1))()(()( 342
1  xxxxxxM   

},,{ 563   1))()(()( 23563
3  xxxxxxM   

 

Definition 2.1.7– Cyclotomic Cosets [Wicker,S.B. 1995] 

The cyclotomic cosets modulo n with respect to qF  are partitioning of the integers 

 1,......,1,0 n  into the sets of the form 132 ,,.........,,, daqaqaqaqa . The cyclotomic 

cosets modulo n with respect to qF  thus contain the exponents of the n distinct powers of 

a primitive thn root of unity with respect to qF . Referring to the example 2.1.1, the 

conjugacy class and the cyclotomic cosets are shown below. 

 

Conjugacy Class Cyclotomic Cosets 
 10                    0  

 42 ,,                    4,2,1  

},,{ 563                    5,6,3  
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The most commonly used cyclic error correcting codes are the BCH and Reed-Solomon 

codes. Hence these codes may be specified by a generator polynomial. A BCH code over 

qF  of length n capable of correcting at least t errors is synthesized as follows [Wicker, 

S.B. 1995]: 

 

(i) Determine the smallest m such that mqF has a primitive nth root of unity  . 

(ii) Select a non-negative integer b. Frequently, b = 1. 

(iii) List the 2t consecutive powers of  . 

                                121 ....,,.........,  tbbb   

                  The minimal polynomial with respect to qF of each of these powers of    are    

                determined. 

(iv) The generator polynomial g(x) is the least common multiple (LCM) of these  

           minimal polynomials. The code is a (n, n- deg(g(x)) cyclic code. 

 

2.2 Bounds on Codes [Moon, T.K., 2006] 
 
Let C be an (n ,k) block code with minimum distance mind  over a field with q elements 

with redundancy r = n – k.  There are relationships that must be satisfied among the code 

length n, the dimension k, the minimum distance mind , and the field size q. 

 

Theorem 2.2.1- (The Singleton bound).  The minimum distance for an (n, k) linear code 

is bounded by  

                                             1min  knd                                                                   (2.4) 

Proof  

An (n, k) linear code has a parity check matrix H with n – k linearly independent rows. 

Since the row rank of a matrix is equal to its column rank, rank (H) = n – k. Any 

collection of 1 kn  columns must therefore be linearly dependent. Thus, the minimum 

distance cannot be larger than 1 kn . 
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A code for which 1min  knd  is called a maximum distance separable (MDS) code. 
 
 
Theorem 2.2.2 - (The Hamming Bound).  A t-error correcting q-ary code C must have 

redundancy r satisfying  

                                                    ),(log tnVr qq                                                            (2.5) 

 

Proof 

Each of M spheres in C has radius t. The spheres do not overlap, or else it would not be 

possible to decode t errors. The total number of points enclosed by the spheres must be 
nq . We must have  

                                                     
n

q qtnMV ),(                                                             (2.6) 

where ),( tnVq  is the number of points in a Hamming sphere of radius 



 


2

1mindt  

so   

                                                     
),( tnV

M
q

q

n


                                                             (2.7)

 

from which the result follows by taking qlog  of both sides. A code satisfying the 

Hamming bound with equality is said to be a perfect code. In this section, we are seeking 

theoretical limits without regard to the feasibility of a code for any particular use. 

 

Definition 2.2.1 

 Let ),( mindnAq  be the maximum number of codewords in any code over qF of length n 

with minimum distance mind . For a linear code the dimension of the code is      

  

).,(log mindnAk qq  
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Definition 2.2.2 

For a code with length n and minimum distance mind , let nd /min be the relative 

distance of the code. For a code with relative distance ,  the distance is 

)1(min Onnd    

 

 

Definition 2.2.3 

 Let  

                                          
   8.2,(log1suplim)( nnA

n qq

n

q 



  

For a linear code, ),(log mindnAqq  is the dimension of the code and ),(log1
mindnA

n qq  is 

the code rate, so )( q  is the maximum possible code rate that an arbitrary long code 

can have while maintaining a relative distance .  We call this the asymptotic rate.  

 

The functions ),( mindnAq  and )( q are not known in general, but the upper and lower 

bounds on these functions can be established. For example, the Singleton bound can be 

expressed in terms if these functions as  

                                           
1

min
min),(  dn

q qdnA                                                  (2.9) 

and, asymptotically,  

                                                             1)(q                                                      (2.10) 

Many of the bounds presented here are expressed in terms of )( q . A lower bound is 

the Gilbert-Varshamov bound. As upper bounds on )( q , we have the Hamming and 

the Singleton bounds, the Plotkin bound, the Elias bound, and the McEliece-Rodemich-

Rumsey-Welch bound. 
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Chapter 3 

Application of Error Correcting Codes to Single Level Cells 
 
3.1 Introduction  

 
In Chapter 1, we had discussed memory organization where we had specified the manner 

in which sectors, pages and blocks are integrated to give rise to a Flash memory device. It 

was mentioned that two memory models have been extensively discussed in literature 

[Mehnert, A. 2008].  Accordingly, let us consider the first model (Memory model 1) with 

512 bytes of data and 16 bytes of overhead. 

 

 
512 bytes 

(4096 bits) 

 
16 bytes 
(128 bits) 

 

                                         k information bits         )( kn  overhead bits 
 

The design of BCH codes has been discussed in [Chapter 2, section 2.1]. As discussed 

there, to design a BCH code of length n, we choose the smallest m such that n|qm-1, 

where q is a power of prime. In practical applications usually q = 2. Hence we choose the 

smallest m such that n| 2m-1. BCH codes, take advantage of a useful result that ensures a 

minimum “design distance  ”, given a particular constraint on the generator polynomial. 

 

3.2  Synthesis of  BCH Codes 
 
3.2.1 Memory model  1 
 
The BCH Bound: 

 To recapitulate, let C be a q-ary (n, k) cyclic code with a generator polynomial g(x). Let 

m be a multiplicative order of q modulo n ( mq
F is thus the smallest extension field of qF  
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that contains a primitive thn root of unity). Let   be a primitive nth root of unity. Select 

g(x) to be a minimal-degree polynomial in qF  such that 

0)(..............)()()( 221    bbbb gggg  for some integers 0b  and 

.1  g(x) thus has )1(   consecutive powers of   as zeros. If these requirements are 

taken care of, the code C defined by g(x) has minimum distance mind .  The parameter 

  is the design distance of the BCH code defined by the generator polynomial g(x). 

 

A (n, k) block code is characterized by the value of n, k. The process used for synthesis of 

codes is as follows: 

(i) Based on the value of knkn ),,(  represents the number of parity symbols       

(n > k).  Choose the smallest value of m such that 12| mn  (i.e. if k = 4096 bits 

= 122 , then shortest primitive length BCH code with n > 4096 is 81911213 n  

bits). 

(ii) Select the appropriate extension field of 2F  in which the primitive nth root of 

unity can be found (in this case 132F ). 

(iii) Determine the conjugacy classes and associated minimal polynomials. 

(iv)  Synthesize generator polynomial by following requirements of BCH bound. 

 
Let the natural length 81911213 n . The elements of 132F are 

132F =  { 819032 ......,..........,.........,,,1,0   }. We have used the primitive polynomial 

13431)( xxxxxp  , to generate the representation of the elements of 132F .The 

conjugacy classes are listed below. 

 
1. { 409620481024512256128643216842 ,,,,,,,,,,,,  } 

2. { 40976144307215367683841929648241263 ,,,,,,,,,,,,   } 

3. { 40982049512025601280640320160804020105 ,,,,,,,,,,,,  } 

4. { 409961457168358417928964482241125628147 ,,,,,,,,,,,,  }       
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5. { 4100205010254608230411525762881447236189 ,,,,,,,,,,,,  }     (3.1)                

6. { 410161463073563228161408704352.17688442211 ,,,,,,,,,,,,  } 

7. { 410220515121665633281664832416208104522613 ,,,,,,,,,,,,  } 

8. { 410361477169768038401920960480240120603015 ,,,,,,,,,,,,  } 

9. { 410420521026513435221761088544272136683417 ,,,,,,,,,,,,  } 

      10.      { 4105614830741537486424321216608304152763819 ,,,,,,,,,,,,  } 

 

Corresponding to each conjugacy class is a minimal polynomial. This polynomial has the 

elements of the conjugacy class as its roots. For example, the minimal polynomial of 

conjugacy class 1 is specified as,   

)(
1

))()()((
))()()()()()()()((

1

1343

409620481024512

256128643216842

xM
xxxx

xxxx
xxxxxxxxx












            (3.2)
 

 
Similarly, the minimal polynomial of conjugacy class 2 is specified as 

)(
1

))()()()((
))()()()()()()((

3

13109754

4097614430721536768

3841929648241263

xM
xxxxxxx

xxxxx
xxxxxxxx












                      (3.3)
 

 

The minimal polynomial of the conjugacy classes listed in (3.1) is enumerated in (3.4). 
1343

1 1)( xxxxxM   

13109754
3 1)( xxxxxxxxM   

1311874
5 1)( xxxxxxxM   

131098632
7 1)( xxxxxxxxxM   

13128765
9 1)( xxxxxxxM                                                                   (3.4 a)                                                                                                             
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139875
11 1)( xxxxxxxM   

     
13126543

13 1)( xxxxxxxM   

     13975432
15 1)( xxxxxxxxxM                                                (3.4 b) 

     13111098765432
17 1)( xxxxxxxxxxxxxM   

     131211953
19 1)( xxxxxxxM   

 

Let the requirement be to synthesize a  t = 8 BCH code with k = 4096 bits per sector. As 

per the BCH bound, the design distance .1712  t  Assuming  b = 1 (narrow sense 

BCH code) the required roots of )(xg are:  }...,..........,.........,,{ 232  b  

              5.3},,,,,,,,,,,,,,,{ 1615141312111098765432                      

Hence )(xg is computed as the LCM of the minimal polynomials of the required roots. 

For correction of 8-bit (t = 8), the generator polynomial  

   6.3)(),(),(),(),(),(),(),()( 15131197531 xMxMxMxMxMxMxMxMLCMxg 
 

Therefore, the generator polynomial  )(xg  for t = 8 is  

1041009896959493929188848279

787770696867656459585249

484742414038323130262423

221815141312119851)(

xxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg









                      (3.7)                               

 

Here the degree )}({ xg  = 104 = n – k.  )(xg  will define a (8191, 8087) BCH code. This 

code has to be shortened. 

n – k   = 104,  n = k + 104. But k = 4096. Hence n = 4200. 

To be used in this application meeting the requirements of memory model 1, the BCH 

code with parameters (8191, 8087) has to be shortened by eliminating 3991 (i.e. 8087 – 

4096) higher order positions which are set to zero. After this we obtain a shortened 

(8191-3991, 8087-3991) = (4200, 4096) BCH code. 
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Hence, for t = 8, the parameters of shortened BCH code are (4200, 4096).  

 

The encoding process is briefly explained below. The message polynomial is expressed 

as  
1

1
2

210 ......................)( 
 k

k xuxuxuuxu  

        8086
8086

4096
4096

4095
4095

2
210 ................................. xuxuxuxuxuu           (3.8) 

Since the sector has only 4096 bits, the positions 80864096 ............ uu  are occupied by zeros. 

Effectively  4095
4095

2
210 ......................)( xuxuxuuxu                                       (3.9) 

Pre multiplying )(xu  by 104xx kn   

)(104 xux 8190
8086

4200
4096

4199
4095

106
2

105
1

104
0 ........... xuxuxuxuxuxu         (3.10) 

 Again the coefficients 080864095  uu  . 

Dividing )(104 xux  by )(xg  and extracting the remainder, 

)()()()()(
)()()()(

104

104

xvxgxaxuxxr
xrxgxaxux





                                                                             (3.11)   

The negative sign is ignored because the computation is 2F , in which subtraction is same 

as addition. 

 
8190

8086
4200

4096
4199

4095
104

0
103

103
2

210 ......................... xuxuxuxuxrxrxrr   

 

            redundant bits                         message bits                             zeros 

 

Similarly for t = 9,    the design distance ,1912  t   ,1b      182 b . 

