A STUDY ON GRAPH OPERATORS AND COLORINGS

Thesis

Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY
by

V. V. P. R. V. B. SURESH DARA

DEPARTMENT OF MATHEMATICAL \& COMPUTATIONAL SCIENCES NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA SURATHKAL, MANGALORE - 575025

August, 2017

To my family

DECLARATION

By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled A STUDY ON GRAPH OPERATORS AND COLORINGS which is being submitted to the National Institute of Technology Karnataka, Surathkal in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Mathematical and Computational Sciences is a bonafide report of the research work carried out by me. The material contained in this Research Thesis has not been submitted to any University or Institution for the award of any degree.

V. V. P. R. V. B. Suresh Dara

Reg. No.: 121196 MA12F04
Department of Mathematical and Computational Sciences

Place: NITK, Surathkal.
Date:

CERTIFICATE

This is to certify that the Research Thesis entitled A STUDY ON GRAPH OPERATORS AND COLORINGS submitted by V. V. P. R. V. B. SURESH DARA, (Reg. No.: 121196 MA12F04) as the record of the research work carried out by him, is accepted as the Research Thesis submission in partial fulfillment of the requirements for the award of degree of Doctor of Philosophy.

(Dr. S. M. Hegde)

Research Supervisor

Chairman - DRPC

ACKNOWLEDGMENT

I would like to take this chance to thank those people who have made this thesis possible.

First, I would like to express my greatest appreciation towards my thesis adviser Prof. S. M. Hegde, for his continuous guidance, support and friendship. My sincere gratitude goes to Prof. S. M. Hegde for accepting me into the Ph.D. program and for keeping constant faith in me. No matter what new project I start up, he is always supportive and remarkably perceptive in advising in the right direction and correcting the vital details. He is the epitome of professionalism and perfectionism. Without his continuous encouragement, I would still be in my Ph.D. dreams. He is a great mentor and I have learnt so much from him through his long academic journey. I could not have finished my thesis in time without his untiring help in making every sentence concise and correct. I'm truly blessed to have come to National Institute of Technology Karnataka, where Prof. S. M. Hegde welcomed me with open arms and my life started on a whole new course. I am very fortunate to be able to learn from him. I learn from him that the world is not just about optimization, but more about true kindness. I will always be looking up to the high standard he sets.

My thesis committee members, Prof. Vivek Sinha and Prof. Udayashankar N. K., have provided invaluable feedback and advice on my thesis. I really appreciate their time and help.

I thank National Institute of Technology Karnataka for making my Ph.D. studies there possible with its prestigious scholarship. Its outstanding learning environment helped lay a solid academic foundation. Its invigorating environment enabled my mind to broaden and my research to thrive.

I would like to express my sincere thanks to Dr. Shyam S. Kamath, Dr. B. R. Shankar and Dr. Sam Johnson for their guidance and cooperation during my course
work.
I am very much thankful to Prof. Santhosh George, HOD of MACS, NITK Surathkal who provided an independent working environment with all computing facilities required to carry out the research work.

I am grateful to the C. R. Rao Advanced Institute of Mathematics, Statistics and Computer Sciences(AIMSCS), University of Hyderabad Campus, Hyderabad, for giving me an opportunity as a Junior Research Fellow. I owe my sincere gratitude to Prof. S. B. Rao, for his support, encouraging words and care during my stay at C. R. Rao AIMSCS.

The moments and discussions with my fellow research scholars of the department of MACS (Room Number: MACS 2.6) have been some of the most memorable and cherishable moments in my life. I would like to thank all my friends in NITK who made my stay so enjoyable.

I owe my sincere gratitude to Prof. P. D. N. Srinivasu, Prof. S. Kumaresen and Prof. P. V. S. Anand who made me to feel the joy in doing mathematics. I thank my friends Mr. Goutham Simha G.D., Mr. Manepalli Raveendra Kiran, Mr. Raghavendra Prasad J., and Dr. Srinivasa Murthy T., who helped me directly or indirectly in many ways.

I am grateful to my brother-in-law Mr. S. S. S. Prasad who stood by me during the time of Ph.D.

Finally, I am thankful to my parents and sister for accepting my decision of opting for Ph.D. Their support was always there, as expected.

Place: NITK, Surathkal V. V. P. R. V. B. Suresh Dara

Date:

Abstract

In 1972, Erdös - Faber - Lovász conjectured that, if \mathbf{H} is a linear hypergraph consisting of n edges of cardinality n, then it is possible to color the vertices with n colors so that no two vertices with the same color are in the same edge. In this research work we give a method of coloring of the linear hypergraph \mathbf{H} satisfying the hypothesis of the conjecture and we partially prove the Erdös - Faber - Lovász conjecture theoretically.

Let G be a graph and \mathscr{K}_{G} be the set of all cliques of G, then the clique graph of G denoted by $K(G)$ is the graph with vertex set \mathscr{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathscr{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$.

We prove a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$, give a partial characterization for clique divergence of the join of graphs and prove that if G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$.

Let G be a labeled graph of order α, finite or infinite, and let $\mathfrak{N}(G)$ be the set of all labeled maximal forests of G. The forest graph of G, denoted by $\mathbf{F}(G)$, is the graph with vertex set $\mathfrak{N}(G)$ in which two maximal forests F_{1}, F_{2} of G form an edge if and only if they differ exactly by one edge, i.e., $F_{2}=F_{1}-e+f$ for some edges $e \in F_{1}$ and $f \notin F_{1}$.

Using the theory of cardinal numbers, Zorn's lemma, transfinite induction, the axiom of choice and the well-ordering principle, we determine the \mathbf{F}-convergence, \mathbf{F} divergence, \mathbf{F}-depth and \mathbf{F}-stability of any graph G.

Keywords: Chromatic number, Erdös - Faber - Lovász conjecture, Graph dynamics, Graph Operators, Forest graph operator, Maximal clique, Clique graph, Join of graphs, Cartesian product of graphs, Clique-Helly graphs and Infinite cardinals

Contents

Abstract i
List of Figures v
1 INTRODUCTION 1
1.1 Basic Definitions 1
1.2 Erdös - Faber - Lovász conjecture 5
1.3 Graph Dynamics 7
1.4 Graph Operators 7
1.5 Properties of Graph Operators 9
1.6 Clique Graph 10
1.7 Tree Graph 12
2 ERDÖS - FABER - LOVÁSZ CONJECTURE 15
2.1 Introduction 15
2.2 Construction of H_{n} 19
2.3 Coloring of H_{n} 26
2.4 Coloring of G 28
2.4.1 Fano plane 55
2.4.2 \quad Steiner Triple Systems 58
3 CLIQUE GRAPH 65
3.1 Introduction 65
3.2 Results 66
3.2.1 Observations 70
3.3 Cartesian product of graphs 72
4 FOREST GRAPH 75
4.1 Preliminaries 76
4.2 Basic Properties of an Infinite Forest Graph 81
$4.3 \quad$ F-Roots 85
$4.4 \quad$ F-Convergence and \mathbf{F}-Divergence 88
$4.5 \quad$ F-Depth 89
5 CONCLUSION 91
Bibliography 93

