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Abstract

This thesis is devoted for obtaining a stable approximate solution for non-
linear ill-posed Hammerstein type operator equationsKF (x) = f. HereK :

X → Y is a bounded linear operator,F : X → X is a non-linear operator,
X andY are Hilbert spaces. It is assumed throughout that the available data
is f δ with ‖f − f δ‖ ≤ δ. Many problems from computational sciences and
other disciplines can be brought in a form similar to equationKF (x) = y us-
ing mathematical modelling (Englet al. (1990), Scherzer, Engl and Anderssen
(1993), Scherzer (1989)). The solutions of these equationscan rarely be found
in closed form. That is why most solution methods for these equations are it-
erative. The study about convergence matter of iterative procedures is usually
based on two types: semi-local and local convergence analysis. The semi-local
convergence matter is, based on the information around an initial point, to give
conditions ensuring the convergence of the iterative procedure; while the local
one is, based on the information around a solution, to find estimates of the radii
of convergence balls.

We aim at approximately solving the non-linear ill-posed Hammerstein type
operator equationsKF (x) = f using a combination of Tikhonov regulariza-
tion with Newton-type Method in Hilbert spaces and in Hilbert Scales. Also
we consider a combination of Tikhonov regularization with Dynamical System
Method in Hilbert spaces. Precisely in the methods discussed in this thesis
we considered two cases of the operatorF : in the first case it is assumed
thatF ′(.)−1 exist (F ′(.) denotes the Fŕechet derivative ofF ) and in the sec-
ond case it is assumed thatF ′(.)−1 does not exist butF is a monotone op-
erator. The choice of regularization parameter plays an important role in the
convergence of regularization method. We use the adaptive scheme suggested
by Pereverzev and Schock (2005) for the selection of regularization parameter.
The error bounds obtained are of optimal order with respect to a general source
condition. Algorithms to implement the method is suggestedand the computa-
tional results provided endorse the reliability and effectiveness of our methods.

Keywords: Ill-posed operator equations, Hammerstein Operators, Regular-
ization methods, Tikhonov regularization, Monotone Operators, Newton-type
method, Hilbert Scales, Dynamical System Method.

Mathematics Subject Classification:47J06, 47H30, 65J20, 47H07, 49M15,
70G60
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Chapter 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Inverse problems are the problems that consist of finding an unknown property of an object,

or a medium from the observation of a response of this object or medium to a probing signal.

The theory of inverse problems yields a theoretical basis for remote sensing and that makes

the inverse problems more important. The necessity in studying the inverse problems stems

from one of the main problems in applied mathematics, gaining reliable computing results

with due allowance for errors that inevitably occur in setting co-efficients and parameters

of a mathematical model used to perform computations.

A common belief of many mathematicians (see Alber and Ryazantseva (2006), Section

3) in the past was that well-posedness is a necessary condition for the problems to be math-

ematically or physically meaningful. This raised doubts about whether or not there is any

need for methods for solving ill-posed problems (i.e., problems that are not well-posed).

The tremendous development of science and technology of thelast decades led, more often

than not, to practical problems which are ill-posed by theirnature. Solving such problems

became a necessity and thus, inventing methods for that purpose became a field of research

in the intersection of theoretical mathematics with applied science.
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1.2 NOTATIONS AND BASIC RESULTS

Let X and Y denote Hilbert spaces over real or complex field andBL(X, Y ) denote the

space of all bounded linear operators fromX to Y . If Y = X, then we denoteBL(X, Y )

byBL(X). We use the notation D(K) to denote the domain of K. IfK ∈ BL(X, Y ), then

its adjoint, denoted byK∗ is a bounded linear operator fromY toX defined by〈Kx, y〉 =
〈x,K∗y〉 ∀x ∈ X andy ∈ Y.

LetR(K) := {Kx : x ∈ X} andN(K) := {x ∈ X : Kx = 0} be the range and null

space ofK respectively. Further for a subspaceS of X, its closure is denoted byS and its

orthogonal complement denoted byS⊥ is defined asS⊥ = {u ∈ X ; 〈x, u〉 = 0, ∀x ∈ S}.

Throughout this thesisγ, γ̃, γρ, γ̃ρ, ρ, εh, τh, τ0, ε0, r, r̃ are generic constants

which may take different values at different occasions

PROPOSITION 1.2.1 (Nair (2008), Proposition 11.4) IfK ∈ BL(X, Y ) thenR(K)⊥ =
N(K∗), N(K)⊥ = R(K∗), R(K∗)⊥ = N(K) andN(K∗)⊥ = R(K)

We callK a positive self-adjoint operator ifK = K∗ and〈Kx, x〉 ≥ 0, ∀x ∈ X. The

spectrum and spectral radius of an operatorK ∈ BL(X) are denoted byσ(K) andrσ(K)

respectively i.e.,

σ(K) = {λ ∈ C : K − λI does not have a bounded inverse}

whereI is the identity operator onX and

rσ(K) = sup{|λ| : λ ∈ σ(K)}.

It is well known thatrσ(K) ≤ ‖K‖ andσ(K) is a compact subset of the scalar field.

If K is a non-zero self-adjoint operator ( i.e.,K = K∗ ), thenσ(K) is a non-empty subset

of real numbers andrσ(K) = ‖K‖. If K is positive self-adjoint operator, thenσ(K) is a

subset of set of non-negative reals and ifK ∈ BL(X) is compact, thenσ(K) is a countable

set with zero as the only possible limit point.

2



Let F be an operator mapping a Hilbert spaceX into a Hilbert spaceY . If there exists

a bounded linear operatorL : X → Y such that

lim
‖h‖→0

‖F (x0 + h)− F (x0)− L(h)‖
‖h‖ = 0,

thenF is said to be a Fŕechet-differentiable atx0 and the bounded linear operatorF ′(x0) :=

L is called the first Fŕechet-derivative ofF atx0.

Let F : D(F ) ⊆ X → X be an operator whereX is a real Hilbert space. ThenF is

said to be monotone if〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ D(F ).

1.3 ILL-POSEDNESS OF EQUATIONS

The class of ill-posed problems was first identified by the French mathematician Jacques

Hadamard (1865-1963) in 1902. It is a common opinion that ill-posed problems often

belong to the field of ”very evolved ” mathematics, somethingvery difficult to understand

and rarely met (Petrov and Sizikov (2005)). But this notion is certainly wrong as ill-posed

problems are encountered very frequently and an adequate care has to be taken regarding

their properties and difficulties. A historical review of ill-posed problems can be found in

Petrov (2001).

1.3.1 Classical definition of well-posedness

The problem of solving

F (x) = y, (1.3.1)

whereF : D(F ) ⊆ X → Y is well-posed problem in the sense of Hadamard (see Bonilla

(2002), page 12) if:

(a) A solution of (1.3.1) exists (i.e.,operator domainR(F ) = Y ).

(b) The solution is unique (solutionx is uniquely determined by the elementy, i.e., the

inverse operatorF−1 exists)

(c) The solution depends continuously on the given data (F−1 is a continuous operator).

3



If any of the above conditions is violated, then (1.3.1) is called an ill-posed equation.

Equation (1.3.1) is linear ill-posed equation if the operatorF is linear and ifF is non-linear

it is called non-linear ill-posed equation.

Given below are some examples of ill-posed problems. The first two are examples of

linear ill-posed problem and the next two are that of non-linear ill-posed problems.

1.4 EXAMPLES OF ILL-POSED PROBLEMS

EXAMPLE 1.4.1 Differentiation (Engl et al. (2000))
Differentiation could be viewed as an inverse problem of solving the operator equation

Kx = y

whereK : C[0, 1] → C1[0, 1] is defined as

(Kx)(t) :=

∫ t

0

x(s)ds, t ∈ [0, 1].

This problem is unstable as can be seen from the following argument. Suppose we have a
sequence of perturbed data given by

yn(t) := y(t) +
sin nt√

n
, t ∈ [0, 1]

for n ∈ N. Then for eachn ∈ N, we have

y′n(t) = y′(t) +
√
n cosnt, t ∈ [0, 1].

Now

‖y − yn‖2 =
√

1

2n
− sin 2n

4n2
→ 0 as n→ ∞,

but

‖y′ − y′n‖2 =
√

n

2
+

sin 2n

4
→ ∞ as n→ ∞.

Thus the solution does not depend continuously on the available data and hence the problem
is ill-posed.

EXAMPLE 1.4.2 Simplified tomography (see Groetsch (1984))
Consider a two dimensional object contained within a circleof radiusR. The object is

illuminated with a radiation of densityI0. As the radiation beams pass through the object

4



it absorbs some radiation. Assume that the radiation absorption co-efficientf(x, y) of the
object varies from point to point of the object. The absorption co-efficient satisfies the law

dI

dy
= −fI

whereI is the intensity of the radiation. By taking the above equation as the definition of
the absorption co-efficient, we have

Ix = I0 exp(−
∫ y(x)

−y(x)
f(x, y)dy)

wherey =
√
R2 − x2. Letp(x) = ln( I0

Ix
), i.e.,

p(x) =

∫ y(x)

−y(x)
f(x, y)dy.

Suppose thatf is circularly symmetric, i.e.,f(x, y) = f(r) with r =
√

x2 + y2, then

p(x) =

∫ R

x

2r√
r2 − x2

f(r)dr. (1.4.2)

The inverse problem is to find the absorption co-efficientf satisfying the equation (1.4.2).

EXAMPLE 1.4.3 Non-Linear singular integral equation (see Buong (1998))
Consider the non-linear singular integral equation in the form

∫ t

0

(t− s)−λx(s)ds+ F (x(t)) = f0(t), 0 < λ < 1, (1.4.3)

wheref0 ∈ L2[0, 1] and the non-linear function F(t) satisfies the following conditions:

⋄ |F (t)| ≤ a1 + a2|t|, a1, a2 > 0

⋄ F (t1) ≤ F (t2) ⇔ t1 ≤ t2,

⋄ F is differentiable.
Thus,F is a monotone operator fromX = L2[0, 1] into Y = L2[0, 1]. In addition,

assume thatF is a compact operator. Then the equation (1.4.3) is an ill-posed problem,
because the operatorK defined by

Kx(t) =

∫ t

0

(t− s)−λx(s)ds,

is also compact.
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EXAMPLE 1.4.4 The backwards heat equation problem (Ramm (2005))
Consider the backwards heat equation problem:

ut = uxx, t ≥ 0, x ∈ [0, π];

u(0, t) = u(π, t) = 0, u(x, T ) = v(x).

Givenv(x), one wants to findu(x, 0) := w(x).
By separation of variables one findsu(x, t) = Σ∞

n=1un(t) sin(nx), un(t) = e−n
2(t−T )vn, vn =

2
π

∫ π

0
v(x) sin(nx)dx. Therefore,w(x) = Σ∞

n=1e
n2(T )vn sin(nx), provided this series con-

verges, inL2[0, π], that is, provided that

Σ∞
n=1e

2n2(T )|vn|2 <∞. (1.4.4)

This cannot happen unlessvn decays sufficiently fast. Therefore the backwards heat
equation problem is ill-posed: it is not solvable for a givenv(x) unless (1.4.4) holds, and
small perturbations of the datav in L2[0, π]-norm may lead to arbitrary large perturbations
of the functionw(x), but also may lead to a functionv for which the solutionu(x, t) does
not exist fort < T.

In practical problems the operatorF and the datay of (1.3.1) are not precisely known.

Without the knowledge of the continuous dependence of the approximate solution on the

intrinsic errors involved, a direct numerical resolution of (1.3.1) is not possible. Attempts

to avoid this difficulty led investigators to the new theory and conceptually new methods,

viz-a-viz the regularization methods, for obtaining stable solution of ill-posed problems.

1.5 REGULARIZATION METHODS

1.5.1 Generalized Inverse

If y /∈ R(F ), then (1.3.1) has no solution and hence the equation (1.3.1) is ill-posed. In such

a case we may broaden the notion of a solution in a meaningful sense. ForF ∈ BL(X, Y )

andy ∈ Y, an elementu ∈ X is said to be a least square solution of (1.3.1) if

‖F (u)− y‖ = inf{‖F (x)− y‖ : x ∈ X}.

Note that ifF is not one-one then the least square solutionu, if exists, is not unique

sinceu+ v is also a least square solution for everyv ∈ N(F ). Fory ∈ R(F ) +R(F )⊥, the
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unique least-square solution of minimal norm of (1.3.1) is called the generalized solution

or pseudo solution of (1.3.1). ForF ∈ BL(X, Y ), the mapF † which associates each

y ∈ D(F †) := R(F )+R(F )⊥, to the generalized solution of (1.3.1) is called the generalized

inverse ofF. We also see that ify ∈ R(F ), andF is injective, then the generalized solution

of (1.3.1) is the solution of (1.3.1). IfF is bijective, then it follows thatF † = F−1.

THEOREM 1.5.1 (Nair (2009), Theorem 4.4 ) LetF ∈ BL(X, Y ). ThenF † : D(F †) →
X is a closed densely defined linear operator andF † is bounded if and only ifR(F ) is
closed.

If F is nonlinear monotone and continuous, then consider the setN := {x : F (x) = y}.
Note thatN is closed and convex ifF is monotone and continuous (see, e.g., Ramm (2007))

and hence has a unique element of minimal norm, denoted byx̂ such thatF (x̂) = y. So ifF

is nonlinear, monotone and continuous, then instead of the unique least-square solution of

minimal norm we consider the unique element of minimal norm of N as the minimal norm

solution of (1.3.1).

REMARK 1.5.2 Theorem 1.5.1 shows that the problem of finding the generalized solution
of (1.3.1) is also ill-posed, i.e.,F † is discontinuous ifR(F ) is not closed. This observation
is important since a wide class of operators of practical importance, especially compact
operators of infinite rank falls into this category (Groetsch (1993)). Further in application
the datay may not be available exactly.

Letyδ ∈ Y be the available noisy data with

‖y − yδ‖ ≤ δ. (1.5.5)

If F † is discontinuous then foryδ close toy, the generalized solutionF †yδ, even when it
is defined need not be close toF †y. To manage this situation the so called ”regularization
procedures” have to be employed and obtain approximations for F †y.

1.5.2 Regularization principle

The process of obtaining a stable approximate solution to anill-posed operator equation is

called a regularization method. In the regularization procedure (see Englet al. (2000),page

56) the ill-posed equation is replaced by a family of well-posed equations based on a regu-

larization parameterα > 0.
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A family of operators{Rα : 0 < α ≤ α0} is called a regularization method for the

problem (1.3.1) withy in range ofF, if there exists a parameter choice ruleα = α(δ, yδ)

such thatlim supδ>0{‖Rα(δ,yδ)y
δ − x‖ : yδ ∈ Y, ‖y − yδ‖ ≤ δ} = 0.

A regularization procedure can be classified as continuous regularization and iterative

regularization based on the kind of parameters involved in the procedure. Tikhonov regular-

ization and Lavrentiev regularization are few of the continuous regularization procedures,

while Landweber iteration is one of the iterative regularization method.

We give a brief note on Tikhonov regularization and Lavrentiev regularization for linear

ill-posed problems.

1.5.3 Tikhonov regularization

Tikhonov regularization (Groetsch (1984), Tikhonov (1963), Tikhonov and Arsenin (1977))

named after Andrey Tikhonov, is the most well-known regularization method for ill-posed

problems. In this method the solutionxδα of the minimization problemminx∈X{‖F (x) −
yδ‖2 + α‖x − x0‖2} is used to approximatêx whereα > 0 is called the regularization

parameter. Observe thatxδα is the unique solution of the well-posed equation

(F ∗F + αI)xδα = F ∗yδ

whereF ∗ is the adjoint of the operatorF.

1.5.4 Lavrentiev regularization

If X = Y andF is a positive self-adjoint operator onX, then one may consider a sim-

pler regularization method (George (2006b)) to solve equation (1.3.1), where the family of

vectorswδα, α > 0, satisfying

(F + αI)wδα = yδ (1.5.6)

is considered, to obtain approximations forx̂. Note that for positive self-adjoint operator

F, the ordinary Tikhonov regularization applied to (1.3.1) results in a more complicated

equation(F 2+αI)xδα = Fyδ than (1.5.6). Moreover, it is known (George (2006b)) that the
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approximation obtained by regularization procedure (1.5.6) has better convergence proper-

ties than the approximation obtained by Tikhonov regularization. The above regularization

procedure which gives the family of vectorswδα in (1.5.6) is called Lavrentiev regularization

or Simplified regularization of (1.3.1)(see Groetsch and Guacaneme (1987)).

1.5.5 Iterative regularization method

Iterative regularization methods are used for approximately solving F (x) = y whenF

is a non-linear operator. Recall (Mahale and Nair (2009) ) that an iterative method with

iterations defined by

xδk+1 = Φ(xδ0, x
δ
1, · · · , xδk; yδ),

wherexδ0 := x0 ∈ D(F ) is a known initial approximation of̂x, for a known function

Φ together with a stopping rule which determines a stopping index kδ ∈ N is called an

iterative regularization method if

‖xδkδ − x̂‖ → 0 as δ → 0.

The Levenberg-Marquardt method (Hanke (2010), Hochbruck and Honig (2010), Jin

(2010), Pornasawad and Bockmann (2010), Bockmannet al. (2011)) and iteratively regu-

larized Guass-Newton Method (IRGNA)(Bakushinskii (1992), Blaschkeet al. (1997)) are

some of the well-known iterative regularization methods.

1.5.6 Dynamical System Method

Ramm (2005), considered a method called Dynamical System Method (DSM) for solving

nonlinear equationF (u) = 0. The DSM consists of finding a nonlinear locally Lipschitz

operatorΦ(u, t), such that the Cauchy problem:

u′(t) = Φ(u, t), u(0) = u0 (1.5.7)

has the following three properties:

∃u(t) ∀t ≥ 0, (1.5.8)
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such that∃u(∞) andF (u(∞)) = 0. i.e.,

(a) (1.5.7) is globally uniquely solvable;

(b) its unique solution has a limit at infinity;

(c) and this limit solvesF (u) = 0.

1.5.7 Regularized Projection method

Even though, a stable solution of linear ill-posed problem (1.3.1) can be obtained via regu-

larization methods, for numerical calculations, one has tolook for an implementable method

i.e., a method for which one can realize a solution in a finite dimensional space. A natural

practical approach in this direction is the least-square projection method, i,e., to find the

minimum-norm solution ofFx = y in a finite dimensional subspace ofX. That is, given a

sequenceV1 ⊂ V2 ⊂ V3 ⊂ · · · of finite-dimensional subspace ofX such thatUn∈NVn = X,

let xn be the least-square solution of minimal norm in the spaceVn (see Engl and Neubauer

(1985)). Obviouslyxn = F †
ny whereFn := FPn andPn is the orthogonal projector onto

Vn. It is known (Englet al. (2000)) thatxn is a stable approximation ofx†, but without ad-

ditional assumptions it cannot be guaranteed thatxn converges tox† (See Seidman (1980)).

1.6 CHOICE OF REGULARIZATION PARAMETER

When we consider the rate of convergence of a regularizationmethod(Rα, α) one can think

of the rate of convergence of

‖Rαy − x̂‖ → 0, as α → 0, (1.6.9)

or of the rate of convergence of

‖Rαy
δ − x̂‖ → 0, as δ → 0. (1.6.10)

Since

‖Rαy
δ − x̂‖ ≤ ‖Rαy

δ − Rαy‖+ ‖Rαy − x̂‖,
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the rate of convergence depends on the choice of the regularization parameter. So the most

important procedure in regularization method is the selection of regularization parameter.

A choiceα = αδ of the regularization parameter may be made in either an a priori or a pos-

teriori way. An extensive discussion of ”aposteriori” choice has been done in regularization

theory (Gfrerer (1987), Mathe and Pereverzev (2002)).

Suppose there exist a functionϕ on [0,∞) such that

x0 − x̂ = ϕ(F ′(x̂))ν, (1.6.11)

wherex0 is an initial guess,̂x is the solution of (1.3.1),F ′(x̂) is the Frechet derivative of

F at x̂ and‖x̂ − Rαy‖ ≤ ϕ(α), thenϕ is called a source function and (1.6.11) the source

condition.

A parameter choice strategyα = αδ is said to be of optimal order (yields an optimal

convergence rate) for ay ∈ Y if ψy(δ) = ϕ(ψ̃y(δ)) asδ → 0 where

ψy(δ) := sup{‖Rαy
δ − x̂‖ : ‖y − yδ‖ ≤ δ}

ψ̃y(δ) := sup{inf{‖Rβy
δ − x̂‖ : β > 0} : ‖y − yδ‖ ≤ δ}.

Pereverzev and Schock (2005), considered an adaptive selection of the parameter which

does not involve even the regularization method in an explicit manner. Let us briefly discuss

this adaptive method in a general context of approximating an element̂x ∈ X by elements

from a set{xδα : α > 0, δ > 0}.

Supposêx ∈ X is to be approximated by using elementsxδα for α > 0, δ > 0. Assume

that there exist increasing functionsϕ(t) andψ(t) for t > 0 such that

lim
t→o

ϕ(t) = 0 = lim
t→o

ψ(t),

and

‖x̂− xδα‖ ≤ ϕ(t) +
δ

ψ(t)

for all α > 0, δ > 0. Here, the functionϕ may be associated with the unknown elementx̂,

whereas the functionψ may be related to the method involved in obtainingxδα.Note that the
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quantityϕ(α) + δ
ψ(α)

attains its minimum for the choiceα := αδ such thatϕ(αδ) = δ
ψ(αδ)

,

that is for

αδ = (ϕψ)−1(δ)

and in that case

‖x̂− xδαδ
‖ ≤ 2ϕ(αδ).

The above choice of the parameter is a priori in the sense thatit depends on the unknown

functionsϕ andψ.

In an ”aposteriori” choice, one finds a parameterαδ without making use of the unknown

source functionϕ such that one obtains an error estimate of the form

‖x̂− xδαδ
‖ ≤ cϕ(αδ).

for somec > 0 with αδ = (ϕψ)−1(δ). The procedure considered by Pereverzev and Schock

(2005) starts with a finite number of positive real numbers,α0, α1, α2, . . . ,αN , such that

α0 < α1 < α2 < ... < αN .

The following theorem is essentially a reformulation of a theorem proved in

Pereverzev and Schock (2005).

THEOREM 1.6.1 (George and Nair (2008), Theorem 4.3) Assume that there exists i ∈
{0, 1, 2, · · · , N} such thatϕ(αi) ≤ δ

ψ(αi)
and for someµ > 1,

ψ(αi) ≤ µψ(αi−1), ∀i ∈ {0, 1, 2, · · · , N}.

Let

l := max{i : ϕ(αi) ≤
δ

ψ(αi)
} < N,

k := max{i : ‖xδαi
− xδαj

‖ ≤ 4
δ

ψ(αj)
, ∀j = 0, 1, · · · , i− 1.}.

Thenl ≤ k and

‖x̂− xδαk
‖ ≤ 6µϕ(αδ), αδ := (ϕψ)−1(δ)
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1.7 HILBERT SCALES

In order to improve the error estimates available in Tikhonov regularization of linear ill-

posed problem, Natterer (1984) carried out error analysis in the frame work of Hilbert

scales, subsequently many authors extended, modified and generalized Natterer’s work

to obtain error bounds for linear and non-linear ill-posed problems (see Neubauer (2000),

Jin and Tautenhahn (2011b), Tautenhahn (1996), Luet al. (2010)).

Let L : D(L) ⊂ X → X, be a linear, unbounded, self-adjoint, densely defined and

strictly positive operator onX. LetXt be the completion ofD :=
⋂∞
k=0D(Lk) with respect

to the norm‖x‖t induced by the inner product

〈u, v〉 := 〈Ltu, Ltu〉, u, v ∈ D,

then(Xs)s∈R is called the Hilbert scale induced byL (see Englet al. (2000), page 211).

In chapter 7, we consider the problem of solving an ill-posedHammerstein type operator

equation in the setting of Hilbert scales.

1.8 HAMMERSTEIN OPERATORS

Let a functionk(t, s, u) be defined fort ∈ [a, b], s ∈ [c, d] and−∞ < u < ∞. Then the

non-linear integral operator

Ax(t) =

∫ d

c

k(t, s, x(s))ds (1.8.12)

is called Uryson integral operator and the function k(t,s,u) is called its kernel. If the kernel

k has the special formk(t, s, u) = k(t, s)f(s, u), then (1.8.12) are called Hammerstein

Operators (cf. Krasnoselskiiet al. (1976), Page 375).

Note that each Hammerstein Operator admits a representation of the formA = KF

whereK is a linear integral operator defined by

Kx(t) =

∫ d

c

k(t, s)x(s)ds
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andF is a non-linear superposition operator (cf. Krasnoselskiiet al. (1976))

Fx(s) = f(s, x(s)).

Hence the study of a Hammerstein operator can be reduced to the study of the linear operator

K and the non-linear operatorF. An equation of the form

(KF )x(t) = y(t) (1.8.13)

is called a Hammerstein type operator equation (George (2006a), George and Nair (2008),

George and Kunhanandan (2009)).

1.8.1 Examples of Hammerstein type operator equations

EXAMPLE 1.8.1 (see Engl et al. (2000), Page 260) Consider the integral equation

∫ t

0

(t− s)x3(s)ds = y(t).

The above equation can be written in the form of (1.8.13), where

K : L2[0, 1] → L2[0, 1]

is defined byKx(t) =
∫ t

0
(t − s)x(s)ds andF : D(F ) = H1[0, 1] → L2[0, 1] is defined by

F (x(s)) = x3(s).

EXAMPLE 1.8.2 Non-Linear Hammerstein integral equation (see Engl et al. (2000))

ConsiderF (x) = y whereF : D = L2[0, 1] → L2[0, 1] defined by

F (x)(t) :=

∫ 1

0

k(s, t)u(s, x(s))ds = y(t),

is injective with a non-degenerate kernelk(., .) ∈ L2([0, 1]× [0, 1]) andu : [0, 1]×R → R
satisfies

|u(t, s)| ≤ a(t) + b|s|t ∈ [0, 1], s ∈ R

for somea ∈ L2[0, 1] and b > 0, it can be seen thatF is compact and continuous on
L2[0, 1](see Joshi and Bose (2008)).

14



1.9 OUTLINE OF THE THESIS

The subject matter of the thesis is regularization of nonlinear ill-posed Hammerstein type

operator equationsKF (x) = f. It is assumed that the available data isf δ such that‖f −
f δ‖ ≤ δ. We try to solve approximatelyKF (x) = f, by splitting the equation into linear

equation

Kz = f (1.9.14)

and non-linear equation

F (x) = z. (1.9.15)

By doing this we try to simplify the procedure by specifying aregularization strategy

(Tikhonov regularization) for linear equation (1.9.14) and an iterative method for non-linear

part (1.9.15). The thesis is arranged in eight chapters.

In Chapter 2, for solvingKF (x) = f, we consider a method which is a combination

of Tikhonov regularization for solving (1.9.14) and Two Step Newton Method for solving

(1.9.15). The Tikhonov regularized solution of (1.9.14) isgiven by

zδα = (K∗K + αI)−1K∗(f δ −KF (x0)) + F (x0). (1.9.16)

We solve (1.9.15), for two cases of operatorF. In the first case whereF ′(x0) is boundedly

invertible, the iterative method is defined as

yδn,α = xδn,α − F ′(x0)
−1(F (xδn,α)− zδα),

xδn+1,α = yδn,α − F ′(x0)
−1(F (yδn,α)− zδα),

wherexδ0,α = x0, is the initial guess for the solution̂x of KF (x) = f. And in the second

case whereF ′(x0) in non-invertible butF is a monotone operator, we define the iterative

method as

ỹδn,α = x̃δn,α − R(x̃δ0,α)
−1[F (x̃δn,α)− zδα +

α

c
(x̃δn,α − x̃δ0,α)]

x̃δn+1,α = ỹδn,α − R(x̃δ0,α)
−1[F (ỹδn,α)− zδα +

α

c
(ỹδn,α − x̃δ0,α)]
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wherex̃δ0,α := x0 is the initial guess andR(x0) := F ′(x0) +
α
c
I, with c ≤ α. We make

use of the adaptive scheme suggested by Pereverzev and Schock (2005) for choosing the

regularization parameterα, depending on the noisy dataf δ and the errorδ. We obtain order

optimal error bounds under general source condition and with the proposed method we get

linear convergence.

Chapter 3 deals with the finite dimensional realization of the method considered in

Chapter 2. The algorithm for the proposed method is presented followed by two numer-

ical examples which confirm the efficiency of our approach.

Chapter 4 is the modified form of Newton’s method dealt in Chapter 2 and 3. The Two

Step Newton method for the case whereF ′(u)−1 exists, for allu ∈ D(F ) is as follows:

vδn,α = uδn,α − F ′(uδn,α)
−1(F (uδn,α)− zδα),

uδn+1,α = vδn,α − F ′(uδn,α)
−1(F (vδn,α)− zδα).

whereuδ0,α := x0 ∈ X is the initial guess for the solution̂x of KF (x) = f. The modified

iterative method whereF ′(u)−1 does not exist butF is monotone is defined as

ṽδn,α = ũδn,α −R(ũδn,α)
−1[F (ũδn,α)− zδα +

α

c
(ũδn,α − x0)],

ũδn+1,α = ṽδn,α −R(ũδn,α)
−1[F (ṽδn,α)− zδα +

α

c
(ṽδn,α − x0)]

whereũ0,α := x0 andR(x) := F ′(u) + α
c
I, c ≤ α. We also discuss the finite dimensional

realization of the above defined method. In this Chapter, theFréchet derivative ofF at all

pointsun, n ≥ 0 is taken into account unlike the method in Chapter 2 and 3, where the

Fréchet derivative ofF is considered only at initial guess. This approach leads to cubic

convergence compared to linear and quadratic convergence obtained by George and Nair

(2008) and George and Kunhanandan (2009) respectively. Also the derived error estimates

using general source condition and adaptive choice method of Pereverzev and Schock (2005)

are of optimal order. We give the algorithm required to implement the method and also the

numerical examples to test the reliability of our approach.
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In Chapter 5, we study the Modified form of the method considered in Chapter 4. The

aim is to improve the convergence rates obtained in the previous Chapters. Infact we

obatined semi-local quartic convergence. Also the projection scheme of the method and

numerical examples are presented.

In Chapter 6, the problem of approximately solving the non-linear Hammerstein oper-

ator equationKF (x) = f is dealt in the setting of Hilbert Scales. The proposed method

in this chapter is also a combination of Tikhonov regularization and Newton Method. Two

cases of operatorF are discussed. For the case whereF ′(x0)
−1 exists and is bounded, the

iterative scheme is given as

yδn,α,s = xδn,α,s − F ′(x0)
−1[F (xδn,α,s)− zδα,s],

xδn+1,α,s = yδn,α,s − F ′(x0)
−1[F (yδn,α,s)− zδα,s],

wherexδ0,α,s := x0, is the initial approximation for the solution̂x of KF (x) = f and

zδα,s := F (x0) + (L−sK∗K + αI)−1L−sK∗(f δ −KF (x0))

is the Tikhonov regularized solution of linear equationKz = f.Here and belowL is a linear

unbounded self-adjoint, densely defined and strictly positive operator inX. The second case

whenF ′(x0)
−1 does not exist butF is monotone, we define the iterative scheme as

ỹδn,α,s = x̃δn,α,s − (F ′(x0) +
α

c
Ls/2)−1[F (x̃δn,α,s)− zδα,s +

α

c
Ls/2(x̃δn,α,s − x0)],

x̃δn+1,α = ỹδn,α,s − (F ′(x0) +
α

c
Ls/2)−1[F (ỹδn,α,s)− zδα,s +

α

c
Ls/2(ỹδn,α,s − x0)],

wherex̃δ0,α,s := x0, and0 < c ≤ α. Adaptive scheme of Perverzev and Schock is used for

selection of regularization parameterα and error estimates derived are of optimal order.

In Chapter 7, we report on a method which comprises of Tikhonov regularization and

Dynamical System Method (DSM)(Ramm (2007), Ramm (2005)) for approximately solv-

ingKF (x) = f. We apply the DSM for two cases of operatorF (as in previous Chapters).

Here we study both the iterative and continuous scheme of DSMand present the error anal-

ysis using the adaptive choice considered by Perverzev and Schock. The error estimates

obtained are found to be of optimal order.
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In Chapter 8, we end the thesis with some concluding remarks and also give the scope

for future work.
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Chapter 2

TWO STEP NEWTON-TIKHONOV
METHOD

In this Chapter we present a combination of modified Newton method and Tikhonov regular-

ization for obtaining a stable approximate solution for nonlinear ill-posed Hammerstein type

operator equationsKF (x) = f. It is assumed that the available data isf δ with ‖f−f δ‖ ≤ δ,

K : Z → Y is a bounded linear operator andF : X → Z is a non-linear operator where

X, Y, Z are Hilbert spaces. Precisely two cases ofF are considered, in the first case it is

assumed thatF ′(x0)
−1 exist (F ′(x0) is the Fŕechet derivative ofF at an initial guessx0)

and in the second case it is assumed thatF ′(x0)
−1 doesnot exist butF is a monotone oper-

ator. The error bounds derived under a general source condition are of optimal order. And

the regularization parameter is chosen according to the adaptive scheme of Perverzev and

Schock (2005).

2.1 INTRODUCTION

The study of inverse (ill-posed) problems is an active area of research both theoretically and

numerically as these problems arise from important physical and engineering applications

(see Engl (1993), Neubauer (1988), Ramm (2005), Natterer (2001)). It can be quite chal-

lenging to solve such problems because of their ill-posed nature. Many of these problems

can be characterized abstractly as

A(x) = f
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wheref denotes the data,A an abstract (ill-posed) operator andx the unknown solution.

However, in practice, because of modelling, experimental and computational errors,f is

only available as an approximationf δ. Consequently, it is necessary to solve

A(xδ) = f δ

instead of

A(x) = f,

and, for given classes of operatorsA, examine how the errorsxδ − x depend onf δ − f.

Tikhonov’s regularization (e.g., Englet al. (2000)) method has been used extensively

to stabilize the approximate solution of nonlinear ill-posed problems. In recent years, in-

creased emphasis has been placed on iterative regularization procedures (Kaltenbacheret al.

(2008), George and Nair (1997)) for the approximate solution of such problems.

This Chapter is devoted for the study of non-linear ill-posed Hammerstein type operator

equations by the use of iterative regularization procedures. A method is proposed for which

local-linear convergence is established theoretically and validated numerically. Recall that

George (2006a), George (2006b), George and Nair (2008), George and Kunhanandan (2009),

an equation of the form

(KF )x = f (2.1.1)

is called a non-linear ill-posed Hammerstein type operatorequation. HereF : D(F ) ⊆
X → Z, is a nonlinear operator,K : Z → Y is a bounded linear operator andX,Z, Y are

Hilbert spaces with corresponding inner product〈., .〉 and norm‖.‖ respectively. A typical

example of a Hammerstein type operator is the nonlinear integral operator

(Ax)(t) :=

∫ 1

0

k(s, t)f(s, x(s))ds

wherek(s, t) ∈ L2([0, 1]× [0, 1]), x ∈ L2[0, 1] andt ∈ [0, 1].