Hence the required roots are: 

},,,,,,,,,,,,,,,,,{ 18171615141312111098765432   

Therefore, 
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   12.3)(),(),(),(),(),(),(),(),()( 1715131197531 xMxMxMxMxMxMxMxMxMLCMxg 

 

117115114112

11110710510310196919089878685

848382817876727170696765

646360595855545149474544

403937363332313029262523

2120191817131097651)(

xxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxg













                       (3.13) 

 

Let us now consider synthesis of a BCH code characterized by t = 9.  According to the 

requirement of the BCH bound, the required roots are  

 },,,,,,,,,,,,,,,,,{ 18171615141312111098765432  . 

Hence, degree {g(x)} = 117 = n – k. This implies, n = k + 117 = 4096 + 117 = 4213 bits. 

The original BCH code over 132F has a natural length n = 8191. We need to start with a 

primitive BCH code with parameters (8191, 8191-117) = (8191, 8074). Again, k = 4096 

bits. So,  8074 – 4096 = 3978. 

Therefore the parameters of the shortened BCH code are: 

                           (8191 – 3978, 8074 – 3978)  = (4213, 4096). 

 

For t = 10,  the design distance ,2112  t    ,1b   202 b . 

Hence the required roots are: 

},,,,,,,,,,,,,,,,,,,{ 201918171615141312111098765432   
 

 









)(),(),(),(

),(),(),(),(),(),(
)(

19171513

1197531

xMxMxMxM
xMxMxMxMxMxM

LCMxg                                    (3.14) 
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130129126124123121

118115114113111110109108103102100

979590898887868380797773

706766656362605958575149

474544363432302928272625

191716131210987631)(

xxxxxx
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg













                           (3.15)                                          

Here degree { )(xg } = 130 = n – k, 

n = k + 130 = 4096 + 130 = 4226 bits. Since the original length of the BCH code over 

132F is 8191, we have to start with a primitive BCH code with parameters (8191, 8191-

130) = (8191, 8061). As per the memory model in discussion, k= 4096 bits. Therefore, 

8061 – 4096 = 3965. Therefore the parameters of the shortened BCH code are (4226, 

4096). The memory model 1 allocates an overhead of 16 bytes (128 bits) for each sector 

(512 bytes). The number of overhead bits required equals degree )}({ xg . Table 3.1 

summarizes the results of the synthesis. 

 

Table 3.1. Number of overhead bits required for various values of t  (Memory model 1) 
 

 

 

 

 

 

The BCH code capable of correcting 8t  errors requires 104 bits of overhead and the 

BCH code capable of correcting 9t errors requires 117 bits. These requirements are 

easily met by the given memory model where 128 bits are available for storing redundant 

bits generated by the error control code. However the BCH code specified by (3.15) for  

10t  requires 130 bits of overhead which is not supported in this model.  

t Number of overhead bits 
required  (degree{g(x)}) 

8 104 

9 117 

10 130 
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Figure 3.1:  Performance of BCH Codes for enhancing Data Integrity in Flash memories 

for Memory model 1 
 

The probability of decoding error which can also be called as UBER associated with a 

code that can correct t errors can be expressed as  

    kn
n

tk

k
errordecoding RBERRBER

k
n

P 











  1

1

 

The performance of theses codes is shown in Figure 3.1. We observe that the t = 9 code 

can transform a RBER of 510  to an UBER of 2110 . Similarly, it can be observed that the 

same RBER can be transformed to an UBER of 1813 10,10   and 2310  by the codes with   

t = 6, t = 8 and t = 10 respectively. To be able to use this code we require overhead space 

of 17 bytes per sector, which is not available in this memory model. Hence, with the use 

of BCH codes, it is not possible to correct more than t = 9 errors per sector with memory 

model 1. Generally, the performance of an Error Control Code improves with increase in 

its length. This gives us the motivation to consider combining two sectors to constitute 

the information block which gives rise to one codeword. One codeword comprises of two 
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information bearing sectors (1024 bytes) and the corresponding overhead is increased to 

32 bytes. We have investigated the possibility of constructing more powerful BCH codes 

with this adaptation. 

 

3.2.2  Two Sectors as one Information Block 
 

Suppose the contents of two sectors are taken as one information block, we have 1024 

bytes of information and 32 bytes of overhead. We wish to design a shortened BCH code 

to meet this requirement. 

 

 
1024 bytes 
(8192 bits) 

 
32 bytes 
(256 bits) 

 

                                            k information bits         kn  overhead bits 
 

The number of information bits k = 8192. Hence n > 8192. We have to start with a 

primitive BCH code of length .163831214 n  A primitive th)12( 14   root of unity can 

be found in 142
F . Hence the roots of )(xg can be located in this field. 

256832  kn  bits,   1612725616383256  nk  bits. 

Parameters of the original BCH code over 142F are (16383, 16127). 

For t = 16, design distance 12  t = 33,    ,1b     322 b  

Required roots are: 

},,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

323130292827262524232221

201918171615141312111098765432




 

 

Similarly for t = 17, design distance ,3512  t  ,1b   342 b . 
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Hence the required roots are: 

},,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{

3433323130292827262524232221

201918171615141312111098765432




 

The required roots for other values of t can similarly be computed by invoking the BCH 

bound. 

The conjugacy classes for 142F  are enumerated in (3.16). 

1. { },,,,,,,,,,,,, 8192409620481024512256128643216842   

2. { 8193122886144307215367683841929648241263 ,,,,,,,,,,,,,   } 

3. { 81944097102402049512025601280640320160804020105 ,,,,,,,,,,,,,,  } 

4. { 819512289143367168358417928964482241125628147 ,,,,,,,,,,,,,  } 

5. { 81964098204992164608230411525762881447236189 ,,,,,,,,,,,,,  } 

6. { 819712290614511264563228161408704352.17688442211 ,,,,,,,,,,,,,  } 

7. { 819840991024113312665633281664832416208104522613 ,,,,,,,,,,,,,  } 

8. { 8199122911433715360768038401920960480240120603015 ,,,,,,,,,,,,,  }  (3.16) 

9. { 82004100205010258704435221761088544272136683417 ,,,,,,,,,,,,,  }                

10. { 820112308615430779728486424321216608304152763819 ,,,,,,,,,,,,,  } 

11. { 8202410110242512110752537626881344672336168844221 ,,,,,,,,,,,,,  } 

12. { 82031229314338716911776588829441472736368184924623 ,,,,,,,,,,,,,  } 

13. { 8204410220519217128006400320016008004002001005025 ,,,,,,,,,,,,,  } 

14. { 820512294614711265138246912345617288644322161085427 ,,,,,,,,,,,,,  } 

15. { 820641031024313313148487424371218569284642321165829 ,,,,,,,,,,,,,  } 

16. { 8207122951433915361158727936396819849924962481246231 ,,,,,,,,,,,,,  } 

17. { 820841042052102651384484224211210565282641326633 ,,,,,,,,,,,,,  } 

18. { 82091229661483074153789604480224011205602801407035 ,,,,,,,,,,,,,  } 

19. { 82104105102445122256194724736236811845922961487437 ,,,,,,,,,,,,,  } 
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20. { 821112297143407170358599844992249612486243121567839 ,,,,,,,,,,,,,  } 

21. { 82124106205392184609104965248262413126563281648241 ,,,,,,,,,,,,,  }      

22. { 8213122986149112665633110085504275213766883441728643 ,,,,,,,,,,,,,  } 

 

The corresponding minimal polynomials obtained are: 
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                                       (3.17)

 

 

The generator polynomial for codes designed to handle two sectors as one information 

block is computed by evaluating the LCM of minimal polynomials corresponding to the 

required roots. 
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(i)  for t =16,    
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Therefore,           
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                      (3.19)                        

 

Here degree )}({ xg  = 224 = n – k,    n = k + 224 = 8192 + 224 =8416 bits. Since the 

original length of the BCH code over 142F is  214 – 1 =16383, the primitive BCH code will 

have the parameter (16383, 16383 – 224) = (16383, 16159). 

Since k = 8192 bits,   16159 – 8192 =7967 bits.  Therefore the parameters of the 

shortened BCH code are (8416, 8192). 

Since (n – k) = 256 and degree )}({ xg  = 224, the code can correct sixteen bit errors. 

                

(ii)  for t = 17, 


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                         (3.20)
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Therefore     
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       (3.21)               

  
In this case degree )}({ xg  = 238 = n – k.    n = k + 238 = 8192 + 238 = 8430 bits. 

Therefore the primitive code parameter is (16383, 16383 – 238) = (16383, 16145).  

 

Since k = 8192,    16145 – 8192 = 7953. Therefore the parameters of the shortened BCH 

code are (8430, 8192). Since degree )}({ xg < (n –k), the code can correct up to seventeen 

bits in error over two sectors.     

 

(iii) for t = 18,  the design distance ,3712  t    ,1b     362 b . 

 Hence the required roots are:  

},,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,.,,{
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            (3.22)
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                  (3.23)           

 

Here degree )}({ xg  = 252 = n – k.     n = k + 252 = 8192 + 252 = 8444 bits. Therefore 

the primitive code parameter is (16383, 16383 – 252) = (16383, 16131). According to the 

memory model considered, k = 8192. Hence 16,131 – 8192 = 7939. Therefore the 

parameters of the shortened BCH code are (8444, 8192). Since degree { )(xg } < (n –k), 

the overhead requirements of the code can be satisfied by the architecture and the code 

can support correction of up to eighteen bits in error over two sectors. 

 

(iv) for  t = 19,    ,3912  t    ,1b   382 b . 

 Hence the required roots are:  
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 
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It is to be noted that degree )}({ xg  = 266 = n – k.    n = k + 266 = 8192 +266 = 8458 bits.

 Primitive code parameter is (16383, 16383 – 266) = (16383, 16117). 

k = 8192,   16117 – 8192 = 7925.  

Parameters of shortened BCH code are: (8458, 8192). 

 

Since degree )}({ xg  > 256 (i.e. n – k value as per the model), a 19t  error correcting 

BCH code has a overhead requirement that cannot be supported with this memory model. 

However, if the memory allocated to store redundant overhead bits is increased from 32 

to 34 bits then this solution can be employed. Further, in a similar manner, we have also 

worked out the generator polynomials of BCH codes capable of correcting ,21,20t and 

22 errors per 1024 bytes which can be used if memories with higher data integrity are 

required. However, this will necessitate the use of a greater overhead allocation for 

storing redundant bits generated by the code.  

 

(v) for t = 20,   the design distance  ,4112  t    ,1b     402 b . 

Hence the required roots are: }...,,.........,,{ 4032  . 
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                        (3.26)                          

 
In this case, degree )}({ xg  = 280 = (n – k).     n = k + 280 = 8192 +280 =8472 bits. 

Primitive code parameter is (16383, 16383 – 280) = (16383, 16103). 

k = 8192,   16103– 8192 = 7911.  

Parameters of shortened BCH code are: (8472, 8192). 

 
(vi) for t = 21,   the design distance ,4312  t     ,1b      422 b .   
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 (3.27)   



 39 

 
(vii) for t = 22,   the design distance ,4512  t   ,1b     442 b  
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  (3.28)      

 
Table 3.2 shows the summary of the results obtained after synthesizing the codes by 

taking two information sectors as one information block. The codes specified in the 

shaded blocks cannot be supported by the device architecture. 

 
 
 

 Table 3.2.  Number of overhead bits required for various values of t          
                 (Combining two sectors as one information block) 

 
 

t Number of overhead bits 
required  (degree{g(x)}) 

16 224 
17 238 
18 252 
19 266 
20 280 
21 294 
22 308 
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3.2.3 Memory Model  2 
 
Let us consider the second model (memory model  2) with 512 bytes of data and 32 bytes 

of overhead. The natural length 1213 n  = 8191 bits. 

 

 

 

 

 

 

Choosing n = 8192 – 1 = 8191 = )12( 13  .  

7935,256  kkn . 

Parameters of this code are (8191, 7935). 

From the model, n = k + 256 = 4096 + 256 = 4352. 

)4096,4352(),( kn .  

Therefore the required shortened BCH code is (4352,  4096).  

It is known that b = 1, design distance 12  t . 

 

For t = 15,  12  t  = 31.  

Required roots are: { 30232 ..,.........,,   b } . 