List of Figures

1.1 Hypergraph 5
1.2 Colored Hypergraph 6
1.3 $\mathrm{L}(\mathrm{G})$ is the line graph of the graph G 8
$1.4 \mathrm{~K}(\mathrm{G})$ is the clique graph of the graph G 9
2.1 All graphs satisfying the hypothesis of the conjecture for $\mathrm{n}=3$ 17
2.2 \quad Graph G and Hypergraph \mathbf{H} 18
$2.3 \quad 4$ copies of K_{4} 20
2.4 Construction of H^{2} from H^{1}, B_{2} 21
2.5 Construction of H^{3} from H^{2}, B_{3} 21
$2.6 \quad H^{3}, B_{4}$ 22
$2.7 \quad H_{4}=H^{4}$ 22
$2.8 \quad H_{6}$ 23
2.9 Graph G after relabeling the vertices 24
2.10 Splitting the common vertices of H_{4} which are not in N_{2}. 25
2.11 Graph G^{\prime}. 26
2.12 A coloring of H_{6} with six colors 29
2.13 Graph G 33
2.14 Graph G after relabeling the vertices of clique degree greater than one 33
2.15 Graph \hat{H} 34
2.16 The graphs \hat{H} and G, after colors have been assigned to their vertices. 40
2.17 Graph G : before and after relabeling the vertices 41
2.18 Graph \hat{H} 42
2.19 The graphs \hat{H} and G, after colors have been assigned to their vertices. 46
2.20 Graph G : before and after relabeling the vertices 49
2.21 Graph \hat{H} 50
2.22 The graphs \hat{H} and G, after colors have been assigned to their vertices. 54
2.23 A 6 coloring of hypergraph \mathbf{H} corresponding to the graph G shown inFigure 2.22b55
2.24 Fano Plane 56
2.25 Graph G 56
2.26 Fano Plane (\hat{H}) 56
2.27 A 7 coloring of Fano Plane 58

Chapter 1

INTRODUCTION

In 1736, a Swiss Mathematician Leonhard Eular (1707-1783) solved the well known Konigsberg Bridge problem. The method he used to solve it is considered by many to be the birth of Graph Theory. Later in 19th century German Physicist Gustav Kirchhoff (1824-1887) investigated electrical circuits leads to the development of results on trees in graph. But the term tree was introduced by the British Mathematician Arthur Cayley (1821-1895) in 1857 while studying the enumeration of organic chemical isomers. In the early 20th century, a French Mathematician and a Theoretical Physicist, Poincare (1854-1912) defined in principle what is known as the incidence matrix of a graph. In 1936, the first book on graph theory was published by Denes Konig (1884-1944). After Second World War, further books appeared on graph theory (Ore, Behzad and Chartrand, Tutte, Berge, Harary, Gould, Wilson, West and Diestel among many others). Graph theory has found many applications in engineering and science, such as electrical, chemical, civil and mechanical, communication, operational research, computer science and other scientific and not-so-scientific areas.

1.1 Basic Definitions

A graph G consists of a set V of vertices (points, nodes) and a set E of edges(lines, connections) such that each edge $e \in E$ is associated with ordered or unordered pair of elements of V, i.e., there is a mapping from the set of edges E to set of ordered or unordered pairs of elements of V. The graph G with vertex set V and edge set E is written as $G=(V, E)$ or $G(V, E)$.

If an edge $e \in E$ is associated with an ordered pair (u, v) or an unordered pair (u, v), where $u, v \in V$, then e is said to connect u and v and u, v are called end points of e. An edge is said to be incident with vertices it joins. Thus, the edge e that joins the vertices u and v, is said to be incident on each of its end points u and v. Any pair of vertices that is connected by an edge in a graph are called adjacent vertices. In a graph a vertex that is not adjacent to any another vertex is called an isolated vertex.

A graph $G(V, E)$ is said to be finite if it has a finite number of vertices and finite number of edges. (A graph with finite number of vertices must also have finite number edges): otherwise, it is infinite graph, $|V(G)|$ denotes the number vertices in G and is called the order of G. Similarly, $|E(G)|$ denotes the number of edges in G and is called the size of G. If G is a (p, q) graph then G has p vertices and q edges.

Two or more edges joining the same pair of vertices are known as multiple edges, and an edge joining a vertex to itself is called a loop. A graph with no loops and multiple edges is called a simple graph. In a graph if multiple edges are allowed, but no loops, then the graph is known as a multi graph. If both the loops and the multiple edges are allowed in a graph, then the graph is considered to be a pseudo graph.

A subgraph of G is a graph having all of its vertices and edges in G. If G_{1} is a subgraph of G, then G is a super graph of G_{1}. A spanning subgraph is a subgraph containing all the vertices of G. For any set S of vertices of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with vertex set S. The removal of a vertex v_{i} from a graph G results in a maximal subgraph $G-v_{i}$, of G not containing the vertex v_{i}. Similarly, the removal of an edge x_{i} results in a maximal subgraph $G-x_{i}$, of G except x_{i}.

A walk of G is a finite sequence $\left\{v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, e_{3}, \ldots, e_{n}, v_{n}\right\}$ whose terms are alternately vertices v_{i} and edges e_{i} of G for $1 \leq i \leq n$, and v_{i-1} and v_{i} are the two ends of e_{i}. A trail in G is a walk in which no edge of G appears more than once. A path P is a trail in which no vertex appears more than once.

Two vertices v_{i} and v_{j} are said to be connected in G if there exists a path between these vertices. A graph G is called connected if all pairs of its vertices are connected. A component of a graph G is a maximal connected subgraph, i.e., it is not a subgraph of any other connected subgraph of G.

A tree T is a connected acyclic graph. A tree of a graph G is an acyclic connected subgraph of G. A set of trees of G forms a forest. A spanning tree of G is a connected, acyclic, spanning subgraph of G. If G is disconnected, then the acyclic spanning subgraph is called the forest of G. A forest F of G is said to be maximal if there is no forest F^{\prime} of G such that F is a proper subgraph of F^{\prime}.

An Euler trail of a graph G is a trail that visits every edge once. A connected graph G is Eulerian, if it has a closed trail containing every edge of G. Such a trail is called an Euler tour. A path P of a graph G is a Hamilton path, if P visits every vertex of G once. Similarly, a cycle C is a Hamilton cycle, if it visits each vertex once. A graph is Hamiltonian, if it has a Hamilton cycle.