The above integral operatorA admits a representation of the formA = KF where

K : L2[0, 1] → L2[0, 1] is a linear integral operator with kernelk(t, s) defined as

Kx(t) =

∫ 1

0

k(t, s)x(s)ds
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andF : D(F ) ⊆ L2[0, 1] → L2[0, 1] is a nonlinear superposition operator

(cf. Krasnoselskiiet al. (1976)) defined as

Fx(s) = f(s, x(s)). (2.1.2)

George and his collaborators (George (2006a), George (2006b), George and Nair (2008),

George and Kunhanandan (2009)), studied ill-posed Hammerstein type equation extensively

under some assumptions on the Fréchet derivative ofF. Precisely, in George (2006a),

George and Nair (2008), it is assumed thatF ′(x0)
−1 exists and in George and Kunhanandan

(2009) it is assumed thatF ′(x)−1 exists for allx ∈ Br(x0) (HereBr(x0) stands for ball of

radiusr aroundx0).

Throughout this thesis it is assumed that the available datais f δ with

‖f − f δ‖ ≤ δ (2.1.3)

and hence one has to consider the equation

(KF )x = f δ (2.1.4)

instead of (2.1.1). Observe that the solutionx of (2.1.4) can be obtained by solving

Kz = f δ (2.1.5)

for z and then solving the non-linear problem

F (x) = z. (2.1.6)

For solving (2.1.6), George and Kunhanandan (2009) considered the sequence defined

iteratively by

xδn+1,α = xδn,α − F ′(xδn,α)
−1(F (xδn,α)− zδα)

wherexδ0,α := x0,

zδα = (K∗K + αI)−1K∗(f δ −KF (x0)) + F (x0) (2.1.7)
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and obtained local quadratic convergence.

Recall that a sequence(xn) in X with lim xn = x∗ is said to be convergent of order

p > 1, if there exist positive realsa, b, such that for alln ∈ N

‖xn − x∗‖ ≤ ae−bp
n

. (2.1.8)

If the sequence(xn) has the property that‖xn − x∗‖ ≤ aqn, 0 < q < 1, then(xn) is said to

be linearly convergent. For an extensive discussion of convergence rate see Kelley (1995).

George and Nair (2008), studied the modified Lavrentiev regularization

zδα = (K + αI)−1(f δ −KF (x0))

for obtaining an approximate solution of (2.1.5) whenK is a positive self-adjoint operator

and considered the modified Newton’s iterations,

xδn,α = xδn−1,α − F ′(x0)
−1(F (xδn−1,α)− F (x0)− zδα)

for solving (2.1.6). In fact in George and Nair (2008) and George and Kunhanandan (2009),

a solutionx̂ of (2.1.1) is called anx0-minimum norm solution if it satisfies

‖F (x̂)− F (x0)‖ := min{‖F (x)− F (x0)‖ : KF (x) = f, x ∈ D(F )}. (2.1.9)

We also assume throughout that the solutionx̂ satisfies (2.1.9). In all these papers (George

(2006a), George (2006b), George and Nair (2008), George andKunhanandan (2009)), it is

assumed that the ill-posedness of (2.1.1) is due to the nonclosedness of the range of linear

operatorK.

Recently, Argyros and Hilout (2010) studied the convergence analysis of Directional

Two Step Newton Method in a Hilbert space for approximating azerox∗ of a differentiable

functionF defined on a convex subsetD of a Hilbert spaceX, with values inR. Motivated

by this method we construct an iterative regularization method which is a combination of

Two Step Newton method and Tikhonov regularization for approximating the solution̂x of

(2.1.1) where we consider two cases of operatorF :
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The IFD Class(Invertible Fŕechet Derivative )F ′(x0)
−1 exist and is a bounded operator,

i.e., (2.1.6) is regular. HereF ′(x0) denote the Fŕechet derivative ofF at an initial guess

x0. Consequently, in this situation, the ill-posedness of (2.1.1) is essentially due to the

nonclosedness of the range of the linear operatorK (see Ramm (2005), page 26).

EXAMPLE 2.1.1 Let the functionf in (2.1.2) be differentiable with respect to the second
variable. Then, it follows that the operatorF in (2.1.2) is Fŕechet differentiable with

[F ′(x)u](t) = ∂2f(t, x(t))u(t), t ∈ [0, 1],

where∂2f(t, s) represents the partial derivative off with respect to the second variable. If,
in addition, the existence of a constantκ1 > 0 is assumed such that, for allx ∈ Br(x0) and
for all t ∈ [0, 1], ∂2f(t, x(t)) ≥ κ1, thenF ′(u)−1 exist and is a bounded operator for all
u ∈ Br(x0).

The MFD Class (Monotone Fŕechet Derivative)F is a monotone operator (Semenova

(2010), Tautenhahn (1998))(i.e.,〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ D(F )) andF ′(x0)
−1

does not exists. Consequently, in this situation, the ill-posedness of (2.1.1) is due to the

ill-posedness ofF as well as the nonclosedness of the range of the linear operatorK.

EXAMPLE 2.1.2 (Nair and Ravishankar (2008), Example 6.1) LetF : L2[0, 1] → L2[0, 1]
be defined by

F (x)(t) = K(x)(t) + f(t), x, f ∈ L2[0, 1], t ∈ [0, 1]

whereK : L2[0, 1] → L2[0, 1] is a compact linear operator such that range ofK denoted
byR(K) is not closed and〈Kh, h〉 ≥ 0 for h ∈ L2[0, 1]. Then,F (x) = y is ill-posed asK
is a compact operator with non-closed range. The Fréchet derivativeF ′(x) ofF is given by

F ′(x)h = Kh, ∀x, h ∈ L2[0, 1].

Now, since〈Kh, h〉 ≥ 0 for all h ∈ L2[0, 1], F is monotone. FurtherF ′(u)−1 does not
exists for anyu ∈ L2[0, 1]. Consequently, the operatorKF, withK andF as defined above
is an example of the MFD Class.

One of the advantages of (approximately) solving (2.1.5) and (2.1.6) to obtain an ap-

proximate solution for (2.1.4) is that, one can use any regularization method for linear ill-

posed equations, for solving (2.1.5) and any method for solving (2.1.6). In fact in this chap-

ter we consider Tikhonov regularization for approximatelysolving (2.1.5) and we consider
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a modified two step Newton method for solving (2.1.6). Note that the regularization param-

eterα is chosen according to the adaptive method considered by Pereverzev and Schock

(2005) for the linear ill-posed operator equations (2.1.5)and the same parameterα is used

for solving the non-linear operator equation (2.1.6), so the choice of the regularization pa-

rameter is not depending on the non-linear operatorF , this is another advantage over treat-

ing (2.1.4) as a single non-linear operator equation.

This chapter is organized as follows. Preparatory results are given in Section 2.2 and

Section 2.3 comprises of the Two Step Newton-Tikhonov Method (TSNTM) for case I (IFD

Class) and case II(MFD Class) with the error analysis.

2.2 PREPARATORY RESULTS

In this section we consider Tikhonov regularized solutionzδα defined in (2.1.7) and obtain

an a priori and an a posteriori error estimate for‖F (x̂)− zδα‖. The following assumption is

required to obtain the error estimate .

ASSUMPTION 2.2.1 There exists a continuous, strictly monotonically increasing function
ϕ : (0, a] → (0,∞) with a ≥ ‖K2‖ satisfying;

• lim
λ→0

ϕ(λ) = 0

•
sup

λ ≥ 0

αϕ(λ)

λ+ α
≤ ϕ(α), ∀α ∈ (0, a]

and

• there existsv ∈ X, ‖v‖ ≤ 1 such that

F (x̂)− F (x0) = ϕ(K∗K)v.

THEOREM 2.2.2 (cf. George and Kunhanandan (2009), section 3) Letzδα be as in (2.1.7)
and Assumption 2.2.1 holds. Then

‖F (x̂)− zδα‖ ≤ cφ(ϕ(α) +
δ√
α
). (2.2.1)
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Proof. Let zδα be as in (2.1.7). We observe that

‖F (x̂)− zδα‖ ≤ ‖F (x̂)− zα‖+ ‖zα − zδα‖

≤ ‖F (x̂)− zα‖+
δ√
α

(2.2.2)

and

F (x̂)− zα = F (x̂)− F (x0)− (K∗ + αI)−1K∗K[F (x̂)− F (x0)]

= [I − (K∗K + αI)−1K∗K](F (x̂)− F (x0))

= α(K∗K + αI)−1(F (x̂)− F (x0)).

So by Assumption 2.2.1

‖F (x̂)− zα‖ ≤ ‖α(K∗K + αI)−1ϕ(K∗K)v‖

≤ sup

0 < λ ≤ ‖K‖2
αϕ(λ)

λ+ α
‖v‖ ≤ ϕ(α). (2.2.3)

Therefore by (2.2.2) and (2.2.3), we have

‖F (x̂)− zδα‖ ≤ ϕ(α) +
δ√
α
.

2.2.1 A priori choice of the parameter

Note that the estimateϕ(α) + δ√
α

in (2.2.1) is of optimal order for the choiceα := αδ

which satisfiesϕ(αδ) = δ√
αδ

. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2. Then we have

δ =
√
αδϕ(αδ) = ψ(ϕ(αδ)) and

αδ = ϕ−1(ψ−1(δ)). (2.2.4)

So the relation (2.2.1) leads to‖F (x̂)− zδα‖ ≤ 2ψ−1(δ).

2.2.2 An adaptive choice of the parameter

The error estimate in the above Theorem has optimal order with respect toδ. Unfortu-

nately, an a priori parameter choice (2.2.4) cannot be used in practice since the smooth-

ness properties of the unknown solutionx̂ reflected in the functionϕ are generally un-

known. There exist many parameter choice strategies in the literature, for example see
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Bakushinsky and Smirnova (2005), George and Nair (1993), Raus (1984), George and Nair

(1998), Groetsch and Guacaneme (1987), Guacaneme (1990), and Tautenhahn (2002).

Pereverzev and Schock (2005) considered an adaptive selection of the parameter which

does not involve even the regularization method in an explicit manner. In this method the

regularization parameterαi are selected from some finite setDM := {αi = α0µ
2i, i =

0, 1, 2, ....,M}, µ > 1 and the corresponding regularized solution, sayzδαi
are studied

on-line. George and Nair (2008), George and Kunhanandan (2009), considered the adap-

tive method of Pereverzev and Schock (2005) for selecting the regularization parameter for

approximately solving Hammerstein-type operator equations. The selection of numerical

valuek for the parameterα according to the adaptive choice is performed using the rule;

k := max{i : αi ∈ D+
M} (2.2.5)

whereD+
M = {αi ∈ DM : ‖zδαi

− zδαj
‖ ≤ 4δ√

αj
, j = 0, 1, 2, ...., i− 1}. Let

l := max{i : ϕ(αi) ≤
δ√
αi

} < N. (2.2.6)

We will be using the following theorem from George and Kunhanandan (2009) for our error

analysis.

THEOREM 2.2.3 (cf. George and Kunhanandan (2009), Theorem 4.3) Letl be as in
(2.2.6),k be as in (2.2.5) andzδαk

be as in (2.1.7) withα = αk. Thenl ≤ k and

‖F (x̂)− zδαk
‖ ≤ (2 +

4µ

µ− 1
)µψ−1(δ).

Proof. Observe that, to provel ≤ k, it is enough to prove that, fori = 1, 2, · · · , N

ϕ(αi) ≤
δ√
αi

=⇒ ‖zδαi
− zδαj

‖ ≤ 4δ
√
αj
, ∀j = 0, 1, 2, · · · , i.

For j ≤ i,

‖zδαi
− zδαj

‖ ≤ ‖zδαi
− F (x̂)‖+ ‖F (x̂)− zδαj

‖

≤ [ϕ(αi) +
δ√
αi

] + [ϕ(αj) +
δ

√
αj

]

≤ 2δ√
αi

+
2δ
√
αj

≤ 4δ
√
αj
.
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This proves the relationl ≤ k.Now since
√
αl+m = µm

√
αl, by using triangle inequality

successively, we obtain

‖F (x̂)− zδαk
‖ ≤ ‖F (x̂)− zδαl

‖+
k

∑

j=l+1

4δ
√
αj−1

≤ ‖F (x̂)− zδαl
‖+

k−l−1
∑

m=0

4δ√
αlµm

≤ ‖F (x̂)− zδαl
‖+ (

µ

µ− 1
)
4δ√
αl
.

Therefore by Assumption 2.3.1 and (2.2.6) we have

‖F (x̂)− zδαk
‖ ≤ cφ[ϕ(αl) +

δ√
αl
] + (

µ

µ− 1
)
4δ√
αl

≤ (2 +
4µ

µ− 1
)µψ−1(δ).

The last step follows from the inequality
√
αδ ≤

√
αl+1 ≤ µ

√
αl and δ√

αδ
= ψ−1(δ). This

completes the proof.

2.3 CONVERGENCE ANALYSIS

2.3.1 TSNTM for IFD Class

In this subsection, for an initial guessx0 ∈ X, we consider the sequenceyδn,αk
andxδn,αk

defined iteratively by

yδn,αk
= xδn,αk

− F ′(x0)
−1(F (xδn,αk

)− zδαk
) (2.3.1)

and

xδn+1,αk
= yδn,αk

− F ′(x0)
−1(F (yδn,αk

)− zδαk
), (2.3.2)

wherexδ0,αk
= x0, for obtaining an approximation forxδαk

the solution ofF (x) = zδαk
. We

will be using the following parameters;

M ≥ ‖F ′(x0)‖;
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β := ‖F ′(x0)
−1‖;

k0 <
1

4
min{1, 1

β
};

δ0 <

√
α0

4k0β
;

ρ :=
1

M
(

1

4k0β
− δ0√

α0

);

γρ := β[Mρ+
δ0√
α0

];

and

eδn,αk
:= ‖yδn,αk

− xδn,αk
‖, ∀n ≥ 0. (2.3.3)

For convenience, we use the notationxn, yn anden for xδn,αk
, yδn,αk

andeδn,αk
respectively.

Further we define

q := k0r, r ∈ (r1, r2) (2.3.4)

where

r1 =
1−

√

1− 4k0γρ

2k0

and

r2 = min{ 1

k0
,
1 +

√

1− 4k0γρ

2k0
}.

Note thatr is well defined becauseγρ ≤ 1
4k0
. Further we use the relatione0 ≤ γρ for proving

our results, which can be seen as follows;

e0 = ‖y0 − x0‖ = ‖F ′(x0)
−1(F (x0)− zδαk

)‖

≤ ‖F ′(x0)
−1‖‖(F (x0)− zδαk

)‖

≤ β‖F (x0)− zαk
+ zαk

− zδαk
‖

≤ β[‖F (x0)− F (x̂)‖+ ‖zαk
− zδαk

‖]

≤ β[Mρ+
δ√
α
]

≤ β[Mρ+
δ0√
α0

]

= γρ.

28



We need the following Assumption for the convergence of iterative method and to obtain

the error estimate.

ASSUMPTION 2.3.1 (cf. Semenova (2010), Assumption 3 (A3)) There exist a constant
k0 > 0, r > 0 such that for everyx, u ∈ B(x0, r) ∪ B(x̂, r) ⊆ D(F ) andv ∈ X there
exists an elementΦ(x, u, v) ∈ X such that

[F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x− u‖.

THEOREM 2.3.2 Let en, q < 1 be as in (2.3.3), (2.3.4) respectively and{xn}, {yn} be
as in (2.3.2), (2.3.1) respectively withδ ∈ (0, δ0]. Then by Assumption 2.3.1 and Theorem
2.2.3xn, yn ∈ Br(x0) and the following estimates hold for alln ≥ 0.

(a) ‖xn+1 − yn‖ ≤ q‖yn − xn‖;

(b) ‖yn+1 − xn+1‖ ≤ q2‖yn − xn‖;

(c) en ≤ q2nγρ, ∀n ≥ 0.

Proof. Supposexn, yn ∈ Br(x0). Then

xn+1 − yn = yn − xn − F ′(x0)
−1(F (yn)− F (xn))

= F ′(x0)
−1[F ′(x0)(yn − xn)− (F (yn)− F (xn))]

= F ′(x0)
−1

∫ 1

0

[F ′(x0)− F ′(xn + t(yn − xn))](yn − xn)dt

and hence by Assumption 2.3.1, we have

‖xn+1 − yn‖ ≤ k0r‖yn − xn‖ ≤ q‖yn − xn‖.

This proves (a). To prove (b) we observe that

en+1 = ‖yn+1 − xn+1‖ = ‖xn+1 − yn − F ′(x0)
−1(F (xn+1)− F (yn))‖

= ‖F ′(x0)
−1

∫ 1

0

[F ′(x0)− F ′(yn + t(xn+1 − yn)]

dt(xn+1 − yn)‖

≤ k0r‖yn − xn+1‖

≤ q2‖xn − yn‖.
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The last but one step follows from Assumption 2.3.1 and the last step follows from (a). This

completes the proof of (b), and (c) follows from (b). Now we shall show thatxn, yn ∈
Br(x0) by induction. Forn = 1, by (a), we have

‖x1 − y0‖ ≤ k0
2
‖y0 − x0‖2

≤ k0re0. (2.3.5)

So by triangular inequality and (2.3.5)

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖

≤ (1 + q)e0 (2.3.6)

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e.,x1 ∈ Br(x0). Observe that by (b), we have

‖y1 − x1‖ ≤ q2e0. (2.3.7)

Therefore by (2.3.6), (2.3.7) and triangle inequality,

‖y1 − x0‖ ≤ ‖y1 − x1‖+ ‖x1 − x0‖

≤ (1 + q + q2)e0

≤ e0
1− q

≤ γρ
1− q

≤ r,
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i.e.,y1 ∈ Br(x0). Supposexm, ym ∈ Br(x0), for somem ≥ 0. Then

‖xm+1 − x0‖ ≤ ‖xm+1 − xm‖+ ‖xm − xm−1‖+ · · ·+ ‖x1 − x0‖

≤ (q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q + 1)(em + em−1 + · · ·+ e0)

≤ (q + 1)(q2m + q2(m−1) + · · ·+ 1)e0

≤ (q + 1)
1− (q2m+1)

1− q2
e0

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e.,xm+1 ∈ Br(x0) and

‖ym+1 − x0‖ ≤ ‖ym+1 − xm+1‖+ ‖xm+1 − x0‖

≤ q2em + (q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q2 + q + 1)em + (q + 1)em−1 + · · ·+ (q + 1)e0

≤ (q2(m+1) + · · ·+ q3 + q2 + q + 1)e0

≤ e0
1− q

≤ γρ
1− q

≤ r,

i.e.,ym+1 ∈ Br(x0). Thus by inductionxn, yn ∈ Br(x0), for all n ≥ 0. This completes the

proof of the Theorem.

The main result of this section is the following Theorem.

THEOREM 2.3.3 Let{xn} and{yn} be as in (2.3.2) and (2.3.1) respectively and assump-
tions of Theorem 2.3.2 hold. Then(xn) is a Cauchy sequence inBr(x0) and converges to
xδαk

∈ Br(x0). FurtherF (xδαk
) = zδαk

and

‖xn − xδαk
‖ ≤ C1q

2n

whereC1 =
γρ
1−q .
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Proof. Using the relation (b) and (c) of Theorem 2.3.2, we obtain

‖xn+m − xn‖ ≤
i=m−1
∑

i=0

‖xn+i+1 − xn+i‖

≤
i=m−1
∑

i=0

(1 + q)en+i

≤
i=m−1
∑

i=0

(1 + q)q2(n+i)e0

= (1 + q)q2ne0 + (1 + q)q2(n+1)e0 + ..... + (1 + q)q2(n+m)e0

≤ (1 + q)q2n(1 + q2 + q2(2) + · · ·+ q2m)e0

≤ q2n[
1− (q2)m+1

1− q
]γρ

≤ C1q
2n.

Thus(xn) is a Cauchy sequence inBr(x0) and hence it converges, say toxδαk
∈ Br(x0).

Observe that

‖F (xn)− zδαk
‖ = ‖F ′(x0)(xn − yn)‖

≤ ‖F ′(x0)‖‖xn − yn‖

≤ Men ≤Mq2nγρ. (2.3.8)

Now by lettingn→ ∞ in (2.3.8) we obtainF (xδαk
) = zδαk

. This completes the proof.

Hereafter we assume that‖x̂− x0‖ < ρ ≤ r.

THEOREM 2.3.4 Suppose thatk0r < 1 and the hypothesis of Assumption 2.3.1 holds.
Then

‖x̂− xδαk
‖ ≤ β

1− k0r
‖F (x̂)− zδαk

‖.

Proof. Note thatk0r < 1 and by Assumption 2.3.1, we have

‖x̂− xδαk
‖ ≤ ‖x̂− xδαk

+ F ′(x0)
−1[F (xδαk

)− F (x̂) + F (x̂)− zδαk
]‖

≤ ‖F ′(x0)
−1[F ′(x0)(x̂− xδαk

) + F (xδαk
)− F (x̂)]‖

+‖F ′(x0)
−1(F (x̂)− zδαk

)‖

≤ k0‖x0 − x̂− t(xδαk
− x̂)‖‖x̂− xδαk

‖+ β‖F (x̂)− zδαk
‖

≤ k0r‖x̂− xδαk
‖+ β‖F (x̂)− zδαk

‖.
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This completes the proof. The following Theorem is a consequence of Theorem 2.3.3 and

Theorem 2.3.4.

THEOREM 2.3.5 Let xn be as in (2.3.2). Suppose the hypotheses of Theorem 2.3.3 and
Theorem 2.3.4 hold. Then

‖x̂− xn‖ ≤ C1q
2n +

β

1− k0r
‖F (x̂)− zδαk

‖

whereC1 is as in Theorem 2.3.3.

Observe that from section 2.2,l ≤ k andαδ ≤ αl+1 ≤ µαl, we have

δ√
αk

≤ δ√
αl

≤ µ
δ√
αδ

= µϕ(αδ) = µψ−1(δ).

This leads to the following theorem,

THEOREM 2.3.6 Let xn be as in (2.3.2), assumptions in Theorem 2.2.3 and Theorem
2.3.5 hold. Let

nk := min{n : q2n ≤ δ√
αk

}.

Then
‖x̂− xnk

‖ = O(ψ−1(δ)).

2.3.2 TSNTM for MFD Class

In this subsection we assume thatX is a real Hilbert space. Then the iterative method for

MFD class is defined as:

ỹδn,αk
= x̃δn,αk

−R(x̃δ0,αk
)−1[F (x̃δn,αk

)− zδαk
+
αk
c
(x̃δn,αk

− x̃0)] (2.3.9)

and

x̃δn+1,αk
= ỹδn,αk

− R(x̃δ0,αk
)−1[F (ỹδn,αk

)− zδαk
+
αk
c
(ỹδn,αk

− x̃0)] (2.3.10)

wherex̃δ0,αk
:= x0 is the initial guess andR(x0) := F ′(x0) +

αk

c
I, with c ≤ αk < 1. First

we prove that̃xn,αk
converges to the zeroxδc,αk

of

F (x) +
αk
c
(x− x0) = zδαk

(2.3.11)

and then we prove thatxδc,αk
is an approximation for̂x.
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Let

ẽδn,αk
:= ‖ỹδn,αk

− x̃δn,αk
‖, ∀n ≥ 0. (2.3.12)

For the sake of simplicity, we use the notationx̃n, ỹn and ẽn for x̃δn,αk
, ỹδn,αk

and ẽδn,αk

respectively.

Hereafter we assume that‖x̂− x0‖ < ρ ≤ r̃ where

ρ <
1

M
(1− δ0√

α0
)

with δ0 <
√
α0 andr̃ ∈ (r̃1, r̃2) where

r̃1 =
1−

√

1− 4k0γ̃ρ

2k0

and

r̃2 = min{ 1

k0
,
1 +

√

1− 4k0γ̃ρ

2k0
}.

Let

γ̃ρ :=Mρ+
δ0√
α0
.

and

q1 = k0r̃. (2.3.13)

THEOREM 2.3.7 Let ẽn and q1 < 1 be defined as in equation (2.3.12) and (2.3.13) re-
spectively,̃xn and ỹn be as in (2.3.10) and (2.3.9) respectively withδ ∈ (0, δ0] and suppose
Assumption 2.3.1 holds. Then we have the following:

(a) ‖x̃n − ỹn−1‖ ≤ q1‖ỹn−1 − x̃n−1‖;

(b) ‖ỹn − x̃n‖ ≤ q21‖ỹn−1 − x̃n−1‖;

(c) ẽn ≤ q2n1 γ̃ρ, ∀n ≥ 0.
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Proof. Supposẽxn, ỹn ∈ Br̃(x0), then

x̃n − ỹn−1 = ỹn−1 − x̃n−1 − R(x0)
−1(F (ỹn−1)− F (x̃n−1)

+
αk
c
(ỹn−1 − x̃n−1))

= R(x0)
−1[R(x0)(ỹn−1 − x̃n−1)

−(F (ỹn−1)− F (x̃n−1))−
αk
c
(ỹn−1 − x̃n−1)]

= R(x0)
−1

∫ 1

0

[F ′(x0)− (F (ỹn−1)− F (x̃n−1))]

×(ỹn−1 − x̃n−1)dt.

Now since‖R(x0)−1F ′(x0)‖ ≤ 1, the proof of (a) follows as in Theorem 2.3.2. Again

observe that

ẽn ≤ ‖x̃n − ỹn−1 −R(x0)
−1(F (x̃n)− zδαk

+
αk
c
(x̃n − x0))‖

+‖R(x0)−1(F (ỹn−1)− zδαk
+
αk
c
(ỹn−1 − x0))‖

≤ ‖R(x0)−1[R(x0)(x̃n − ỹn−1)− (F (x̃n)− F (ỹn−1))−
αk
c
(x̃n − ỹn−1)]‖

≤ ‖R(x0)−1

∫ 1

0

[F ′(x0)− (F (x̃n)− F (ỹn−1))]dt(x̃n − ỹn−1)‖.

So the remaining part of the proof is analogous to the proof ofTheorem 2.3.2.

THEOREM 2.3.8 Let ỹn andx̃n be as in (2.3.9) and (2.3.10) respectively and assumptions
of Theorem 2.3.7 holds. Then(x̃n) is a Cauchy sequence inBr̃(x0) and converges toxδc,αk

∈
Br̃(x0). FurtherF (xδc,αk

) + αk

c
(xδc,αk

− x0) = zδαk
and

‖x̃n − xδc,αk
‖ ≤ C̃1q

2n
1

whereC̃1 =
γ̃ρ

1−q1 .

Proof. Analogous to the proof of Theorem 2.3.3, one can prove that(x̃n) is a Cauchy
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sequence inBr̃(x0) and hence it converges, say toxδc,αk
∈ Br̃(x0) and

‖F (x̃n)− zδαk
+
αk
c
(x̃n − x0)‖ = ‖R(x̃0)(x̃n − ỹn)‖

≤ ‖R(x̃0)‖‖x̃n − ỹn‖

≤ (‖F ′(x0)‖+
αk
c
)ẽn

≤ (‖F ′(x0)‖+
αk
c
)q2n1 ẽ0

≤ (‖F ′(x0)‖+
αk
c
)q2n1 γ̃ρ. (2.3.14)

Now by lettingn → ∞ in (2.3.14) we obtainF (xδc,αk
) + αk

c
(xδc,αk

− x0) = zδαk
. This

completes the proof.

The following assumptions are needed in addition to the earlier assumptions for our

convergence analysis.

ASSUMPTION 2.3.9 There exists a continuous, strictly monotonically increasing function
ϕ1 : (0, b] → (0,∞) with b ≥ ‖F ′(x0)‖ satisfying;

• lim
λ→0

ϕ1(λ) = 0,

•
sup

λ ≥ 0

αϕ1(λ)

λ+ α
≤ ϕ1(α) ∀λ ∈ (0, b]

and

• there existsv ∈ X with ‖v‖ ≤ 1 (cf. Mahale and Nair (2009)) such that

x0 − x̂ = ϕ1(F
′(x0))v.

ASSUMPTION 2.3.10 For eachx ∈ Br̃(x0) there exists a bounded linear operatorG(x, x0)
(see Ramm et al. (2003)) such that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ ≤ k2.

Let k2 <
1−k0r̃
1−c with r̃ < 1

k0
and for the sake of simplicity assume thatϕ1(α) ≤ ϕ(α)

for α > 0.

THEOREM 2.3.11 Supposexδc,αk
is the solution of (2.3.11) and Assumption 2.3.1, 2.3.9

and 2.3.10 hold. Then
‖x̂− xδc,αk

‖ = O(ψ−1(δ)).
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Proof. Note thatc(F (xδc,αk
)− zδαk

) + αk(x
δ
c,αk

− x0) = 0, so

(F ′(x0) + αkI)(x
δ
c,αk

− x̂) = (F ′(x0) + αkI)(x
δ
c,αk

− x̂)

−c(F (xδc,αk
)− zδαk

)− αk(x
δ
c,αk

− x0)

= αk(x0 − x̂)− c(F (x̂)− zδαk
) + F ′(x0)(x

δ
c,αk

− x̂)

−c[F (xδc,αk
)− F (x̂)].

Thus

‖xδc,αk
− x̂‖ ≤ ‖αk(F ′(x0) + αkI)

−1(x0 − x̂)‖+ ‖(F ′(x0) + αkI)
−1

c(F (x̂)− zδαk
)‖+ ‖(F ′(x0) + αkI)

−1[F ′(x0)(x
δ
c,αk

− x̂)

−c(F (xδc,αk
)− F (x̂))]‖

≤ ‖αk(F ′(x0) + αkI)
−1(x0 − x̂)‖+ ‖F (x̂)− zδαk

‖+ Γ (2.3.15)

whereΓ := ‖(F ′(x0) + αkI)
−1

∫ 1

0
[F ′(x0) − cF ′(x̂ + t(xδc,αk

− x̂)](xδc,αk
− x̂)dt‖. So by

Assumption 2.3.10, we obtain

Γ ≤ ‖(F ′(x0) + αkI)
−1

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδc,αk
− x̂))]

×(xδc,αk
− x̂)dt‖+ (1− c)‖(F ′(x0) + αkI)

−1F ′(x0)

×
∫ 1

0

G(x̂+ t(xδc,αk
− x̂), x0)(x

δ
c,αk

− x̂)dt‖

≤ k0r̃‖xδc,αk
− x̂‖+ (1− c)k2‖xδc,αk

− x̂‖ (2.3.16)

and hence by (2.3.15) and (2.3.16) we have

‖xδc,αk
− x̂‖ ≤

‖αk(F ′(x0) + αkI)
−1(x0 − x̂)‖+ ‖F (x̂)− zδαk

‖
1− (1− c)k2 − k0r̃

≤
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ)

1− (1− c)k2 − k0r̃
. (2.3.17)

That completes the proof of the theorem.

The following Theorem is a consequence of Theorem 2.3.8 and Theorem 2.3.11.

THEOREM 2.3.12 Let x̃n be as in (2.3.10), assumptions in Theorem 2.3.8 and Theorem
2.3.11 hold. Then

‖x̂− x̃n‖ ≤ C̃1q
2n
1 +O(ψ−1(δ))

whereC̃1 is as in Theorem 2.3.8.
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THEOREM 2.3.13 Let x̃n be as in (2.3.2), assumptions in Theorem 2.2.3, Theorem 2.3.8
and Theorem 2.3.11 hold. Let

nk := min{n : q2n1 ≤ δ√
αk

}.

Then
‖x̂− x̃nk

‖ = O(ψ−1(δ)).
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Chapter 3

DISCRETIZED TWO STEP
NEWTON-TIKHONOV METHOD

An iteratively regularized projection scheme for the ill-posed Hammerstein type operator

equationKF (x) = f has been considered. The proposed method is the finite dimensional

realization of the method considered in Chapter 2. Precisely, the method is a combination of

discretized Tikhonov regularization and modified Newton’smethod. The analysis in finite

dimensional setting is carried out for both IFD and MFD Class. Adaptive choice of the

parameter suggested by Perverzev and Schock(2005) is employed in this chapter also for

selecting the regularization parameterα. An algorithm and numerical examples are given

to test the reliability of the method.

3.1 INTRODUCTION

For an implementable method for solving (2.1.1) needs numerical calculations in finite

dimensional spaces. One of the approaches in this regard is through discretization (see

Englet al. (2000), Page 63). Here the regularization is achieved by a finite dimensional

approximation alone. Regularization of ill-posed problems by projection methods can be

found in literature, for e.g in Groetsch and Neubauer (1988), Kaltenbacheret al. (2008),

Krisch (1996), Perverzev and Probdorf (2000).

This Chapter is concerned with the finite dimensional realization of a method considered

in Chapter 2 for (nonlinear) Hammerstein-type equation (2.1.1).
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The organization of this Chapter is as follows: Preparatoryresults are given in Section

3.2. Section 3.3 comprises the proposed iterative method for IFD Class and MFD Class

in finite dimensional setting. Section 3.4 deals with the algorithm for implementing the

proposed method. Numerical examples are given in Section 3.5.

3.2 PRELIMINARIES

Let V1 ⊆ V2 ⊆ V3 ⊆ ..... be a sequence of finite-dimensional subspaces ofX with

Un∈NVn = X andPh, (h = 1
n
) is the orthogonal projector ofX ontoVn. Let

εh := ‖K(I − Ph)‖,

τh := ‖F ′(x)(I − Ph)‖, ∀x ∈ D(F ).

Let {bh : h > 0} is such thatlim
h→0

‖(I−Ph)x0‖
bh

= 0, lim
h→0

‖(I−Ph)F (x0)‖
bh

= 0 and lim
h→0

bh = 0. We

assume thatεh → 0 andτh → 0 ash → 0. The above assumption is satisfied if,Ph → I

pointwise and ifK andF ′(x) are compact operators. Further we assume thatεh < ε0,

τh ≤ τ0, bh ≤ b0.

The discretized Tikhonov regularization method for solving equationKz = f δ consists

of solving the equation

(PhK
∗KPh + αPh)(z

h,δ
α − PhF (x0)) = PhK

∗[f δ −KF (x0)] (3.2.1)

for zh,δα .

Throughout the Chapter we assume thatF possess a uniformly bounded Fréchet deriva-

tive for all x ∈ D(F ) i.e.,‖F ′(x)‖ ≤M, for someM > 0.

THEOREM 3.2.1 Suppose Assumption 2.2.1 holds. Letzh,δα be as in (3.2.1) andbh ≤
δ+εh√
α
. Then

‖F (x̂)− zh,δα ‖ ≤ C(ϕ(α) + (
δ + εh√

α
)), (3.2.2)

whereC = 1
2
max{Mρ, 1}+ 1.
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Proof. Let zα = (K∗K + αI)−1K∗(f −KF (x0)) + F (x0). Then

‖zα − zhα‖ = ‖(K∗K + αI)−1K∗(f −KF (x0))− (PhK
∗KPh

+αI)−1PhK
∗(f −KF (x0)) + F (x0)− PhF (x0)‖

≤ ‖(PhK∗KPh + αPh)
−1PhK

∗(KPh −K)(K∗K

+αI)−1K∗K[F (x̂)− F (x0)]‖+ ‖(I − Ph)F (x0)‖

≤ ‖F (x̂)− F (x0)‖
εh

2
√
α
+ bh

≤ ‖
∫ 1

0

F ′(x0 + t(x̂− x0))(x̂− x0)dt‖
εh

2
√
α
+ bh

≤ Mρ
εh

2
√
α
+ bh (3.2.3)

and

‖zhα − zh,δα ‖ = ‖(PhK∗KPh + αI)−1PhK
∗(f − f δ)‖

≤ δ

2
√
α
. (3.2.4)

Now the result follows from (3.2.3), (3.2.4), (2.2.3) and the following triangle inequality;

‖F (x̂)− zh,δα ‖ ≤ ‖F (x̂)− zα‖+ ‖zα − zhα‖+ ‖zhα − zh,δα ‖.