Similarly, for t = 16, the required roots are :{ 32232 ..,.........,,   b } 

                 for t = 17, the required roots are :{ 34232 ..,.........,,   b } 

                 for t = 18,  the required roots are :{ 36232 ..,.........,,   b } 

                 for t = 19, the required roots are :{ 38232 ..,.........,,   b } 

                 for t = 20, the required roots are :{ 40232 ..,.........,,   b } 

                 for t = 21, the required roots are :{ 42232 ..,.........,,   b } 

                 for t = 22, the required roots are :{ 44232 ..,.........,,   b }  

512 bytes 
(4096 bits) 

32 bytes 
(256 bits) 

  k information bits  (n – k)  overhead bits  
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Conjugacy classes of the elements of 132
F are listed in (3.1). The conjugacy classes of the 

remaining elements in 132F  are listed below. 

10. { 4106205351222561537226881344672336168844221 ,,,,,,,,,,,,  } 

11. { 4107614971703585588829441472736368184924623 ,,,,,,,,,,,,   } 

12. { 41082054102746096400320016008004002001005025 ,,,,,,,,,,,,  } 

13. { 41096150307556336912345617288644322161085427 ,,,,,,,,,,,,  } 

14. {  41102055512366577424371218569284642321165829 ,,,,,,,,,,,,  } 

15. { 41116151717176817936396819849924962481246231 ,,,,,,,,,,,,  }          (3.29)             

16. { 4112205610285142574224211210565282641326633 ,,,,,,,,,,,,  } 

17. { 411366152307615387694480224011205602801407035 ,,,,,,,,,,,,  } 

18. { 411420575124256212814732236811845922961487437 ,,,,,,,,,,,,  } 

19. { 411561537172358617934992249612486243121567839 ,,,,,,,,,,,,  } 

20. { 411620581029461023055248262413126563281648241 ,,,,,,,,,,,,  } 

21. { 411761543077563428175504275213766883441728643 ,,,,,,,,,,,,  } 

 

The minimal polynomials are shown in equation (3.4). The other minimal polynomials 

obtained are: 
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The generator polynomial for codes designed by considering memory model 2 is 

computed by evaluating the LCM of minimal polynomials corresponding to the required 

roots 

 
(i)  For t = 15       
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Therefore,   
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                (3.32) 

 

In this case degree )}({ xg  =195 = n – k. 

42911954096195  kn  bits. 

  Primitive code parameter over 132F : (8191, 8191 – 195) = (8191, 7996) 

k = 4096        7996 – 4096 =3900. 

  The shortened BCH code has the parameter: 

                                                   (8191 – 3900, 7996 – 3900) = (4291, 4096) 

Since degree )}({ xg  < (n – k), a 15t  error correcting BCH code can be supported by 

this memory model. 
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(ii) For t = 16     
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           (3.34)           

                                                                                                                          
 

In this case degree { )(xg } = 208 = n – k.   n = k + 208 = 4096 + 208 = 4304. 

  Primitive code parameter over 132F : (8191, 8191 – 208) = (8191, 7983). 

k = 4096        7983 – 4096 =3887. 

  The shortened BCH code has the parameters: 

                                           (8191 – 3887, 7983 – 3887) = (4304, 4096) 

Since degree )}({ xg  < (n – k), a t = 16 error correcting BCH code can be supported by 

this model. 

 

(iii) For t = 17   
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                          (3.37) 
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    (3.36)        

 
In this case degree {g(x)} =221 = n – k. 

n = k + 221 = 4096 + 221 = 4317. 

  Primitive code parameter over 132
F : (8191,  8191 – 221) = (8191, 7970) 

k = 4096        7970 – 4096 =3874 

  The shortened BCH code has the parameter:  

                                                 (8191 – 3874,  7970 – 3874) = (4317, 4096).   

Since degree { )(xg } < (n – k), a t = 17 error correcting BCH code can be supported by  

this model.                                                         

 

 

(iv) For t = 18 
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   (3.38)             

  
Here degree )}({ xg  = 234 = n – k.       n = k + 234 = 4096 + 234 = 4330. 

Primitive code parameter over 132
F : (8191, 8191 – 234) = (8191, 7957) 

k = 4096.        7957 – 4096 =3861 

  The shortened BCH code has the parameter:  

                                             (8191 – 3861, 7957 – 3861) = (4330, 4096). 

Since degree )}({ xg  < (n – k), a   t = 18 error correcting BCH code can be supported by  

this memory model. 

 

(v) For t = 19 
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            (3.40)                

 

In this case degree )}({ xg  = 247 = kn   

 43432474096247  kn  

  Primitive code parameter over 132F : (8191,  8191 – 247) = (8191,  7944) 

4096k         7944 – 4096 = 3848 

  The shortened BCH code has the parameter:  

                                                    (8191 – 3848,  7944 – 3848) = (4343,  4096) 

Since degree )()}({ knxg  , a  t = 19 error correcting BCH code can be supported by 

this model. 

 
 

(vi) For t = 20 
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              (3.42)       

 
Here degree )}({ xg  = 260 = n – k. 

  43562604096260  kn  

  Primitive code parameter over 132F : (8191, 8191 – 260) = (8191, 7931) 

k = 4096       7931 – 4096 =3835 

            Hence, the shortened BCH code has the parameter are: 

                                                                     (8191 – 3835, 7931 – 3835) = (4356, 4096)                                                                        

Since degree )}({ xg > (n – k),  a  t = 20 error correcting BCH code cannot be supported 

by this memory model. However, if overhead space is increased to 33 bytes, this code can 

still be used. Further, we have also worked out the generator polynomials of BCH codes 

capable of correcting 21t and 22 errors per 512 bytes which can be used if memories 

with higher data integrity are required. However, this will necessitate the use of a greater 

overhead allocation for storing redundant bits generated by the code.  

 
(vii) For t = 21 
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         (3.44) 

 
Here degree )}({ xg  = 273 = n – k.      n = k + 273 = 4096 + 273 = 4369 

  Primitive code parameter over 132F : (8191, 8191 – 273) = (8191, 7918) 

 k = 4096        7918 – 4096 = 3822 

 
  The shortened BCH code has the parameter:  

                                                        (8191 – 3822, 7918 – 3822) = (4369, 4096) 

     
 
 
                                                                        

(viii) For t = 22 
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29252217161587521)(

xxxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxg























      (3.46) 

 
Now, for t =22,   degree )}({ xg  = 286 = n – k. 

  n = k + 286 = 4096 + 286 = 4382. 

  Primitive code parameter over 132F : (8191,  8191 – 286) = (8191,  7905) 

k = 4096        7905 – 4096 = 3809 

  The shortened BCH code has the parameter: (8191 – 3809,  7905 – 3809) 

                                                                            = (4382,  4096) 

 
Table 3.3. Number of overhead bits required for various values of t  (Memory model 2) 

 
T Number of 

overhead bits 
required  

(degree{g(x)}) 

Shortened BCH 
code parameter 

15 195 (4291, 4096) 
16 208 (4204, 4096) 
17 221 (4317, 4096) 
18 234 (4330, 4096) 
19 247 (4343, 4096) 
20 260 (4356, 4096) 
21 273 (4369, 4096) 
22 286 (4382, 4096) 
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Table 3.3 shows the summary of the results obtained after synthesizing the codes by 

considering memory model 2. The performance of these codes is shown in Figure 3.2.  
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Figure 3.2:  Performance of BCH Codes for enhancing Data Integrity in Flash memories 

for Memory model 2 
 
 
3.3 Synthesis of  RS Code for Memory Model 1 
 

(i)  Sector size = 512 bytes, Overhead = 16 bytes 
 
Consider the architecture of memory model 1, where, each sector is further partitioned 

into four subsectors, each with 128 bytes of information and 4 bytes of overhead. 

 

 

 

 

 

 

 

128 bytes 

128 bytes 

128 bytes 

128 bytes 

4 bytes 

4 bytes 

4 bytes 

4 bytes 
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Natural length of a RS code over 82F ,  128 n .    

4 kn  bytes. This leads to the selection of  (255, 251)  RS code over 82
F  . 

2
22

1min 



 





 


kndt  

For t = 2, we have 8 bit symbols. Therefore the shortened RS code over 82F  is  

(132, 128). 

,512  t         ,1b     42 b .  

So the required roots are }.,,.........,{ 22  b  = },,,{ 432   

)47.3(
))()()(()(
11623122163304

432









xxxx
xxxxxg

                                         

This is of the form 1)( 1
2

2
3

3
4  xgxgxgxxg  

Since RS codes are cyclic codes, encoding in systematic form is analogous to the binary 

encoding procedure. One can think of shifting a message polynomial, m(x), into the 

rightmost k stages of a codeword register and then appending a parity polynomial, p(x), 

by placing it in the leftmost kn  stages.  So the steps are: 

 
(i) Compute )(xmx kn . 

(ii) Divide  )(xmx kn  by the generator polynomial )(xg and compute the     

remainder.  

 i.e. )()()()( xrxgxqxmx kn  ,  

where )(xq is the quotient and )(xr is the remainder. 

(iii) Compute )()( xrxmx kn  . 

 

(ii) Another type of partition can also be thought of. In this case, the sector is partitioned 

into two sub-sectors, each containing 256 bytes of information and 8 bytes of overhead. 

This is illustrated below. 
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In this solution, it should be noted that each symbol used in the RS code is 9 bits 

wide. Each information block consists of  228 nine bit symbols. The first 228 symbols 

comprise of user data. The last symbol has five bits of user data to which four 

additional bits are padded. The original RS code over 92F has length 129 n =  511. 

Therefore the primitive length RS code has parameters (511, 504).  

81228235min d   nine bit symbols.      

3
2

1min 



 


dt  nine  bit symbols.        ,712  t     62 b  

So the required roots are  },........,{ 22  b  = },,,,,{ 65432   

))()()()()(()( 65432   xxxxxxxg              

           2912982763373417851762547   xxxxxxx                            (3.48) 

This is of the form  01
2

2
3

3
4

4
5

5
6

6
7 gxgxgxgxgxgxgx   

This is shortened to (235, 228). 

 

3.4  Synthesis of RS code for Memory  Model  2 
 
 

 

 

 

 

256 bytes = 2048 bits  

256 bytes = 2048 bits  

8 bytes = 64 bits  

8 bytes = 64 bits  

128 bytes 

128 bytes 

128 bytes 

128 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 
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In memory model  2,  k = 512 bytes and overhead )( kn  = 32 bytes. So if each sector is 

partitioned into four subsectors, then each subsector will have 128k bytes and  

8)(  kn bytes.  

bytesnkkn 1368128,128,8   

,91  kn     4
2





  knt . 

The original RS code over 82F  has length 255128' n . Hence the code has the 
parameters (255, 247). The shortened RS code over 82

F has parameters (136, 128). 
Design distance 82,912   bt       
Required roots are: }..,,.........,{ 22  b  = },,,,,,,{ 8765432   
 

))()()()()()()(()( 8765432   xxxxxxxxxg  
            37224283172471517864472278   xxxxxxxx      (3.49) 

 
This is of the form  372

2
3

3
4

4
5

5
6

6
7

7
8  xgxgxgxgxgxgxgx  

 

Thus, this chapter has been devoted to the synthesis of various BCH and RS codes which 

can be employed to protect information integrity in Single level Cell (SLC) based Flash 

memories. In the next chapter, we will focus our attention to the synthesis of codes which 

can be used to protect information integrity on Multi Level Cell (MLC) based Flash 

memories.   
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Chapter 4 

Application of Error Correcting Codes to Multi Level Cells 
 
4.1 Introduction 
 
In recent years, flash memory has been increasingly used in many embedded systems. 

This is because the performance and capacity of NAND flash memory has improved over 

the years. Hard disk drive (HDD) based storage devices can save large amounts of data at 

low price, but they have disadvantages such as large size, lesser durability, high power 

consumption and long response time. Flash memory has been appropriated for small 

portable devices because it overcomes these disadvantages. However, Flash devices   

have not achieved the reliability of their HDD counterparts. Attempts have been made by 

many researchers to address the reliability problem by incorporating powerful ECC 

algorithms [Agarwal, A. et al. 2005], [Slayman, C.W. 2005], [Bajura, M et al. 2007]. In 

this chapter, we have proposed a few solutions to mitigate this problem. 

