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Abstract

Chaotic dynamical systems, preferably on a Cantor-like space with some arithmetic op-

erations are considered as good pseudo-random number generators. There are many def-

initions of chaos, of which Devaney-chaos and positive topological entropy seem to be

the strongest. These two together imply several other kinds of chaos. For data hiding

schemes, systems with more types of chaotic features are considered to be better. Let

A = {0,1, · · · , p−1}. We define some continuous maps on AZ using addition with a carry,

in combination with the shift map. We get some dynamical systems that are conjugate to

a power of the shift map, or have positive entropy. In one case we can give bounds for

the topological entropy. We also obtain one system with positive entropy, which is also

Devaney-chaotic: i.e., it is transitive, sensitive and has a dense set of periodic points.

Keywords : discrete ; chaotic ; transitive ; entropy.
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Chapter 1

INTRODUCTION

A topological dynamical system is a pair (X , f ) where f is a continuous self map of a

topological space X . Topological Dynamics is the study of iterations f n : X → X . The

trajectories, that is the sequences { f n(x)}n≥0 and orbits, that is the sets { f n(x)|n > 0} of

elements x of X are of particular interest. Generally X is assumed to be a compact metric

space with metric d. Many important theorems of Topological Dynamics hold only for

compact spaces. Topological entropy is actually defined for compact spaces, but can be

generalized to noncompact spaces. Some common questions are :

(i) Is the orbit of x finite ( in which case x is an eventually periodic point for f )?

(ii) Is it dense ?

(iii) Does it have limit points? If so what are the limit points?

More generally we ask whether a point y ∈ X can be “reached” from a point x ∈ X . De-

pending on the exact meaning of “reached” we get several relations R ⊆ X ×X . They

are the orbit relation, recurrence relation, non-wandering relation and the chain rela-

tion (Kůrka, 2003), to be defined precisely later in Chapter 2. The diagonal of a relation

R⊆ X ×X is |R|= {x ∈ X |(x,x) ∈ R}. The points of the diagonals of the above four rela-

tions are called periodic, recurrent, non-wandering and chain-recurring respectively.

A point is non-wandering if it returns to each of its neighbourhoods at least once, recurring

if it returns to all of its neighbourhoods infinitely many times, but not necessarily period-

ically. If the times between successive returns forms a bounded sequence, we say that x

1



is almost periodic. If x returns to all of its neighbourhoods periodically ( the period may

depend on the neighbourhood), then it is called quasi-periodic or regularly recurrent.

We have

periodic =⇒ quasi-periodic =⇒ almost periodic =⇒ recurrent =⇒ non-wandering

=⇒ chain-recurrent.

The chain relation is defined in terms of pseudotrajectories or δ -chains. A (finite or in-

finite) sequence {xn}n≥0 is a δ -chain if d( f (xn),xn+1) < δ for all n. If a trajectory is

computed numerically with round-off errors less than δ , we obtain a δ -chain rather than

a trajectory. So a δ -chain is an approximation to a trajectory. In general such an approx-

imation works only for a short term. Sometimes the approximation may work in the long

run. A δ -chain may approximate the trajectory of its initial point, or of some other point.

Then we say that the point shadows the δ -chain in question (Kůrka, 2003). It is desirable

to have every δ - chain shadowed by some point. Then every δ chain is an approximation

of some orbit.

Equicontinuity and sensitivity (to initial conditions) are two mutually opposite concepts.

In a sensitive system there is a positive ε such that in any neighbourhood of a point there

is another point such that the trajectories of the two points are eventually at least ε apart.

We may also study dynamical systems from the point of view of information sources. The

amount of information which the dynamical system generates per step is called its topo-

logical entropy.

We are particularly interested in chaotic dynamical systems which are a source of random-

ness. Actually, the behaviour of a trajectory in a chaotic system is not really “random”, but

is “unpredictable” if we do not have enough information about the system.

Most studies in security aspects of data hiding schemes usually have used the theory of

probability to measure unpredictability. Unpredictability related to some topological or

ergodic aspects of a function f , taken from the mathematical theory of chaos offers an

additional contribution to the variety of security evaluations. But, answer to the question “

What chaotic properties are needed to achieve goals like robustness, security or authenti-

cation? ” is not very clear. Generally sensitivity to initial conditions is referred to as chaos,

or a simple use of the logistic map is done (Bahi and Guyeux, 2013) .
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Chaos is defined in various ways. In common usage “chaos” means “a state of disorder”,

but in the mathematical theory of chaos the term is defined precisely, in many ways (Li and

Ye, 2015). Each notion of chaos offers a new light on the security of a data hiding scheme.

A data hiding scheme may be considered to be more secure than another, if it presents a

larger number of chaotic qualities and if its quantitative values are better.

Most defintions of chaos are based on one or more of the following aspects :

• Complex behaviour of trajectories of points, such as Li-Yorke chaos and distribu-

tional chaos.

• Sensitive dependence on initial conditions, such as Devaney chaos and Auslander-

Yorke chaos.

• Fast growth of different orbits of length n, such as having positive topological en-

tropy.

• Strong recurrence property, weakly mixing property.

The notion of topological entropy was introduced by Adler et al. in 1965 (Adler et al.,

1965), and systems with positive entropy are considered as chaotic. Weak mixing was

introduced by Furstenberg in 1967 (Furstenberg, 1967). The term “chaos” was first used

by Li and Yorke in 1975 (Li and Yorke, 1975), in the paper titled “Period three implies

chaos”. They proved that for a conituous self-map on [0,1], existence of point of period

three implies existence of all periods greater than three, and also that there is an uncount-

able subset of points which are not even asymptotically periodic (see section 2.3). Later

in 1989 Devaney defined a new kind of chaos (Devaney et al., 1989). It was based on

the notion of sensitivity introduced by Guckenheimer (Guckenheimer, 1979). A system

is Devaney chaotic if it is transitive ( equivalent to having a dense orbit ), has a dense set

of periodic points and is sensitive. The transitive points contribute to “irregularity”, and

the periodic points contribute to “regularity”. A combination of the two is considered as

chaos. Distributional chaos was introduced by Schweizer and Smı́tal in 1994, of which

there are three versions, DC1, DC2 and DC3. Uniform chaos was defined by Akin et al.

(Akin et al., 1996).
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All these definitions do not give the same type of chaos. It is known that each of weak

mixing, Devaney chaos and positive topological entropy implies Li-Yorke chaos (Li and

Ye, 2015). A dynamical system with positive entropy may not contain a weakly mixing

subsystem. There are maps with zero entropy that are Devaney chaotic, and there are maps

with positive entropy that are not Devaney chaotic (Balibrea et al., 2003). Positive entropy

does not imply DC1 chaos, but it implies DC2 chaos. Devaney chaos implies uniform

chaos.

Though classical chaotic maps defined on manifolds are plenty, they are not particularly

suited for machine computation. Discrete functions are more suitable for computers. For

ease of implementation, analysis etc., it would be helpful if X is a cantor-like set, prefer-

ably with some arithmetic structure, and f is given by a simple formula (Woodcock and

Smart, 1998).

Let A be a finite set with at least two elements, in the discrete topology. Let AZ have

product topology. The shift map σ which shifts each coordinate of a point to the “left”

by one position is a continuous map. The two-sided full shift, (AZ,σ) is a very important

dynamical system. A closed subspace of AZ, along with a continuous self map is a sym-

bolic space. Symbolic dynamics originated as a tool for analyzing dynamical systems and

flows by discretizing space as well as time. But, with the development of information the-

ory, now symbolic sequences are being studied as objects in their own right. In spite of the

simplicity of their spaces, symbolic dynamical sytems are in some sense universal compact

dynamical systems. Every compact dynamical system is a factor of a symbolic dynamical

system. Any trajectory of the original system comes from one or more trajectories of the

symbolic system. In (Hedlund, 1969), Cellular Automata (CA), which form a special class

of symbolic dynamical systems, are discussed. Some special cases of non-uniform CA are

studied in (Dennunzio et al., 2012).

The field Qp of p-adic numbers is the completion of the field Q of rational numbers in the

p-adic norm, for a prime number p. Woodcock and Smart discuss some discrete dynam-

ical systems based on p-adic numbers in (Woodcock and Smart, 1998). They discuss the

properties of p-adic analogues of the logistic and Smale horseshoe maps, and adapt them

to form possible practical pseudo-random number generators. The p-adic logistic map is
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proved to be conjugate to the one sided full shift, and the p-adic horseshoe map conjugate

to the twosided full shift. Hence both are Devaney- chaotic.

In (Bryk and Silva, 2005), measurable dynamics of some p-adic functions including trans-

lation and multiplication in the field Qp of p-adic numbers are studied.

As a set, Qp is contained in AZ, where A = {0,1,2 · · · , p− 1}. The ring Zp is a

subring of Qp, and as a set AZ = Zp×Zp. Our aim is to extend the addition operation in

Qp and Zp to AZ, and combine it with the shift map to get other dynamical systems.

In Chapter 2 some basic definitions and background matter regarding p-adic numbers,

topological dynamics and symbolic dynamics along with some examples are given.

In Chapter 3, extending addition of a constant in Qp to AZ is discussed, and a conjugate

to the two sided full shift is obtained. By considering the set AZ = Zp×Zp, and using the

addition in Zp, an expansive homeomorphism conjugate to a subshift, and two maps which

are positively expansive with positive entropy are obtained.

In Chapter 4, a better version of the above maps is obtained. Besides having positive

entropy, it is Devaney chaotic.

We observed that there is a slight difference in the definition of positively expansive maps

given by different authors in different papers. In Chapter 5, some examples are are given

to clarify the notion of positively expansive maps on non-compact spaces.
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Chapter 2

BASIC DEFINITIONS AND EXAMPLES

We use the following notations : N- set of non-negative integers, N+ - set of positive

integers, Q - field of rational numbers, Z - ring of all integers, C- field of complex numbers,

R- field of real numbers.

2.1 THE FIELD OF p-ADIC NUMBERS

Consider the field Q of rational numbers. It is not complete in the Euclidean norm, and its

completion is R. Some other norms can be defined on Q using prime numbers. For any

fixed prime p, let pα be the highest power of p that divides an integer a not equal to zero.

Then ‖a‖p is p−α . For a rational number a
b , ‖a

b‖p is ‖a‖p
‖b‖p

and ‖0‖p is defined to be zero.

With respect to this norm, Q is a normed field, but it is not complete in the metric topology

induced by this norm. Its completion is denoted by Qp (Katok, 2007). The Euclidean norm

is denoted by ‖ . ‖∞. In fact, these are the only norms that can be defined on Q, as shown

by Ostrowski (Katok, 2007):

Theorem 2.1.1. (Ostrowski) : Every nontrivial norm ‖ . ‖ on Q is equivalent to ‖ . ‖p for

some prime p or to ‖ . ‖∞.

The p-adic metric takes only discrete values, namely integer powers of p, and so all

open balls are also closed in Qp. Surfaces of spheres, which are in general only closed,

are also open here. Another important property is that ‖.‖p is non-Archimedean, that is
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for any x, y in Qp, ‖x+ y‖p ≤ max{‖x‖p , ‖y‖p}. The metric induced by this norm is an

ultrametric. It satisfies the strong triangle inequality, d(x, z) ≤ max{d(x, y), d(y, z)},

for all y in Qp. Here two open balls intersect if and only if one is contained in the other.

Every point of a ball is its centre.

It can be shown that this field contains some elements like irrational numbers and complex

numbers, in addition to many other elements. It is not an ordered field. It is not alge-

braically closed. For example, Q5 contains
√

6 and
√
−1, but does not contain a square

root of 7. Q3 does not contain
√
−1. For p 6= q, Qp and Qq are not isomorphic (Katok,

2007).

2.2 REPRESENTATION OF p-ADIC NUMBERS

It can be shown that every p-adic number x can be canonically represented as ∑
i=m
i=−∞ di p−i,

where m is in Z and di ∈ {0, 1, 2, 3, · · · , (p−1)}, and dm 6= 0. This can be viewed as a

doubly infinite series in powers of p, where the “digits” di are all zero for i > m. The p-

adic norm of this number is pm. It is also written as x= · · ·d−2 d−1

0th︷︸︸︷
d0 . d1 d2 · · · dm︸︷︷︸

(6=0)

0 0 · · ·

The numbers for which m≤ 0 are called p-adic integers. The set of p-adic integers is de-

noted by Zp. It is the set of p-adic numbers with norm less than or equal to one. Note

that this contains all the positive integers, each represented by a finite sum, which is the

same as the base-p expansion the positive integer. It contains negative integers also, but

the sum is infinite. −∑
i=m
i=−∞ di p−i = ∑

i=m−1
i=−∞

(p−1−di)p−i +(p−dm)p−m, where dm is

the last nonzero digit. Therefore for any x ∈ Qp, either x or −x must have infinitely many

nonzero digits ( towards left) in the canonical p-adic expansion.

For example in Q5, −(· · ·234100.32200000 · · ·) = · · ·210344.123000 · · · .