The set of vertices adjacent to a vertex v is called the neighborhood of v, denoted by $N(v)$. This is called the open neighborhood of v and the closed neighborhood of v is denoted by $N[v]$, defined by $N(v) \cup\{v\}$. The degree of a vertex v is the number of edges incident with v; it is denoted by $\operatorname{deg}(v)$. The minimum degree among the vertices of G is denoted by $\delta(G)$ and the maximum degree by $\Delta(G)$. If $\delta(G)=\Delta(G)=r$, then G is called a regular graph of degree r. If $r=n-1$ then the graph is a complete graph. A vertex with degree 1 is called as a pendant vertex. The degree sequence of a graph is the list of vertex degrees, usually written in non-increasing order, as $d_{1} \geq d_{2} \geq \ldots . \geq d_{n}$. A graphic sequence is a list of nonnegative numbers, that is, the degree sequence of some simple graph. A clique in G is a maximal complete subgraph in G.

A graph G is labeled if the n vertices of G are distinguished from each other by
names, such as, $v_{1}, v_{2}, \ldots, v_{n}$. Two graphs G and H are isomorphic, written $G \cong H$, if there exists a one-to-one correspondence between their vertex sets, which preserves the adjacency.

A bipartite graph G is a graph whose vertex set can be partitioned into two sets V_{1} and V_{2} such that, every edge of G joins a vertex of V_{1} with a vertex of V_{2}. If every vertex of V_{1} is joined with every vertex of V_{2} then G is said to be complete bipartite graph and is denoted by $K_{m, n}$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. In particular a complete bipartite graph $K_{1, n}$ is called a star. Every non-trivial tree is a bipartite graph.

A graph is said to be a planar graph, if it can be drawn on a plane so that no two edges intersect. A plane graph is the one which is already drawn in a plane so that no two edges intersect. The regions defined by the plane graph are the faces of the plane graph; the unbounded region is called the exterior face.

A graph can be associated with a matrix. Or in other words, a graph can be represented in terms of matrices. Let G be a simple graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. The adjacency matrix of G, written $A(G)$, is the $n \times n$ matrix in which entry $a_{i j}$ is the number of edges in G with end vertices v_{i}, v_{j}. The incidence matrix $M(G)$ is the $n \times m$ matrix in which entry $m_{i j}$ is 1 if v_{i} is an end vertex of e_{j} otherwise 0 . Note that, every adjacency matrix is symmetric matrix. An adjacency matrix of a simple graph G has entries 0 or 1 , with $0 s$ on the diagonal. The degree of v is the sum of the entries in the rows for v in either $A(G)$ or $M(G)$. The study of the matrices associated with the graphs, created a branch of graph theory, called the spectral graph theory, which deals with the energy of graphs.

The vertex coloring of a graph $G=(V, E)$ is a map $c: V \rightarrow S$ such that $c(v) \neq c(w)$ whenever v and w are adjacent. The elements of the set S are called the available colors. Such a coloring is often referred to as a proper coloring. If k distinct colors are used in coloring of G, it is referred to as a k-coloring of G and we say that G is k-colorable. The
chromatic number $\chi(G)$ is the least k such that G is k-colorable. Note that a k-coloring is nothing but a vertex partition into k independent sets.

A hypergraph is a structure $H=\left(V,\left(E_{i}: i \in I\right)\right)$ where the vertex set V is an arbitrary set, and every $E_{i} \subseteq V$. These sets E_{i} are called the hyperedges of the hypergraph.

Figure 1.1 Hypergraph

A hypergraph is said to be linear if no two hyperedges have more than one vertex in common. A hypergraph is said to be uniform if all of its hyperedges have the same number of vertices as each other. The degree of a vertex v in H is the number of edges containing v. The minimum degree among the vertices is denoted by $\delta(H)$ and the maximum degree by $\Delta(H)$. A hypergraph H is said to be dense if $\delta(H)$ is greater than \sqrt{n}. A coloring of a hypergraph is an assignment of colors to the vertices so that no two vertices of an edge has the same color. A k-coloring of a hypergraph is a coloring of it where the number of used colors is at most k.

1.2 Erdös - Faber - Lovász conjecture

One of the famous conjectures in graph theory is Erdös - Faber - Lovász (EFL) conjecture. It states that any linear hypergraph H on n vertices has chromatic number at most n. Erdös, in 1975 offered 50 USD (Erdős, 1975) and in 1981, offered 500 USD (Erdós,

Figure 1.2 Colored Hypergraph

1981; Jensen and Toft, 2011) for the proof or the disproof of the conjecture.

Chang and Lawler (Chang and Lawler, 1988) presented a simple proof that the edges of a simple hypergraph on n vertices can be colored with at most [1.5n-2] colors. Kahn (Kahn, 1992) showed that the chromatic number of H is at most $n+o(n)$. Jackson et al., (Jackson et al., 2007) proved the conjecture is true when the partial hypergraph S of H determined by the edges of size at least three can be Δ_{S}-edge-colored and satisfies $\Delta_{S} \leq 3$. In particular, the conjecture holds when S is unimodular and $\Delta_{S} \leq 3$. Paul and Germina (Paul and Germina, 2012) established the truth of the conjecture for all linear hypergraphs on n vertices with $\Delta(H) \leq \sqrt{n+\sqrt{n}+1}$. Sanchez-Arroyo (Sánchez-Arroyo, 2008) proved that the conjecture is true for dense hypergraphs. Faber (Faber, 2010) proved that for fixed degree, there can be only finitely many counter examples to EFL on this class (both regular and uniform) of hypergraphs. Romero et.al., (Romero and Alonso-Pecina, 2014) proved that the conjecture is true for $n \leq 12$. We consider the equivalent version of the conjecture for simple graphs given by Deza et al., (Deza et al., 1978; Sánchez-Arroyo, 2008; Jensen and Toft, 2011; Mitchem and Schmidt, 2010), stated as below.

Conjecture: Let $G=\bigcup_{i=1}^{n} A_{i}$ denote a graph with n complete graphs $\left(A_{1}, A_{2}\right.$, \ldots, A_{n}), each having exactly n vertices and have the property that every pair of complete graphs has at most one common vertex, then the chromatic number of G is n.

1.3 Graph Dynamics

The concept of a dynamical system has its origin in Newtonian mechanics. There, as in other natural sciences and in engineering disciplines, the evolution rule of dynamical systems is given implicitly by a relation that gives the state of system only a short time into the future (the relation is either a differential equation or difference equation or another time scale). To determine the state for all future times require the relation to be iterated many times-each advancing in time a small step. The iteration procedure is referred to as solving the system or integrating the system. Once the system is solved, it is possible to determine all its future positions, given an initial point. Linear dynamical systems can be solved in terms of simple functions.

A discrete dynamical system (or simply a dynamical system) is an ordered pair (X, ϕ), where X is nonempty set and ϕ is a mapping from $X \rightarrow X$. The set X is called as the underlying state space and ϕ as the rule of motion. Dynamics is introduced by the iterates of ϕ. For any $x \in X, \phi(x)$ is interpreted as the position to which x reaches after one unit of time. Similarly, $\phi^{n}(x)$ is interpreted as the position of x after n units of time, where $\phi^{n}(x)=\phi\left(\phi^{n-1}(x)\right)$ for $n>1$.