3.2.1 A priori choice of the parameter

Note that the estimateϕ(α) + δ+εh√
α

in (3.2.2) is of optimal order for the choiceα := α(δ, h)

which satisfiesϕ(α(δ, h)) = δ+εh√
α(δ,h)

. Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ a. Then we have

δ + εh =
√

α(δ, h)ϕ(α(δ, h)) = ψ(ϕ(α(δ, h))) and

α(δ, h) = ϕ−1(ψ−1(δ + εh)).

So the relation (3.2.2) leads to‖F (x̂)− zh,δα ‖ ≤ 2Cψ−1(δ + εh).

3.2.2 An adaptive choice of the parameter

Let

DN = {αi : 0 < α0 < α1 < α2 < · · · < αN}
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be the set of possible values of the parameterα.

Let

l := max{i : ϕ(αi) ≤
δ + εh√
αi

} < N, (3.2.5)

k = max{i : αi ∈ D+
N} (3.2.6)

whereD+
N = {αi ∈ DN : ‖zδαi

− zδαj
‖ ≤ 4C(δ+εh)√

αj
, j = 0, 1, 2, ...., i− 1}.

THEOREM 3.2.2 (cf. George and Kunhanandan (2009), Theorem 2.5) Letl be as in
(3.2.5),k be as in (3.2.6) andzh,δαk

be as in (3.2.1) withα = αk. Thenl ≤ k and

‖F (x̂)− zh,δαk
‖ ≤ C(2 +

4µ

µ− 1
)µψ−1(δ + εh),

whereC is as in Theorem 3.2.1.

3.3 CONVERGENCE ANALYSIS

3.3.1 DTSNTM for IFD Class

Let

‖F ′(x0)
−1‖ := β1. (3.3.1)

The discretized iterative scheme of (2.3.1) and (2.3.2) forapproximately solving (2.1.6)

with zh,δαk
in place ofz is defined as:

yh,δn,αk
= xh,δn,αk

− PhF
′(xh,δ0,αk

)−1Ph(F (x
h,δ
n,αk

)− zh,δαk
), (3.3.2)

xh,δn+1,αk
= yh,δn,αk

− PhF
′(xh,δ0,αk

)−1Ph(F (y
h,δ
n,αk

)− zh,δαk
) (3.3.3)

wherexh,δ0,αk
:= Phx0 andzh,δαk

is as defined in (3.2.1).

Note: Observe that ifb0 < 1
k0

thenF ′(Phx0)
−1 exists and is bounded. This can be seen as

follows:

‖F ′(Phx0)
−1‖ = sup

‖v‖≤1

‖[I + F ′(x0)
−1(F ′(Phx0)− F ′(x0))]

−1F ′(x0)
−1v‖

≤ sup
‖v‖≤1

‖F ′(x0)
−1‖

1− ‖F ′(x0)−1(F ′(Phx0)− F ′(x0))v‖
(3.3.4)
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Using Assumption 2.3.1, we get

‖F ′(x0)
−1(F ′(Phx0)− F ′(x0))v‖ ≤ k0b0. (3.3.5)

And hence by (3.3.1), (3.3.4) and (3.3.5) we have,‖F ′(Phx0)
−1‖ ≤ β1

1−k0b0 .

Thus without loss of generality we assume that

‖F ′(Phx0)
−1‖ ≤ β, (3.3.6)

for someβ > 0.

LEMMA 3.3.1 Let b0 < 1
k0

and (3.3.6) hold. Then

‖PhF ′(Phx0)
−1PhF

′(Phx0)‖ ≤ 1 + βτ0.

Proof. One can see that

‖PhF ′(xh,δ0,αk
)−1PhF

′(Phx0)‖ = sup
‖v‖≤1

‖PhF ′(Phx0)
−1PhF

′(Phx0)v‖

≤ sup
‖v‖≤1

‖PhF ′(Phx0)
−1PhF

′(Phx0)

×(Ph + I − Ph)v‖

≤ sup
‖v‖≤1

‖[PhF ′(Phx0)
−1PhF

′(Phx0)Ph]v‖+

sup
‖v‖≤1

‖PhF ′(Phx0)
−1PhF

′(Phx0)(I − Ph)v‖

≤ 1 + βτh ≤ 1 + βτ0.

Let

eh,δn,αk
:= ‖yh,δn,αk

− xh,δn,αk
‖, ∀n ≥ 0. (3.3.7)

For our further analysis, we assume that,

k0 <
1

4β(1 + βτ0)

and

δ0 + ε0 <
1

4βk0(1 + βτ0)(M + 1 + CMρ)

√
α0

whereCMρ =
1
2
max{Mρ, 1}.
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Let ‖x̂− x0‖ ≤ ρ with

ρ <
1

M
[

1

4βk0(1 + βτ0)
− (M + 1 + CMρ)

δ0 + ε0√
α0

],

γρ := β[Mρ+ (M + 1 + CMρ)(
ε0 + δ0√

α0
)] ≤ 1

4k0(1 + βτ0)
(3.3.8)

and let

qp := (1 + βτ0)k0r, r ∈ (r1, r2) (3.3.9)

where

r1 =
1−

√

1− 4k0(1 + βτ0)γρ
2k0(1 + βτ0)

and

r2 = min{ 1

k0(1 + βτ0)
,
1 +

√

1− 4k0(1 + βτ0)γρ
2k0(1 + βτ0)

}.

Note that by (3.3.8),r is well defined andqp < 1.

LEMMA 3.3.2 Let zh,δαk
andeh,δ0,αk

be as defined in (3.2.1) and (3.3.7) respectively. Suppose

(3.3.6) holds andbh ≤ δ+εh√
αk
, theneh,δ0,αk

≤ γρ.

Proof. Observe that

eh,δ0,αk
= ‖yh,δ0,αk

− Phx0‖

= ‖PhF ′(Phx0)
−1Ph(F (Phx0)− zh,δαk

)‖

≤ ‖PhF ′(Phx0)
−1Ph‖‖F (Phx0)− zh,δαk

‖

≤ β‖F (Phx0)− zhαk
+ zhαk

− zh,δαk
‖

≤ β(‖F (Phx0)− zhαk
‖+ ‖zhαk

− zh,δαk
‖) (3.3.10)

and

‖F (Phx0)− zhαk
‖ ≤ ‖F (Phx0)− F (x0)‖+ ‖F (x0)− zαk

‖+ ‖zαk
− zhαk

‖

≤ ‖
∫ 1

0

F ′(x0 + t(Phx0 − x0))(Phx0 − x0)dt‖

+‖(K∗K + αkI)
−1K∗K(F (x̂)− F (x0))‖+ ‖zαk

− zhαk
‖

≤ Mbh + ‖F (x̂)− F (x0)‖+ ‖zαk
− zhαk

‖

≤ Mbh +Mρ + ‖zαk
− zhαk

‖. (3.3.11)
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Therefore by (3.3.10), (3.3.11), (3.2.3) and (3.2.4) we have

eh,δ0,αk
≤ β[(M + 1)bh + (1 +

εh
2
√
αk

)Mρ+
δ

2
√
αk

]

≤ β[(M + 1)
εh + δ√
αk

+Mρ+
Mρεh
2
√
αk

+
δ√
αk

]

≤ β[Mρ+ (M + 1 + CMρ)(
ε0 + δ0√

α0
)]

≤ γρ.

THEOREM 3.3.3 Let eh,δn,αk
, qp be as in (3.3.7), (3.3.9) respectively. Let{yh,δn,αk

}, {xh,δn,αk
}

be as in (3.3.2), (3.3.3) respectively withδ ∈ (0, δ0], and εh ∈ (0, ε0]. Then under the
assumptions of Theorem 3.2.2 and Lemma 3.3.1, the followinghold for all n ≥ 0.

(a) ‖xh,δn,αk
− xh,δn−1,αk

‖ ≤ (1 + qp)‖yh,δn−1,αk
− xh,δn−1,αk

‖;

(b) ‖yh,δn,αk
− xh,δn,αk

‖ ≤ q2p‖yh,δn−1,αk
− xh,δn−1,αk

‖;

(c) eh,δn,αk
≤ q2np γρ and

(d) xh,δn,αk
, yh,δn,αk

∈ Br(Phx0), ∀n ≥ 0.

Proof. Supposexh,δn,αk
, yh,δn,αk

∈ Br(Phx0), then

xh,δn,αk
− yh,δn−1,αk

= yh,δn−1,αk
− xh,δn−1,αk

− PhF
′(Phx0)

−1Ph

×(F (yh,δn−1,αk
)− F (xh,δn−1,αk

))

= PhF
′(Phx0)

−1[PhF
′(Phx0)(y

h,δ
n−1,αk

− xh,δn−1,αk
)

−Ph(F (yh,δn−1,αk
)− F (xh,δn−1,αk

))]

= PhF
′(Phx0)

−1Ph

∫ 1

0

[F ′(Phx0)− F ′(xh,δn−1,αk

+t(yh,δn−1,αk
− xh,δn−1,αk

))](yh,δn−1,αk
− xh,δn−1,αk

)dt

and hence by Assumption 2.3.1 and Lemma 3.3.1, we have

‖xh,δn,αk
− yh,δn−1,αk

‖ ≤ (1 + βτ0)‖
∫ 1

0

Φ(Phx0, x
h,δ
n−1,αk

+ t(yh,δn−1,αk
− xh,δn−1,αk

),

yh,δn−1,αk
− xh,δn−1,αk

)dt‖

≤ (1 + βτ0)k0r‖yh,δn−1,αk
− xh,δn−1,αk

‖. (3.3.12)
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Now we obtain (a) from (3.3.12) and the triangle inequality;

‖xh,δn,αk
− xh,δn−1,αk

‖ ≤ ‖xh,δn,αk
− yh,δn−1,αk

‖+ ‖yh,δn−1,αk
− xh,δn−1,αk

‖.

To prove (b) we observe that

eh,δn,αk
= ‖yh,δn,αk

− xh,δn,αk
‖ = ‖xh,δn,αk

− yh,δn−1,αk
− PhF

′(Phx0)
−1Ph(F (x

h,δ
n,αk

)

−F (yh,δn−1,αk
))‖

= ‖PhF ′(Phx0)
−1[PhF

′(Phx0)(x
h,δ
n,αk

− yh,δn−1,αk
)

−Ph(F (xh,δn,αk
)− F (yh,δn−1,αk

))]‖

≤ (1 + βτ0)k0r‖xh,δn,αk
− yh,δn−1,αk

‖. (3.3.13)

Hence from (3.3.12), (3.3.13) and (a) we have

eh,δn,αk
≤ ((1 + βτ0)k0r)

2‖xh,δn−1,αk
− yh,δn−1,αk

‖

≤ q2pe
h,δ
n−1,αk

.

This completes the proof of (b). Sinceeh,δ0,αk
≤ γρ, (c) follows from (b). Now by induction,

as in Chapter 2 one can prove thatxh,δn,αk
, yh,δn,αk

∈ Br(Phx0), ∀n ≥ 0. This completes the

proof of the Theorem.

THEOREM 3.3.4 Let yh,δn,αk
andxh,δn,αk

be as in (3.3.2) and (3.3.3) respectively. If Theo-
rem 3.3.3 holds, then(xh,δn,αk

) is a Cauchy sequence inBr(Phx0) and converges toxh,δαk
∈

Br(Phx0). FurtherPhF (xh,δαk
) = zh,δαk

and

‖xh,δn,αk
− xh,δαk

‖ ≤ C2q
2n
p

whereC2 =
γρ

1−qp .

Proof. Analogous to the proof of Theorem 2.3.3 in Chapter 2 one can show thatxh,δn,αk
is a

Cauchy sequence inBr(Phx0) converging toxh,δαk
∈ Br(Phx0) and

‖xh,δn,αk
− xh,δαk

‖ ≤ C2q
2n
p .
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Further observe that,

‖Ph(F (xh,δn,αk
)− zh,δαk

)‖ = ‖PhF ′(Phx0)(x
h,δ
n,αk

− yh,δn,αk
)‖

≤ ‖F ′(Phx0)‖‖xh,δn,αk
− yh,δn,αk

‖

≤ Meh,δn,αk
≤ Mq2np γρ. (3.3.14)

Now by lettingn → ∞ in (3.3.14) we obtainPhF (xh,δαk
) = zh,δαk

. This completes the proof.

Next we assume that

‖x̂− x0‖ < ρ ≤ r.

THEOREM 3.3.5 Suppose the hypothesis of Assumption 2.2.1 and 2.3.1 hold. Then

‖x̂− xh,δαk
‖ ≤ β

(1− qp)
‖F (x̂)− zh,δαk

‖.

Proof. One can see that

‖x̂− xh,δαk
‖ = ‖x̂− xh,δαk

+ PhF
′(Phx0)

−1Ph[F (x
h,δ
αk
)− F (x̂) + F (x̂)− zh,δαk

]‖

≤ ‖PhF ′(Phx0)
−1[PhF

′(Phx0)(x̂− xh,δαk
) + Ph(F (x

h,δ
αk
)

−F (x̂))]‖+ ‖PhF ′(Phx0)
−1Ph(F (x̂)− zh,δαk

)‖

≤ ‖PhF ′(Phx0)
−1Ph

∫ 1

0

[F ′(Phx0)− F ′(x̂+ t(xh,δαk
− x̂))]

×(x̂− xh,δαk
)dt‖+ ‖PhF ′(Phx0)

−1Ph(F (x̂)− zh,δαk
)‖

≤ (1 + βτ0)k0r‖x̂− xh,δαk
‖+ β‖F (x̂)− zh,δαk

‖.

The last step follows from Assumption 2.3.1, Lemma 3.3.1 andthe relation‖Phx0 − x̂ −
t(xh,δαk

− x̂)‖ ≤ r. This completes the proof.

The following theorem is a consequence of Theorem 3.3.4 and Theorem 3.3.5.

THEOREM 3.3.6 Let xh,δn,αk
be as in (3.3.3), assumptions in Theorem 3.3.4 and Theorem

3.3.5 hold. Then

‖x̂− xh,δn,αk
‖ ≤ C2q

2n
p +

β

(1− qp)
‖F (x̂)− zh,δαk

‖

whereC2 is as in Theorem 3.3.4.
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Now sincel ≤ k andαδ ≤ αl+1 ≤ µαl we have

δ + εh√
αk

≤ δ + εh√
αl

≤ µ
δ + εh√
αδ

= µϕ(α(δ, h)) = µψ−1(δ + εh).

This leads to the following theorem,

THEOREM 3.3.7 Letxh,δn,αk
be as in (3.3.3), assumptions in Theorem 3.3.6 hold. Let

nk := min{n : q2np ≤ δ + εh√
αk

}.

Then

‖x̂− xh,δnk,αk
‖ = O(ψ−1(δ + εh)).

3.3.2 DTSNTM for MFD Class

In this subsection we consider the discretized form of (2.3.9) and (2.3.10) as;

ỹh,δn,αk
= x̃h,δn,αk

−R(x̃h,δ0,αk
)−1Ph[F (x̃

h,δ
n,αk

)− zh,δαk
+
αk
c
(x̃h,δn,αk

− x̃h,δ0,αk
)] (3.3.15)

and

x̃h,δn+1,αk
= ỹh,δn,αk

− R(x̃h,δ0,αk
)−1Ph[F (ỹ

h,δ
n,αk

)− zh,δαk
+
αk
c
(ỹh,δn,αk

− x̃h,δ0,αk
)], (3.3.16)

whereR(x̃h,δ0,αk
) := PhF

′(x̃h,δ0,αk
)Ph +

αk

c
Ph, x̃

h,δ
0,αk

:= Phx0 andc ≤ αk.

First we consider the iterative scheme defined by (3.3.15) and (3.3.16) for approximating

the zeroxh,δc,αk
of

Ph(F (x) +
αk
c
(x− x0)) = Phz

h,δ
αk

(3.3.17)

and then show thatxh,δc,αk
is an approximation to the solution̂x of (2.1.1).
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Note that with the above notation

‖R(x̃h,δ0,αk
)−1PhF

′(x̃h,δ0,αk
)‖ = ‖(PhF ′(x̃h,δ0,αk

)Ph +
αk
c
Ph)

−1PhF
′(x̃h,δ0,αk

)‖

= ‖(PhF ′(x̃h,δ0,αk
)Ph +

αk
c
Ph)

−1PhF
′(x̃h,δ0,αk

)

[Ph + I − Ph]‖

≤ ‖(PhF ′(x̃h,δ0,αk
)Ph +

αk
c
Ph)

−1PhF
′(x̃h,δ0,αk

)Ph‖

+‖(PhF ′(x̃h,δ0,αk
)Ph +

αk
c
Ph)

−1PhF
′(x̃h,δ0,αk

)

(I − Ph)‖

≤ 1 +
‖PhF ′(x̃h,δ0,αk

)(I − Ph)‖
αk

c

≤ 1 + τh ≤ 1 + τ0. (3.3.18)

Let

ẽh,δn,αk
:= ‖ỹh,δn,αk

− x̃h,δn,αk
‖, ∀n ≥ 0 (3.3.19)

and letδ0 + ε0 < ( 2
2M+3

)
√
α0 and‖x̂− x0‖ ≤ ρ, with

ρ <
1

M
(1− (

3

2
+M)

δ0 + ε0√
α0

)

and

γ̃ρ :=Mρ+ (
3

2
+M)(

ε0 + δ0√
α0

).

Further let

γ̃ρ <
1

4k0(1 + τ0)
,

r̃1 =
1−

√

1− 4(1 + τ0)k0γ̃ρ
2(1 + τ0)k0

and

r̃2 = min{ 1

(1 + τ0)k0
,
1 +

√

1− 4(1 + τ0)k0γ̃ρ
2(1 + τ0)k0

}.

For r̃ ∈ (r̃1, r̃2), let

q̃p = (1 + τ0)k0r̃, (3.3.20)

thenq̃p < 1.
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LEMMA 3.3.8 Let zh,δαk
and ẽh,δ0,αk

be as defined in (3.2.1) and (3.3.19) respectively. Then

ẽh,δ0,αk
≤ γ̃ρ.

Proof. Observe that

ẽh,δ0,αk
= ‖ỹh,δ0,αk

− Phx0‖

= ‖(PhF ′(Phx0) +
αk
c
)−1Ph(F (Phx0)− zh,δαk

)‖

≤ ‖F (Phx0)− zhαk
+ zhαk

− zh,δαk
‖

≤ ‖F (Phx0)− zhαk
‖+ ‖zhαk

− zh,δαk
‖. (3.3.21)

Therefore by (3.3.21), (3.3.11), (3.2.3) and (3.2.4) we have

ẽh,δ0,αk
≤ (M + 1)bh + (1 +

εh
2
√
αk

)Mρ+
δ

2
√
αk

≤ (M + 1)
εh + δ√
αk

+Mρ+
1

2
max{Mρ, 1}ε0 + δ0√

α0

≤ (M + 1)
ε0 + δ0√

α0
+Mρ +

ε0 + δ0
2
√
α0

≤ γ̃ρ.

THEOREM 3.3.9 Let ẽh,δn,αk
and q̃p be as in equation (3.3.19) and (3.3.20) respectively,

ỹh,δn,αk
and x̃h,δn,αk

be as defined in (3.3.15) and (3.3.16) respectively withδ ∈ (0, δ0] and
εh ∈ (0, ε0]. Then under the assumptions of Theorem 3.2.2, Lemma 3.3.8 and(3.3.18),
x̃h,δn,αk

, ỹh,δn,αk
∈ Br̃(Phx0) and the following estimates hold for alln ≥ 0.

(a) ‖x̃h,δn,αk
− ỹh,δn−1,αk

‖ ≤ q̃p‖ỹh,δn−1,αk
− x̃h,δn−1,αk

‖;

(b) ‖x̃h,δn,αk
− x̃h,δn−1,αk

‖ ≤ (1 + q̃p)‖ỹh,δn−1,αk
− x̃h,δn−1,αk

‖;

(c) ‖ỹh,δn,αk
− x̃h,δn,αk

‖ ≤ q̃p
2‖ỹh,δn−1,αk

− x̃h,δn−1,αk
‖;

(d) ẽh,δn,αk
≤ q̃p

2nγρ, ∀n ≥ 0.
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Proof. Supposẽxh,δn,αk
, ỹh,δn,αk

∈ Br̃(Phx0). Then

x̃h,δn,αk
− ỹh,δn−1,αk

= ỹh,δn−1,αk
− x̃h,δn−1,αk

− R(x̃h,δ0,αk
)−1Ph(F (ỹ

h,δ
n−1,αk

)

−F (x̃h,δn−1,αk
) +

αk
c
(ỹh,δn−1,αk

− x̃h,δn−1,αk
))

= R(x̃h,δ0,αk
)−1[R(x̃h,δ0,αk

)(ỹh,δn−1,αk
− x̃h,δn−1,αk

)

−Ph(F (ỹh,δn−1,αk
)− F (xh,δn−1,αk

))− αk
c
(ỹh,δn−1,αk

− x̃h,δn−1,αk
)]

= R(x̃h,δ0,αk
)−1Ph

∫ 1

0

[F ′(x̃h,δ0,αk
)− F ′(x̃h,δn−1,αk

+t(ỹh,δn−1,αk
− x̃h,δn−1,αk

))]Ph(ỹ
h,δ
n−1,αk

− x̃h,δn−1,αk
)dt

and hence by Assumption 2.3.1, Lemma 3.3.8 and (3.3.18) we have

‖x̃h,δn,αk
− ỹh,δn−1,αk

‖ ≤ (1 + τ0)‖
∫ 1

0

Φ(x̃h,δ0,αk
, x̃h,δn−1,αk

+ t(ỹh,δn−1,αk
− x̃h,δn−1,αk

)),

(ỹh,δn−1,αk
− x̃h,δn−1,αk

)dt‖

≤ (1 + τ0)k0r̃‖ỹh,δn−1,αk
− x̃h,δn−1,αk

‖.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖x̃h,δn,αk
− x̃h,δn−1,αk

‖ ≤ ‖x̃h,δn,αk
− ỹh,δn−1,αk

‖+ ‖ỹh,δn−1,αk
− x̃h,δn−1,αk

‖.

Again (c) follows from (a), Assumption 2.3.1 and (3.3.18) and the following expression

ẽh,δn,αk
= ‖R(x̃h,δ0,αk

)−1Ph

∫ 1

0

[F ′(x̃h,δ0,αk
)−(F ′(x̃h,δn,αk

+t(x̃h,δn,αk
− ỹh,δn−1,αk

))]dt(x̃h,δn,αk
− ỹh,δn−1,αk

)‖

and (d) follows from (c). The remaining part of the proof is analogous to the proof of

Theorem 2.3.2.

THEOREM 3.3.10 Let ỹh,δn,αk
and x̃h,δn,αk

be as in (3.3.15) and (3.3.16) respectively and
assumptions of Theorem 3.3.9 hold. Then(x̃h,δn,αk

) is a Cauchy sequence inBr̃(Phx0) and

converges, say toxh,δc,αk
∈ Br̃(Phx0). Further Ph[F (xh,δc,αk

) + αk

c
(xh,δc,αk

− x0)] = zh,δαk
and

‖x̃h,δn,αk
− xh,δc,αk

‖ ≤ C̃2q̃p
2n whereC̃2 =

γ̃ρ
1−q̃p .
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Proof. Analogous to the proof of Theorem 2.3.3 of Chapter 2 one can show that(x̃h,δn,αk
) is

a Cauchy sequence inBr̃(Phx0) and hence it converges, say toxh,δc,αk
∈ Br̃(Phx0). Observe

that from (3.3.15)

‖Ph(F (x̃h,δn,αk
)− zh,δαk

) +
αk
c
(x̃h,δn,αk

− Phx0)‖ = ‖R(x̃h,δ0,αk
)(ỹh,δn,αk

− x̃h,δn,αk
)‖

≤ ‖R(x̃h,δ0,αk
)‖‖ỹh,δn,αk

− x̃h,δn,αk
‖

≤ (‖PhF ′(x̃h,δ0,αk
)Ph‖+

αk
c
)ẽh,δn,αk

≤ (M +
αk
c
)q̃p

2nγ̃ρ. (3.3.22)

Now by lettingn → ∞ in (3.3.22) we obtainPhF (xh,δc,αk
) + αk

c
(xh,δc,αk

− Phx0) = zh,δαk
. This

completes the proof.

REMARK 3.3.11 Note that0 < q̃p < 1 and hence the sequence(x̃h,δn,αk
) converges linearly

to xh,δc,αk
.

Next we use Assumptions 2.3.9 and 2.3.10 as in Chapter 2 to prove our further results in

this section.

THEOREM 3.3.12 Supposexh,δc,αk
is the solution of (3.3.17) and in addition ifτ0 < 1, then

‖xh,δc,αk
− xδc,αk

‖ ≤ 2

1− τ0
(
δ + εh√
αk

). (3.3.23)

Proof. Supposexδc,αk
andxh,δc,αk

are the solutions of (2.3.11) and (3.3.17) respectively, then

by (2.3.11) we have,

PhF (x
δ
c,αk

) +
αk
c
(Phx

h,δ
c,αk

− Phx0) = Phz
δ
αk
. (3.3.24)

So from (3.3.17) and (3.3.24),

Ph[F (x
h,δ
c,αk

)− F (xδc,αk
)] +

αk
c
Ph(x

h,δ
c,αk

− xδc,αk
) = Ph(z

h,δ
αk

− zδαk
). (3.3.25)

LetMf =
∫ 1

0
F ′(xδc,αk

+ t(xh,δc,αk
− xδc,αk

))dt. Then by (3.3.25) we have

Ph[Mf (x
h,δ
c,αk

− xδc,αk
)] +

αk
c
Ph(x

h,δ
c,αk

− xδc,αk
) = Ph(z

h,δ
αk

− zδαk
)
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and hence

‖xh,δc,αk
− xδc,αk

‖ ≤ ‖zh,δαk
− zδαk

‖+ ‖Mf(Ph − I)‖‖xh,δc,αk
− xδc,αk

‖

≤ ‖zh,δαk
− zδαk

‖+ τ0‖xh,δc,αk
− xδc,αk

‖.

Thus

‖xh,δc,αk
− xδc,αk

‖ ≤ 1

1− τ0
‖zh,δαk

− zδαk
‖

≤ 1

1− τ0
[‖zh,δαk

− zhαk
‖+ ‖zhαk

− zαk
‖

+‖zαk
− zδαk

‖]. (3.3.26)

Now the result follows from (3.2.3), (3.2.4), (3.3.26) and the relation

‖zαk
− zδαk

‖ ≤ δ

2
√
αk
.

The following theorem is a consequence of Theorem 3.3.10, (2.3.17) and Theorem

3.3.12. We assume thatr̃ < 1
k0

andk2 < 1−k0r̃
1−c with c < 1.

THEOREM 3.3.13 Let x̃h,δn,αk
be as in (3.3.16), assumptions in Theorem 3.3.10, Theorem

3.3.12 and (2.3.17) hold with̃r in place ofr. Then

‖x̂− x̃h,δn,αk
‖ ≤ C̃2q̃p

2n +
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ + εh)

1− (1− c)k2 − k0r̃
+

2

1− τ0
(
δ + εh√
αk

)

whereC̃2 is as in Theorem 3.3.10.

THEOREM 3.3.14 Let x̃h,δn,αk
be as in (3.3.16) and assumptions in Theorem 3.3.13 hold.

Further letϕ1(αk) ≤ ϕ(αk) and

nk := min{n : q̃p
2n ≤ δ + εh√

αk
}.

Then

‖x̂− x̃h,δnk ,αk
‖ = O(ψ−1(δ + εh)).
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3.4 ALGORITHM

Note that fori, j ∈ {0, 1, 2, · · · , N}

zh,δαi
− zh,δαj

= (αj − αi)(PhK
∗KPh + αjI)

−1(PhK
∗KPh + αiI)

−1PhK
∗(f δ −KF (x0)).

Therefore the adaptive algorithm associated with the choice of the parameter specified in

Theorems 3.2.2, 3.3.7 and 3.3.14 involve the following steps.

Part I:

• α0 = (M + 1 +Mρ)2(δ + εh)
2, µ > 1

• αi = µ2iα0;

• solve forwi:

(PhK
∗KPh + αiI)wi = PhK

∗(f δ −KF (x0)); (3.4.1)

• solve forj < i, zhij : (PhK
∗KPh + αjI)zij = (αj − αi)wi;

• if ‖zhij‖ > 4C(δ+εh)√
αj

, then takek = i− 1;

• otherwise, repeat withi+ 1 in place ofi.

Part II:

• choosenk = min{n : q2np ≤ δ+εh√
αk

}, for IFD Class and for MFD Class choosenk =

min{n : q̃p
2n ≤ δ+εh√

αk
};

Part III:

• solvexh,δnk ,αk
using the iteration (3.3.3) for IFD Class andx̃h,δnk,αk

using the iteration

(3.3.16) for MFD Class.
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3.4.1 Implementation of the method

We apply the algorithm by choosing a sequence of finite dimensional subspace(Vn) of X

with dimVn = n + 1 and letPh = P 1
n

denote the orthogonal projection onX with range

R(Ph) = Vn. We assume that‖Phx − x‖ → 0 as h → 0 for all x ∈ X. Precisely we

chooseVn as the space of linear splines{v1, v2, · · · , vn+1} in a uniform grid ofn+1 points

in [0, 1] as a basis ofVn.

Sincewi ∈ Vn; wi =
∑n+1

i=1 λivi for some scalarsλ1, λ2, · · · , λn+1. It can be seen that

wi is a solution of (3.4.1) if and only if̄λ = (λ1, λ2, · · · , λn+1)
T is the unique solution of

(Mn + αiBn)λ̄ = ā

where

Mn = (〈Kvi, Kvj〉), i, j = 1, 2, · · · , n+ 1,

Bn = (〈vi, vj〉), i, j = 1, 2, · · · , n+ 1

and

ā = (〈PhK∗(f δ −KF (x0)), vi〉)T , i = 1, 2, · · · , n + 1.

Observe thatzh,δij is in Vn and hencezh,δij =
∑n+1

m=1 µ
ij
mvm for some scalarsµijm, m =

1, 2, · · · , n+ 1. One can see that forj < i, zh,δij is a solution of

(PhK
∗KPh + αjI)z

h,δ
ij = (αj − αi)wi

if and only if µij = (µij1 , µ
ij
2 , · · · , µijn+1)

T is the unique solution of

(Mn + αjBn)µij = b̄

where

b̄ = (〈(αj − αi)wi, vi〉)T .

Computezh,δij till ‖zh,δij ‖ > 4C(δ+εh)√
αj

and fixk = i− 1. Let nk = min{n : q2n ≤ δ+εh√
αk

}.
Case I: IFD Class. Sinceyh,δnk,αk

, xh,δnk ,αk
∈ Vn, let yh,δnk,αk

=
∑n+1

i=1 ξ
n
i vi andxh,δnk,αk

=
∑n+1

i=1 η
n
i vi, whereξni andηni are some scalars. Then from (3.3.2) we have

PhF
′(Phx0)(y

h,δ
nk,αk

− xh,δnk,αk
) = Ph[z

h,δ
αk

− F (xh,δnk,αk
)]. (3.4.2)
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Observe that(yh,δnk,αk
− xh,δnk,αk

) is a solution of (3.4.2) if and only if(ξn − ηn) = (ξn1 −
ηn1 , ξ

n
2 − ηn2 , · · · , ξnn+1 − ηnn+1)

T is the unique solution of

Qn(ξn − ηn) = Bn[λ− Fh1]

whereQn = 〈F ′(Phx0)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh1 = [F (xh,δnk,αk
)(t1), F (x

h,δ
nk,αk

)(t2), · · · , F (xh,δnk,αk
)(tn+1)]

T ,

wheret1, t2, · · · , tn+1 are the grid points.

Further from (3.3.3) it follows that

PhF
′(Phx0)(x

h,δ
nk+1,αk

− yh,δnk,αk
) = Ph[z

h,δ
αk

− F (yh,δnk,αk
)]. (3.4.3)

Thus (xh,δnk+1,αk
− yh,δnk,αk

) is a solution of (3.4.3) if and only if(ηn+1 − ξn) = (ηn+1
1 −

ξn1 , η
n+1
2 − ξn2 , · · · , ηn+1

n+1 − ξnn+1)
T is the unique solution of

Qn(ηn+1 − ξn) = Bn[λ− Fh2]

whereFh2 = [F (yh,δnk,αk
)(t1), F (y

h,δ
nk,αk

)(t2), · · · , F (yh,δnk,αk
)(tn+1)]

T .

Case II: MFD Class. Since ỹh,δnk,αk
and x̃h,δnk,αk

are in Vn; ỹh,δnk,αk
=

∑n+1
i=1 ξ

n
i vi and

x̃h,δnk ,αk
=

∑n+1
i=1 η

n
i vi, whereξni andηni are some scalars for1 ≤ i ≤ n + 1. Then from

(3.3.15) we have

(PhF
′(x̃h,δ0,αk

)+
αk
c
)(ỹh,δnk,αk

− x̃h,δnk ,αk
) = Ph[z

h,δ
αk

−F (x̃h,δnk ,αk
)+

αk
c
(x̃h,δ0,αk

− x̃h,δnk ,αk
)]. (3.4.4)

One can see that(ỹh,δnk,αk
− x̃h,δnk ,αk

) is a solution of (3.4.4) if and only if(ξn − ηn) =

(ξn1 − ηn1 , ξ
n
2 − ηn2 , · · · , ξnn+1 − ηnn+1)

T is the unique solution of

(Qn +
αk
c
Bn)(ξn − ηn) = Bn[λ− Fh1 +

αk
c
(X0 − ηn)]

whereQn = 〈F ′(xh,δ0,αk
)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh1 = [F (x̃h,δnk,αk
)(t1), F (x̃

h,δ
nk,αk

)(t2), · · · , F (x̃h,δnk,αk
)(tn+1)]

T

andX0 = [x0(t1), x0(t2), · · · , x0(tn+1)]
T wheret1, t2, · · · , tn+1 are the grid points.
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Further from (3.3.16) it follows that

(PhF
′(x̃h,δ0,αk

)+
αk
c
)(x̃h,δnk+1,αk

−ỹh,δnk,αk
) = Ph[z

h,δ
αk

−F (ỹh,δnk,αk
)+

αk
c
(x̃h,δ0,αk

−ỹh,δnk,αk
)]. (3.4.5)

Thus (x̃h,δnk+1,αk
− ỹh,δnk,αk

) is a solution of (3.4.5) if and only if(ηn+1 − ξn) = (ηn+1
1 −

ξn1 , η
n+1
2 − ξn2 , · · · , ηn+1

n+1 − ξnn+1)
T is the unique solution of

(Qn +
αk
c
Bn)(ηn+1 − ξn) = Bn[λ− Fh2 +

αk
c
(X0 − ξn)]

whereFh2 = [F (ỹh,δnk,αk
)(t1), F (ỹ

h,δ
nk,αk

)(t2), · · · , F (ỹh,δnk,αk
)(tn+1)]

T .