It is easy to see that a number x in Qp is a rational number if and only if its canonical

p-adic expansion is eventually periodic (Katok, 2007).

The arithmetical operations in Qp are similar to arithmetical operations on natural num-

bers written in base p. Algorithms of addition and subtraction are pursued from right to

left indefinitely, after aligning the “point” after the digit in the zeroth place. Multiplication

also proceeds from right to left indefinitely, in the usual way. “Long division” proceeds
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from right to left, unlike the usual long division of natural numbers (Katok, 2007).

Here is an example of addition in Q7.

· · ·462535.354300 · · ·

+ · · ·320656.4100 · · ·

−−−−−−−−−−−−−

·· ·113525.064300 · · ·

2.3 DISCRETE DYNAMICAL SYSTEMS AND CHAOS

Let X be a topological space, and f : X → X be a continuous function. If Y is a closed

subspace of X which is invariant under f , i.e., f (Y ) ⊆ Y , then (Y, f ) is a subsystem of

(X , f ). We use the following standard definitions, examples and results on a compact

dynamical system (X , f ), mostly from (Kůrka, 2003), (Li and Oprocha, 2013), (Vries,

2014) and (Li and Ye, 2015).

Definition 2.3.1. (X , f ) is called minimal if it contains no proper subsystem.

Example 1. Let Z(n) denote the set of integers modulo n, with discrete toplogy. Let f be

given by f (x) = (x+1) mod n. Then (Z(n), f ) is a dynamical system with a single orbit,

hence is minimal.

An example of an infinite minimal system is Example 2.

A subset A of X is minimal if (A, f ) forms a minimal subsystem. A closed invariant subset

A of X is minimal if and only if the orbit of every point of A is dense in A. A point x ∈ X

is called minimal if it belongs to some minimal subset of X .

Definition 2.3.2. A point x ∈ X is called periodic if there exists an integer n > 0 such that

f n(x) = x.

It is eventually periodic if f n(x) is periodic for some n > 0.

Definition 2.3.3. A point x ∈ X is called quasi-periodic or regularly recurring if for every

neighbhourhood U of x, there is a j > 0 such that for any n≥ 0, f n j(x) ∈U.

9



Definition 2.3.4. A point x ∈ X is called almost periodic if for every neighbhourhood U of

x, there exists an integer p > 0 such that for ∀n≥ 0, there exists an integer k < p such that

f nk(x) ∈U.

Definition 2.3.5. A point x ∈ X is called asymptotically periodic if d( f n(x), f n(p))→ 0 as

n→ ∞, for some periodic point p.

Definition 2.3.6. A point x ∈ X is called recurrent if for every neighbhourhood U of x,

there exists an integer n > 0 such that f n(x) ∈U.

Definition 2.3.7. x ∈ X is a non-wandering point if for every open set U containing x,

there is an n > 0 such that f n(U)
⋂

U 6=∅.

Definition 2.3.8. If all points of X are non-wandering, then (X , f ) is a non-wandering

system.

Definition 2.3.9. (X , f ) is transitive if for any nonempty open sets U and V in X, there

exists n > 0 such that f n(U)
⋂

V 6=∅.

A point x is transitive if its orbit under f is dense. It follows that (X , f ) is transitive if

and only if it has at least one transitive point.

Clearly, periodic =⇒ quasi-periodic =⇒ almost periodic =⇒ recurrent =⇒ nonwan-

dering. But none of the converse implications is true.

Example 2. In (S,ϕ) where S is the unit circle and ϕ is rotation by an irrational multiple

of 2π , every point has a dense orbit and hence is recurrent, but not periodic.

On the other hand, a periodic point in an infinite system is an example of a non-

transitive recurrent point.

Example 3. Consider τ := ϕ× Id : S2×S2, where Id denotes the identity map. Each “

horizontal” circle, i.e., the circle got by fixing the “vertical” coordinate, St := S× [t], (0≤

t < 1), is an invarient system conjugate ( see Section 2.5 ) to (S,ϕ). Consequently no orbit

is dense in S2, but every point is recurrent (and non-wandering) but not transitive and not

periodic.
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Example 4. Consider an infinite compact minimal system. It contains no periodic points.

Therefore all its points are almost periodic, but not periodic.

Example 5. Let A = {0,1}. Consider (AN,σ), where σ is the one sided full shift given

by σ(x1x2x3 · · ·) = x2x3 · · · . ( See Section (2.6)). Here, the Champernowne sequence

x = 0100011011 · · · , which concatenates all finite binary words, is recurrent but not almost

periodic (Kůrka, 2003).

Example 6. Any point of (S,ϕ), where ϕ is an irrational rotation of the circle, is almost

periodic but not quasi-periodic (Kůrka, 2003).

Definition 2.3.10. (X , f ) is totally transitive if (X , f n) is transitive for all n ∈ N.

Definition 2.3.11. (X , f ) is weakly mixing if the product system (X ×X , f × f ) is transi-

tive.

Definition 2.3.12. (X , f ) is strongly mixing if for every two non-empty open sets U and

V , there is N > 0 such that f n(U)
⋂

V 6=∅ for all n≥ N.

When X is a metric space, a few more definitions can be given.

Definition 2.3.13. A point x is said to be equicontinuous, if for every ε > 0 ∃ δ > 0 such

that for any y, d(x,y)< δ =⇒ d( f n(x), f n(y))< ε, ∀ n > 0.

Definition 2.3.14. (X , f ) is equicontinuous if for every ε > 0 ∃ δ > 0 such that for any x

and y in X, d(x,y)< δ =⇒ d( f n(x), f n(y))< ε, ∀ n > 0.

If X is compact, it means that every point is an equicontinuous point.

Equicontinuous systems have simple dynamical behaviour. It is well-known that a

system (X , f ), with f being surjective is equicontinuous if and only if there is a compatible

metric ρ on X such that f is an isometry with respect to ρ .

Example 7. Let I= [0,1], and Qr(x) = rx(1− x) for an r ∈ [0,4]. In the system (I,Qr), if

r≤ 1, all points are equicontinuous. For 1 < r≤ 3, all points in (0,1) are equicontinuous,

and for r = 4 there are no equicontinuous points.
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Definition 2.3.15. (X , f ) is sensitive (to initial conditions) if there exists ε > 0 such that

∀x ∈ X ,∀ δ > 0, there exists y with d(x,y)< δ and n≥ 0 such that d( f n(x), f n(y))≥ ε .

The full shift in Section 2.6 is a sensitive sytem. A sensitive sytem cannot have

equicontinuous points. There are systems that are not sensitive and do not have equicon-

tinuous points. But this cannot happen in a transitive system (Akin et al., 1996).

Definition 2.3.16. A pair (x,y) of points in X is called

(i) asymptotic if lim
n→∞

d( f n(x), f n(y)) = 0.

(ii) proximal if liminf
n→∞

d( f n(x), f n(y)) = 0.

(iii) distal if liminf
n→∞

d( f n(x), f n(y))> 0.

The sytem (X , f ) is is called proximal if any two points in X form a proximal pair, and

distal if any two points form a distal pair.

Definition 2.3.17. A pair (x,y) ∈ X×X is called scrambled if liminf
n→∞

d( f n(x), f n(y)) = 0

and limsup
n→∞

d( f n(x), f n(y)) > 0, that is (x,y) is proximal but not asymptotic. A subset C

of X is called scrambled if any two points of X form a scrambled pair, and (X , f ) is called

Li-Yorke chaotic if there is an uncountable scrambled subset in X.

The following is a characterization of a proximal system (Li and Ye, 2015).

Theorem 2.3.1. A dynamical system (X , f ) is proximal if and only if it has a fixed point

which is the only minimal point of X .

In 1996, Akin et. al. proposed the concept of uniform chaos (Akin et al., 1996).

Definition 2.3.18. Let (X ,F) be a transitive dynamical system. A subset K of X is said to

be

(i) uniformly recurrent if for every ε > 0 there exists an n ∈N with d( f n(x),x)< ε for

all x ∈ K;

(ii) recurrent if every finite subset of K is uniformly recurrent;
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(iii) uniformly proximal if for every ε > 0 there exists an n ∈ N with diam( f n(K))< ε;

(iv) proximal if every finite subset of K is uniformly proximal.

Definition 2.3.19. Let (X , f ) be a transitive dynamical system. A subset K of X is called

uniformly chaotic if there are Cantor sets C1 ⊂C2 ⊂ ·· · such that

(i) for each N ∈ N, CN is uniformly recurrent;

(ii) for each N ∈ N, CN is uniformly proximal;

(iii) K :=
⋃

∞
i=1Ci is a recurrent subset of X and also a proximal subset of X .

The system (X , f ) is called (densely) uniformly chaotic if it has a (dense) uniformly chaotic

subset of X.

The following is a corollary of the main result of (Akin et al., 2010). ( p.18, Corollary

5.17, (Li and Ye, 2015)).

Corollary 2.3.1. Let (X , f ) be a dynamical system without isolated points. Then,

(i) If (X , f ) is transitive and has a fixed point, then it is densely uniformly chaotic.

(ii) If (X , f ) is transitive and has a periodic point (of period ≥ 2), then it is uniformly

chaotic.

Definition 2.3.20. Let (X , f ) be a dynamical system. For δ > 0, a δ -pseudo orbit

or a δ -chain is a finite or infinite sequence of points (xn)
m
n=0, m ∈ N

⋃
{∞}, such that

d( f (xn),xn+1)< δ for n < m.

Example 8. Here is an example of a δ -pseudo orbit which not an orbit, in the system

(AZ,σ) (see Section 2.6).

For agiven δ > 0, choose an integer m such that 2−m < δ . Fix any x in (AZ,σ), with all

non-zero coordinates. Define a sequence {a(n)}, for n≥ 0, as follows.

a(n)i =

 (σn(x))i for |i| ≤ m+1

0 for |i|> m+1

13



Then {a(n)} is a δ -pseudo orbit, because d(σ(a(n)),a(n+1))< 2−m < δ . It is obviously not

an orbit.

Definition 2.3.21. (X , f ) has the shadowing property if

for any ε > 0 ∃ δ > 0, ∀ x0, · · ·xn,( ∀i, d( f (xi),xi+1)< δ =⇒ ∃ x, ∀ i,d( f i(x),xi)< ε).

It means that every finite δ -chain is ε-shadowed by some point.

Definition 2.3.22. (X , f ) has the pseudo-orbit tracing property if for each ε > 0 there is

a δ > 0 such that every infinite δ -pseudo orbit is ε- shadowed by some point.

If X is compact, the shadowing property implies the pseudo-orbit tracing property

(POTP).

Example 9. The identity map on the interval [0,1] does not have shadowing property. For

any δ , divide the interval into n equal parts of length less than δ . Let 0 = x0 < x1 <

· · ·xn = 1 be the end points of the subintervals. Then x0,x1, · · ·xn is a δ chain, which is not

ε shadowed by any y ∈ [0,1], for any ε < 1
2 .

Example 10. The identity map on AN (see Section 2.6), for a finite set A has shadowing

property. If δ = 2−n, and (xi)0≤i≤m is a δ -chain in AN, then d(xi,xi+1)< 2−n and so

(x0)[0,n] = (x1)[0,n] = · · ·= (xn)[0,n]. Therefore x0 δ -shadows (xi)0≤i≤m.

The following is a non-trivial example of shadowing property, from (Kůrka, 2003).

Example 11. Let T = [0,1), and let S be the uinit circle. A point z on S is of the form

z = e2πix, x ∈ T. Every z in S may be identified with that x in T. Define distance between

two points as the length of the shortest arc which joins them.

d(x,y) = min{|x− y|,1−|x− y|}. Define

D(x) =

 2x for x < 1
2

2x−1 for x≥ 1
2

Then (S,D) has shadowing property.

Example 12. The quadratic map Q(x) = x2 on T does not have shadowing property.
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Definition 2.3.23. Let x,y be points in X, where (X , f ) is a dynamical system.

(i) x and y are chain related if for every δ > 0, there is a finite δ - chain from x to y, and

from y to x.

(ii) x is called chain recurrent if for every δ > 0, there is a finite δ - chain from x to x.

(iii) The map f is chain recurrent if every x ∈ X is chain recurrent.

(iv) The map f is chain transitive if any two points of X are chain related.

We denote by CR( f ) the set of all chain recurring points of f , and by ω( f ), the set of

all non-wandering points of f .

There are two versions of expansiveness associated with dynamical systems.

Definition 2.3.24. A bijective dynamical system (X , f ) is expansive if ∃ ε > 0, ∀ x 6= y ∈

X , ∃ n ∈ Z, d( f n(x), f n(y)) ≥ ε.

Definition 2.3.25. (X , f ) is said to be positively expansive if there exists an ε > 0 such

that for all x and y in X with x 6= y, there is n≥ 0 with d( f n(x), f n(y))≥ ε .

Every compact metric space that supports a positively expansive homeomorphism is

finite (Coven et al., 2006). Positively expansive maps, under certain conditions, have pos-

itive topological entropy, which is discussed in the next section.