In mathematics, the concept of graph dynamical systems (GDS) can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of graph dynamical systems is to relate their structural properties (e.g. network connectivity).

A graph dynamical system is a discrete dynamical system where X is a set of graphs (see (Prisner, 1995)).

Examples: Line graph operator, Tree graph operator, Clique graph operator etc.

1.4 Graph Operators

In the literature, line graph is the graph operator which started first and the term line graph appeared in the paper of Harary (Harary and Norman, 1960); but the construction of line graph is used by Whitney (Whitney, 1932) and Krausz (Krausz, 1943). Ore (Ore, 1962), used the definition of line graph in the name of interchange graphs and he posed some problems on it. In 1960's, several people worked on line graphs. In 1966, Cum-
mins (Cummins, 1966) introduced tree graph operator. Hamelink (Hamelink, 1968) used the clique graph operator. In 1970's, number of graph operators were introduced.

Definition 1.4.1. Let S be a set and $F=\left\{S_{1}, S_{2}, \ldots, S_{p}\right\}$ be a family of distinct nonempty subsets of S whose union is S. The intersection graph of F is denoted by $\Omega(F)$ and is defined by $V(\Omega(F))=F$, with S_{i} and S_{j} adjacent whenever $i \neq j$ and $S_{i} \cap S_{j} \neq \emptyset$. Then a graph G is an intersection graph on S if there exists a family F of subsets of S for which $G \cong \Omega(F)$.

Theorem 1.4.2. Every graph is an intersection graph
Line graph of a graph $G=(V, E)$ is the intersection graph of E and clique graph of a graph G is the intersection graph of \mathscr{K}_{G}, where \mathscr{K}_{G} is the set of all maximal cliques of G.

Definition 1.4.3. The line graph of $G=(V, E)$, denoted by $L(G)$, is the intersection graph $\Omega(E)$. Thus the points of $L(G)$ are the lines of G, with two points of $L(G)$ adjacent whenever the corresponding lines of G are incident.

Figure $1.3 \mathrm{~L}(\mathrm{G})$ is the line graph of the graph G

Definition 1.4.4. Given a graph G of order finite or infinite, denote by $V=\mathscr{K}_{G}$ the set of all cliques of G. Define an adjacency relation in V as follows. The cliques Q_{i}, Q_{j} are
said to be adjacent if $Q_{i} \cap Q_{j} \neq \emptyset$. The resultant graph is called the Clique Graph of G and is denoted by $K(G)$. The operator K is called the Clique Graph Operator.

Figure $1.4 \mathrm{~K}(\mathrm{G})$ is the clique graph of the graph G

1.5 Properties of Graph Operators

The study of graphs and their iterated graphs using the graph operators is the dynamics of graphs and is called graph dynamics. A discrete dynamical system is any set X together with a mapping $\phi: X \rightarrow X$. The elements of X are called states. A graph dynamical system is a discrete dynamical system where X is a set of graphs (see (Prisner, 1995)).

There are some dynamical properties to study the graphs using graph operators. The following definitions are taken from (Prisner, 1995). Let (X, ϕ) be the discrete dynamical system, where ϕ is a mapping from $X \rightarrow X$.

Definition 1.5.1. Let $x \in X$. Then x is said to be ϕ-convergent if the set $\left\{\phi^{n}(x): n \in \mathbb{N}\right\}$ is finite, otherwise x is ϕ-Divergent.

Definition 1.5.2. For the given operator ϕ, a ϕ-root of an element $x \in X$ is any $y \in X$ with $\phi(y)=x$.

Let $x \in X$. We say x has ϕ-root if there exists an element $y \in X$ such that $\phi(y)=x$.

Definition 1.5.3. The ϕ-depth of an element $x \in X$ is defined as the supremum of the set of all natural numbers n for which there is an element $y \in X$ such that $\phi^{n}(y)=x$.

The ϕ-depth of an element x is said to be zero if x has no ϕ-root.

Definition 1.5.4. Let $x \in X$. Then x is said to be periodic if there is some natural number n with $x=\phi^{n}(x)$. The smallest such number is called the period of this periodic state x. If $n=1, x$ is called the stable(fixed).

Definition 1.5.5. Let $x \in X$. If x is ϕ-convergent, then its ϕ-transition number $t_{0}^{\phi}(x)$ is defined as the least positive integert such that $\phi^{t}(x)$ is ϕ-periodic.

1.6 Clique Graph

Let G be a graph and \mathscr{K}_{G} be the set of all cliques of G. The clique graph $K(G)$ of G is defined as the intersection graph $\Omega\left(\mathscr{K}_{G}\right)$ of the family of cliques of G, in the sense that the vertex set of $K(G)$ is the family \mathscr{K}_{G} and two distinct vertices $Q_{i}, Q_{j} \in \mathscr{K}_{G}$ are adjacent in $K(G)$ if $Q_{i} \cap Q_{j} \neq \emptyset$. A given graph H is called a clique graph if there exists a graph G such that $H \cong K(G)$ and G is called a K-root of H. A graph which is not a clique graph in this sense is called a K-primitive graph. Further, the $n^{\text {th }}$ iterated clique graph $K^{n}(G)$ of G is then defined by the following rule:

$$
K^{1}(G):=K(G), K^{n}(G):=K\left(K^{n-1}(G)\right), \forall n \geq 2
$$

The sequence $\mathscr{O}_{G}^{\mathcal{K}}:=\left(K^{0}:=G, K^{1}(G), K^{2}(G), \ldots,\right)$ is called the K-orbit of G and G is K-periodic (K-aperiodic) if there exists a (no) positive integer n such that $G \cong K^{n}(G)$ and the least such integer is called the K-periodicity of G, denoted by $K-\operatorname{per}(G)$. Further, G is said to be K-convergent if there are only a finite number of non isomorphic graphs in the K-orbit of G, otherwise it is said to be K-divergent. If G is a K-convergent graph then its K-transition number $t_{0}^{\mathscr{K}}(G)$ is defined as the least positive integer t such that $K^{t}(G)$ is K-periodic.

Definition 1.6.1. A graph G is said to have the Helly property if every set $\left\{C_{i}: i \in I\right\}$ of cliques of G, no two of which are disjoint (i.e., $C_{i} \cap C_{j} \neq \emptyset \forall i, j \in I$), has nonempty total intersection (i.e., $\bigcap_{i \in I} C_{i} \neq \emptyset$).

Hamelink (Hamelink, 1968) gave a result that, every graph need not be a clique graph of some graph.

Theorem 1.6.2. Any graph H containing a clique T on 3 vertices $\{x, y, z\}$ and 3 other cliques A, B and C so related that $V(T) \cap V(A)=\{x, y\}, V(T) \cap V(B)=\{y, z\}$, and $V(T) \cap V(C)=\{z, x\}$ is not the clique graph of any graph.
Example 1.6.3. The following six vertex graph is not the clique graph of any graph.

