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ABSTRACT

In 1972, Erdös - Faber - Lovász conjectured that, if H is a linear hypergraph con-

sisting of n edges of cardinality n, then it is possible to color the vertices with n colors

so that no two vertices with the same color are in the same edge. In this research work

we give a method of coloring of the linear hypergraph H satisfying the hypothesis of the

conjecture and we partially prove the Erdös - Faber - Lovász conjecture theoretically.

Let G be a graph and KG be the set of all cliques of G, then the clique graph of G

denoted by K(G) is the graph with vertex set KG and two elements Qi,Q j ∈KG form

an edge if and only if Qi∩Q j 6= /0.

We prove a necessary and sufficient condition for a clique graph K(G) to be com-

plete when G = G1 +G2, give a partial characterization for clique divergence of the

join of graphs and prove that if G1, G2 are Clique-Helly graphs different from K1 and

G = G1�G2, then K2(G) = G.

Let G be a labeled graph of order α , finite or infinite, and let N(G) be the set of all

labeled maximal forests of G. The forest graph of G, denoted by F(G), is the graph with

vertex set N(G) in which two maximal forests F1, F2 of G form an edge if and only if

they differ exactly by one edge, i.e., F2 = F1− e+ f for some edges e ∈ F1 and f /∈ F1.

Using the theory of cardinal numbers, Zorn’s lemma, transfinite induction, the ax-

iom of choice and the well-ordering principle, we determine the F-convergence, F-

divergence, F-depth and F-stability of any graph G.

Keywords: Chromatic number, Erdös - Faber - Lovász conjecture, Graph dynamics,

Graph Operators, Forest graph operator, Maximal clique, Clique graph, Join of graphs,

Cartesian product of graphs, Clique-Helly graphs and Infinite cardinals
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2.22 The graphs Ĥ and G, after colors have been assigned to their vertices. . 54

2.23 A 6 coloring of hypergraph H corresponding to the graph G shown in

Figure 2.22b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.24 Fano Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.25 Graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Chapter 1

INTRODUCTION

In 1736, a Swiss Mathematician Leonhard Eular (1707-1783) solved the well known

Konigsberg Bridge problem. The method he used to solve it is considered by many to

be the birth of Graph Theory. Later in 19th century German Physicist Gustav Kirchhoff

(1824-1887) investigated electrical circuits leads to the development of results on trees

in graph. But the term tree was introduced by the British Mathematician Arthur Cayley

(1821-1895) in 1857 while studying the enumeration of organic chemical isomers. In

the early 20th century, a French Mathematician and a Theoretical Physicist, Poincare

(1854-1912) defined in principle what is known as the incidence matrix of a graph.

In 1936, the first book on graph theory was published by Denes Konig (1884-1944).

After Second World War, further books appeared on graph theory (Ore, Behzad and

Chartrand, Tutte, Berge, Harary, Gould, Wilson, West and Diestel among many others).

Graph theory has found many applications in engineering and science, such as elec-

trical, chemical, civil and mechanical, communication, operational research, computer

science and other scientific and not-so-scientific areas.

1.1 Basic Definitions

A graph G consists of a set V of vertices (points, nodes) and a set E of edges(lines,

connections) such that each edge e ∈ E is associated with ordered or unordered pair of

elements of V , i.e., there is a mapping from the set of edges E to set of ordered or un-

ordered pairs of elements of V . The graph G with vertex set V and edge set E is written

as G = (V,E) or G(V,E).
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If an edge e ∈ E is associated with an ordered pair (u,v) or an unordered pair (u,v),

where u,v ∈V , then e is said to connect u and v and u,v are called end points of e. An

edge is said to be incident with vertices it joins. Thus, the edge e that joins the vertices

u and v, is said to be incident on each of its end points u and v. Any pair of vertices that

is connected by an edge in a graph are called adjacent vertices. In a graph a vertex that

is not adjacent to any another vertex is called an isolated vertex.

A graph G(V,E) is said to be finite if it has a finite number of vertices and finite

number of edges. (A graph with finite number of vertices must also have finite number

edges): otherwise, it is infinite graph, |V (G)| denotes the number vertices in G and is

called the order of G. Similarly, |E(G)| denotes the number of edges in G and is called

the size of G. If G is a (p,q) graph then G has p vertices and q edges.

Two or more edges joining the same pair of vertices are known as multiple edges,

and an edge joining a vertex to itself is called a loop. A graph with no loops and mul-

tiple edges is called a simple graph. In a graph if multiple edges are allowed, but no

loops, then the graph is known as a multi graph. If both the loops and the multiple edges

are allowed in a graph, then the graph is considered to be a pseudo graph.

A subgraph of G is a graph having all of its vertices and edges in G. If G1 is a

subgraph of G, then G is a super graph of G1. A spanning subgraph is a subgraph con-

taining all the vertices of G. For any set S of vertices of G, the induced subgraph 〈S〉 is

the maximal subgraph of G with vertex set S. The removal of a vertex vi from a graph

G results in a maximal subgraph G−vi, of G not containing the vertex vi. Similarly, the

removal of an edge xi results in a maximal subgraph G− xi, of G except xi.

A walk of G is a finite sequence {v0,e1,v1,e2,v2,e3, . . . ,en,vn} whose terms are al-

ternately vertices vi and edges ei of G for 1≤ i≤ n, and vi−1 and vi are the two ends of

ei. A trail in G is a walk in which no edge of G appears more than once. A path P is a

trail in which no vertex appears more than once.
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Two vertices vi and v j are said to be connected in G if there exists a path between

these vertices. A graph G is called connected if all pairs of its vertices are connected.

A component of a graph G is a maximal connected subgraph, i.e., it is not a subgraph

of any other connected subgraph of G.

A tree T is a connected acyclic graph. A tree of a graph G is an acyclic connected

subgraph of G. A set of trees of G forms a forest. A spanning tree of G is a connected,

acyclic, spanning subgraph of G. If G is disconnected, then the acyclic spanning sub-

graph is called the forest of G. A forest F of G is said to be maximal if there is no forest

F ′ of G such that F is a proper subgraph of F ′.

An Euler trail of a graph G is a trail that visits every edge once. A connected graph

G is Eulerian, if it has a closed trail containing every edge of G. Such a trail is called

an Euler tour. A path P of a graph G is a Hamilton path, if P visits every vertex of G

once. Similarly, a cycle C is a Hamilton cycle, if it visits each vertex once. A graph is

Hamiltonian, if it has a Hamilton cycle.

The set of vertices adjacent to a vertex v is called the neighborhood of v, denoted

by N(v). This is called the open neighborhood of v and the closed neighborhood of v is

denoted by N[v], defined by N(v)∪{v}. The degree of a vertex v is the number of edges

incident with v; it is denoted by deg(v). The minimum degree among the vertices of G

is denoted by δ (G) and the maximum degree by ∆(G). If δ (G) = ∆(G) = r, then G is

called a regular graph of degree r. If r = n−1 then the graph is a complete graph. A

vertex with degree 1 is called as a pendant vertex. The degree sequence of a graph is the

list of vertex degrees, usually written in non-increasing order, as d1 ≥ d2 ≥ .....≥ dn. A

graphic sequence is a list of nonnegative numbers, that is, the degree sequence of some

simple graph. A clique in G is a maximal complete subgraph in G.

A graph G is labeled if the n vertices of G are distinguished from each other by
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names, such as, v1,v2, ....,vn. Two graphs G and H are isomorphic, written G ∼= H, if

there exists a one-to-one correspondence between their vertex sets, which preserves the

adjacency.

A bipartite graph G is a graph whose vertex set can be partitioned into two sets V1

and V2 such that, every edge of G joins a vertex of V1 with a vertex of V2. If every vertex

of V1 is joined with every vertex of V2 then G is said to be complete bipartite graph and

is denoted by Km,n with |V1|= m and |V2|= n. In particular a complete bipartite graph

K1,n is called a star. Every non-trivial tree is a bipartite graph.

A graph is said to be a planar graph, if it can be drawn on a plane so that no two

edges intersect. A plane graph is the one which is already drawn in a plane so that no

two edges intersect. The regions defined by the plane graph are the faces of the plane

graph; the unbounded region is called the exterior face.

A graph can be associated with a matrix. Or in other words, a graph can be repre-

sented in terms of matrices. Let G be a simple graph with vertex set V (G)= {v1,v2, ...,vn}

and the edge set E(G) = {e1,e2, ...,em}. The adjacency matrix of G, written A(G), is

the n×n matrix in which entry ai j is the number of edges in G with end vertices vi,v j.

The incidence matrix M(G) is the n×m matrix in which entry mi j is 1 if vi is an end

vertex of e j otherwise 0. Note that, every adjacency matrix is symmetric matrix. An

adjacency matrix of a simple graph G has entries 0 or 1, with 0s on the diagonal. The

degree of v is the sum of the entries in the rows for v in either A(G) or M(G). The study

of the matrices associated with the graphs, created a branch of graph theory, called the

spectral graph theory, which deals with the energy of graphs.

The vertex coloring of a graph G = (V,E) is a map c : V → S such that c(v) 6= c(w)

whenever v and w are adjacent. The elements of the set S are called the available colors.

Such a coloring is often referred to as a proper coloring. If k distinct colors are used in

coloring of G, it is referred to as a k-coloring of G and we say that G is k-colorable. The
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chromatic number χ(G) is the least k such that G is k-colorable. Note that a k-coloring

is nothing but a vertex partition into k independent sets.

A hypergraph is a structure H = (V,(Ei : i∈ I)) where the vertex set V is an arbitrary

set, and every Ei ⊆V . These sets Ei are called the hyperedges of the hypergraph.

Figure 1.1 Hypergraph

A hypergraph is said to be linear if no two hyperedges have more than one vertex

in common. A hypergraph is said to be uniform if all of its hyperedges have the same

number of vertices as each other. The degree of a vertex v in H is the number of edges

containing v. The minimum degree among the vertices is denoted by δ (H) and the max-

imum degree by ∆(H). A hypergraph H is said to be dense if δ (H) is greater than
√

n.

A coloring of a hypergraph is an assignment of colors to the vertices so that no two

vertices of an edge has the same color. A k-coloring of a hypergraph is a coloring of it

where the number of used colors is at most k.

1.2 Erdös - Faber - Lovász conjecture

One of the famous conjectures in graph theory is Erdös - Faber - Lovász (EFL) conjec-

ture. It states that any linear hypergraph H on n vertices has chromatic number at most

n. Erdös, in 1975 offered 50 USD (Erdős, 1975) and in 1981, offered 500 USD (Erdős,
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Figure 1.2 Colored Hypergraph

1981; Jensen and Toft, 2011) for the proof or the disproof of the conjecture.

Chang and Lawler (Chang and Lawler, 1988) presented a simple proof that the edges

of a simple hypergraph on n vertices can be colored with at most [1.5n-2] colors. Kahn

(Kahn, 1992) showed that the chromatic number of H is at most n+ o(n). Jackson et

al., (Jackson et al., 2007) proved the conjecture is true when the partial hypergraph S

of H determined by the edges of size at least three can be ∆S-edge-colored and sat-

isfies ∆S ≤ 3. In particular, the conjecture holds when S is unimodular and ∆S ≤ 3.

Paul and Germina (Paul and Germina, 2012) established the truth of the conjecture

for all linear hypergraphs on n vertices with ∆(H) ≤
√

n+
√

n+1 . Sanchez-Arroyo

(Sánchez-Arroyo, 2008) proved that the conjecture is true for dense hypergraphs. Faber

(Faber, 2010) proved that for fixed degree, there can be only finitely many counter ex-

amples to EFL on this class (both regular and uniform) of hypergraphs. Romero et.al.,

(Romero and Alonso-Pecina, 2014) proved that the conjecture is true for n ≤ 12. We

consider the equivalent version of the conjecture for simple graphs given by Deza et

al., (Deza et al., 1978; Sánchez-Arroyo, 2008; Jensen and Toft, 2011; Mitchem and

Schmidt, 2010), stated as below.

Conjecture: Let G =
⋃n

i=1 Ai denote a graph with n complete graphs (A1,A2,

. . . ,An), each having exactly n vertices and have the property that every pair of com-

plete graphs has at most one common vertex, then the chromatic number of G is n.
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1.3 Graph Dynamics

The concept of a dynamical system has its origin in Newtonian mechanics. There, as

in other natural sciences and in engineering disciplines, the evolution rule of dynamical

systems is given implicitly by a relation that gives the state of system only a short time

into the future (the relation is either a differential equation or difference equation or

another time scale). To determine the state for all future times require the relation to

be iterated many times-each advancing in time a small step. The iteration procedure is

referred to as solving the system or integrating the system. Once the system is solved, it

is possible to determine all its future positions, given an initial point. Linear dynamical

systems can be solved in terms of simple functions.

A discrete dynamical system (or simply a dynamical system) is an ordered pair

(X ,φ), where X is nonempty set and φ is a mapping from X → X . The set X is called

as the underlying state space and φ as the rule of motion. Dynamics is introduced by

the iterates of φ . For any x ∈ X , φ(x) is interpreted as the position to which x reaches

after one unit of time. Similarly, φ n(x) is interpreted as the position of x after n units of

time, where φ n(x) = φ(φ n−1(x)) for n > 1.

In mathematics, the concept of graph dynamical systems (GDS) can be used to

capture a wide range of processes taking place on graphs or networks. A major theme

in the mathematical and computational analysis of graph dynamical systems is to relate

their structural properties (e.g. network connectivity).

A graph dynamical system is a discrete dynamical system where X is a set of graphs

(see (Prisner, 1995)).

Examples: Line graph operator, Tree graph operator, Clique graph operator etc.

1.4 Graph Operators

In the literature, line graph is the graph operator which started first and the term line

graph appeared in the paper of Harary (Harary and Norman, 1960); but the construction

of line graph is used by Whitney (Whitney, 1932) and Krausz (Krausz, 1943). Ore (Ore,

1962), used the definition of line graph in the name of interchange graphs and he posed

some problems on it. In 1960’s, several people worked on line graphs. In 1966, Cum-
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mins (Cummins, 1966) introduced tree graph operator. Hamelink (Hamelink, 1968)

used the clique graph operator. In 1970’s, number of graph operators were introduced.

Definition 1.4.1. Let S be a set and F = {S1,S2, . . . ,Sp} be a family of distinct nonempty

subsets of S whose union is S. The intersection graph of F is denoted by Ω(F) and is

defined by V (Ω(F)) = F, with Si and S j adjacent whenever i 6= j and Si∩S j 6= /0. Then

a graph G is an intersection graph on S if there exists a family F of subsets of S for

which G∼= Ω(F).

Theorem 1.4.2. Every graph is an intersection graph

Line graph of a graph G = (V,E) is the intersection graph of E and clique graph of

a graph G is the intersection graph of KG, where KG is the set of all maximal cliques

of G.

Definition 1.4.3. The line graph of G = (V,E), denoted by L(G), is the intersection

graph Ω(E). Thus the points of L(G) are the lines of G, with two points of L(G) adjacent

whenever the corresponding lines of G are incident.

(a) G (b) L(G)

Figure 1.3 L(G) is the line graph of the graph G

Definition 1.4.4. Given a graph G of order finite or infinite, denote by V = KG the set

of all cliques of G. Define an adjacency relation in V as follows. The cliques Qi,Q j are

8



said to be adjacent if Qi∩Q j 6= /0. The resultant graph is called the Clique Graph of G

and is denoted by K(G). The operator K is called the Clique Graph Operator.

(a) G (b) K(G)

Figure 1.4 K(G) is the clique graph of the graph G

1.5 Properties of Graph Operators

The study of graphs and their iterated graphs using the graph operators is the dynam-

ics of graphs and is called graph dynamics. A discrete dynamical system is any set X

together with a mapping φ : X → X . The elements of X are called states. A graph dy-

namical system is a discrete dynamical system where X is a set of graphs (see (Prisner,

1995)).

There are some dynamical properties to study the graphs using graph operators.

The following definitions are taken from (Prisner, 1995). Let (X ,φ) be the discrete

dynamical system, where φ is a mapping from X → X .

Definition 1.5.1. Let x ∈ X. Then x is said to be φ -convergent if the set {φ n(x) : n ∈N}

is finite, otherwise x is φ -Divergent.

Definition 1.5.2. For the given operator φ , a φ -root of an element x ∈ X is any y ∈ X

with φ(y) = x.

Let x ∈ X . We say x has φ -root if there exists an element y ∈ X such that φ(y) = x.

9



Definition 1.5.3. The φ -depth of an element x ∈ X is defined as the supremum of the set

of all natural numbers n for which there is an element y ∈ X such that φ n(y) = x.

The φ -depth of an element x is said to be zero if x has no φ -root.

Definition 1.5.4. Let x∈X. Then x is said to be periodic if there is some natural number

n with x = φ n(x). The smallest such number is called the period of this periodic state x.

If n = 1, x is called the stable(fixed).

Definition 1.5.5. Let x ∈ X. If x is φ -convergent, then its φ -transition number tφ

0 (x) is

defined as the least positive integer t such that φ t(x) is φ -periodic.

1.6 Clique Graph

Let G be a graph and KG be the set of all cliques of G. The clique graph K(G) of G

is defined as the intersection graph Ω(KG) of the family of cliques of G, in the sense

that the vertex set of K(G) is the family KG and two distinct vertices Qi,Q j ∈KG are

adjacent in K(G) if Qi∩Q j 6= /0. A given graph H is called a clique graph if there exists

a graph G such that H ∼= K(G) and G is called a K-root of H. A graph which is not a

clique graph in this sense is called a K-primitive graph. Further, the nth iterated clique

graph Kn(G) of G is then defined by the following rule:

K1(G) := K(G),Kn(G) := K(Kn−1(G)),∀ n≥ 2.

The sequence OK
G := (K0 := G,K1(G),K2(G), . . . ,) is called the K-orbit of G and G is

K-periodic (K-aperiodic) if there exists a (no) positive integer n such that G ∼= Kn(G)

and the least such integer is called the K-periodicity of G, denoted by K-per(G). Further,

G is said to be K-convergent if there are only a finite number of non isomorphic graphs

in the K-orbit of G, otherwise it is said to be K-divergent. If G is a K-convergent graph

then its K-transition number tK0 (G) is defined as the least positive integer t such that

Kt(G) is K-periodic.
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Definition 1.6.1. A graph G is said to have the Helly property if every set {Ci : i ∈ I}

of cliques of G, no two of which are disjoint (i.e., Ci∩C j 6= /0 ∀ i, j ∈ I), has nonempty

total intersection (i.e.,
⋂

i∈I Ci 6= /0).

Hamelink (Hamelink, 1968) gave a result that, every graph need not be a clique

graph of some graph.

Theorem 1.6.2. Any graph H containing a clique T on 3 vertices {x,y,z} and 3 other

cliques A,B and C so related that V (T )∩V (A) = {x,y}, V (T )∩V (B) = {y,z}, and

V (T )∩V (C) = {z,x} is not the clique graph of any graph.

Example 1.6.3. The following six vertex graph is not the clique graph of any graph.

Also he gave a partial characterization for clique graph,

Theorem 1.6.4. If H satisfies Helly property then H is a clique graph.

Using Helly property, Roberts and Spencer (Roberts and Spencer, 1971) gave a

characterization of clique graph.

Theorem 1.6.5. A graph H is a clique graph if and only if H satisfies Helly property.

Definition 1.6.6. We say that G has the T1 property if for any distinct vertices x,y ∈G∗

with deg(x,G∗) ≥ 2, deg(y,G∗) ≥ 2, there exists two cliques C,D in K(G) with x ∈

C,y /∈C and y ∈ D,x /∈ D.

Lim (Lim, 1982) generalized the result of S. T. Hedetniemi and P. J. Slater, on first

iterated clique graph.
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Theorem 1.6.7. If G is a graph which satisfies the Helly property and the T1 property,

then K2(G)∼= G∗−{x ∈ G∗ : deg(x,G∗) = 1}.

Hedman (Hedman, 1986) has given a polynomial algorithm for constructing the

clique graph of a line graph K(L(G)).

A vertex v of a triangle C3 with deg(v)≥ 3 is called an outlet of C3.

Theorem 1.6.8. Graph G satisfies K(L(G)) = G if and only if G satisfies the following

three conditions:

1. For all v ∈V (G), deg(v)≥ 2.

2. G has no adjacent triangles.

3. Every triangle of G has exactly two outlets.

Gravier et al., (Gravier et al., 2004) proved the conjecture of Protti and Szwarcfiter

(Protti and Szwarcfiter, 2000) on clique-inverse graphs of Kp-free graphs.

Theorem 1.6.9. For every integer p ≥ 4, the class of the clique-inverse graphs of the

Kp-free graphs can be characterized by a finite family of forbidden induced subgraphs.

Frias-Armenta et al., (Frías-Armenta et al., 2005) established a result on clique di-

vergent

Theorem 1.6.10. Every clique divergent graph is a spanning subgraph of a clique di-

vergent graph with diameter 2.