 

MLC flash memories have replaced SLC flash memories in some applications in recent 

years. Because multiple bits are stored per memory cell in MLC flash memory, there is 

an improvement in the storage density. Unfortunately, this is accompanied by an increase 

in the probability of error. This means as the number of distinct levels that can be stored 

in a cell increases, one can expect an increase in the RBER. Hence powerful ECC 

algorithms that can detect and correct these error patterns have to be developed and 

deployed if MLC devices are to find widespread acceptability. 

 

Details of flash memory organization and its structure and characteristics have been 

discussed in Chapter 1. As mentioned there, conventional SLC can hold two distinct 

levels of charge, and hence it can store one bit of data in each memory cell, while a MLC 

can reliably hold Q = 2b levels of charge, and hence it can store b bits of data, where b is 

typically 2 or 3 [Rossi, D. and Metra, C. 2003], [Rossi, D. et al. 2001], [Sun, F.et al. 
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2007], [Sun, F. et al. 2006]. Although MLC memory has higher density than SLC 

memory, MLC is more vulnerable to errors because small fluctuation of the charge 

amount in the floating gate and slight variation of gate voltage result in misreading of 

stored data. Multilevel flash memory cells have found application in efforts to increase 

density of bits per unit area [Lin, H. et al. 2002] in recent years. 

 

4.2 Modeling of Multi Level Cell as a Channel 

 
In this section, we describe the modeling of MLC cell as a channel. This will allow us to 

quantify the performance of these codes and measure the degree of improvement in data 

integrity provided by the use of these codes. In MLC memory devices, b-bits of data are 

stored in a single cell by designing the cell to hold Q = 2b distinct levels of charge in the 

floating gate. The amount of charge residing on the floating gate is identified by 

observing the relation between the control gate voltage, VCG and the current value from 

the drain to source, ID. Figure 4.1 [Maeda, Y. et al. 2009] depicts schematic relation 

between the control gate voltage and the drain-source current ID where Q = 22 = 4. 

During the read operation, a gradually increasing gate to source voltage ( CGV ) is applied 

and the drain to source current ( DI ) is monitored. When the value of DI  just exceeds THI , 

further increment in CGV is stopped. This value of CGV denotes the read out voltage
iRV . It 

can be inferred from Figure 4.1 that as the charge level in the floating gate is increased, 

larger control gate voltages ( CGV ) have to be applied before significant drain-source 

current can flow. As can be seen from the Figure 4.1, if the charge level in the floating 

gate corresponds to level 3, then the drain-source current ( DI ) exceeds the threshold 

value ( THI ) only when 3THCG VV  . The charge amount levels in Q-level cell are 

expressed by integers {0,1,…….., Q-1}. For a charge amount level i, threshold voltage 

VTHi , is determined as the minimum control gate voltage VCG which gives the drain-

source current ID greater than ITH .  From Figure 4.1, it is apparent that  VTH0 <VTH1  <.........
  < 

VTHQ-1.  ITH is a predetermined threshold drain-source current. In a Q-level MLC the 

distinct symbols that can be stored are 0,1,2,….., Q-1. During the read process, the 
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mapping between the readout voltage 
iRV and the symbol present in the location being 

accessed can be specified as in Table 4.1. 

 
Figure 4.1:  Schematic relation between control voltage and drain-source current in 4-
level memory cell. 
 

Table 4.1:  Mapping between the readout voltage 
iRV  and the symbol stored in MLC 

 
Range of 

iRV  Symbols 

0
0 THR VV

i
  0 

10 THRTH VVV
i
  1 

21 THRTH VVV
i
  2 

  
  

  
  

QiQ THRTH VVV 
1

 Q-1 

 

The probability distribution of the readout voltages 
iRV  is usually approximated by 

Gaussian distribution [Maeda, Y. and Kaneko, H. 2009], [Sun, F. et al. 2006], [Sun, F.et 

al. 2007] whose probability density function is defined as follows:                                                                                                                                 

ID 

Level 
    0 

Level 
    2 

ITH 

VTH0 VTH1 VTH2 VTH3 

Level 
    1 

Level 
    3 

VCG 
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2

2

2

)(

22
1)( i

iir

i

v

i

Ri evp 








                                                      (4.1) 

 
Here, i  and i  are the mean and standard deviation of VTHi  respectively. 

iRv represents 

the sample value of the readout voltage 
iRV . The variance  i  (which is a measure of the 

width of the Gaussian curve in Figure 4.2) is an indication of the likelihood of the stored 

data being read erroneously. A large value of i  indicates that the probability of reading 

back a symbol that is different from that which was written into that location is relatively 

large. Thus, a large value of   gives rise to a large value of RSER.  

 

 
Figure 4.2:  Probability density functions in 4-level cell [Maeda, Y. et al. 2009], [Sun, F. 
et al. 2007]. 
 

Figure 4.2 represents the typical probability distribution associated with the readout 

voltage corresponding to the four different stored symbols in a 4-level cell. The two inner 

distributions have the same standard deviation, denoted as  , the standard deviations of 

the outer two distributions are 5.1  and 2.1  respectively. Since standard deviations of 

)(0 iRvP  and )(1 iRQ vP  are usually larger than that of )(
iRi vP  [Gregori, S. et al. 2003], 

[Sun, F et al. 2007], [Maeda, Y. et al. 2009] the errors in MLC cannot be expressed by 

any conventional channel model, such as additive white Gaussian noise (AWGN) 



 59 

channel. Thus a suitable channel matrix has to be determined to describe the various 

errors encountered during reading process in a MLC and their relative probabilities of 

occurrence. 

 
The error probabilities in the MLC are expressed by the following channel matrix: 
 

                                  





























1,11,10,1

1,11,10,1

1,01,00,0

QQQQ

Q

Q

ppp

ppp
ppp

P









                                              (4.2) 

 

where  jip ,  indicates the probability that cell data of original level i is read out as level j. 

Here, iip ,  is the probability that the original data of level i is read out without any error. 

Under the assumption of the Gaussian distribution, the probability jip ,  is calculated as  

                                                      



jR

jR

V

V
iji dxxPp

1

)(,                                                       (4.3) 

 
where  ,1,........,1,0,  Qji  ,

1


RV  
1QRV . 

The channel matrices computed for different values of   for a four level MLC is shown 

in (4.5) – (4.13). A sample calculation showing the steps used to compute the entries of 

the P matrix for 2.0  is worked out. 

 

Computation of Threshold voltage for a 4-level MLC 

,5.20   ,45.01   ,19.11   0.32   

For = ,20.0  ,5.10   ,1    
 

                             
2
0

2
0

2
)(

2
0

0
2

1)( 








x

exP   and    
2
1

2
1

2
)(

2
1

1
2

1)( 








x

exP  

 
Solving two equations, the value of x (

0THV ) is obtained. 
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

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2
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2
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
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e
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









 





)04.0(2
)45.0(

)09.0(2
)5.2( 22 xx

e  = 1.5 
 
                                   28184.1x  
 
The channel matrix for Q = 4 level cell memory is calculated as follows.                                    
 

                  




































3,3
16106278

17
2,2

16134

13416
1,1

17

1998216
0,0

101.1104.1106.8
103.9103.1109.2
107.3103.1106.8
105.2105103.1

p
p

p
p

P                               (4.4)    

                 
 
Here the standard deviations of the threshold voltages are assumed to be 

12.0,1.0,15.0 3210   and the averages 19.1,45.0,50.2 210    and 

33  . The readout voltages are 27.1
0

THV , 37.0
1
THV   and 01.2

2
THV . The above 

channel matrix shows that, MLC suffers from asymmetric errors in which error 

probability between adjacent levels is high, while that between separate levels is 

relatively low. The channel matrix (P) computed for different values of   is enumerated 

below: 
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For 01447.2,37.0,27427.1,12.0
210
 THTHTH VVV

  

 
 
 

      




































1121085172.31002228.81047236.6
1019699.311014819.41017817.5

100035.51014932.41102456.3
100705.41055699.11089315.41

75194

121294

941212

1393712

P       (4.6) 

 
 
 
For 0157.2,37.0,27581.1,14.0

210
 THTHTH VVV  

 

      




































11027975.21086358.41041905.3
1088968.111035449.21080174.9
1007205.11035449.211083252.1
1070494.71002922.81078008.21

947143

9970

6999

143439

P          4.7) 

 
 
 
For 01582.2,37.0,27758.1,16.0

210
 THTHTH VVV  

 

    





































1104803.11022396.51094897.2
1022571.111048769.11078837.5

10863.61048769.111015569.1
1079663.21093644.21075834.11

743110

7754

5477

79337

P              (4.8)              

 
 
 
For 01664.2,37.0,27959.1,18.0

210
 THTHTH VVV  

 

    




































999997.01064944.21008814.21015173.1
1019042.2999995.01061237.21085622.3

108336.41061237.2999995.01002467.2
1007687.41050639.31009144.3999997.0

63487

6643

4366

63186

P              (4.9)    
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For 01756.2,37.0,28184.1,20.0
210
 THTHTH VVV  

 

      




































999979.01012444.21003026.31069782.1
1075326.7999962.01006575.21017229.2
1083418.21006575.2999963.01059682.1
1051722.1105204.51044804..2999976.0

52871

5535

3555

51225

P           (4.10)              

 
 
For  01857.2,37.0,28342.1,22.0
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Let us assume that symbol i is written into a MLC cell and that the contents of this cell 

are read out in error during a read cycle. As a result of the asymmetric error mechanism, 

the probability of symbol i-1 or i+1 appearing at the MLC output is significantly higher 

than the probability of any other symbol from the set of symbols that can be stored in the 

MLC. This can also be inferred by a careful examination of the P matrices. To illustrate 

this idea, let us examine the second row of any P matrix in equations (4.5) to (4.13). We 

observe that the entry 2,2p  takes on a value which is close to 1. The entries 1,2p and 

3,2p have magnitudes which are significantly higher than the other entries in this row. 

This implies that if symbol 1 is written into a cell which is read out in error, the erroneous 

read out values are most likely to be symbol 0 or symbol 2. The probability of seeing any 

other symbol at the output of this cell is vanishingly small. In general, for a Q-level cell, 

the RSER (Raw Symbol Error Rate) can be computed as, 

                                            





1

0

)/()()(
Q

i
iePiPeP                                                    (4.14) 

where )/( ieP  denotes the probability of reading out the contents of a cell in error when 

symbol i has been written into the cell. Thus, for Q = 4, the equation representing the 

RSER is computed as follows:     

                          

                       3/)3(2/)2(1/)1(0/)0()( ePPePPePPePPeP                 (4.15)      

    

4.3   Code Synthesis for Multilevel  Flash 

 
Referring to memory model 1, (512 bytes of information and 16 bytes of overhead), with 

Q = 2 level MLC, for t = 9, the shortened BCH code parameters are (4213, 4096) over 

132F . 

                      421242114210543210 |.....................................||| vvvvvvvvv  

                       s0           s1           s2    ………………………………………………. s2106 
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If Gray code is used to map binary 2 – tuples to symbols over 22
F , then an error event 

(i.e, a symbol being readout in error) is almost always due to a single bit change in two 

bit representation. Error events involving both the binary digits in error are extremely 

improbable (i.e, the probability of such events are of the order of 8210  or smaller). Thus 

by assigning Gray map to assign bit pattern to symbols, the (4213, 4096) binary BCH 

code capable of correcting t = 9 errors over a span of 4213 bits can effectively correct  

t = 9 symbol errors over a span of 2107 4-ary symbols. 

 

Now combining two sectors, the memory model will have 1024 bytes (8192 bits) of 

information and 32 bytes (256 bits) of overhead. If this model is used to synthesize the 

codes for Q = 4 level MLC, then length of the code 163831214 n .Also, 256 kn . 

For t = 18, the shortened BCH code parameters are (8444, 8192). This code can correct 

eighteen  single bit errors over a span of 8192 bits (one sector in Q = 2 case). It can also 

correct eighteen symbols over a span of 8444 4-ary symbols with Gray mapping. 

 

 

4.3.1 RS Codes 

 
Referring to the memory model 1 (with 512 bytes of information and 16 bytes of 

overheads),  a  t = 9 BCH code will have the parameters of (4213, 4096) after shortening. 