3.5 NUMERICAL EXAMPLES

In this section we consider two examples for illustrating the algorithm mentioned in the

above section.

EXAMPLE 3.5.1 (cf. Semenova (2010), section 4.3 ) In this example for IFD Class we
consider the operatorKF : L2(0, 1) −→ L2(0, 1) withK : L2(0, 1) −→ L2(0, 1) defined
by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

where

k(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

andF : D(F ) ⊆ L2(0, 1) −→ L2(0, 1) defined by

F (u) := u3.

Then the Fŕechet derivative ofF is given by

F ′(u)w = 3(u)2w.

In our computation, we takef(t) = 837t
6160

− t2

16
− t11

110
− 3t5

80
− 3t8

112
andf δ = f + δ. Then the

exact solution
x̂(t) = 0.5 + t3.

We use

x0(t) = 0.5 + t3 − 3

56
(t− t8)

as our initial guess.
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n k αk ‖xhk − x̂‖ ‖xhk−x̂‖
(δ+εh)1/2

8 4 0.1820 0.5484 1.7273

16 4 0.1065 0.5376 1.6984

32 4 0.1061 0.5301 1.6759

64 4 0.1061 0.5257 1.6624

128 4 0.1061 0.5234 1.6551

256 4 0.1060 0.5222 1.6513

512 4 0.1060 0.5216 1.6493

1024 4 0.1060 0.5213 1.6484

Table 3.1: Iterations and corresponding Error Estimates of Example 3.5.1

We chooseα0 = (1.3)2(δ + εh)
2, µ = 1.3, δ + εh = 0.1 the Lipschitz constantk0

equals approximately 0.2134 as in Semenova (2010) andr = 1, τ0 = 1
64
, so thatqp =

(1+βτ0)k0r = 0.2133. The results of the computation are presented in Table 3.1. The plots
of the exact solution and the approximate solution obtainedis given in Figures 3.1 and 3.2.
The last column of the Table 3.1 shows that the error‖xhk − x̂‖ is of order(δ + εh)

1/2.

EXAMPLE 3.5.2 In this example for MFD class we consider the operatorKF : L2(0, 1) −→
L2(0, 1) whereK : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

andF : D(F ) ⊆ H1(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,

where

k(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

Then for allx(t), y(t) : x(t) > y(t) : (see section 4.3 in Semenova (2010))

〈F (x)− F (y), x− y〉 =
∫ 1

0

[
∫ 1

0

k(t, s)(x3 − y3)(s)ds

]

(x− y)(t)dt ≥ 0.

Thus the operatorF is monotone. The Fréchet derivative ofF is given by

F ′(u)w = 3

∫ 1

0

k(t, s)(u(s))2w(s)ds.
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Figure 3.1: Curve of the exact and approximate solutions of Example 3.5.1

So for anyu ∈ Br(x̂), x̂(s) ≥ k3 > 0, ∀s ∈ (0, 1), we have

F ′(u)w = F ′(x̂)G(u, x̂)w,

whereG(u, x̂) = (u
x̂
)2.

In our computation, we takef(t) = 1
110

( t
13

156
− t3

6
+ 25t

156
) andf δ = f + δ. Then the exact

solution
x̂(t) = t3.

We use

x0(t) = t3 +
3

56
(t− t8)

as our initial guess, so that the functionx0 − x̂ satisfies the source condition

x0 − x̂ = ϕ1(F
′(x̂))1

whereϕ1(λ) = λ. Thus we expect to have an accuracy of order at least(δ + εh)
1/2.
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Figure 3.2: Curve of the exact and approximate solutions of Example 3.5.1

We chooseα0 = (1.3)(δ + εh), δ + εh = 0.0667 =: c the Lipschitz constantk0 equals
approximately 0.21 as in (Semenova (2010)) andr̃ = 1, so thatq̃p = (1 + τ0)k0r̃ = 0.21.
The results of the computation are presented in Table 3.2. The plots of the exact solution
and the approximate solution obtained are given in Figures 3.3 and 3.4.
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n k αk ‖x̃hk − x̂‖ ‖x̃hk−x̂‖
(δ+εh)1/2

8 4 0.0494 0.1881 0.7200

16 4 0.0477 0.1432 0.5531

32 4 0.0473 0.1036 0.4010

64 4 0.0472 0.0726 0.2812

128 4 0.0471 0.0491 0.1900

256 4 0.0471 0.0306 0.1187

512 4 0.0471 0.0140 0.0543

1024 4 0.0471 0.0133 0.0515

Table 3.2: Iterations and corresponding Error Estimates of Example 3.5.2
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Figure 3.3: Curve of the exact and approximate solutions of Example 3.5.2
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Figure 3.4: Curve of the exact and approximate solutions of Example 3.5.2
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Chapter 4

TSNTM WITH CUBIC
CONVERGENCE

A locally cubic convergence yielding Two Step Newton-Tikhonov method and its finite

dimensional realization is proposed. Two implementationsare discussed and applied to

nonlinear ill-posed Hammerstein type operator equations (2.1.1). For both cases, local cubic

convergence is established and order optimal error bounds are obtained by choosing the

regularization parameter according to the the balancing principle of Pereverzev and Schock

(2005). Also numerical examples are given to confirm the efficiency of the method.

4.1 INTRODUCTION

In this chapter, we consider a cubic convergence yielding Two Step Newton-Tikhonov

Method for approximately solving (2.1.1). As in Chapter 2, we consider this method for

two cases of operatorF.

The IFD Class F ′(u)−1 exists and is a bounded operator for allu ∈ Br(x0); i.e.,

‖F ′(u)−1‖ ≤ β, ∀u ∈ Br(x0).

MFD ClassF is a monotone operator andF ′(u)−1 does not exists.

This chapter is organized as follows. In Section 4.2 we present TSNTM method yielding

cubic convergence and in Section 4.3 we give the finite dimensional realization of method

considered in Section 4.2. Section 4.4 deals with the algorithm for implementing the pro-

posed method and in Section 4.5 we provide a numerical example to prove the efficiency of
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the proposed method.

4.2 CONVERGENCE ANALYSIS OF TSNTM

4.2.1 Analysis of IFD Class

For an initial guessx0 ∈ X the TSNTM for IFD Class is defined as;

vδn,αk
= uδn,αk

− F ′(uδn,αk
)−1(F (uδn,αk

)− zδαk
), (4.2.1)

uδn+1,αk
= vδn,αk

− F ′(uδn,αk
)−1(F (vδn,αk

)− zδαk
), (4.2.2)

whereuδ0,αk
= x0. Let

σδn,αk
:= ‖vδn,αk

− uδn,αk
‖, ∀n ≥ 0 (4.2.3)

and for0 < k0 ≤ 1, let g : (0, 1) → (0, 1) be the function defined by

g(t) =
k20
8
(4 + 3k0t)t

2, ∀t ∈ (0, 1). (4.2.4)

For convenience we will use the notationun, vn andσn for uδn,αk
, vδn,αk

andσδn,αk
respec-

tively.

Further we assume thatδ ∈ (0, δ0] whereδ0 <
√
α0

β
. Let ‖x̂− x0‖ ≤ ρ,

ρ <
1

M
(
1

β
− δ0√

α0
) (4.2.5)

and

γρ := β[Mρ+
δ0√
α0

].

THEOREM 4.2.1 Let σn andg(σn) be as in equation (4.2.3) and (4.2.4) respectively,un
andvn be as in (4.2.1) and (4.2.2) respectively withδ ∈ (0, δ0]. Then under the assumptions
of Theorem 2.2.3 and Assumption 2.3.1, the following hold:

(a) ‖un − vn−1‖ ≤ k0σn−1

2
‖vn−1 − un−1‖;

(b) ‖un − un−1‖ ≤ (1 + k0σn−1

2
)‖vn−1 − un−1‖;
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(c) ‖vn − un‖ ≤ g(σn−1)‖vn−1 − un−1‖;

(d) g(σn) ≤ g(γρ)
3n , ∀n ≥ 0;

(e) σn ≤ g(γρ)
(3n−1)/2γρ, ∀n ≥ 0.

Proof. Observe that

un − vn−1 = vn−1 − un−1 − F ′(un−1)
−1(F (vn−1)− F (un−1))

= F ′(un−1)
−1[F ′(un−1)(vn−1 − un−1)− (F (vn−1)− F (un−1))]

= F ′(un−1)
−1

∫ 1

0

[F ′(un−1)− F ′(un−1 + t(vn−1 − un−1))](vn−1 − un−1)dt

and hence by Assumption 2.3.1, we have

‖un − vn−1‖ ≤ ‖
∫ 1

0

Φ(un−1, un−1 + t(vn−1 − un−1), vn−1 − un−1)dt‖

≤ k0
2
‖vn−1 − un−1‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖un − un−1‖ ≤ ‖un − vn−1‖+ ‖vn−1 − un−1‖.
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To prove (c) we observe that

en = ‖vn − un‖ ≤ ‖un − vn−1 − F ′(un)
−1(F (un)− zδα)‖

+‖F ′(un−1)
−1(F (vn−1)− zδα)‖

≤ ‖un − vn−1 − F ′(un)
−1(F (un)− F (vn−1))‖

+‖[F ′(un−1)
−1 − F ′(un)

−1](F (vn−1)− zδα)‖

≤ ‖F ′(un)
−1[F ′(un)(un − vn−1)− (F (un)− F (vn−1))]‖

+‖[F ′(un−1)
−1 − F ′(un)

−1](F (vn−1)− zδα)‖

≤ ‖F ′(un)
−1

∫ 1

0

[F ′(un)− F ′(vn−1 + t(un − vn−1)]dt(un − vn−1)‖

+‖F ′(un)
−1(F ′(un)− F ′(un−1))F

′(un−1)
−1(F (vn−1)− zδα)‖

≤ ‖F ′(un)
−1

∫ 1

0

[F ′(un)− F ′(vn−1 + t(un − vn−1)]dt(un − vn−1)‖

+‖F ′(un)
−1(F ′(un)− F ′(un−1))(vn−1 − un)‖

≤ ‖
∫ 1

0

Φ(un, vn−1 + t(un − vn−1), un − vn−1)dt‖

+‖Φ(un, un−1, vn−1 − un)‖

≤ k0
2
‖un − vn−1‖2 + k0‖un − un−1‖‖un − vn−1‖.

Therefore by (a) and (b) we have

σn ≤ (
k20
2

+
3k30
8

‖vn−1 − un−1‖)‖vn−1 − un−1‖3

≤ g(σn−1)σn−1. (4.2.6)

This completes the proof of (c).

Since forµ ∈ (0, 1), g(µt) ≤ µ2g(t), for all t ∈ (0, 1), by (4.2.6) we have,

g(σn) ≤ g(σ0)
3n

and

σn ≤ g3(σn−2)σn−1 ≤ g3(σn−2)g
3(σn−3)σn−2 · · · g(σ0)σ0

≤ g(σ0)
3n−1+3n−2+···+1σ0

≤ g(σ0)
(3n−1)/2σ0, (4.2.7)
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providedσn < 1, ∀n ≥ 0. From (4.2.7) it is clear that,σn ≤ 1 if σ0 ≤ 1, but

σ0 = ‖v0 − x0‖ = ‖F ′(x0)
−1(F (x0)− zδαk

)‖

≤ ‖F ′(x0)
−1‖‖F (x0)− zδαk

‖

≤ β‖F (x0)− zαk
+ zαk

− zδαk
‖

≤ β[‖F (x0)− F (x̂)‖+ ‖zαk
− zδαk

‖]

≤ β[‖
∫ 1

0

F ′(x̂+ t(x0 − x̂))(x0 − x̂)dt‖+ δ√
αk

]

≤ β[Mρ+
δ√
αk

]

≤ β[Mρ+
δ0√
α0

]

= γρ < 1. (4.2.8)

As g is monotonically increasing andσ0 ≤ γρ, we haveg(σ0) ≤ g(γρ). This completes the

proof of the Theorem.

THEOREM 4.2.2 Let r = ( 1
1−g(γρ) +

k0
2

γρ
1−g(γρ)2 )γρ with g(γρ) < 1 and let the hypothesis

of Theorem 4.2.1 holds. Thenun, vn ∈ Br(x0), for all n ≥ 0.

Proof. Note that by (b) of Theorem 4.2.1 we have

‖u1 − x0‖ ≤ [1 +
k0
2
σ0]σ0 (4.2.9)

≤ [1 +
k0
2
γρ]γρ

≤ r,

i.e.,u1 ∈ Br(x0). Again note that by (4.2.9) and (c) of Theorem 4.2.1 we have

‖v1 − x0‖ ≤ ‖v1 − u1‖+ ‖u1 − x0‖

≤ (1 + g(σ0) +
k0
2
σ0)σ0

≤ (1 + g(γρ) +
k0
2
γρ)γρ

≤ r,
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i.e.,v1 ∈ Br(x0). Further by (4.2.9) and (b) of Theorem 4.2.1 we have

‖u2 − x0‖ ≤ ‖u2 − u1‖+ ‖u1 − x0‖

≤ (1 +
k0
2
σ1)σ1 + (1 +

k0
2
σ0)σ0

≤ (1 +
k0
2
g(σ0)σ0)g(σ0)σ0 + (1 +

k0
2
σ0)σ0

≤ (1 + g(σ0) +
k0
2
σ0(1 + g(σ0)

2))σ0 (4.2.10)

≤ (1 + g(γρ) +
k0
2
γρ(1 + g(γρ)

2))γρ

≤ r

and by (4.2.10) and (c) of Theorem 4.2.1 we have

‖v2 − x0‖ ≤ ‖v2 − u2‖+ ‖u2 − x0‖

≤ g(σ1)σ1 + (1 + g(σ0) +
k0
2
σ0(1 + g(σ0)

2))σ0

≤ g(σ0)
4σ0 + (1 + g(σ0) +

k0
2
σ0(1 + g(σ0)

2))σ0

≤ (1 + g(σ0) + g(σ0)
4 +

k0
2
σ0(1 + g(σ0)

2))σ0

≤ (1 + g(σ0) + g(σ0)
2 +

k0
2
σ0(1 + g(σ0)

2))σ0

≤ (1 + g(γρ) + g(γρ)
2 +

k0
2
γρ(1 + g(γρ)

2))γρ

≤ r,

i.e.,u2, v2 ∈ Br(x0).Continuing this way one can prove thatun, vn ∈ Br(x0), ∀n ≥ 0. This

completes the proof.

The main result of this section is the following Theorem.

THEOREM 4.2.3 Let vn andun be as in (4.2.1) and (4.2.2) respectively, assumptions of
Theorem 4.2.2 hold and let0 < g(γρ) < 1. Then(un) is a Cauchy sequence inBr(x0) and
converges toxδαk

∈ Br(x0). FurtherF (xδαk
) = zδαk

and

‖un − xδαk
‖ ≤ C3e

−γ3n

whereC3 = ( 1
1−g(γρ)3 +

k0γρ
2

1
1−(g(γρ)2)3

g(γρ)
3n)γρ andγ = − log g(γρ).
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Proof. Using the relation (b) and (e) of Theorem 4.2.1, we obtain

‖un+m − un‖ ≤
i=m−1
∑

i=0

‖un+i+1 − un+i‖

≤
i=m−1
∑

i=0

(1 +
k0σn+i

2
)σn+i

≤
i=m−1
∑

i=0

(1 +
k0σ0
2
g(σ0)

3n+i

)g(σ0)
3n+i

σ0

= (1 +
k0σ0
2

g(σ0)
3n)g(σ0)

3nσ0

+(1 +
k0σ0
2

g(σ0)
3n+1

)g(σ0)
3n+1

σ0 + · · ·

+(1 +
k0σ0
2

g(σ0)
3n+m

)g(σ0)
3n+m

σ0

≤ [(1 + g(σ0)
3 + g(σ0)

32 + · · ·+ g(e0)
3m) +

k0σ0
2

(1 + (g(σ0)
2)3 + (g(σ0)

2)3
2

+ · · ·+ (g(σ0)
2)3

m

)g(σ0)
3n ]g(σ0)

3nσ0

≤ [(1 + g(γρ)
3 + g(γρ)

32 + · · ·+ g(γρ)
3m) +

k0γρ
2

(1 + (g(γρ)
2)3 + (g(γρ)

2)3
2

+ · · ·+ (g(γρ)
2)3

m

)g(γρ)
3n ]g(γρ)

3nγρ

≤ C3g(γρ)
3n

≤ C3e
−γ3n .

Thus(un) is a Cauchy sequence inBr(x0) and hence it converges, say toxδαk
∈ Br(x0).

Observe that

‖F (un)− zδαk
‖ = ‖F ′(un)(un − vn)‖

≤ ‖F ′(un)‖‖(un − vn)‖

≤ Mσn ≤Mg(γρ)
3nγρ. (4.2.11)

Now by lettingn→ ∞ in (4.2.11) we obtainF (xδαk
) = zδαk

. This completes the proof.

REMARK 4.2.4 Note that0 < g(γρ) < 1 and henceγ > 0. So by (2.1.8), sequence(un)
converges cubically toxδαk

.

Hereafter we assume that

ρ ≤ r <
1

k0
.
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REMARK 4.2.5 Note that the above assumption is satisfied if

k0 ≤ min

{

1,
1− g(γρ)

2

γρ
[

−1

1− g(γρ)
+

√

1

(1− g(γρ))2
+

2

1− g(γρ)2
]

}

.

The following theorem is a consequence of Theorem 4.2.3 and Theorem 2.3.4.

THEOREM 4.2.6 Let un be as in (4.2.2), assumptions in Theorem 4.2.3 and Theorem
2.3.4 hold. Then

‖x̂− un‖ ≤ C3e
−γ3n +

β

1− k0r
‖F (x̂)− zδαk

‖

whereC3 andγ are as in Theorem 4.2.3.

Now sincel ≤ k andαδ ≤ αl+1 ≤ µαl we have

δ√
αk

≤ δ√
αl

≤ µ
δ√
αδ

= µϕ(αδ) = µψ−1(δ).

This leads to the following theorem,

THEOREM 4.2.7 Let un be as in (4.2.2), assumptions in Theorem 2.2.3 and Theorem
4.2.6 hold. Let

nk := min{n : e−γ3
n ≤ δ√

αk
}.

Then
‖x̂− unk

‖ = O(ψ−1(δ)).

4.2.2 Analysis of MFD Class

LetX be a real Hilbert space and let Assumption 2.3.1 holds withr̃ in place ofr, ρ ≤ r̃ < 1
k0

and letc ≤ αk.

First we consider a TSNTM for approximating the zeroxδc,αk
of

F (u) +
αk
c
(u− x0) = zδαk

(4.2.12)

and then we show thatxδc,αk
is an approximation to the solution̂x of (2.1.1). For an initial

guessx0 ∈ X and forR(x) := F ′(u) + αk

c
I, the TSNTM for MFD Class is defined as:

ṽδn,αk
= ũδn,αk

−R(ũδn,αk
)−1[F (ũδn,αk

)− zδαk
+
αk
c
(ũδn,αk

− x0)] (4.2.13)
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and

ũδn+1,αk
= ṽδn,αk

− R(ũδn,αk
)−1[F (ṽδn,αk

)− zδαk
+
αk
c
(ṽδn,αk

− x0)] (4.2.14)

whereũ0,αk
:= x0. Note that with the above notation

‖R(u)−1F ′(u)‖ ≤ 1.

Let

σ̃δn,αk
:= ‖ṽδn,αk

− ṽδn,αk
‖, ∀n ≥ 0. (4.2.15)

Here also for convenience we use the notationũn, ṽn and σ̃n for ũδn,αk
, ṽδn,αk

and σ̃δn,αk

respectively.

Let

ρ ≤ 1

M
(1− δ0√

α0
) (4.2.16)

with δ0 <
√
α0 and

γ̃ρ :=Mρ+
δ0√
α0
. (4.2.17)

THEOREM 4.2.8 Let σ̃n andg be as in equation (4.2.15) and (4.2.4) respectively,ũn and
ṽn be as in (4.2.14) and (4.2.13) respectively withδ ∈ (0, δ0]. Then the following hold:

(a) ‖ũn − ṽn−1‖ ≤ k0σ̃n−1

2
‖ṽn−1 − ũn−1‖;

(b) ‖ũn − ũn−1‖ ≤ (1 + k0σ̃n−1

2
)‖ṽn−1 − ũn−1‖;

(c) ‖ṽn − ũn‖ ≤ g(σ̃n−1)‖ṽn−1 − ũn−1‖;

(d) g(σ̃n) ≤ g(γ̃ρ)
3n , ∀n ≥ 0;

(e) σ̃n ≤ g(γ̃ρ)
(3n−1)/2γ̃ρ, ∀n ≥ 0.

Proof. Observe that

ũn − ṽn−1 = ṽn−1 − ũn−1 −R(ũn−1)
−1(F (ṽn−1)− F (ũn−1)

+
αk
c
(ṽn−1 − ũn−1))

= R(ũn−1)
−1[R(ũn−1)(ṽn−1 − ũn−1)

−(F (ṽn−1)− F (ũn−1))−
αk
c
(ṽn−1 − ũn−1)]

= R(ũn−1)
−1

∫ 1

0

[F ′(ũn−1)− F ′(ũn−1 + t(ṽn−1 − ũn−1))]

×(ṽn−1 − ũn−1)dt.
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Now since‖R(ũn−1)
−1F ′(ũn−1)‖ ≤ 1, the proof of (a) and (b) follows as in Theorem 4.2.1.

To prove (c) we observe that

σ̃n ≤ ‖ũn − ṽn−1 − R(ũn)
−1(F (ũn)− zδαk

+
αk
c
(ũn − x0))‖

+‖R(ũn−1)
−1(F (ṽn−1)− zδαk

+
αk
c
(ṽn−1 − x0))‖

≤ ‖ũn − ṽn−1 − R(ũn)
−1(F (ũn)− F (ṽn−1) +

αk
c
(ũn − ṽn−1))‖

+‖[R(ũn−1)
−1 − R(ũn)

−1](F (ṽn−1)− zδαk
+
αk
c
(ṽn−1 − x0))‖

≤ ‖R(ũn)−1[R(ũn)(x̃n − ṽn−1)− (F (ũn)− F (ṽn−1))

−αk
c
(ũn − ṽn−1)]‖

+‖[R(ũn−1)
−1 − R(ũn)

−1](F (ṽn−1)− zδαk
+
αk
c
(ṽn−1 − x0))‖

≤ ‖R(ũn)−1

∫ 1

0

[F ′(ũn)− F ′(ṽn−1 + t(ũn − ṽn−1)]dt(ũn − ṽn−1)‖

+‖R(ũn)−1(F ′(ũn)− F ′(ũn−1))R(ũn−1)
−1(F (ṽn−1)− zδαk

+
αk
c
(ṽn−1 − x0))‖.

The remaining part of the proof is analogous to the proof of Theorem 4.2.1.

THEOREM 4.2.9 Let r̃ = ( 1
1−g(γ̃ρ) +

k0
2

γ̃ρ
1−g(γ̃ρ)2 )γ̃ρ with g(γ̃ρ) < 1 and the assumptions of

Theorem 4.2.8 hold. Theñun, ṽn ∈ Br̃(x0), for all n ≥ 0.

Proof. Analogous to the proof of Theorem 4.2.2.

THEOREM 4.2.10 Let ṽn and ũn be as in (4.2.13) and (4.2.14) respectively and assump-
tions of Theorem 4.2.9 hold. Then(ũn) is a Cauchy sequence inBr̃(x0) and converges to
xδc,αk

∈ Br̃(x0). FurtherF (xδc,αk
) + αk

c
(xδc,αk

− x0) = zδαk
and

‖ũn − xδc,αk
‖ ≤ C̃3e

−γ̃3n

whereC̃3 = ( 1
1−g(γ̃ρ)3 +

k0γ̃ρ
2

1
1−(g(γ̃ρ)2)3

g(γ̃ρ)
3n)γ̃ρ and γ̃ = − log g(γ̃ρ).

Proof. Analogous to the proof of Theorem 4.2.3 one can prove that(ũn) is a Cauchy
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sequence inBr̃(x0) and hence it converges, say toxδc,αk
∈ Br̃(x0). Observe that

‖F (ũn)− zδαk
+
αk
c
(ũn − x0)‖ = ‖R(ũn)(ũn − ṽn)‖

≤ ‖R(ũn)‖‖ũn − ṽn‖

≤ (‖F ′(un)‖+
αk
c
)σ̃n

≤ (‖F ′(un)‖+
αk
c
)g(σ̃0)

3n σ̃0

≤ (‖F ′(un)‖+
αk
c
)g(γ̃ρ)

3n γ̃ρ. (4.2.18)

Now by lettingn → ∞ in (4.2.18) we obtainF (xδc,αk
) + αk

c
(xδc,αk

− x0) = zδαk
. This

completes the proof.

Assume thatk2 < 1−k0r̃
1−c with k0r̃ < 1, c < 1 andϕ1(α) ≤ ϕ(α) for α > 0.

The following Theorem is a consequence of Theorem 4.2.10 andTheorem 2.3.11.

THEOREM 4.2.11 Let ũn be as in (4.2.14), assumptions in Theorem 4.2.10 and Theorem
2.3.11 hold. Then

‖x̂− ũn‖ ≤ C̃3e
−γ̃3n +O(ψ−1(δ))

whereC̃3 andγ̃ are as in Theorem 4.2.10.

THEOREM 4.2.12 Let ũn be as in (4.2.14), assumptions in Theorem 2.2.3 and Theorem
4.2.11 hold. Let

nk := min{n : e−γ̃3
n ≤ δ√

αk
}.

Then

‖x̂− ũnk
‖ = O(ψ−1(δ)).

4.3 DISCRETIZED TWO STEP NEWTON-TIKHONOV
METHOD (DTSNTM)

In this Section we consider the finite dimensional realization of the iterative method consider

in Section 4.2. As in Section 4.2, we considered two cases ofF : in the first caseF ′(.)−1

exists in a neighbourhood of the initial guessx0 and in the second caseF is monotone and

F (.)−1 does not exist.

73



4.3.1 Convergence Analysis of IFD Class

For an initial guessx0 ∈ X the Discretized Newton Tikhonov Method is defined as;

vh,δn,αk
= uh,δn,αk

− PhF
′(uh,δn,αk

)−1Ph(F (u
h,δ
n,αk

)− zh,δαk
), (4.3.19)

uh,δn+1,αk
= vh,δn,αk

− PhF
′(uh,δn,αk

)−1Ph(F (v
h,δ
n,αk

)− zh,δαk
), (4.3.20)

whereuh,δ0,αk
:= Phx0.

Note: Observe that ifb0 < 1
k0

and ifu ∈ Br(Phx0) wherer < 1
k0

− b0, thenF ′(u)−1 exists

and is bounded. This can be seen as follows:

‖F ′(u)−1‖ = sup
‖v‖≤1

‖[I + F ′(x0)
−1(F ′(u)− F ′(x0))]

−1F ′(x0)
−1v‖

≤ sup
‖v‖≤1

‖F ′(x0)
−1‖

1− ‖F ′(x0)−1(F ′(u)− F ′(x0))v‖
(4.3.21)

Now by Assumption 2.3.1 and the triangle inequality;

‖u− x0‖ ≤ ‖u− Phx0‖+ ‖Phx0 − x0‖,

we have

‖F ′(x0)
−1(F ′(u)− F ′(x0))v‖ ≤ k0(r + b0).

And hence by (3.3.1) and (4.3.21) we have

‖F ′(u)−1‖ ≤ β1
1− k0(r + b0)

.

Thus without loss of generality we can assume that

‖F ′(u)−1‖ ≤ β, ∀u ∈ Br(Phx0) (4.3.22)

and for someβ > 0.

LEMMA 4.3.1 Letu ∈ Br(Phx0), b0 <
1
k0

andr < 1
k0
−b0. Then‖PhF ′(u)−1PhF

′(u)‖ ≤
1 + βτ0.
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Proof. Proof is analogous to the proof of Lemma 3.3.1.

Let

σh,δn,αk
:= ‖vh,δn,αk

− uh,δn,αk
‖, ∀n ≥ 0 (4.3.23)

and letgh : (0, 1) → (0, 1) be defined by

gh(t) =
k20
8
(4 + 3k0(1 + βτ0)t)(1 + βτ0)

2t2 ∀t ∈ (0, 1), (4.3.24)

wherek0 < min{1, 1
1+βτ0

√

8
4+3(1+βτ0)

}. Hereafter we assume thatδ0 + ε0 <
2

β(2M+3)

√
α0.

Let ‖x̂− x0‖ ≤ ρ where

ρ <
1

M
[
1

β
− (M + 1 + CMρ)

δ0 + ε0√
α0

]

and let

γρ := β[Mρ+ (M + 1 + CMρ)(
ε0 + δ0√

α0

)].

REMARK 4.3.2 Note thatγρ < 1 and hencegh(γρ) < 1.

THEOREM 4.3.3 Letσh,δn,αk
andgh(σh,δn,αk

) be as in equation (4.3.23) and (4.3.24) respec-
tively, vh,δn,αk

anduh,δn,αk
be as in (4.3.19) and (4.3.20) respectively withδ ∈ (0, δ0], α = αk

andεh ∈ (0, ε0]. If uh,δn,αk
, vh,δn,αk

∈ Br(Phx0), then by Assumption 2.3.1, Lemma 4.3.1 and
Theorem 3.2.2, the following hold:

(a) ‖uh,δn,αk
− vh,δn−1,αk

‖ ≤ (1 + βτ0)
k0σ

h,δ
n−1,αk

2
‖vh,δn−1,αk

− uh,δn−1,αk
‖;

(b) ‖uh,δn,αk
− uh,δn−1,αk

‖ ≤ (1 + (1 + βτ0)
k0σ

h,δ
n−1,αk

2
)‖vh,δn−1,αk

− uh,δn−1,αk
‖;

(c) ‖vh,δn,αk
− uh,δn,αk

‖ ≤ gh(σ
h,δ
n−1,αk

)‖vh,δn−1,αk
− uh,δn−1,αk

‖;

(d) gh(σh,δn,αk
) ≤ gh(γρ)

3n , ∀n ≥ 0;

(e) σh,δn,αk
≤ gh(γρ)

(3n−1)/2γρ, ∀n ≥ 0.
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Proof. Observe that

uh,δn,αk
− vh,δn−1,αk

= vh,δn−1,αk
− uh,δn−1,αk

− PhF
′(uh,δn−1,αk

)−1Ph

×(F (vh,δn−1,αk
)− F (uh,δn−1,αk

))

= PhF
′(uh,δn−1,αk

)−1[PhF
′(uh,δn−1,αk

)(vh,δn−1,αk
− uh,δn−1,αk

)

−Ph(F (vh,δn−1,αk
)− F (uh,δn−1,αk

))]

= PhF
′(uh,δn−1,αk

)−1Ph

∫ 1

0

[F ′(uh,δn−1,αk
)− F ′(uh,δn−1,αk

+t(vh,δn−1,αk
− uh,δn−1,αk

))](vh,δn−1,αk
− uh,δn−1,αk

)dt

and hence by Assumption 2.3.1 and Lemma 4.3.1 we have

‖uh,δn,αk
− vh,δn−1,αk

‖ ≤ (1 + βτ0)‖
∫ 1

0

Φ(uh,δn−1,αk
, uh,δn−1,αk

+ t(vh,δn−1,αk

−uh,δn−1,αk
), vh,δn−1,αk

− uh,δn−1,αk
)dt‖

≤ (1 + βτ0)
k0
2
‖vh,δn−1,αk

− uh,δn−1,αk
‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖uh,δn,αk
− uh,δn−1,αk

‖ ≤ ‖uh,δn,,αk
− vh,δn−1,αk

‖+ ‖vh,δn−1,αk
− uh,δn−1,αk

‖.

To prove (c) we observe that

σh,δn,αk
= ‖uh,δn,αk

− vh,δn−1,αk
− (PhF

′(uh,δn,αk
))−1Ph(F (u

h,δ
n,αk

)

−zh,δαk
) + PhF

′(uh,δn−1,αk
)−1Ph(F (v

h,δ
n−1,αk

)− zh,δαk
)‖

= ‖uh,δn,αk
− vh,δn−1,αk

− PhF
′(uh,δn,αk

)−1Ph(F (u
h,δ
n,αk

)

−F (vh,δn−1,αk
)) + Ph[F

′(uh,δn−1,αk
)−1 − F ′(uh,δn,αk

)−1]

×Ph(F (vh,δn−1,αk
)− zh,δαk

)‖

≤ Λ1 + Λ2 (4.3.25)

where

Λ1 := ‖uh,δn,αk
− vh,δn−1,αk

− PhF
′(uh,δn,αk

)−1Ph(F (u
h,δ
n,αk

)− F (vh,δn−1,αk
))‖
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and

Λ2 := ‖Ph[F ′(uh,δn−1,αk
)−1 − F ′(uh,δn,αk

)−1]Ph(F (v
h,δ
n−1,αk

)− zh,δαk
)‖.

Note that

Λ1 ≤ ‖PhF ′(uh,δn,αk
)−1Ph[F

′(uh,δn,αk
)(uh,δn,αk

− vh,δn−1,αk
)

−(F (uh,δn,αk
)− F (vh,δn−1,αk

))]‖

≤ ‖PhF ′(uh,δn,αk
)−1Ph

∫ 1

0

[F ′(uh,δn,αk
)− F ′(vh,δn−1,αk

+t(uh,δn,αk
− vh,δn−1,αk

)]dt(uh,δn,αk
− vh,δn−1,αk

)‖

≤ (1 + βτ0)‖
∫ 1

0

Φ(uh,δn,αk
, vh,δn−1,αk

+ t(uh,δn,αk
− vh,δn−1,αk

),

uh,δn,αk
− vh,δn−1,αk

)dt‖

≤ (1 + βτ0)
k0
2
‖uh,δn,αk

− vh,δn−1,αk
‖2. (4.3.26)

The last but one step follows from Assumption 2.3.1 and Lemma4.3.1. Similarly

Λ2 ≤ ‖Ph[F ′(uh,δn−1,αk
)−1 − F ′(uh,δn,αk

)−1]Ph(F (v
h,δ
n−1,αk

)− zh,δαk
)‖

≤ ‖PhF ′(uh,δn,αk
)−1Ph(F

′(uh,δn,αk
)− F ′(uh,δn−1,αk

))Ph

×F ′(uh,δn−1,αk
)−1Ph(F (v

h,δ
n−1,αk

)− zh,δαk
)‖

≤ ‖PhF ′(uh,δn,αk
)−1Ph(F

′(uh,δn,αk
)− F ′(uh,δn−1,αk

))

×Ph(vh,δn−1,αk
− uh,δn,αk

)‖

≤ (1 + βτ0)‖Φ(uh,δn,αk
, uh,δn−1,αk

, vh,δn−1,αk
− uh,δn,αk

)‖

≤ k0(1 + βτ0)‖uh,δn,αk
− uh,δn−1,αk

‖‖uh,δn,αk
− vh,δn−1,αk

‖. (4.3.27)

Hence from (4.3.25), (4.3.26), (4.3.27), (a) and (b) we have

σh,δn,αk
≤ (1 + βτ0)

2(
k20
2

+
3k30(1 + βτ0)

8
‖vh,δn−1,αk

− uh,δn−1,αk
‖)

×‖vh,δn−1,αk
− uh,δn−1,αk

‖3

≤ gh(σ
h,δ
n−1,αk

)σh,δn−1,αk
. (4.3.28)

This completes the proof of (c).
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Note that forµ ∈ (0, 1), gh(µt) ≤ µ2gh(t), for all t ∈ (0, 1), so by (4.3.28) we have,

gh(σ
h,δ
n,αk

) ≤ gh(σ
h,δ
0,αk

)3
n

and

σh,δn,αk
≤ gh(σ

h,δ
0,αk

)(3
n−1)/2σh,δ0,αk

(4.3.29)

providedσh,δn,αk
< 1, ∀n ≥ 0. Further from (4.3.29) observe that,σh,δn,αk

≤ 1 if σh,δ0,αk
≤ 1, but

σh,δ0,αk
≤ β[(M + 1)bh + (1 +

εh
2
√
αk

)Mρ+
δ

2
√
αk

]

≤ β[Mρ+ (M + 1 + CMρ)(
ε0 + δ0√

α0
)].