Alcon et al.,(Alcón et al., 2009) proved that the complexity of clique graph recog-

nition is NP-complete.

1.7 Tree Graph

Linear graphs play an important role in the study of electrical networks and topological

formulas are found to be convenient to study the effect of parameter variations in a

network. Network functions such as the driving-point and transfer functions must be
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expressed in a symbolic form. These formulas require a list of trees of a given network.

Many methods exist in the literature to find all the trees of a network. Among them,

the method proposed by Mayeda and Seshu (Mayeda and Seshu, 1965) succeeded in

generating all the trees without duplication by successive application of elementary tree

transformations.

Cummins (Cummins, 1966) made an interesting investigation on trees. He defined

T -graph (Tree graph) of a graph G as the graph whose vertex set is the set of all spanning

trees of G, and two spanning trees T1, T2 of G form an edge if and only if T1 and T2 differ

by exactly one edge. Hence the tree graph associated with a connected graph G is linear

graph in which the vertices are in one-to-one correspondence with the spanning trees

of G and the edges represent the adjacencies of trees. Cummins showed that a tree

graph always contains a Hamilton circuit. This is then extended to directed graphs and

generalized theorem for directed graphs is established by Chen (Chen, 1967). Genya

Kishi and Yoji Kqajitani (Kishi and Kajitani, 1968) also worked on tree graphs. They

proposed a decomposition of a tree graph into complete subgraphs. In 1968 Shank

(Shank, 1968) gave a short proof for the Cummins result.

Let G be a labeled graph of order α , finite or infinite (all our graphs are labeled). A

spanning tree of G is a connected, acyclic, spanning subgraph of G; it exists if and only

if G is connected. Any acyclic subgraph of G, connected or not, is called a forest of G.

A forest F of G is said to be maximal, if there is no forest F ′ of G such that F is a proper

subgraph of F ′. The tree graph T(G) of G has all the spanning trees of G as vertices,

and distinct such trees are adjacent vertices if they differ in just one edge (Prisner, 1995;

Suresh et al., 2010); i.e., two spanning trees T1 and T2 are adjacent if T2 = T1−e+ f for

some edges e ∈ T1 and f /∈ T1. The iterated tree graphs of G are defined by T0(G) = G

and Tn(G) = T(Tn−1(G)) for n > 0. There are several results on tree graphs. See

(Broersma and Xueliang, 1996; Zhang and Chen, 1986; Liu, 1988) for connectivity of

the tree graph, (Grimmett, 1976; Rodriguez and Petingi, 1997; Teranishi, 2005; Das,

2007; Feng et al., 2008; Li et al., 2010; Das et al., 2013; Feng et al., 2014) for bounds

on the order of T(G) (that is, on the number of spanning trees of G), (Cummins, 1966;

Shank, 1968) for Hamilton circuits in a tree graph.
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There is one difficulty with iterating the tree graph operator. The tree graph of

an infinite connected graph need not be connected (Cummins, 1966; Shank, 1968), so

T2(G) may be undefined. For example, T(Kℵ0) is disconnected (see Corollary 4.1.5

in this thesis; ℵ0 denotes the cardinality of the set N of natural numbers); therefore

T2(Kℵ0) is not defined. To obviate this difficulty with iterated tree graphs, and inspired

by the tree graph operator T, we define a forest graph operator. Let N(G) be the set of

all maximal forests of G. The forest graph of G, denoted by F(G), is the graph with

vertex set N(G) in which two maximal forests F1, F2 form an edge if and only if they

differ by exactly one edge. The forest graph operator (or maximal forest operator) on

graphs, G 7→ F(G), is denoted by F. Zorn’s lemma implies that every connected graph

contains a spanning tree (see (Diestel, 2005)); similarly, every graph has a maximal

forest. Hence, the forest graph always exists. Since, when G is connected, maximal

forests are the same as spanning trees, then F(G) = T(G); that is, the tree graph is a

special case of the forest graph. We write F2(G) to denote F(F(G)), and in general

Fn(G) = F(Fn−1(G)) for n≥ 1, with F0(G) = G.

Definition 1.7.1. A graph G is said to be F-convergent if {Fn(G) : n ∈ N} is finite;

otherwise it is F-divergent.

Definition 1.7.2. A graph H is said to be F-root of G if F(H) is isomorphic to G,

F(H)∼= G. The F-depth of G is

sup{n ∈ N : G∼= Fn(H) for some graph H}.

The F-depth of a graph G that has no F-root is said to be zero.

Definition 1.7.3. The graph G is said to be F-periodic if there exists a positive integer

n such that Fn(G) = G. The least such integer is called the F-periodicity of G. If n = 1,

G is called F-stable.
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Chapter 2

ERDÖS - FABER - LOVÁSZ CONJECTURE

In 1972, Erdös - Faber - Lovász (EFL) conjectured that, if H is a linear hypergraph

consisting of n edges of cardinality n, then it is possible to color the vertices with n

colors so that no two vertices with the same color are in the same edge. In 1978,

Deza, Erdös and Frankl had given an equivalent version of the same for graphs: Let

G =
⋃n

i=1 Ai denote a graph with n complete graphs A1,A2, . . . ,An, each having exactly

n vertices and have the property that every pair of complete graphs has at most one

common vertex, then the chromatic number of G is n.

The clique degree dK(v) of a vertex v in G is given by dK(v) = |{Ai : v ∈V (Ai),1≤

i ≤ n}|. The maximum clique degree ∆K(G) of the graph G is given by ∆K(G) =

maxv∈V (G)dK(v). In this chapter, using Symmetric Latin Squares, we give an algorith-

mic proof of the above conjecture.

2.1 Introduction

One of the famous conjectures in graph theory is Erdös - Faber - Lovász conjecture. It

states that, if H is a linear hypergraph consisting of n edges of cardinality n, then it is

possible to color the vertices of H with n colors so that no two vertices with the same

color are in the same edge (Berge, 1990). Erdös, in 1975, offered 50 USD (Erdős, 1975,

1981) and in 1981, offered 500USD (Erdős, 1981; Jensen and Toft, 2011) for the proof

or disproof of the conjecture.

Vance Faber quoted: “In 1972, Paul Erdös, László Lovász and I got together at a

tea party in Colorado. This was a continuation of the discussions we had a few weeks

before in Columbus, Ohio, at a conference on hypergraphs. We talked about various
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conjectures for linear hypergraphs analogous to Vizing’s theorem for graphs. Finding

tight bounds in general seemed difficult, so we created an elementary conjecture that

we thought that it would be easy to prove. We called this the n sets problem: given n

sets, no two of which meet more than once and each with n elements, color the elements

with n colors so that each set contains all the colors. In fact, we agreed to meet the next

day to write down the solution. Thirty-Eight years later, this problem is still unsolved

in general.”

Chang and Lawler (Chang and Lawler, 1988) presented a simple proof that the edges

of a simple hypergraph on n vertices can be colored with at most [1.5n-2] colors. Kahn

(Kahn, 1992) showed that the chromatic number of H is at most n+ o(n). Jackson et

al. (Jackson et al., 2007) proved that the conjecture is true when the partial hypergraph

S of H determined by the edges of size at least three can be ∆S-edge-colored and sat-

isfies ∆S ≤ 3. In particular, the conjecture holds when S is unimodular and ∆S ≤ 3.

Paul and Germina (Paul and Germina, 2012) established the truth of the conjecture for

all linear hypergraphs on n vertices with ∆(H) ≤
√

n+
√

n+1 . Sanchez - Arroyo

(Sánchez-Arroyo, 2008) proved the conjecture for dense hypergraphs. We consider the

equivalent version of the conjecture for graphs given by Deza, Erdös and Frankl in

1978 (Deza et al., 1978; Sánchez-Arroyo, 2008; Jensen and Toft, 2011; Mitchem and

Schmidt, 2010).

Conjecture 2.1.1. Let G =
⋃n

i=1 Ai denote a graph with n complete graphs (A1,A2,

. . . ,An), each having exactly n vertices and have the property that every pair of complete

graphs has at most one common vertex, then the chromatic number of G is n.

Example 2.1.2. Figure 2.1 shows all the graphs for n = 3 which are satisfying the

hypothesis of the conjecture 2.1.1.

Figure 2.2 shows the construction of the graph G from the hypergraph H.

Haddad and Tardif (Haddad and Tardif, 2004) introduced the problem with a story

about seating assignment in committees: suppose that, in a university department, there

are k committees, each consisting of k faculty members, and that all committees meet
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(a) (b)

(c) (d)

(e)

Figure 2.1 All graphs satisfying the hypothesis of the conjecture for n=3

in the same room, which has k chairs. Suppose also that at most one person belongs to

the intersection of any two committees. Is it possible to assign the committee members

to chairs in such a way that each member sits in the same chair for all the different

committees to which he or she belongs? In this model of the problem, the faculty

members correspond to graph vertices, committees correspond to complete graphs, and

chairs correspond to vertex colors.

Definition 2.1.3. Let G=
⋃n

i=1 Ai denote a graph with n complete graphs A1,A2, . . . ,An,

each having exactly n vertices and the property that every pair of complete graphs has

at most one common vertex. The clique degree dK(v) of a vertex v in G is given by

dK(v) = |{Ai : v ∈V (Ai),1≤ i≤ n}|. The maximum clique degree ∆K(G) of the graph

G is given by ∆K(G) = maxv∈V (G)dK(v).

From the above definition, one can observe that degree of a vertex in hypergraph is

same as the clique degree of a vertex in a graph.
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(a) Hypergraph H (b) Graph G

(c) Graph G and Hypergraph H

Figure 2.2 Graph G and Hypergraph H

Definition 2.1.4. Let G1 and G2 be two vertex disjoint graphs, and let x1,x2 be two ver-

tices of G1,G2 respectively. Then, the graph G(x1x2) obtained by merging the vertices

x1 and x2 into a single vertex is called the concatenation of G1 and G2 at the points x1

and x2 (see (Kundu et al., 1980)).

Definition 2.1.5. A Latin Square is an n×n array containing n different symbols such

that each symbol appears exactly once in each row and once in each column. Moreover,

a Latin Square of order n is an n× n matrix M = [mi j] with entries from an n-set V =

{1,2, . . . ,n}, where every row and every column is a permutation of V (see (Laywine and
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Mullen, 1998)). If the matrix M is symmetric, then the Latin Square is called Symmetric

Latin Square.

We give below two methods of coloring to the graph G satisfying the hypothesis

of the Conjecture. First one using symmetric latin squares and the second one using

intersection matrix (the intersection matrix (color matrix) of the cliques A′is of G is the

n×n matrix in which entry ci, j for i 6= j is 0 if Ai∩A j = /0 otherwise c, and ci,i is 0) and

clique degrees of the vertices.

2.2 Construction of Hn

We know that a symmetric n× n matrix is determined by n(n+1)
2 scalars. Using sym-

metric latin squares we give an n-coloring of Hn constructed below. Then using the

n-coloring of Hn we give an n-coloring of all the other graphs G satisfying the hypoth-

esis of Conjecture 2.1.1.

Construction of Hn:

Let n be a positive integer and B1,B2, . . . ,Bn be n copies of Kn. Let the vertex set

V (Bi) = {ai,1,ai,2,ai,3, . . . ,ai,n}, 1≤ i≤ n.

Step 1. Let H1 = B1.

Step 2. Consider the vertices a1,2 of H1 and a2,1 of B2. Let b1,2 be the vertex obtained

by the concatenation of the vertices a1,2 and a2,1. Let the resultant graph be H2.

Step 3. Consider the vertices a1,3, a2,3 of H2 and a3,1, a3,2 of B3. Let b1,3 be the

vertex obtained by the concatenation of vertices a1,3, a3,1 and let b2,3 be the vertex

obtained by the concatenation of vertices a2,3, a3,2. Let the resultant graph be H3.

Continuing in the similar way, at the nth step we obtain the graph Hn = Hn (for the

sake of convenience we take Hn as Hn).

By the construction of Hn one can observe the following:

1. Hn is a connected graph and also it is satisfying the hypothesis of Conjecture

2.1.1.
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2. Hn has exactly n vertices of clique degree one and n(n−1)
2 vertices of clique degree

2 (each Bi has exactly (n−1) vertices of clique degree 2 and one vertex of clique

degree one, 1≤ i≤ n).

3. Hn =
⋃n

i=1 Bi, where Bi = Ai and Bi, B j have exactly one common vertex for

1≤ i < j ≤ n.

4. Hn has exactly n(n+1)
2 vertices.

5. One can observe that in a connected graph G if clique degree increases the number

of vertices also increases. From this it follows that, Hn is the graph with minimum

number of vertices satisfying the hypothesis of Conjecture 2.1.1. If all the vertices

of G are of clique degree one, then G will have n2 vertices. Thus, n(n+1)
2 ≤

|V (G)| ≤ n2.

Following example is an illustration of the graph Hn for n = 4

Example 2.2.1. Let n = 4 and B1,B2,B3,B4 be the 4 copies of K4. Let the vertex set

V (Bi) = {ai,1,ai,2,ai,3,ai,4}, 1≤ i≤ 4.

(a) B1 (b) B2 (c) B3 (d) B4

Figure 2.3 4 copies of K4

Step 1: Let H1 = B1. The graph H1 is shown in Figure 2.3a.

Step 2: Consider the vertices a1,2 of H1 and a2,1 of B2. Let b1,2 be the vertex

obtained by the concatenation of vertices a1,2, a2,1. Let the resultant graph be H2 as

shown in Figure 2.4b.
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(a) H1,B2 (b) H2

Figure 2.4 Construction of H2 from H1,B2

Step 3: Consider the vertices a1,3, a2,3 of H2 and a3,1, a3,2 of B3. Let b1,3 be the

vertex obtained by the concatenation of vertices a1,3, a3,1 and let b2,3 be the vertex

obtained by the concatenation of vertices a2,3, a3,2. Let the resultant graph be H3 as

shown in Figure 2.5b.

(a) H2,B3 (b) H3

Figure 2.5 Construction of H3 from H2,B3

Step 4: Consider the vertices a1,4, a2,4, a3,4 of H3 and a4,1, a4,2, a4,3 of B4. Let b1,4

be the vertex obtained by the concatenation of vertices a1,4, a4,1, let b2,4 be the vertex

obtained by the concatenation of vertices a2,4, a4,2 and let b3,4 be the vertex obtained

by the concatenation of vertices a3,4, a4,3. Let the resultant graph be H4 as shown in
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Figure 2.6 H3, B4

Figure 2.7 H4 = H4

Figure 2.7.

Example 2.2.2. For n = 6, the graph H6 is shown in Figure 2.8.

Lemma 2.2.3. If G is a graph satisfying the hypothesis of Conjecture 2.1.1, then G can

be obtained from Hn, n in N.
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Figure 2.8 H6

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. Let bX be the

new labeling to the vertices v of clique degree greater than 1 in G, where X = {i : vertex

v is in Ai}. Define Ni = {bX : |X |= i} for i= 2,3, . . . ,n. Then the graph G is constructed

from Hn as given below:

Step 1: For every common vertex bi, j in Hn which is not in N2, split the vertex bi, j

into two vertices ui, j,u j,i such that vertex ui, j is adjacent only to the vertices of Bi and

the vertex u j,i is adjacent only to the vertices of B j in Hn.

Step 2: For every vertex bX in Ni where i = 3,4, . . . ,n, merge the vertices ul1,l2 ,

ul2,l3 , . . . , ulm−1,lm , ulm,l1 into a single vertex uX in Hn where li ∈ X and li < l j for i < j.

Let G′ be the graph obtained in Step 2. Let V (B′i), V (A′i) be the set of all clique de-

gree 1 vertices of Bi of G′, Ai of G respectively, 1≤ i≤ n. Thus, by splitting all the com-

mon vertices of Hn which are not in N2 and merging the vertices of Hn corresponding
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to the vertices in Ni, i≥ 3, we get the graph G′. One can observe that |V (A′i)|= |V (B′i)|,

1≤ i≤ n. Define a function f : V (G)→V (G′) by

f (bi, j) = bi, j for bi, j ∈ N2

f (bi1,i2,...ik) = ui1,i2,...ik for bi1,i2,...ik ∈ ∪
n
i=3Ni

f |V (A′i)
= gi (any 1-1 map gi : V (A′i)→V (B′i)), for 1≤ i≤ n

One can observe that f is an isomorphism from G to G′.

From Lemma 2.2.3, one can observe that in G there are at most n(n−1)
2 common

vertices.

Following example is an illustration of the graph G obtained from Hn for n = 4.

Example 2.2.4. Let G be the graph shown in Figure 2.2b.

Relabel the vertices of clique degree greater than one in G by bA where A = {i : v ∈

Ai for 1≤ i≤ 4}. The labeled graph is shown in Figure 2.9.

Figure 2.9 Graph G after relabeling the vertices

Let Ni = {bX : |X |= i} for i = 2,3,4, then N2 = {b1,4,b2,4,b3,4}, N3 = {b1,2,3}.
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Consider the graph H4 as shown in Figure 2.7, then V (H4) = {a1,1,a2,2,a3,3,a4,4,

b1,2,b1,3,b1,4,b2,3,b2,4,b3,4} and common vertices of H4 are {b1,2,b1,3,b1,4,b2,3,b2,4,

b3,4} = A(say). Then A\N2 = {b1,2,b1,3,b2,3}. By the construction given in the proof

of Lemma 2.2.3 we get,

Step 1: Since A \N2 6= /0, split the common vertices of H4 which are not in N2, as

shown in Figure 2.10.

Figure 2.10 Splitting the common vertices of H4 which are not in N2.

Step 2: Since ∪4
i=2Ni = {b1,2,3} 6= /0, merge the vertices u1,2,u2,3,u3,1 into a single

vertex u1,2,3, as shown in Figure 2.11. Let the resultant graph be G′.

The isomorphism f : V (G)→V (G′) is given below.

f (v2) = a1,1 f (v3) = u1,3 f (v4) = u2,1

f (v5) = a2,2 f (v6) = u3,2 f (v7) = a3,3

f (v11) = a4,4 f (b1,4) = b1,4 f (b2,4) = b2,4

f (b3,4) = b3,4 f (b1,2,3) = u1,2,3

25



Figure 2.11 Graph G′.

2.3 Coloring of Hn

Lemma 2.3.1. The chromatic number of Hn is n.

Proof. Let Hn be the graph defined as above. Let M (given below) be an n×n matrix in

which an entry mi j = bi j, be a vertex of Hn, belongs to both Bi,B j for i 6= j and mii = aii

be the vertex of Hn which belongs to Bi. i.e.,

M=



a11 b12 b13 . . . b1n

b12 a22 b23 . . . b2n

b13 b23 a33 . . . b3n

...
...

... . . . ...

b1n b2n b3n . . . ann


.

Clearly M is a symmetric matrix. We know that, for every n in N there is a Symmetric

Latin Square (see (Ye and Xu, 2011)) of order n× n. Bryant and Rodger (Bryant and

Rodger, 2004) gave a necessary and sufficient condition for the existence of an (n−

1)-edge coloring of Kn (n even), and n-edge coloring of Kn (n odd) using Symmetric

Latin Squares. Let v1,v2, . . . ,vn be the vertices of Kn and ei j be the edge joining the

vertices vi and v j of Kn, where i < j, then arrange the edges of Kn in the matrix form

A = [ai j] where ai j = ei j, a ji = ei j for i < j and aii = 0 for 1 ≤ i ≤ n, we have A =
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0 e12 e13 . . . e1n

e12 0 e23 . . . e2n

e13 e23 0 . . . e3n

...
...

... . . . ...

e1n e2n e3n . . . 0


and let V be a matrix given by

V =



v1 0 0 . . . 0

0 v2 0 . . . 0

0 0 v3 . . . 0
...

...
... . . . ...

0 0 0 . . . vn


. Then, define a matrix A′ as

A′ = A+V =



v1 e12 e13 . . . e1n

e12 v2 e23 . . . e2n

e13 e23 v3 . . . e3n

...
...

... . . . ...

e1n e2n e3n . . . vn


.

Let C = [ci j] be a matrix where ci j (i 6= j), is the color of ei j (i.e., ci j = c(ei j)) and

cii is the color of vi. We call C as the color matrix of A′. Then C is the Symmetric Latin

Square (see(Bryant and Rodger, 2004)). As the elements of M are the vertices of Hn,

one can assign the colors to the vertices of Hn from the color matrix C, by the color ci j,

for i, j = 1,2, . . . ,n and i 6= j to the vertex bi j in Hn and the color cii, for i = 1,2, . . .n to

the vertex aii in Hn. Hence Hn is n colorable.

As Hn is the graph satisfying the hypothesis of Conjecture 2.1.1. By using the

coloring of Hn which is the graph satisfying the hypothesis of Conjecture 2.1.1 we

extend the n-coloring of all possible graphs G satisfying the hypothesis of Conjecture

2.1.1.