So, in this case k = 512, n > 512,   1210 n  = 1023. Let us synthesize a RS code 

over 102F .  

40968512512 k  bits ~ 410 ten bit symbols. 

Considering 122,1312,1,6   btbt . The generator polynomial is  

))((

))()()()()()()()()(()(
1211

1098765432




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

xx
xxxxxxxxxxxg
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7968644454194244367628618006)(

xxxxx
xxxxxxxxg








                (4.16) 
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Here the degree of g(x) =12. Therefore, n – k = 12 ten bit symbols i.e. 120 bits. This code 

is an n=422, k= 410, t=6 RS code over 102F . So, six symbols in errors can be corrected. 

 

If two sectors are combined, then k = 1024 bytes = 8192 bits and n – k| max =32 bytes = 

256 bits. The RS code should be from the field },.......,,,1,0{ 10222
210 F . 

k = 819.2 ~ 820 ten bit symbols and n – k  ~ 25 ten bit symbols. 

 

For t = 12,  ,2512  t   242 b . 

Therefore, 
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



           (4.17) 

 
Here degree of g(x) = 24 = n – k. Since k = 820, n = 24 + k = 844. The suitable code is 

(844, 820) RS code over 102F , with t = 12. The code can correct twelve ten bit symbols 

over a span of 844 ten bit symbols. 

 
 

4.3.2  Code synthesis for 8-level MLC 

 
Let us consider 8-level MLC flash with memory model 1 architecture. 

 

512 bytes 
(4096  8-ary cells) 
 
4096 x 3 = 12288 bits 

16 bytes 
 
16x8x3 = 
384 bits 
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In this case k = 12288 and n – k| max = 384. 

163831214 n   

Let t = 25, b = 1, ,5112  t  .502 b  

The required roots are: }.,,.........,,{ 5032  . After deriving the conjugacy classes, the 

minimal polynomials that are obtained are listed in equation (4.18). 
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Therefore, 
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                           (4.19) 

 

Let  t = 26, b = 1, ,5312  t  .522  b  
The required roots are:  5232 ,,.........,,   and the generator polynomial is 
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                     (4.20) 

 
 
Let  t = 27, b = 1, ,5512  t  .542 b  
The required roots are:  5432 ,,.........,,  . Hence the generator polynomial is  
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                    (4.21) 

 

 
Figure 4.3: Probability density functions in 8-level cell. 
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Fig.4.3 describes the probability density functions in 8-level cell [Maeda, Y. et al. 2009]. 

The P matrix computed for for Q = 8 with 1.0 and 0.125 is shown below. 
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RSER can be computes as follows: 
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Assuming that symbols 0 – 7 can exist with equal apriori probability in the cell, 

8
1)7(.)1()0(  PPP  , the RSER simplifies to, 
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The probability of the decoding error associated with a code that can correct t errors can 

be expressed as  
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                              (4.24) 

Probability of decoding error computed for different values of   are shown in Table 4.2 

and Table 4.3. 

 

Table 4.2: Computed values of RSER and Probability of decoding error for 4-level MLC 

 

 

Table 4.3: Computed values of RSER and Probability of decoding error for 8-level MLC 

 

Hence in majority of the cases a symbol error is due to one bit in the representation of the 

symbol being readout erroneously. Error events involving more than one binary digit in 

σ RSER Probability of decoding 
error (Memory model 1)  
 for code with parameters 

(8444, 8192)  
& 

t = 18 

Probability of decoding 
error (Memory model 2)  
 for code with parameters 

(8696, 8192) & 
 t = 36 

0.18 3.7951x10-6 3.1822x10-46 1.0053x10-99 
0.19 1.1577x10-5 4.7775x10-37 7.8451x10-81 
0.20 3.0135x10-5 3.2230x10-29 1.5854x10-65 
0.21 6.8909x10-5 1.5793x10-22 2.2225x10-52 
0.22 1.4162x10-4 7.7686x10-17 4.5486x10-41 
0.23 2.6632x10-4 4.6789x10-12 2.2312x10-31 
0.24 4.6489x10-4 3.8230x10-8 3.7709x10-23 
0.25 7.4679x10-4 3.3731x10-5 1.4532x10-16 
0.26 1.1015x10-3 8.2444x10-4 1.4151x10-10 

σ  RSER Probability of decoding 
error (Memory model 1)  
for code with parameters 

(12666, 12288)  
& 

t = 27 

Probability of decoding 
error (Memory model 2)  
for code with parameters 

(13044, 12288) 
 & 

 t = 54 
0.1 6.4951x10-9 6.0980x10-33 3.3642x10-78 

0.11 2.5685x10-4 3.0872x10-17 2.0185x10-46 
0.12 7.5244x10-4 9.0401x10-7 1.7272x10-23 
0.125 1.1821x10-3 1.6625x10-3 4.5435x10-15 
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error are highly improbable. Hence we have estimated the value of the UBER as the same 

as Uncorrectable Symbol Error Rate (USER) which is calculated from (4.24).  This can 

be observed by an examination of the P matrices (4.5) - (4.13). Let us examine the 

second row of (4.10). We see that if symbol 1 is written into the cell, the probability of it 

being read out as symbol 0 or 2 is of the order of 510 while the probability of the 

contents being read out as symbol 3 is of the order of 3510 . Thus by assigning Gray map 

to assign bit pattern to symbols, the (8444, 8192) binary BCH code capable of correcting 

t = 9 bit errors over a span of 8444 bits can effectively correct t = 9 symbol errors over a 

span of 4222  4-ary symbols.  The performance plots of the codes synthesized are shown 

in Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7. It is observed that as vrange/sigma 

increases, the values of UBER becomes smaller and smaller with the use of these codes. 
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(8444,8192)BCH code with t=18

 
Figure 4.4:  Performance of t = 18 BCH code for MLC (4-level) 
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(8696,8192)BCH code with t=36

 
Figure 4.5:  Performance of t = 36 BCH code for MLC (4-level) 
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(12666,12288)BCH code with t=27

 
Figure 4.6:  Performance of t = 27 BCH code for MLC (8-level) 

 



 74 

16.8 16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
10-80

10-70

10-60

10-50

10-40

10-30

10-20

10-10

vrange/sigma(dB)

pr
ob

ab
ili

ty
 o

f d
ec

od
in

g 
er

ro
r

8 level memory model 2

 

 
(13044,12288)BCH code with t=54

 
Figure 4.7:  Performance of t = 54 BCH code for MLC (8-level) 

 

 From Table 4.2, we infer that in the case of 4-level MLC, use of codes based on Memory 

model 1 can enhance device reliability significantly for values of 22.0 . Use of codes 

based on Memory model 2 can improve device reliability even when  increases to 0.25. 

Similarly from Table 4.3, we infer that for 8-level MLC, use of suitable codes based on 

Memory model 1 can enhance device reliability for values of 11.0 . Codes based on 

Memory model 2 can improve reliability even when value of   increases to 0.125.  The 

generator polynomials computed are shown in (4.25), (4.26), (4.27), (4.28).  
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For t = 18 
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For t = 27 
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For t = 36 
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For t = 54 
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4.3.3 Code synthesis for 16-level MLC 

 
Consider 16-level MLC flash with memory model 1 architecture. 

 
512 bytes                                      
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Figure 4.8:  Probability distribution for 16-level cell 

 

We have investigated that the best possible BCH code in 16 level flash memory with 

memory model 1 is the shortened (16894, 16384) over 152F  with error correcting 

capability t = 34. Here degree {g(x)} = 510 = n – k, hence n = k + 510 = 16384 + 510 = 

16894. Therefore the primitive BCH code parameters are          

                                              )32257,32767()51032767,32767(    
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 k = 16384. Hence,  32257 – 16384 = 15873. Therefore the parameters of the shortened 

BCH code are (16894, 16384). Since degree {g(x)} = 510 < 512, the overhead 

requirements of the code can be met by the Memory model 1. Hence, for t = 34, the 

parameters of shortened BCH code are n=16894,  k=16384. The BCH code specified by 

these parameters can correct t = 34 errors over a span of one sector (5124 8=16384 

bits) in 16 level flash memory. 

 

RBER can be computed as follows: 
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Assuming that symbols 0 – 16 can exist with equal probability in the cell, 
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Consider 16-level MLC flash with memory model 2 architecture. 
 
 

512 bytes                                      
(4096  16-ary cells)                   

4096 x 4 = 16384 bits 

32 bytes       
32x8x4= 1024 

bits 
 
 

We investigated that the best possible BCH code in 16 level flash memory with memory 

model  2  is the shortened (17404, 16384) over 152F  with error correcting capability t = 

68. Here degree {g(x)} = 1020 = n – k, hence  n = k + 1020 = 16384 + 1020 = 17404. 

Therefore the primitive BCH code parameters are  

                                   )31747,32767()102032767,32767(     
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k = 16384, 31747– 16384 = 15404. Therefore the parameters of the shortened BCH code 

are (17404, 16384). Since degree {g(x)} = 1020 < 1024, the overhead requirements of the 

code can be met by the Memory model 2. Hence, for t = 68, the parameters of shortened 

BCH code are n = 17404 and k = 16384. The BCH code specified by these parameters 

can correct t = 68 errors over a span of one sector (512 48=16384 bits) in 16-level 

flash memory. The performance plots of 16-level flash are shown in Fig.4.9 and Fig.4.10. 

The generator polynomial for t = 34 BCH code is computed and is shown in (4.30) and 

the  generator polynomial for t = 68 BCH code is computed and is shown in (4.31). 
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Figure 4.9:  Performance of  t = 34 BCH code for MLC (16-level) Memory model 1 
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                       (4.31) 

 
This chapter has been devoted to the synthesis of various BCH and RS codes which can 

be employed to protect information integrity in Multi level Cell (MLC) based Flash 

memories. The next chapter is focused on the decoder architecture and an insight to 

LDPC codes followed by interleavers.   
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Chapter 5 

Decoder Architecture and Interleaver 

 
5.1 Decoder architecture  
 
The iterative algorithm discovered by Berlekamp and Massey for the decoding of BCH 

codes is the best known technique for finding the error-locator polynomial [Chen, Y. and 

Parhi, K. 2004], [Sun, F. et al. 2006]. The computation of inverses in a finite field  

needed in the original Berlekamp – Massey method is a complex and time consuming 

exercise. An inversion less decoding method for binary BCH codes was proposed [Reed, 

I.S. et al. 1991] to simplify the Berlekamp – Massey algorithm. Here, we have adapted 

this algorithm to obtain decoding architectures which are suitable for use in Flash 

memory applications. The algorithm is briefly described below. 

 

Let )()0( D be the error locator polynomial,  )()0( D  be the previous polynomial, 

)()0( D  be the length of LFSR and )(k  be the scaling factor. 

Let us assume the initial values to be )()0( D  = 1,  )()0( D  = 1,  )()0( D  = 0,  )(k  = 1. 

The following recursive procedure is used to compute the LFSR. If the syndrome kS is 

unknown, stop; otherwise define the discrepancy, 

                                           
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k S
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                                                     (5.1) 

 
Using the knowledge of )1( k , the polynomial )()( Dk  is updated as, 

                          DDDD kkkkk   )()()( )()1()()()1(                                   (5.2) 

 

Further, the previous polynomial )()( Dk is updated as,   
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Now the length )(k is updated as, 

                         

















kandk
kor

kkk

kkk
k

)()1()(

)()1()(
)1(

20)1(
20






                           (5.4) 

 

Finally, the scaling factor )(k is updated as, 
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Figure 5.1:  Decoder architecture 
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Figure 5.1 shows the decoder architecture. There are 12 t  switches in the circuit. Each 

switch can be in position A or B (position 0 or 1). The operation of the circuit is as 

follows: 

(i)  During initialization the switches are to be connected to position A. Once this is done 

the discrepancy is computed. 

(ii) With switches SW0, SW1, ……., SW2t-1 in position A, update the value of the 

 register. i.e. compute  )1(
12

)1(
1

)1(
0 ,........,, t  

(iii) For the given value of k (now k = 0) check whether kk )(2 . If 0)1( k  and 

kl k )(2 , keep the position of the  unchanged at position A. Upon applying the CLK 

signal, the contents of the   register shifts one position to the right. Thus  

)()( )0()1( DDD   . 