Definition 2.3.26. (X , f ) is said to be Auslander Yorke chaotic if it is both transitive and

sensitive.

According to the definition of chaos given by R. L. Devaney (Devaney et al., 1989),

there is one more condition, that is, existence of a dense set of periodic points.

Definition 2.3.27. An infinite dynamical system (X , f ) is chaotic if it is transitive, has a

dense set of periodic points and is sensitive to initial conditions.

Theorem 2.3.2. ( Bank’s Theorem ) (Kůrka, 2003) : If X is infinite, then (X , f ) is transitive

and X has a dense set of periodic points together imply that (X , f ) is sensitive.

By Corollary (2.3.1), every Devaney chaotic system is uniformly chaotic.
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2.4 TOPOLOGICAL ENTROPY

We define topological entropy of a compact dynamical system using open covers as fol-

lows (Adler et al., 1965) :

Let U be an open covering of X . Let N(U ) be the minimum number of elements of U

that are needed to cover X . Since X is compact, this number exists. If U and V are fi-

nite open covers of X , their joint open cover, denoted by U ∨ V is {U ∩V |U ∈U ,V ∈

V ,U ∩V 6= ø}. If f is a continuous function from X to itself,

Nn(U , f ) = N(U ∨ f−1(U ) ∨ f−2(U ) · · · ∨ f−(n−1)(U )).

The topological entropy of the open cover U of X is

h(U , f ) = lim
n→+∞

logNn(U , f )
n

The topological entropy of (X , f ), denoted by h(X , f ) is defined by

h(X , f ) = sup{h(U , f )|U f inite open cover o f X}

.

If the topological entropy of (X , f ) is positive, (X , f ) is said to be chaotic.

There is another equivalent definition of topological entropy when X is a compact metric

space, due to Bowen (Bowen, 1971). Roughly speaking, we would like to equate “higher

entropy” with “more” orbits. But the number of orbits is usually infinite, and so we fix

a “resolution”, i.e., a scale below which we are unable to tell points apart. Suppose we

are unable to distinguish between points that are < ε apart. Then N(n,ε) represents the

number of distinguishable orbits of lenght n, and if this number grows like ∼ enh, then h is

the topological entropy.

Another way of counting the number of distinguishable orbits is to use (n,ε) spanning

sets, or (n,ε) dense sets (Young, 2003).

Let (X ,d) be a compact metric space and let f be a continuous self map of X .
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For any two points x and y of X , and any n≥ 1, let

d f
n (x,y) = max

0≤i≤n−1
{d( f i(x), f i(y))}

We denote the open ball {y ∈ X | d f
n (x,y)< ε} by B f (x,ε,n).

A set E ⊆ X is ε-dense with respect to dn
f , or (n,ε)-dense, if X ⊆

⋃
x∈E B f (x,ε,n). The ε-

capacity of dn
f , denoted by Sd( f ,ε,n) is the minimal cardinality of an (n,ε)-dense set.

Consider the exponential growth rate

hd( f ,ε) := lim
n→∞

1
n

log Sd( f ,ε,n) (2.1)

We define

hd( f ) := lim
ε→0

hd( f ,ε) (2.2)

For equivalent metrics d and d′, hd( f ) = hd′( f ), and both may be denoted by h(X , f ),

which is the topological entropy. For a compact dynamical system (X , f ), and for any

positive integer n, h(X , f n) = nh(X , f ) (Adler et al., 1965).

It is not possible to find the exact value of topological entropy always. To get estimates

for topological entropy, some concepts of fractal dimensions are used. We make use of

the upper box counting dimension. For a compact metric space (X ,d), the upper box

counting dimension is

Dd(X) = lim
ε→ 0

log b(ε)
|log ε|

(2.3)

where b(ε) is the number of ε-balls required to cover X .

Systems with positive entropy are considered to be chaotic.

2.5 TOPOLOGICAL CONJUGACY

In order to identify dynamical systems with similar behaviour, the concept of topological

conjugacy is used.

Definition 2.5.1. A system (X , f ) is said to be topologically conjugate to (Y,g) if there

exists a homeomorphism h : X → Y such that h−1gh = f .
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Theorem 2.5.1. Let (X , f ) and (Y,g) be dynamical systems and h be a homeomorphism

from X to Y such that h−1gh = f . Let x be any point of X. Then

(i) h ( Orbit of x under f ) = Orbit of (h(x)) under g.

(ii) If x is a periodic point of f with period k, then h(x) is a periodic point of g with

period k.

(iii) If the periodic points of f are dense in X, then the periodic points of g are also dense

in Y .

(iv) If f is transitive, so is g.

(v) If f is Devaney-chaotic, so is g.

(vi) Topological entropy of f = Topological entropy of g.

However, if f is sensitive we cannot always say that g is sensitive (Grosse-Erdmann

and Manguillot, 2011).

Sometimes, if a function f is difficult to analyze, a simpler conjugate of f can be studied.

At one end we have equicontinuous functions, and at the other end we have chaotic func-

tions. Between these extreme classes there are many other distinct types of dynamical

behaviour.

2.6 SYMBOLIC DYNAMICAL SYSTEMS

The above basic concepts are discussed in (Kůrka, 2003), for a Cantor space. It is a

metric space which is compact, totally disconnected and perfect. Any two Cantor spaces

are homeomorphic. A symbolic space is a closed subset of a Cantor space. It is compact

and totally disconnected. A symbolic dynamical system, denoted by SDS, is an ordered

pair (X , f ), where X is a symbolic space and f : X → X is a continuous function.

Let A be a finite set with m elements, where m≥ 2. A word over A is finite sequence w =

18



w0w1w2 · · ·wl−1 of elements of A. The length of w is l, denoted by |w|. An denotes the set

of all words of length n. The set of all words is denoted by A∗ : A∗ =
⋃

n≥0 An.

AZ is the set of all two sided configurations or bi-infinite sequences over A. Its elements

are of the type x = · · · x−2x−1x0x1x2 · · · , where xi ∈ A ∀ i. The word xixi+1 · · ·x j is

denoted by x[i, j]. For any w = w0w1w2 · · · wl−1 ∈ Al , w ∈ AZ is the infinite repetition of

w defined by (w)nl+i = wi for i = 0,1,2, · · · l−1. That is,

w = · · · w0w1 · · · wl−1

0th︷︸︸︷
w0 w1 · · · wl−1w0w1 · · · wl−1 · · · .

Let A have discrete topology and AZ have the product topology. It is induced by the metric

d(x,y) = 2−n where n = min{i≥ 0, xi 6= yi, or x−i 6= y−i}. The shift map σ : AZ → AZ

given by σ(x)i = xi+1 is continuous in this topology. AZ is a Cantor space. The system

(AZ, σ) is called the two sided full shift. A two sided subshift is the dynamical system

(∑,σ |∑) , where ∑ is a closed subspace of AZ such that σ(∑) = ∑.

The topological entropy of the the full-shift (AZ,σ) is log p, where p is the number of

elements in A (see section 3.4), and so for (AZ,σ k) it is k log p.

Definition 2.6.1. A map f : AZ → AZ is a cellular automaton ( CA) if there exists an r ∈

N+, and a local rule g : A2r+1→A such that f (x)i = g(xi−r,xi−r+1, · · · , xi,xi+1, · · · , xi+r).

Here r is called the radius of the CA.

By a theorem of Hedlund (Hedlund, 1969), a map f : AZ → AZ is a CA if and only

if f is continuous and commutes with the shift map σ .

A slight variation of a CA is a nonuniform CA. (Dennunzio et al., 2012). For a non-

uniform CA, the radius is not uniform and the local function g is also not uniform. It is

given by a rule

f (x)i = gi(xi−ri,xi−ri+1, · · · , xi,xi+1, · · · , xi+ri). (2.4)

Here ri ang gi depend on i. A non-uniform CA is just a continuous function (Dennunzio

et al., 2012). Generally, only some special types of nonuniform CA are studied.

We may not get conjugacy to a well-known function like the full shift always, so we use

the concept of a factor map.

Definition 2.6.2. A morphism π : (X , f )→ (Y,g) between two dynamical systems s a con-

tinuous map π satsisfying π f = gπ . If π is surjective we say that (Y,g) is a factor of (X , f )
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and (X , f ) is an extension of (Y,g).

Every compact dynamical system is a factor of some subshift (Kůrka, 2003).

The one-sided full shift is the system (AN,σ) where σ(x1x2x3x4 · · ·) = x2x3x4 · · · . Here

σ is not a homeomorpism, but is Devaney-chaotic. The one sided full shift is positively

expansive, whereas the two sided fullshift is an expansive homeomorphism.

20



Chapter 3

DYNAMICAL SYSTEMS FROM EXTENSION

OF p-ADIC ADDITION

3.1 A DEVANEY-CHAOTIC DYNAMICAL SYSTEM USING p-ADIC

ADDITION WITH A CARRY

Consider the sets Zp ⊂Qp ⊂ AZ where A = {0,1,2, · · · , p−1} and p is a prime number.

The first question is whether we can extend the non-Archimedean topology of Qp to AZ.

The norm of x, or the “distance of x from 0” cannot be extended because ‖x‖p is pm where

m is the largest integer such that mth coordinate of x in the canonical representation of x is

nonzero. There is no such m for elements outside Qp. So the metric cannot be extended in

a natural way.

We can at most extend the topology to AZ, by defining open balls centred at x in a similar

fashion. Let xi denote the ith coordinate of x, for any element of AZ. Define Bpr(x) = { y∈

AZ | xi = yi ∀ i > r}. Then Qp is an open subset of AZ in this topology. In fact, Qp =⋃i=+∞

i=−∞
Bpi(0). Qp is complete implies that it is closed in AZ. Thus Qp is both open and

closed. Hence any element outside Qp is in a different component, and any continuous

function on Qp cannot be extended naturally and uniquely to AZ.

Next consider Qp as a subset of AZ. We denote the non-Archimedean topology of Qp by

T1. Let A have discrete topology. Let T2 denote the product topology on AZ and its

restrictions to Zp and Qp.
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We know that T2 is induced by the metric d(x,y) = 2−r where r = min{i ≥ 0 | xi 6=

yi or x−i 6= y−i}. We can as well replace 2 by p, and define the distance as p−r. Note that

it will induce the same topology.

Proposition 3.1.1. (i) T1 = T2 on Zp.

(ii) T1 is finer than T2 on Qp.

(iii) Qp is dense in AZ ( with respect to T2 )

(iv) Zp is a closed subset of AZ in T2

Proof. (i) If x = · · ·x−2 x−1

0th︷︸︸︷
x0 0 0 · · · then Bp−r(x), that is the ball of radius p−r,

for a positive integer r, centered at x is the same in both the topologies of Zp. It

consists of elements of the type

x = · · · ∗ ∗ ∗ x−r · · ·x−2 x−1

0th︷︸︸︷
x0 0 0 · · · .

(ii) Consider open balls of radius p−r in both topologies. It is enough to consider r > 1.

Let B1
p−r(x) be the ball of radius p−r centered at x in T1, and B2

p−r(x) the corre-

sponding one in T2 for Qp.

Let x = · · ·x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·xm 0 0 · · · be an element of Qp. Then B1

p−r(x)

consists of elements of the type

· · · ∗ ∗ ∗ x−r x−r+1 · · ·x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·xm 0 0 · · · , whereas B2

p−r(x) consists

of elements of the type

· · · ∗ ∗ x−r x−r+1 · · ·x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·xr ∗ ∗ · · · .

Therefore B1
p−r(x)⊆ B2

p−r(x), and so T1 is finer than T2 on Qp.

(iii) Let

a = · · · x−r−1 x−r x−r+1 · · ·x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·xr · · · be an element of AZ.

Define

an = · · · x−r−1 x−r x−r+1 · · ·x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · xn 0 0 0 · · · (3.1)
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Then d(am,an) ≤ p−k where k is min {m,n}, hence {an} is a Cauchy sequence in

T2, which clearly converges to a in T2. It is not Cauchy in T1, unless a ∈Qp.

(iv) We prove that the complement of Zp is open. Take any element

x = · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · xm︸︷︷︸

6=0

xm+1 ∗ ∗ · · ·

of AZ \Zp, where xm 6= 0 for some m > 0. Take δ = p−m . Then B2
δ
(x)⊂ AZ \Zp,

because for all y in B2
δ
(x), the mth coordinate ym = xm 6= 0, and so y 6∈ Zp.

Our aim is to find what functions Zp→ Zp and Qp→Qp can be extended to functions

AZ→ AZ, to give rise to new dynamical systems, particulary chaotic.

In order to extend a function f on Qp to a continuous function on AZ, f should be uniformly

continuous in T2, as AZ is compact (by Tychonoff’s theorem). We can see that any of the

algebraic functions like polynomials, or even multiplication by a constant is not uniformly

continuous. It is because when x and c, whose norms are say, pm and p j, are multiplied,

the product has norm pm+ j, and the digits upto m+ j depend both on x and c. The “carry”

travels from right to left; so even if x and y agree on a large range of coordinates around the

0th postion, say − j to j, xc and yc need not agree around the 0th position. In other words,

we cannot choose a j such that d(x,y)< p− j implies d(xc,yc) < ε , for small ε .