The following example is an illustration of assigning colors to the graph Hn for

n = 6.
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Example 2.3.2. Consider the graph H6 as shown in Figure 2.8. The corresponding

Symmetric Latin Square C of order 6×6 is given below:

C =



6 1 2 3 4 5

1 3 5 6 2 4

2 5 4 1 6 3

3 6 1 4 5 2

4 2 6 5 3 1

5 4 3 2 1 6


.

Assign the six colors to the graph H6 using the above Symmetric Latin Square as

follows:

Assign the color ci, j (where ci, j denotes the value at the (i, j)-th entry in the color

matrix C) for i 6= j and i, j = 1,2, . . . ,6 to the vertex bi, j in H6, and assign the color ci,i

(where ci,i denotes the value at the (i, i)-th entry in the color matrix C) for i = 1,2, . . . ,6

to the vertex aii in H6. The colors Red, Green, Cyan, Blue, Tan, Maroon in the Figure

2.12 corresponds to the numbers 1, 2, 3, 4, 5, 6 respectively in the matrix C.

Then one can verify that the resultant graph is 6 colorable as shown in Figure 2.12.

2.4 Coloring of G

Let G be the graph satisfying the hypothesis of Conjecture 2.1.1. Let Ĥ be the graph

obtained by removing the vertices of clique degree one from graph G. i.e. Ĥ is the

induced subgraph of G having all the common vertices of G.

Theorem 2.4.1. If G is a graph satisfying the hypothesis of the Conjecture 2.1.1 and

every Ai (1 ≤ i ≤ n) has at most
√

n vertices of clique degree greater than 1, then G is

n-colorable.

Proof. Let G be a graph satisfying the hypothesis of the Conjecture 2.1.1 and every Ai

(1≤ i≤ n) has at most
√

n vertices of clique degree greater than 1. Let Ĥ be the induced

subgraph of G consisting of the vertices of clique degree greater than one in G. Define

X = {bi, j : Ai∩A j = /0}, Xi = {v ∈ G : dK(v) = i} for i = 1,2, . . . ,n.
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Figure 2.12 A coloring of H6 with six colors

From (Sánchez-Arroyo, 2008), it is true that the vertices of clique degree greater

than or equal to
√

n can be assigned with at most n colors. Assign the colors to the

vertices of clique degree in non increasing order. Assume we next color a vertex v of

clique degree 1 < k <
√

n. At this point only vertices of clique degree ≥ k have been

assigned colors. By assumption every Ai (1 ≤ i ≤ n) has at most
√

n vertices of clique

degree greater than 1 and clique degree of v is k (k <
√

n), then for these k A′is there are

at most k
√

n < n vertices have been colored. Therefore, there is an unused color from

the set of n colors, then that color can be assigned to the vertex v.

Theorem 2.4.2. If G is a graph satisfying the hypothesis of the Conjecture 2.1.1 and

every Ai (1≤ i≤ n) has at most
⌈n+d−1

d

⌉
vertices of clique degree greater than or equal

to d (2≤ d ≤ n), then G is n-colorable.

Proof. Let G be a graph satisfying the hypothesis of the Conjecture 2.1.1 and every Ai

(1 ≤ i ≤ n) has at most
⌈n+d−1

d

⌉
vertices of clique degree greater than or equal to d

(2 ≤ d ≤ n). Let Ĥ be the induced subgraph of G consisting of the vertices of clique
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degree greater than one in G. Define X = {bi, j : Ai∩A j = /0}, Xi = {v ∈ G : dK(v) = i}

for i = 1,2, . . . ,m.

Assign the colors to the vertices of clique degree in non increasing order. Assume

we next color a vertex v of clique degree k. At this point only vertices of clique degree

≥ k have been assigned colors. By assumption every Ai (1≤ i≤ n) has at most
⌈n+k−1

k

⌉
vertices of clique degree greater than 1 and clique degree of v is k, then for these k A′is

there are at most k(
⌈n+k−1

k

⌉
− 1) < n vertices have been colored. Therefore, there is

an unused color from the set of n colors, then that color can be assigned to the vertex

v.

Theorem 2.4.3. If G is a graph satisfying the hypothesis of Conjecture 2.1.1 and every

Ai (1 ≤ i ≤ n) has atmost n
2 vertices of clique degree greater than one, then G is n-

colorable.

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1 and and every

Ai (1 ≤ i ≤ n) has atmost n
2 vertices of clique degree greater than one. Let Ĥ be the

induced subgraph of G consisting of the vertices of clique degree greater than one in G.

For every vertex v of clique degree greater than one in G, label the vertex v by uA where

A = {i : v ∈ Ai; i = 1,2, . . . ,n}. Define X = {bi, j : Ai∩A j = /0}, Xi = {v ∈G : dK(v) = i}

for i = 1,2, . . . ,m.

Let 1,2, . . . ,n be the n-colors and C be the color matrix( of size n× n) as defined

in the proof of Lemma 2.3.1. The following construction applied on the color matrix

C, gives a modified color matrix CM, using which we assign the colors to the graph Ĥ.

Then this coloring can be extended to the graph G. Construct a new color matrix C1 by

putting ci, j = 0,c j,i = 0 for every bi, j in X . Also, let ci,i = 0 for each i = 1,2, . . . ,n.

Construction:

Let T = ∪n
i=3Xi, P = /0, T ′′ = X2 and P′′ = /0.

Step 1: If T = /0, let Cm be the color matrix obtained in Step 4 and go to Step 5. Other-

wise, choose a vertex ui1,i2,...,im from T , where i1 < i2 < · · ·< im, and then choose
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(m
2

)
vertices bi1,i2 , bi1,i3 , . . . , bi1,im , bi2,i3 , . . . , bim−1,im from V (Hn) corresponding

to the set {i1, i2, . . . , im}. Take T ′ = {bi1,i2,bi1,i3 , . . . ,bi1,im,bi2,i3 , . . . ,bim−1,im} and

P′ = /0. Let T ′1 = {bi, j : bi, j ∈ T ′,c(bi, j) appear more than once in the ith row or jth

column in C} and T ′2 = {bi, j : bi, j ∈ T ′,c(bi, j) appear exactly once in the ith row

and jth column in C}. If T ′1 6= /0, choose a vertex bs,t from T ′1, otherwise choose a

vertex bs,t from T ′2. Then add the vertex bs,t to P′ and remove it from T ′. Go to

Step 2.

Step 2: If T ′2 6= /0, go to Step 3. Otherwise, choose a vertex bim−1,im from T ′1. Let

A = {ci, j : ci, j 6= 0; i = im−1,1≤ j ≤ n}, B = {ci, j : ci, j 6= 0; j = im,1≤ i≤ n}. If

|A∩B|< n, then construct a new color matrix C2, replacing cim−1,im , cim,im−1 by x,

where x ∈ {1,2, . . . ,n} \A∪B. Then add the vertex bim−1,im to T ′2 and remove it

from T ′1. Go to Step 3. Otherwise choose a color x which appears exactly once

either in ithm−1 row or in ithm column of the color matrix and construct a new color

matrix C2 replacing cim−1,im , cim,im−1 by x. Then add the vertex bim−1,im to T ′2 and

remove it from T ′1. Go to Step 3.

Step 3: If T ′ = /0, then add the vertex ui1,i2,...,im to P and remove it from T , go to Step 1.

Otherwise, if T ′∩T ′1 6= /0 choose a vertex bi, j from T ′∩T ′1, if not choose a vertex

bi, j from T ′∩T ′2. Go to Step 4.

Step 4: Let c(bi, j) = x, c(bs,t) = y. If c(bi, j) = c(bs,t), then add the vertex bi, j to

P′ and remove it from T ′. Go to Step 3. Otherwise, let A = {cl,m : cl,m = x},

B = {cl,m : cl,m = y}\{cl,m,cm,l : bl,m ∈ P′, l < m}. Construct a new color matrix

C3 by putting cl,m = y for every cl,m in A and cl,m = x for every cl,m in B. Then

add the vertex bi, j to P′ and remove it from T ′. Go to Step 3.

Step 5: If T ′′ = /0, consider CM =Cm1 stop the process. Otherwise, choose a vertex ui, j

from T ′′ and go to Step 6.

Step 6: If ci, j appears exactly once in both ith row and jth column of the color matrix
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Cm, then add the vertex bi, j to P′′ and remove it from T ′′, go to Step 5. Otherwise,

let A = {ci, j : ci, j 6= 0;1 ≤ j ≤ n}, B = {ci, j : ci, j 6= 0;1 ≤ i ≤ n}. Construct a

new color matrix Cm1 by putting x in ci, j, c j,i where x ∈ {1,2, . . . ,n} \A∪B (

Since every Ai (1≤ i≤ n) has atmost n
2 vertices of clique degree greater than one,

|A∪B|< n). Then add the vertex ui, j to P′′ and remove it from T ′′, go to Step 5.

Thus, in step 6, we get the modified color matrix CM. Then, color the vertex v of Ĥ

by ci, j of CM, whenever v ∈ Ai∩A j. Then, extend the coloring of Ĥ to G by assigning

the remaining colors which are not used for Ai from the set of n-colors, to the vertices

of clique degree one in Ai, 1≤ i≤ n. Thus G is n-colorable.

Remark 2.4.4. One can see that Theorem 2.4.3 covers the following cases:

1. G has no clique degree 2 vertices.

2. G has atmost n
2 vertices of clique degree greater than one in each Ai, 1≤ i≤ n.

Corollary 2.4.5. Sánchez-Arroyo (2008) Consider a linear hypergraph H consisting of

n edges each of size at most n and δ (H)≥ 2. If H is dense, then χ(H)≤ n.

Following is an example illustrating the construction given in the proof of Theorem

2.4.3.

Example 2.4.6. Let G be the graph shown in Figure 2.13.

Let V (A1) = {v1,v2,v3,v4,v5,v6}, V (A2) = {v1,v7,v8,v9,v10,v11},

V (A3) = {v1,v12,v13,v14,v15,v16}, V (A4) = {v1,v17,v18,v19,v20,v21},

V (A5) = {v6,v7,v16,v22,v23,v24}, V (A6) = {v9,v16,v19,v25,v26,v27}.

Relabel the vertices of clique degree greater than one in G by uA where A = {i : v ∈

Ai for 1≤ i≤ 6}. The labeled graph is shown in Figure 2.14. Figure 2.15 is the graph

Ĥ, where Ĥ is obtained by removing the vertices of clique degree 1 from G.
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Figure 2.13 Graph G

Figure 2.14 Graph G after relabeling the vertices of clique degree greater than one
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Figure 2.15 Graph Ĥ

Let X = {bi j : Ai∩A j = /0}= {b1,6,b4,5},

X1 = {v ∈ G : dK(v) = 1}= {v2,v3,v5,v8,v10,v11,v12,v13,v14,v15,

v17,v18,v20,v21,v22,v23,v24,v25,v26,v27},

X2 = {v ∈ G : dK(v) = 2}= {v6,v7,v9,v19}= {u1,5,u2,5,u2,6,u4,6},

X3 = {v ∈ G : dK(v) = 3}= {v16}= {u3,5,6},

and X4 = {v ∈ G : dK(v) = 4}= {v1}= {u1,2,3,4}.

Let 1, 2, . . . , 6 be the six colors and C =



6 1 2 3 4 5

1 3 5 6 2 4

2 5 4 1 6 3

3 6 1 4 5 2

4 2 6 5 3 1

5 4 3 2 1 6


be the color matrix (as well as symmetric latin square) of order 6×6.

Consider the sets T = X3∪X4 = {u3,5,6,u1,2,3,4}, T ′′ = X2 = {u1,5,u2,5,u2,6,u4,6},
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P = /0 and P′′ = /0. Then, by applying the construction given in the proof of Theorem

2.4.3 we get a new color matrix C1 by putting ci, j = 0, c j,i = 0 for every bi, j in X and

ci,i = 0 for each i = 1,2, . . . ,6 and go to Step 1.

C1 =



0 1 2 3 4 0

1 0 5 6 2 4

2 5 0 1 6 3

3 6 1 0 0 2

4 2 6 0 0 1

0 4 3 2 1 0


Step 1: Since T 6= /0, choose the vertex u1,2,3,4 from T . Let T ′= {b1,2,b1,3,b1,4,b2,3,b2,4,b3,4}

and P′ = /0, then T ′1 = /0 and T ′2 = T ′. Since T ′1 = /0, choose the vertex b2,4 from T ′2, add

it to P′ and remove it from T ′. Then T ′ = {b1,2,b1,3,b1,4,b2,3,b3,4} and P′ = {b2,4}. Go

to step 2.

Step 2: Since T ′2 6= /0, go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b1,2 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b1,2) = 1, c(b2,4) = 6 and c(b1,2) 6= c(b2,4), interchange 1, 6 in the

matrix C1 except the color of b2,4. Add the vertex b1,2 to P′ and remove it from T ′. Then

C2 =



0 6 2 3 4 0

6 0 5 6 2 4

2 5 0 6 1 3

3 6 6 0 0 2

4 2 1 0 0 6

0 4 3 2 6 0


,

T ′ = {b1,3,b1,4,b2,3,b3,4} and P′ = {b1,2,b2,4}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b1,3 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b1,3) = 2, c(b2,4) = 6 and c(b1,3) 6= c(b2,4), interchange 2, 6 in the
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matrix C2 except the color of b1,2,b2,4. Add the vertex b1,3 to P′ and remove it from T ′.

Then

C3 =



0 6 6 3 4 0

6 0 5 6 6 4

6 5 0 2 1 3

3 6 2 0 0 6

4 6 1 0 0 2

0 4 3 6 2 0


,

T ′ = {b1,4,b2,3,b3,4} and P′ = {b1,2,b1,3,b2,4}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b1,4 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b1,4) = 3, c(b2,4) = 6 and c(b1,4) 6= c(b2,4), interchange 3, 6 in the

matrix C3 except the color of b1,2,b1,3,b2,4. Add the vertex b1,4 to P′ and remove it from

T ′. Then

C4 =



0 6 6 6 4 0

6 0 5 6 3 4

6 5 0 2 1 6

6 6 2 0 0 3

4 3 1 0 0 2

0 4 6 3 2 0


,

T ′ = {b2,3,b3,4} and P′ = {b1,2,b1,3,b1,4,b2,4}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b2,3 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b2,3) = 5, c(b2,4) = 6 and c(b2,3) 6= c(b2,4), interchange 5, 6 in the

matrix C4 except the color of b1,2,b1,3,b1,4,b2,4. Add the vertex b2,3 to P′ and remove it

from T ′. Then
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C5 =



0 6 6 6 4 0

6 0 6 6 3 4

6 6 0 2 1 5

6 6 2 0 0 3

4 3 1 0 0 2

0 4 5 3 2 0


,

T ′ = {b3,4} and P′ = {b1,2,b1,3,b1,4,b2,3,b2,4}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b3,4 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b3,4) = 2, c(b2,4) = 6 and c(b3,4) 6= c(b2,4), interchange 2, 6 in

the matrix C5 except the color of b1,2,b1,3,b1,4,b2,3,b2,4. Add the vertex b3,4 to P′ and

remove it from T ′. Then

C6 =



0 6 6 6 4 0

6 0 6 6 3 4

6 6 0 6 1 5

6 6 6 0 0 3

4 3 1 0 0 6

0 4 5 3 6 0


,

T ′ = /0 and P′ = {b1,2,b1,3,b1,4,b2,3,b2,4,b3,4}. Go to step 3.

Step 3: Since T ′ = /0, add the vertex u1,2,3,4 to P and remove it from T , then T =

{u3,5,6} and P = {u1,2,3,4}. Go to step 1.

Step 1: Since T 6= /0, choose the vertex u3,5,6 from T . Let T ′ = {b3,5,b3,6,b5,6} and

P′ = /0, then T ′1 = /0 and T ′2 = T ′. Since T ′1 = /0, choose the vertex b5,6 from T ′2, add it to

P′ and remove it from T ′. Then T ′ = {b3,5,b3,6} and P′ = {b5,6}. Go to step 2.

Step 2: Since T ′2 6= /0, go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b3,6 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b3,6) = 5, c(b5,6) = 6 and c(b3,6) 6= c(b5,6), interchange 5, 6 in the
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matrix C6 except the color of b5,6. Add the vertex b3,6 to P′ and remove it from T ′. Then

C7 =



0 5 5 5 4 0

5 0 5 5 3 4

5 5 0 5 1 6

5 5 5 0 0 3

4 3 1 0 0 6

0 4 6 3 6 0


,

T ′ = {b3,5} and P′ = {b3,6,b5,6}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b3,5 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b3,5) = 1, c(b5,6) = 6 and c(b3,5) 6= c(b5,6), interchange 1, 6 in the

matrix C7 except the color of b3,6,b5,6. Add the vertex b3,5 to P′ and remove it from T ′.

Then

C8 =



0 5 5 5 4 0

5 0 5 5 3 4

5 5 0 5 6 6

5 5 5 0 0 3

4 3 6 0 0 6

0 4 6 3 6 0


,

T ′ = /0 and P′ = {b3,5,b3,6,b5,6}. Go to step 3.

Step 3: Since T ′ = /0, add the vertex u3,5,6 to P and remove it from T , then T = /0

and P = {u3,5,6,u1,2,3,4}. Go to step 1.

Step 1: Since T = /0 consider Cm =C8, go to step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u1,5 from T ′′. Go to step 6.

Step 6: Since c1,5 = 4 appears exactly once in both 1st row and 5th column of

the color matrix Cm. Add the vertex u1,5 to P′′ and remove it from T ′′. Then T ′′ =

{u2,5,u2,6,u4,6} and P′′ = {u1,5}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u2,5 from T ′′. Go to step 6.

Step 6: Since c2,5 = 3 appears exactly once in both 2nd row and 5th column of the
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color matrix Cm. Add the vertex u2,5 to P′′ and remove it from T ′′. Then T ′′= {u2,6,u4,6}

and P′′ = {u1,5,u2,5}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u2,6 from T ′′. Go to step 6.

Step 6: Since c2,6 = 4 appears exactly once in both 2nd row and 6th column of the

color matrix Cm. Add the vertex u2,6 to P′′ and remove it from T ′′. Then T ′′ = {u4,6}

and P′′ = {u1,5,u2,5,u2,6}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u4,6 from T ′′. Go to step 6.

Step 6: Since c4,6 = 3 appears exactly once in both 4th row and 6th column of the

color matrix Cm. Add the vertex u4,6 to P′′ and remove it from T ′′. Then T ′′ = /0 and

P′′ = {u1,5,u2,5,u2,6,u4,6}. Go to Step 5.

Step 5: Since T ′′ = /0, consider CM =Cm.

Stop the process.

Assign the colors to the graph Ĥ using the matrix CM, i.e., color the vertex v by the

(i, j)-th entry ci, j of the matrix CM, whenever Ai∩A j 6= /0 (see Figure 2.16a), where the

numbers 1, 2, 3, 4, 5, 6 corresponds to the colors Green, Cyan, Blue, Maroon, Tan, Red

respectively. Extend the coloring of Ĥ to G by assigning the remaining colors which

are not used for Ai from the set of 6-colors to the vertices of clique degree one in each

Ai, 1≤ i≤ 6. The colored graph G is shown in Figure 2.16b.

Following example shows that the construction mentioned in the proof of Theorem

2.4.3 does not work, if the graph G has more than n
2 vertices of clique degree greater

than one in some Ai, 1≤ i≤ n.

Example 2.4.7. Let G be the graph shown in Figure 2.17a.

Let V (A1) = {v1,v2,v3,v4,v5,v6}, V (A2) = {v2,v7,v8,v9,v10,v11},

V (A3) = {v3,v8,v12,v13,v14,v15}, V (A4) = {v4,v9,v16,v17,v18,v20,v21},

V (A5) = {v5,v10,v14,v18,v20,v21}, V (A6) = {v6,v10,v15,v19,v22,v23}.

Relabel the vertices of clique degree greater than one in G by uA where A = {i : v ∈

Ai for 1≤ i≤ 6}. The labeled graph is shown in Figure 2.17b. Figure 2.18 is the graph
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(a) Graph Ĥ

(b) A 6 coloring of graph G

Figure 2.16 The graphs Ĥ and G, after colors have been assigned to their vertices.

Ĥ, where Ĥ is obtained by removing the vertices of clique degree 1 from G.
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(a) Graph G

(b) Graph G after relabeling the vertices of clique degree greater than
one

Figure 2.17 Graph G: before and after relabeling the vertices
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Figure 2.18 Graph Ĥ

Let X = {bi j : Ai∩A j = /0}= {b3,4},

X1 = {v ∈ G : dK(v) = 1}= {v1,v7,v11,v12,v13,v16,v17,v20,v21,v22,v23},

X2 = {v ∈ G : dK(v) = 2}= {v2,v3,v4,v5,v6,v8,v9,v14,v15,v18,v19}

= {u1,2,u1,3,u1,4,u1,5,u1,6,u2,3,u2,4,u3,5,u3,6,u4,5,u4,6},

and X3 = {v ∈ G : dK(v) = 3}= {v10}= {u2,5,6},

Let 1, 2, . . . , 6 be the six colors and C =



6 1 2 3 4 5

1 3 5 6 2 4

2 5 4 1 6 3

3 6 1 4 5 2

4 2 6 5 3 1

5 4 3 2 1 6


be the color matrix (as well as symmetric latin square) of order 6×6.