As gh is monotonic increasing andσh,δ0,αk
≤ γρ, we havegh(σ

h,δ
0,αk

) ≤ gh(γρ). This com-

pletes the proof of the Theorem.

THEOREM 4.3.4 Let r = ( 1
1−gh(γρ) +

(1+βτ0)k0
2

γρ
1−gh(γρ)2 )γρ with gh(γρ) < 1 and let the

hypothesis of Theorem 4.3.3 holds. Thenuh,δn,αk
, vh,δn,αk

∈ Br(Phx0), for all n ≥ 0.

Proof. The proof is analogous to the proof of Theorem 4.2.2.

The next theorem is the main result of this section.

THEOREM 4.3.5 Let vh,δn,αk
anduh,δn,αk

be as in (4.3.19) and (4.3.20) respectively, assump-
tions of Theorem 4.3.4 hold and let0 < gh(γρ) < 1. Then(uh,δn,αk

) is a Cauchy sequence in

Br(Phx0) and converges toxh,δαk
∈ Br(Phx0). FurtherPhF (xh,δαk

) = zh,δαk
and

‖uh,δn,αk
− xh,δαk

‖ ≤ C4e
−γ13n

whereC4 = ( 1
1−gh(γρ)3 + (1 + βτ0)

k0γρ
2

1
1−(gh(γρ)2)3

gh(γρ)
3n)γρ andγ1 = − log gh(γρ).

Proof. Analogous to the proof of Theorem 2.3.3 in Chapter 1, one can show that(uh,δn,αk
) is

a Cauchy sequence inBr(Phx0) and hence it converges, say toxh,δαk
∈ Br(Phx0). Observe

that

‖Ph(F (uh,δn,αk
)− zh,δαk

)‖ = ‖PhF ′(uh,δn,αk
)(uh,δn,αk

− vh,δn,αk
)‖

≤ ‖F ′(uh,δn,αk
)‖‖uh,δn,αk

− vh,δn,αk
‖

≤ Mσh,δn,αk
≤Mgh(γρ)

3nγρ. (4.3.30)

Now by lettingn→ ∞ in (4.3.30) we obtainPhF (xh,δαk
) = zh,δαk

. This completes the proof.
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REMARK 4.3.6 Note that0 < gh(γρ) < 1 and henceγ > 0. So sequence(uh,δn,αk
) con-

verges cubically toxh,δαk
.

Hereafter we assume thatρ ≤ r < 1
(1+βτ0)k0

.

REMARK 4.3.7 The above assumption is satisfied ifρ ≤ r and

k0 <
1− gh(γρ)

2

γρ
[

−1

1− gh(γρ)
+

√

1

(1− gh(γρ))2
+

2

(1− gh(γρ)2)(1 + βτ0)
].

The following Theorem is a consequence of Theorem 4.3.5 and Theorem 3.3.5.

THEOREM 4.3.8 Letuh,δn,αk
be as in (4.3.20), assumptions in Theorem 4.3.5 and Theorem

3.3.5 hold. Then

‖x̂− uh,δn,αk
‖ ≤ C4e

−γ13n +
β

(1− (1 + βτ0)k0r)
‖F (x̂)− zh,δαk

‖

whereC4 andγ1 are as in Theorem 4.3.5.

Now sincel ≤ k andαδ ≤ αl+1 ≤ µαl we have

δ + εh√
αk

≤ δ + εh√
αl

≤ µ
δ + εh√
αδ

= µϕ(α(δ, h)) = µψ−1(δ + εh).

This leads to the following theorem,

THEOREM 4.3.9 Letuh,δn,αk
be as in (4.3.20) and assumptions in Theorem 4.3.8 hold. Let

nk := min{n : e−γ13
n ≤ δ + εh√

αk
}.

Then
‖x̂− uh,δnk,αk

‖ = O(ψ−1(δ + εh)).

4.3.2 Convergence Analysis of MFD Class

Let X be a real Hilbert space. We need the Assumptions 2.3.1, 2.3.9and 2.3.10 for the

convergence of DTSNTM and to obtain the error estimate.

First we consider a DTSNTM for approximating the zeroxh,δc,αk
of

Ph(F (u) +
αk
c
(u− x0)) = Phz

h,δ
αk

(4.3.31)
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and then we show thatxh,δc,αk
is an approximation to the solution̂x of KF (x) = f where

c ≤ αk. For an initial guessx0 ∈ X and forR(u) := PhF
′(u)Ph +

αk

c
Ph, the DTSNTM is

defined as:

ṽh,δn,αk
= ũh,δn,αk

− R(ũh,δn,αk
)−1Ph[F (ũ

h,δ
n,αk

)− zh,δαk
+
αk
c
(ũh,δn,αk

− ũh,δ0,αk
)], (4.3.32)

ũh,δn+1,αk
= ṽh,δn,αk

−R(ũh,δn,αk
)−1Ph[F (ṽ

h,δ
n,αk

)− zh,δαk
+
αk
c
(ṽh,δn,αk

− ũh,δ0,αk
)], (4.3.33)

whereũh,δ0,αk
:= Phx0. Note that with the above notation, as in Equation (3.3.18) ofChapter

3, we have

‖R(ũh,δn,αk
)−1PhF

′(ũh,δn,αk
)‖ ≤ 1 + τ0. (4.3.34)

Let

σ̃h,δn,αk
:= ‖ṽh,δn,αk

− ũh,δn,αk
‖, ∀n ≥ 0. (4.3.35)

and letk0 be such that
k20
8
(4 + 3k0(1 + τ0))(1 + τ0)

2 < 1.

REMARK 4.3.10 Note that the above assumption is satisfied if we choose

k0 < min{1, 1

1 + τ0

√

8

4 + 3(1 + τ0)
}.

Let g̃h : (0, 1) → (0, 1) be the function defined by

g̃h(t) =
k20
8
(4 + 3k0(1 + τ0)t)(1 + τ0)

2t2 ∀t ∈ (0, 1). (4.3.36)

Let ‖x̂− x0‖ ≤ ρ, with

ρ <
1

M
(1− (

3

2
+M)

δ0 + ε0√
α0

),

γ̃ρ :=Mρ+ (
3

2
+M)(

ε0 + δ0√
α0

).

THEOREM 4.3.11 Let σ̃h,δn,αk
and g̃h be as in equation (4.3.35) and (4.3.36) respectively,

and letũh,δn,αk
and ṽh,δn,αk

be as in (4.3.33) and (4.3.32) respectively, withδ ∈ (0, δ0], α = αk
andεh ∈ (0, ε0]. Then the following hold:
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(a) ‖ũh,δn,αk
− ṽh,δn−1,αk

‖ ≤ (1 + τ0)
k0σ̃

h,δ
n−1,αk

2
‖ṽh,δn−1,αk

− ũh,δn−1,αk
‖;

(b) ‖ũh,δn,αk
− ũh,δn−1,αk

‖ ≤ (1 + (1 + τ0)
k0σ̃

h,δ
n−1,αk

2
)‖ṽh,δn−1,αk

− ũh,δn−1,αk
‖;

(c) ‖ṽh,δn,αk
− ũh,δn,αk

‖ ≤ g̃h(σ̃
h,δ
n−1,αk

)‖ṽh,δn−1,αk
− ũh,δn−1,αk

‖;

(d) g̃h(σ̃h,δn,αk
) ≤ g̃h(γ̃ρ)

3n , ∀n ≥ 0;

(e) σ̃h,δn,αk
≤ g̃h(γ̃ρ)

(3n−1)/2γ̃ρ, ∀n ≥ 0.

Proof. Observe that

ũh,δn,αk
− ṽh,δn−1,αk

= ṽh,δn−1,αk
− ũh,δn−1,αk

− R(ũh,δn−1,αk
)−1Ph(F (ṽ

h,δ
n−1,αk

)

−F (ũh,δn−1,αk
) +

αk
c
(ṽh,δn−1,αk

− ũh,δn−1,αk
))

= R(ũh,δn−1,αk
)−1[R(ũh,δn−1,αk

)(ṽh,δn−1,αk
− ũh,δn−1,αk

)

−Ph(F (ṽh,δn−1,αk
)− F (ũh,δn−1,αk

))− αk
c
(ṽh,δn−1,αk

− ũh,δn−1,αk
)]

= R(ũh,δn−1,αk
)−1[(PhF

′(ũh,δn−1,αk
)Ph +

αk
c
Ph)(ṽ

h,δ
n−1,αk

− ũh,δn−1,αk
)

−Ph(F (ṽh,δn−1,αk
)− F (ũh,δn−1,αk

))− αk
c
(ṽh,δn−1,αk

− ũh,δn−1,αk
)]

= R(ũh,δn−1,αk
)−1Ph

∫ 1

0

[F ′(ũh,δn−1,αk
)− F ′(ũh,δn−1,αk

+t(ṽh,δn−1,αk
− ũh,δn−1,αk

))]Ph(ṽ
h,δ
n−1,αk

− ũh,δn−1,αk
)dt.

Now by Assumption 2.3.1 and (3.3.18) we have

‖ũh,δn,αk
− ṽh,δn−1,αk

‖ ≤ (1 + τ0)‖
∫ 1

0

Φ(ũh,δn−1,αk
, ũh,δn−1,αk

+ t(ṽh,δn−1,αk
− ũh,δn−1,αk

),

ṽh,δn−1,αk
− ũh,δn−1,αk

)dt‖

≤ (1 + τ0)
k0
2
‖ṽh,δn−1,αk

− ũh,δn−1,αk
‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖ũh,δn,αk
− ũh,δn−1,αk

‖ ≤ ‖ũh,δn,αk
− ṽh,δn−1,αk

‖+ ‖ṽh,δn−1,αk
− ũh,δn−1,αk

‖.
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To prove (c) we observe that

σ̃h,δn,αk
= ‖ũh,δn,αk

− ṽh,δn−1,αk
− R(ũh,δn,αk

)−1Ph(F (ũ
h,δ
n,αk

)− zh,δαk

+
αk
c
(ũh,δn,αk

− ũh,δ0,αk
)) +R(ũh,δn−1,αk

)−1Ph(F (ṽ
h,δ
n−1,αk

)

−zh,δαk
+
αk
c
(ṽh,δn−1,αk

− x̃h,δ0,αk
))‖

= ‖ũh,δn,αk
− ṽh,δn−1,αk

− R(ũh,δn,αk
)−1Ph(F (ũ

h,δ
n,αk

)− F (ṽh,δn−1,αk
)

+
αk
c
(ũh,δn,α − ṽh,δn−1,αk

)) + [R(ũh,δn−1,αk
)−1 − R(ũh,δn,αk

)−1]

×Ph(F (ũh,δn−1,αk
)− zh,δαk

+
αk
c
(ṽh,δn−1,αk

− ũh,δ0,αk
))‖.

The remaining part of the proof is analogous to the proof of Theorem 4.3.3.

THEOREM 4.3.12 Let r̃ = ( 1
1−g̃h(γ̃ρ) + (1 + τ0)

k0
2

γ̃ρ
1−g̃h(γ̃ρ)2 )γ̃ρ with g̃h(γ̃ρ) < 1 and the

assumptions of Theorem 4.3.11 hold. Thenũh,δn,αk
, ṽh,δn,αk

∈ Br̃(Phx0), for all n ≥ 0.

Proof. Proof is analogous to the proof of Theorem 4.2.2. The main result of this section is

the following Theorem.

THEOREM 4.3.13 Let ṽh,δn,αk
and ũh,δn,αk

be as in (4.3.32) and (4.3.33) respectively, and let
assumptions of Theorem 4.3.11 and 4.3.12 hold. Then(ũh,δn,αk

) is a Cauchy sequence in

Br̃(Phx0) and converges toxh,δc,αk
∈ Br̃(Phx0). Further Ph[F (xh,δc,αk

) + αk

c
(xh,δc,αk

− x0)] =
Phz

h,δ
αk

and
‖ũh,δn,αk

− xh,δc,αk
‖ ≤ C̃4e

−γ̃13n ,

whereC̃4 = ( 1
1−g̃h(γ̃ρ)3 + (1 + τ0)

k0γ̃ρ
2

1
1−(g̃h(γ̃ρ)2)3

g̃h(γ̃ρ)
3n)γ̃ρ andγ̃1 = − log g̃h(γ̃ρ).

Proof. Analogous to the proof of Theorem 4.2.3 one can show that(ũh,δn,αk
) is a Cauchy

sequence inBr̃(Phx0) and hence it converges, say toxh,δc,αk
∈ Br̃(Phx0). Observe that from

(4.3.32)

‖Ph(F (ũh,δn,αk
)− zh,δαk

) +
αk
c
(ũh,δn,αk

− Phx0)‖ = ‖R(ũh,δn,αk
)(ũh,δn,αk

− ṽh,δn,αk
)‖

≤ ‖R(ũh,δn,αk
)‖‖ṽh,δn,αk

− ũh,δn,αk
‖

≤ (‖PhF ′(ũh,δn,αk
)Ph‖+

αk
c
)σ̃h,δn,αk

≤ (‖PhF ′(ũh,δn,αk
)Ph‖+

αk
c
)

×g̃h(σ̃h,δ0,αk
)3

n

σ̃h,δ0,αk

≤ (M +
αk
c
)g̃h(γ̃ρ)

3n γ̃ρ. (4.3.37)
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Now by lettingn → ∞ in (4.3.37) we obtainPhF (xh,δc,αk
) + αk

c
(xh,δc,αk

− Phx0) = Phz
h,δ
αk
.

This completes the proof.

Hereafter we assume thatr̃ < 1
k0

andk2 < 1−k0r̃
1−c with c < 1.

The following theorem is a consequence of Theorems 2.3.11, 4.3.13 and (3.3.23).

THEOREM 4.3.14 Let ũh,δn,αk
be as in (4.3.33), assumptions in Theorem 4.3.13, Theorem

2.3.11 and (3.3.23) hold. Then

‖x̂− ũh,δn,αk
‖ ≤ C̃4e

−γ̃13n +
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ + εh)

1− (1− c)k2 − k0r̃
+

2

1− τ0
(
δ + εh√
αk

)

whereC̃4 andγ̃1 are as in Theorem 4.3.13.

THEOREM 4.3.15 Let ũh,δn,αk
be as in (4.3.33) and assumptions in Theorem 4.3.14 hold.

Further letϕ1(αk) ≤ ϕ(αk) and

nk := min{n : e−γ̃13
n ≤ δ + εh√

αk
}.

Then
‖x̂− ũh,δnk,αk

‖ = O(ψ−1(δ + εh)).

4.4 ALGORITHM

Note that fori, j ∈ {0, 1, 2, · · · , N}

zh,δαi
− zh,δαj

= (αj − αi)(PhK
∗KPh + αjI)

−1(PhK
∗KPh + αiI)

−1PhK
∗(f δ −KF (x0)).

Hence, the adaptive algorithm associated with the choice ofthe parameter specified in The-

orems 3.2.2, 4.3.9 and 5.3.10 involve the following steps.

Part I:

• α0 = µ2(δ + εh)
2,

• αi = µ2iα0, µ > 1

• solve forwi:

(PhK
∗KPh + αiI)wi = PhK

∗(f δ −KF (x0)); (4.4.1)
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• solve forj < i, zhij : (PhK
∗KPh + αjI)zij = (αj − αi)wi;

• if ‖zhij‖ > 4C(δ+εh)√
αj

, then takek = i− 1;

• otherwise, repeat withi+ 1 in place ofi.

Part II:

• choosenk = min{n : e−γ13
n ≤ δ+εh√

αk
} for IFD Class andnk = min{n : e−γ̃13

n ≤
δ+εh√
αk

} for MFD Class;

Part III:

• solveuh,δnk,αk
using the iteration (4.3.20) and̃uh,δnk,αk

using the iteration (4.3.33).

In the next sections we consider two examples to illustrate the above algorithm. The

computational results provided endorse the reliability and effectiveness of our method.

4.5 IMPLEMENTATION OF THE METHODS

We apply the algorithm by choosing a sequence of finite dimensional subspace(Vn) of X

with dimVn = n + 1 and letPh = P 1
n

denote the orthogonal projection onX with range

R(Ph) = Vn. We assume that‖Phx − x‖ → 0 as h → 0 for all x ∈ X. Precisely we

chooseVn as the space of linear splines{v1, v2, · · · , vn+1} in a uniform grid ofn+1 points

in [0, 1] as a basis ofVn.

Sincewi ∈ Vn, wi is of the form
∑n+1

i=1 λivi for some scalarsλ1, λ2, · · · , λn+1. It can

be seen thatwi is a solution of (4.4.1) if and only if̄λ = (λ1, λ2, · · · , λn+1)
T is the unique

solution of

(Mn + αiBn)λ̄ = ā

where

Mn = 〈Kvi, Kvj〉, i, j = 1, 2, · · · , n+ 1

Bn = 〈vi, vj〉, i, j = 1, 2, · · · , n+ 1
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and

ā = (〈PhK∗(f δ −KF (x0)), vi〉)T , i = 1, 2, · · · , n + 1.

Observe thatzh,δij is inVn and hencezh,δij =
∑n+1

k=1 µ
ij
k vk for someµijk , k = 1, 2, · · · , n+1.

One can see that forj < i, zh,δij is a solution of

(PhK
∗KPh + αjI)z

h,δ
ij = (αj − αi)wi

if and only if µij = (µij1 , µ
ij
2 , · · · , µijn+1)

T is the unique solution of

(Mn + αjBn)µij = b̄

whereb̄ = (αj − αi)Bnλ̄. Computezh,δij till ‖zh,δij ‖ > 4C(δ+εh)√
αj

and fixk = i − 1. Now we

choosenk = min{n : e−γ13
n ≤ δ+εh√

αk
}.

Case I:IFD Class. Sincevh,δnk,αk
, uh,δnk,αk

∈ Vn, let vh,δnk,αk
=

∑n+1
i=1 ξ

n
i vi anduh,δnk,αk

=
∑n+1

i=1 η
n
i vi, whereξni andηni are some scalars. Then from (4.3.19) we have

PhF
′(uh,δnk,αk

)(vh,δnk,αk
− uh,δnk,αk

) = Ph[z
h,δ
αk

− F (uh,δnk,αk
)]. (4.5.1)

Observe that(vh,δnk,αk
− uh,δnk,αk

) is a solution of (4.3.19) if and only if(ξn − ηn) = (ξn1 −
ηn1 , ξ

n
2 − ηn2 , · · · , ξnn+1 − ηnn+1)

T is the unique solution of

Qn(ξn − ηn) = Bn[λn − Fh1]

whereQn = 〈F ′(uh,δnk,αk
)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh1 = [F (uh,δnk,αk
)(t1), F (u

h,δ
nk,αk

)(t2), · · · , F (uh,δnk,αk
)(tn+1)]

T ,

wheret1, t2, · · · , tn+1 are the grid points.

Further from (4.3.20) it follows that

PhF
′(uh,δnk,αk

)(uh,δnk+1,αk
− vh,δnk,αk

) = Ph[z
h,δ
αk

− F (vh,δnk,αk
)]. (4.5.2)

Thus (uh,δnk+1,αk
− vh,δnk,αk

) is a solution of (4.5.2) if and only if(ηn+1 − ξn) = (ηn+1
1 −

ξn1 , η
n+1
2 − ξn2 , · · · , ηn+1

n+1 − ξnn+1)
T is the unique solution of

Qn(ηn+1 − ξn) = Bn[λn − Fh2]
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whereFh2 = [F (vh,δnk,αk
)(t1), F (v

h,δ
nk,αk

)(t2), · · · , F (vh,δnk,αk
)(tn+1)]

T .

Case II: MFD Class. Let ξn = (ξn1 , ξ
n
2 , · · · , ξnn+1), η

n = (ηn1 , η
n
2 , · · · , ηnn+1), ṽ

h,δ
n,αk

=
∑n+1

i=1 ξ
n
i vi andũh,δn,αk

=
∑n+1

i=1 η
n
i vi. Then from (4.3.32) we have

(PhF
′(ũh,δn,αk

) +
αk
c
)
n+1
∑

i=1

(ξni − ηni )vi =
n+1
∑

i=1

λivi −
n+1
∑

i=1

PhF (ũ
h,δ
n,αk

)vi

+
αk
c

n+1
∑

i=1

(x0(ti)− ηni )vi,

wheret1, t2, · · · , tn+1 are the grid points.

Observe that(ṽh,δn,αk
− ũh,δn,αk

) is a solution of (4.3.32) if and only if(ξn − ηn) = (ξn1 −
ηn1 , ξ

n
2 − ηn2 , · · · , ξnn+1 − ηnn+1)

T is the unique solution of

(Qn +
αk
c
Bn)(ξn − ηn) = Bn[λ− Fh1 +

αk
c
(X0 − ηn)],

whereQn = 〈F ′(ũh,δn,αk
)vi, vj〉, i, j = 1, 2, · · · , n+ 1,

Fh1 = [F (ũh,δn,αk
)(t1), F (ũ

h,δ
n,αk

)(t2), · · · , F (ũh,δn,αk
)(tn+1)]

T

andX0 = [x0(t1), x0(t2), · · · , x0(tn+1)]
T .

Further from (4.3.33) it follows that

(PhF
′(ũh,δn,αk

) +
αk
c
)(ũh,δn+1,αk

− ṽh,δn,αk
) = Ph[z

h,δ
αk

− F (ṽh,δn,αk
) +

αk
c
(ũh,δ0,αk

− ṽh,δn,αk
)]. (4.5.3)

Thus(uh,δn+1,αk
−vh,δn,αk

) is a solution of (4.5.3) if and only if(ηn+1 − ξn) = (ηn+1
1 −ξn1 , ηn+1

2 −
ξn2 , · · · , ηn+1

n+1 − ξnn+1)
T is the unique solution of

(Qn +
αk
c
Bn)(ηn+1 − ξn) = Bn[λ− Fh2 +

αk
c
(X0 − ξn)],

whereFh2 = [F (ṽh,δn,αk
)(t1), F (ṽ

h,δ
n,αk

)(t2), · · · , F (ṽh,δn,αk
)(tn+1)]

T .

4.6 NUMERICAL EXAMPLES

EXAMPLE 4.6.1 We consider the operatorKF : L2(0, 1) −→ L2(0, 1)whereF : D(F ) ⊆
L2(0, 1) −→ L2(0, 1) defined by

F (u) := u3
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andK : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

where

k(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

The Fŕechet derivative ofF is given by

F ′(u)w = 3(u2)w.

Observe that

[F ′(v)− F ′(u)]w = 3(v2 − u2)w

= 3u2(
v2

u2
− 1)w

= F ′(u)Φ(u, v, w),

whereΦ(u, v, w) = ( v
2

u2
− 1)w = (v+u)(v−u)

u2
w. ThusΦ satisfies the Assumption 2.3.1 (cf.

Scherzer, Engl and Kunisch (1993), Example 2.7).
We takef(t) = 6 sinπt+sin3(πt)

9π2 andf δ = f + δ. Then the exact solution

x̂(t) = sin πt.

We use
x0(t) = sin πt+ 1/10

as our initial guess, so that the functionF (x0)− F (x̂) satisfies the source condition

F (x0)− F (x̂) = ϕ(F ′(x̂))(
3 sin2(πt) + 3.3 sin(πt) + 0.91

30(1/2 + sin πt)2
)

whereϕ(λ) = λ. Thus we expect to have an accuracy of order at leastO(δ
1
2 ).

We chooseα0 = (1.5))δ + εh)
2, µ = 1.5, δ = 0.0667, β = 0.925, ρ = 0.1, γρ = 0.8212

andgh(γρ) = 0.54 approximately. In this example, for alln, the number of iterationnk = 2.
The results of the computation are presented in Table 4.1. The plots of the exact and the
approximate solution obtained are given in Figures 4.1 and 4.2.

EXAMPLE 4.6.2 (cf. Semenova (2010), section 4.3) To illustrate the methodfor MFD
class, we consider the spaceX = Y = L2[0, 1] and the Fredholm integral operator
K : L2(0, 1) → L2(0, 1). Then for allx(t), y(t) : x(t) > y(t) :

〈F (x)− F (y), x− y〉 =
∫ 1

0

[
∫ 1

0

k(t, s)(x3 − y3)(s)ds

]

(x− y)(t)dt ≥ 0.
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n k αk ‖uhk − x̂‖ ‖uhk−x̂‖
(δ+εh)1/2

32 4 0.1714 0.0246 0.0953

64 4 0.1710 0.0248 0.0960

128 4 0.1709 0.0249 0.0964

256 4 0.1709 0.0250 0.0966

512 4 0.1709 0.0250 0.0967

1024 4 0.1709 0.0250 0.0968

Table 4.1: Iterations and corresponding Error Estimates of Example 4.6.1
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Figure 4.1: Curve of the exact and approximate solutions of Example 4.6.1

Thus the operatorF is monotone. The Fréchet derivative ofF is given by

F ′(u)w = 3

∫ 1

0

k(t, s)(u(s))2w(s)ds.

So for anyu ∈ Br(x0), x0
2(s) ≥ k3 > 0, ∀s ∈ (0, 1), we have

F ′(u)w = F ′(x0)G(u, x0)w,

whereG(u, x0) = ( u
x0
)2.

88



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
exact soln
approx.soln

n=128

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
exact soln
approx.soln

n=256

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
exact soln
approx.soln

n=512

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
exact soln
approx.soln

n=1024

Figure 4.2: Curve of the exact and approximate solutions of Example 4.6.1

Further observe that

[F ′(v)− F ′(u)]w(s) = 3

∫ 1

0

k(t, s)(v2(s)− u2(s))w(s)ds

:= F ′(u)Φ(u, v, w),

whereΦ(u, v, w) = [ v
2

u2
− 1]w.

In our computation, we take

f(t) =
1

36π2
(27 sin πt− sin 3πt) +

1

36π
(27t2 cosπt− 3t2 cos 3πt

+6t cos 3πt− 3 cos 3πt− 27t cosπt)

andf δ = f + δ. Then the exact solution is
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x̂(t) = sin πt.

We use

x0(t) = sin πt+
3

4π2
(1 + tπ2 − t2π2 − cos2(πt))

as our initial guess, so that the functionx0 − x̂ satisfies the source condition

x0 − x̂ = F ′(x̂)1 = ϕ1(F
′(x0))G(x0, x̂)

whereϕ1(λ) = λ. Thus we expect to have an accuracy of order at leastO((δ + εh)
1
2 ).

We chooseα0 = (1.5)δ2, µ = 1.5, δ = 0.0667 = c, εh = 1
10n2 , ρ = 0.19, γ̃ρ = 0.8173

andg̃h(γ̃ρ) = 0.54 approximately. For alln, the number of iterationnk = 3 in this example.
The results of the computation are presented in Table 4.2. The plots of the exact and the
approximate solution obtained are given in Figures 4.3 and 4.4.

n k αk ‖ũhk − x̂‖ ‖ũhk−x̂‖
(δ+εh)1/2

8 4 0.1790 0.0363 0.1388

16 4 0.1729 0.0432 0.1669

32 4 0.1714 0.0450 0.1742

64 4 0.1710 0.0455 0.1761

128 4 0.1709 0.0456 0.1765

256 4 0.1709 0.0456 0.1767

512 4 0.1709 0.0456 0.1767

1024 4 0.1709 0.0456 0.1767

Table 4.2: Iterations and corresponding Error Estimates of Example 4.6.2
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Figure 4.3: Curve of the exact and approximate solutions of Example 4.6.2
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Figure 4.4: Curve of the exact and approximate solutions of Example 4.6.2
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Chapter 5

MODIFIED TSNTM WITH QUARTIC
CONVERGENCE

The main aim of this chapter is to improve the rate of convergence of the methods consid-

ered in Chapter 2, 3 and 4 for obtaining an approximate solution for Ill-posed Hammerstein

Operator equation (2.1.1). As in earlier Chapters we consider two regularity classes of the

operatorF, i.e., IFD Class and MFD Class. Regularization parameter is chosen according to

the adaptive scheme suggested by Perverzev and Schock(2005). The error bounds obtained

are of optimal order with respect to the general source conditions and we have obtained a

quartic convergance rate.

5.1 INTRODUCTION

The preliminaries and adaptive scheme for choosing the regularization parameterα for

Tikhonov regularization of (2.1.5) follows as in Chapter 2,3 and 4. The proposed Mod-

ified Two Step Newton Tikhonov Method (MTSNTM) for both IFD and MFD class are

given in Section 5.2. The finite dimensional approximation of the proposed method is given

in Section 5.3 along with a numerical example in Section 5.5 to test the efficiency of the

approach.
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5.2 MODIFIED TWO STEP NEWTON-TYPE ITERATIVE
METHOD

5.2.1 MTSNTM for IFD Class

For an initial guessx0 ∈ X the MTSNTM is defined as;

rδn,αk
= sδn,αk

− F ′(sδn,αk
)−1(F (sδn,αk

)− zδαk
), (5.2.1)

sδn+1,αk
= rδn,αk

− F ′(rδn,αk
)−1(F (rδn,αk

)− zδαk
). (5.2.2)

Throughout this sectionsδ0,αk
= x0. Let

̺δn,αk
:= ‖rδn,αk

− sδn,αk
‖, ∀n ≥ 0 (5.2.3)

and for0 < k0 ≤ 1, let gq : (0, 1) → (0, 1) be the function defined by

gq(t) =
27k30
8

t3, ∀t ∈ (0, 1). (5.2.4)

For convenience will use the notationsn, rn and̺n for sδn,αk
, rδn,αk

and̺δn,αk
respectively.

Assume thatδ ∈ (0, δ0] whereδ0 <
√
α0

β
. Let ‖x̂− x0‖ ≤ ρ,

ρ <
1

M
(
1

β
− δ0√

α0
)

and

γρ := β[Mρ+
δ0√
α0

].

THEOREM 5.2.1 Let ̺n andgq(̺n) be as in equation (5.2.3)and (5.2.4) respectively,sn
andrn be as in (5.2.2) and (5.2.1) respectively withδ ∈ (0, δ0]. Then under the assumptions
of Theorem 2.2.3, the following hold:

(a) ‖sn − rn−1‖ ≤ 3k0̺n−1

2
‖rn−1 − sn−1‖;

(b) ‖sn − sn−1‖ ≤ (1 + 3k0̺n−1

2
)‖rn−1 − sn−1‖;

(c) ‖rn − sn‖ ≤ gq(̺n−1)‖rn−1 − sn−1‖;

(d) gq(̺n) ≤ gq(γρ)
4n , ∀n ≥ 0;
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(e) ̺n ≤ gq(γρ)
(4n−1)/2γρ ∀n ≥ 0.

Proof. Observe that

sn+1 − rn = rn − sn − F ′(rn)
−1(F (rn)− zδαk

) + F ′(sn)
−1(F (sn)− zδαk

))

= rn − sn − F ′(rn)
−1(F (rn)− F (sn))− (F ′(rn)

−1

−F ′(sn)
−1)(F (sn)− zδαk

))

= F ′(rn)
−1

∫ 1

0

[F ′(rn)− F ′(sn + t(rn − sn))](rn − sn)dt

−F ′(rn)
−1(F ′(rn)− F ′(sn))(rn − sn)

and hence by Assumption 2.3.1, we have

‖sn+1 − rn‖ ≤ ‖
∫ 1

0

Φ(rn, sn + t(rn − sn), rn − sn)dt‖

+‖Φ(rn, sn, rn − sn)‖

≤ 3k0
2

‖rn − sn‖2.

This proves (a). The proof of (b) and (c) are analogous to the proof of corresponding results

in Theorem 4.2.1.

Further, since forµ ∈ (0, 1), gq(µt) ≤ µ3gq(t), for all t ∈ (0, 1), by (c) we have,

gq(̺n) ≤ gq(̺0)
4n

and

̺n ≤ gq
4(̺n−2)̺n−1 ≤ gq

4(̺n−2)gq
4(̺n−3)̺n−2 · · · gq(̺0)̺0

≤ gq(̺0)
4n−1+4n−2+···+1̺0

≤ gq(̺0)
(4n−1)/2̺0 (5.2.5)

provided̺n < 1, ∀n ≥ 0.

From (5.2.5) it is clear that,̺n ≤ 1 if ̺0 ≤ 1, but by (4.2.8),̺ 0 ≤ γρ < 1.

As gq is monotonic increasing and̺0 ≤ γρ, we havegq(̺0) ≤ gq(γρ). This completes

the proof of the Theorem.
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THEOREM 5.2.2 Let r = ( 1
1−gq(γρ) +

3k0
2

γρ
1−gq(γρ)2 )γρ with gq(γρ) < 1 and let the hypoth-

esis of Theorem 5.2.1 holds. Thensn, rn ∈ Br(x0), for all n ≥ 0.

Proof. Proof is analogous to the proof of Theorem 4.2.2 in Chapter 4.

Next we have the main theorem of this section.

THEOREM 5.2.3 Let rn andsn be as in (5.2.1) and (5.2.2) respectively, assumptions of
Theorem 5.2.2 hold and let0 < gq(γρ) < 1. Then(sn) is a Cauchy sequence inBr(x0) and
converges toxδαk

∈ Br(x0). FurtherF (xδαk
) = zδαk

and

‖sn − xδαk
‖ ≤ Cqe

−γ24n

whereCq = ( 1
1−gq(γρ)4 +

3k0γρ
2

1
1−(gq(γρ)2)4

gq(γρ)
4n)γρ andγ2 = − log gq(γρ).

Proof. Proof is analogous to the proof of Theorem 4.2.3 in Chapter 4.

REMARK 5.2.4 Note that0 < gq(γρ) < 1 andγ > 0. Hence the sequence(sn) converges
quartically toxδαk

.