For example take p = 2, and consider the element c = · · ·1111 · · ·11111.00000 · · · in Qp.

We see that multiplication by c is discontinuous at 0, in both T1 and T2. Clearly 0c = 0.

Let ε < 1 be given. Consider any δ > 0. Take an integer m such that 2−m < δ . Let

x = · · ·00000 · · ·0000.000 · · ·000︸ ︷︷ ︸
m times

1000 · · · . Then

xc = · · ·1111 · · ·11111.111 · · ·1111︸ ︷︷ ︸
m+1 times

00000000. Thus d(x,0)< δ , but d(xc,x0) = 1 > ε in

T2, and d(xc,x0) = 2m+1 > ε in T1.

Consider adding a constant to any element of Qp. This gives a uniformly continuous

function on Qp.

Proposition 3.1.2. Let

c = · · · c−1

0th︷︸︸︷
c0 c1 · · · cn−1 cn 0 0 0 · · · be any fixed element of Qp. Let ϕ : Qp → Qp
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be given by ϕ(x) = x+ c. This can be extended to a function on AZ that is continuous in

the product topology.

Proof. For any

x = · · · x−2x−1

0th︷︸︸︷
x0 x1 x2 · · · xm 0 0 0 · · · , take j > |n|. Adding the constant c affects

only the nth coordinate and the coordinates to the left. If x and y agree from − jth to jth

coordinates, so do ϕ(x) and ϕ(y). This n depends only on the constant c and not on x. If

d(x,y) < p− j, then d(ϕ(x),ϕ(y)) < p− j. Therefore adding a constant gives a uniformly

continuous function on Qp. Therefore, if {an} is a sequence in Qp converging to x in AZ,

then ϕ(an) converges to a unique point ϕ(x) in AZ. Therefore ϕ : x 7→ x+a extends to a

continuous function on AZ.

Note that (AZ,ϕ) is similar to the adding machine in (Kůrka, 2003). Combining ϕ

with powers σ k of the shift map, we get maps that are chaotic in the sense of Devaney. We

denote σ k(x) also by pkx. Fix an element a of Qp and define a function f on AZ by

f : x 7→ a+ pkx (3.2)

This is chaotic according to the definition by Devaney, as we can see that it is conjugate to

σ k.

Proposition 3.1.3. Let k be any nonzero integer, and let a be a p-adic number. Let f be

the function AZ → AZ given by f : x 7→ a+ pkx. Then f is conjugate to σ k.

Proof. Let b = a
1−pk . Define ϕ : AZ → AZ by ϕ(x) = x−b. Then

ϕ ◦ f ◦ϕ
−1(x) = ϕ ◦ f (x+b)

= ϕ(pkx+ pkb+a) = pkx+ pkb+a−b

= pkx+b(pk−1)+a = pk(x) = σ
k(x).

(3.3)

As 0 is the only fixed point of σ k, it follows that b is the only fixed point of f . For f
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restricted to Qp and positive k it is an attractive fixed point. For negative k it is a repelling

fixed point.

Proposition 3.1.4. Let f : Qp → Qp be defined by f (x) = pkx+ a, for a constant a in

Qp, and positive k. For all x in Qp, f n(x) converges to b = a
1−pk .

Proof. For any positive integer n, and any x in Qp,

f n(x) = xpnk + a(1 + pk + p2k + · · · + p(n−1)k)

= xpnk +a
1− pnk

(1− pk)

= (x −b)pnk +b

(3.4)

For positive k, pnk tends to zero as n tends to infinity, in the topology T1 of Qp and so

in the coarser topology T2 too. For any x in Qp, xpnk also tends to zero in this topology,

and so in the coarser topology T2 too. Therefore f n(x) tends to b for any x in Qp.

( Note : For negative k, pnk does not tend to zero when n tends to infinity, and so f n(x)

cannot tend to b for x 6= b.)

The periodic points of f are w+b, where w is a word of length |nk| in AZ. For any transi-

tive point y of σ k, y+b is a transitive point of f .

Clearly f is not a cellular automaton but is a non-uniform cellular automaton. However,

it does not have any properties of the type non-uniform cellular automata defined in (Den-

nunzio et al., 2012).

3.2 AN EXPANSIVE MAP WITH POSITIVE ENTROPY

When the above function f is applied to x, the coordinates at the far right are affected

only by the shift map. We try to look for a function that affects all the coordinates. For

computational purposes, it is good if we can start calculating the digits of f (x) at the centre,

that is around the 0th coordinate and proceed iteratively in both directions. We try to extend

the above addition to an addition in AZ. It would be better if can add two elements of AZ,
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in a way different from the usual coordinate-wise addition mod p, ie., making use of the

the “carry”.

Let a = · · · a−2 a−1

0th︷︸︸︷
a0 a1 a2 · · · and b = · · · b−2 b−1

0th︷︸︸︷
b0 b1 b2 · · · be any two

elements of AZ.

We define a new kind of “addition” as follows.

a +b = c = . . . c−2 c−1

0th︷︸︸︷
c0 c1 c2 · · · where

· · · c−2 c−1 c0 is the usual sum of the p-adic integers · · · a−2 a−1 a0 and · · · b−2 b−1 b0,

with carries transferred to the left, and · · · c2 c1 is the usual sum of the p-adic integers

· · · a2 a1 and · · · b2 b1. In other words, the given elements are split after the 0th position,

the two parts are considered as seperate p-adic integers and added in the usual way. For the

left part, addition proceeds from right to left, and for the right part it proceeds from left to

right. Actually this operation makes AZ into a topological group. The additive identity of

the group is the zero sequence. The additive inverse of an element a is defined in a similar

fashion as that of p-adic integers.

Let a−m be the first non-zero digit of a on the left side (starting at the 0th position), and let

an be the first non-zero digit of a on the right side (starting at the 1st position).

That is, a = · · ·a−m−1 a−m︸︷︷︸
6=0

0 0 · · · 0
0th︷︸︸︷
0 0 · · ·0 an︸︷︷︸

6=0

an+1 · · ·

Then we define −a =

· · · (p− 1− a(−m−2)) (p− 1− a(−m−1))

(−m)th︷ ︸︸ ︷
(p−a−m) 0 · · ·

︷︸︸︷
0th 0 · · ·0

nth︷ ︸︸ ︷
(p−an) (p− 1−

a(n+1)) (p−1−a(n+2)) · · ·

Using this operation in combination with the shift map we try to get some chaotic maps.

First consider f (x) = σ k(x)+a for a constant a in AZ. This is clearly a homeomorphism.

Now we prove that (AZ, f ) is conjugate to some subshift. For this, we use a result from

(Kůrka, 2003)(p. 140, Proposition 3.68) for compact dynamical systems.

Proposition 3.2.1. A bijective dynamical system (X, f) is conjugate to a two-sided subshift

if and only if it is expansive and X is totally disconnected.

Using the above result, we have

Proposition 3.2.2. Let f : AZ→ AZ be given by f (x) = σ k(x)+a. Then
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(AZ, f ) is conjugate to a subshift and h(AZ, f ) = h(AZ,σ k) = k log p.

Proof. To add a, to any elements x and y of AZ, we start at 1st position and move towards

right. So the first difference between coordinates of x+ a and y+ a towards right is en-

counterd exactly at the positon where the first difference between coordinates of x and y

occurs. After that we cannot say anything about whether the coordinates are same or dif-

ferent. They may differ for x and y, but may be same for x+ a and y+ a, and vice versa.

The same is true for the left side also.

Let d(x,y) = p− j. We make the following observations.

Case(i) Suppose that xi = yi for all i ≥ 0. Then (σnk(x))i = (σnk(y))i for all i ≥ 0, and

( f n(x))i = ( f n(y))i for all i ≥ 0. Any difference in the coordinates appears only

for negative i. When we start from the central 0th position and move left, the first

position where the difference appears is same for f n and σnk, and it keeps moving

to the left with successive applications of f and σ k. Therefore

d( f n(x), f n(y)) = d(σnk(x),σnk(y)) for all n≥ 0. (3.5)

Moreover, this distance decreases as n increases.

Case(ii) Let xi = yi for 0 ≤ i < mk+ l and xmk+l 6= ymk+l for some m ≥ 0 and some l with

0≤ l < k. Clearly j ≤ mk+ l. Then for n≤ m,

( f n(x))i = ( f n(y))i and (σnk(x))i = (σnk(y))i for 0≤ i < (m−n)k+ l and

( f n(x))(m−n)k+l 6= ( f n(y))(m−n)k+l and (σnk(x))(m−n)k+l 6= (σnk(y))(m−n)k+l .

Now (m− n)k+ l ≥ 0, and upto this n, any difference in the coordinates of x and y

from the right side of 0th position is not yet transferred to the left. At the left side,

if at all there is a difference in the coordinates of x and y, it moves further to the left

with successive applications of f and σ k. Therefore we can say that

d( f n(x), f n(y)) = d(σnk(x),σnk(y)) f or 0≤ n≤ m. (3.6)

For n = m+ 1, (σnk(x))−k+l 6= (σnk(y))−k+l . Therefore d(σnk(x),σnk(y)) ≥ pl−k.
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For f n(x) and f n(y) there may be a difference in the coordinates at any of the posi-

tions l− k, l− k+ 1, · · · ,−1,0, or to the right side of 0th position. In any case we

can say that

d( f n(x), f n(y)) ≥ p−k and d(σnk(x),σnk(y))≥ p−k. (3.7)

We will prove that f is expansive, using the fact that σ k is expansive. Take ε = p−k.

For x 6= y, we have to find n ∈ Z such that d( f n(x), f n(y)) ≥ ε . If d(x,y) ≥ ε , we are

through.

Let d(x,y) < ε . Suppose that there is some positive j such that d(σ jk(x),σ jk(y)) ≥ ε . It

means that there was a difference in the coordinates of x and y at a position after k, which

was brought to a position ≤ k, after j applications of σ k. So we are in Case(ii). We can

find a positive n satisfying (3.7).

Next suppose that d(σ jk(x),σ jk(y)) < ε for all positive j. Then we are in Case(i), and

xi = yi for all i≥ 0. We have to find a positive n such that d( f−n(x), f−n(y))≥ ε .

f−1(x) = σ−k(x−a). Let j = mk+ l, with m≥ 1, and 0≤ l < k, be the smallest positive

integer such that x− j 6= y− j. It follows that (x−a)i =(y−a)i for all i>− j, and (x−a)− j 6=

(y−a)− j. Therefore (σ−k(x−a))i = (σ−k(y−a))i for− j+k < i and (σ−k(x−a))− j+k 6=

(σ−k(y−a))− j+k. Therefore d(σ−k(x−a),σ−k(y−a)) = p− j+k. Thus by one application

of f−1 the distance is increased by a factor of pk. Successive applications of f−1, m times

gives d( f−m(x), f−m(y)≥ ε . Thus f is expansive, hence is conjugate to a subshift.

Now we find the topological entropy of f . We prove that B f (x,r,n) = Bσ k(x,r,n) (see

(2.4)), for sufficiently large n and sufficiently small r. Let r < p−2k and n > 2. Suppose

that y ∈ B f (x,r,n) for some x. Then d( f i(x), f i(y))≤ r < p−2k, for 0≤ i≤ n−1. If x and

y are as in Case(i), clearly d(σ ik(x),σ ik(y))≤ r for 0≤ i≤ n−1, and y ∈ Bσ k(x,r,n).

If x and y are not as in Case(i), then take m and l as in Case(ii). Then n−1≤m, because of

(3.7 ), and from (3.6) it follows that y ∈ Bσ k(x,r,n). Therefore B f (x,r,n)⊆ Bσ k(x,r,n). By

a similar argument Bσ k(x,r,n) ⊆ B f (x,r,n). It follows that Sd( f ,r,n) = Sd(σ
k,r,n), and

from (2.1) and (2.2) both f and σ k have same topological entropy, that is k log p.
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3.3 A POSITIVELY EXPANSIVE MAP

We try to modify the above map f to get a positively expansive map (2.3.25), with positive

topological entropy.

For any x = · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · in AZ, define the “reflection” about 0th coordinate,

r(x), as · · ·x2 x1

0th︷︸︸︷
x0 x−1 x−2 · · · . That is r(x)i = x−i for all i ∈ Z.

Let x and y be two distinct points in AZ, separated by a distance p− j. To get a positively

expansive function f , we have to increase the distance between them at each application

of f . If there is a difference in the jth coordinates, for j > k > 0, application of σ k brings

the difference to ( j− k)th position, and so the distance increases by a factor of pk. But if

there is no difference in the positively numbered coordinates, application of σ k will not

increase the distances. So we use the function r to transfer the difference in coordinates at

the left side to the right side. We use a combination of σ , r and the addition. Now define

f (x) = r(σ k(x)+ x). It is enough to consider positive values of k.