Consider the sets T = X3 = {u2,5,6},
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T ′′ = X2 = {u1,2,u1,3,u1,4,u1,5,u1,6,u2,3,u2,4,u3,5,u3,6,u4,5,u4,6}, P = /0 and P′′ = /0.

Then by applying the construction given in the proof of Theorem 2.4.3 we get a new

color matrix C1 by putting ci, j = 0, c j,i = 0 for every bi, j in X and ci,i = 0 for each

i = 1,2, . . . ,6 and go to Step 1.

C1 =



0 1 2 3 4 5

1 0 5 6 2 4

2 5 0 0 6 3

3 6 0 0 5 2

4 2 6 5 0 1

5 4 3 2 1 0


Step 1: Since T 6= /0, choose the vertex u2,5,6 from T . Let T ′ = {b2,5,b2,6,b5,6} and

P′ = /0, then T ′1 = /0 and T ′2 = T ′. Since T ′1 = /0, choose the vertex b5,6 from T ′2, add it to

P′ and remove it from T ′. Then T ′ = {b2,5,b2,6} and P′ = {b5,6}. Go to step 2.

Step 2: Since T ′2 6= /0, go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b2,5 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b2,5) = 2, c(b5,6) = 1 and c(b2,5) 6= c(b5,6), interchange 2, 1 in the

matrix C1 except the color of b5,6. Add the vertex b2,5 to P′ and remove it from T ′. Then

C2 =



0 2 1 3 4 5

2 0 5 6 1 4

1 5 0 0 6 3

3 6 0 0 5 2

4 1 6 5 0 1

5 4 3 2 1 0


,

T ′ = {b2,6} and P′ = {b2,5,b5,6}. Go to step 3.

Step 3: Since T ′ 6= /0 and T ′∩T ′1 = /0, choose the vertex b2,6 from T ′∩T ′2 and go to

step 4.

Step 4: Since c(b2,6) = 4, c(b5,6) = 1 and c(b2,6) 6= c(b5,6), interchange 4, 1 in the

43



matrix C2 except the color of b2,5,b5,6. Add the vertex b2,6 to P′ and remove it from T ′.

Then

C3 =



0 2 4 3 1 5

2 0 5 6 1 1

4 5 0 0 6 3

3 6 0 0 5 2

1 1 6 5 0 1

5 1 3 2 1 0


,

T ′ = /0 and P′ = {b2,5,b2,6,b5,6}. Go to step 3.

Step 3: Since T ′ = /0, add the vertex u2,5,6 to P and remove it from T , then T = /0

and P = {u2,5,6}. Go to step 1.

Step 1: Since T = /0 consider Cm =C3, go to step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u1,2 from T ′′. Go to step 6.

Step 6: Since c1,2 = 2 appears exactly once in both 1st row and 2nd column of the

color matrix Cm. Add the vertex u1,2 to P′′ and remove it from T ′′. Then

T ′′ = {u1,3,u1,4,u1,5,u1,6,u2,3,u2,4,u3,5,u3,6,u4,5,u4,6} and P′′ = {u1,2}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u1,3 from T ′′. Go to step 6.

Step 6: Since c1,3 = 4 appears exactly once in both 1st row and 3rd column of the

color matrix Cm. Add the vertex u1,3 to P′′ and remove it from T ′′. Then

T ′′ = {u1,4,u1,5,u1,6,u2,3,u2,4,u3,5,u3,6,u4,5,u4,6} and P′′ = {u1,2,u1,3}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u1,4 from T ′′. Go to step 6.

Step 6: Since c1,4 = 3 appears exactly once in both 1st row and 4th column of the

color matrix Cm. Add the vertex u1,4 to P′′ and remove it from T ′′. Then

T ′′ = {u1,5,u1,6,u2,3,u2,4,u3,5,u3,6,u4,5,u4,6} and P′′ = {u1,2,u1,3,u1,4}. Go to Step 5.

Step 5: Since T ′′ 6= /0, choose the vertex u1,5 from T ′′. Go to step 6.

Step 6: Since c1,5 = 1 and it appears more than once in the 5th column of the color

matrix Cm. Let A = {c1, j : c1, j 6= 0;1≤ j ≤ 6}= {1,2,3,4,5}, B = {ci,5 : ci,5 6= 0;1≤

i≤ 6}= {1,5,6}, then A∪B = {1, 2, 3, 4, 5, 6} and {1,2,3,4,5,6}\A∪B = /0.
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It can’t be go further.

In the illustration of Example 2.4.7, if we choose the color matrix (symmetric latin

square) given below, then exists an n-coloring of G.

Let C′ =



1 2 3 4 5 6

2 3 4 5 6 1

3 4 5 6 1 2

4 5 6 1 2 3

5 6 1 2 3 4

6 1 2 3 4 5


.

Appying the method of construction as in Example 2.4.7, we get

C′M =



0 2 3 6 5 1

2 0 6 5 4 4

3 6 0 0 1 2

6 5 0 0 2 3

5 4 1 2 0 4

1 4 2 3 4 0


.

Color the vertex v by the (i, j)-th entry ci, j of the matrix C′M, whenever Ai ∩A j 6=

/0 (see Figure 2.19a), where the numbers 1, 2, 3, 4, 5, 6 corresponds to the colors

Blue, Red, Green, Maroon, Tan, Cyan respectively. Extend the coloring of Ĥ to G by

assigning the remaining colors which are not used for Ai from the set of 6-colors to the

vertices of clique degree one in each Ai, 1 ≤ i ≤ 6. The colored graph G is shown in

Figure 2.19b.

Remark 2.4.8. From the above example, one can see that the construction will work for

some symmetric latin squares and will not work for some other, for the graphs having

more than n
2 vertices of clique degree greater than one in some Ai (1≤ i≤ n) in G.

Theorem 2.4.9. If G is a graph satisfying the hypothesis of Conjecture 2.1.1, then G is

n-colorable.
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(a) Graph Ĥ

(b) A 6 coloring of graph G

Figure 2.19 The graphs Ĥ and G, after colors have been assigned to their vertices.

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. Let Ĥ be the

induced subgraph of G consisting of the vertices of clique degree greater than 1 in G.

Relable the vertex v of clique degree greater than 1 in G by ux, where x = k1,k2, . . . ,k j;

vertex v is in Aki,1 ≤ i ≤ j. Define X = {bi, j : Ai∩A j = /0}, Xi = {v ∈ G : dK(v) = i}

for i = 1,2, . . . ,n.

Let C be the intersection matrix (color matrix) of the cliques A′is of G is the n× n
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matrix in which entry ci, j for i 6= j is 0 if Ai∩A j = /0 otherwise c, and ci,i is 0.

Let 1,2, . . . ,n be the n-colors. The following construction applied on the color ma-

trix C, gives a modified color matrix CM, using which we assign the colors to the graph

Ĥ. Then this coloring can be extended to the graph G.

Construction:

Let Ti = Xi, Pi = /0 and S = { j : Tj 6= /0,2≤ j ≤ n}.

If S = /0, then the graph G has no vertex of clique degree greater than one, which

implies G has exactly n2(maximum number) vertices. i.e., G is n components of Kn.

Otherwise follow the steps.

Step 1: If S = /0, stop the process. Otherwise, let max(S) = k, for some k,2 ≤ k ≤ n.

Then consider the sets Tk and Pk, go to step 2.

Step 2: If Tk = /0, go to step 1. Otherwise, choose a vertex ui1,i2,...,ik from Tk, where

i1 < i2 < · · ·< ik and go to Step 3.

Step 3: Let Yi = {y : color y appears atleast k− 1 times in the ith row of the color

matrix }, i = 1,2, . . . ,n. If |
⋃ik

i=i1 Yi|= n, let BT =
⋃n

i=2 Pi, BP = /0 and go to Step

4. Otherwise, construct a new color matrix C1 by putting least x in ci, j, where

x ∈ {1,2,3, . . .n} \
⋃ik

i=i1 Yi, i 6= j, i1 ≤ i, j ≤ ik. Then add the vertex ui1,i2,...,ik to

Pk and remove it from Tk, go to Step 2.

Step 4: Choose a vertex v from BT such that v ∈ Ai, for some i, i1 ≤ i≤ ik. Let B = {i :

v ∈ Ai,1≤ i≤ n} and go to Step 5.

Step 5: Let Yi = {y : color y appears atleast k− 1 times in the ith row of the color

matrix}, for every i ∈ B. If |
⋃

i∈BYi| = n add the vertex v to BP and remove it

from BT , go to Step 4. Otherwise construct a new color matrix C2 by putting x in

ci, j, where x ∈ {1,2,3, . . .n}\
⋃

i∈BYi, i 6= j, i, j ∈ B. Go to Step 3.

Thus, we get the modified color matrix CM. Then, color the vertex v of Ĥ by ci, j
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of CM, whenever v ∈ Ai ∩ A j. Then, extend the coloring of Ĥ to G. Thus G is n-

colorable.

Following is an example illustrating the algorithm given in the proof of Theorem

2.4.9.

Example 2.4.10. Let G be the graph shown in Figure 2.20a.

Let V (A1) = {v1,v2,v3,v4,v5,v6}, V (A2) = {v1,v7,v8,v9,v10,v11},

V (A3) = {v1,v12,v13,v14,v15,v16}, V (A4) = {v1,v17,v18,v19,v20,v21},

V (A5) = {v6,v7,v16,v22,v23,v24}, V (A6) = {v9,v16,v19,v25,v26,v27}.

Relabel the vertices of clique degree greater than one in G by uA where A = {i : v ∈

Ai for 1≤ i≤ 6}. The labeled graph is shown in Figure 2.20b. Figure 2.21 is the graph

Ĥ, where Ĥ is obtained by removing the vertices of clique degree 1 from G.

Let X = {bi, j : Ai∩A j = /0}= {b1,6,b4,5},

X1 = {v ∈ G : dK(v) = 1}= {v2,v3,v5,v8,v10,v11,v12,v13,v14,v15,

v17,v18,v20,v21,v22,v23,v24,v25,v26,v27},

X2 = {v ∈ G : dK(v) = 2}= {v6,v7,v9,v19}= {u1,5,u2,5,u2,6,u4,6},

X3 = {v ∈ G : dK(v) = 3}= {v16}= {u3,5,6},

X4 = {v ∈ G : dK(v) = 4}= {v1}= {u1,2,3,4},

X5 = /0 and X6 = /0.

Let 1, 2, . . . , 6 be the six colors and C =



0 c c c c 0

c 0 c c c c

c c 0 c c c

c c c 0 0 c

c c c 0 0 c

0 c c c c 0


be the color matrix (intersection matrix) of order 6×6.
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(a) Graph G

(b) Graph G after relabeling the vertices of clique de-
gree greater than one

Figure 2.20 Graph G: before and after relabeling the vertices

Consider the sets Ti = Xi, Pi = /0 for i = 1,2, . . .6 and S = { j : Tj 6= /0,2≤ j ≤ n}=

{2,3,4}. Then by applying the algorithm given in the proof of Theorem 2.4.9 we get the

following,

Step 1: Since S 6= /0 and max(S) = 4, then choose the sets T4 = {u1,2,3,4} and P4 = /0.

Go to step 2.
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Figure 2.21 Graph Ĥ

Step 2: Since T4 6= /0, choose the vertex u1,2,3,4 from T4, go to step 3.

Step 3: Since Y1 = /0, Y2 = /0, Y3 = /0, Y4 = /0 and |Y1∪Y2∪Y3∪Y4| < 6, choose the

minimum color from the set {1,2, . . . ,6}\∪i=1,2,3,4Yi and construct a new color matrix

C1 by putting 1 in ci, j, i 6= j, i, j = 1,2,3,4. Add the vertex u1,2,3,4 to P4 and remove it

from T4. Then

C1 =



0 1 1 1 c 0

1 0 1 1 c c

1 1 0 1 c c

1 1 1 0 0 c

c c c 0 0 c

0 c c c c 0


,

T4 = /0, P4 = {u1,2,3,4}. Go to step 2.

Step 2: Since T4 = /0, go to step 1.

Step 1: Since S 6= /0 and max(S) = 3, then choose the sets T3 = {u3,5,6} and P3 = /0.

Go to step 2.

Step 2: Since T3 6= /0, choose the vertex u3,5,6 from T3, go to step 3.

Step 3: Since Y3 = {1}, Y5 = /0, Y6 = /0, and |Y3 ∪Y5 ∪Y6| < 6, choose the mini-

mum color from the set {1,2, . . . ,6}\∪i=3,5,6Yi and construct a new color matrix C2 by
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putting 2 in ci, j, i 6= j, i, j = 3,5,6. Add the vertex u3,5,6 to P3 and remove it from T3.

Then

C2 =



0 1 1 1 c 0

1 0 1 1 c c

1 1 0 1 2 2

1 1 1 0 0 c

c c 2 0 0 2

0 c 2 c 2 0


,

T3 = /0, P3 = {u3,5,6}. Go to step 2.

Step 2: Since T3 = /0, go to step 1.

Step 1: Since S 6= /0 and max(S) = 2, then choose the sets T2 = {u1,5,u2,5,u2,6,u4,6}

and P2 = /0. Go to step 2.

Step 2: Since T2 6= /0, choose the vertex u1,5 from T2, go to step 3.

Step 3: Since Y1 = {1}, Y5 = {2} and |Y1∪Y5|< 6, choose the minimum color from

the set {1,2, . . . ,6} \∪i=1,5Yi and construct a new color matrix C3 by putting 3 in ci, j,

i 6= j, i, j = 1,5. Add the vertex u1,5 to P2 and remove it from T2. Then

C3 =



0 1 1 1 3 0

1 0 1 1 c c

1 1 0 1 2 2

1 1 1 0 0 c

3 c 2 0 0 2

0 c 2 c 2 0


,

T2 = {u2,5,u2,6,u4,6}, P2 = {u1,5}. Go to step 2.

Step 2: Since T2 6= /0, choose the vertex u2,5 from T2, go to step 3.

Step 3: Since Y2 = {1}, Y5 = {2,3} and |Y2 ∪Y5| < 6, choose the minimum color

from the set {1,2, . . . ,6}\∪i=2,5Yi and construct a new color matrix C4 by putting 4 in

ci, j, i 6= j, i, j = 2,5. Add the vertex u2,5 to P2 and remove it from T2. Then
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C4 =



0 1 1 1 3 0

1 0 1 1 4 c

1 1 0 1 2 2

1 1 1 0 0 c

3 4 2 0 0 2

0 c 2 c 2 0


,

T2 = {u2,6,u4,6}, P2 = {u1,5,u2,5}. Go to step 2.

Step 2: Since T2 6= /0, choose the vertex u2,6 from T2, go to step 3.

Step 3: Since Y2 = {1,4}, Y6 = {2} and |Y2 ∪Y6| < 6, choose the minimum color

from the set {1,2, . . . ,6}\∪i=2,6Yi and construct a new color matrix C5 by putting 3 in

ci, j, i 6= j, i, j = 2,6. Add the vertex u2,6 to P2 and remove it from T2. Then

C5 =



0 1 1 1 3 0

1 0 1 1 4 3

1 1 0 1 2 2

1 1 1 0 0 c

3 4 2 0 0 2

0 3 2 c 2 0


,

T2 = {u4,6}, P2 = {u1,5,u2,5,u2,6}. Go to step 2.

Step 2: Since T2 6= /0, choose the vertex u4,6 from T2, go to step 3.

Step 3: Since Y4 = {1}, Y6 = {2,3} and |Y4 ∪Y6| < 6, choose the minimum color

from the set {1,2, . . . ,6}\∪i=4,6Yi and construct a new color matrix C6 by putting 4 in

ci, j, i 6= j, i, j = 4,6. Add the vertex u4,6 to P2 and remove it from T2. Then

C6 =



0 1 1 1 3 0

1 0 1 1 4 3

1 1 0 1 2 2

1 1 1 0 0 4

3 4 2 0 0 2

0 3 2 4 2 0


,

T2 = /0, P2 = {u1,5,u2,5,u2,6,u4,6}. Go to step 2.
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Step 2: Since T2 = /0, go to step 1.

Step 1: Since S = /0, stop the process.

Assign the colors to the graph Ĥ using the matrix CM =C6, i.e., color the vertex v by

the (i, j)-th entry ci, j of the matrix CM, whenever Ai∩A j 6= /0 (see Figure 2.22a), where

the numbers 1, 2, 3, 4, 5, 6 corresponds to the colors Maroon, Tan, Green, Red, Blue,

Cyan respectively. Extend the coloring of Ĥ to G by assigning the remaining colors

which are not used for Ai from the set of 6-colors to the vertices of clique degree one in

each Ai, 1≤ i≤ 6. The colored graph G is shown in Figure 2.22b.

Here we give the construction for assigning colors to the linear hypergraph H with

n edges each with at most n vertices.

Coloring of H:

Let H be a linear hypergraph with n edges each with at most n vertices. By using

the following method one can color the linear hypergraph H with at most n colors.

Let E1,E2, . . . ,En be the edges of H. Let 1,2, . . . ,n be the n-colors. Define Xi =

{v ∈ H : degree of v is i} for i = 1,2, . . . ,n.

Construction:

Let Ti = Xi, Pi = /0 and S = { j : Tj 6= /0,2≤ j ≤ n}.

Step 1: If S = /0, stop the process. Otherwise, let max(S) = k, for some k,2 ≤ k ≤ n.

Then consider the sets Tk and Pk, go to step 2.

Step 2: If Tk = /0, go to Step 1. Otherwise choose a vertex v from Tk and go to Step 3.

Step 3: Let Yv be the set of all used colors of the edges which contains the vertex v.

If |Yv| = n, let BT =
⋃n

i=2 Pi, BP = /0 and go to Step 4. Otherwise, assign the

minimum value color from the set of unused colors to the vertex v. Then add the

vertex v to Pk and remove it from Tk, go to Step 2.

Step 4: Choose a vertex u from BT such that v and u belong to same edge Ei for some

1≤ i≤ n. Go to Step 5.
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(a) Graph Ĥ

(b) A 6 coloring of graph G

Figure 2.22 The graphs Ĥ and G, after colors have been assigned to their vertices.

Step 5: Let Yu be the set of all used colors of the edges which contains the vertex u. If

|Yu| = n add the vertex u to BP and remove it from BT , go to Step 4. Otherwise,

assign the minimum value color from the set of unused colors to the vertex u. Go

to Step 3.

Thus, we get a proper coloring of the linear hypergraph H using at most n colors.
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Figure 2.23 A 6 coloring of hypergraph H corresponding to the graph G shown in Figure
2.22b

2.4.1 Fano plane

A projective plane has the same number of lines as it has points (infinite or finite). Thus,

for every finite projective plane there is an integer N ≥ 2 such that the plane has

• N2 +N +1 points,

• N2 +N +1 lines,

• N +1 points on each line, and

• N +1 lines through each point.

The number N is called the order of the projective plane.

In finite geometry, the Fano plane is the finite projective plane of order 2, having

the smallest possible number of points and lines, 7 each, with 3 points on every line and

3 lines through every point.
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Figure 2.24 Fano Plane

Figure 2.25 Graph G

Example 2.4.11. Let G be the graph shown in Figure 2.25.

Figure 2.26 is the graph Ĥ (Fano plane) of G, where Ĥ is obtained by removing the

vertices of clique degree 1 from G.

Let E1 = {v1,v5,v6}, E2 = {v1,v4,v7}, E3 = {v1,v2,v3}, E4 = {v2,v5,v7}, E5 =

{v3,v6,v7}, E6 = {v3,v4,v5}, E7 = {v2,v4,v6} and 1,2,3 . . .7 be the 7 colors.

Figure 2.26 Fano Plane (Ĥ)
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Let X1 = /0, X2 = {v ∈ H : d(v) = 2}= /0,

X3 = {v ∈ H : d(v) = 3} = {v1,v2,v3,v4,v5,v6,v7}, X4 = /0, X5 = /0, X6 = /0 and

X7 = /0.

Consider the sets Ti = Xi, Pi = /0, for i = 1,2, . . .7 and S = { j : Tj 6= /0,1≤ j ≤ 7}=

{3}. Then by applying the above construction we get,

Step 1: Since S 6= /0 and max(S) = 3, then choose the sets T3 and P3. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v1 from T3, go to step 3.