Also he gave a partial characterization for clique graph,

Theorem 1.6.4. If H satisfies Helly property then H is a clique graph.

Using Helly property, Roberts and Spencer (Roberts and Spencer, 1971) gave a characterization of clique graph.

Theorem 1.6.5. A graph H is a clique graph if and only if H satisfies Helly property.

Definition 1.6.6. We say that G has the T_{1} property iffor any distinct vertices $x, y \in G^{*}$ with $\operatorname{deg}\left(x, G^{*}\right) \geq 2, \operatorname{deg}\left(y, G^{*}\right) \geq 2$, there exists two cliques C, D in $K(G)$ with $x \in$ $C, y \notin C$ and $y \in D, x \notin D$.

Lim (Lim, 1982) generalized the result of S. T. Hedetniemi and P. J. Slater, on first iterated clique graph.

Theorem 1.6.7. If G is a graph which satisfies the Helly property and the T_{1} property, then $K^{2}(G) \cong G^{*}-\left\{x \in G^{*}: \operatorname{deg}\left(x, G^{*}\right)=1\right\}$.

Hedman (Hedman, 1986) has given a polynomial algorithm for constructing the clique graph of a line graph $K(L(G))$.

A vertex v of a triangle C_{3} with $\operatorname{deg}(v) \geq 3$ is called an outlet of C_{3}.

Theorem 1.6.8. Graph G satisfies $K(L(G))=G$ if and only if G satisfies the following three conditions:

1. For all $v \in V(G), \operatorname{deg}(v) \geq 2$.
2. G has no adjacent triangles.
3. Every triangle of G has exactly two outlets.

Gravier et al., (Gravier et al., 2004) proved the conjecture of Protti and Szwarcfiter (Protti and Szwarcfiter, 2000) on clique-inverse graphs of K_{p}-free graphs.

Theorem 1.6.9. For every integer $p \geq 4$, the class of the clique-inverse graphs of the K_{p}-free graphs can be characterized by a finite family of forbidden induced subgraphs.

Frias-Armenta et al., (Frías-Armenta et al., 2005) established a result on clique divergent

Theorem 1.6.10. Every clique divergent graph is a spanning subgraph of a clique divergent graph with diameter 2 .

Alcon et al., (Alcón et al. 2009) proved that the complexity of clique graph recognition is NP-complete.

1.7 Tree Graph

Linear graphs play an important role in the study of electrical networks and topological formulas are found to be convenient to study the effect of parameter variations in a network. Network functions such as the driving-point and transfer functions must be
expressed in a symbolic form. These formulas require a list of trees of a given network. Many methods exist in the literature to find all the trees of a network. Among them, the method proposed by Mayeda and Seshu (Mayeda and Seshu, 1965) succeeded in generating all the trees without duplication by successive application of elementary tree transformations.

Cummins (Cummins, 1966) made an interesting investigation on trees. He defined T-graph (Tree graph) of a graph G as the graph whose vertex set is the set of all spanning trees of G, and two spanning trees T_{1}, T_{2} of G form an edge if and only if T_{1} and T_{2} differ by exactly one edge. Hence the tree graph associated with a connected graph G is linear graph in which the vertices are in one-to-one correspondence with the spanning trees of G and the edges represent the adjacencies of trees. Cummins showed that a tree graph always contains a Hamilton circuit. This is then extended to directed graphs and generalized theorem for directed graphs is established by Chen (Chen, 1967). Genya Kishi and Yoji Kqajitani (Kishi and Kajitani, 1968) also worked on tree graphs. They proposed a decomposition of a tree graph into complete subgraphs. In 1968 Shank (Shank, 1968) gave a short proof for the Cummins result.

Let G be a labeled graph of order α, finite or infinite (all our graphs are labeled). A spanning tree of G is a connected, acyclic, spanning subgraph of G; it exists if and only if G is connected. Any acyclic subgraph of G, connected or not, is called a forest of G. A forest F of G is said to be maximal, if there is no forest F^{\prime} of G such that F is a proper subgraph of F^{\prime}. The tree graph $\mathbf{T}(G)$ of G has all the spanning trees of G as vertices, and distinct such trees are adjacent vertices if they differ in just one edge (Prisner, 1995; Suresh et al., 2010; ; i.e., two spanning trees T_{1} and T_{2} are adjacent if $T_{2}=T_{1}-e+f$ for some edges $e \in T_{1}$ and $f \notin T_{1}$. The iterated tree graphs of G are defined by $\mathbf{T}^{0}(G)=G$ and $\mathbf{T}^{n}(G)=\mathbf{T}\left(\mathbf{T}^{n-1}(G)\right)$ for $n>0$. There are several results on tree graphs. See (Broersma and Xueliang, 1996; Zhang and Chen, 1986; Liu, 1988) for connectivity of the tree graph, (Grimmett, 1976; Rodriguez and Petingi, 1997, Teranishi, 2005, Das, 2007; Feng et al., 2008; Li et al., 2010; Das et al., 2013; Feng et al., 2014) for bounds on the order of $\mathbf{T}(G)$ (that is, on the number of spanning trees of G), Cummins, 1966; Shank, 1968) for Hamilton circuits in a tree graph.

There is one difficulty with iterating the tree graph operator. The tree graph of an infinite connected graph need not be connected (Cummins, 1966; Shank, 1968), so $\mathbf{T}^{2}(G)$ may be undefined. For example, $\mathbf{T}\left(K_{\aleph_{0}}\right)$ is disconnected (see Corollary 4.1.5 in this thesis; $\mathbb{\aleph}_{0}$ denotes the cardinality of the set \mathbb{N} of natural numbers); therefore $\mathbf{T}^{2}\left(K_{\aleph_{0}}\right)$ is not defined. To obviate this difficulty with iterated tree graphs, and inspired by the tree graph operator \mathbf{T}, we define a forest graph operator. Let $\mathfrak{N}(G)$ be the set of all maximal forests of G. The forest graph of G, denoted by $\mathbf{F}(G)$, is the graph with vertex set $\mathfrak{N}(G)$ in which two maximal forests F_{1}, F_{2} form an edge if and only if they differ by exactly one edge. The forest graph operator (or maximal forest operator) on graphs, $G \mapsto \mathbf{F}(G)$, is denoted by \mathbf{F}. Zorn's lemma implies that every connected graph contains a spanning tree (see (Diestel, 2005)); similarly, every graph has a maximal forest. Hence, the forest graph always exists. Since, when G is connected, maximal forests are the same as spanning trees, then $\mathbf{F}(G)=\mathbf{T}(G)$; that is, the tree graph is a special case of the forest graph. We write $\mathbf{F}^{2}(G)$ to denote $\mathbf{F}(\mathbf{F}(G))$, and in general $\mathbf{F}^{n}(G)=\mathbf{F}\left(\mathbf{F}^{n-1}(G)\right)$ for $n \geq 1$, with $\mathbf{F}^{0}(G)=G$.