Proposition 3.3.1. The function f : AZ→ AZ given by f (x) = r(σ k(x)+ x), where k is

a positive integer, is continuous and positively expansive.

Proof. Obviously, σ k is a homeomorphism and r is an isometry. Therefore it is enough to

verify that the addition map given by (x,y) 7→ x+ y is continuous from AZ×AZ to AZ.

Then the function f is (uniformly) continuous on AZ.

For any(x,y) in AZ×AZ, consider the p− j neighbourhood of x+ y in AZ. Consider any x′

in AZ with d(x,x′) < p− j, and any y′ in AZ with d(y,y′) < p− j. The coordinates of x are

same as those of x′ for − j, − j+1 , − j+2, · · ·0, 1, · · · j−1, j. The same is true for y

and y′. Therefore the coordinates of x+ y and x′+ y′ agree from − j to j.

So, d(x,x′) < p− j and d(y,y′) < p− j ⇒ d(x+ y,x′+ y′) < p− j. Thus the operation + is

continuous.

Next, we verify that f is positively expansive.

Let x = · · · x− j x− j+1 · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·x j−1 x j · · ·

σ k(x) = · · · xk− j xk− j+1 · · · xk−2 xk−1

0th︷︸︸︷
xk xk+1 xk+2 · · ·xk+ j−1 xk+ j · · ·

Choose an ε < p−k. If x 6= y, let d(x,y) = p− j. If j ≤ k, take n = 0.
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Let d(x,y) = p− j, with j > k.

Then xi = yi for − j+1≤ i≤ j−1, and either x j 6= y j or x− j 6= y− j. We denote σ k(x)+ x

by x′ and σ k(y)+ y by y′.

Case(i) Suppose that x j 6= y j. Then σ k(x) j−k 6= σ k(y) j−k and σ k(x)i = σ k(y)i for 0 ≤

i < j− k, on the right side. On the left side, σ k(x)i = σ k(y)i for (− j+1)≤ i≤ 0.

Therefore, x′i = y′i for − j + 1 ≤ i < j− k, and x′j−k 6= y′j−k. When r is applied,

(r(x′))i = (r(y′))i for − j+ k < i≤ j−1 and (r(x′))− j+k 6= (r(y′))− j+k. Therefore

d( f (x), f (y)) is p− j+k.

Case (ii) If x j = y j, then x− j 6= y− j. Then σ k(x)i = σ k(y)i for 0≤ i≤ j−k, on the right side.

On the left side, σ k(x)i = σ k(y)i for − j ≤ i≤ 0, and x− j 6= y− j. Therefore x′i = y′i

for (− j + 1) ≤ i ≤ ( j− k) and x′− j 6= y′− j. When r is applied, (r(x′))i = (r(y′))i

for (− j + k) ≤ i ≤ ( j− 1) and (r(x′)) j 6= (r(y′)) j. For i < (− j + k) we cannot

conclude anything about (r(x′))i and (r(y′))i. Therefore d( f (x), f (y)) is either >

p− j, or d( f (x), f (y)) = p− j and we are back in case(i). Another application of f

will increase the distance.

It follows that application of f once or twice increases the distances by a factor of atleast

pk. Repeating this process, we can bring the distance to a value ≥ p−k > ε . Thus the

function is positively expansive.

We use the following result from (Bahi and Guyeux, 2013)(p. 40, Proposition 21)

Proposition 3.3.2. For a positively expansive system (X , f ), topological entropy h(X , f ) >

sup{ pn
n }, where pn is the number of points with period n.

It follows that h(X , f )≥ 1 , because there is a fixed point 0.

3.4 A MAP THAT INCREASES SMALL DISTANCES

Let X be a metrizable space. We say that a self map f of X increases small distances if

there is a compatible metric d, and there exists an ε > 0 such that 0 < d(x,y)< ε implies
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d( f (x), f (y))> d(x,y). We can further modify the above map to a map that increases small

distances, and give both upper and lower bounds for entropy.

We make use of the following result from (Fujita et al., 2010)(p. 627, Proposition 5.1).

Proposition 3.4.1. Let f : X → X be a map of a compactum X with metric d. Suppose

there exist positive numbers ε > 0 and 1 < λ2 ≤ λ1 such that if x, y ∈ X and 0 < d(x,y)≤

ε , then λ2d(x,y) ≤ d( f (x), f (y)) ≤ λ1d(x,y). Then the following inequalities hold.

Dd(X) logλ2 ≤ h( f ) ≤ Dd(X) logλ1 (3.8)

In the above map f given by f (x) = r(σ k(x)+ x), to increase small distances, one or

two applications of f are needed. If we replace the “reflection ” r by r1, which reflects x

about the (−1)th position, rather than the 0th position, we get a map that not only increases

small distances, but satisfies conditions of Proposition 3.4.1.

If x = · · · x−3 x−2 x−1

0th︷︸︸︷
x0 x1 x2 x3 · · ·

r1(x) = · · · x2 x1 x0 x−1

0th︷︸︸︷
x−2 x−3 x−4 x−5 · · ·

As r1(x) = σ2(r(x)), r1 is a homeomorphism.

Proposition 3.4.2. Let r1 : AZ→ AZ be given by (r1(x))i = x−i−2. For k > 2, define

f (x) = r1(σ
k(x)+x). Then for x and y with 0 < d(x,y)< p−k, pd(x,y) ≤ d( f (x),(y)) ≤

pkd(x,y).

Proof. If x = · · · x− j x− j+1 · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · ·x j−1 x j · · ·

σ k(x) = · · · xk− j xk− j+1 · · · xk−2 xk−1

0th︷︸︸︷
xk xk+1 xk+2 · · ·xk+ j−1 xk+ j · · ·

Let d(x,y) = p− j, with j > k.

Then xi = yi for − j+1≤ i≤ j−1, and either x j 6= y j or x− j 6= y− j. We denote σ k(x)+ x

by x′ and σ k(y)+ y by y′.

Case(i) Suppose that x j 6= y j. Then σ k(x) j−k 6= σ k(y) j−k and σ k(x)i = σ k(y)i for 0 ≤

i < j− k, on the right side. On the left side, σ k(x)i = σ k(y)i for (− j+1)≤ i≤ 0.

Therefore, x′i = y′i for − j + 1 ≤ i < j− k, and x′j−k 6= y′j−k. When r1 is applied,
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(r1(x′))i = (r1(y′))i for− j+k−2< i≤ j−3 and (r1(x′))− j+k−2 6= (r1(y′))− j+k−2.

Therefore d( f (x), f (y)) is at least p− j+k−2.

Case(ii) If x j = y j, then x− j 6= y− j. So σ k(x)i = σ k(y)i for 0≤ i≤ ( j−k), on the right side.

On the left side, σ k(x)i = σ k(y)i for − j ≤ i≤ 0, and x− j 6= y− j. Therefore x′i = y′i

for (− j+1)≤ i≤ ( j− k) and x′− j 6= y′− j. When r1 is applied, (r1(x′))i = (r1(y′))i

for (− j+k−2)≤ i≤ ( j−3) and (r1(x′)) j−2 6= (r1(y′)) j−2. Therefore d( f (x), f (y))

is at least p− j+2.

In any case, we can conclude that d( f (x), f (y)) ≥ pld(x,y), where l =min{(k−2),2} ≥ 1.

In both cases, we can verify that d( f (x), f (y)) cannot be more than p− j+k.

In Case(i), for − j + k− 2 < i ≤ j− 3, coordinates of f (x) and f (y) are equal, and for

− j+ k−2 they differ. So the distance is at least p− j+k−2. If it is exacly p− j+k−2, then

d( f (x), f (y)) = p− j+k−2 ≤ p− j+k. (3.9)

If it is not exactly p− j+k−2, then it is more, and so it must be due to the difference in some

coordinates at the right side. That is, f (x)i 6= f (y)i for some i with ≥ j− 2. Choose the

smallest such i. Then

d( f (x), f (y)) = p−i ≤ p− j+2 ≤ p− j+k. (3.10)

From (3.9) and (3.10), d( f (x), f (y))≤ p− j+k.

In Case(ii), for− j+k−2≤ i≤ j−3, coordinates of f (x) and f (y) are equal, and for j−2

they differ. So the distance is at least p− j+2. If it is exactly p− j+2, then as 2 < k,

d( f (x), f (y)) = p− j+2 < p− j+k. (3.11)

If it is not exactly p− j+2, then it must be more, and so it must be due to the difference in

some coordinates at the left side. That is, f (x)i 6= f (y)i for some i with i < − j + k+ 2.

Choose smallest |i| among such i. Then

p− j+2 < d( f (x), f (y)) = pi < p− j+k−2 < p− j+k. (3.12)

32



From (3.11) and (3.12), d( f (x), f (y))≤ p− j+k. Hence d( f (x), f (y))≤ pkd(x,y).

For X = AZ, B(x, p−m) = {y∈ X |yi = xi f or −m≤ i≤m}. There are exactly p2m+1

balls of radius p−m, and all of them are needed to cover AZ. Therefore

Dd(AZ) = lim
m→∞

log(p2m+1)

| log(p−m)|
= lim

m→∞

(2m+1) log p
m log p

= 2

Now applying Proposition 3.4.1, with λ2 = p and λ1 = pk, we get 2 log p ≤ h(X , f ) ≤ 2k log p.

REMARKS

• Only in section (3.1) we need p to be prime, to get a field Qp, so that b= a
1−pk makes

sense.

• When p is prime, every rational number has a unique p-adic expansion, whose digits

can be got by iterative algorithms.
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Chapter 4

A DEVANEY CHAOTIC MAP WITH

POSITIVE ENTROPY

Consider a slight variation of the “reflection” functions r and r1, which “reflect” about the
0th and (−1)th coordinates respectively. We want a function f such that by fixing 2nk

consecutive central coordinates, we can fix a unique pre-image under f 2n for any given
element of AZ. It becomes necessary that the indices of the fixed coordinates remain same
after the reflection. It is not possible with r or r1. So we consider a different reflection, that
is a function that maps x0 to x1 and vice versa.

x = · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · is mapped to

r′(x) = · · ·x2

0th︷︸︸︷
x1 x0 x−1 x−2 · · · . In other words the map r′ is given by (r′(x))i = x(−i+1).

It is clearly a homeomorphism.
We consider f (x) = r′(σ k(x)+x), and show below that it is positively expansive and tran-
sitive, and it has positive entropy and a dense set of periodic points.

4.1 POSITIVE EXPANSIVENESS

Proposition 4.1.1. The function f : AZ→ AZ given by f (x) = r′(σ k(x)+ x), where k is a

positive integer, is continuous and positively expansive.

Proof. Continuity of f follows from continuity of r′ and continuity of the addition in AZ.
We only have to verify that f is positively expansive. Choose an ε < p−k. Suppose that
x 6= y, and d(x,y) = p− j. If j ≤ k, take n = 0.
Let d(x,y) = p− j , with j > k.
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Let x = · · ·x− j x− j+1 · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · x j−1 x j · · · . Then

σ k(x) = · · · xk− j xk− j+1 · · ·xk−2 xk−1

0th︷︸︸︷
xk xk+1 xk+2 · · ·xk+ j−1 xk+ j · · · .

Then xi = yi for − j+1≤ i≤ j−1, and either x j 6= y j or x− j 6= y− j. We denote σ k(x)+ x

by x′ and σ k(y)+ y by y′.

Case(i) Suppose that x j 6= y j. Then on the right side, σ k(x)i = σ k(y)i for 0≤ i < j− k, and
σ k(x) j−k 6= σ k(y) j−k. On the left side, σ k(x)i = σ k(y)i for − j+1 ≤ i ≤ 0. There-
fore, x′i = y′i for − j+1≤ i < j− k, and x′j−k 6= y′j−k. When r′ is applied (r′(x′))i =

(r′(y′))i for − j + k + 1 < i ≤ j and (r′(x′))− j+k+1 6= (r′(y′))− j+k+1. Therefore
d( f (x), f (y)) = p− j+k+1. The distance gets multiplied by a factor pk+1, when f

is applied.

Case(ii) If x j = y j, then x− j 6= y− j. Then on the right side, (σ k(x))i = (σ k(y))i for 0 ≤ i ≤
j− k. On the left side (σ k(x))i = (σ k(y))i for − j+1≤ i≤ 0. Therefore x′i = y′i for
− j+1≤ i≤ j−k and x′− j 6= y′− j. When r′ is applied (r′(x′))i = r′(y′)i for − j+k+

1≤ i≤ j and (r′(x′)) j+1 6= r′(y′) j+1. For i<− j+k+1 we cannot conclude anything
about (r′(x′))i and (r′(y′))i . Therefore d( f (x), f (y)) is atleast p− j−1. Either the
distance d( f (x), f (y)) is increased by a sufficiently large factor, or we are back in
Case (i), and another application of f will increase the distance by a factor pk+1.

Thus in both cases successive applications of f increase the distances till finally
d( f n(x), f n(y))≥ ε for some n.