Step 3: Since Yv1 = /0, choose the minimum color from the set {1,2, . . . ,7}\Yv1 . Add

the vertex v1 to P3 and remove it from T3. Then color of v1 is 1, T3 = {v2,v3,v4,v5,v6,v7}

and P3 = {v1}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v2 from T3, go to step 3.

Step 3: Since Yv2 = {1}, choose the minimum color from the set {1,2, . . . ,7} \

Yv2 . Add the vertex v2 to P3 and remove it from T3. Then color of v2 is 2, T3 =

{v3,v4,v5,v6,v7} and P3 = {v1,v2}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v3 from T3, go to step 3.

Step 3: Since Yv3 = {1,2}, choose the minimum color from the set {1,2, . . . ,7}\Yv3 .

Add the vertex v3 to P3 and remove it from T3. Then color of v3 is 3, T3 = {v4,v5,v6,v7}

and P3 = {v1,v2,v3}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v4 from T3, go to step 3.

Step 3: Since Yv4 = {1,2,3}, choose the minimum color from the set {1,2, . . . ,7}\

Yv4 . Add the vertex v4 to P3 and remove it from T3. Then color of v4 is 4, T3 = {v5,v6,v7}

and P3 = {v1,v2,v3,v4}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v5 from T3, go to step 3.

Step 3: Since Yv5 = {1,2,3,4}, choose the minimum color from the set {1,2, . . . ,7}\

Yv5 . Add the vertex v5 to P3 and remove it from T3. Then color of v5 is 5, T3 = {v6,v7}

and P3 = {v1,v2,v3,v4,v5}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v6 from T3, go to step 3.

Step 3: Since Yv6 = {1,2,3,4,5}, choose the minimum color from the set {1,2, . . . ,7}\
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Yv6 . Add the vertex v6 to P3 and remove it from T3. Then color of v6 is 6, T3 = {v7} and

P3 = {v1,v2,v3,v4,v5,v6}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v7 from T3, go to step 3.

Step 3: Since Yv7 = {1,2,3,4,5,6}, choose the minimum color from the set {1,2, . . . ,7}\

Yv7 . Add the vertex v7 to P3 and remove it from T3. Then color of v7 is 7, T3 = /0 and

P3 = {v1,v2,v3,v4,v5,v6,v7}. Go to step 2.

Step 2: Since T3 = /0, go to step 1.

Step 1: Since S = /0, stop the process.

Assign the colors to the graph Ĥ (see Figure 2.27).

Figure 2.27 A 7 coloring of Fano Plane

2.4.2 Steiner Triple Systems

Definition 2.4.12 (Grannell et al. (2000)). A Steiner triple system (STS) S = (V ;B)

of order v, denoted by STS(v), is a collection B of triples (3-element subsets) of the set

V , where |V |= v, such that each unordered pair of elements (points) of V is contained

in precisely one triple from B. It is well known that an STS(v) exists if and only if

v≡ 1 or 3(mod6); such values of v are called admissible.

Definition 2.4.13. A Pasch configuration, also known as a quadrilateral, consists of

four triples of a Steiner triple system whose union is a set of six points, that is to say, four
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triples which must be of the form {a,b,c}, {a,y,z}, {x,b,z} and {x,y,c}. An STS(v) is

anti-Pasch or quadrilateral-free if it does not contain a Pasch configuration. We will

denote such a system by QFSTS(v).

Definition 2.4.14. BQFSTS(u,-m) designs (m-bipartite quadrilateral-free STS(u,-m))

The points of the system are 1,2, . . . ,u. These comprise the points of the hole labelled

M (1,2, . . . ,m), points labelled A (m+1,m+2, . . . , m+u
2 ) and points labelled B

(m+u+2
2 , m+u+4

2 , . . . ,u). The systems are STS(u,-m)s,

i.e. Steiner triple systems of order u with a hole of size m. No pairs labelled M,M

appear in a triple, but all other pairs do appear in a triple.

Each system is m-bipartite, i.e. there are no M,A,A or M,B,B triples. Each system

is quadrilateral-free (i.e. anti-Pasch) Grannell et al. (2000).

A full listing of the triples of a BQFSTS(19;-3) is given below. For clarity, we list

blocks omitting set brackets and commas. A specimen of each of the BQFSTS(u;-m)

designs used in this paper is available from the JCD website (JCD). 1,2, . . .19 are the

19 edges of BQFSTS(19;-3) and each block is a triplet a,b,c and it represents a vertex.

Triplet a,b,c means it is the common vertex to the edges a,b and c.

Example 2.4.15. BQFSTS( 19 , -3 )

v1 : 1 4 12 v2 : 1 5 13 v3 : 1 6 14 v4 : 1 7 15

v5 : 1 8 16 v6 : 1 9 17 v7 : 1 10 18 v8 : 1 11 19

v9 : 2 4 13 v10 : 2 5 14 v11 : 2 6 15 v12 : 2 7 16

v13 : 2 8 17 v14 : 2 9 18 v15 : 2 10 19 v16 : 2 11 12

v17 : 3 4 14 v18 : 3 5 15 v19 : 3 6 16 v20 : 3 7 17

v21 : 3 8 18 v22 : 3 9 19 v23 : 3 10 12 v24 : 3 11 13

v25 : 4 5 17 v26 : 4 6 10 v27 : 4 7 9 v28 : 4 8 15

v29 : 4 11 16 v30 : 4 18 19 v31 : 5 6 19 v32 : 5 7 10

v33 : 5 8 9 v34 : 5 11 18 v35 : 5 12 16 v36 : 6 7 18

v37 : 6 8 12 v38 : 6 9 11 v39 : 6 13 17 v40 : 7 8 19
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v41 : 7 11 14 v42 : 7 12 13 v43 : 8 10 11 v44 : 8 13 14

v45 : 9 10 13 v46 : 9 12 14 v47 : 9 15 16 v48 : 10 14 15

v49 : 10 16 17 v50 : 11 15 17 v51 : 12 15 18 v52 : 12 17 19

v53 : 13 15 19 v54 : 13 16 18 v55 : 14 16 19 v56 : 14 17 18
E1 = {v1,v2,v3,v4,v5,v6,v7,v8} E2 = {v9,v10,v11,v12,v13,v14,v15,v16}

E3 = {v17,v18,v19,v20,v21,v22,v23,v24} E4 = {v1,v9,v17,v25,v26,v27,v28,v29,v30}

E5 = {v2,v10,v18,v25,v31,v32,v33,v34,v35} E6 = {v3,v11,v19,v26,v31,v36,v37,v38,v39}

E7 = {v4,v12,v20,v27,v32,v36,v40,v41,v42} E8 = {v5,v13,v21,v28,v33,v37,v40,v43,v44}

E9 = {v6,v14,v22,v27,v33,v38,v45,v46,v47} E10 = {v7,v15,v23,v26,v32,v43,v45,v48,v49}

E11 = {v8,v16,v24,v29,v34,v38,v41,v43,v50} E12 = {v1,v16,v23,v35,v37,v42,v46,v51,v52}

E13 = {v2,v9,v24,v39,v42,v44,v45,v53,v54} E14 = {v3,v10,v17,v41,v44,v46,v48.v55,v56}

E15 = {v4,v11,v18,v28,v47,v48,v50,v51,v53} E16 = {v5,v12,v19,v29,v35,v47,v49,v54,v55}

E17 = {v6,v13,v20,v25,v39,v49,v50,v52,v56} E18 = {v7,v14,v21,v30,v34,v36,v51,v54,v56}

E19 = {v8,v15,v22,v30,v31,v40,v52,v53,v55}

BQFSTS( 19 , -3 ) is the hypergraph H with 19 edges and every vertex of degree is

exactly 3. Let X3 = {v∈H : d(v) = 3}= {v1,v2,v3, . . .v56}, Xi = /0 for 1≤ i≤ 19, i 6= 3.

Consider the sets Ti = Xi, Pi = /0 for i = 1,2, . . .19 and S = { j : Tj 6= /0,1 ≤ j ≤

19}= {3}. Then by applying the above construction we get,

Step 1: Since S 6= /0 and max(S) = 3, then choose the sets T3 and P3. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v1 from T3, go to step 3.

Step 3: Since Yv1 = /0, choose the minimum color from the set {1,2, . . . ,19} \Yv1 .

Add the vertex v1 to P3 and remove it from T3. Then color of v1 is 1, T3 = {v2,v3, . . . ,v56}

and P3 = {v1}. Go to step 2.

Step 2: Since T3 6= /0, choose the vertex v2 from T3, go to step 3.

Step 3: Since Yv2 = {1}, choose the minimum color from the set {1,2, . . . ,19}\Yv2 .

Add the vertex v2 to P3 and remove it from T3. Then color of v2 is 2, T3 = {v3,v4, . . . ,v56}

and P3 = {v1,v2}. Go to step 2.

Continuing like this we get
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v1 : 1 4 12(1) v2 : 1 5 13(2) v3 : 1 6 14(3) v4 : 1 7 15(4)

v5 : 1 8 16(5) v6 : 1 9 17(6) v7 : 1 10 18(7) v8 : 1 11 19(8)

v9 : 2 4 13(3) v10 : 2 5 14(1) v11 : 2 6 15(2) v12 : 2 7 16(6)

v13 : 2 8 17(4) v14 : 2 9 18(5) v15 : 2 10 19(9) v16 : 2 11 12(7)

v17 : 3 4 14(2) v18 : 3 5 15(3) v19 : 3 6 16(1) v20 : 3 7 17(5)

v21 : 3 8 18(6) v22 : 3 9 19(4) v23 : 3 10 12(8) v24 : 3 11 13(9)

v25 : 4 5 17(7) v26 : 4 6 10(4) v27 : 4 7 9(8) v28 : 4 8 15(9)

v29 : 4 11 16(10) v30 : 4 18 19(11) v31 : 5 6 19(5) v32 : 5 7 10(10)

v33 : 5 8 9(11) v34 : 5 11 18(4) v35 : 5 12 16(9) v36 : 6 7 18(9)

v37 : 6 8 12(10) v38 : 6 9 11(12) v39 : 6 13 17(8) v40 : 7 8 19(1)

v41 : 7 11 14(11) v42 : 7 12 13(12) v43 : 8 10 11(2) v44 : 8 13 14(7)

v45 : 9 10 13(1) v46 : 9 12 14(13) v47 : 9 15 16(7) v48 : 10 14 15(5)

v49 : 10 16 17(3) v50 : 11 15 17(1) v51 : 12 15 18(14) v52 : 12 17 19(2)

v53 : 13 15 19(6) v54 : 13 16 18(13) v55 : 14 16 19(12) v56 : 14 17 18(10)

Triplet a,b,c(x) means, it is the common vertex to the edges a,b and c and x is the

color assigned to that vertex. In this example it takes only 14 colors.

Here is the example BQFSTS (31, -7). Using the above algorithm it takes only 23
colors.

BQFSTS (31, -7)

1 8 20 1 9 30 1 10 22 1 11 26 1 12 24 1 13 28 1 14 21

1 15 31 1 16 23 1 17 27 1 18 25 1 19 29 2 8 24 2 9 26

2 10 20 2 11 28 2 12 22 2 13 30 2 14 25 2 15 27 2 16 21

2 17 29 2 18 23 2 19 31 3 8 22 3 9 28 3 10 24 3 11 30

3 12 20 3 13 26 3 14 23 3 15 29 3 16 25 3 17 31 3 18 21

3 19 27 4 8 21 4 9 31 4 10 23 4 11 27 4 12 25 4 13 29

4 14 26 4 15 24 4 16 28 4 17 20 4 18 30 4 19 22 5 8 25

5 9 27 5 10 21 5 11 29 5 12 23 5 13 31 5 14 30 5 15 20

5 16 26 5 17 22 5 18 28 5 19 24 6 8 23 6 9 29 6 10 25

6 11 31 6 12 21 6 13 27 6 14 28 6 15 22 6 16 30 6 17 24

6 18 26 6 19 20 7 8 31 7 9 25 7 10 27 7 11 21 7 12 29

7 13 23 7 14 24 7 15 30 7 16 20 7 17 26 7 18 22 7 19 28

8 9 16 8 10 13 8 11 14 8 12 30 8 15 18 8 17 19 8 26 29

8 27 28 9 10 17 9 11 24 9 12 13 9 14 18 9 15 23 9 19 21

9 20 22 10 11 12 10 14 19 10 15 28 10 16 31 10 18 29 10 26 30

11 13 20 11 15 16 11 17 23 11 18 19 11 22 25 12 14 15 12 16 19

12 17 28 12 18 31 12 26 27 13 14 22 13 15 21 13 16 24 13 17 18

13 19 25 14 16 17 14 20 27 14 29 31 15 17 25 15 19 26 16 18 27

16 22 29 17 21 30 18 20 24 19 23 30 20 21 26 20 23 31 20 25 30

20 28 29 21 22 24 21 23 28 21 25 31 21 27 29 22 23 27 22 26 31

22 28 30 23 24 26 23 25 29 24 25 27 24 28 31 24 29 30 25 26 28

27 30 31

61



                                                                                                 

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
10

E
11

E
12

E
13

E
14

E
15

E
16

E
17

E
18

e 1
9

E
20

E
21

E
22

E
23

E
24

E
25

E
26

E
27

E
28

E
29

E
30

E
31

E
1

0
0

0
0

0
0

0
1

2
3

4
5

6
7

8
9

10
11

12
1

7
3

9
5

11
4

10
6

12
2

8

E
2

0
0

0
0

0
0

0
2

1
4

3
6

5
8

7
10

9
12

11
4

10
6

12
2

8
1

7
3

9
5

11

E
3

0
0

0
0

0
0

0
4

5
1

6
2

3
10

11
7

12
8

9
2

8
4

10
1

7
3

9
5

11
6

12

E
4

0
0

0
0

0
0

0
3

4
2

5
1

7
6

9
8

11
10

13
11

3
13

2
9

1
6

5
8

7
10

4

E
5

0
0

0
0

0
0

0
5

3
6

1
4

2
9

10
11

7
13

8
10

6
7

4
8

5
11

3
13

1
9

2

E
6

0
0

0
0

0
0

0
6

8
9

7
11

1
2

5
3

4
14

15
15

11
5

6
4

9
14

1
2

8
3

7

E
7

0
0

0
0

0
0

0
9

6
8

2
3

11
12

1
13

5
15

4
13

2
15

11
12

6
5

8
4

3
1

9

E
8

1
2

4
3

5
6

9
0

12
10

11
7

10
11

16
12

14
16

14
1

3
4

6
2

5
13

15
15

13
7

9

E
9

2
1

5
4

3
8

6
12

0
13

10
9

9
17

14
12

13
17

16
18

16
18

14
10

6
1

3
5

8
2

4

E
10

3
4

1
2

6
9

8
10

13
0

12
12

10
5

17
14

13
18

5
4

6
3

2
1

9
15

8
17

18
15

14

E
11

4
3

6
5

1
7

2
11

10
12

0
12

8
11

15
15

16
19

19
8

2
14

16
10

14
4

5
3

1
6

7

E
12

5
6

2
1

4
11

3
7

9
12

12
0

9
13

13
17

18
20

17
2

11
6

4
5

1
16

16
18

3
7

20

E
13

6
5

3
7

2
1

11
10

9
10

8
9

0
16

4
18

21
21

20
8

4
16

11
18

20
3

1
6

7
5

2

E
14

7
8

10
6

9
2

12
11

17
5

11
13

16
0

13
1

1
17

5
14

7
16

10
12

8
6

14
2

15
9

15

E
15

8
7

11
9

10
5

1
16

14
17

15
13

4
13

0
15

2
16

18
10

4
5

14
9

2
18

7
17

11
1

8

E
16

9
10

7
8

11
3

13
12

12
14

15
17

18
1

15
0

1
2

17
13

10
19

9
18

7
11

2
8

19
3

14

E
17

10
9

12
11

7
4

5
14

13
13

16
18

21
1

2
1

0
21

14
11

17
7

16
4

2
5

10
18

9
17

12

E
18

11
12

8
10

13
14

15
16

17
18

19
20

21
17

16
2

21
0

19
3

8
15

12
3

11
14

2
13

18
10

20

E
19

12
11

9
13

8
15

4
14

16
5

19
17

20
5

18
17

14
19

0
15

16
13

21
8

20
18

9
4

12
21

11

E
20

1
4

2
11

10
15

13
1

18
4

8
2

8
14

10
13

11
3

15
0

9
18

5
3

12
9

14
16

16
12

5

E
21

7
10

8
3

6
11

2
3

16
6

2
11

4
7

4
10

17
8

16
9

0
20

1
20

13
9

21
1

21
17

13

E
22

3
6

4
13

7
5

15
4

18
3

14
6

16
16

5
19

7
15

13
18

20
0

17
20

14
10

17
11

19
11

10

E
23

9
12

10
2

4
6

11
6

14
2

16
4

11
10

14
9

16
12

21
5

1
17

0
7

22
7

17
1

22
21

5

E
24

5
2

1
9

8
4

12
2

10
1

10
5

18
12

9
18

4
3

8
3

20
20

7
0

19
7

19
21

14
14

21

E
25

11
8

7
1

5
9

6
5

6
9

14
1

20
8

2
7

2
11

20
12

13
14

22
19

0
23

19
23

22
12

13

E
26

4
1

3
6

11
14

5
13

1
15

4
16

3
6

18
11

5
14

18
9

9
10

7
7

23
0

16
23

13
15

10

e 2
7

10
7

9
5

3
1

8
15

3
8

5
16

1
14

7
2

10
2

9
14

21
17

17
19

19
16

0
15

21
18

18

E
28

6
3

5
8

13
2

4
15

5
17

3
18

6
2

17
8

18
13

4
16

1
11

1
21

23
23

15
0

16
11

21

e 2
9

12
9

11
7

1
8

3
13

8
18

1
3

7
15

11
19

9
18

12
16

21
19

22
14

22
13

21
16

0
14

15

E
30

2
5

6
10

9
3

1
7

2
15

6
7

5
9

1
3

17
10

21
12

17
11

21
14

12
15

18
11

14
0

18

E
31

8
11

12
4

2
7

9
9

4
14

7
20

2
15

8
14

12
20

11
5

13
10

5
21

13
10

18
21

15
18

0

                                                                                                 

Sy
m

m
et

ri
c

C
ol

or
M

at
ri

x
of

B
Q

FS
T

S
(3

1,
-7

)

62



The following results give a relation between the number of complete graphs and

clique degrees of a graph.

Theorem 2.4.16. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. If the

intersection of any two Ai’s is non empty, then

(
dK(v1)

2

)
+

(
dK(v2)

2

)
+ · · ·+

(
dK(vl)

2

)
=

n(n−1)
2

,

where {v1,v2, . . . ,vl} is the set of all vertices of clique degree greater than 1 in G.

Proof. If G is isomorphic to the graph Hn for some n, then the result is obvious. If not

there exists at least one vertex v of clique degree greater than 2. Define Iv = {i : v ∈ Ai}

then dK(v) = |Iv|= p. For every unordered pair of elements (i, j) of Iv there is a vertex

bi j( where i < j) in Hn. Therefore corresponding to the elements of Iv there are
(p

2

)
vertices in Hn. Since G satisfies the hypothesis of Conjecture 2.1.1, there is no vertex

v′ different from v in G such that v′ ∈ Ai ∩ A j where i, j ∈ Iv. Therefore for every

vertex v of clique degree greater than 1 in G, there are
(dK(v)

2

)
vertices of clique degree

greater than 1 in Hn. As there are n(n−1)
2 vertices of clique degree greater than 1 in Hn,

n(n−1)
2 =

(dK(v1)
2

)
+
(dK(v2)

2

)
+ · · ·+

(dK(vl)
2

)
where {v1,v2, . . . ,vl} is the set of all vertices

of clique degree greater than 1 in G.

Corollary 2.4.17. If G is a graph satisfying the hypothesis of conjecture 2.1.1, then G

has at most (n
2)
(m

2)
vertices of clique degree m where m≥ 2.

Proof. Let A = {v1,v2, . . . ,vl} be the set of vertices of clique degree greater than 1 in

G and p =
(n

2)
(m

2)
. We have to prove that G has at most p vertices of clique degree m.

Suppose G has q > p vertices of clique degree m. Then by the definition of A, it follows

that, q vertices are in A. Let those vertices be v1,v2, . . . ,vq. By Theorem 2.4.16 we get,
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n(n−1)
2

=

(
dK(v1)

2

)
+

(
dK(v2)

2

)
+ · · ·+

(
dK(vl)

2

)
≥

(
dK(v1)

2

)
+

(
dK(v2)

2

)
+ · · ·+

(
dK(vq)

2

)
= q

(
m
2

)
≥ (p+1)

(
m
2

)
(n

2

)(m
2

) ≥ p+1

p ≥ p+1,

which is a contradiction. Hence there are at most (n
2)
(m

2)
vertices of clique degree m in

G, where m≥ 2.
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Chapter 3

CLIQUE GRAPH

Let G be a graph and KG be the set of all cliques of G, then the clique graph of G

denoted by K(G) is the graph with vertex set KG and two elements Qi,Q j ∈KG form

an edge if and only if Qi ∩Q j 6= /0. Iterated clique graphs are defined by K0(G) = G,

and Kn(G) = K(Kn−1(G)) for n > 0.