Next we assume thatρ ≤ r < 1
k0

and note that this assumption is satisfied if

k0 ≤ min

{

1,
1− gq(γρ)

2

3γρ
[

−1

1− gq(γρ)
+

√

1

(1− gq(γρ))2
+

6

1− gq(γρ)2
]

}

.

The next Theorem is a consequence of Theorem 5.2.3 and Theorem 2.3.4.

THEOREM 5.2.5 Letsn be as in (5.2.2), assumptions in Theorem 5.2.3 and Theorem 2.3.4
hold. Then

‖x̂− sn‖ ≤ Cqe
−γ4n +

β

1− k0r
‖F (x̂)− zδαk

‖

whereCq andγ are as in Theorem 5.2.3.

THEOREM 5.2.6 Letsn be as in (5.2.2), assumptions in Theorem 2.2.3 and Theorem 5.2.5
hold. Let

nk := min{n : e−γ4
n ≤ δ√

αk
}.

Then

‖x̂− snk
‖ = O(ψ−1(δ)).
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5.2.2 MTSNTM for MFD Class

LetX be a real Hilbert space. For an initial guessx0 ∈ X and forR(x) := F ′(x) + αk

c
I,

the MTSNTM in this case is defined as:

r̃δn,αk
= s̃δn,αk

−R(s̃δn,αk
)−1[F (s̃δn,αk

)− zδαk
+
αk
c
(s̃δn,αk

− x0)] (5.2.6)

and

s̃δn+1,αk
= r̃δn,αk

− R(r̃δn,αk
)−1[F (r̃δn,αk

)− zδαk
+
αk
c
(r̃δn,αk

− x0)]. (5.2.7)

wheres̃0,αk
:= x0. Note that with the above notation

‖R(x)−1F ′(x)‖ ≤ 1.

Let

˜̺δn,αk
:= ‖r̃δn,αk

− s̃δn,αk
‖, ∀n ≥ 0. (5.2.8)

Here also for convenience we use the notations̃n, r̃n and ˜̺n for s̃δn,αk
, r̃δn,αk

and ˜̺δn,αk

respectively. Let Assumption 2.3.1 holds withr̃ in place ofr, ρ ≤ r̃ < 1
k0

and letc ≤ αk.

Let ρ andγ̃ρ be as defined in (4.2.16) and (4.2.17) respectively. Then we have the following

Theorem.

THEOREM 5.2.7 Let ˜̺n andgq be as in equation (5.2.8)and (5.2.4) respectively,s̃n and
r̃n be as in (5.2.7) and (5.2.6) respectively withδ ∈ (0, δ0]. Then the following hold:

(a) ‖s̃n − r̃n−1‖ ≤ 3k0 ˜̺n−1

2
‖r̃n−1 − s̃n−1‖;

(b) ‖s̃n − s̃n−1‖ ≤ (1 + 3k0 ˜̺n−1

2
)‖r̃n−1 − s̃n−1‖;

(c) ‖r̃n − s̃n‖ ≤ gq(˜̺n−1)‖r̃n−1 − s̃n−1‖;

(d) gq(˜̺n) ≤ gq(γ̃ρ)
4n , ∀n ≥ 0;

(e) ˜̺n ≤ gq(γ̃ρ)
(4n−1)/2γ̃ρ, ∀n ≥ 0.
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Proof. Observe that

s̃n − r̃n−1 = r̃n−1 − s̃n−1 − R(r̃n−1)
−1(F (r̃n−1)− zδαk

+
αk
c
(r̃n−1 − x0))

+R(s̃n−1)
−1(F (s̃n−1)− zδαk

+
αk
c
(s̃n−1 − x0))

= r̃n−1 − s̃n−1 − R(r̃n−1)
−1(F (r̃n−1)− F (s̃n−1) +

αk
c
(r̃n−1 − s̃n−1))

+(R(s̃n−1)
−1 −R(r̃n−1)

−1)(F (s̃n−1)− zδα +
αk
c
(s̃n−1 − x0))

= R(r̃n−1)
−1[R(r̃n−1)(r̃n−1 − s̃n−1)− (F (r̃n−1)− F (s̃n−1))−

αk
c
(r̃n−1

−s̃n−1)]− R(r̃n−1)
−1[F ′(r̃n−1)− F ′(s̃n−1)](r̃n−1 − s̃n−1)

= R(r̃n−1)
−1

∫ 1

0

[F ′(r̃n−1)− F ′(s̃n−1 + t(r̃n−1 − s̃n−1))]

×(r̃n−1 − s̃n−1)dt−R(r̃n−1)
−1[F ′(r̃n−1)− F ′(s̃n−1)](r̃n−1 − s̃n−1).

Now since‖R(s̃n−1)
−1F ′(s̃n−1)‖ ≤ 1, the proof of (a) and (b) follows as in Theorem 5.2.1.

To prove (c) we observe that

˜̺n ≤ ‖s̃n − r̃n−1 − R(s̃n)
−1(F (s̃n)− F (r̃n−1) +

αk
c
(s̃n − r̃n−1))‖

+‖R(x̃n)−1(R(x̃n)− R(r̃n−1))(s̃n − r̃n−1)‖

≤ ‖R(s̃n)−1[R(s̃n)(s̃n − r̃n−1)− (F (s̃n)− F (r̃n−1))

−αk
c
(s̃n − r̃n−1)]‖

+‖R(x̃n)−1(F ′(x̃n)− F ′(r̃n−1))(s̃n − r̃n−1)‖.

The remaining part of the proof is analogous to the proof of Theorem 5.2.1.

We state the following Theorems whose proofs are analogous to the proof of Theorems

4.2.9, 4.2.10, 4.2.11 and 4.2.12 respectively.

THEOREM 5.2.8 Let r̃ = ( 1
1−gq(γ̃ρ)+

3k0
2

γ̃ρ
1−gq(γ̃ρ)2 )γ̃ρ with gq(γ̃ρ) < 1 and the assumptions

of Theorem 5.2.7 hold. Theñsn, r̃n ∈ Br̃(x0), for all n ≥ 0.

THEOREM 5.2.9 Let r̃n and s̃n be as in (5.2.6) and (5.2.7) respectively and assumptions
of Theorem 5.2.8 hold. Then(s̃n) is a Cauchy sequence inBr̃(x0) and converges toxδc,αk

∈
Br̃(x0). FurtherF (xδc,αk

) + αk

c
(xδc,αk

− x0) = zδαk
and

‖s̃n − xδc,αk
‖ ≤ C̃qe

−γ̃24n

whereC̃q = ( 1
1−g(γ̃ρ)4 +

3k0γ̃ρ
2

1
1−(gq(γ̃ρ)2)4

g(γ̃ρ)
4n)γ̃ρ andγ̃2 = − log gq(γ̃ρ).
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THEOREM 5.2.10 Let s̃n be as in (5.2.7), assumptions in Theorem 5.2.9 and Theorem
2.3.11 hold. Then

‖x̂− s̃n‖ ≤ C̃qe
−γ̃24n +O(ψ−1(δ))

whereC̃q and γ̃2 are as in Theorem 5.2.9.

THEOREM 5.2.11 Let s̃n be as in (5.2.7), assumptions in Theorem 2.2.3 and Theorem
5.2.10 hold. Let

nk := min{n : e−γ14
n ≤ δ√

αk
}.

Then
‖x̂− s̃nk

‖ = O(ψ−1(δ)).

5.3 PROJECTION SCHEME OF MTSNTM

In this section we consider the convergence analysis of MTSNTM in the finite dimensional

setting. The method is analyzed for both the cases of operator F i.e., IFD and MFD Class.

The finite dimensional realization of the method and the associated algorithm are proposed.

Local-quartic convergence is established for the method and is validated numerically. The

proofs of the results are analogous to the corresponding results in section DTSNTM of

Chapter 3.

5.3.1 Discretization of MTSNTM for IFD Class

For an initial guessx0 ∈ X the method is defined as;

rh,δn,αk
= sh,δn,αk

− PhF
′(sh,δn,αk

)−1Ph(F (s
h,δ
n,αk

)− zh,δαk
), (5.3.9)

sh,δn+1,αk
= rh,δn,αk

− PhF
′(rh,δn,αk

)−1Ph(F (r
h,δ
n,αk

)− zh,δαk
), (5.3.10)

wheresh,δ0,αk
:= Phx0.

Note that ifb0 < 1
k0

and ifx ∈ Br(Phx0) wherer < 1
k0

− b0, thenF ′(x)−1 exists and is

bounded i.e.,

‖F ′(x)−1‖ ≤ β, ∀x ∈ Br(Phx0), β > 0. (5.3.11)

99



Let

̺h,δn,αk
:= ‖rh,δn,αk

− sh,δn,αk
‖, ∀n ≥ 0 (5.3.12)

and letgp : (0, 1) → (0, 1) be defined by

gp(t) =
27k30
8

(1 + βτ0)
3t3 ∀t ∈ (0, 1), (5.3.13)

where

k0 < min{1, 2

3(1 + βτ0)
}.

Hereafter we assume thatδ0 + ε0 <
2

β(2M+3)

√
α0. Let ‖x̂− x0‖ ≤ ρ where

ρ <
1

M
[
1

β
− (M +

3

2
)
δ0 + ε0√

α0
]

and let

γρ := β[Mρ+ (M +
3

2
)(
ε0 + δ0√

α0
)].

One can see thatγρ < 1 and hencegp(γρ) < 1.

In the next theorem we obtain an estimate for̺h,δn,αk
in terms ofgp(γρ) under the assump-

tion thatsh,δn,αk
andrh,δn,αk

are inBr(Phx0). Later in Theorem 5.3.2 we prove thatsh,δn,αk
, rh,δn,αk

∈
Br(Phx0), by induction.

THEOREM 5.3.1 Let ̺h,δn,αk
andgp(̺h,δn,αk

) be as in equation (5.3.12) and (5.3.17) respec-
tively,rh,δn,αk

andsh,δn,αk
be as in (5.3.9) and (5.3.10) respectively withδ ∈ (0, δ0], α = αk and

εh ∈ (0, ε0]. If sh,δn,αk
, rh,δn,αk

∈ Br(Phx0), then by Assumption 2.3.1 and Lemma 4.3.1, the
following hold:

(a) ‖sh,δn,αk
− rh,δn−1,αk

‖ ≤ (1 + βτ0)
3k0̺

h,δ
n−1,αk

2
‖rh,δn−1,αk

− sh,δn−1,αk
‖;

(b) ‖sh,δn,αk
− sh,δn−1,αk

‖ ≤ (1 + (1 + βτ0)
3k0̺

h,δ
n−1,αk

2
)‖rh,δn−1,αk

− sh,δn−1,αk
‖;

(c) ‖rh,δn,αk
− sh,δn,αk

‖ ≤ g(̺h,δn−1,αk
)‖rh,δn−1,αk

− sh,δn−1,αk
‖;

(d) gp(̺h,δn,αk
) ≤ gp(γρ)

4n , ∀n ≥ 0;

(e) ̺h,δn,αk
≤ gp(γρ)

(4n−1)/2γρ, ∀n ≥ 0.

THEOREM 5.3.2 Let r = ( 1
1−gp(γρ) +

(1+βτ0)3k0
2

γρ
1−gp(γρ)2 )γρ with gp(γρ) < 1 and let the

hypothesis of Theorem 5.3.1 holds. Thensh,δn,αk
, rh,δn,αk

∈ Br(Phx0), for all n ≥ 0.
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THEOREM 5.3.3 Let rh,δn,αk
and sh,δn,αk

be as in (5.3.9) and (5.3.10) respectively, assump-
tions of Theorem 5.3.2 hold and let0 < gp(γρ) < 1. Then(sh,δn,αk

) is a Cauchy sequence in

Br(Phx0) and converges toxh,δαk
∈ Br(Phx0). FurtherPhF (xh,δαk

) = zh,δαk
and

‖sh,δn,αk
− xh,δαk

‖ ≤ Cpe
−γ34n

whereCp = ( 1
1−gp(γρ)4 + (1 + βτ0)

3k0γρ
2

1
1−(gp(γρ)2)4

gp(γρ)
4n)γρ andγ3 = − log gp(γρ).

Note thatρ ≤ r andk0 <
1−gp(γρ)2
3(1+βτ0)γρ

[ −1
1−gp(γρ) +

√

1
(1−gp(γρ))2 +

6
(1−gp(γρ)2) ]. Hereafter we

assume thatρ ≤ r < 1
(1+βτ0)k0

.

THEOREM 5.3.4 Let sh,δn,αk
be as in (5.3.10), assumptions in Theorem 5.3.3 and Theorem

3.3.5 hold. Then

‖x̂− sh,δn,αk
‖ ≤ Cpe

−γ34n +
β

(1− (1 + βτ0)k0r)
‖F (x̂)− zh,δαk

‖

whereCp andγ3 are as in Theorem 5.3.3.

THEOREM 5.3.5 Let sh,δn,αk
be as in (5.3.10), assumptions in Theorem 5.3.4 hold. Let

nk := min{n : e−γ34
n ≤ δ + εh√

αk
}.

Then
‖x̂− sh,δnk,αk

‖ = O(ψ−1(δ + εh)).

5.3.2 Discretization of MTSNTM for MFD Class

For an initial guessx0 ∈ X and forR(x) := PhF
′(x)Ph + αk

c
Ph, the discretization of

MTSNTM is defined as:

r̃h,δn,αk
= s̃h,δn,αk

−R(s̃h,δn,αk
)−1Ph[F (s̃

h,δ
n,αk

)− zh,δαk
+
αk
c
(s̃h,δn,αk

− s̃h,δ0,αk
)] (5.3.14)

and

xh,δn+1,αk
= r̃h,δn,αk

−R(r̃h,δn,αk
)−1Ph[F (r̃

h,δ
n,αk

)− zh,δαk
+
αk
c
(r̃h,δn,αk

− xh,δ0,αk
)] (5.3.15)

wheres̃h,δ0,αk
:= Phx0.

Let

˜̺h,δn,αk
:= ‖r̃h,δn,αk

− s̃h,δn,αk
‖, ∀n ≥ 0 (5.3.16)
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and letk0 be such thatk0 < min{1, 2
3(1+τ0)

}. Let g̃p : (0, 1) → (0, 1) be the function defined

by

g̃p(t) =
27k30
8

(1 + τ0)
3t3, ∀t ∈ (0, 1). (5.3.17)

Let ‖x̂− x0‖ ≤ ρ, with

ρ <
1

M
(1− (

3

2
+M)

δ0 + ε0√
α0

)

and

γ̃ρ :=Mρ+ (
3

2
+M)(

ε0 + δ0√
α0

).

THEOREM 5.3.6 Let ˜̺h,δn,αk
and g̃p be as in equation (5.3.16)and (5.3.17) respectively,

s̃h,δn,αk
and r̃h,δn,αk

be as in (5.3.15) and (5.3.14) respectively withδ ∈ (0, δ0], α = αk and
εh ∈ (0, ε0]. Then by Assumption 2.3.1 and (4.3.34) the following hold:

(a) ‖s̃h,δn,αk
− r̃h,δn−1,αk

‖ ≤ (1 + τ0)
3k0 ˜̺

h,δ
n−1,αk

2
‖r̃h,δn−1,αk

− s̃h,δn−1,αk
‖;

(b) ‖s̃h,δn,αk
− s̃h,δn−1,αk

‖ ≤ (1 + (1 + τ0)
3k0 ˜̺

h,δ
n−1,αk

2
)‖r̃h,δn−1,αk

− s̃h,δn−1,αk
‖;

(c) ‖r̃h,δn,αk
− s̃h,δn,αk

‖ ≤ g̃p(˜̺
h,δ
n−1,αk

)‖r̃h,δn−1,αk
− s̃h,δn−1,αk

‖;

(d) g̃p(˜̺h,δn,αk
) ≤ g̃p(γ̃ρ)

4n, ∀n ≥ 0;

(e) ˜̺h,δn,αk
≤ g̃p(γ̃ρ)

(4n−1)/2γ̃ρ, ∀n ≥ 0.

THEOREM 5.3.7 Let r̃ = ( 1
1−g̃p(γ̃ρ) + (1 + τ0)

3k0
2

γ̃ρ
1−g̃p(γ̃ρ)2 )γ̃ρ with g̃p(γ̃ρ) < 1 and the

assumptions of Theorem 5.3.6 hold. Thens̃h,δn,αk
, r̃h,δn,αk

∈ Br̃(Phx0), for all n ≥ 0.

The main result of this section is the following Theorem.

THEOREM 5.3.8 Let r̃h,δn,αk
and s̃h,δn,αk

be as in (5.3.14) and (5.3.15) respectively and as-
sumptions of Theorem 5.3.7 hold. Then(s̃h,δn,αk

) is a Cauchy sequence inBr̃(Phx0) and

converges toxh,δc,αk
∈ Br̃(Phx0). FurtherPh[F (xh,δc,αk

) + αk

c
(xh,δc,αk

− x0)] = Phz
h,δ
αk

and

‖s̃h,δn,αk
− xh,δc,αk

‖ ≤ Cpe
−γ̃34n

whereCp = ( 1
1−g̃p(γ̃ρ)4 + (1 + τ0)

3k0γ̃ρ
2

1
1−(g̃p(γ̃ρ)2)4

g̃p(γ̃ρ)
4n)γ̃ρ andγ̃3 = − log g̃p(γ̃ρ).
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THEOREM 5.3.9 Let s̃h,δn,αk
be as in (5.3.15), assumptions in Theorem 5.3.8, (2.3.17) and

(3.3.23) hold. Then

‖x̂− s̃h,δn,αk
‖ ≤ Cpe

−γ̃34n +
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ + εh)

1− (1− c)k2 − k0r̃
+

2

1− τ0
(
δ + εh√
αk

)

whereCp andγ̃3 are as in Theorem 5.3.8.

THEOREM 5.3.10 Let s̃h,δn,αk
be as in (5.3.15) and assumptions in Theorem 5.3.9 hold.

Further letϕ1(αk) ≤ ϕ(αk) and

nk := min{n : e−γ̃34
n ≤ δ + εh√

αk
}.

Then
‖x̂− s̃h,δn,αk

‖ = O(ψ−1(δ + εh)).

5.4 ALGORITHM

Note that fori, j ∈ {0, 1, 2, · · · , N},

zh,δαi
− zh,δαj

= (αj − αi)(PhK
∗KPh + αjI)

−1(PhK
∗KPh + αiI)

−1PhK
∗(f δ −KF (x0)).

Therefore the balancing principle algorithm associated with the choice of the parameter

involves the following steps.

Step 1: (a) Chooseα0 such thatδ0 + ε0 <
2
√
α0

β(2M+3)
, µ > {1, β(2M+3)

2
} for IFD Class and

δ0 + ε0 <
2
√
α0

2M+3
andµ > 1 for MFD Class;

Step 2:αi = µ2iα0;

Step 3: solve forwi:

(PhK
∗KPh + αiI)wi = PhK

∗(f δ −KF (x0)); (5.4.18)

Step 4: solve forj < i, zh,δij : (PhK
∗KPh + αjI)z

h,δ
ij = (αj − αi)wi;

Step 5: if‖zh,δij ‖ > 4C(δ+εh)√
αj

, then takek = i− 1;

Step 6: otherwise, repeat withi+ 1 in place ofi.
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Step 7: choosenk = min{n : e−γ34
n ≤ δ+εh√

αk
} for IFD Class andnk = min{n : e−γ̃34

n ≤
δ+εh√
αk

} for MFD Class.

Step 8: solvesh,δnk,αk
using the iteration (5.3.10) or̃sh,δnk,αk

using the iteration (5.3.15) .

5.5 NUMERICAL EXAMPLES

In this section we give an example for IFD Class and MFD Class for illustrating the algo-

rithm considered in the above section. We apply the algorithm by choosing a sequence of

finite dimensional subspace(Vn) of X with dim Vn = n+ 1. Precisely we chooseVn as the

space of linear splines in a uniform grid ofn+1 points in[0, 1]. The implementation of the

method is analogous to that given in Chapter 4.

EXAMPLE 5.5.1 To illustrate the method for IFD Class, we consider the operator KF :
L2(0, 1) −→ L2(0, 1) whereF : D(F ) ⊆ L2(0, 1) −→ L2(0, 1) defined by

F (u) := u3,

andK : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

wherek(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

The Fŕechet derivative ofF is given byF ′(u)w = 3(u2)w. So

[F ′(v)− F ′(u)]w = 3(v2 − u2)w = 3u2(
v2

u2
− 1)w = F ′(u)Φ(u, v, w),

whereΦ(u, v, w) = ( v
2

u2
− 1)w = (v+u)(v−u)

u2
w. ThusF satisfies the Assumption 2.3.1.

We take

f(t) =
−1

144π2
[−54 + 63π2t2 − 220 sin(πt) + 16 sin(πt) cos2(πt) + 54 cos2(πt)− 63π2t]

andf δ = f + δ. Then the exact solution

x̂(t) = 1/2 + sin πt.
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We use
x0(t) = sin πt+ 3/5

as our initial guess, then
F (x0)− F (x̂) = x30 − x̂3.

Even though we are unable to write

F (x0)− F (x̂) = ϕ(K∗K)w

for some functionϕ, we use the functionϕ(λ) = λ and obtain the results as given in the
last column of the Table 1. Thus we expect to have an accuracy of order at leastO(δ

1
2 ).

We chooseα0 = (1.5)(δ + εh)
2, µ = 1.3, (δ + εh) = 0.1, gp(γρ) = 0.54 approximately.

In this example, for alln, the number of iterationnk = 1. The results of the computation
are presented in Table 5.1. The plots of the exact and the approximate solution obtained for
n=8 to 1024 are given in Figures 5.1 and 5.2.

n k α ‖shk − x̂‖ ‖shk−x̂‖
(δ+εh)1/2

8 4 0.1094 0.2010 0.6307

16 4 0.1069 0.1361 0.4296

32 4 0.1063 0.0959 0.3031

64 4 0.1061 0.0701 0.2218

128 4 0.1061 0.0536 0.1696

256 4 0.1060 0.0434 0.1371

512 4 0.1060 0.0373 0.1178

1024 4 0.1060 0.0338 0.1069

Table 5.1: Iterations and corresponding Error Estimates of Example 5.5.1
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Figure 5.1: Curve of the exact and approximate solutions of Example 5.5.1

EXAMPLE 5.5.2 To illustrate the method for Case 2, we consider the operator

KF : L2(0, 1) −→ L2(0, 1)

whereK : L2(0, 1) −→ L2(0, 1) defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

andF : D(F ) ⊆ L2(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,

wherek(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.
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Figure 5.2: Curve of the exact and approximate solutions of Example 5.5.1

Then for allx(t), y(t) : x(t) > y(t) :

〈F (x)− F (y), x− y〉 =

∫ 1

0

(
∫ 1

0

k(t, s)(x3 − y3)(s)ds

)

×(x− y)(t)dt ≥ 0.

Thus the operatorF is monotone. The Fréchet derivative ofF is given by

F ′(u)w = 3

∫ 1

0

k(t, s)(u(s))2w(s)ds.

So for anyu ∈ Br(x0), x0
2(s) ≥ k3 > 0, ∀s ∈ (0, 1), we have

F ′(u)w = F ′(x0)G(u, x0)w,
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whereG(u, x0) = ( u
x0
)2.

Further observe that

[F ′(v)− F ′(u)]w(s) = 3

∫ 1

0

k(t, s)(v2(s)− u2(s))w(s)ds

:= F ′(u)Φ(u, v, w),

whereΦ(u, v, w) = [ v
2

u2
− 1]w.

ThusΦ satisfies the Assumption 2.3.1 (cf. Scherzer, Engl and Kunisch (1993), Example
2.7).

In our computation, we take

f(t) = (
1

18π2
)(1− t)(14t− 7 + cos3(πt) + 6cos(πt))t2 − (

1

18π2
)t(14t− 7

+cos3(πt) + 6cos(πt))(1− t2) + (
1

9π2
)t(1− t)(14t− 7

+cos3(πt) + 6cos(πt))

andf δ = f + δ. Then the exact solution is

x̂(t) = cosπt.

We use

x0(t) = cos(πt) + 3[
−1

4π2
(1− t+ 2πt2cos(πt)sin(πt) + π2t3

+tcos2(πt)− 2πtcos(πt) sin(πt)− π2t2 − cos2(πt))

+
1

4π2
t(−2cos(πt)sin(πt)π − 2π2t + 2πtcos(πt)sin(πt)

+π2t2 + cos2(πt) + π2 − cos2(πt))]

as our initial guess, so that the functionx0 − x̂ satisfies the source condition

x0 − x̂ = ϕ1(F
′(x0))1

whereϕ1(λ) = λ. Thus we expect to have an accuracy of order at leastO(δ
1
2 ).

We chooseα0 = (1.3)(δ + εh)
2, µ = 1.3, δ + εh = 0.1 = c, ρ = 0.19, γ̃ρ = 0.8173 and

g̃p(γ̃ρ) = 0.54 approximately. For alln the number of iterationnk = 1. The results of the
computation are presented in Table 5.2. The plots of the exact and the approximate solution
obtained are given in Figures 5.3 and 5.4.
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n k δ + εh α ‖s̃hk − x̂‖ ‖s̃hk−x̂‖
(δ+εh)1/2

8 4 0.1016 0.1094 0.3652 1.1458

16 4 0.1004 0.1069 0.2664 0.8408

32 4 0.1001 0.1063 0.1994 0.6303

64 4 0.1000 0.1061 0.1554 0.4914

128 4 0.1000 0.1061 0.1278 0.4042

256 4 0.1000 0.1060 0.1115 0.3526

512 4 0.1000 0.1060 0.1024 0.3238

1024 4 0.1000 0.1060 0.0975 0.3083

Table 5.2: Iterations and corresponding Error Estimates of Example 5.5.2
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Figure 5.3: Curve of the exact and approximate solutions of Example 5.5.2
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Chapter 6

TWO STEP NEWTON-TIKHONOV
METHOD IN HILBERT SCALES

A Hilbert scale variant of modified Newton-Tikhonov method is considered for approxi-

mately solving ill-posed Hammerstein type operator equations. We derive order optimal

error bounds by choosing the regularization parameter according to an adaptive scheme of

Pereverzev and Schock(2005).

6.1 INTRODUCTION

In this Chapter we present an iterative method which combines Tikhonov regularization

with the Modified Newton’s method in Hilbert scales, for approximately solving the opera-

tor equation (2.1.1). In order to improve the rate of convergence of Tikhonov regularization

of linear ill-posed problems many authors have considered the Hilbert scale variant of the

regularization methods for solving ill-posed operator equations, for example see Natterer

(1984), Egger and Neubauer (2005), Qi-nian (2000), Luet al. (2010), Mathe and Tautenhahn

(2007), Neubauer (2000), Jin and Tautenhahn (2011b) and Jinand Tautenhahn (2011a).

For the regularization of (2.1.1) in the setting of Hilbert scales, we consider a Hilbert

scale{Xt}t∈R generated by a strictly positive operatorL : D(L) → X with D(L) dense in

X satisfying

‖Lx‖ ≥ ‖x‖, x ∈ D(L).

Recall Qi-nian (2000), Tautenhahn (1998), that the spaceXt is the completion ofD :=
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∩∞
k=0D(Lk) with respect to the norm‖x‖t, induced by the inner product

〈x1, x2〉t = 〈Lt/2x1, Lt/2x2〉

i.e.,

‖x‖t = ‖Lt/2x‖, t ∈ R.

Moreover, ifβ ≤ γ, then the embeddingXγ →֒ Xβ is continuous, and therefore the norm

‖.‖β is also defined inXγ and there is a constantcβ,γ such that

‖x‖β ≤ cβ,γ‖x‖γ, x ∈ Xγ .

As in chapter 2, we consider two cases of the operatorF in KF (x) = f ;

IFD Class: F ′(x0)
−1 exists and is bounded. Thus the ill-posedness of (2.1.1) is essentially

due to the non-closedness of the range of the linear operatorK. In this case we consider the

sequence(xδn,α,s) defined iteratively by

yδn,α,s = xδn,α,s − F ′(x0)
−1[F (xδn,α,s)− zδα,s] (6.1.1)

and

xδn+1,α,s = yδn,α,s − F ′(x0)
−1[F (yδn,α,s)− zδα,s] (6.1.2)

wherexδ0,α,s := x0, is the initial approximation for the solution̂x of (2.1.1). Here

zδα,s := F (x0) + (L−sK∗K + αI)−1L−sK∗(f δ −KF (x0)) (6.1.3)

andα is the regularization parameter to be chosen appropriatelyfrom the finite setDN :=

{αi : 0 < α0 < α1 < · · · < αN} depending on the inexact dataf δ and the error levelδ

satisfying‖f − f δ‖ ≤ δ. We use the adaptive parameter selection procedure suggested by

Pereverzev and Schock (2005) for the selection of regularization parameter.

MFD Class: F ′(x0) is non-invertible andF is a monotone operator: In this case we

consider the sequence(x̃δn,α,s) defined iteratively by

ỹδn,α,s = x̃δn,α,s − (F ′(x0) +
α

c
Ls/2)−1[F (x̃δn,α,s)− zδα,s +

α

c
Ls/2(x̃δn,α,s − x0)] (6.1.4)
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and

x̃δn+1,α = ỹδn,α,s − (F ′(x0) +
α

c
Ls/2)−1[F (ỹδn,α,s)− zδα,s +

α

c
Ls/2(ỹδn,α,s − x0)] (6.1.5)

wherex̃δ0,α,s := x0, with x0 andα are as in IFD Class and0 < c ≤ α.

The Chapter is organized as follows: In Section 6.2, we give the preliminaries and the

adaptive scheme for choosing the regularization parameterα for Tikhonov regularization of

(2.1.5) in the setting of Hilbert scales. The proposed method and the error estimates for the

IFD Class and MFD Class is given in Section 6.3.

6.2 PRELIMINARIES

We assume that the ill-posed nature of the operatorK is related to the Hilbert scale{Xt}t∈R
according to the relation

c1‖x‖−a ≤ ‖Kx‖ ≤ c2‖x‖−a, x ∈ X, (6.2.6)

for some realsa, c1, andc2. Observe that from the relation

〈Kx, f〉 = 〈x,K∗f〉 = 〈x, L−sK∗f〉s

for all x ∈ X andf ∈ Y, we conclude thatL−sK∗ : Y → X is the adjoint of the operator

K in X. ConsequentlyL−sK∗K : X → X is self-adjoint. Further we note that

(A∗
sAs + αI)−1Ls/2 = Ls/2(L−sK∗K + αI)−1

whereAs = KL−s/2.

One of the crucial results for proving the results in this Chapter is the following propo-

sition:

Let

f(t) = min{ct1, ct2}, g(t) = max{ct1, ct2}, t ∈ R, |t| ≤ 1,

wherec1 andc2 are as in (6.2.6).
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PROPOSITION 6.2.1 (See Tautenhahn (1996), Proposition 2.1) Fors ≥ 0 and |ν| ≤ 1,

f(ν)‖x‖−ν(s+a) ≤ ‖(A∗
sAs)

ν/2x‖ ≤ g(ν)‖x‖−ν(s+a), x ∈ H.

We make use of the relation

‖(As + αI)−1Aps‖ ≤ αp−1, p > 0, 0 < p ≤ 1, (6.2.7)

which follows from the spectral properties of the positive self-adjoint operatorAs, s > 0.

The following assumption on source condition is based on a source functionϕ and

a property of the source functionϕ. We will be using this assumption to obtain an error

estimate for‖zδα,s − F (x̂)‖.

ASSUMPTION 6.2.2 There exists a continuous, strictly monotonically increasing function
ϕ : (0, ‖A∗

sAs‖] → (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ(λ) = 0,

•
sup

λ > 0

αϕ(λ)

λ+ α
≤ ϕ(α) ∀λ ∈ (0, ‖A∗

sAs‖]

and

• there existsv ∈ X with ‖v‖ ≤ E, E > 0 such that

(A∗
sAs)

s
2(s+a)Ls/2(F (x̂)− F (x0)) = ϕ(A∗

sAs)v.

REMARK 6.2.3 Note that ifF (x̂) − F (x0) ∈ Xt i.e., ‖F (x̂) − F (x0)‖t ≤ E, for some
0 < t ≤ 2s+ a, then the above assumption is satisfied. This can be seen as follows.

(A∗
sAs)

s
2(s+a)Ls/2(F (x̂)− F (x0)) = (A∗

sAs)
t

2(s+a) (A∗
sAs)

(s−t)
(2s+2a)Ls/2(F (x̂)− F (x0))

= ϕ(A∗
sAs)v

whereϕ(λ) = λ
t

2(s+a) andv = (A∗
sAs)

(s−t)
(2s+2a)Ls/2(F (x̂)− F (x0)).

Further note that

‖v‖ ≤ g(
s− t

s+ a
)‖Ls/2(F (x̂)− F (x0))‖t−s

≤ g(
s− t

s+ a
)‖(F (x̂)− F (x0))‖t

≤ E

whereE = g( s−t
s+a

)E.
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THEOREM 6.2.4 Suppose that Assumption 6.2.2 and Proposition 6.2.1 hold, and letzα,s :=
z0α,s. Then

1.
‖zδα,s − zα,s‖ ≤ ψ(s)α

−a
2(s+a) δ, (6.2.8)

2.
‖F (x̂)− zα,s‖ ≤ φ(s)ϕ(α), (6.2.9)

3.
‖F (x0)− zα,s‖ ≤ ψ1(s)‖F (x̂)− F (x0)‖, (6.2.10)

whereψ(s) = 1
f( s

s+a
)
, φ(s) = E

f( s
s+a

)
and ψ1(s) =

g( s
s+a

)

f( s
s+a

)
.

Proof. Note that

‖zδα,s − zα,s‖ = ‖(L−sK∗K + αI)−1L−sK∗(f δ − f)‖

= ‖L−s/2(A∗
sAs + αI)−1A∗

s(f
δ − f)‖

now by takingν = s
s+a

andx = (A∗
sAs + αI)−1A∗

s(f
δ − f) in Proposition 6.2.1, we have

‖zδα,s − zα,s‖ ≤ 1

f( s
s+a

)
‖(A∗

sAs)
s

2(s+a) (A∗
sAs + αI)−1A∗

s(f
δ − f)‖

=
1

f( s
s+a

)
‖(A∗

sAs + αI)−1(A∗
sAs)

2s+a
2(s+a) (f δ − f)‖

≤ 1

f( s
s+a

)
‖(A∗

sAs + αI)−1(A∗
sAs)

2s+a
2(s+a)‖δ. (6.2.11)

We note that the relation (6.2.7) withp = 2s+a
2(s+a)

gives

‖(A∗
sAs + αI)−1(A∗

sAs)
2s+a
2(s+a)‖ ≤ α

−a
2(s+a) . (6.2.12)

Now (6.2.8) follows from (6.2.11) and (6.2.12). Further we observe that

‖zα,s − F (x̂)‖ = ‖[(L−sK∗K + αI)−1L−sK∗K − I](F (x̂)− F (x0))‖

= ‖αL−s/2(A∗
sAs + αI)−1Ls/2(F (x̂)− F (x0))‖

≤ 1

f( s
2(s+a)

)
‖α(A∗

sAs)
s

2(s+a) (A∗
sAs + αI)−1

Ls/2(F (x̂)− F (x0))‖. (6.2.13)
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So by Assumption 6.2.2 and (6.2.13), we have

‖zα,s − F (x̂)‖ ≤ 1

f( s
s+a

)
ϕ(α)E.