Note that f is positively expansive implies f is sensitive, because AZ is perfect (Kůrka,
2003).

4.2 TRANSITIVITY

Next we verify that f is transitive. First, we prove the following result, which is actually
stronger than transitivity:

Proposition 4.2.1. Let f : AZ→ AZ be given by f (x) = r′(σ k(x)+x), where k is a positive

integer. Let any y = · · · y−2 y−1

0th︷︸︸︷
y0 y1 y2 · · · be given from AZ, and let n be any positive

integer. For any set of p-adic digits a−nk+1,a−nk+2, · · · ,ank, there is a unique x in AZ with

xi = ai for i =−nk+1,−nk+2, · · · ,nk and f 2n(x) = y.
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Proof. We use induction on n.

Let n = 1. Let a−k+1,a−k+2, · · · ,ak and y = · · · y−2 y−1

0th︷︸︸︷
y0 y1 y2 · · · be given. Con-

sider y′ = r′(y) = · · · y3 y2

0th︷︸︸︷
y1 y0 y−1 · · · . Consider the following x where xi indicates a

known coordinate xi = ai, and a ∗ indicates that the corresponding coordinate is yet to be
determined.

x = · · · ∗ ∗ ∗ x−k+1 · · ·
0th︷︸︸︷
x0 x1 · · ·xk ∗ ∗ ∗ · · · .

σ k(x) = · · ·∗ ∗ ∗x−k+1 · · · x0 x1 · · ·
0th︷︸︸︷
xk ∗ ∗· · · . Note that in σ k(x)+x, The coordinates

from (−k+ 1)th to 0th are fixed. Call these coordinates as z−k+1, · · · ,z0 respectively. We
have to find z which is as follows :

z = · · · ∗ ∗ ∗ z−k+1 · · ·
0th︷︸︸︷
z0 ∗ ∗ ∗ · · · . Then

z′ = r′(z) will be · · · ∗ ∗ ∗ · · ·
0th︷︸︸︷
∗ z0 z−1 · · ·z−k+1 ∗ ∗ ∗ · · · , where the ∗s indicate

that the corresponding coordinates are yet to be determined. Here z′1 = z0,z′2 = z−1 · · ·z′k =
z−k+1. So,

σ k(z′) = · · · ∗ ∗ ∗ z0 · · ·
0th︷ ︸︸ ︷

z−k+1 ∗ ∗ ∗ · · · . The remaining coordinates of z′ can
be easily found so that

σ k(z′)+ z′ = y′ = · · ·y3 y2

0th︷︸︸︷
y1 y0 y1 · · ·

We have to carry out the calculations for the left and right halves separately. For the
left side first fix z′0, which is the same as z1, such that z1 + z−k+1 ≡ y1 mod(p). If
z1 + z−k+1 > p, let c0 ( the carry) be 1, otherwise let c0 be 0. Next choose z′−1 = z2

such that z2+ z−k +c0 ≡ y2 mod(p), and call the carry as c−1. Proceed similarly. At every
step only the coordinate of σ k(z′) is known, and the corresponding coordinate of z′ has to
be calculated.
The same procedure applies to the right side also. First find z′(k+1) = z(−k), next find
z(−k−1), and so on. Here, at every step the coordinate of z′ is known and the correspond-
ing coordinate of σ k(z′) has to be calculated. Thus z′ is uniquely determined such that
σ k(z′)+ z′ = y′, and r′(σ k(z′)+ z′) = r′(y′) = y. Thus f (z′) = y.
Now z = r′(z′) is known. Hence x can be determined such that σ k(x)+x = z, or r′(σ k(x)+

x) = z′, i.e., f (x) = z′, and f 2(x) = f (z′) = y.
Next assume the result for n−1, and prove it for n. Let p-adic digits a−nk+1,a−nk+2, · · · ,ank

and y = · · · y−2 y−1

0th︷︸︸︷
y0 y1 y2 · · · be given. We have to find x such that xi = ai for

i =−nk+1,−nk+2, · · · ,nk, and f 2n(x) = y. Consider the following x, where xi indicates
a known coordinate =ai, and a ∗ indicates that the corresponding coordinate is yet to be
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determined.

x = · · · ∗ ∗ ∗ x−nk+1 · · ·
0th︷︸︸︷
x0 x1 · · ·xnk ∗ ∗ ∗ · · · . Then

σ k(x) = · · · ∗ ∗ ∗ x−nk+1 · · ·
((n−1)k)th︷︸︸︷

xnk ∗ ∗ ∗ · · · .
Since 2nk coordinates of x , from −nk+1 to nk are fixed, it follows that in σ k(x)+ x, the
2nk− k coordinates from (−nk+ 1) to (n− 1)k are fixed. Call these fixed coordinates as
z−nk+1, · · · ,z(n−1)k. We have to determine z which has to be as follows :

z = · · · ∗ ∗ ∗ z−nk+1 · · ·
0th︷︸︸︷
z0 z1 · · ·z(n−1)k ∗ ∗ ∗ · · · .

Consider z′ = r′(z).

z′ = · · · ∗ ∗ ∗
(−(n−1)k+1)th︷ ︸︸ ︷

z(n−1)k · · ·
0th︷︸︸︷
z1 z0 · · ·

nkth︷ ︸︸ ︷
z−nk+1 ∗ ∗ ∗ · · · .

σ k(z′) = · · · ∗ ∗ ∗
(−nk+1)th︷ ︸︸ ︷
z(n−1)k · · · z1 z0 · · ·

(n−1)kth︷ ︸︸ ︷
z−nk+1 ∗ ∗ ∗ · · · . Thus we are fixing coor-

dinates from (−(n−1)k+1)th to (n−1)kth, in σ k(z′)+ z′, which we call as w. Consider
w′ = r′(w), in which coordinates from (−(n− 1)k+ 1)th to (n− 1)kth are fixed. By in-
duction hypothesis the remaining coordinates of w′ can be uniquely determined so that
f 2(n−1)(w′) = y. Now w is uniquely determined, so that we can find z′ uniquely such that
σ k(z′) + z′ = w, which implies r′(σ k(z′) + z′) = w′, or f (z′) = w′. Since z is uniquely
determined, we can find remaining coordinates of x such that σ k(x)+ x = z, which gives
r′(σ k(x)+x) = f (x) = r′(z) = z′. Then f 2(x) = f (z′) = w′, and f 2n(x) = f 2(n−1)( f 2(x)) =

f 2(n−1)(w′) = y.

Proposition 4.2.2. The function f : AZ→ AZ given by f (x) = r′(σ k(x)+ x), where k is a

positive integer, is transitive.

Proof. Let U and V be any nonempty open sets in AZ. Fix some element y in V . Consider
an ε ball contained in U , centered at some point z. We may assume that ε = p− j for
some positive integer j. Choose n such that nk > j + 1. There is an x such that xi = zi

for i =−nk+1, · · · ,nk, and f 2n(x) = y. d(x,z)≤ p−nk+1 < p− j, and so x ∈U . Therefore
f 2n(U)

⋂
V is non-empty.

By a similar argument, we see that f 2 is strongly mixing. (See defintion (2.3.12)).

4.3 POSITIVE ENTROPY

We now prove that the topological entropy of f is positive.
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Proposition 4.3.1. The map f (x) = r′(σ k(x)+ x) is an open map.

Proof. We use the following notations :

Bd(x, p− j) - the open ball of radius p− j centered at x, for any positive integer j.

(4.1)
B(x,n) - the open ball of radius p−nk centered at x, for any positive integer n.

(4.2)

U(x,n) - the set of all points z with zi = xi for −nk+1≤ i≤ nk

for any positive integer n. (4.3)

C(x,n,m) - the set of all points z with zi = xi for −mk+1≤ i≤ nk for any

positive integers n,m. (4.4)

Here sets of type (4.1) and (4.2) are clopen (both open and closed) balls. Those of type
(4.3) and (4.4 ) are clopen cylinders by (Kůrka, 2009). We know that balls of type (4.1),
and the set of all clopen cylinders form bases for the product topology on AZ.
We prove that balls of type (4.2) and cylinders of type(4.3) also form bases.
For any x, we have to express Bd(x, p− j) as a union of balls of type (4.2).
Let j = nk+ l, where 0< l < k. Let S= {y∈AZ | yi = xi for−nk− l≤ i≤ nk+ l, and yi = 0
for i <−(n+1)k and (n+1)k < i}. For−(n+1)k≤ i <−nk− l and nk+ l < i≤ (n+1)k,
yi can be anything. There are p2(k−l) such y. Then Bd(x, p− j) =

⋃
y∈S B(y,n+1).

By a similar argument we can express every subset of type (4.2) as a union subsets of type
(4.3). For any x, let S1 = {y∈AZ | yi = xi for−nk≤ i≤ nk, and yi = 0 for i<−(n+1)k+1
and i > (n+1)k }. For−(n+1)k+1≤ i <−nk, and nk < i≤ (n+1)k, yi can be anything.
Then B(x,n) =

⋃
y∈S1

U(y,n+1). Therefore subsets of type (4.3) also form a basis.
Now it is enough to show that f (U(x,n)) is open for all x ∈ AZ and all n > 1. We prove
that

f (U(x,n)) =C( f (x),n,n−1) (4.5)

Let z ∈U(x,n). Then zi = xi for −nk+1≤ i≤ nk, and σ k(z)i = σ k(x)i for −nk+1≤ i≤
(n−1)k. It follows that
(σ k(z)+ z)i = (σ k(x)+ x)i for −nk+1≤ i≤ (n−1)k, and so
(r′(σ k(z)+ z))i = (r′(σ k(x)+ x))i, i.e., f (x)i = f (z)i for −(n− 1)k+ 1 ≤ i ≤ nk. Thus
f (U(x,n))⊆C( f (x),n,n−1).

39



Now let y ∈ C( f (x),n,n− 1). There is a unique pre-image z for this y under f such that
zi = xi for 1≤ i≤ k. We prove that zi = xi for −nk+1≤ i≤ nk.
Suppose that zi 6= xi for some i with −nk+1≤ i≤ nk.
First let zi 6= xi for some positive i, with i ≤ nk, and choose the smallest such i. Then
k < i≤ nk. Then σ k(z)i−k 6= σ k(x)i−k, and (σ k(z)+ z)i−k 6= (σ k(x)+x)i−k, which implies
r′(σ k(z)+ z)−i+k+1 6= r′(σ k(x)+ x)−i+k+1, i.e., y−i+k+1 6= f (x)−i+k+1. This is a contra-
diction because −(n−1)k+1≤−i+ k+1≤ 0.
Now suppose that zi = xi for 0 < i≤ nk. Then zi 6= xi for some negative i, with −nk+1≤
i≤ 0. Consider such i with minimum |i|.
Now σ k(z) j = σ k(x) j, for i ≤ j ≤ 0, but zi 6= xi. Therefore (σ k(z)+ z))i 6= (σ k(x)+ x))i,
and so r′(σ k(z)+ z))−i+1 6= r′(σ k(x)+ x))−i+1, or y−i+1 6= f (x)−i+1, a contradiction be-
cause 0 <−i+1≤ nk. Thus f (U(x,n))⊇C( f (x),n,n−1).
As C( f (x),n,n−1) is a clopen cylinder, f is an open map.

Now we use a result from (Sakai, 2003) ( p. 17, Theorem 1).

Theorem 4.3.2. Let f be a positively expansive self map on a compact metrizable space.

Then the following conditions are equivalent.

(1) f is an open map.

(2) f has shadowing property .

It follows that the function f (x) = r′(σ k(x)+ x) has shadowing property. Finally, we
use a result from (Li and Oprocha, 2013) ( p. 6, Theorem 3.3).

Theorem 4.3.3. Let (X , f ) be a non-wandering dynamical system with the shadowing

property. Then either (X , f ) is equicontinuous or it has positive entropy.

Proposition 4.3.4. The function f (x) = r′(σ k(x)+ x) has positive entropy.

Proof. (AZ, f ) is transitive implies that it is non-wandering. It is positively expansive and
AZ is perfect implies it is sensitive, and therefore cannot be equicontinuous. By Theorem
4.3.3, it has positive entropy.

4.4 DENSITY OF PERIODIC POINTS

To see that periodic points are dense, we use the following result from (Aoki and Hiraide,
1994) (Theorem 3.4.2)

40



Theorem 4.4.1. Let (X , f ) be a compact dynamical system. If f is a positively expansive

surjection having the pseudo-orbit tracing property, then the set of periodic points of f is

dense in Ω( f ), the set of non-wandering points of f .

Proposition 4.4.2. The function f (x) = r′(σ k(x)+ x), on AZ has a dense set of periodic

points.

Proof. Since (AZ, f ) is transitive, it is non-wandering, i.e., Ω( f ) = AZ. It has the shad-
owing property, and the compactness of AZ implies it has pseudo-orbit tracing property.
therefore the set of periodic points is dense in AZ.