In this chapter, we prove a necessary and sufficient condition for a clique graph

K(G) to be complete when G = G1 +G2, give a partial characterization for clique di-

vergence of the join of graphs and prove that if G1, G2 are Clique-Helly graphs different

from K1 and G = G1�G2, then K2(G) = G.

3.1 Introduction

Given a simple graph G = (V,E), not necessarily finite, a clique in G is a maximal

complete subgraph in G. Let G be a graph and KG be the set of all cliques of G,

then the clique graph operator is denoted by K and the clique graph of G is denoted

by K(G), where K(G) is the graph with vertex set KG and two elements Qi,Q j ∈KG

form an edge if and only if Qi∩Q j 6= /0. Clique graph was introduced by Hamelink in

1968 (Hamelink, 1968). Iterated clique graphs are defined by K0(G) = G, and Kn(G) =

K(Kn−1(G)) for n > 0 (see (Hedetniemi and Slater, 1972; Prisner, 1995; Szwarcfiter,

2003)).

Definition 3.1.1. A graph G is said to be K-periodic if there exists a positive integer n

such that G∼= Kn(G) and the least such integer is called the K-periodicity of G, denoted

K-per (G).
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Definition 3.1.2. A graph G is said to be K-Convergent if {Kn(G) : n ∈ N} is finite,

otherwise it is K-Divergent (see (Neumann-Lara, 1978)).

Definition 3.1.3. A graph H is said to be K-root of a graph G if K(H) = G.

If G is a clique graph, then one can observe that, the set of all K- roots of G is either

empty or infinite.

Definition 3.1.4. (Prisner, 1995) A graph G is a Clique-Helly Graph if the set of cliques

has the Helly-Property. That is, for every family of pairwise intersecting cliques of the

graph, the total intersection of all these cliques should be non-empty also.

Definition 3.1.5. Let G1 = (V1,E1), G2 = (V2,E2) be the two graphs. Then their join

G1 +G2 is obtained by adding all possible edges between the vertices of G1 and G2.

Definition 3.1.6. The Cartesian product of two graphs G and H, denoted G�H, is a

graph with vertex set V (G�H) =V (G)×V (H), i.e., the set {(g,h)|g ∈ G,h ∈ H}. The

edge set of G�H consists of all pairs [(g1,h1),(g2,h2)] of vertices with [g1,g2] ∈ E(G)

and h1 = h2, or g1 = g2 and [h1,h2] ∈ E(H) (see (Imrich et al., 2008) page no 3).

3.2 Results

One can observe that the clique graph of a complete graph and star graph are always

complete. Let G be a graph with n vertices and having a vertex of degree n−1, then the

clique graph of G is also complete.

Theorem 3.2.1. Let G1, G2 be two graphs and G = G1 +G2, then X is a clique in G1

and Y is clique in G2 if and only if X +Y is a clique in G1 +G2.

Proof. Let G = G1 +G2 and X be a clique in G1 and Y be a clique in G2. Suppose

that X +Y is not a maximal complete subgraph in G1 +G2, then there is a maximal

complete subgraph (clique) Q in G1 +G2 such that X +Y is a proper subgraph of Q.

Since X +Y is a proper subgraph of Q, there is a vertex v in Q which is not in X +Y

and v is adjacent to every vertex of X +Y , then by the definition of G1 +G2, v should
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be in either G1 or G2. Suppose v is in G1, then the induced subgraph of V (X)+ {v}

is complete in G1, which is a contradiction as X is maximal. Therefore X +Y is the

maximal complete subgraph (clique) in G1 +G2.

Conversely, let Q be a clique in G1 +G2. Suppose that Q 6= X +Y , where X is a

clique in G1 and Y is a clique in G2. If Q∩G1 = /0, then Q is a subgraph of G2. This

implies that Q is a clique in G2 as Q is a clique in G. Let v be a vertex of G1. Then by

the definition of G1 +G2, one can observe that the induced subgraph of V (Q)∪{v} is

complete in G, which is a contradiction as Q is a maximal complete subgraph. Therefore

Q∩G1 6= /0. Similarly we can prove that Q∩G2 6= /0. Let X be the induced subgraph

of G with vertex set V (Q)∩V (G1) and Y be the induced subgraph of G with vertex set

V (Q)∩V (G2), then Q = X +Y . Since Q is a maximal complete subgraph of G, X and

Y should be maximal complete subgraphs in G1 and G2 respectively. Otherwise, if X is

not a maximal complete subgraph in G1 then there is a maximal complete subgraph X ′

in G1 such that X is subgraph of X ′ and this implies that X +Y is a subgraph of X ′+Y

and X ′+Y is complete, which is a contradiction. Therefore X and Y are maximal

complete subgraphs (cliques) in G1 and G2 respectively.

Corollary 3.2.2. Let G1, G2 be two graphs and G = G1+G2. If n, m are the number of

cliques in G1, G2 respectively, then G has nm cliques.

Proof. Let G = G1 +G2, KG1 = {X1,X2, . . . ,Xn} be the set of all cliques of G1 and

KG2 = {Y1,Y2, . . . ,Ym} be the set of all cliques of G2. Then by Theorem 3.2.1 it follows

that KG = {Xi +Yj : 1≤ i≤ n,1≤ j ≤m} is the set of all cliques of G. Since G1 has n

and G2 has m number of cliques, G1 +G2 has nm number of cliques.

In the following result we give a necessary and sufficient condition for a clique

graph K(G) to be complete when G = G1 +G2.

Theorem 3.2.3. Let G1, G2 be two graphs. If G = G1 +G2, then K(G) is complete if

and only if either K(G1) is complete or K(G2) is complete.
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Proof. Let G = G1+G2 and K(G) be complete. Suppose that neither K(G1) nor K(G2)

are complete, then there exist two cliques X ,X ′ in G1 and two cliques Y,Y ′ in G2 such

that X ∩X ′ = /0 and Y ∩Y ′ = /0. By Theorem 3.2.1 it follows that X +Y,X ′+Y ′ are

cliques in G. Since X ∩X ′ and Y ∩Y ′ are empty, it follows that {X +Y}∩{X ′+Y ′}= /0,

which is a contradiction as K(G) is complete.

Conversely, suppose that K(G1) is complete and KG1 = {X1,X2, . . . ,Xn}, KG2 =

{Y1,Y2, . . . ,Ym}. By Corollary 3.2.2, it follows that G has exactly nm number of cliques.

Let KG = {Qi j : Qi j = Xi+Yj, for i = 1,2, . . . ,n; j = 1,2, . . . ,m} be the set of all cliques

of G. Then Q is the vertex set of K(G). Arranging the elements of KG in the matrix

form M = [mi j] where mi j = Qi j, we have

M =



Q11 Q12 Q13 . . . Q1m

Q21 Q22 Q23 . . . Q2m

...
...

... . . . ...

Qn1 Qn2 Qn3 . . . Qnm


.

Let Qi j, Qkl be any two elements in M. Since Qi j = Xi +Yj, Qkl = Xk +Yl , it

follows that Xi, Xk are cliques in G1. Since K(G1) is complete, Xi ∩Xk 6= /0 and then

Qi j∩Qkl 6= /0. Therefore Qi j, Qkl are adjacent in K(G). Hence K(G) is complete.

Lemma 3.2.4. Let G1, G2 be two graphs and G = G1 +G2. If K(G1), K(G2) are not

complete, then for every clique in K(G1) there is a clique in K(G) and for every clique

in K(G2) there is a clique in K(G).

Proof. Let G = G1 +G2 be a graph such that K(G1) and K(G2) are not complete. Let

V (K(G1)) = {Xi : Xi is a clique in G1,1 ≤ i ≤ n} and V (K(G2)) = {Yj : Yj is a clique

in G2,1≤ j ≤ m}, then by Theorem 3.2.1 it follows that V (K(G)) = {Xi +Yj : 1≤ i≤

n,1 ≤ j ≤ m}. Let Q be a clique of size l in K(G1) and V (Q) = {XQ1,XQ2, . . . ,XQl}

where XQi is a clique in G1 for 1 ≤ i ≤ l. Let AQ = {XQi +Yj : 1 ≤ i ≤ l,1 ≤ j ≤ m}.

Then clearly AQ is subset of V (K(G)).

Let XQ1 +Y1, XQ2 +Y2 be two elements in AQ. Since XQ1,XQ2 are the vertices of the

clique Q of K(G1), we have XQ1 ∩XQ2 6= /0. Therefore {XQ1 +Y1}∩ {XQ2 +Y2} 6= /0.
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Hence the intersection of any two elements in AQ is non-empty. Then, it follows that

the elements of AQ form a complete subgraph in K(G). Suppose that it is not a maximal

complete subgraph in K(G). Then there is a vertex, say X1+Y1 in K(G) which is not in

AQ and X1 +Y1 is adjacent with every vertex of AQ. Since K(G2) is not complete, there

exists a vertex say Y2 in K(G2) such that Y2 is not adjacent to Y1 in K(G2). Since Q is

a clique in K(G1) and K(G1) is not complete, there is a vertex say XQ1 in V (Q) which

is not adjacent to X1 in K(G1). By the definition of AQ one can see that XQ1 +Y2 is an

element of AQ. Therefore {XQ1 +Y2}∩{X1 +Y1} = /0, which is a contradiction. Thus

AQ is a maximal complete subgraph in K(G). Hence for every clique in K(G1) there is

a clique in K(G).

On similar lines we can also prove that for every clique in K(G2), there is a clique

in K(G).

Corollary 3.2.5. Let G1, G2 be two graphs and G = G1 +G2. If K(G1), K(G2) are

not complete, then the number of cliques in K(G) is at least the sum of the number of

cliques in K(G1) and K(G2).

Theorem 3.2.6. Let G1, G2 be two graphs and G = G1 +G2. If K(G1), K(G2) are not

complete, then K2(G1)+K2(G2) is an induced subgraph of K2(G).

Proof. Let G = G1 +G2 be a graph such that K(G1) and K(G2) are not complete. Let

X1,X2, . . . ,Xn be the cliques of K(G1), and Y1,Y2, . . .Ym be the cliques of K(G2). By

Lemma 3.2.4, it follows that for every clique Xi of K(G1) there is a clique X ′i in K(G),

1≤ i≤ n and for every clique Yj of K(G2) there is a clique Y ′j in K(G), 1≤ j ≤ m.

Claim 1: Xi∩X j 6= /0 in K(G1) if and only if X ′i ∩X ′j 6= /0 in K(G) for i 6= j.

Let Xi,X j be two cliques in K(G1) and Xi ∩X j 6= /0. Let v be a vertex in Xi ∩X j.

By Lemma 3.2.4, it follows that if v is a vertex in the clique Xi in K(G1), then for any

vertex u in K(G2), v+u is a vertex in the clique X ′i in K(G) corresponding to the clique

Xi in K(G1). Therefore v+u is a vertex in X ′i ∩X ′j.

Conversely, suppose that X ′i ,X
′
j be two cliques in K(G) and X ′i ∩X ′j 6= /0. Let w be

69



a vertex in X ′i ∩X ′j. By Theorem 3.2.1, it follows that w = v+u, where v is a vertex of

K(G1) and u is a vertex of K(G2). Since w = v+u is a vertex of the clique X ′i in K(G),

it follows that v is a vertex of the clique Xi in K(G1). Similarly v is a vertex of the clique

X j in K(G1). Therefore v is in Xi∩X j.

Similarly we can prove that, Yi∩Yj 6= /0 in K(G2) if and only if Y ′i ∩Y ′j 6= /0 in K(G)

for i 6= j.

Claim 2: X ′i ∩Y ′j 6= /0 in K(G) for 1≤ i≤ n, 1≤ j ≤ m.

Let X ′i ,Y
′
j be two cliques in K(G), 1≤ i≤ n, 1≤ j ≤ m and Xi,Yj are the cliques in

K(G1),K(G2) corresponding to the maximal cliques X ′i ,Y
′
j in K(G) respectively. Let v

be a vertex in Xi and u be a vertex in Yj, then by Lemma 3.2.4 v+u be the vertex in X ′i

as well as in Y ′j . Therefore X ′i ∩Y ′j 6= /0.

By claims 1 and 2 it follows that K2(G1)+K2(G2) is an induced subgraph of K2(G).

Note: Let G1, G2 be two graphs and G = G1+G2. If G is K-divergent, then G1, G2

don’t need to be K-divergent

Example 3.2.7. If H is a graph consisting of just two nonadjacent vertices and we

define for every n > 1 the graph Jn = (((H +H)+H)+ . . .)+H︸ ︷︷ ︸
n times

, it turns out that

K(Jn) = J2n−1 . Suppose G1 = J2 =C4, G2 = H then G1+G2 = J3 and K(G1+G2) = J4.

Therefore K2(G1 +G2) = J8. Which implies that G1 +G2 is K-divergent. But G1 and

G2 are not K-divergent.

3.2.1 Observations

Let G = G1 +G2 be a graph and KG1 = {X1,X2, . . . ,Xn} be the set of all cliques of G1

and KG2 = {Y1,Y2, . . . ,Ym} be the set of all cliques of G2. By Theorem 3.2.1, it follows

that KG = {Qi j = Xi+Yj : 1≤ i≤ n;1≤ j≤m} is the set of all cliques of G. Let vi j be

the vertex of K(G) corresponding to the clique Qi j of G. Arrange the vertices of K(G)

as a matrix M = [mi j], where mi j = vi j, i.e.,
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M=



v11 v12 v13 . . . v1m

v21 v22 v23 . . . v2m

...
...

... . . . ...

vn1 vn2 vn3 . . . vnm


.

From the above matrix one can observe that the ith row corresponds to the clique Xi

of G1 and jth column corresponds to the clique Yj of G2, 1≤ i≤ n, 1≤ j ≤ m.

Claim 1: Any two elements in the same row or same column in M are adjacent in

K(G).

Let Qi j, Qik be any two elements in the ith row. Since Qi j = Xi +Yj, Qik = Xi +Yk,

Qi j∩Qik =Xi 6= /0. Therefore Qi j, Qik are adjacent in K(G). Similarly, any two elements

in the same column are adjacent.

Claim 2: If Xi∩X j 6= /0, then every vertex of ith row is adjacent to every vertex of

jth row, 1≤ i 6= j ≤ n.

Let Xi∩X j 6= /0 and vik, v jl be any two elements of ith and jth rows respectively in

M. Since Qik = Xi+Yk, Q jl = X j +Yl are the cliques of G corresponding to the vertices

vik, v jl of K(G) and Xi∩X j 6= /0, we have Qik ∩Q jl 6= /0. Therefore vik, v jl are adjacent

in K(G).

Similarly if Yi∩Yj 6= /0, then every vertex of ith column is adjacent to every vertex

of jth column, 1≤ i 6= j ≤ m.

One can see that the following observations will follow from Claim 1 and Claim 2.

1. If G = G1 +G2, then K(G) is Hamiltonian.

2. If G = G1 +G2, then K(G) is planar if it satisfies one of the following:

i). The number of cliques in G1 and G2 is less than 3.

ii). If the number of cliques in G1 is 3, then either G2 is a complete graph or G2 has

exactly two cliques and K(G1) = K3, K(G2) = K2.

iii). If the number of cliques in G1 is 4, then G2 is a complete graph.

3. If G = G1 +G2 and n,m are the number of cliques in G1, G2 respectively, then the

degree of any vertex in K(G) is (n+m−2)+ k(n−1)+ l(m−1)− kl, 0 ≤ k < m and

0≤ l < n.

4. Let G1, G2 be two graphs and G = G1 +G2,
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i) If both G1 and G2 have odd number of cliques, then K(G) is Eulerian if one of

K(G1) or K(G2) is Eulerian.

ii) If both G1 and G2 have even number of cliques, then K(G) is Eulerian if K(G1),

K(G2) are Eulerian.

iii) If G1 has even number of cliques and G2 has odd number of cliques, then K(G)

is Eulerian if degree of each vertex in K(G2) is odd and K(G1) is Eulerian.

3.3 Cartesian product of graphs

In this section we are considering G1, G2 be connected graphs only.

Theorem 3.3.1. If G1, G2 are Clique-Helly graphs different from K1 and G = G1�G2,

then K2(G) = G.

Proof. Let G1, G2 be Clique-Helly graphs different from K1 and G = G1�G2. Let

V (G1) = {v1,v2, . . .vn1} and V (G2) = {u1,u2, . . .un2}, then by the definition of G1�G2,

it follows that V (G) = {Vi j : Vi j = (vi,u j) where 1≤ i≤ n1,1≤ j≤ n2}, |V (G)|= n1n2.

Also, G has n2 copies of G1 (say, G1
1,G

2
1, . . . ,G

n2
1 ) are vertex disjoint induced subgraphs

and n1 copies of G2 (say, G1
2,G

2
2, . . . ,G

n1
2 ) are vertex disjoint induced subgraphs. Clearly

one can observe that V (Gi
2)∩V (G j

1) = Vi j, Vi j is not in V (Gn
2) and V (Gm

1 ) for n 6= i,

m 6= j for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. As G = G1�G2, we can see that every clique in

G1 and G2 are cliques in G. Let KG1 = {Q1,Q2, . . . ,Ql1} and KG2 = {P1,P2, . . . ,Pl2},

then

KG = {Q1
1,Q

1
2, . . . ,Q

1
l1,Q

2
1,Q

2
2, . . . ,Q

2
l1, . . .Q

n2
1 ,Qn2

2 , . . . ,Qn2
l1
,

P1
1 ,P

1
2 , . . . ,P

1
l2,P

2
1 ,P

2
2 , . . . ,P

2
l2 , . . . ,P

n1
1 ,Pn1

2 , . . . ,Pn1
l2
}.

Claim 1: For every vertex Vi j in G there is a clique in K(G).

Let Vi j be a vertex in G for some i, j, 1 ≤ i ≤ n1,1 ≤ j ≤ n2. Define Ai j = {Q :

Vi j ∈ Q} ⊆KG. Clearly intersection of any two cliques in Ai j is non-empty. Therefore

the vertices corresponding to these cliques in K(G) form a complete subgraph in K(G).

Suppose it is not a maximal complete subgraph in K(G), then there exists a vertex V

in K(G) such that V is adjacent to all the vertices of Ai j. Let QV be the clique in G
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corresponding to the vertex V in K(G). Clearly Vi j is not in QV . Since every clique

in G is either a clique in G1 or a clique in G2, assume that QV is a clique in G j
1. Let

Q be a clique in Gi
2 having the vertex Vi j, then Q is in Ai j. Since V (Gi

2)∩V (G j
1) =

Vi j, Q is a clique in Gi
2 and Vi j ∈ V (Q) and V (Q)∩V (G j

1) = Vi j. Which implies that

V (Q)∩ (V (G j
1)\{Vi j}) = /0. Since Vi j is not in QV and QV is a clique in G j

1, V (QV )⊆

(V (G j
1) \Vi j). Therefore V (Q)∩V (QV ) = /0, a contradiction to the fact that QV is

adjacent to all the vertices of Ai j in K(G). Hence the elements of Ai j form a clique in

K(G).

Claim 2: For any clique Q in K(G), intersection of all the cliques of G corresponding

to the vertices of Q is non-empty and a singleton.

Let Q be a clique in K(G) and V (Q) = {x1,x2, . . .xn}. Suppose all xk’s are cliques

in G j
1 for some j, 1≤ j ≤ n2, then the intersection of all xk’s is non-empty in G, where

xk ∈V (Q), as G j
1 satisfies Clique-Helly property. Let V ∈ ∩xk∈Qxk, then V is in Gi

2 for

some i, 1≤ i≤ n1. Let P be any clique in Gi
2 having a vertex V , then P intersects with

every element of V (Q). Therefore V (Q)∪{P} forms a complete graph in K(G), a con-

tradiction to the assumption that Q is maximal complete subgraph. Thus the elements

of Q are the cliques of G1 and cliques of G2. Since G j
1’s are vertex disjoint and Gi

2’s are

vertex disjoint, any element of Q is either a clique of G j
1 or a clique of Gi

2 for fixed i, j,

1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Let x1,x2, . . . ,xl be the cliques of G j
1 and xl+1,xl+2, . . . ,xn be

the cliques of Gi
2. Since V (G j

1)∩V (Gi
2) =Vi j, xl1 is a clique of G j

1, xl2 is a clique of Gi
2

and V (xl1)∩V (xl2) 6= /0, 1≤ l1 ≤ l, l+1≤ l2 ≤ n, V (xl1)∩V (xl2) =Vi j. Which implies

that Vi j belongs to every xk in Q. Therefore ∩xk∈Qxk =Vi j.