Again,

‖zα,s − F (x0)‖ = ‖(L−sK∗K + αI)−1L−sK∗K(F (x̂)− F (x0))‖

= ‖L−s/2(A∗
sAs + αI)−1A∗

sAsL
s/2(F (x̂)− F (x0))‖

≤ 1

f( s
s+a

)
‖(A∗

sAs)
s

2(s+a) (A∗
sAs + αI)−1

(A∗
sAs)L

s/2(F (x̂)− F (x0))‖

=
1

f( s
s+a

)
‖(A∗

sAs + αI)−1(A∗
sAs)‖

‖(A∗
sAs)

s
2(s+a)Ls/2(F (x̂)− F (x0))‖

≤
g( s

s+a
)

f( s
s+a

)
‖Ls/2(F (x̂)− F (x0))‖−s

≤ ψ1(s)‖F (x̂)− F (x0)‖.

This completes the proof of the Theorem.

6.2.1 Error Bounds and Parameter Choice in Hilbert Scales

LetCs = max{φ(s), ψ(s)}, then by (6.2.8), (6.2.9) and triangle inequality, we have

‖F (x̂)− zδα,s‖ ≤ Cs(ϕ(α) + α
−a

2(s+a) δ). (6.2.14)

The error estimateϕ(α) + α
−a

2(s+a) δ in (6.2.14) attains minimum for the choiceα :=

α(δ, s, a) which satisfiesϕ(α) = α
−a

2(s+a) δ. Clearlyα(δ, s, a) = ϕ−1(ψ−1
s,a(δ)), where

ψs,a(λ) = λ[ϕ−1(λ)]
a

2(s+a) , 0 < λ ≤ ‖As‖2 (6.2.15)

and in this case

‖F (x̂)− zδα,s‖ ≤ 2Csψ
−1
s,a(δ),

which has at least optimal order with respect toδ, s and a (cf. Pereverzev and Schock

(2005)).
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6.2.2 Adaptive Scheme and Stopping Rule

In this Chapter we use a modified version of the adaptive scheme suggested by

Pereverzev and Schock (2005) for choosing the parameterα to suit the Hilbert scale set up.

Let i ∈ {0, 1, 2, · · · , N} andαi = µiα0 whereµ = η2(1+s/a), η > 1 andα0 = δ2(1+s/a).

Let

l := max{i : ϕ(αi) ≤ α
−a

2(s+a)

i δ} < N (6.2.16)

and

k := max{i : ‖zδαi,s
− zδαj,s

‖ ≤ 4Csα
−a

2(s+a)

j δ}, j = 0, 1, 2, · · · , i− 1}. (6.2.17)

Analogous to Theorem 4.3 in George and Kunhanandan (2009), we have the following The-

orem.

THEOREM 6.2.5 Let l be as in (6.2.16),k be as in (6.2.17),ψs,a be as in (6.2.15) and
zδαk ,s

be as in (6.1.3) withα = αk. Thenl ≤ k and

‖F (x̂)− zδαk ,s
‖ ≤ Cs(2 +

4η

η − 1
)ηψ−1

s,a(δ)

whereCs is as in (6.2.14).

Proof. To see thatl ≤ k, it is enough to show that, fori = 1, 2, · · · , N,

ϕ(αi) ≤ α
−a/2(s+a)
j δ =⇒ ‖zδαi,s

− zδαj ,s
‖ ≤ 4Csα

−a/2(s+a)
j δ, ∀j = 0, 1, · · · , i.

For j ≤ i, by (6.2.17)

‖zδαi,s
− zδαj ,s

‖ ≤ ‖zδαi,s
− F (x̂)‖+ ‖F (x̂)− zδαj ,s

‖

≤ Cs(ϕ(αi) + α
−a/2(s+a)
i δ) + Cs(ϕ(αj) + α

−a/2(s+a)
j δ)

≤ 2Csα
−a/2(s+a)
i δ + 2Csα

−a/2(s+a)
j δ

≤ 4Csα
−a/2(s+a)
j δ.

This proves the relationl ≤ k.

117



Thus by the relation(αl+m)a/2(s+a) = ηm(αl)
a/2(s+a) and by using triangle inequality

successively, we obtain

‖F (x̂)− zδαk ,s
‖ ≤ ‖F (x̂)− zδαl,s

‖+
k

∑

i=l+1

‖zδαi,s
− zδαi−1,s

‖

≤ ‖F (x̂)− zδαl,s
‖+

k
∑

i=l+1

4Csα
−a/2(s+a)
i−1 δ

≤ ‖F (x̂)− zδαl,s
‖+

k−l−1
∑

m=0

4Csα
−a/2(s+a)
l η−mδ

≤ ‖F (x̂)− zδαl,s
‖+ 4η

η − 1
Csα

−a/2(s+a)
l δ. (6.2.18)

Therefore by (6.2.18) and (6.2.16) we have

‖F (x̂)− zδαk,s
‖ ≤ Cs(ϕ(αl) + α

−a/2(s+a)
l δ) +

4η

η − 1
Csα

−a/2(s+a)
l δ

≤ Cs(2 +
4η

η − 1
)α

−a/2(s+a)
l δ

≤ Cs(2 +
4η

η − 1
)ηψ−1

s,a(δ).

The last step follows from the inequalityαδ ≤ αl+1 = ηαl.

6.3 THE ITERATIVE METHOD AND CONVERGENCE
ANALYSIS

6.3.1 Regularization of IFD Class

Consider the two step iterative method defined as (6.1.1) and(6.1.2) withαk in place ofα.

We assume thatF possess a uniformly bounded Fréchet derivative for allx ∈ D(F ) i.e.,

‖F ′(x0)‖ ≤M, for someM > 0 and‖F ′(x0)
−1‖ := β, β > 0. Let

eδn,αk,s
:= ‖yδn,αk,s

− xδn,αk,s
‖, ∀n ≥ 0 (6.3.1)

and letδ0 < 1
4k0βψ(s)

α
a

2(s+a)

0 and‖x̂− x0‖ ≤ ρ, with

ρ <
1

ψ1(s)M
[

1

4k0β
− ψ(s)α

−a
2(s+a)

0 δ0]
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and

γρ := β[ψ1(s)Mρ+ ψ(s)α
−a

2(s+a) δ].

Further let

r1 =
1−

√

1− 4k0γρ

2k0

and

r2 = min{ 1

k0
,
1 +

√

1− 4k0γρ

2k0
}.

For r ∈ (r1, r2), let

qs = k0r, (6.3.2)

thenqs < 1.

LEMMA 6.3.1 Let eδ0,αk,s
be as in (6.3.1). Theneδ0,αk ,s

≤ γρ.

Proof. Observe that

eδ0,αk ,s
= ‖yδ0,αk,s

− xδ0,αk ,s
‖ = ‖F ′(x0)

−1(F (x0)− zδαk ,s
)‖

≤ β‖F (x0)− zδαk ,s
‖

≤ β[‖F (x0)− zαk ,s‖

+‖zαk ,s − zδαk ,s
‖]. (6.3.3)

Now using (6.2.8) and (6.2.10) in (6.3.3), one can see that

eδ0,αk,s
≤ β[ψ1(s)‖F (x̂)− F (x0)‖+ ψ(s)α

−a
2(s+a) δ]

≤ β[ψ1(s)Mρ+ ψ(s)α
−a

2(s+a) δ] = γρ.

This completes the proof.

THEOREM 6.3.2 Let eδn,αk,s
and qs be as in equation (6.3.1) and (6.3.2) respectively,

yδn,αk,s
andxδn,αk,s

be as defined in (6.1.1) and (6.1.2) respectively withα = αk and δ ∈
(0, δ0]. Then by Assumption 2.3.1 and Lemma 6.3.1,xδn,αk ,s

, yδn,αk,s
∈ Br(x0) and the fol-

lowing estimates hold for alln ≥ 0.

(a) ‖xδn,αk,s
− yδn−1,αk,s

‖ ≤ qs‖yδn−1,αk,s
− xδn−1,αk ,s

‖;

(b) ‖xδn,αk ,s
− xδn−1,αk,s

‖ ≤ (1 + qs)‖yδn−1,αk,s
− xδn−1,αk,s

‖;
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(c) ‖yδn,αk,s
− xδn,αk ,s

‖ ≤ q2s‖yδn−1,αk,s
− xδn−1,αk ,s

‖;

(d) eδn,αk,s
≤ q2ns γρ, ∀n ≥ 0.

Proof. Supposexδn,αk,s
, yδn,αk,s

∈ Br(x0). Then

xδn+1,αk ,s
− yδn,αk,s

= yδn,αk,s
− xδn,αk,s

+ F ′(x0)
−1[F (xδn,αk,s

)− (F (yδn,αk,s
)]

= F ′(x0)
−1[F ′(x0)(y

δ
n,αk,s

− xδn,αk,s
)− (F (yδn,αk,s

)− F (xδn,αk,s
))]

and hence by Assumption 2.3.1, we have

‖xδn+1,αk,s
− yδn,αk,s

‖ = ‖F ′(x0)
−1

∫ 1

0

F ′(x0)Φ(x0, x
δ
n,αk,s

+t(yδn,αk,s
− xδn,αk,s

), yδn,αk,s
− xδn,αk,s

)dt‖

≤ k0r‖yδn,αk,s
− xδn,αk ,s

‖.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖xδn,αk,s
− xδn−1,αk,s

‖ ≤ ‖xδn,αk ,s
− yδn−1,αk,s

‖+ ‖yδn−1,αk,s
− xδn−1,αk ,s

‖.

Again (c) follows from (a), Assumption 2.3.1 and the following expression,

eδn,αk ,s
= ‖F ′(x0)

−1

∫ 1

0

[F ′(x0)−F ′(xδn,αk ,s
+ t(xδn,αk ,s

−yδn−1,αk ,s
))](xδn,αk,s

−yδn−1,αk,s
)dt‖

and (d) follows from (c). Now we show thatxδn,αk,s
, yδn,αk,s

∈ Br(x0) by induction.

Note that by (b) and Lemma 6.3.1,

‖xδ1,αk ,s
− x0‖ ≤ (1 + qs)e

δ
0,αk,s

(6.3.4)

≤
eδ0,αk ,s

1− qs

≤ γρ
1− qs

< r,

i.e.,xδ1,αk ,s
∈ Br(x0). Again note that by (6.3.4) and (c), we have

‖yδ1,αk,s
− x0‖ ≤ ‖yδ1,αk,s

− xδ1,αk ,s
‖+ ‖xδ1,αk ,s

− x0‖

≤ (1 + qs + q2s)e
δ
0,αk ,s

≤ γρ
1− qs

< r,
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i.e.,yδ1,αk,s
∈ Br(x0). Further let us assume thatxδm,αk ,s

, yδm,αk,s
∈ Br(x0), for somem ≥ 0.

Then, using (b), (6.3.4) and Lemma 6.3.1, we have

‖xδm+1,αk ,s
− x0‖ ≤ ‖xδm+1,αk

− xδm,αk ,s
‖+ · · ·+ ‖xh,δ1,αk ,s

− x0‖

≤ (qs + 1)(q2ms + q2(m−1)
s + · · ·+ 1)eδ0,αk,s

≤ (qs + 1)
1− (q2m+1

s )

1− q2s
eδ0,αk,s

≤ γρ
1− qs

< r,

i.e.,xδm+1,αk ,s
∈ Br(x0) and

‖yδm+1,αk,s
− x0‖ ≤ ‖yδm+1,αk,s

− xδm+1,αk ,s
‖+ ‖xδm+1,αk ,s

− x0‖

≤ (q2(m+1)
s + · · ·+ q3s + q2s + qs + 1)eδ0,αk ,s

≤ γρ
1− qs

< r,

i.e.,yδm+1,αk,s
∈ Br(x0). Thus by inductionxδn,αk,s

, yδn,αk,s
∈ Br(x0), ∀ n ≥ 0. This com-

pletes the proof of the Theorem.

THEOREM 6.3.3 Letxδn,αk,s
andyδn,αk,s

be as in (6.1.1) and (6.1.2) respectively withα =
αk and δ ∈ [0, δ0], and assumptions of Theorem 6.3.2 hold. Then(xδn,αk ,s

) is a Cauchy

sequence inBr(x0) and converges toxδαk ,s
∈ Br(x0). FurtherF (xδαk,s

) = zδαk,s
and

‖xδn,αk,s
− xδαk ,s

‖ ≤ C5q
2n
s

whereC5 =
γρ

1−qs .

Proof. The proof is analogous to the proof of Theorem 2.3.3 in Chapter 2.

Hereafter we assume that‖x̂− x0‖ < ρ ≤ r.

THEOREM 6.3.4 Suppose that the hypothesis of Assumption 2.3.1 holds. Then

‖x̂− xδαk ,s
‖ ≤ β

1− qs
‖F (x̂)− zδαk ,s

‖.
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Proof. The proof is analogous to the proof of Theorem 2.3.4 in Chapter 2.

The following Theorem is a consequence of Theorem 6.3.3 and Theorem 6.3.4.

THEOREM 6.3.5 Letxδn,αk,s
be as in (6.1.1) withα = αk andδ ∈ (0, δ0], assumptions in

Theorem 6.3.3 and Theorem 6.3.4 hold. Then

‖x̂− xδn,αk,s
‖ ≤ C5q

2n
s +

β

1− qs
‖F (x̂)− zδαk ,s

‖

whereC5 is as in Theorem 6.3.3.

THEOREM 6.3.6 Letxδn,αk,s
be as in (6.1.1) withα = αk andδ ∈ [0, δ0], assumptions in

Theorem 6.2.5 and Theorem 6.3.5 hold. Let

nk := min{n : q2ns ≤ α
−a/2(s+a)
k δ}.

Then
‖x̂− xδnk ,αk,s

‖ = O(ψ−1
s,a(δ)).

6.3.2 Regularization of MFD Class

In this section, letX be a real Hilbert space. We consider the two step iterative method

defined as (6.1.4) and (6.1.5) withαk in place ofα for approximating the zeroxδc,αk,s
of the

equation,

F (x) +
αk
c
Ls/2(x− x0) = zδαk,s

(6.3.5)

and then we show thatxδc,αk,s
is an approximation to the solution̂x of (2.1.1).

Let F ′(x0) ∈ L(X) be a bounded positive self-adjoint operator on X andBs :=

L−s/4F ′(x0)L
−s/4. Usually, for the analysis of regularization methods in Hilbert scales,

an assumption of the form (cf. Egger and Neubauer (2005), Neubauer (2000))

‖F ′(.)x‖ ∼ ‖x‖−b, x ∈ X (6.3.6)

is used. Here the numberb > 0 can be interpreted as the degree of ill-posedness of (2.1.1).

In this Chapter instead of (6.3.6) we use the following assumptions on the ill-posedness;

d1‖x‖−b ≤ ‖F ′(x0)x‖ ≤ d2‖x‖−b, x ∈ D(F ), (6.3.7)
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for some realsb, d1, andd2.

Note that (6.3.7) is simpler than that of (6.3.6). Now we definef1 andg1 by

f1(t) = min{dt1, dt2}, g1(t) = max{dt1, dt2}, t ∈ R, |t| ≤ 1.

The following proposition is crucial for proving the further results in this Chapter.

PROPOSITION 6.3.7 (see George and Nair (1997), Proposition 3.1) Fors > 0 and|ν| ≤
1,

f1(ν/2)‖x‖−ν(s+b)
2

≤ ‖Bν/2
s x‖ ≤ g1(ν/2)‖x‖−ν(s+b)

2
, x ∈ H.

Let ψ2(s) :=
g1(

−s
2(s+b)

)

f1(
s

2(s+b)
)
, ψ2(s) :=

g1(
s

2(s+b)
)

f1(
s

2(s+b)
)

and let

ẽδn,αk,s
:= ‖ỹδn,αk,s

− x̃δn,αk ,s
‖, ∀n ≥ 0. (6.3.8)

Let δ0 < 1

4k0ψ(s)ψ2(s)ψ2(s)
α

a
2(s+a)

0 and‖x̂− x0‖ ≤ ρ, with

ρ <
1

Mψ1(s)
[

1

4k0ψ2(s)ψ2(s)
− ψ(s)α

−a
2(s+a)

0 δ0]

and

γ̃ρ := ψ2(s)[ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0].

Further let

r̃1 =
1−

√

1− 4k0ψ2(s)γ̃ρ

2ψ2(s)k0

and

r̃2 = min{ 1

k0
,
1 +

√

1− 4k0ψ2(s)γ̃ρ

2ψ2(s)k0
}.

For r̃ ∈ (r̃1, r̃2), let

q̃s = ψ2(s)k0r̃, (6.3.9)

thenq̃s < 1.

LEMMA 6.3.8 Let ẽδ0,αk,s
be as in (6.3.8) and let Proposition 6.3.7 holds. Thenẽδ0,αk,s

<
γ̃ρ.
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Proof. Observe that

ẽδ0,αk,s
= ‖ỹδ0,αk,s

− x̃δ0,αk,s
‖ = ‖(F ′(x0) +

αk
c
Ls/2)−1(F (x0)− zδαk,s

)‖

≤ ‖L−s/4(L−s/4F ′(x0)L
−s/4 +

αk
c
I)−1L−s/4

(F (x0)− zδαk ,s
)‖

≤ 1

f1(
s

2(s+b)
)
‖B

s
2(s+b)
s (Bs +

αk
c
I)−1L−s/4

(F (x0)− zδαk ,s
)‖

≤ 1

f1(
s

2(s+b)
)
‖(Bs +

αk
c
I)−1B

s
(s+b)
s B

−s
2(s+b)
s

L−s/4(F (x0)− zδαk ,s
)‖

≤
g1(

−s
2(s+b)

)

f1(
s

2(s+b)
)
(
αk
c
)

−b
(s+b)‖F (x0)− zδαk ,s

‖.

≤ ψ2(s)[‖F (x0)− zαk ,s‖+ ‖zαk ,s − zδαk,s
‖]. (6.3.10)

Now using (6.2.8) and (6.2.10) in (6.3.10), one can see that

ẽδ0,αk ,s
≤ ψ2(s)[ψ1(s)‖F (x̂)− F (x0)‖+ ψ(s)α

−a
2(s+a) δ]

≤ ψ2(s)[ψ1(s)Mρ+ ψ(s)α
−a

2(s+a)

0 δ0] = γ̃ρ.

LEMMA 6.3.9 Let Proposition 6.3.7 hold. Then for allh ∈ X,

‖(F ′(x0) +
αk
c
Ls/2)−1F ′(x0)h‖ ≤ ψ2(s)‖h‖.

Proof. Observe that by Proposition 6.3.7,

‖(F ′(x0) +
αk
c
Ls/2)−1F ′(x0)h‖ = ‖L−s/4(L−s/4F ′(x0)L

−s/4 +
αk
c
I)−1L−s/4

F ′(x0)L
−s/4Ls/4h‖

≤ 1

f1(
s

2(s+b)
)
‖B

s
2(s+b)
s (Bs +

αk
c
I)−1BsL

s/4h‖

≤ 1

f1(
s

2(s+b)
)
‖(Bs +

αk
c
I)−1Bs‖‖B

s
2(s+b)
s Ls/4h‖

≤
g1(

s
2(s+b)

)

f1(
s

2(s+b)
)
‖Ls/4h‖−s/2

≤
g1(

s
2(s+b)

)

f1(
s

2(s+b)
)
‖h‖.

124



This completes the proof of the Lemma.

THEOREM 6.3.10 Let ẽδn,αk,s
and q̃s be as in equation (6.3.8) and (6.3.9) respectively,

ỹδn,αk,s
and x̃δn,αk,s

be as defined in (6.1.4) and (6.1.5) respectively withα = αk and δ ∈
(0, δ0]. Then by Assumption 2.3.1 and Lemma 6.3.8,x̃δn,αk ,s

, ỹδn,αk,s
∈ Br̃(x0), and the

following estimates hold for alln ≥ 0.

(a) ‖x̃δn,αk,s
− ỹδn−1,αk,s

‖ ≤ q̃s‖ỹδn−1,αk,s
− x̃δn−1,αk ,s

‖;

(b) ‖x̃δn,αk ,s
− x̃δn−1,αk,s

‖ ≤ (1 + q̃s)‖ỹδn−1,αk,s
− x̃δn−1,αk,s

‖;

(c) ‖ỹδn,αk,s
− x̃δn,αk,s

‖ ≤ q̃s
2‖ỹδn−1,αk,s

− x̃δn−1,αk,s
‖;

(d) ẽδn,αk,s
≤ q̃s

2nγ̃ρ, ∀n ≥ 0.

Proof. If x̃δn,αk,s
, ỹδn,αk,s

∈ Br̃(x0), then by Assumption 2.3.1,

x̃δn+1,αk,s
− ỹδn,αk,s

= (F ′(x0) +
αk
c
Ls/2)−1[F ′(x0)(ỹ

δ
n,αk,s

− x̃δn,αk,s
)

−(F (ỹδn,αk,s
)− F (x̃δn,αk,s

))]

= (F ′(x0) +
αk
c
Ls/2)−1

∫ 1

0

[F ′(x0)− F ′(x̃δn,αk,s

+t(ỹδn,αk,s
− x̃δn,αk,s

))](ỹδn,αk,s
− x̃δn,αk,s

)dt

= (F ′(x0) +
αk
c
Ls/2)−1F ′(x0)

∫ 1

0

Φ(x0, x̃
δ
n,αk,s

+t(ỹδn,αk,s
− x̃δn,αk,s

), ỹδn,αk
− x̃δn,αk ,s

)dt

and hence by Lemma 6.3.9 and Assumption 2.3.1, we have

‖x̃δn+1,αk,s
− ỹδn,αk,s

‖ ≤ ψ2(s)‖
∫ 1

0

Φ(x0, x̃
δ
n,αk,s

+t(ỹδn,αk,s
− x̃δn,αk,s

), ỹδn,αk,s
− x̃δn,αk,s

)dt‖

≤ ψ2(s)k0r̃‖ỹδn,αk,s
− x̃δn,αk ,s

‖

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖x̃δn,αk,s
− x̃δn−1,αk ,s

‖ ≤ ‖x̃δn,αk,s
− ỹδn−1,αk,s

‖+ ‖ỹδn−1,αk,s
− x̃δn−1,αk,s

‖.
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Again (c) follows from (a), Assumption 2.3.1, Lemma 6.3.9 and the following expres-

sion,

ẽδn,αk ,s
= ‖(F ′(x0) +

αk
c
Ls/2)−1[F ′(x0)(x̃

δ
n,αk,s

− ỹδn−1,αk,s
)

−(F (x̃δn,αk,s
)− F (ỹδn−1,αk,s

))]‖

= ‖(F ′(x0) +
αk
c
Ls/2)−1

∫ 1

0

[F ′(x0)− (F ′(ỹδn−1,αk,s
)

+t(ỹδn−1,αk,s
− x̃δn,αk,s

))](x̃δn,αk,s
− ỹδn−1,αk,s

)dt‖.

Further (d) follows from (c). The remaining part of the proofis analogous to the proof

of Theorem 6.3.2.

Next we shall go to the main result of this section.

THEOREM 6.3.11 Let ỹδn,αk,s
and x̃δn,αk ,s

be as in (6.1.4) and (6.1.5) respectively with
α = αk, δ ∈ [0, δ0] and assumptions of Theorem 6.3.10 hold. Then(x̃δn,αk,s

) is a Cauchy

sequence inBr̃(x0) and converges, say toxδc,αk,s
∈ Br̃(x0). Further F (xδc,αk,s

) − zδαk ,s
+

αk

c
Ls/2(xδc,αk,s

− x0) = 0 and‖x̃δn,αk,s
− xδc,αk,s

‖ ≤ C̃5q̃s
2n whereC̃5 =

γ̃ρ
1−q̃s .

Proof. Analogous to the proof of Theorem 2.3.3 of Chapter 2, one can see that(x̃δn,αk,s
) is

a Cauchy sequence inBr̃(x0) and hence it converges, say toxδc,αk,s
∈ Br̃(x0). Observe that

from (6.1.4)

‖F (x̃δn,αk,s
)− zδαk ,s

+
αk
c
Ls/2(x̃δn,αk ,s

− x0)‖ = ‖(F ′(x0) +
αk
c
Ls/2)

(ỹδn,αk,s
− x̃δn,αk,s

)‖

≤ ‖F ′(x0) +
αk
c
Ls/2‖Xs→X

×‖ỹδn,αk,s
− x̃δn,αk,s

‖

≤ ‖F ′(x0) +
αk
c
Ls/2‖Xs→X ẽ

δ
n,αk,s

≤ ‖F ′(x0) +
αk
c
Ls/2‖Xs→X

×q̃s2nγ̃ρ. (6.3.11)

Now by lettingn → ∞ in (6.3.11) we obtainF (xδc,αk,s
) + αk

c
Ls/2(xδc,αk,s

− x0) = zδαk ,s
.

This completes the proof.
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In addition to the Assumption 6.2.2, we use the following assumption to obtain the error

estimate for‖x̂− x̃δαk ,s
‖.

ASSUMPTION 6.3.12 There exists a continuous, strictly monotonically increasing func-
tionϕ1 : (0, ‖Bs‖] → (0,∞) such that the following conditions hold:

• lim
λ→0

ϕ1(λ) = 0,

•
sup

λ > 0

αϕ1(λ)

λ+ α
≤ ϕ1(α) ∀λ ∈ (0, ‖Bs‖]

and

• there existsw ∈ X with ‖w‖ ≤ E2, such that

B
s

2(s+b)
s Ls/4(x0 − x̂) = ϕ1(Bs)w

• for eachx ∈ Br̃(x0) there exists a bounded linear operatorG(x, x0) (cf.Ramm et al.
(2003)) such that

F ′(x) = F ′(x0)G(x, x0)

with ‖G(x, x0)‖ ≤ k2.

REMARK 6.3.13 If x0 − x̂ ∈ Xt1 i.e.,‖x0 − x̂‖t1 ≤ E1 for some positive constantE1 and

0 ≤ t1 ≤ s + b. Then as in Remark 6.2.3, we haveB
s

2(s+b)
s Ls/4(x0 − x̂) = ϕ1(Bs)w where

ϕ1(λ) = λt1/(s+b), w = B
s−2t1
2(s+b)
s Ls/4(x̂− x0) and‖w‖ ≤ g1(

s−2t1
2(s+b)

)E1 := E2.

Assume thatk2 < 1
1−c [

1

ψ2(s)
−k0r̃] with c < 1 and for the sake of simplicity assume that

ϕ1(α) ≤ ϕ(α), for α > 0. Let ψ3(s) :=
E2

f1(
s

2(s+b)
)
.

THEOREM 6.3.14 Supposexδc,αk,s
is the solution of (6.3.5) and Assumption 2.3.1 and

6.3.12 hold. Then

‖x̂− xδc,αk,s
‖ = O(ψ−1

s,a(δ)).
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Proof. Note thatc(F (xδc,αk,s
)− zδαk ,s

) + αkL
s/2(xδc,αk,s

− x0) = 0, so

(F ′(x0) + αkL
s/2)(xδc,αk,s

− x̂) = (F ′(x0) + αkL
s/2)(xδc,αk,s

− x̂)

−c(F (xδc,αk,s
)− zδαk ,s

)− αkL
s/2(xδc,αk,s

− x0)

= αkL
s/2(x0 − x̂) + F ′(x0)(x

δ
c,αk,s

− x̂)

−c[F (xδc,αk,s
)− zδαk ,s

]

= αkL
s/2(x0 − x̂) + F ′(x0)(x

δ
c,αk,s

− x̂)

−c[F (xδc,αk,s
)− F (x̂) + F (x̂)− zδαk ,s

]

= αkL
s/2(x0 − x̂)− c(F (x̂)− zδαk ,s

)

+F ′(x0)(x
δ
c,αk,s

− x̂)− c[F (xδc,αk,s
)− F (x̂)].

Thus, since0 < c < αk, we have

‖xδc,αk,s
− x̂‖ ≤ ‖αk(F ′(x0) + αkL

s/2)−1Ls/2(x0 − x̂)‖+ ‖(F ′(x0) + αkL
s/2)−1

c(F (x̂)− zδαk ,s
)‖+ ‖(F ′(x0) + αkL

s/2)−1

[F ′(x0)(x
δ
c,αk,s

− x̂)− c(F (xδc,αk,s
)− F (x̂))]‖

≤ Γ1 + ψ2(s)‖F (x̂)− zδαk ,s
‖+ Γ2 (6.3.12)

where

Γ1 := ‖αk(F ′(x0) + αkL
s/2)−1Ls/2(x0 − x̂)‖,

Γ2 := ‖(F ′(x0) + αkL
s/2)−1[F ′(x0)(x

δ
c,αk,s

− x̂)− c(F (xδc,αk,s
)− F (x̂))]‖.
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Note that by Assumption 6.3.12

Γ1 ≤ ‖αkL−s/4(Bs + αkI)
−1Ls/4(x0 − x̂)‖

≤ 1

f1(
s

2(s+b)
)
‖αk(Bs + αkI)

−1B
s

2(s+b)
s Ls/4(x0 − x̂)‖

≤ 1

f1(
s

2(s+b)
)
ϕ1(αk)E2 (6.3.13)

and

Γ2 = ‖(F ′(x0) + αkL
s/2)−1

∫ 1

0

[F ′(x0)− cF ′(x̂+ t(xδc,αk,s
− x̂))](xδc,αk,s

− x̂)dt‖

≤ ‖(F ′(x0) + αkL
s/2)−1

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδc,αk,s
− x̂))](xδc,αk,s

− x̂)dt‖

+(1− c)‖(F ′(x0) + αkL
s/2)−1F ′(x0)

∫ 1

0

G(x̂+ t(xδc,αk,s
− x̂), x0)

(xδc,αk,s
− x̂)dt‖

≤ ψ2(s)k0r̃‖xδc,αk,s
− x̂‖+ ψ2(s)(1− c)k3‖xδc,αk,s

− x̂‖. (6.3.14)

The last step follows from Lemma 6.3.9, Assumptions 6.3.12 and 2.3.1. Hence by

(6.3.14), (6.3.13) and (6.3.12) we have

‖xδc,αk,s
− x̂‖ ≤

ψ3(s)ϕ1(αk) + ψ2(s)‖F (x̂)− zδαk,s
‖

1− [(1− c)k2 + k0r̃]ψ2(s)

≤
ψ3(s)ϕ1(αk) + ψ2(s)Cs(2 +

4η
η−1

)η(ψ−1
s,a(δ))

1− [(1− c)k2 − k0r̃]ψ2(s)
= O(ψ−1

s,a(δ)).

(6.3.15)

This completes the proof of the Theorem.

129



The following Theorem is a consequence of Theorem 6.3.11 andTheorem 6.3.14.

THEOREM 6.3.15 Let x̃δn,αk,s
be as in (6.1.5) withα = αk andδ ∈ [0, δ0], assumptions in

Theorem 6.3.11 and Theorem 6.3.14 hold. Then

‖x̂− x̃δn,αk,s
‖ ≤ C̃5q̃

2n
s +O(ψ−1

s,a(δ))

whereC̃5 is as in Theorem 6.3.11.

THEOREM 6.3.16 Let x̃δn,αk,s
be as in (6.1.5) withα = αk andδ ∈ [0, δ0], and assump-

tions in Theorem 6.3.15 hold. Let

nk := min{n : q̃s
2n ≤ α

−a
2(s+a)

k δ}.

Then
‖x̂− x̃δnk ,αk,s

‖ = O(ψ−1
s,a(δ)).
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Chapter 7

DYNAMICAL SYSTEM METHOD IN
HILBERT SPACES

We present a new method for approximately solving an ill-posed Hammerstein operator

equation in this Chapter. It is a combination of the Dynamical System Method consid-

ered by Ramm (2005) and Tikhonov regularization method. We present a detailed analysis

for both IFD Class and MFD Class of the operatorF. By choosing the regularization pa-

rameter according to an adaptive scheme considered by Pereverzev and Schock (2005) an

order optimal error estimate has been obtained. The notations appearing in this Chapter are

independent of the notations used in previous Chapters.

7.1 INTRODUCTION

In this Chapter we consider a Dynamical system method for approximately solving (2.1.1).

We assume throughout that the solutionx̂ of (2.1.1) satisfies

‖x̂− x0‖ = min{‖x− x0‖ : KF (x) = f, x ∈ D(F )}

and thatf δ ∈ Y are the available noisy data with

‖f − f δ‖ ≤ δ.

As in earlier chapters the solutionx of (2.1.1) can be obtained by first solving

Kz = f (7.1.1)
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for z and then solving the nonlinear equation

F (x) = z. (7.1.2)

In Ramm (2005) (cf. section 2.4.6, page 59), Ramm considereda method called Dynam-

ical System Method (DSM), which avoids, inverting of the operatorF ′(.). In this chapter

we consider a method which is a combination of a modified form of DSM and the Tikhonov

regularization instead of Newton type method and Tikhonov regularizationconsidered in

earlier Chapters. The DSM consists of finding (cf. Ramm (2005), Nair and Ravishankar

(2008)) a nonlinear locally Lipschitz operatorΦ(u, t), such that the Cauchy problem:

u′(t) = Φ(u, t), u(0) = u0 (7.1.3)

has the following three properties:

∃u(t)∀t ≥ 0, ∃u(∞), F (u(∞)) = 0,

i.e., (7.1.3) is globally uniquely solvable, its unique solution has a limit at infinityu(∞),

and this limit solvesF (x) = zδαk
(zδαk

is the Tikhonov regularized solution ofKz = f δ as

given in (2.1.7)). We assume thatF (x) = zδαk
is well posed, soF (x) = z has a solution say

xδαk
, such thatxδαk

∈ BR(x0), whereBR(x0) denotes the ball of radiusR with center atx0.

The Chapter is organized as follows: In Section 7.2 we give the preparatory results,

Section 7.3 discusses the Dynamical System Method for IFD and MFD Class with the error

analysis.

7.2 DYNAMICAL SYSTEM METHOD(DSM)

We assume thatF ∈ C2
loc i.e.,∀x ∈ BR(x0),

‖F (j)(x)‖ ≤Mj , j = 1, 2. (7.2.1)

The assumption on source condition which is based on a sourcefunctionϕ and a property of

the source functionϕ is used as in Chapter 2 to obtain an error estimate for‖F (x̂)− zδαk
‖.

As in Chapter 2, we use the adaptive choice scheme suggested by Perverzev and Schock

(2005) for the selection of regularization parameterα.
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7.2.1 DSM for IFD Class

Continuous schemes

Hereafter we assume that‖F ′(x0)
−1‖ =: β, β < 1

2
and

R <
2(1− 2β)

βM2 + 2k0
. (7.2.2)

In this section we consider the following Cauchy’s problem

x′(t) = −(F ′(x0) + ε(t)I)−1(F (x)− zδαk
), x(0) = x0 (7.2.3)

wherex0 is an initial approximation forxδαk
and

ε : [0,∞) → [0, K] (7.2.4)

is monotonic increasing function withε(0) = 0 and

0 < K ≤ min{1− k0R

2β
, 1}. (7.2.5)

REMARK 7.2.1 Note that (7.2.2) impliesR < 1
k0

and (7.2.5) impliesβε(t) < 1.