Definition 1.7.1. A graph G is said to be \mathbf{F}-convergent if $\left\{\mathbf{F}^{n}(G): n \in \mathbb{N}\right\}$ is finite; otherwise it is \mathbf{F}-divergent.

Definition 1.7.2. A graph H is said to be \mathbf{F}-root of G if $\mathbf{F}(H)$ is isomorphic to G, $\mathbf{F}(H) \cong G$. The \mathbf{F}-depth of G is

$$
\sup \left\{n \in \mathbb{N}: G \cong \mathbf{F}^{n}(H) \text { for some graph } H\right\} .
$$

The \mathbf{F}-depth of a graph G that has no \mathbf{F}-root is said to be zero.

Definition 1.7.3. The graph G is said to be \mathbf{F}-periodic if there exists a positive integer n such that $\mathbf{F}^{n}(G)=G$. The least such integer is called the \mathbf{F}-periodicity of G. If $n=1$, G is called \mathbf{F}-stable.

Chapter 2

ERDÖS - FABER - LOVÁSZ CONJECTURE

In 1972, Erdös - Faber - Lovász (EFL) conjectured that, if H is a linear hypergraph consisting of n edges of cardinality n, then it is possible to color the vertices with n colors so that no two vertices with the same color are in the same edge. In 1978, Deza, Erdös and Frankl had given an equivalent version of the same for graphs: Let $G=\bigcup_{i=1}^{n} A_{i}$ denote a graph with n complete graphs $A_{1}, A_{2}, \ldots, A_{n}$, each having exactly n vertices and have the property that every pair of complete graphs has at most one common vertex, then the chromatic number of G is n.

The clique degree $d^{K}(v)$ of a vertex v in G is given by $d^{K}(v)=\mid\left\{A_{i}: v \in V\left(A_{i}\right), 1 \leq\right.$ $i \leq n\} \mid$. The maximum clique degree $\Delta^{K}(G)$ of the graph G is given by $\Delta^{K}(G)=$ $\max _{v \in V(G)} d^{K}(v)$. In this chapter, using Symmetric Latin Squares, we give an algorithmic proof of the above conjecture.

2.1 Introduction

One of the famous conjectures in graph theory is Erdös - Faber - Lovász conjecture. It states that, if \mathbf{H} is a linear hypergraph consisting of n edges of cardinality n, then it is possible to color the vertices of \mathbf{H} with n colors so that no two vertices with the same color are in the same edge (Berge, 1990). Erdös, in 1975, offered 50 USD (Erdős, 1975, 1981) and in 1981, offered 500USD (Erdős, 1981; Jensen and Toft, 2011) for the proof or disproof of the conjecture.

Vance Faber quoted: "In 1972, Paul Erdös, László Lovász and I got together at a tea party in Colorado. This was a continuation of the discussions we had a few weeks before in Columbus, Ohio, at a conference on hypergraphs. We talked about various
conjectures for linear hypergraphs analogous to Vizing's theorem for graphs. Finding tight bounds in general seemed difficult, so we created an elementary conjecture that we thought that it would be easy to prove. We called this the n sets problem: given n sets, no two of which meet more than once and each with n elements, color the elements with n colors so that each set contains all the colors. In fact, we agreed to meet the next day to write down the solution. Thirty-Eight years later, this problem is still unsolved in general."

Chang and Lawler (Chang and Lawler, 1988) presented a simple proof that the edges of a simple hypergraph on n vertices can be colored with at most [1.5n-2] colors. Kahn (Kahn, 1992) showed that the chromatic number of \mathbf{H} is at most $n+o(n)$. Jackson et al. (Jackson et al., 2007) proved that the conjecture is true when the partial hypergraph S of \mathbf{H} determined by the edges of size at least three can be Δ_{S}-edge-colored and satisfies $\Delta_{S} \leq 3$. In particular, the conjecture holds when S is unimodular and $\Delta_{S} \leq 3$. Paul and Germina (Paul and Germina, 2012) established the truth of the conjecture for all linear hypergraphs on n vertices with $\Delta(\mathbf{H}) \leq \sqrt{n+\sqrt{n}+1}$. Sanchez - Arroyo (Sánchez-Arroyo, 2008) proved the conjecture for dense hypergraphs. We consider the equivalent version of the conjecture for graphs given by Deza, Erdös and Frankl in 1978 (Deza et al., 1978; Sánchez-Arroyo, 2008; Jensen and Toft, 2011; Mitchem and Schmidt, 2010).

Conjecture 2.1.1. Let $G=\bigcup_{i=1}^{n} A_{i}$ denote a graph with n complete graphs $\left(A_{1}, A_{2}\right.$, $\left.\ldots, A_{n}\right)$, each having exactly n vertices and have the property that every pair of complete graphs has at most one common vertex, then the chromatic number of G is n.

Example 2.1.2. Figure 2.1 shows all the graphs for $n=3$ which are satisfying the hypothesis of the conjecture 2.1.1.

Figure 2.2 shows the construction of the graph G from the hypergraph \mathbf{H}.
Haddad and Tardif (Haddad and Tardif, 2004) introduced the problem with a story about seating assignment in committees: suppose that, in a university department, there are k committees, each consisting of k faculty members, and that all committees meet

Figure 2.1 All graphs satisfying the hypothesis of the conjecture for $n=3$
in the same room, which has k chairs. Suppose also that at most one person belongs to the intersection of any two committees. Is it possible to assign the committee members to chairs in such a way that each member sits in the same chair for all the different committees to which he or she belongs? In this model of the problem, the faculty members correspond to graph vertices, committees correspond to complete graphs, and chairs correspond to vertex colors.

Definition 2.1.3. Let $G=\bigcup_{i=1}^{n} A_{i}$ denote a graph with n complete graphs $A_{1}, A_{2}, \ldots, A_{n}$, each having exactly n vertices and the property that every pair of complete graphs has at most one common vertex. The clique degree $d^{K}(v)$ of a vertex v in G is given by $d^{K}(v)=\left|\left\{A_{i}: v \in V\left(A_{i}\right), 1 \leq i \leq n\right\}\right|$. The maximum clique degree $\Delta^{K}(G)$ of the graph G is given by $\Delta^{K}(G)=\max _{v \in V(G)} d^{K}(v)$.

From the above definition, one can observe that degree of a vertex in hypergraph is same as the clique degree of a vertex in a graph.

Figure 2.2 Graph G and Hypergraph \mathbf{H}

Definition 2.1.4. Let G_{1} and G_{2} be two vertex disjoint graphs, and let x_{1}, x_{2} be two vertices of G_{1}, G_{2} respectively. Then, the graph $G\left(x_{1} x_{2}\right)$ obtained by merging the vertices x_{1} and x_{2} into a single vertex is called the concatenation of G_{1} and G_{2} at the points x_{1} and x_{2} (see (Kundu et al., 1980)).