(iv)  Switch SWx is in position A. Hence upon application of CLK, )0()1(   . 

(v)  Switch SWy is in position A. Hence upon application of CLK, )0()1( ll  . 

(vi)  On the other hand, if 0)1( k  or kl k )(2 ,  push switches to position B. 

In this case,    

)0(
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(vii) Switch SWy is shifted to position B. Hence )1(l is updated by     

       11101 )0(  lk  . Thus )1(l =1.      

(viii) Switch SWx is shifted to position B. Hence,  )2()2(    

            This sequence is repeated. 

 

The following example illustrates the working of this algorithm.  

Example: Consider a t = 2 BCH code with length n = 15,  over 42F . Choosing b = 1,  

,512  t   42 b . 

Therefore the required roots are: .,,, 432       
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Let the received word be 137)( xxxr  .  

The syndromes are: 
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When  k = 0, 
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The conditions to be checked are: 

                         (i) kor kk  )()1( 20           

                        (ii) kand kk  )()1( 20   
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When k = 1,  
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Since the discrepancy ,0)2(   22 )1(   i.e. > k 
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When k = 2,      
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Since 01)3(   and 22 )2(   (i.e. k ), 
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When  k = 3,   
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Table 5.1 shows the various values obtained during each iteration in the above example. 
 

Table 5.1: Values of various parameters  
 

k )(k  )()( Dk  )()( Dk  )(k  )(k  
0 - 1 1 0 1 
1 5  D51   1 1 5  
2 0 D105    D 1 5  
3 1 210 DD   D105    2 1 
4 0 - - - - 

 
Therefore, the error location polynomial is 210)4( )()( DDDD    
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Therefore, 2  and 8  are zeros of )(D . These points to errors at locations 13x  and 2x  
respectively. 
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137)( xxxe                                                      (5.7) 

 
 
5.2 Code synthesis using LDPC Codes 
 
Low-density parity-check (LDPC) codes are a class of linear block codes. The name 

comes from the characteristic of their parity-check matrix which contains only a few 1’s 

in comparison to the number of 0’s. Their main advantage is that they provide a 

performance which is very close to the capacity for a lot of different channels and linear 

time complex algorithms for decoding. Furthermore they are suited for implementations 

that make heavy use of parallelism. 

 

They were first introduced by Gallager in his Ph.D thesis in 1960. But due to the 

computational effort in implementing coder and encoder for such codes and the 

introduction of  Reed-Solomon codes, they were mostly ignored until about fifteen years 

ago. 

 

The feature of LDPC codes [Ryan, W. E. and Lin, S] to perform near the Shannon limit 

of a channel exists only for large block lengths. For example there have been simulations 

that perform within 0.04 dB of the Shannon limit at a bit error rate of 610   with block 

length of 710 .  An interesting fact is that those high performance codes are irregular. The 

large block length results also in large parity-check and generator matrices. The 

complexity of multiplying a codeword with a matrix depends on the amount of 1’s in the 

matrix. If we put the sparse matrix  H in the form ][ IPT  via Gaussian elimination the 

generator matrix G can be calculated as P][IG  . The sub-matrix  P is generally not 

sparse so that the encoding complexity will be quite high. Since the complexity grows, 

even sparse matrices do not result in a good performance if the block length gets very 

high. So iterative decoding (and encoding) algorithms are used. Those algorithms 

perform local calculations and pass those local results via messages. This step is typically 

repeated several times. The term “local calculations” already indicates that a divide and 
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conquer strategy, which separates a complex problem into manageable sub-problems, is 

realized. A sparse parity-check matrix now helps this algorithm in several ways. First it 

helps to keep both the local calculations simple and also reduces the complexity of 

combining the sub-problems by reducing the number of needed messages to exchange all 

the information. Furthermore, it is observed that iterative decoding algorithms of sparse 

codes perform very close to the optimal Maximum Likelihood (ML) decoder. 

 

Basically there are two different possibilities to represent LDPC codes. Like all linear 

block codes they can be described via matrices. The second possibility is a graphical 

representation. 

 

 

Matrix Representation 
 
The following matrix is an example for a low-density parity-check matrix. The matrix 

defined in equation (5.8) is a parity-check matrix with dimension n ×m for a (8, 4) code. 

We can now define two numbers describing this matrix. rW  for the number of 1’s in each 

row and cW  for the columns. For a matrix to be called low-density the two conditions 

cW  << n and rW  << m must be satisfied. 

 

                                         


















01011001
11100100
00100111
10011010

                                        (5.8)      

                                        

Graphical Representation 
 
Tanner introduced an effective graphical representation for LDPC codes. Tanner graphs 

are bipartite graphs. That means that the nodes of the graph are separated into two 

distinctive sets and edges are only connecting nodes of two different types. The two types 
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of nodes in a Tanner graph are called variable nodes (v-nodes) and check nodes (c-

nodes). Figure 5.2 is an example for such a Tanner graph and represents the same code as 

the matrix in 5.8. The creation of such a graph is rather straight forward. It consists of m 

check nodes (the number of parity bits) and n variable nodes (the number of bits in a 

codeword). Check node if  is connected to variable node jc  if the element ijh of H is a 1. 

The marked path 22512 cfcfc   is an example for a short cycle. Those should 

usually be avoided since they are bad for decoding performance. 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  Tanner graph corresponding to the parity check matrix in Equation (5.8).  

 

Regular and irregular LDPC Codes 
 
A LDPC code is called regular if cW is constant for every column and cr WW   is also 

constant for every row. The example matrix from equation (5.8) is regular with 2cW  

and 4rW . It is also possible to see the regularity of this code while looking at the 

graphical representation. There is the same number of incoming edges for every v-node 

and also for all the c-nodes. If H is low density but the numbers of 1’s in each row or 

column aren’t constant the code is called a irregular LDPC code. 

 

 

0f  1f  2f  3f  

0c  1c  2c  3c  4c  5c  6c  7c  

c-nodes 

v-nodes 
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Gallager construction of parity check matrix (H) 
 
In this method of construction, the parity check matrix (H) is constructed as follows. The 

original parity check matrix (H) is divided into '' cW  sub-matrices as follows: 

 

         



























































cW

3

2

1

H

H

H

H

Η               

 

The sub-matrix 1H  is given by 

 

                         

                             

































11........110000.....................................00000
00..........001......11..................................00000

0000......................000011..........1100.........00
0000...............................000000011..........11







 

 

Number of one’s in each row = rW  
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The matrix 2H  is random permutations of columns of 1H  

The matrix 3H   is another random permutation of columns of 1H   

The matrix 
cWH  is another random permutation of columns of 1H  

In this way Parity check matrix can be constructed using Gallager approach.  

 

5.3 Application of LDPC Codes to Flash Memories 
 
We synthesized regular LDPC codes for the available standard memory models. In 

memory model 1, each sector has 512 bytes reserved for storing information and 16 bytes 

reserved for storing parity check information. In memory model 2, each sector has 512 

bytes reserved for storing information and 32 bytes reserved for storing parity check 

(redundant) information. 

Regular LDPC codes are characterized by three parameters.  

(i) Block length (n) 

(ii) Each column of parity check matrix should have the same weight cW   

(iii) Each row of parity check matrix should have the same weight rW     

 

 

5.3.1 Code synthesis for Memory Model 1 
 
For this model, we have number of information bits/sector k =512 bytes = 4096 bits. 

Number of Parity bits/sector )( kn  = 16 bytes = 128 bits. 

Total number of bits/sector = 528 bytes = 4224 bits. 

 

For LDPC codes,  

               Rate of the code   
r

c

W
W

n
kR  1  

For the given model,  n = 4224 bits and k = 4096 bits. Hence, 

                            
4224
40961 

r

c

W
W          
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Simplifying the above equation 

                            ==>      
4224
40961

r

c

W
W

                                              (5.9) 

                 ==>  cr WW 33   
Assuming ,4cW      13243333  cr WW  

                

Therefore the code parameters are:  

Block length n = 4224, 

Weight of each column of parity check matrix 4cW  

Weight of each row of parity check matrix 132rW   

Hence we have (4224, 4, 132) regular LDPC code. We have generated full rank sparse 

parity check matrix of order 4224128  for above specified code using Gallager 

construction of parity check matrix 

 

5.3.2 Code synthesis for Memory Model 2 
 
For memory model 2, we have number of information bits/sector k = 512 bytes = 4096 

bits. 

Number of Parity bits/sector )( kn   = 32 bytes = 256 bits. 

Total number of bits/sector = 544 bytes = 4352 bits. 

We have  

               Rate of the code 
r

c

W
W

n
kR  1    

For the given model,  n = 4352 bits and k = 4096 bits 

Hence we have 
4352
40961 

r

c

W
W                                    

                            ==>        
4352
40961

r

c

W
W                                            (5.10) 

                 ==>        cr WW 17   
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Assuming ,4cW    68417 rW               

Therefore the code parameters are  

Block length n = 4352 

Weight of each column of parity check matrix 4cW  

Weight of each row of parity check matrix 68rW   

Hence we have (4352, 4, 68) regular LDPC code. We have generated full rank sparse 

parity check matrix of order 4352256  for above specified code using Gallager 

construction of parity check matrix. 

 

5.3.3 Code Synthesis for Multi Level Flash Memories 
 
4-level MLC with Memory Model 1 
 
Here each cell will hold 2 bits and hence by taking one sector at a time to synthesize 

regular LDPC codes we have number of information bits/sector = 8192 and number of 

parity bits/sector = 256. Since the ratio of information bits to the total bits remains 

unchanged, the condition between row weight rW  and column weight cW  of parity check 

matrix remains same as single level cell (SLC) i.e. cr WW 33 . Assuming 4cW  which 

gives 132rW  and total bits n = 8448. Hence this results (8448,  4, 132) regular LDPC 

code and the order of parity check matrix is 8448256 . 

 

8-level MLC with Memory Model 1 
 
 In this case each cell will hold 3 bits and hence by taking one sector at a time to 

synthesize regular LDPC code we have number of information bits/sector = 12288 and 

number of parity bits/sector = 384. Since the ratio of information bits to the total bits 

remains unchanged, the condition between row weight rW  and column weight cW  

remains of parity check matrix remains same as single level cell(SLC)  i.e. rW = cW33 . 

Assuming cW  = 4 which gives rW  = 132 and total bits n = 12672. Hence this results 

(12672,  4, 132) regular LDPC code and the order of parity check matrix is 12672384 . 
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16-level MLC with Memory Model 1 
 
In this case each cell will hold 4 bits and hence by taking one sector at a time to 

synthesize regular LDPC code we have number of information bits/sector=16384 and 

number of parity bits/sector=512. Since the ratio of information bits to the total bits 

remains unchanged, the condition between row weight rW   and column weight cW  of 

parity check matrix remains same as SLC i.e. rW = cW33 . Assuming 4cW  which 

gives 132rW  and total bits  n = 16896. Hence this results (16896, 4, 132) regular 

LDPC code and the order of parity check matrix is 16896512 . We have generated full 

rank sparse parity check matrices for all the above specified codes using Gallager 

construction of parity check matrix. 

 

4-level MLC Memory Model 2 
 
 In this case each cell will hold 2 bits and hence by taking one sector at a time to 

synthesize regular LDPC code we have number of information bits/sector = 8192  and 

number of parity bits/sector = 512. Since the ratio of information bits to the total bits 

remains unchanged, the condition between row weight rW  and column weight cW  of 

parity check matrix remains same as SLC i.e. cr WW 17 . Assuming 4cW  which 

gives 68rW  and total bits n = 8704. Hence this results (8704, 4, 68) regular LDPC 

code and the order of matrix is 8704512 . 

 

8-level MLC Memory Model 2 
  
In this case each cell will hold 3 bits and hence by taking one sector at a time to 

synthesize regular LDPC code we have number of information bits/sector = 12288 and 

number of parity bits/sector = 768. Since the ratio of information bits to the total bits 

remains unchanged, the condition between row weight rW  and column weight cW  of 

parity check matrix remains same as SLC i.e. cr WW 17 . Assuming 4cW  gives 
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68rW  and total bits n =13056. Hence this results (13056, 4, 68) regular LDPC code 

and the order of matrix is 13056768 . 