Thus, the system (AZ, f ) is Devaney chaotic.
There are various kinds of chaos, some of which are defined in Chapter 2. Among them
we observe that positive entropy and Devaney chaos are quite strong, that is each of them
implies many other types of chaos. Hence we can conclude that the function f (x) =

r′(σ k(x)+ x) is a good enough chaotic function.

We now find the fixed points of f .

Proposition 4.4.3. For any elements a1,a2, · · · ,ak of A, there is a fixed point x of the

function f (x) = r′(σ k(x)+ x) with xi = ai for i = 1,2 · · · ,k.

Proof. Consider the following x, where xi = ai, for i = 1,2 · · · ,k, and *s indicate that the
corresponding coordinates are yet to be determined.

x = · · · ∗ ∗ ∗
1st︷︸︸︷
x1 x2 · · ·xk ∗ ∗ ∗ · · · . Then

σ k(x) = · · · ∗ ∗ ∗ x1 x2 · · ·
0th︷︸︸︷
xk ∗ ∗ ∗ · · · .

We have to determine the remaining coordinates of x such that

σ k(x)+ x = ∗ ∗ ∗ · · ·xkxk−1 · · ·x2

0th︷︸︸︷
x1 ∗ ∗ ∗ · · · .

Find x0 such that x0 + xk ≡ x1 mod p, and let c0 be the carry. Next find x−1 such that
x−1 ++xk−1 + c0 ≡ x2 mod p, and let c−1 be the carry. Proceed similarly to find all
coordinates on the left side.
For the right side, first find xk+1 such that x1 + xk+1 ≡ x0 mod p, and let c1 be the carry.
Then find xk+2 such that x2+xk+2 ≡ x−1 mod p, and let c2 be the carry. Proceed similarly
to find all coordinates on the right side of 0th position. Now σ k(x)+ x = r′(x) or f (x) =

x.

Thus there are pk fixed points. We can also construct points of period 2.
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Proposition 4.4.4. For any elements a−k+1,a−k+2 · · ·a1,a2, · · · ,ak of A, there is a periodic

point x of the function f (x) = r′(σ k(x)+ x) of period 2, with xi = ai for i =−k+1,−k+

2, · · · ,1,2 · · · ,k.

Proof. Consider the following x, where xi = ai, for i =−k+1,−k+2, · · · ,1,2 · · · ,k, and
*s indicate that the corresponding coordinates are yet to be determined.

x = · · · ∗ ∗ ∗ x−k+1 xk+2 · · · x0

1st︷︸︸︷
x1 x1 x2 · · ·xk ∗ ∗ ∗ · · · . (4.6)

Then

σ
k(x) = · · · ∗ ∗ ∗ x−k+1 x−k+2 · · · x1 x2 · · ·

0th︷︸︸︷
xk ∗ ∗ ∗ · · · . (4.7)

Then z = σ k(x)+x is as follows, where z−k+1,z−k+2, · · · ,z0 are the known coordinates
and the *s indicate that the corresponding coordinates are yet to be determined.

z = · · · ∗ ∗ ∗ z−k+1 z−k+2 · · ·
0th︷︸︸︷
z0 ∗ ∗ ∗ · · · . (4.8)

So, z′ = r′(z) will look like

z′ = · · · ∗ ∗ ∗
1st︷︸︸︷
z0 z−1 · · ·z−k+1 ∗ ∗ ∗ · · · . (4.9)

Or

z′ = · · · ∗ ∗ ∗
1st︷︸︸︷
z′1 z′2 · · ·z′k ∗ ∗ ∗ · · · . (4.10)

σ
k(z′) = · · · ∗ ∗ ∗ ∗ z′1 z′2 · · ·z′k

1st︷︸︸︷
∗ ∗ ∗ ∗ · · · . (4.11)

We have to find z and x such that σ k(z′)+ z′ = x′ = r′(x).
First find z′k+1 i.e., z−k such that z′k+1 + z′1 ≡ x′1 = x0 mod p , and let c1 be the carry.
Subsitute this value of z−k in (4.8), so that x−k is uniquely determined by (4.7) +(4.6) =
(4.8).
Now find z′0, i.e., z1 such that z′0+ z′k ≡ x′0 = x−1 mod p, and let c0 be the carry. Substitute
this z1 in (4.8), to determine xk+1 uniquely by (4.7) +(4.6) = (4.8).

42



Next find z′k+2, i.e., z−k−1 such that z′k+2 + z′2 + c1 ≡ x′2x−1 mod p, and let c2 be the carry.
Proceed similarly on both sides. Now we have got σ k(x)+ x = z. So r′(σ k(x)+ x) = z′,
i.e., f (x) = z′, and σ k(z′)+ z′ = x′, or r′(σ k(z′)+ z′) = x, which means f (z′) = x, f 2(x) =

f ( f (x)) = f (z′) = x.

We cannot generalize this by imitating the proof of (4.2.1), and using induction, to get
periodic points of period 2n. We can start with x, whose central 2nk coordinates are given.
We can get −(n−1)k+1th to (n−1)kth coordinates of w. But in place of a fully known y,
we have x, whose 2nk coordinates only are known. The remaining coordinates of x and w

are to be determined simultaneously such that f 2(n−1)(w′) = x and f 2(x) = w′, for which
we cannot use induction directly.
Example (1)
Let p = 5, k = 3 and n = 1. Let w be the word 0 1 2 3 4. Let y = w̄. That is,
y = · · ·0 1 2 3 4 0 1 2 3 4 . 0 1 2 3 4 0 1 2 3 4 · · · .
We put a dot after the zeroth coordinate to identify that position.
Suppose that 2nk = 6 coordinates of x, from x−2 to x3 are given. Say, xi = 1 for i =

−2,−1,0,1,2,3.
i.e., x = · · · ∗ ∗ ∗ 1 1 1 . 1 1 1 ∗ ∗ ∗ · · · .
We have to determine the remaining coordinates of x such that f 2(x) = y.
x = · · · ∗ ∗ ∗ 1 1 1 . 1 1 1 ∗ ∗ ∗ · · ·
σ3(x) = · · · ∗ ∗ ∗ 1 1 1 1 1 1 . ∗ ∗ ∗ · · ·

Adding, · · · ∗ ∗ ∗ 2 2 2 . ∗ ∗ ∗ · · ·

Now r′(σ3(x)+ x) = z, say, is · · · ∗ ∗ ∗ ∗ ∗ ∗ . 2 2 2 ∗ ∗ ∗ · · ·
σ3(z) = · · · ∗ ∗ ∗ ∗ ∗ ∗ 2 2 2 . ∗ ∗ ∗ · · ·

Adding, we get r′(y) · · · 4 3 2 1 0 4 3 2 1 0 . 4 3 2 1 0 4 3 2 1 0 · · ·
Comparing coordinates, we find z0, z−1 and z−2 in that order.
z0 +2≡ 0 mod 5 gives z0 = 3 and c0 = 1.
z−1 +2+1≡ 1 mod 5 gives z−1 = 3 and c−1 = 1.
z−2 +2+1≡ 2 mod 5 gives z−2 = 4 and c−2 = 1. This gives
z = · · · ∗ ∗ ∗ ∗ ∗ 4 3 3 . 2 2 2 2 ∗ ∗ · · ·
σ3(z) = · · · ∗ ∗ ∗ ∗ 4 3 3 2 2 2 . 2 1 ∗ · · ·

r′(y) = · · · 4 3 2 1 0 4 3 2 1 0 . 4 3 2 1 0 4 3 2 1 0 · · ·
Next find z−3, z−4 and z5.
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z−3 +3+1≡ 3 mod 5 gives z−3 = 4, and c−3 = 1.
z−4 +3+1≡ 4 mod 5 gives z−4 = 0, and c−4 = 0.
z−5 +4+1≡ 0 mod 5 gives z−5 = 1, and c−5 = 1. This gives
z = · · · ∗ ∗ ∗ ∗ 1 0 4 4 3 3 . 2 2 2 ∗ ∗ ∗ · · ·
σ3(z) = · · · ∗ ∗ ∗ 1 0 4 4 3 3 2 2 2 . ∗ ∗ ∗ · · ·

r′(y) = · · · 4 3 2 1 0 4 3 2 1 0 . 4 3 2 1 0 4 3 2 1 0 · · ·
Continuing similarly at the right side we get z4, z5, z6, z7 etc. in that order. So
z = · · · ∗ ∗ ∗ ∗ 1 1 1 0 4 4 3 3 . 2 2 2 2 1 0 4 3 3 4 3 2 ∗ ∗ ∗ · · · Substituting
this z in the equation σ3(x)+ x = r′(z), we get
x = · · · ∗ ∗ ∗ 1 1 1 . 1 1 1 ∗ ∗ ∗ · · ·
σ3(x) = · · · ∗ ∗ ∗ 1 1 1 1 1 1 . ∗ ∗ ∗ · · ·

r′(z) = · · · ∗ ∗ ∗ 2 3 4 3 3 4 0 1 2 2 2 2 . 3 3 4 4 0 1 1 1 ∗ ∗ ∗ · · ·
By a similar argument, we find x−3, x−4, x−5, x−6, etc. in that order on the left side , and
x4, x5, x6, x7, etc. in that order on the right side. We get
x = · · · ∗ ∗ ∗ 3 0 1 4 3 2 4 0 1 1 1 1 . 1 1 1 2 2 3 2 3 2 3 2 ∗ ∗ ∗ · · · .
For this x, f 2(x) = y.
Example (2)
Let p = 5 and k = 3. We find a periodic point x with period 2, of the form
x = · · · ∗ ∗ ∗ 1 1 1 . 2 2 2 ∗ ∗ ∗ · · ·
σ3(x) = · · · ∗ ∗ ∗ 1 1 1 2 2 2 . ∗ ∗ ∗ · · ·

Adding, we get
· · · ∗ ∗ ∗ 3 3 3 . ∗ ∗ ∗ · · · .

Let r′(σ3(x)+ x) = z. Then
z = · · · ∗ ∗ ∗ . 3 3 3 ∗ ∗ ∗ · · ·
σ3(z) = · · · ∗ ∗ ∗ 3 3 3 . ∗ ∗ ∗ · · ·

Adding, we have to get
r′(x) = · · · ∗ ∗ ∗ 2 2 2 . 1 1 1 ∗ ∗ ∗ · · ·
At the left side, we calculate z0, z−1 and z−2 in that order.
z0 +3≡ 2 mod 5, which gives z0 = 4 and the carry c0 = 1.
z−1 +3+1≡ 2 mod 5, which gives z−1 = 3 and the carry c−1 = 1.
z−2 + 3+ 1 ≡ 2 mod 5, which gives z−2 = 3 and the carry c−2 = 1. Substituting these
values,
x = · · · ∗ ∗ ∗ 1 1 1 . 2 2 2 ∗ ∗ ∗ · · ·
σ3(x) = · · · ∗ ∗ ∗ 1 1 1 2 2 2 . ∗ ∗ ∗ · · ·

Adding, we get
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r′(z) = · · · ∗ ∗ ∗ 3 3 3 . 4 3 3 ∗ ∗ ∗ · · · .
Now we can find x4, x5 and x6 in that order.
2+ x4 ≡ 4 mod 5, so x4 = 2 and the carry c′4 = 0.
2+ x5 +0≡ 3 mod 5, so x5 = 1 and the carry c′5 = 0.
2+ x6 +0≡ 3 mod 5, so x6 = 1 and the carry c′6 = 0.
Now the situation is
z = · · · ∗ ∗ ∗ 3 3 4 . 3 3 3 ∗ ∗ ∗ · · ·
σ3(z) = · · · ∗ ∗ ∗ 3 3 4 3 3 3 . ∗ ∗ ∗ · · ·

r′(x) = · · · ∗ ∗ ∗ 1 1 2 2 2 2 . 1 1 1 ∗ ∗ ∗ · · ·
Next calculate z−3, z−4 and z−5.
z−3 +4+1≡ 2 mod 5, which gives z−3 = 2, c−3 = 1.
z−4 +3+1≡ 1 mod 5, which gives z−4 = 2, c−4 = 1.
z−5 +3+1≡ 1 mod 5, which gives z−5 = 2, c−5 = 1. Substituting these values,
x = · · · ∗ ∗ ∗ 1 1 1 . 2 2 2 2 1 1 ∗ ∗ ∗ · · ·
σ3(x) = · · · ∗ ∗ ∗ 1 1 1 2 2 2 . 2 1 1 ∗ ∗ ∗ · · ·

Adding, we get
r′(z) = · · · ∗ ∗ ∗ 3 3 3 . 4 3 3 2 2 2 ∗ ∗ ∗ · · · .
At this stage we can find x7, x8 and x9. Proceeding similarly, we can find all coordinates
of x on the right side of the dot. The same procedure is repeated with the right side to get
x0, x−1, etc.

Remarks

• The basic map used here is the shift map. But just the shift map is not of much use
in data hiding, as it does not alter any coordinate, but only shifts coordinates to one
side, so it is used in combination with addition with a carry.