As the cliques of K(G) are the vertices of K2(G), by Claims 1 and 2 one can see

that there is a one to one correspondence between the vertices of G and K2(G).

Claim 3: Let U,V be any two adjacent vertices in G. Then the intersection of the

cliques in K(G) corresponding to these vertices is non-empty.

Let U,V be any two adjacent vertices in G and QU , QV be the cliques in K(G)

corresponding to the vertices U , V in G respectively. Since there is an edge between U ,
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V in G, there exists a clique Q in G such that the vertices U , V are in Q. By Claims 1

and 2 it follows that, the vertices of QU in K(G) are the cliques of G having the vertex

U in G is in common. Therefore Q is in V (QU). Similarly Q is in V (QV ). Which

implies that QU ∩QV 6= /0. Since cliques of K(G) are the vertices of K2(G), the vertices

corresponding to the cliques QU and QV of K(G) are adjacent in K2(G).

Claim 4: Let P, Q be any two cliques in K(G). If the intersection of P and Q is

non-empty, then the vertices in G corresponding to these two cliques are adjacent.

Let P, Q be any two cliques in K(G), P∩Q 6= /0 and U , V be the vertices in G

corresponding to the cliques P, Q of K(G) respectively. Since P∩Q 6= /0, there exists

a vertex Q1 belonging to V (P)∩V (Q). By Claims 1 and 2, one can observe that Q1 is

a clique in G and ∩Pi∈V (P)Pi =U , ∩Qi∈V (Q)Qi =V . Thus U , V belongs to V (Q1) in G.

Therefore U , V are adjacent in G.

By Claims 3 and 4 it follows that, two vertices are adjacent in G if and only if the

corresponding vertices are adjacent K2(G).

Therefore K2(G) is the same as G, if G = G1�G2 and G1, G2 are Clique-Helly

graphs such that G1, G2 are different from K1.

Corollary 3.3.2. Let G1, G2 be two graphs and G=G1�G2. If G1, G2 are Clique-Helly

graphs different from K1, then

i) G is a Clique-Helly graph.

ii) G is K-periodic.

iii) G is K-convergent.

74



Chapter 4

FOREST GRAPH

In 1966, Cummins introduced the “tree graph”: the tree graph T(G) of a graph G

(possibly infinite) has all its spanning trees as vertices, and distinct such trees corre-

spond to adjacent vertices if they differ in just one edge. i.e., two spanning trees T1 and

T2 are adjacent if T2 = T1−e+ f for some edges e ∈ T1 and f /∈ T1. The tree graph of a

connected graph need not be connected. To obviate this difficulty, we define the “forest

graph”: let G be a labeled graph of order α , finite or infinite, and let N(G) be the set of

all labeled maximal forests of G. The forest graph of G, denoted by F(G), is the graph

with vertex set N(G) in which two maximal forests F1, F2 of G form an edge if and

only if they differ exactly by one edge, i.e., F2 = F1− e+ f for some edges e ∈ F1 and

f /∈ F1.

We write F2(G) to denote F(F(G)), and in general Fn(G) = F(Fn−1(G)) for n≥ 1,

with F0(G) = G.

Definition 4.0.3. A graph G is said to be F-convergent if {Fn(G) : n ∈ N} is finite;

otherwise it is F-divergent.

A graph H is said to be an F-root of G if F(H) is isomorphic to G, F(H)∼= G. The

F-depth of G is

sup{n ∈ N : G∼= Fn(H) for some graph H}.

The F-depth of a graph G that has no F-root is said to be zero.

The graph G is said to be F-periodic if there exists a positive integer n such that

Fn(G) = G. The least such integer is called the F-periodicity of G. If n = 1, G is called
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F-stable.

This chapter is organized as follows. In Section 4.1 we give some basic results.

In later sections, using Zorn’s lemma, transfinite induction, the well ordering principle

and the theory of cardinal numbers, we study the number of F-roots and determine the

F-convergence, F-divergence, F-depth and F-stability of any graph G. In particular, we

show that:

(i) A graph G is F-convergent if and only if G has at most one cycle of length 3.

(ii) The F-depth of any graph G different from K3 and K1 is finite.

(iii) The F-stable graphs are precisely K3 and K1.

(iv) A graph that has one F-root has innumerably many, but only some F-roots are

important.

4.1 Preliminaries

For standard notation and terminology in graph theory we follow Diestel (Diestel, 2005)

and Prisner (Prisner, 1995).

Some elementary properties of infinite cardinal numbers that we use are (see, e.g.,

Kamke (Kamke, 1950)):

1. α + β = α.β = max(α,β ) if α,β are cardinal numbers and β is infinite. In

particular, 2.β = ℵ0.β = β .

2. β n = β if β is an infinite cardinal and n is a positive integer.

3. β < 2β for every cardinal number.

4. The number of finite subsets of an infinite set of cardinality β is equal to β .

We consider finite and infinite labeled graphs without multiple edges or loops. An

isthmus of a graph G is an edge e such that deleting e divides one component of G into

two of G−e. Equivalently, an isthmus is an edge that belongs to no cycle. Each isthmus

is in every maximal forest, but no non-isthmus is.
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Let C(G) and N(G) denote the set of all possible cycles and the set of all maximal

forests of a graph G, respectively. Note that a maximal forest of G consists of a spanning

tree in each component of G. A fundamental fact, whose proof is similar to that of the

existence of a maximal forest, is the following forest extension lemma:

Lemma 4.1.1. In any graph G, every forest is contained in a maximal forest.

Proof. Let G be a graph and F be a forest of G. If F is maximal forest of G we are

done. Suppose F is not maximal forest of G. If G is connected, maximal forest is

same as spanning tree. Since F is not maximal forest, then F must be acyclic and

disconnected. Add the edges from E(G) \E(F) to F such that it remains acyclic and

connected, call it as F ′. Clearly F ′ is maximal forest of G. By the above construction it

follows that F is contained in F ′. If G is disconnected, repeat the above process to each

connected component in G, we will get a maximal forest F ′ which contains F .

Lemma 4.1.2. If G is a complete graph of infinite order α , then |N(G)|= 2α .

Proof. Let G = (V,E) be a complete graph of order α (α infinite), i.e., G = Kα . Let v1,

v2 be two vertices of G and V ′ =V \{v1,v2}. Then for every A⊆V ′ there is a spanning

tree TA such that every vertex of A is adjacent only to v1 and every vertex of V ′ \A is

adjacent only to v2. It is easy to see that TA 6= TB whenever A 6= B. As the cardinality of

the power set of V ′ is 2α , there are at least 2α spanning trees of G. Since G is connected,

the maximal forests are the spanning trees; therefore |N(G)| ≥ 2α . Since the degree of

each vertex is α and G contains α vertices, the total number of edges in G is α.α = α .

The edge set of a maximal forest of G is a subset of E and the number of all possible

subsets of E is 2α . Therefore, G has at most 2α maximal forests, i.e., |N(G)| ≤ 2α .

Hence |N(G)|= 2α .

For two maximal forests of G, F1 and F2, let d(F1,F2) denote the distance between

them in F(G). We connect this distance to the number of edges by which F1,F2 differ;

the result is elementary but we could not find it anywhere in the literature. We say F1,F2

differ by l edges if |E(F1)\E(F2)|= |E(F2)\E(F1)|= l.
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Lemma 4.1.3. Let l be a natural number. For two maximal forests F1,F2 of a graph G,

if |E(F1)\E(F2)|= l, then |E(F2)\E(F1)|= l. Furthermore, F1 and F2 differ by exactly

l edges if and only if d(F1,F2) = l.

Proof. We prove the first part by induction on l. Let F1,F2 be maximal forests of G

and let E(F1) \E(F2) = {e′1,e′2, . . . ,e′k}, E(F2) \E(F1) = {e1,e2, . . . ,el}. If l = 0 then

k = 0 = l because F2 = F1. Suppose l > 0; then k > 0 also. Deleting el from F2 divides

a tree of F2 into two trees. Since these trees are in the same component of G, there

is an edge of F1 that connects them; this edge is not e1 so it is not in F2; therefore,

it is an e′i, say e′k. Let F ′2 = F2 − el + e′k. Then E(F1) \ E(F ′2) = {e′1,e′2, . . . ,e′k−1},

E(F2)\E(F1) = {e1,e2, . . . ,el−1}. By induction, k−1 = l−1.

We also prove the second part by induction on l. Assume F1,F2 differ by exactly

l edges and define F ′2 as above. If l = 0,1, clearly d(F1,F2) = l. Suppose l > 1. In a

shortest path from F1 to F2, whose length is d(F1,F2), each successive edge of the path

can increase the number of edges not in F1 by at most 1. Therefore, F1 and F2 differ

by at most d(F1,F2) edges. That is, l ≤ d(F1,F2). Conversely, d(F1,F ′2) = l− 1 by

induction and there is a path in F(G) from F1 to F ′2 of length l− 1, then continuing to

F2 and having total length l. Thus, d(F1,F2)≤ l.

Lemma 4.1.4. For any graph G, F(G) is connected if and only if any two maximal

forests of G differ by at most a finite number of edges.

Proof. Proof of this Lemma follows by the Lemma 4.1.3

Lemma 4.1.5. If G = Kα , α infinite, then F(G) is disconnected.

Proof. Proof of this Lemma follows by the Lemma 4.1.3

Lemma 4.1.6. Let G be a graph with α vertices and β edges and with no isolated

vertices. If either α or β is infinite, then α = β .

Proof. We know that |E(G)| ≤ |V (G)|2, i.e., β ≤ α2 so if β is infinite, α must also be

infinite. We also know, since each edge has two endpoints, that |V (G)| ≤ 2|E(G)|, i.e.,
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α ≤ 2.β so if α is infinite, then β must be infinite. Now assuming both are infinite,

α2 = α and 2.β = β , hence α = β .

The following lemmas are used to prove F-convergence and F-divergence in Section

4.4 and F-depth in Section 4.5.

Lemma 4.1.7. Let G be a graph. If Kn (for finite n≥ 2) is a subgraph of G, then Kbn2/4c

is a subgraph of F(G).

Proof. Let G be a graph such that Kn (n≥ 2, finite) is a subgraph of G with vertex labels

v1,v2, . . . ,vn. Then there is a path L = v1,v2, . . . ,vn of order n in G. Let F be a maximal

forest of G such that F contains the path L. In F if we replace the edge vbn/2cvbn/2c+1 by

any other edge viv j where i = 1, . . . ,bn/2c and j = bn/2c+1, . . . ,n, we get a maximal

forest Fi j. Since there are bn2/4c such edges viv j, there are bn2/4c maximal forests Fi j

(of which one is F). Any two forests Fi j differ by one edge. It follows that they form a

complete subgraph in F(G). Therefore Kbn2/4c is a subgraph of F(G).

Lemma 4.1.8. If G has a cycle of (finite) length n with n≥ 3, then F(G) contains Kn.

Proof. Suppose that G has a cycle Cn of length n with edge set {e1,e2, . . . ,en}. Let

Pi = Cn− ei for i = 1,2, . . . ,n and let F1 be a maximal forest of G containing the path

P1. Define Fi = F1 \ P1 ∪Pi for i = 2,3, . . . ,n. These Fi’s are maximal forests of G

and any two of them differ by exactly one edge, so they form a complete graph Kn in

F(G).

In particular, F(Cn) = Kn.

Lemma 4.1.9. Suppose that G contains Kn, where n≥ 3. Then F2(G) contains Knn−2 .

Proof. Cayley’s formula states that Kn has nn−2 spanning trees. Cummins (Cummins,

1966) proved that the tree graph of a finite connected graph is Hamiltonian. Therefore,

F(Kn) contains Cnn−2 . Let FT0 be a spanning tree of G that extends one of the spanning

trees T0 of the Kn subgraph. Replacing the edges of T0 in FT0 by the edges of any other

79



spanning tree T of Kn, we have a spanning tree FT that contains T . The FT ’s for all

spanning trees T of Kn are nn−2 spanning trees of G that differ only within Kn; thus, the

graph of the FT ’s is the same as the graph of the T ’s, which is Hamiltonian. That is,

F(G) contains Cnn−2 . By Lemma 4.1.8, F2(G) contains Knn−2 .

Lemma 4.1.10. If G has two edge disjoint triangles, then F2(G) contains K9.

Proof. Suppose that G has two edge disjoint triangles whose edges are e1,e2,e3 and

f1, f2, f3, respectively. The union of the triangles has exactly 9 maximal forests F ′i j,

obtained by deleting one ei and one f j from the triangles. Extend F ′11 to a maximal

forest F11 and let Fi j be the maximal forest F11 \E(F ′11)∪Fi j, for each i, j = 1,2,3. The

nine maximal forests F ′i j, and consequently the maximal forests Fi j in F(G), form a

Cartesian product graph C3×C3, which contains a cycle of length 9. By Lemma 4.1.8,

F2(G) contains K9.

We now show that repeated application of the forest graph operator to many graphs

creates larger and larger complete subgraphs.

Lemma 4.1.11. If G has a cycle of (finite) length n with n≥ 4 or it has two edge disjoint

triangles, then for any finite m≥ 1, Fm(G) contains Km2 .

Proof. We prove this lemma by induction on m.

Case 1: Suppose that G has a cycle Cn of length n (n≥ 4, n finite). By Lemma 4.1.8,

F(G) contains Kn as a subgraph, which implies that F(G) contains K4. By Lemma 4.1.9,

F3(G) contains K16 and in particular it contains K32 .

Case 2: Suppose that G has two edge disjoint triangles. By Lemma 4.1.10 F2(G)

contains K9 as a subgraph. It follows by Lemma 4.1.7 that F3(G) contains Kb92/4c=K20

as a subgraph. This implies that F3(G) contains K32 as a subgraph.

By Cases 1 and 2 it follows that the result is true for m = 1,2,3. Let us assume that

the result is true for m = l ≥ 3, i.e., that Fl(G) contains Kl2 as a subgraph. By Lemma

4.1.7 it follows that F(Fl(G)) has a subgraph Kbl4/4c. Since bl4/4c> (l+1)2, it follows
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that Fl+1(G) contains K(l+1)2 . By the induction hypothesis Fm(G) contains Km2 for any

finite m≥ 1.

With Lemma 4.1.9 it is clearly possible to prove a much stronger lower bound on

complete subgraphs of iterated forest graphs, but Lemma 4.1.11 is good enough for our

purposes.

Lemma 4.1.12. A forest graph that is not K1 has no isolated vertices and no isthmi.

Proof. Let G = F(H) for some graph H. Consider a vertex F of G, that is, a maximal

forest in H. Let e be an edge of F that belongs to a cycle C in H. Then there is an edge

f in C that is not in F and F ′ = F − e+ f is a second maximal forest that is adjacent

to F in G. Since C has length at least 3, it has a third edge g. If g is not in F , let

F ′′ = F− e+g. If g is in F , let F ′′ = F−g+ f . In both cases F ′′ is a maximal forest

that is adjacent to F and F ′. Thus, F is not isolated and the edge FF ′ in G is not an

isthmus.

Suppose F,F ′ ∈N(H) are adjacent in G. That means there are edges e ∈ E(F) and

e′ ∈ E(F ′) such that F ′ = F− e+ e′. Thus, e belongs to the unique cycle in F + e′. As

shown above, there is an F ′′ ∈N(H) that forms a cycle with F and F ′. Therefore the

edge FF ′ of G is not an isthmus.

Let F ∈N(H) be an isolated vertex in G. If H has an edge e not in F , then F + e

contains a cycle so F has a neighboring vertex in G, as shown above. Therefore, no

such e can exist; in other words, H = F and G is K1.

4.2 Basic Properties of an Infinite Forest Graph

We now present a crucial foundation for the proof of the main theorem in Section 4.4.

The cyclomatic number β1(G) of a graph G can be defined as the cardinality |E(G) \

E(F)| where F is a maximal forest of G.

Proposition 4.2.1. Let G be a graph such that |C(G)|= β , an infinite cardinal number.

Then:
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(i) β1(G) = β and β1(F(G)) = 2β .

(ii) Both the order of F(G) and its number of edges equal 2β . Both the order and the

number of edges of G equal β , provided that G has no isolated vertices and no

isthmi.

(iii) F(G) is β -regular.

(iv) The order of any connected component of F(G) is β , and it has exactly β edges.

(v) F(G) has exactly 2β components.

(vi) Every component of F(G) has exactly β cycles.

(vii) |C(F(G))|= 2β .

Proof. Let G be a graph with |C(G)| = β (β infinite).

(i) Let F be a maximal forest of G. The number of cycles in G is not more than the

number of finite subsets of E(G)\E(F). This number is finite if E(G)\E(F) is finite,

but it cannot be finite because |C(G)| is infinite. Therefore E(G)\E(F) is infinite and

the number of its finite subsets equals |E(G)\E(F)| = β1(G). Thus, β1(G) ≥ |C(G)|.

The number of cycles is at least as large as the number of edges not in F , because

every such edge makes a different cycle with F . Thus, |C(G)| ≥ β1(G). It follows that

β1(G) = |C(G)|= β . Note that this proves β1(G) does not depend on the choice of F .

The value of β1(F(G)) follows from this and part (vii).

(ii) For the first part, let F be a maximal forest of G and let F0 be a maximal forest

of G\E(F). As G\E(F) has β1(G) = β edges by part (i), it has β non-isolated vertices

by Lemma 4.1.6. F0 has the same non-isolated vertices, so it too has β edges.

Any edge set A⊆ F0 extends to a maximal forest FA in F ∪A. Since FA \F = A, the

FA’s are distinct. Therefore, there are at least 2β maximal forests in F0∪F . The maximal

forest F consists of a spanning tree in each component of G; therefore, the vertex sets

of components of F are the same as those of G, and so are those of F0∪F . Therefore,
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a maximal forest in F0 ∪F , which consists of a spanning tree in each component of

F0∪F , contains a spanning tree of each component of G.

We conclude that a maximal forest in F0 ∪F is a maximal forest of G and hence

that there are at least 2β maximal forests in G, i.e., |N(G)| ≥ 2β . Since G is a subgraph

of Kβ , and since |N(Kβ )| = 2β by Lemma 4.1.2, we have |N(G)| ≤ 2β . Therefore

|N(G)|= 2β . That is, the order of F(G) is 2β . By Lemmas 4.1.12 and 4.1.6, that is also

the number of edges of F(G).

For the second part, note that G has infinite order or else β1(G) would be finite. If G

has no isolated vertices and no isthmi, then |V (G)|= |E(G)| by Lemma 4.1.6. By part

(i) there are β edges of G outside a maximal forest; hence β ≤ |E(G)|.

Since every edge of G is in a cycle, by the axiom of choice we can choose a cycle

C(e) containing e for each edge e of G. Let C = {C(e) : e ∈ E(G)}. The total number

of pairs ( f ,C) such that f ∈C ∈ C is no more than ℵ0 · |C| ≤ℵ0 · |C(G)|= ℵ0 ·β = β .

This number of pairs is not less than the number of edges, so |E(G)| ≤ β . It follows

that G has exactly β edges.

(iii) Let F be a maximal forest of G. By part (i), |E(G)\E(F)|= β . By adding any

edge e from E(G)\E(F) to F we get a cycle C. Removing any edge other than e from

the cycle C gives a new maximal forest which differs by exactly one edge with F . The

number of maximal forests we get in this way is β1(G) because there are β1(G) ways to

choose e and a finite number of edges of C to choose to remove, and β1(G) is infinite.

Thus we get β maximal forests of G, each of which differs by exactly one edge with F .

Every such maximal forest is generated by this construction. Therefore, the degree of

any vertex in F(G) is β .

(iv) Let A be a connected component of F(G). As F(G) is β -regular by part (iii), it

follows that |V (A)| ≥ β . Fix a vertex v in A and define the nth neighborhood Dn = {v′ :

d(v,v′) = n} for each n in N. Since every vertex has degree β , |D0| = 1, |D1| = β and

|Dk| ≤ β |Dk−1|. Thus, by induction on n, |Dn| ≤ β for n > 0.

Since A is connected, it follows that V (A) =
⋃

i∈N∪{0}Di, i.e., V (A) is the countable
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union of sets of order β . Therefore |A| = β , as |N|.β ′ = β ′. Hence any connected

component of F(G) has β vertices. By Lemma 4.1.6 it has β edges.

(v) By parts (ii, iv) the order of F(G) is 2β and the order of each component of F(G)

is β . Since |F(G)| = 2β , F(G) has at most 2β components. Suppose that F(G) has β ′

components where β ′ < 2β . As each component has β vertices, it follows that F(G) has

order at most β ′.β = max{β ′,β}. This is a contradiction to part (ii). Therefore F(G)

has exactly 2β components.