 

16-level MLC Memory Model 2 
 
 In this case each cell will hold 4 bits and hence by taking one sector at a time to 

synthesize regular LDPC code we have number of information bits/sector = 16384 and 

number of parity bits/sector = 1024. Since the ratio of information bits to the total bits 

remains unchanged, the condition between row weight rW  and column weight cW  of 

parity-check matrix remains same as SLC i.e. cr WW 17 .  Assuming 4cW  which 

gives 68rW  and total bits n = 17408. Hence this results (17408, 4, 68) regular LDPC 

code and the order of matrix is 174081024 . 

We have generated full rank sparse parity check matrices for all the above specified 

codes using Gallager construction of parity check matrix. 

 
 
5.4   Interleavers 
 
A bursty channel is defined as a channel over which errors tend to occur in bunches, or 

“bursts”, as opposed to random patterns associated with a Bernoulli distributed process. 

Bursty channels usually contain some error causing agent in the physical medium whose 

effective time constant exceeds the symbol transmission rate of the channel. For example 

a scratch on a Compact Disc may obscure several consecutive bits on each of the adjacent 

tracks, thus causing multiple error bursts when the disc is played.  

 
Most binary block codes have been designed as random error correcting. A random error 

correcting code can correct up to t symbol errors per code word, regardless of the 

placement of those errors. A problem arises with these codes whenever the channel 

encountered in the application is bursty. An error burst focuses several symbol errors 

within a small number of received codewords, while the other codewords may not be 

corrupted by any errors at all.  The performance of convolutional code is also sensitive to 
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bursty channels. In the decoding of convolutional codes,   error event occur whenever the 

received codeword is closer to an incorrect code word than the codeword that was 

transmitted. A convolutional code may be able to correct an arbitrarily large number of 

well spaced-errors, while at the same time unable to handle a short burst.  

 

An Interleaver is a device that rearranges the ordering of a sequence of symbols in some 

one-to-one deterministic manner. Alternately, an Interleaver [Wicker, S. B. 1995] can be 

viewed as device that mixes up the symbols from several codewords so that the symbols 

from any given code word are well separated during transmission. Associated with any 

interleaver is a de-interleaver, which is the device that restores the reordered sequence to 

its original ordering. When the codewords are reconstructed by the deinterleaver, error 

bursts introduced by the channel are broken up and spread across several codewords. The 

interleaver/deinterleaver pair thus creates an effectively random channel. Interleavers and 

deinterleavers have a variety of applications in cryptography and communication 

technology. 

 

In many of the applications to communication technology, interleaving is used as an 

adjunct to coding for error correction. One technique which is useful for some types of 

burst error channels is to insert an interleaver between the channel encoder and the 

channel. The interleaver redistributes the channel symbols so that the symbols from a 

codeword are mutually separated by somewhat more than the length of a typical burst of 

errors. Thus, interleaving effectively makes the channel appear like a random error 

channel to the decoder. 

 

Block and cross-interleave are the most frequently used types of interleavers. The cross-

interleave is sometimes called a convolutional or periodic interleaver. An )( mn  block 

interleaver and the corresponding deinterleaver are shown in Figure. The two circuits are 

identical, each consisting of n rows of  m memory elements. The coded data stream is 

read into the block interleaver rows in the order noted in the figure. The interleaver 
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contents are then read by columns.  Any two adjacent symbols at the input are thus 

separated by )1( n  other symbols at the output.  The row length m is frequently selected 

so that each row holds an entire codeword. A burst of b errors causes a maximum of 





n
b  

errors to occur in one or more codewords. The efficiency of an interleaver can be 

measured in a number of ways.  Efficiency   may be defined to be the ratio of the length 

of the smallest burst of errors that can cause the error correcting capability t of the code 

to be exceeded to the number of memory elements used in the interleaver. Thus, for an 

)( mn  block interleave we have mtnmnt //)1(  . 

 

A cross-interleave circuit is shown in Figure 5.3. The circuit is characterized by the index 

m, the number of delay lines. Each block  D corresponds to a D-symbol delay. The input 

symbols are read onto the delay lines in the order shown in the Figure 5.3. The output of 

the delay line is read in the same order. Consider a pair of consecutive input symbols 0x  

and 1x . These two symbols are placed on adjacent delay lines one with delay tD and the 

other with delay .)1( Dt   When 0x  reaches the output position of its delay line, 1x  will 

still be D delay elements short of the output of its own line. After 0x is read, all of the m 

delay line outputs are read D times before 1x  is output.  Thus there are mD symbols 

separating adjacent codeword symbols at the output of the interleaver. 

  
Suppose that m is chosen so that it equals or exceeds the length of the codewords. Each 

symbol in a codeword is placed on a different delay line. At the output of the interleaver, 

the codeword symbols will appear in order, with each symbol separated from its 

neighbor(s) in the codeword by mD  symbols from mD other codewords.  
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Figure 5.3: A 33  Block Interleaver and Deinterleaver 
 
 

0 1 2 

3 4 5 

6 7 8 

Interleaver 
output 

Interleaver 
input 

 ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx  

Deinterleaver 
output 

Deinterleaver 
input 

6 7 8 

3 4 5 

0 1 2 

 ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx  

 ,,,,,,,,,,,,,, 131691215258147036 xxxxxxxxxxxxxx  
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    ,,,,,,,,,,,,,, 131211109876543210 xxxxxxxxxxxxxx  
 

 

 

 

 

 

 

 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4:  A Cross Interleave circuit and corresponding Deinterleaver (m = 4, D =1      
symbol) 
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A length b burst of errors may thus cause  )1/( mDb  errors in one or more codewords.  

Given a t-error correcting code, decoder errors are possible when the length of the error 

bursts equals or exceeds .1)1)(1(  tmD  

The efficiency of the cross-interleaver is [Wicker, S.B. 1995]] 

 

                     

 11.5
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)1(
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1)1)(1(



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


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






m

t
Dmm

ttmD
Dm

tmD


  

The cross-interleaver is thus slightly more than twice as efficient as the block interleaver. 

 
Let us consider a (260, 255) RS code over 82F . Let t = 2. Therefore, the design distance 

.512  t  This code is shortened to (132, 128) over 82F . As per memory model 1, 

one sector holds  4096 bits of information (512 bytes) and 128 bits redundancy (16 

bytes). Each sector is now divided into four partitions, with n – k = 4 bytes. 

 
128 bytes 4 bytes 
128 bytes 4 bytes 
128 bytes 4 bytes 
128 bytes 4 bytes 

 
We see that each partition has 128 information bytes and 4 bytes of overhead. Let the 

contents of these partitions be respectively represented by 3210 ,,, PPPP . The symbols 

(bytes) contained in these partitions may be represented as,  

 

                   131,3130,3129,3128,3127,32,31,30,33

131,2130,2129,2128,2127,2,2,21,20,22

131,1130,1129,1128,1127,12,11,10,11

131,0130,0129,0128,0127,02,01,00,00

,,,,,,,
,,,,,,,,

,,,,,,,,
,,,,,,,,

vvvvvvvvP
vvvvvvvvP

vvvvvvvvP
vvvvvvvvP

















                            (5.12)

 

 
While writing data into the memory, we pass it through a block interleaver which 

reorders the data and writes into the memory in the following way. 
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[ 1,31,21,11,00,30,20,10,0 ,,,,,, vvvvvvvv  ,,,, 127,3127,2127,1127,0 vvvv

],,,,,,, 131,3131,2131,1131,0128,3128,2128,1128,0 vvvvvvvv                                             (5.13) 

 
Let us assume that an error burst involving eight consecutive bytes in a sector has 

occurred. As an example, let us consider that 1,31,21,11,00,30,20,10,0 ,,,,,, vvvvvvvv   are in 

error. Now, while reading from the memory these symbols are read in the following 

manner. 

              131,3130,3129,3128,3127,32,31,30,3

131,2130,2129,2128,2127,22,21,20,2

131,1130,1129,1128,1127,12,11,10,1

131,0130,0129,0128,0127,02,01,00,0

,,,,,,,,

,,,,,,,,

,,,,,,,,

,,,,,,,,

vvvvvvvv

vvvvvvvv

vvvvvvvv

vvvvvvvv









                                    (5.14)

 

 
It is observed that even though eight consecutive bytes per sector are in error, after 

deinterleaving these erroneous symbols are redistributed so that each code word contains 

only two erroneous symbols. These errors can be easily corrected by the RS code. 

However, we should note that a burst of length containing nine or more symbols in error 

after redistribution by the deinterleaver will result in erroneous decoding because under 

these circumstances, it cannot be guaranteed that the number of symbols in error in each 

codeword is less than or equal to two.   

 
Let us now consider the case where we increase the interleaving depth to accommodate 

two sectors (as represented in Figure 5.5 ). Let the codewords contained in these sectors 

be labeled as .,,,,,,, 76543210 CCCCCCCC  These code words can be represented as 

shown in (5.15) 

 
 
 
 
  
 
Figure 5.5: Representation of two sectors, each with 512 bytes of data and 16 bytes of  
overhead 

128 bytes 4 bytes 
128 bytes 4 bytes 
128 bytes 4 bytes 
128 bytes 4 bytes 

128 bytes 4 bytes 
 128 bytes 4 bytes 
128 bytes 4 bytes 
128 bytes 4 bytes 
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                 131,7128,7127,75,74,73,72,71,70,77

131,6128,6127,65,64,63,62,61,60,66

131,5128,5127,55,54,53,52,51,50,55

131,4128,4127,45,44,43,42,41,40,44

131,3128,3127,35,34,33,32,31,30,33

131,2128,2127,25,24,23,22,21,20,22

131,1128,1127,15,14,13,12,11,10,11

131,0128,0127,05,04,03,02,01,00,00

,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,
,,,,,,,,,,

,,,,,,,,,,
,,,,,,,,,,

,,,,,,,,,,
,,,,,,,,,,

vvvvvvvvvC
vvvvvvvvvC
vvvvvvvvvC
vvvvvvvvvC

vvvvvvvvvC
vvvvvvvvvC

vvvvvvvvvC
vvvvvvvvvC

































                   (5.15)

 

 
These symbols are interleaved and written into memory in the following sequences. 
 









131,7131,6131,5131,4131,3131,2131,1131,0

128,7128,6128,5128,4128,3128,2128,1128,0127,7127,6127,5

127,4127,3127,2127,1127,02,72,62,52,42,32,22,12,0

1,71,61,51,41,31,21,11,00,70,60,50,40,30,20,10,0

,,,,,,,
,,,,,,,,,,,

,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,

vvvvvvvv
vvvvvvvvvvv

vvvvvvvvvvvvv
vvvvvvvvvvvvvvvv

                  (5.16) 
 
If there are sixteen consecutive bytes in errors say  
 

    2,72,62,52,42,32,22,12,01,71,61,51,41,3,1,21,11,0 ,,,,,,,,,,,,,, vvvvvvvvvvvvvvvv                        (5.17) 
 

then upon  reading from the memory (deinterleaving) it is observed that there are only 

two bytes of error per codeword. 

 

131,7128,7127,75,74,73,72,71,70,77

131,6128,6127,65,64,63,62,61,60,66

131,5128,5127,55,54,53,52,51,50,55

131,4128,4127,45,44,43,42,41,40,44

131,3128,3127,35,34,33,32,31,30,33

131,2128,2127,25,24,23,22,21,20,22

131,1128,1127,15,14,13,12,11,10,11

131,0128,0127,05,04,03,02,01,00,00

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

18.5,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC

vvvvvvvvvC
































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From this example, it is clear that as a result of the doubling of the interleaver depth, 

burst errors involving up to sixteen symbols could be corrected. Hence, a doubling of the 

interleaving depth results in a doubling of the length of bursts that can be corrected. 

We have additionally considered the use of convolutional interleavers in this application 

and quantified the improvement in the burst error correcting capabilities of the code with 

these adaptations. The structure of convolutional interleaver (cross interleaver) is shown 

in Figure 5.4. Let us consider a (7, 3) RS code over 32
F with an error correcting capability 

t = 2. It is shown in [Wicker, S.B. 1995] that the burst error correcting capability of a 

convolutional interleaver with interleaving depth m and error correcting capability t is 

quantified as   

                                            1)1)(1(  tmDB                                                   (5.19) 

where D denotes one symbol delay. If we choose m = n = 7, then the burst error 

correcting capability B = 9. Let us consider nine successive codewords produced by the 

code as shown in (5.20). 