• Most of the basic dynamical properties of the shift map, like positive entropy and
Devaney chaos are not changed after combining with the addition map. It is natural
to guess that the behaviour of f n should be similar whether n is even or odd. In
particular, the result in 4.2.1, which could be proved only for even integers, may
actually be true for all integers.
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Chapter 5

A NOTE ON POSITIVELY EXPANSIVE
MAPS ON NON-COMPACT SPACES

Expansive homeomorphisms and positively expansive maps occur frequently in dynamical
systems. Consider the following commonly used definition :

Definition 5.0.1. A dynamical system (X , f ) is positively expansive if ∃ ε > 0, ∀ x 6= y ∈
X , ∃ n ≥ 0 such that d( f n(x), f n(y)) ≥ ε .

This concept is used usually with compact spaces ((Kůrka, 2003), (Bahi and Guyeux,
2013), (Sakai, 2003), (Sakai, 1985), (Reddy, 1982) and (Fujita et al., 2010)), and some-
times with non-compact spaces also. This property, sometimes along with some other
properties like shadowing property, is used to determine other dynamical properties like
topological entropy and set of periodic points ((Li and Oprocha, 2013), (Aoki and Hiraide,
1994), (Fujita et al., 2008)).
The above n cannot be zero for all x and y in X , with x 6= y, unless the topology is discrete,
and is not of any interest. Therefore at least for some x and y, n should be greater than
zero.
The question is whether we can find such n greater than zero for all x and y in X with x 6= y,
or is a positively expansive map injective?
At least in the case of a compact metric space X it is well known that existence of a pos-
itively expansive homeomorphism from X onto X implies X is finite. In fact in (Coven
et al., 2006), without assuming that f : X → X is onto, it is proved that, if X is compact
and infinite, f can not be positively expansive and injective.
It is not true in the case of non-compact spaces. There, positively expansive maps can be,
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but need not be, injective. Further we can prove that when not injective, it is possible for
all points in the image to have any prescribed number of pre-images.

5.1 AN EXAMPLE IN THE NON-COMPACT CASE

When X is compact, some authors define (X , f ) to be positively expansive if the condi-
tion in the above definition holds for some equivalent metric (Reddy, 1982). There any
equivalent metric is also totally bounded (i.e., for every ε > 0, X can be covered by finitely
many ε-balls). But a non-compact space, which is totally bounded in some metric may be
unbounded in another equivalent metric.
For example, in the complex plane C, consider the annulus X = {z ∈ C | |z| > 1} on the
complex plane and the map f (z) = zn. It multiplies angles by n and also increases the
modulus, and so is positively expansive, and every element has exactly n pre-images.
To verify that it is positively expansive, first consider the map f (z) = z2 on the anulus
X = {z ∈ C | |z| > 1} of the complex plane. This map doubles angles on the unit circle.
On the outer side of the unit circle, it not only doubles angles but increases the modulus
also. It is clearly not injective because z2 = (−z)2.
It is positively expansive, with expansive constant 1. Consider two distinct elements
x = r1eiθ1 and y = r2eiθ2 . If r1 6= r2, then

d( f n(x), f n(y))≥ |r2n

1 − r2n

2 |

= |(r2n−1

1 )2− (r2n−1

2 )2|

= |r2n−1

1 + r2n−1

2 ||r2n−1

1 − r2n−1

2 |

≥ |r2n−1

1 + r2n−1

2 ||r1− r2|

which is greater than 1 for sufficiently large n.
If r1 = r2 = r, then θ1 6= θ2. We may assume |θ1− θ2| ≤ π . Distance between x and y

is 2r sin( |θ1−θ2|
2 ). If |θ1− θ2| ≥ π

2 , then π

4 ≤
|θ1−θ2|

2 ≤ π

2 and we have 2r sin( |θ1−θ2|
2 ) ≥

2r 1√
2
> 1, and we may take n = 0.

If |θ1−θ2|< π

2 , apply f once, to get f (x) = r2e2iθ1 and f (y) = r2e2iθ2 . If 2|θ1−θ2| ≥ π

2 ,
take n = 1. If not, apply f once more. By repeating this sufficiently many times, for some
n we get d( f n(x), f n(y)) = 2r2n

sin(2n |θ1−θ2|
2 )≥ 2r2n 1√

2
> 1.

A similar argument can be applied to the function f (x) = xn, to get n inverse images for
any element of the annulus.
The annulus can be made totally bounded easily. Partition it into the annuli A j, where
A j = {z ∈ C | j < |z| ≤ j+1}, for j ≥ 1. X =

⋃
j≥1 A j. Each A j can be “shrunk” so that
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difference between the outer and inner radius is 1
2 j , instead of 1. Thus X becomes a disc Y

of radius ∑
∞
j=0

1
2 j < 2 in R2 ( or C), and so is totally bounded. Let h be the homeomorphism

that does this shrinking of X to the bounded annulus Y . Now, consider the conjugate
g = h f h−1 of f . For two points x and y of Y , with same argument, d(gn(x),gn(y)) tends to
zero as n tends to infinity, and so g is not positively expansive.
But if we take the equivalent metric d′ in Y , given by d′(x,y) = d(h−1(x),h−1(y)), then in
this metric the map g on Y is positively expansive. So a map that does not actually increase
distances, may do so if the metric is changed. In the case of unbounded spaces, it is easy
to define positively expansive maps. For isolated points, any map is continuous and it is
simple to define maps with required properties. Therefore interesting cases are only when
X is totally bounded, and perfect (i.e., every point of X is a limit point).
Hence we consider only the case when X is totally bounded and perfect.
Consider the totally disconnected symbolic space AN where A = {0,1,2, · · · p− 1} for
some positive integer p. If A is given discrete topology, AN (where N = 0,1,2 · · ·), in the
product topology is a totally disconnected, compact, perfect metric space (Kůrka, 2003).
The distance between two points x = x0x1x2 · · · and y = y0y1y2 · · · may be defined by
d(x,y) = 2− j where j = min{i|xi 6= yi}.

Consider the one sided full shift σ given by (σ(x))i = xi+1. It is a well known pos-
itively expansive map. Consider a point x = x0x1 x2 · · · , with a dense (forward) or-
bit, W . Then W = {x,σ(x),σ2(x), · · ·}. For example, x can be taken as the Champer-
nowne sequence, which is obtained by the concatenation of all words of length n, with
letters in A, for all positive integers n (Kůrka, 2003). For example, for p = 2, x can be
0 1 00 01 10 11 000 001 010 100 011 101 110 111 · · · . Assume that all length-n words
appear before length-(n+1) words, for n > 0. So, W consists of the elements
x0x1x2 · · ·
x1x2x3 · · ·
x2x3x4 · · ·
· · · .
These elements are distinct, otherwise it follows that there are m and k, with m > k ≥ 0
such that xk+i = xm+i for all i ≥ 0, and so x is eventually periodic under σ , which is not
true.
Let Y = σ−1(W ). Then σ(Y ) = W . Both W and Y are non-compact, because they are
proper dense subsets of of the compact space AN. They are totally bounded because AN is.
We verify that W has no isolated points. Let w = xkxk+1 · · · be any point in W . In every
open ball of radius 2− j around w, we have to find a point of W , different from w. There
is an n such that all words of length n− 1 appear before xk in x, and at least a part of a
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length-n word appears after xk−1. It is enough to consider 2− j neighborhoods of w, where
j > n. The word xkxk+1 · · ·xk+ j, of length j+1 appears somewhere later in the orbit of x,
i.e., there is m > k such that xkxk+1 · · ·xk+ j = xmxm+1 · · ·xm+ j for some m > k.
To verify that Y is perfect, we use a similar argument. Any element y of Y is of the form
axkxk+1 · · · , for some a ∈ A. For σ(y) = xkxk+1 · · · ∈W , choose j and find m > k as above.
Then y = axkxk+1 · · · 6= axmxm+1 · · · , but axmxm+1 · · · belongs to the 2− j -neighborhood of
y. Thus Y is also prefect.
Now, σ |W is injective, σ |Y is not injective, and every element in the image has exactly p

pre-images.
Here σ |W is not onto because the first element x, is not the image under σ for any element
of W . So we may take W ′ to be a bi-infinite orbit of x, by including a backward orbit, say,
0x0x1x2 · · ·
00x0x1x2 · · ·
000x0x1x2 · · ·
· · · .
Any two of these elements are also distinct.
So W ′ is
· · ·
x2x3 · · ·
x1x2 · · ·
x0x1 · · ·
0x0x1x2 · · ·
00x0x1x2 · · ·
000x0x1x2 · · ·
· · · .
Take Y ′ = σ−1(W ′). Both Y ′ and W ′ are perfect. σ(Y ′) = σ(W ′) =W ′. Every element in
W ′ has exactly one pre-image in W ′ and exactly p pre-images in Y ′. Since σ is an open
map, σ |W ′ is a homeomorphism.
These two examples are are just orbits of a single element. We can also have another pair
of examples, which are also countable, but are not orbits of a single element.

Proposition 5.1.1. The function f : AZ→ AZ given by f (x) = r(σ k(x)+ x), where k is

a positive integer, is continuous, positively expansive and surjective. Each element in AZ

has exactly pk pre-images under f .

Proof. We have already verified in (3.4) that the function is positively expansive. From the
proof of (4.2.1) it follows that each y has exactly pk pre-images under f .
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Now consider two subspaces of X = AZ, invariant under f given by

Y = {y ∈ X | f (y) has only f initely many non–zero coordinates} (5.1)

and
W = {w ∈ X |w has only f initely many non–zero coordinates} (5.2)

Clearly f (W )⊆ f (Y )⊆W ⊆Y . We prove that W and Y are not compact. Take an element

x = · · · x−2 x−1

0th︷︸︸︷
x0 x1 x2 · · · in X , not in Y . Consider the sequence {an} in W given by

an = · · ·0 0 0 x−nx−n+1 · · ·xn−1 xn 0 0 0 · · · . Each an is in W and so is in Y . The sequence
{an} converges to x. But x /∈Y and hence x /∈W . It follows that W and Y are not comapct.
We prove that f |Y is is not injective, but f |W is injective.
From Proposition 5.1.1, it follows that every element of f (Y ) has pk pre-images under f

in Y . Thus f |Y is not one-to-one.
For every element of W , we prove that it has atmost one pre-image in W . Recall f (x) =

r(σ k(x)+ x). Note that r is a homeomorphism. Hence it is enough to prove that for each
w in W , there is atmost one x in W such that σ k(x)+ x = w.
Let

x = · · ·0 0 0 x− j x− j+1 · · · x−1

0th︷︸︸︷
x0 x1 x2 · · ·xm 0 0 0 · · · ∈W .

Then

σ k(x) = · · ·000
(− j−k)th︷︸︸︷

x− j x− j+1 · · ·x0 · · ·
0th︷︸︸︷
xk xk+1 xk+2 · · ·xm 0 0 0 · · · .

Consider first the addition of the left part. Let a be the p-adic integer represented by
x− jx− j+1 · · ·x0, i.e.,

x0 + px−1 + · · · p jx− j = a (5.3)

and b be the p-adic integer represented by x1x2 · · ·xk, i.e.,

xk + pxk−1 · · · pk−1x1 = b (5.4)

Then the integer represented by x− jx− j+1 · · ·x0 · · · xk is apk +b, i.e

xk + pxk−1 · · · pk−1x1 + pkx0 + pk+1x−1 + · · ·+ p j+kx− j = apk +b (5.5)

Addition on the left side i.e., (5.3) + (5.5) gives a+apk +b.
The question is if a+apk +b = a′+a′pk +b′ for some other such non-negative integers a′

and b′, then can we say a = a′ and b = b′ ?
The answer is yes, because (1+ pk)(a−a′) = b′−b and |b−b′| ≤ pk. If a−a′ 6= 0, then
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|(1+ pk)(a−a′)|> pk. So a = a′ and b = b′. For the right side, once x1,x2 · · · ,xk are fixed,
the remaining coordinates are also fixed. Hence f |W is injective.
Here we note that if p = n is any number, not necessarily a prime, and if k = 1, f |Y is not
injective and any element of f (Y ) has n pre-images.
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Chapter 6

CONCLUSION

The above arguments and discussions given in Chapter 3 and Chapter 4 carry through, if
we replace the addition with a carry by addition without the carry. (In that case f 2 is a
cellular automaton.)
The metric used here recognises only the coordinates for which the “first difference” ap-
pears. We may redefine the metric, for example, as

d(x,y) = ∑
i,xi 6=yi

1
p−|i|

(6.1)

This will take into consideration all coordinates where x and y differ. But it will not help
much in distinguishing between the entropies of the function f that uses addition with a
carry, and the corresponding function that uses addition without a carry.
Though all the differences in behaviour of the two functions cannot be measured mathe-
matically, by intution we see that addtion with a carry should give more unpredictability.
Following are some points to be considered for future work.

• In Chapter 4, though we proved that periodic points are dense, we did not actually
find the periodic points. Possible future work can be done to find some periodic
points.

• To verify whether any of the functios in Chapter 3 are Devaney-chaotic.

• To study the behaviour of positively expansive maps on non-compact manifolds with
boundary.
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