Definition 2.1.5. A Latin Square is an $n \times n$ array containing n different symbols such that each symbol appears exactly once in each row and once in each column. Moreover, a Latin Square of order n is an $n \times n$ matrix $M=\left[m_{i j}\right]$ with entries from an n-set $V=$ $\{1,2, \ldots, n\}$, where every row and every column is a permutation of V (see (Laywine and

Mullen 1998)). If the matrix M is symmetric, then the Latin Square is called Symmetric Latin Square.

We give below two methods of coloring to the graph G satisfying the hypothesis of the Conjecture. First one using symmetric latin squares and the second one using intersection matrix (the intersection matrix (color matrix) of the cliques $A_{i}^{\prime} s$ of G is the $n \times n$ matrix in which entry $c_{i, j}$ for $i \neq j$ is 0 if $A_{i} \cap A_{j}=\emptyset$ otherwise c, and $c_{i, i}$ is 0) and clique degrees of the vertices.

2.2 Construction of H_{n}

We know that a symmetric $n \times n$ matrix is determined by $\frac{n(n+1)}{2}$ scalars. Using symmetric latin squares we give an n-coloring of H_{n} constructed below. Then using the n-coloring of H_{n} we give an n-coloring of all the other graphs G satisfying the hypothesis of Conjecture 2.1.1.

Construction of H_{n} :

Let n be a positive integer and $B_{1}, B_{2}, \ldots, B_{n}$ be n copies of K_{n}. Let the vertex set $V\left(B_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, a_{i, 3}, \ldots, a_{i, n}\right\}, 1 \leq i \leq n$.

Step 1. Let $H^{1}=B_{1}$.
Step 2. Consider the vertices $a_{1,2}$ of H^{1} and $a_{2,1}$ of B_{2}. Let $b_{1,2}$ be the vertex obtained by the concatenation of the vertices $a_{1,2}$ and $a_{2,1}$. Let the resultant graph be H^{2}.

Step 3. Consider the vertices $a_{1,3}, a_{2,3}$ of H^{2} and $a_{3,1}, a_{3,2}$ of B_{3}. Let $b_{1,3}$ be the vertex obtained by the concatenation of vertices $a_{1,3}, a_{3,1}$ and let $b_{2,3}$ be the vertex obtained by the concatenation of vertices $a_{2,3}, a_{3,2}$. Let the resultant graph be H^{3}.

Continuing in the similar way, at the $n^{\text {th }}$ step we obtain the graph $H^{n}=H_{n}$ (for the sake of convenience we take H^{n} as H_{n}).

By the construction of H_{n} one can observe the following:

1. H_{n} is a connected graph and also it is satisfying the hypothesis of Conjecture 2.1.1
2. H_{n} has exactly n vertices of clique degree one and $\frac{n(n-1)}{2}$ vertices of clique degree 2 (each B_{i} has exactly $(n-1)$ vertices of clique degree 2 and one vertex of clique degree one, $1 \leq i \leq n$).
3. $H_{n}=\bigcup_{i=1}^{n} B_{i}$, where $B_{i}=A_{i}$ and B_{i}, B_{j} have exactly one common vertex for $1 \leq i<j \leq n$.
4. H_{n} has exactly $\frac{n(n+1)}{2}$ vertices.
5. One can observe that in a connected graph G if clique degree increases the number of vertices also increases. From this it follows that, H_{n} is the graph with minimum number of vertices satisfying the hypothesis of Conjecture 2.1.1. If all the vertices of G are of clique degree one, then G will have n^{2} vertices. Thus, $\frac{n(n+1)}{2} \leq$ $|V(G)| \leq n^{2}$.

Following example is an illustration of the graph H_{n} for $n=4$

Example 2.2.1. Let $n=4$ and $B_{1}, B_{2}, B_{3}, B_{4}$ be the 4 copies of K_{4}. Let the vertex set $V\left(B_{i}\right)=\left\{a_{i, 1}, a_{i, 2}, a_{i, 3}, a_{i, 4}\right\}, 1 \leq i \leq 4$.

(a) B_{1}

(b) B_{2}

(c) B_{3}

(d) B_{4}

Figure 2.34 copies of K_{4}

Step 1: Let $H^{1}=B_{1}$. The graph H^{1} is shown in Figure 2.3a
Step 2: Consider the vertices $a_{1,2}$ of H^{1} and $a_{2,1}$ of B_{2}. Let $b_{1,2}$ be the vertex obtained by the concatenation of vertices $a_{1,2}, a_{2,1}$. Let the resultant graph be H^{2} as shown in Figure $2.4 b$

Figure 2.4 Construction of H^{2} from H^{1}, B_{2}

Step 3: Consider the vertices $a_{1,3}, a_{2,3}$ of H^{2} and $a_{3,1}, a_{3,2}$ of B_{3}. Let $b_{1,3}$ be the vertex obtained by the concatenation of vertices $a_{1,3}, a_{3,1}$ and let $b_{2,3}$ be the vertex obtained by the concatenation of vertices $a_{2,3}, a_{3,2}$. Let the resultant graph be H^{3} as shown in Figure $2.5 b$

(a) H^{2}, B_{3}

(b) H^{3}

Figure 2.5 Construction of H^{3} from H^{2}, B_{3}

Step 4: Consider the vertices $a_{1,4}, a_{2,4}, a_{3,4}$ of H^{3} and $a_{4,1}, a_{4,2}, a_{4,3}$ of B_{4}. Let $b_{1,4}$ be the vertex obtained by the concatenation of vertices $a_{1,4}, a_{4,1}$, let $b_{2,4}$ be the vertex obtained by the concatenation of vertices $a_{2,4}, a_{4,2}$ and let $b_{3,4}$ be the vertex obtained by the concatenation of vertices $a_{3,4}, a_{4,3}$. Let the resultant graph be H^{4} as shown in

Figure $2.6 H^{3}, B_{4}$

Figure $2.7 H_{4}=H^{4}$

Figure 2.7.

Example 2.2.2. For $n=6$, the graph H_{6} is shown in Figure 2.8.

Lemma 2.2.3. If G is a graph satisfying the hypothesis of Conjecture 2.1.1 then G can be obtained from H_{n}, n in \mathbb{N}.

Figure $2.8 H_{6}$

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. Let b_{X} be the new labeling to the vertices v of clique degree greater than 1 in G, where $X=\{i:$ vertex v is in $\left.A_{i}\right\}$. Define $N_{i}=\left\{b_{X}:|X|=i\right\}$ for $i=2,3, \ldots, n$. Then the graph G is constructed from H_{n} as given below:

Step 1: For every common vertex $b_{i, j}$ in H_{n} which is not in N_{2}, split the vertex $b_{i, j}$ into two vertices $u_{i, j}, u_{j, i}$ such that vertex $u_{i, j}$ is adjacent only to the vertices of B_{i} and the vertex $u_{j, i}$ is adjacent only to the vertices of B_{j} in H_{n}.