 

                      

6,85,84,83,82,81,80,88

6,75,74,73,72,71,70,77

6,65,64,63,62,61,60,66

6,55,54,53,52,51,50,55

6,45,44,43,42,41,40,44

6,35,34,33,32,31,30,33

6,25,24,23,22,21,20,22

6,15,14,13,12,11,10,11

6,05,04,03,02,01,00,00

,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,
,,,,,,

,,,,,,
,,,,,,

vvvvvvvP
vvvvvvvP
vvvvvvvP
vvvvvvvP
vvvvvvvP

vvvvvvvP
vvvvvvvP

vvvvvvvP
vvvvvvvP



















                                                         (5.20)

                        

     

This is presented to the convolutional interleaver in the following order, 
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6,146,136,126,116,106,96,86,76,66,56,46,36,26,16,0

5,145,135,125,115,105,95,85,75,65,55,45,35,25,15,0

4,144,134,124,114,104,94,84,74,64,54,44,34,24,14,0

3,143,133,123,113,103,93,83,73,63,53,43,33,23,13,0

2,142,132,122,112,102,92,82,72,62,52,42,32,22,12,0

1,141,131,121,111,101,91,81,71,61,51,41,31,21,11,0

0,140,130,120,110,100,90,80,70,60,50,40,30,20,10,0

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

vvvvvvvvvvvvvvv

        (5.21)

 

 

After interleaving, the data is available at the output of the interleaver in the following 

order as shown in (5.22).  This is fed to the channel which might exhibit bursty behavior.  

 











6,85,94,103,112,121,130,14

6,75,84,93,102,111,120,136,65,74,83,92,101,110,12

6,55,64,73,82,91,100,116,45,54,63,72,81,90,10

6,35,44,53,62,71,80,96,25,34,43,52,61,70,8

6,15,24,33,42,51,60,76,05,14,23,32,41,50,6

vvvvvvv
vvvvvvvvvvvvvv

vvvvvvvvvvvvvv
vvvvvvvvvvvvvv
vvvvvvvvvvvvvv

                                   (5.22) 

Let us assume that during readout, the symbols are affected by a burst of error spanning 

nine successive symbols represented by 

 
                                1,120,136,65,74,83,92,101,110,12 vvvvvvvvv                                   (5.23) 
 
 
After deinterleaving, these erroneous symbols are redistributed back so that no more than 

two erroneous symbols are present per codeword. Thus the entire error burst can be 

corrected. This process is illustrated in (5.24) and the error location after deinterleaving is 

shown in (5.25). 
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6,86,76,66,56,46,36,26,16,0

5,95,85,75,65,55,45,35,25,1

4,104,94,84,74,64,54,44,34,2

3,113,103,93,83,73,63,53,43,3

2,122,112,102,92,82,72,62,52,4

1,131,121,111,101,91,81,71,61,5

0,140,130,120,110,100,90,80,70,6

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

vvvvvvvvv

                                          (5.24)

 

The output of the deinterleaver is  











6,145,144,143,142,141,140,14

6,135,134,133,132,131,130,136,125,124,123,122,121,120,12

6,115,114,113,112,111,110,116,105,104,103,102,101,100,10

6,95,94,93,92,91,90,96,85,84,83,82,81,80,8

6,75,74,73,72,71,70,76,65,64,63,62,61,60,6

vvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

vvvvvvvvvvvvvv

                        (5.25) 

Considering the case when m = 4, the burst error correcting capability is 6. Let us 

consider the codewords as in (5.20). These codewords are presented to the interleaver 

with a depth of interleaving of four as follows: 

5,61,64,50,53,46,32,35,21,24,10,13,0

4,60,63,56,42,45,31,34,20,23,16,02,0

3,66,52,55,41,44,30,33,26,12,15,01,0

2,65,51,54,40,43,36,22,25,11,14,00,0

vvvvvvvvvvvv

vvvvvvvvvvvv

vvvvvvvvvvvv

vvvvvvvvvvvv

                                       (5.26)
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After interleaving, the data is available as  

.........4,50,63,66,60,53,56,52,63,46,42,55,5

6,32,45,41,52,35,31,44,45,21,34,30,41,24,20,33,3

4,10,23,26,20,13,16,12,23,06,02,15,1







vvvvvvvvvvvv

vvvvvvvvvvvvvvvv
vvvvvvvvvvvv

          (5.27)   

Let us assume that during readout, the symbols are affected by a burst of error spanning 

six successive symbols represented by  

5,41,52,35,31,44,4 vvvvvv 

 

This is presented to the deinterleaver.  

4,50,53,46,32,35,21,24,10,13,0

0,63,56,42,45,31,34,20,23,16,0

3,66,52,55,41,44,30,33,26,12,1

6,62,65,51,54,40,43,36,22,25,1

vvvvvvvvvv

vvvvvvvvvv

vvvvvvvvvv

vvvvvvvvvv

                                                  (5.28)

 

The output of the deinterleaver is  

.........4,53,52,51,50,56,45,44,43,42,41,40,4

6,35,34,33,32,31,30,36,25,24,23,22,21,20,26,15,1





vvvvvvvvvvvv

vvvvvvvvvvvvvvvv

         (5.29)
 

After deinterleaving, these erroneous symbols are redistributed such that one or at the 

most two symbols per codeword are in error. This shows that integration of coding and 

decoding with interleaver helps in improving the data integrity of the device. 

 

This chapter has been devoted to the study of the decoder architecture and investigation 

of the role of interleavers to improve the data integrity when burst errors occur in storage 

systems. In the next chapter highlights the conclusion with the summary of the research 

results and scope for future work.  
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Chapter 6 

Conclusion 
 
6.1 Summary of the Results 
 
The research work forming the body of this thesis started with a study of array codes 

[Roth, R. M. 1991] with an idea to apply them to correct burst errors in data storage 

systems. During this phase, we studied the rank distance properties of  knn , array 

codes and their applications. We started our study of flash memory architecture with a 

view to apply  knn ,  array codes for error detection and correction. However, we found 

that the device architecture does not support the use of array codes readily. Traditionally 

flash memories were designed using SLC as building blocks. SLC can store one bit of 

information. In recent years, (after 2010), the focus of researchers has shifted to the 

design of flash memories based on MLC. MLC can store more than one bit of 

information. MLC’s that can store two bits, three bits and four bits of information per cell 

have been discussed in literature. There are two models which define the amount of 

overhead (in terms of redundant bits) that is used to protect the information stored in each 

sector. These models have been referred to in the thesis as Memory model 1 and Memory 

model 2 respectively. A perusal of technical literature revealed that BCH codes have been 

extensively used to detect and correct in flash memories. In 2008 [Mehnert, A. 2008], 

[Chen, Y, 2008], the state of art employed a BCH code that could correct six errors over a 

span of one sector (4096 bits). A detailed study of device architecture and an 

understanding of the structure of the BCH codes revealed that the device architecture has 

enough redundancy to support a more powerful BCH code.  In chapter 3, we have 

synthesized BCH codes that can correct as many as eight bits and nine bits in error over 

the span of one sector. We also have attempted to synthesize codes with greater error 

correcting capability by combining two sectors. These results have been obtained for 

memory model 1. Further we have synthesized BCH codes that can correct up to eighteen 

bits in errors over a span of one sector by using the architecture specified in Memory 

model 2. 
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A perusal of technical literature pertaining to flash memories after 2010 reveals that a 

number of researchers are interested in designing MLC based flash memories. The basic 

organization of the flash memory remains unaltered. This fact leads us to introspect as to 

whether BCH codes could be synthesized to correct errors in MLC’s.   

 

The errors in MLC cannot be expressed by any conventional channel model, such as 

additive white Gaussian noise (AWGN) channel. Thus a suitable channel matrix has been 

determined to describe the various errors encountered during reading process in a MLC 

and their relative probabilities of occurrence. The channel matrices are computed for 

different values of   for a four level MLC and eight level MLC. The channel matrices 

computed show that MLC suffers from asymmetric errors. 

 

Encoding of BCH codes is relatively simple process.  As far as the decoding is 

concerned,  inversion free Berlekamp-Massey algorithm is used. We have employed this 

architecture for the codes described in the thesis. Burst errors are the dominant mode of 

errors in the storage systems. This can happen due to faulty sectors in a storage device 

and can result in destruction of large blocks of data. To strengthen the error correction 

codes so that it can meet the challenges posed by burst mode errors, interleaving is 

necessary. We have employed both block interleaver and convolutional interleaver to 

enhance error correction capability of various codes synthesized by us. 

 

In conclusion, the work done in this thesis has yielded several BCH and RS codes that 

can be employed to enhance the integrity of flash memory devices. A comparison with 

the state of art reveals that these codes when employed can reduce the error rates in flash 

memory significantly and hence make flash technology suitable for use in application 

were data integrity is very critical. If sufficient improvement in flash memory reliability  

can be achieved, they could be considered as worthy competitors to Hard Disk Drives. 
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6.2 Directions for further research 
 
Algebraic geometry (AG)[Silverman, J. H. and Tate, J. 1992], [Carrasco, R.A. and 

Johnston, M. (2008)], [Blake, I. et al. 1998], [Shibuya, T. et al. 1996], [Shibuya, T. et al. 

1997], [Johnston, M. et al. 2004] is a powerful mathematical tool for constructing very 

long non-binary block codes with excellent parameters such as high code rate and large 

Hamming distance. These codes are constructed from the affine points of an irreducible 

projective curve and a set of rational functions defined on that curve. The length of an 

AG code is equal to the number of affine points. However, constructing AG codes 

requires an in-depth knowledge of the theory of algebraic geometry. The well known 

Reed-Solomon codes are the simplest class of AG code, constructed from the affine 

points of the projective line. Consequently, they have the shortest block lengths of all AG 

codes, and there are not many Reed-Solomon codes that can be constructed. However, 

Reed-Solomon codes are maximum distance separable (MDS) unlike other AG codes, 

where the genus of the curve can reduce the actual minimum Hamming distance. Despite 

this penalty, AG codes still have much larger minimum Hamming distances than Reed-

Solomon codes defined over the same finite field and consequently AG codes can correct 

much longer bursts of errors, which are common in data storage systems. A disadvantage 

of AG codes is their higher decoding complexity. AG codes could be a possible candidate 

for the error correcting schemes in future data storage devices. 

 

In chapter 3 and chapter 4 of the thesis, we have synthesized high rate long length BCH 

codes for correcting errors encountered in SLC’s and MLC’s. Abelian codes constitute a 

class of codes that includes cyclic codes as a special case. It has been shown by Berman 

[Berman, S.D. 1967] that under certain conditions, general class of Abelian codes has 

better error correction capability than the class of cyclic codes. Abelian codes are well 

suited in applications that require the use of codewords having long length and high rate. 

Therefore they are well suited for use in this application. However, a design procedure 

such as the BCH bound in the case of cyclic codes which enables the ready design of 

Abelian codes with good distance property is not available. If such a result allows the 
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synthesis of Abelian codes with good distance property (the counterpart of the BCH 

bound for Abelian codes) is discovered, then Abelian codes may find potential 

application not only in this field but in any field that requires the use of high rate, long 

length codes. 

 

In chapter 5, we have discussed an inversion free Berlekamp-Massey decoding 

architecture for decoding BCH codes. Most of the steps in decoding BCH and RS codes 

are identical. The major difference is that error magnitudes have to be computed in case 

of RS codes. In our study we have confined ourselves to the decoding of BCH codes with 

the inversion free algorithm. Interested researchers can derive the steps required to apply 

Forney’s algorithm (used to compute error magnitudes) and map them into simple steps 

that can be carried out by digital hardware to complete the decoding of RS codes 

proposed in the synthesis. 

 
We have also synthesized several LDPC codes for use in this application by using 

Gallager constructions. Theses have resulted in codes being specified by H matrix with 

very large dimensions. This makes the process of evaluating the distance properties very 

difficult. However, researchers can look at alternative approaches to synthesize LDPC 

codes that may be useful in similar applications. In a similar manner, researchers could 

also investigate possible use of Turbo codes in this application. 
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