In order to find a local solution for the Cauchy problem (7.2.3), we make use of the

following theorem.

THEOREM 7.2.2 (Nair and Ravishankar (2008), Theorem 2.1) LetX be a real Banach
space,U be an open subset ofX, andx0 ∈ U. LetΦ : U × R+ → X be of classC1 that is
bounded on bounded sets. Then the following hold.

• There exists a maximal intervalJ containing 0 such that the initial value problem

x′(t) = Φ(x(t), t), x(0) = x0,

has a unique solutionx(t) ∈ U for all t ∈ J.

• If J has the right end point, sayτ, and xτ := lim
t→τ

x(t) exists, thenxτ is on the
boundary ofU.

Now the following Proposition establishes the existence and uniqueness of the solution of

the Cauchy problem (7.2.3).
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PROPOSITION 7.2.3 Let ε(t) be as in (7.2.4) andF maps bounded sets onto bounded
sets. Then there exists a maximal intervalJ ⊆ [0,∞) such that (7.2.3) has a unique solution
x(t) for all t ∈ J.

Proof. Let

Φ = −(F ′(x0) + ε(t)I)−1(F (x)− zδαk
), x ∈ BR(x0), t ∈ R+.

ThenΦ : BR(x0) × R+ → X is of classC1. BecauseF is bounded on bounded sets and

sinceβε(t) < 1, we have

‖(F ′(x0) + ε(t)I)−1‖ ≤ ‖F ′(x0)
−1‖‖(I + ε(t)F ′(x0)

−1)−1‖

≤ β

1− βε(t)
. (7.2.6)

That is (F ′(x0) + ε(t)I) has a bounded inverse for everyt ∈ R+. So Φ is bounded on

bounded sets. Hence the conclusion follows by applying Theorem 7.2.2.

Let x(t) − xδαk
:= w and‖w‖ := g1(t). Then by Taylor Theorem (cf. Argyros (2008),

Theorem 1.1.20)

F (x(t))− zδαk
= F (x(t))− F (xδαk

) = F ′(xδαk
)(x(t)− xδαk

) + T (x(t), xδαk
)

whereT (x(t), xδαk
) =

∫ 1

0
F ′′(λx(t) + (1− λ)xδαk

)(x(t)− xδαk
)2(1− λ)dλ.

Observe that

w′(t) = x′(t) = −(F ′(x0) + ε(t)I)−1[F ′(xδαk
)(x(t)− xδαk

) + T (x(t), xδαk
)]

and hence

g1g
′
1 =

1

2

dg21
dt

=
1

2

d

dt
〈w,w〉

= 〈w,w′〉

= 〈w,−(F ′(x0) + ε(t)I)−1[F ′(xδαk
)(x(t)− xδαk

) + T (x(t), xδαk
)]〉

= 〈w,−w〉+ 〈w,Λw〉+ 〈w,−(F ′(x0) + ε(t)I)−1T (x(t), xδαk
)〉

≤ −‖w‖2 + ‖Λ‖‖w‖2 + ‖(F ′(x0) + ε(t)I)−1T (x(t), xδαk
)‖‖w‖

≤ −g21 + ‖Λ‖g21 + ‖(F ′(x0) + ε(t)I)−1T (x(t), xδαk
)‖g1 (7.2.7)
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whereΛ = I − (F ′(x0) + ε(t)I)−1F ′(xδαk
). Note that

‖Λ‖ ≤ sup

‖v‖ ≤ 1
‖(F ′(x0) + ε(t)I)−1[(F ′(x0)− F ′(xδαk

)) + ε(t)I)]v‖

≤ ‖(F ′(x0) + ε(t)I)−1(F ′(x0)− F ′(xδαk
))‖

+‖((F ′(x0) + ε(t)I)−1ε(t)I)v‖

≤ ‖(F ′(x0) + ε(t)I)−1F ′(x0)Φ(x
δ
αk
, x0, v)‖

+‖(F ′(x0) + ε(t)I)−1ε(t)v‖

≤ k0R + βε(t)

1− βε(t)
, (7.2.8)

the last step follows from Assumption 2.3.1, (7.2.6) and theinequality

‖(I + ε(t)F ′(x0)
−1)−1‖ ≤ 1

1−βε(t) . Again by (7.2.6) and (7.2.1)

‖(F ′(x0) + ε(t)I)−1T (x(t), xδαk
)‖ ≤ β

1− βε(t)
‖T (x(t), xδαk

)‖

≤ β

1− βε(t)

M2‖x(t)− xδαk
‖2

2

≤ β

1− βε(t)

M2g
2
1

2
. (7.2.9)

Therefore by (7.2.7), (7.2.8) and (7.2.9) we have

g1g
′
1 ≤ −g21 + (

k0R + βε(t)

1− βε(t)
)g21 +

β

1− βε(t)

M2

2
g31

and hence

g′1 ≤ −γg1 + c0g
2
1 (7.2.10)

whereγ := 1− (k0R+βε(t)
1−βε(t) ) > 0 andc0 :=

β
1−βε(t)

M2

2
. So by (7.2.10)

g1(t) ≤ Υe−γt (7.2.11)

whereΥ = g1(0)

1− c0g1(0)
γ

. Note thatg1(0) = ‖x0 − xδαk
‖ ≤ R and hence condition (7.2.2)

implies c0g1(0)
γ

< 1.

The above discussion leads to the following Theorem.
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THEOREM 7.2.4 If (7.2.1) and the assumptions of Proposition 7.2.3 hold, then (7.2.3)
has a unique global solutionx(t) andx(t) converges toxδαk

. Further

‖x(t)− xδαk
‖ ≤ Υe−γt

whereΥ is as in (7.2.11).

THEOREM 7.2.5 (cf. George and Nair (2008), Theorem 3.3) Suppose (7.2.1) and (7.2.2)
hold. If, in addition,‖x̂− x0‖ ≤ R then

‖x̂− xδαk
‖ ≤ β

1− k0R
‖F (x̂)− zδαk

‖.

Proof. Proof is as in Theorem 2.3.4 of Chapter 2.

Iterative Schemes

We present DSM for constructing convergent iterative schemes for the well-posed equations

F (x)− zδαk
= 0. In this section we assume that

β <
2

M2
(1− k0R). (7.2.12)

For solvingF (x)− zδαk
= 0 we consider the following discretization scheme

xn+1 = xn − hF ′(x0)
−1(F (xn(t))− zδαk

). (7.2.13)

We shall consider the DSM method for proving the convergenceof (xn) to the solutionxδαk

of (7.1.2). We begin our analysis with the following Cauchy’s problem:

w′
n+1(t) = −F ′(x0)

−1(F (wn+1(t))− zδαk
), wn+1(tn) = xn, tn ≤ t ≤ tn+1 (7.2.14)

wherexn is as in (7.2.13). The following Proposition establishes the existence and unique-

ness of the solution of the Cauchy problem (7.2.14).

PROPOSITION 7.2.6 Let F maps bounded sets onto bounded sets. Then there exists a
maximal intervalJ ⊆ [0,∞) such that (7.2.14) has a unique solutionx(t) for all t ∈ J.

Proof. Let

Φ = −F ′(x0)
−1(F (wn+1(t))− zδαk

), wn+1 ∈ BR(x0), t ∈ R+.

ThenΦ : BR(x0) × R+ → X is of classC1. BecauseF is bounded on bounded sets,Φ is

also bounded on bounded sets. Hence the conclusion follows by applying Theorem 7.2.2.
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PROPOSITION 7.2.7 If (7.2.1) and the Assumptions of Proposition 7.2.6 hold, then (7.2.14)
has a unique global solutionwn+1(t) andwn+1(t) converges toxδαk

. Further

‖wn+1(t)− xδαk
‖ ≤ e−γ̃nh

1− c̃0
γ̃

e−γ̃(t−tn) (7.2.15)

wherec̃0 =
M2β
2

and γ̃ = 1− k0R.

Proof. We shall prove (7.2.15) by induction. Clearly forn = 0 the result is true. Suppose

(7.2.15) is true for somen. Letwn+1(t)−xδαk
:= w̃ and‖w̃‖ := g̃1. Then by Taylor Theorem

(cf.Argyros (2008), Theorem 1.1.20)

F (wn+1(t))− zδαk
= F (wn+1(t))− F (xδαk

) = F ′(xδαk
)(wn+1(t)− xδαk

) + T (wn+1(t), x
δ
αk
)

(7.2.16)

whereT (wn+1(t), x
δ
αk
) =

∫ 1

0
F ′′(λwn+1(t)+(1−λ)xδαk

)(wn+1(t)−xδαk
)2(1−λ)dλ.Observe

that

w̃′(t) = w′
n+1(t) = −F ′(x0)

−1[F ′(xδαk
)(wn+1(t)− xδαk

) + T (wn+1(t), x
δ
αk
)] (7.2.17)

and hence

g̃1g̃1
′ =

1

2

dg̃1
2

dt
=

1

2

d

dt
〈w̃, w̃〉 = 〈w̃, w̃′〉

= 〈w̃,−F ′(x0)
−1[F ′(xδαk

)(wn+1(t)− xδαk
) + T (wn+1(t), x

δ
αk
)]〉

= 〈w̃,−w̃〉+ 〈w̃, Λ̃w̃〉+ 〈w̃,−F ′(x0)
−1T (wn+1(t), x

δ
αk
)〉 (7.2.18)

whereΛ̃ = I − F ′(x0)
−1F ′(xδαk

). Note that

‖〈w̃, Λ̃w̃〉‖ = ‖w‖‖F ′(x0)
−1(F ′(x0)− F ′(xδαk

))w̃‖

≤ k0R‖w̃‖2 (7.2.19)

the last step follows from Assumption 2.3.1. Again by (7.2.6) and (7.2.1)

‖F ′(x0)
−1T (wn+1(t), x

δ
αk
)‖ ≤ β‖T (wn+1(t), x

δ
αk
)‖

≤ β
M2‖x(t)− xδαk

‖2
2

≤ β
M2g̃1

2

2
. (7.2.20)
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Therefore by (7.2.18), (7.2.19) and (7.2.20) we have

g̃1g̃1
′ ≤ −g̃12 + k0Rg̃1

2 + β
M2

2
g̃1

3 (7.2.21)

i.e.,

g̃1
′ ≤ −γg̃1 + c̃0g̃1

2, (7.2.22)

and hence

g̃1(t) ≤ Υ̃e−γ(t−tn) (7.2.23)

whereΥ̃ = g̃1(tn)

1− c̃0g̃1(tn)
γ̃

. Note thatΥ̃ = g̃1(tn)

1− c̃0g̃1(tn)
γ̃

≤ e−γ̃nh

1− c̃0
γ̃

, condition (7.2.12) impliesc̃0
γ̃
< 1

and hence

g̃1(t) ≤
e−γ̃nh

1− c̃0
γ̃

e−γ̃(t−tn). (7.2.24)

Analogous to the proof of the above proposition one can prove(by taking

g̃1 = ‖F (wn+1(t))− zδαk
‖) the following Proposition.

PROPOSITION 7.2.8 Let wn+1(t) be the solution of (7.2.14) andzδαk
be as in (2.1.7).

Then
‖F (wn+1(t))− zδαk

‖ ≤ ‖F (x0)− zδαk
‖e−γ̃(nh+t−tn). (7.2.25)

PROPOSITION 7.2.9 Letwn+1(t) be the solution of (7.2.14) andxn+1 be as in (7.2.13).
Then

‖xn+1 − wn+1(tn+1)‖ ≤ h2β2M1‖F (x0)− zδαk
‖e−γ̃nh.

Proof. Observe that

‖xn+1 − wn+1(tn+1)‖ =

∫ tn+1

tn

‖Φ(xn)− Φ(wn+1(t))‖dt

≤ β

∫ tn+1

tn

‖F (xn)− F (wn+1(t)‖dt

≤ βM1

∫ tn+1

tn

‖xn − wn+1(t)‖dt

≤ βM1h

∫ tn+1

tn

‖Φ(wn+1(t))‖dt

≤ β2M1h

∫ tn+1

tn

‖F (wn+1(t))− zδαk
‖dt.

Now the result follows from (7.2.25).

Thus by triangle inequality, (7.2.24) and (7.2.26) we have the following
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THEOREM 7.2.10 If (7.2.1) and the assumptions of Proposition 7.2.6 hold, then xn+1

converges toxδαk
. Further

‖xn+1 − xδαk
‖ ≤ C̃e−γ̃nh

whereC̃ = h2β2M1‖F (x0)− zδαk
‖+ 1

1− c̃0
γ̃

e−hγ̃.

Now we give the error analysis of both the schemes discussed above.

THEOREM 7.2.11 Suppose (7.2.1), (7.2.2) and the assumptions in Theorem 7.2.4 and
Theorem 7.2.5 hold. If, in addition,‖x̂− x0‖ ≤ R then

‖x̂− x(t)‖ ≤ β

1− κ0R
‖F (x̂)− zδαk

‖+ re−γt.

Proof.The proof follows using Theorem 7.2.4, Theorem 7.2.5 and thetriangle inequality:

‖x̂− x(t)‖ ≤ ‖x̂− xδαk
‖+ ‖xδαk

− x(t)‖.

THEOREM 7.2.12 Suppose (7.2.1) and the assumptions in Theorem 7.2.10 and Theorem
7.2.5 hold. If, in addition,‖x̂− x0‖ ≤ R then

‖x̂− xn+1‖ ≤ β

1− κ0R
‖F (x̂)− zδαk

‖+ C̃e−γ̃nh.

Proof.The proof follows using Theorem7.2.10, Theorem 7.2.5 and the triangle inequality:

‖x̂− xn+1‖ ≤ ‖x̂− xδαk
‖+ ‖xδαk

− xn+1‖.

THEOREM 7.2.13 Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions of
Theorem 7.2.11 is satisfied. Let

T := min{t : e−γt < δ√
αk

},

andx(T ) be the solution of the Cauchy’s problem (7.2.3). Then

‖x̂− x(T )‖ = O(ψ−1(δ)).

THEOREM 7.2.14 Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions of
Theorem 7.2.12 is satisfied. Let

N := min{n : e−γ̃nh <
δ√
αδ

}

andxN+1 be as in (7.2.13). Then

‖x̂− xN+1‖ = O(ψ−1(δ)).
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7.2.2 DSM for MFD Class

In this section we considerX to be a real Hilbert space. Here for approximately solving

(7.1.2) withzδαk
in place ofz we consider the Laverentiev regularization method, i.e., we

consider the solutionxδc,αk
of the equation

F (x) +
αk
c
(x− x0) = zδαk

, c ≤ αk (7.2.26)

as an approximate solution of (7.1.2) withzδαk
in place ofz.

Assumption 2.3.1 is used throughout the analysis.

Let δ0 < 2
M2+2k0

√
α0 and

Rρ :=
δ0√
α0

+Mρ. (7.2.27)

LEMMA 7.2.15 LetRρ be as in (7.2.27). Letzδαk
be as in (2.1.7), and ifxδc,αk

is the solution
of (7.2.26) withα := αk andδ ∈ [0, δ0], thenxδc,αk

∈ BRρ(x0).

Proof. Observe thatF (xδc,αk
) + αk

c
(xδc,αk

− x0) = zδαk
.

LetM :=
∫ 1

0
F ′(x0 + t(xδc,αk

− x0))dt. Then

F (xδc,αk
)− F (x0) +

αk
c
(xδc,αk

− x0) = zδαk
− F (x0)

(M +
αk
c
I)(xδc,αk

− x0) = zδαk
− F (x0)

(xδc,αk
− x0) = (M +

αk
c
I)−1(zδαk

− F (x0)).

Thus

‖xδc,αk
− x0‖ ≤ ‖zδαk

− F (x0)‖

≤ ‖(K∗K + αkI)
−1K∗(f δ −KF (x0))‖

≤ ‖(K∗K + αkI)
−1K∗(f δ − f + f −KF (x0))‖

≤ ‖(K∗K + αkI)
−1K∗(f δ − f)‖

+‖(K∗K + αkI)
−1K∗K(F (x̂)− F (x0))‖

≤ δ√
αk

+Mρ < Rρ.

Hence the Lemma.
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Continuous Schemes

In this section we consider the following Cauchy’s problem for solving (7.2.26):

x′(t) = −(F ′(x0) +
αk
c
I)−1(F (x(t))− zδαk

+
αk
c
(x(t)− x0)), x(0) = x0 (7.2.28)

wherec ≤ αk andx0 is an initial approximation. In this section we assume that

ρ <
1

M
[

2

M2 + 2k0
− δ0√

α0
]. (7.2.29)

Note that (7.2.29) implies thatRρ <
1
k0
.

The local solution for the Cauchy problem (7.2.28) is given by Theorem 7.2.2. The

Proposition below establishes the existence and uniqueness of the solution of the Cauchy

problem (7.2.28).

PROPOSITION 7.2.16 Let F maps bounded sets onto bounded sets. Then there exists a
maximal intervalJ ⊆ [0,∞) such that (7.2.28) has a unique solutionx(t) for all t ∈ J.

Proof. Proof is analogous to the proof of Proposition 7.2.3.

THEOREM 7.2.17 Let δ ∈ (0, δ0], Assumption 2.3.1 and Lemma 7.2.15 be satisfied with
ρ as in (7.2.29). If (7.2.1) and Proposition 7.2.16 hold, then(7.2.28) has a unique global
solutionx(t) andx(t) converges toxδαk

. Further

‖x(t)− xδc,αk
‖ ≤ c3e

−c1t

wherec3 =
g2(0)

1− c2g2(0)

c1

, c1 = 1− k0Rρ > 0, c2 =
M2

2
andg2(0) = ‖x(0)− xδc,αk

‖.

Proof. Let x(t)− xδc,αk
:= ϑ and‖ϑ‖ := g2(t).

Then by Taylor Theorem (cf.Argyros and Hilout (2010), Theorem 1.1.20)

F (x(t))− F (xδc,αk
) = F ′(xδc,αk

)(x(t)− xδc,αk
) + T (x(t), xδc,αk

) (7.2.30)

whereT (x(t), xδc,αk
) =

∫ 1

0
F ′′(λx(t)+(1−λ)xδc,αk

)(x(t)−xδc,αk
)2(1−λ)dλ.SinceF (xδc,αk

)−
zδαk

+ αk

c
(xδc,αk

− x0) = 0, by (7.2.30) we have

F (x(t))− zδαk
+
αk
c
(x(t)− x0) = (F ′(xδc,αk

) +
αk
c
I)(x(t)− xδc,αk

) + T (x(t), xδc,αk
).
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Observe that

ϑ′(t) = x′(t) = −(F ′(x0) +
αk
c
I)−1[(F ′(xδc,αk

) +
αk
c
I)(x(t)− xδc,αk

) + T (x(t), xδc,αk
)]

and hence

g2g
′
2 =

1

2

dg22
dt

=
1

2

d

dt
〈ϑ, ϑ〉 = 〈ϑ, ϑ′〉

= 〈ϑ,−(F ′(x0) +
αk
c
I)−1[(F ′(xδc,αk

) +
αk
c
I)(x(t)− xδc,αk

) + T (x(t), xδc,αk
)]〉

= 〈ϑ,−ϑ〉 + 〈ϑ,Θϑ〉+ 〈ϑ,−(F ′(x0) +
αk
c
I)−1T (x(t), xδc,αk

)〉

≤ −‖ϑ‖2 + ‖Θ‖‖ϑ‖2 + ‖(F ′(x0) +
αk
c
I)−1T (x(t), xδc,αk

)‖‖ϑ‖

≤ −g22 + ‖Θ‖g22 + ‖T (x(t), xδc,αk
)‖g2 (7.2.31)

whereΘ = −(F ′(x0) +
αk

c
I)−1(F ′(xδαk

)− F ′(x0)). Note that

‖Θ‖ ≤ sup

‖v‖ ≤ 1
‖(F ′(x0) +

αk
c
I)−1[F ′(x0)− F ′(xδc,αk

)]v‖

≤ sup

‖v‖ ≤ 1
‖(F ′(x0) +

αk
c
I)−1F ′(x0)Φ(x

δ
c,αk

, x0, v)‖

≤ k0Rρ‖v‖, (7.2.32)

the last step follows from Assumption 2.3.1. Again by (7.2.1),

‖(F ′(x0) +
αk
c
I)−1T (x(t), xδc,αk

)‖ ≤ ‖T (x(t), xδc,αk
)‖

≤
M2‖x(t)− xδc,αk

‖2
2

≤ M2g
2
2

2
. (7.2.33)

Therefore by (7.2.31), (7.2.32) and (7.2.33) we have

g2g
′
2 ≤ −g22 + k0Rρg

2
2 +

M2

2
g32

and hence

g′2 ≤ −c1g2 + c2g
2
2 (7.2.34)

wherec1 := 1− k0Rρ > 0 andc2 := M2

2
. So by solving (7.2.34) we get,

g2(t) ≤ c3e
−c1t.
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REMARK 7.2.18 Note that by Lemma 7.2.15,g2(0) = ‖x0 − xδc,αk
‖ ≤ Rρ and hence

condition (7.2.29) impliesc2g2(0)
c1

< 1.

Assume thatk2 <
1−k0Rρ

1−c and for the sake of simplicity assume thatϕ1(α) ≤ ϕ(α) for

α > 0.

THEOREM 7.2.19 Supposexδc,αk
is the solution of (7.2.26) withδ ∈ (0, δ0], and Assump-

tions 2.3.1, 2.3.9 and 2.3.10 hold withρ as in (7.2.29). Then

‖x̂− xδc,αk
‖ ≤

ϕ1(αk) + ‖F (x̂)− zδαk
‖

1− (1− c)k2 − k0Rρ

.

In particular by Theorem 2.2.3,

‖x̂− xδc,αk
‖ ≤

ϕ1(αk) + (2 + 4µ
µ−1

)µψ−1(δ)

1− (1− c)k2 − k0Rρ
.

The following Theorem is a consequence of Theorem 7.2.17 andTheorem 7.2.19.

THEOREM 7.2.20 Suppose (7.2.1), and assumptions in Theorem 7.2.17 and Theorem
7.2.19 hold withρ as in (7.2.29), then

‖x̂− x(t)‖ ≤
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ)

1− (1− c)k1 − k0Rρ
+ c3e

−c1t,

wherec1 andc3 are as in Theorem 7.2.17.

THEOREM 7.2.21 Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions of
Theorem 7.2.20 are satisfied. Let

T := min{t : e−c1t < δ√
αk

},

andx(T ) be the solution of the Cauchy’s problem (7.2.28), withδ ∈ (0, δ]. Then

‖x̂− x(T )‖ = O(ψ−1(δ)).

Iterative Schemes

In this section we assume thatM2 < 2, δ0 <
2−M2

2k0

√
α0 and

ρ <
1

M
[
2−M2

2k0
− δ0√

α0
]. (7.2.35)
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Now we solveF (x) = z with the following discretization scheme

xn+1 = xn−h(F ′(x0)+
αk
c
I)−1[F (xn)−zδαk

+
αk
c
(xn−x0)], h = constant > 0, (7.2.36)

with c ≤ αk. Let us consider the following Cauchy’s problem:

w′
n+1(t) = −(F ′(x0) +

αk
c
I)−1[F (wn+1(t))− zδαk

+
αk
c
(wn+1(t)− x0)], (7.2.37)

wn+1(tn) = xn, tn ≤ t ≤ tn+1 wherexn is as in (7.2.36).

The existence and uniqueness of the solution of the Cauchy problem (7.2.37) can be

established as in Proposition 7.2.16.

THEOREM 7.2.22 If δ ∈ (0, δ0], (7.2.1), Assumption 2.3.1 and Lemma 7.2.15 hold withρ
as in (7.2.35), then (7.2.37) has a unique global solutionwn+1(t) andwn+1(t) converges to
xδc,αk

. Further

‖wn+1(t)− xδc,αk
‖ ≤ e−c̃1nh

1− c̃2
c̃1

e−c̃1(t−tn) (7.2.38)

wherec̃2 =
M2

2
and c̃1 = 1− k0Rρ > 0.

Proof. We shall prove (7.2.38) by induction. Clearly forn = 0 the result is true, suppose

(7.2.38) is true for somen. Let wn+1(t) − xδαk
:= ϑ̃ and‖ϑ̃‖ := g̃2(t). Then by Taylor

Theorem (cf. Argyros and Hilout (2010), Theorem 1.1.20)

F (wn+1(t))− zδαk
+
αk
c
(wn+1(t)− x0) = F (wn+1(t))− F (xδc,αk

)

+
αk
c
(wn+1(t)− xδc,αk

)

= F ′(xδc,αk
)(wn+1(t)− xδc,αk

)

+T (wn+1(t), x
δ
c,αk

)

+
αk
c
(wn+1(t)− xδc,αk

) (7.2.39)

whereT (wn+1(t), x
δ
c,αk

) =
∫ 1

0
F ′′(λwn+1(t) + (1 − λ)xδc,αk

)(wn+1(t) − xδc,αk
)2(1 − λ)dλ.

Observe that

ϑ̃′(t) = w′
n+1(t) = −(F ′(x0) +

αk
c
I)−1[(F ′(xδc,αk

) +
αk
c
I)(wn+1(t)− xδc,αk

)

+T (wn+1(t), x
δ
c,αk

)]
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and hence

g̃2g̃2
′ =

1

2

dg̃2
2

dt
=

1

2

d

dt
〈ϑ̃, ϑ̃〉 = 〈ϑ̃, ϑ̃′〉

= 〈ϑ̃,−(F ′(x0) +
αk
c
I)−1[(F ′(xδc,αk

) +
αk
c
I)w̃ + T (wn+1(t), x

δ
c,αk

)]〉

= 〈ϑ̃,−ϑ̃〉+ 〈ϑ̃,−(F ′(x0) +
αk
c
I)−1T (wn+1(t), x

δ
c,αk

)〉

+〈ϑ̃,−(F ′(x0) +
αk
c
I)−1(F ′(xδc,αk

)− F ′(x0))ϑ̃〉 (7.2.40)

Note that

〈ϑ̃,−(F ′(x0) +
αk
c
I)−1[F ′(xδc,αk

)− F ′(x0)]ϑ̃〉 ≤ ‖ϑ̃‖‖(F ′(x0) +
αk
c
I)−1

(F ′(x0)− F ′(xδc,αk
))ϑ̃‖

≤ ‖ϑ̃‖‖(F ′(x0) +
αk
c
I)−1

F ′(x0)Φ(x
δ
c,αk

, x0, ϑ̃)‖

≤ k0Rρ‖ϑ̃‖2 (7.2.41)

the last step follows from Assumption 2.3.1. Again by (7.2.39) and (7.2.1)

〈ϑ̃,−(F ′(x0) +
αk
c
I)−1T (wn+1(t), x

δ
c,αk

)〉 ≤ ‖ϑ̃‖‖(F ′(x0) +
αk
c
I)−1

T (wn+1(t), x
δ
c,αk

)‖

≤ ‖ϑ̃‖‖T (wn+1(t), x
δ
c,αk

)‖

≤ ‖ϑ̃‖
M2‖x(t)− xδc,αk

‖2
2

≤ ‖ϑ̃‖M2g̃2
2

2
. (7.2.42)

Therefore by (7.2.40), (7.2.41) and (7.2.42) we have

g̃2g̃2
′ ≤ −g̃22 + k0Rρg̃2

2 +
M2

2
g̃2

3

i.e.,

g̃2
′ ≤ −c̃1g̃2 + c̃2g̃2

2,

and hence

g̃2(t) ≤ c̃3e
−c̃1(t−tn)
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wherec̃3 =
g̃2(tn)

1− c̃2 g̃2(tn)
c̃1

. Note thatc̃3 =
g̃2(tn)

1− c̃2g̃2(tn)
c̃1

≤ e−c̃1nh

1− c̃2
c̃1

, condition (7.2.35) impliesc̃2
c̃1
< 1

and hence

g̃2(t) ≤
e−c̃1nh

1− c̃2
c̃1

e−c̃1(t−tn).

This completes the proof of the Theorem.

THEOREM 7.2.23 Let wn+1(t) be the solution of (7.2.37) andzδαk
be as in (2.1.7) with

δ ∈ (0, δ0] andα = αk. If Lemma 7.2.15 holds withρ as in (7.2.35), then

‖F (wn+1(t))− zδαk
+
αk
c
(wn+1(t)− x0)‖ ≤ ‖F (x0)− zδαk

‖e−c̃1(nh+t−tn). (7.2.43)

Proof. The proof follows as in proof of Theorem 7.2.22 by taking

g̃2(t) = ‖F (wn+1(t))− zδαk
+
αk
c
(wn+1(t)− x0)‖.

PROPOSITION 7.2.24 Letxn+1 be as in (7.2.36) withδ ∈ (0, δ0]. If (7.2.1) and Theorem
7.2.23 hold, then

‖xn+1 − wn+1(tn+1)‖ ≤ h2(M1 + 1)Rρe
−c̃1nh.

Proof. Observe that

‖xn+1 − wn+1(tn+1)‖ =

∫ tn+1

tn

‖Φ(xn)− Φ(wn+1(t))‖dt

≤
∫ tn+1

tn

‖(F ′(x0) +
αk
c
I)−1[F (xn)− F (wn+1(t)

+
αk
c
(xn − wn+1(t))]‖dt

≤ (M1 + 1)

∫ tn+1

tn

‖xn − wn+1(t)‖dt
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≤ (M1 + 1)h

∫ tn+1

tn

‖Φ(wn+1(t))‖dt

≤ (M1 + 1)h

∫ tn+1

tn

‖(F ′(x0) +
αk
c
I)−1[F (wn+1(t))− zδαk

+
αk
c
(wn+1(t)− x0)]‖dt. (7.2.44)

Now from (7.2.43), (7.2.44) and Lemma 7.2.15 we have,

‖xn+1 − wn+1(tn+1)‖ ≤ h2(M1 + 1)‖F (x0)− zδαk
‖e−c̃1nh

≤ h2(M1 + 1)Rρe
−c̃1nh.

Hence the Proposition.

Thus by triangle inequality, (7.2.38) and (7.2.44) we have the following

THEOREM 7.2.25 If the assumptions of Proposition 7.2.24 and Theorem 7.2.22hold,
thenxn+1 converges toxδc,αk

. Further

‖xn+1 − xδc,αk
‖ ≤ C̃e−c̃1nh

whereC̃ = h2(M1 + 1)Rρ +
1

1− c̃2
c̃1

e−c̃1h.

THEOREM 7.2.26 Let assumptions of Theorem 7.2.25 hold. Supposek2 <
1−k0Rρ

1−c and
assumptions of Theorem 7.2.19 hold withρ as in (7.2.35), then

‖x̂− xn+1‖ ≤
ϕ1(αk) + (2 + 4µ

µ−1
)µψ−1(δ)

1− (1− c)k2 − k0Rρ

+ C̃e−c̃1nh.

Proof. The proof follows from Theorem 7.2.25, Theorem 7.2.19 (withρ as in (7.2.35)) and

the triangle inequality:

‖x̂− xn+1‖ ≤ ‖x̂− xδc,αk
‖+ ‖xδc,αk

− xn+1‖.
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THEOREM 7.2.27 Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions of
Theorem 7.2.26 be satisfied. Let

N := min{n : e−c̃1nh <
δ√
αδ

}

andxN+1 be as in (7.2.36) withzδαk
in place ofzδαk

, with δ ∈ [0, δ]. Then

‖x̂− xN+1‖ = O(ψ−1(δ)).
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Chapter 8

CONCLUDING REMARKS

In this thesis, we have considered the problem of approximately solving non-linear ill-posed

Hammerstein type operator equation. The regularization procedure involes the splitting of

given non-linear Hammerstein type equation into linear andnon-linear ill-posed operator

equations, thus giving rise to the scope of using a combination of Tikhonov regularization

for solving linear ill-posed problem and Newton-type method for regularizing non-linear

ill-posed problem. Regularization parameterα is chosen according to the adaptive method

considered by Pereverzev and Schock(2005) for the linear ill-posed operator equations and

the same parameterα is used for solving the non-linear operator equation, so thechoice of

the regularization parameter does not depend on the non-linear operator.

The thesis comprises of seven chapters. A brief introduction and preliminaries are given

in Chapter 1.

In Chapter 2 we presented an iterative method for obtaining an approximate solution for

a nonlinear ill-posed Hammerstein type operator equationKF (x) = f, hereF : D(F ) ⊆
X → X is nonlinear operator,K : X → Y is a bounded linear operator. Throughout

this thesis we assumed that the available data isf δ with ‖f − f δ‖ ≤ δ. The proposed

method combines the Tikhonov regularization and Guass Newton method. As the iterations

involve the Fŕechet derivative only at the initial approximation of the exact solutionx̂ of

KF (x) = f, the method becomes simpler. In each chapter of this thesis weconsidered two

cases ofF (IFD Class and MFD Class), in the IFD Class it is assumed thatF ′(x0)
−1 exist

and in the MFD Class it is assumed thatF ′(x0)
−1 does not exist butF is monotone. In both
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the cases, the derived error estimate using an a priori and balancing principle are of optimal

order with respect to the general source condition.

In Chapter 3, we considered a finite dimensional realizationof the method considered

in Chapter 2. We have chosen the regularization parameter according to balancing principle

of Pereverzev and Schock (2005). The error estimate is of optimal order and the method

leads to local linear convergence. Numerical examples provided confirm the efficiency of

the method.

Chapter 4 is a modified form of the method considered in Chapter 2 and Chapter 3.

In Chapter 2, Frechet derivative of the non-linear operatorF was considered only at the

initial guess. But in this Chapter we have taken into consideration, the Frechet derivative

at all pointsxn, n ≥ 0. This has improved the rate of convergence(cubic convergence).

Also, we have presented a finite dimensional realization of the method. We have chosen the

regularization parameter according to balancing principle of Pereverzev and Schock (2005).

The derived error bounds are of optimal order. Numerical examples are given, which proves

the efficiency of the proposed method.

And in Chapter 5 we further modified the method analyzed in Chapter 4 and obtained

semi-local quartic convergence.

In Chapter 6, we considered an iterative regularization method for obtaining an approx-

imate solution of an ill-posed Hammerstein type operator equationKF (x) = f in the

Hilbert scale setting. We considered the Hilbert scale(Xt)t∈R generated byL for the anal-

ysis whereL : D(L) → X is a linear, unbounded, self-adjoint, densely defined and strictly

positive operator onX. The derived error estimates under the general source conditions are

of optimal order.

In Chapter 7, we presented a method, which is a combination ofDynamical System

Method(DSM) and Tikhonov regularization method for approximately solving ill-posed

Hammerstein type operator equationKF (x) = f. We analyzed DSM for IFD Class and

MFD Class of the operatorF. Infact we considered continuous and iterative schemes of

DSM studied extensively by Ramm (see Ramm (2007),Ramm (2005)) and his collaborators.
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In this Chapter also we obtained order optimal error bounds by choosing the regularization

parameterα according to the adaptive method considered by Pereverzev and Schock(2005).

In future works, we would like to analyze the case whenF is non-invertible and non-

monotone operator. We have already obtained results in thisdirection and a paper (see

George and Shobha (2014) (This work is not included in this thesis)). Further work is under

progress.
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