(vi) Let A be a component of F(G). Since it is infinite, by part (iv) it has exactly

β edges. Suppose that |C(A)| = β ′. Then β ′ is at most the number of finite subsets

of E(A), which is β since |E(A)| = β is infinite; that is, β ′ ≤ β . By the argument in

part (iii) every edge of F(G) lies on a cycle. The length of each cycle is finite. Thus A

has at most ℵ0.β
′ = max{β ′,ℵ0}= β ′ edges if β ′ is infinite and it has a finite number

of edges if β ′ is finite. Since |E(A)| = β , which is infinite, β ′ ≥ β . We conclude that

β ′ = β .

(vii) By parts (v, vi) F(G) has 2β components and each component has β cycles.

Since every cycle is contained in a component, |C(F(G))|= β .2β = 2β .

From the above proposition it follows that an infinite graph cannot be a forest graph

unless every component has the same infinite order β and there are 2β components. A

consequence is that the infinite graph itself must have order 2β . Hence,

Lemma 4.2.2. Any infinite graph whose order is not a power of 2, including ℵ0 and all

other limit cardinals, is not a forest graph.

Lemma 4.2.3. For a graph G the following statements are equivalent.

i) F(G) is connected.

ii) F(G) is finite.

iii) The union of all cycles in G is a finite graph.
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Proof. (i) =⇒ (iii). Suppose that F(G) is connected. If G has infinitely many cycles

then by Proposition 4.2.1(v) F(G) is disconnected. Therefore G has finitely many cy-

cles. Let A = {e ∈ E(G) : edge e lies on a cycle in G}. Then |A| is finite because the

length of each cycle is finite. That proves (iii).

(iii) =⇒ (ii). As every maximal forest of G consists of a maximal forest of A and

all the edges of G which are not in A, G has at most 2n maximal forests where n = |A|.

Hence F(G) has a finite number of vertices and consequently is finite.

(ii) =⇒ (i). By identifying vertices in different components (Whitney vertex iden-

tification; see Section 4.3) we can assume G is connected so F(G) = T(G). Cummins

(Cummins, 1966) proved that the tree graph of a finite graph is Hamiltonian; therefore

it is connected.

4.3 F-Roots

In this section we establish properties of F-roots of graphs. We begin with the question

of what an F-root should be.

Since any graph H ′ that is isomorphic to an F-root H of G is immediately also an

F-root, the number of non-isomorphic F-roots is a better question than the number of

labeled F-roots. We now show in some detail that a still better question is the number

of non-isomorphic F-roots without isthmi.

Let tβ be the number of non-isomorphic rooted trees of order β . We note that

tℵ0 ≥ 2ℵ0 , by a construction of Reinhard Diestel (personal communication, July 10,

2015). (We do not know a corresponding lower bound on tβ for β > ℵ0.) Let P be

a one-way infinite path whose vertices are labelled by natural numbers, with root 1;

choose any subset S of N and attach two edges at every vertex in S, forming a rooted

tree TS (rooted at 1). Then S is determined by TS because the vertices in S are those

of degree at least 3 in TS. (If 2 ∈ S but 1 /∈ S, then vertex 1 is determined only up to

isomorphism by TS, but S itself is determined uniquely.) The number of sets S is 2ℵ0 ,

hence tℵ0 ≥ 2ℵ0 .

Proposition 4.3.1. Let G be a graph with an F-root of order α . If α is finite, then G
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has infinitely many non-isomorphic finite F-roots. If α is finite or infinite, then G has at

least tβ non-isomorphic F-roots of order β for every infinite β ≥ α .

Proof. Let G be a graph which has an F-root H, i.e., F(H)∼= G, and let α be the order

of H. We may assume H has no isthmi and no isolated vertices unless it is K1.

Suppose α is finite; then let T be a tree, disjoint from H, of any finite order n.

Identify any vertex v of H with any vertex w of T . The resulting graph HT also has G

as its forest graph since T is contained in every maximal forest of HT . As the order of

HT is α +n−1 and n can be any natural number, the graphs HT are an infinite number

of non-isomorphic finite graphs with the same forest graph up to isomorphism.

Suppose α is finite or infinite and β ≥ α is infinite. Let T be a rooted tree of order

β with root vertex w; for instance, T can be a star rooted at the star center. Attach T to

a vertex v of H by identifying v with the root vertex w. Denote the resulting graph by

HT ; it is an F-root of G and it has order β because it has order α +β , which equals β

because β is infinite and β ≥ α . As H has no isthmi, T and w are determined by HT ;

therefore, if we have a non-isomorphic rooted tree T ′ with root w′ (that means there

is no isomorphism of T with T ′ in which w corresponds to w′), HT ′ is not isomorphic

to HT . (The one exception is when H = K1, which is easy to treat separately.) The

number of non-isomorphic F-roots of G of order β is therefore at least the number of

non-isomorphic rooted trees of order β , i.e., tβ .

Proposition 4.3.1 still does not capture the essence of the number of F-roots. Whit-

ney’s 2-operations on a graph G are the following (Whitney, 1933):

1. Whitney vertex identification. Identify a vertex in one component of G with a

vertex in a another component of G, thereby reducing the number of components

by 1. For an infinite graph we modify this by allowing an infinite number of

vertex identifications; specifically, let W be a set of vertices with at most one

from each component of G, and let {Wi : i ∈ I} be a partition of W into |I| sets

(where I is any index set); then for each i ∈ I we identify all the vertices in Wi

with each other.
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2. Whitney vertex splitting. The reverse of vertex identification.

3. Whitney twist. If u,v are two vertices that separate G—that is, G = G1∪G2 where

G1∩G2 = {u,v} and |V (G1)|, |V (G2)|> 2, then reverse the names u and v in G2

and then take the union G1∪G2 (so vertex u in G1 is identified with the former

vertex v in G2 and v with the former vertex u). Call the new graph G′. For an

infinite graph we allow an infinite number of Whitney twists.

It is easy to see that the edge sets of maximal forests in G and G′ are identical, hence

F(G) and F(G′) are naturally isomorphic. It follows by Whitney vertex identification

that every graph with an F-root has a connected F-root, and it follows from Whitney

vertex splitting that every graph with an F-root has an F-root without cut vertices.

We may conclude from Proposition 4.3.1 that the most interesting question about

the number of F-roots of a graph G that has an F-root is not the total number of non-

isomorphic F-roots (which by Proposition 4.3.1 cannot be assigned any cardinality); it

is not the number of a given order; it is not even the number that have no isthmi; it is

the number of non-2-isomorphic, connected F-roots with no isthmi and (except when

G = K1) no isolated vertices.

We do not know which graphs have F-roots, but we do know two large classes that

cannot have F-roots.

Theorem 4.3.2. No infinite connected graph has an F-root.

Proof. This follows by Lemma 4.2.3.

Theorem 4.3.3. No bipartite graph G has an F-root.

Proof. Let G be a bipartite graph of order p (p ≥ 2) and let H be a root of G, i.e.,

F(H)∼= G. Suppose H has no cycle; then F(H) is K1, which is a contradiction. There-

fore H has a cycle of length ≥ 3. It follows by Lemma 4.1.8 that F(H) contains K3, a

contradiction. Hence no bipartite graph G has a root.
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4.4 F-Convergence and F-Divergence

In this section we establish the necessary and sufficient conditions for F-convergence

of a graph.

Lemma 4.4.1. Let G be a finite graph that contains a Cn (for n≥ 4) or at least two edge

disjoint triangles; then G is F-divergent.

Proof. Let G be a finite graph. By Lemma 4.1.11, Fm(G) contains Km2 as a subgraph.

Therefore, as m increases the clique size of Fm(G) increases. Hence G is F-divergent.

Lemma 4.4.2. If |C(G)|= β where β is infinite, then G is F-divergent.

Proof. Assume |C(G)|= β (β infinite). By Proposition 4.2.1(vii), as 2β < 22β

< 222β

<

· · · , it follows that |C(F(G))| < |C(F2(G))| < |C(F3(G))| < · · · . Therefore, as n in-

creases |C(Fn(G))| increases. Hence G is F-divergent.

Theorem 4.4.3. Let G be a graph. Then,

i) G is F-convergent if and only if either G is acyclic or G has only one cycle, which is

of length 3.

ii) If G is F-convergent, then it converges in at most two steps.

Proof. i) If G has no cycle, then it is a forest and F(G) is K1. If G has only one cycle

and that cycle has length 3, then F(G) is K3. Therefore in each case G is F-convergent.

Conversely, suppose that G has a cycle of length greater than 3 or has at least two

triangles. If G has infinitely many cycles, then it follows by Lemma 4.4.2 that G is

F-divergent. Therefore we may assume that G has a finite number of cycles. If G

has a finite number of vertices, then it is finite and by Lemma 4.4.1 it is F-divergent.

Therefore G has an infinite number of vertices. However, it can have only a finite

number of edges that are not isthmi, because each cycle is finite. Thus G consists of

a finite graph G0 and any number of isthmi and isolated vertices. Since F(G) depends
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only on the edges that are not isthmi and the vertices that are not isolated, F(G) =F(G0)

(under the natural identification of maximal forests in G0 with their extensions in G by

adding all isthmi of G). Therefore, G is F-divergent.

ii) If G has no cycle, then G is a forest and F(G)∼= F2(G)∼= K1. If G has only one

cycle, which is of length 3, then F(G)∼= F2(G)∼= K3. Therefore G converges in at most

2 steps.

Corollary 4.4.4. A graph G is F-stable if and only if G = K1 or K3.

4.5 F-Depth

In this section we establish results about the F-depth of a graph.

Theorem 4.5.1. Let G be a finite graph. The F-depth of G is infinite if and only if G is

K1 or K3.

Proof. Let G be a finite graph. Suppose that G is K1 or K3. Then by Corollary 4.4.4, it

follows that G is F-stable. Therefore, the F-depth of G is infinite.

Conversely, suppose that G is different from K1 and K3.

Case 1: Let |V |< 4. Then G has no F-root so its F-depth is zero.

Case 2: Let |V |= 4. Suppose G has an F-root H (i.e., F(H)∼= G). Then H should

have exactly 4 maximal forests. That is possible only when H has only one cycle,

which is of length 4. By Lemma 4.1.8 it follows that F(H) contains K4, hence it is K4.

Therefore G has an F-root if and only if it is K4. Hence the F-depth of G is zero, except

that the depth of K4 is 1.

Case 3: Let |V | = n where n > 4. Suppose that G has infinite F-depth. Then for

every m there is a graph Hm such that Fm(Hm) = G. If Hm does not have two triangles

or a cycle of length greater than 3, then Hm has only one cycle which is of length 3, or

no cycle and Hm converges to K1 or K3 in at most two steps, a contradiction. Therefore

Hm has two triangles or a cycle of length greater than 3. By Lemma 4.1.11 it follows

that Fm(Hm) contains Km2 for each m ≥ 2, so that in particular Fn(Hn) contains Kn2 .
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That is, G contains Kn2 . This is impossible as G has order n. Hence the F-depth of G is

finite.

Theorem 4.5.2. The F-depth of any infinite graph is finite.

Proof. Let G be a graph of infinite order α . If G has an F-root, then G is without isthmi

or isolated vertices.

If G is connected, Theorem 4.3.2 implies that G has no root. Therefore its F-depth

is zero.

If G is disconnected, assume it has infinite depth. Then for each natural number n

there exists a graph Hn such that G ∼= Fn(Hn). Let βn denote the order of Hn. Since

F(H1)∼= G, by Proposition 4.2.1(ii) α = 2β1 , from which we infer that β1 < α . This is

independent of which root H1 is, so in particular we can take H1 = F(H2) and conclude

that β1 = 2β2 , hence that β2 < β1. Continuing in like manner we get an infinite de-

creasing sequence of cardinal numbers starting with α . The cardinal numbers are well

ordered (Kamke, 1950), so they cannot contain such an infinite sequence. It follows

that the F-depth of G must be finite.
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Chapter 5

CONCLUSION

This thesis provides a method for assigning colors to the graphs satisfying the hy-

pothesis of the Erdös - Faber - Lovász conjecture. Also, it contains the results on iterated

forest graphs and clique graphs.

We gave a method to construct Hn, then assign colors to the graph Hn using the

symmetric Latin Squares and also gave two different approaches for assigning colors to

the graphs satisfying the hypothesis of the Erdös - Faber - Lovász conjecture. One is

using Symmetric Latin Squares and second one is using intersection matrix. Also, we

gave theoritical proof of the conjecture for some class of graphs.

We provided a necessary and sufficient condition for a clique graph K(G) to be

complete when G = G1 +G2, gave a partial characterization for clique divergence of

the join of graphs and proved that if G1, G2 are Clique-Helly graphs different from K1

and G = G1�G2, then K2(G) = G. Further, one can extend these results to obtain when

G1 +G2 is K-convergent.

We defined the “forest graph” F(G) of a graph G. Using the theory of cardinal

numbers, Zorn’s lemma, transfinite induction, the axiom of choice and the well-ordering

principle, we established the results on the number of F-roots and determined the F-

convergence, F-divergence, F-depth and F-stability of any graph G. In particular it is

shown that a graph G (finite or infinite) is F-convergent if and only if G has at most

one cycle of length 3. The F-stable graphs are precisely K3 and K1. The F-depth of any

graph G different from K3 and K1 is finite. In future work one can characterise graphs
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using F-root.
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Feng, L., Xu, K., Das, K. C., Ilić, A., and Yu, G. (2014). "The number of spanning

trees of a graph with given matching number". International Journal of Computer

Mathematics, (ahead-of-print), 1–7.

Frías-Armenta, M. E., Larrión, F., Neumann-Lara, V., and Pizaña, M. A. (2005). "Lo-

cal cutpoints and iterated clique graphs". In Proceedings of GRACO2005, 19 of

Electron. Notes Discrete Math., 345–349 (electronic), Amsterdam. Elsevier.

Frías-Armenta, M. E., Larrión, F., Neumann-Lara, V., and Pizaña, M. A. (2013). "Edge

contraction and edge removal on iterated clique graphs". Discrete Appl. Math.,

161(10-11), 1427–1439.

94



Grannell, M., Griggs, T., and Whitehead, C. (2000). "The resolution of the anti-Pasch

conjecture". Journal of Combinatorial Designs, 8(4), 300–309.

Gravier, S., Protti, F., and Sales, C. L. (2004). "On Clique-inverse graphs of Kp-free

graphs". Electronic Notes in Discrete Mathematics, 18, 139–143.

Grimmett, G. (1976). "An upper bound for the number of spanning trees of a graph".

Discrete Mathematics, 16(4), 323–324.

Haddad, L. and Tardif, C. (2004). "A clone-theoretic formulation of the Erdös-Faber-

Lovász conjecture". Discussiones Mathematicae Graph Theory, 24(3), 545–549.

Hamelink, R. C. (1968). "A partial characterization of clique graphs". J. Combinatorial

Theory, 5, 192–197.

Harary, F. (1969). "Graph Theory". Addison-Wesley Publishing Company, Inc., Cali-

fornia, London.

Harary, F. and Norman, R. Z. (1960). "Some properties of line digraphs". Rendiconti

del Circolo Matematico di Palermo, 9(2), 161–168.

Hedetniemi, S. and Slater, P. (1972). "Line graphs of triangleless graphs and iterated

clique graphs". In Graph theory and Applications, 139–147. Springer.

Hedman, B. (1984). "Clique graphs of time graphs". J. Combin. Theory Ser. B, 37(3),

270–278.

Hedman, B. (1986). "A polynomial algorithm for constructing the clique graph of a

line graph". Discrete Appl. Math., 15(1), 61–66.

Imrich, W., Klavzar, S., and Rall, D. F. (2008). "Topics in graph theory: Graphs and

their Cartesian product". AK Peters Ltd.

Jackson, B., Sethuraman, G., and Whitehead, C. (2007). "A note on the Erdős-Farber-
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Sánchez-Arroyo, A. (2008). "The Erdős-Faber-Lovász conjecture for dense hyper-

graphs". Discrete Math., 308(5-6), 991–992.

Shank, H. (1968). "A note on hamilton circuits in tree graphs". Circuit Theory, IEEE

Transactions on, 15(1), 86–86.

Suresh, D. V. V. P. R. V. B., Venkateshwarlu, D., and Rao, S. B. (2010). "Dynamics

of spanning tree graph operator". In International Congress of Mathematicians ICM

2010 Short Communications Abstracts Book, 472–473. Hindustan Book Agency.

Szwarcfiter, J. L. (2003). "A survey on clique graphs". In Recent advances in algorithms

and combinatorics, 109–136. Springer.

Teranishi, Y. (2005). "The number of spanning forests of a graph". Discrete mathemat-

ics, 290(2), 259–267.

West, D. B. et al. (2001). "Introduction to graph theory", 2. Prentice hall Upper Saddle

River.

97



Whitney, H. (1932). "Congruent graphs and the connectivity of graphs". American

Journal of Mathematics, 54(1), 150–168.

Whitney, H. (1933). "2-isomorphic graphs". American Journal of Mathematics, 245–

254.

Ye, X. and Xu, Y. (2011). "On the number of symmetric Latin squares". In Computer

Science and Service System (CSSS), 2011 International Conference on, 2366–2369.

IEEE.

Zhang, F. and Chen, Z. (1986). "Connectivity of (adjacency) tree graphs". J. Xinjiang

Univ. Natur. Sci, 3(4), 1–5.

98



LIST OF PUBLICATIONS /COMMUNICATIONS BASED ON THE-
SIS:

• Suresh Dara, S. M. Hegde, Venkateshwarlu Deva, S. B. Rao and Thomas Za-

slavsky, “The Dynamic of the Forest Graph Operator”, Discussiones Mathemati-

cae Graph Theory, 36 (2016) 899 - 913 (SCI Journal, Web of Science).

• S. M. Hegde, Suresh Dara, “On Clique Convergence of Graphs” AKCE Interna-

tional Journal of Graphs and Combinatorics 13 (3) (2016) 261 – 266 (Scopus

Indexed Journal, Web of Science).

• Suresh Dara, Vance Faber, Suresh M. Hegde and Noah Streib, “First-Fit EFL",

AMO - Advanced Modeling and Optimization 18 (2) (2016) 279 – 283.

• S. M. Hegde, Suresh Dara, “On Erdös - Faber - Lovász Conjecture", (Communi-

cated).

• S. M. Hegde, Suresh Dara, “Further Results on Erdös - Faber - Lovász Conjec-

ture", (Communicated).

Conference papers / Presentation

• S. M. Hegde, V. V. P. R. V. B. Suresh Dara, On Clique Graph, Extended Ab-

stract published in Proceedings of the national conference on “Emerging Trends

in Graph Connections" University of Kerala, Thiruvananthapuram, 2014, pp. 351

- 353.

• S. M. Hegde, V. V. P. R. V. B. Suresh Dara, A Partial Solution of the Erdös -

Faber - Lovász Conjecture, 23rd International Conference of Forum for Interdis-

ciplinary Mathematics (FIM) on “Interdisciplinary Mathematical, Statistical and

Computational Techniques - 2014” NITK, Surathkal, INDIA, from 18/12/2014 to

20/12/2014 (Presented).

• S. M. Hegde, Suresh Dara, A Solution of the Erdös - Faber - Lovász Conjecture,

“The Asian Mathematical Conference (AMC) 2016”, BNDCC Nusa Dua, Bali,

Indonesia, from 25/07/2016 to 29/07/2016 (Presented).

99



• S. M. Hegde, Suresh Dara, On Clique Convergence of Graphs, International Con-

ference on “Current Trends in Graph Theory and Computation - 2016”, De-

partment of Mathematics, South Asian University, New Delhi, INDIA, from

17/09/2016 to 19/09/2016 (Presented).

100



BIO-DATA

Name : V. V. P. R. V. B. Suresh Dara

Email Id : suresh.dara@gmail.com

Mobile : +91-9966116360

Date of Birth : February 28, 1986

Address : S/o. D. V. V. Satyanarayana,

Door No:3-3-13, Bandi Vari Veedhi,

Near Patika Factory, Ramnagar,

Nidadavole - 534301.

Andhra Pradesh, India.

Educational Qualifications:

Degree Year of Passing University

B.Sc. 2006 Andhra University, Visakhapatnam.

M.Sc. 2008 Andhra University, Visakhapatnam.

101


	Abstract
	List of Figures
	INTRODUCTION
	Basic Definitions
	 Erdös - Faber - Lovász conjecture
	Graph Dynamics
	Graph Operators
	Properties of Graph Operators
	Clique Graph
	Tree Graph

	ERDÖS - FABER - LOVÁSZ CONJECTURE
	Introduction
	Construction of Hn
	Coloring of Hn
	Coloring of G
	Fano plane
	Steiner Triple Systems


	CLIQUE GRAPH
	Introduction
	Results
	Observations

	Cartesian product of graphs

	FOREST GRAPH
	Preliminaries
	Basic Properties of an Infinite Forest Graph
	F-Roots
	F-Convergence and F-Divergence
	F-Depth

	CONCLUSION
	Bibliography