Step 2: For every vertex b_{X} in N_{i} where $i=3,4, \ldots, n$, merge the vertices $u_{l_{1}, l_{2}}$, $u_{l_{2}, l_{3}}, \ldots, u_{l_{m-1}, l_{m}}, u_{l_{m}, l_{1}}$ into a single vertex u_{X} in H_{n} where $l_{i} \in X$ and $l_{i}<l_{j}$ for $i<j$.

Let G^{\prime} be the graph obtained in Step 2. Let $V\left(B_{i}^{\prime}\right), V\left(A_{i}^{\prime}\right)$ be the set of all clique degree 1 vertices of B_{i} of G^{\prime}, A_{i} of G respectively, $1 \leq i \leq n$. Thus, by splitting all the common vertices of H_{n} which are not in N_{2} and merging the vertices of H_{n} corresponding
to the vertices in $N_{i}, i \geq 3$, we get the graph G^{\prime}. One can observe that $\left|V\left(A_{i}^{\prime}\right)\right|=\left|V\left(B_{i}^{\prime}\right)\right|$, $1 \leq i \leq n$. Define a function $f: V(G) \rightarrow V\left(G^{\prime}\right)$ by

$$
\begin{array}{rlr}
f\left(b_{i, j}\right) & =b_{i, j} & \text { for } b_{i, j} \in N_{2} \\
f\left(b_{i_{1}, i_{2}, \ldots i_{k}}\right) & =u_{i_{1}, i_{2}, \ldots i_{k}} & \\
\left.f\right|_{V\left(A_{i}^{\prime}\right)} & =g_{i} & \text { for } b_{i_{1}, i_{2}, \ldots i_{k}} \in \cup_{i=3}^{n} N_{i} \\
\text { (any 1-1 map } \left.g_{i}: V\left(A_{i}^{\prime}\right) \rightarrow V\left(B_{i}^{\prime}\right)\right), \text { for } 1 \leq i \leq n
\end{array}
$$

One can observe that f is an isomorphism from G to G^{\prime}.

From Lemma 2.2.3, one can observe that in G there are at most $\frac{n(n-1)}{2}$ common vertices.

Following example is an illustration of the graph G obtained from H_{n} for $n=4$.

Example 2.2.4. Let G be the graph shown in Figure $2.2 b$
Relabel the vertices of clique degree greater than one in G by b_{A} where $A=\{i: v \in$ A_{i} for $\left.1 \leq i \leq 4\right\}$. The labeled graph is shown in Figure 2.9

Figure 2.9 Graph G after relabeling the vertices

Let $N_{i}=\left\{b_{X}:|X|=i\right\}$ for $i=2,3,4$, then $N_{2}=\left\{b_{1,4}, b_{2,4}, b_{3,4}\right\}, N_{3}=\left\{b_{1,2,3}\right\}$.

Consider the graph H_{4} as shown in Figure 2.7 then $V\left(H_{4}\right)=\left\{a_{1,1}, a_{2,2}, a_{3,3}, a_{4,4}\right.$, $\left.b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}, b_{3,4}\right\}$ and common vertices of H_{4} are $\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}\right.$, $\left.b_{3,4}\right\}=A\left(\right.$ say). Then $A \backslash N_{2}=\left\{b_{1,2}, b_{1,3}, b_{2,3}\right\}$. By the construction given in the proof of Lemma 2.2.3 we get,

Step 1: Since $A \backslash N_{2} \neq \emptyset$, split the common vertices of H_{4} which are not in N_{2}, as shown in Figure 2.10

Figure 2.10 Splitting the common vertices of H_{4} which are not in N_{2}.

Step 2: Since $\cup_{i=2}^{4} N_{i}=\left\{b_{1,2,3}\right\} \neq \emptyset$, merge the vertices $u_{1,2}, u_{2,3}, u_{3,1}$ into a single vertex $u_{1,2,3}$, as shown in Figure 2.11. Let the resultant graph be G^{\prime}.

The isomorphism $f: V(G) \rightarrow V\left(G^{\prime}\right)$ is given below.

$$
\begin{array}{rll}
f\left(v_{2}\right)=a_{1,1} & f\left(v_{3}\right)=u_{1,3} & f\left(v_{4}\right)=u_{2,1} \\
f\left(v_{5}\right)=a_{2,2} & f\left(v_{6}\right)=u_{3,2} & f\left(v_{7}\right)=a_{3,3} \\
f\left(v_{11}\right)=a_{4,4} & f\left(b_{1,4}\right)=b_{1,4} & f\left(b_{2,4}\right)=b_{2,4} \\
f\left(b_{3,4}\right)=b_{3,4} & f\left(b_{1,2,3}\right)=u_{1,2,3} &
\end{array}
$$

Figure 2.11 Graph G^{\prime}.

2.3 Coloring of H_{n}

Lemma 2.3.1. The chromatic number of H_{n} is n.

Proof. Let H_{n} be the graph defined as above. Let M (given below) be an $n \times n$ matrix in which an entry $m_{i j}=b_{i j}$, be a vertex of H_{n}, belongs to both B_{i}, B_{j} for $i \neq j$ and $m_{i i}=a_{i i}$ be the vertex of H_{n} which belongs to B_{i}. i.e.,

$$
\mathbf{M}=\left(\begin{array}{ccccc}
a_{11} & b_{12} & b_{13} & \ldots & b_{1 n} \\
b_{12} & a_{22} & b_{23} & \ldots & b_{2 n} \\
b_{13} & b_{23} & a_{33} & \ldots & b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{1 n} & b_{2 n} & b_{3 n} & \ldots & a_{n n}
\end{array}\right) .
$$

Clearly M is a symmetric matrix. We know that, for every n in \mathbb{N} there is a Symmetric Latin Square (see (Ye and Xu, 2011)) of order $n \times n$. Bryant and Rodger (Bryant and Rodger, 2004) gave a necessary and sufficient condition for the existence of an ($n-$ 1)-edge coloring of K_{n} (n even), and n-edge coloring of K_{n} (n odd) using Symmetric Latin Squares. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of K_{n} and $e_{i j}$ be the edge joining the vertices v_{i} and v_{j} of K_{n}, where $i<j$, then arrange the edges of K_{n} in the matrix form $A=\left[a_{i j}\right]$ where $a_{i j}=e_{i j}, a_{j i}=e_{i j}$ for $i<j$ and $a_{i i}=0$ for $1 \leq i \leq n$, we have $A=$

$$
\left(\begin{array}{ccccc}
0 & e_{12} & e_{13} & \ldots & e_{1 n} \\
e_{12} & 0 & e_{23} & \ldots & e_{2 n} \\
e_{13} & e_{23} & 0 & \ldots & e_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
e_{1 n} & e_{2 n} & e_{3 n} & \ldots & 0
\end{array}\right)
$$

and let V be a matrix given by

$$
\begin{aligned}
V=\left(\begin{array}{ccccc}
v_{1} & 0 & 0 & \ldots & 0 \\
0 & v_{2} & 0 & \ldots & 0 \\
0 & 0 & v_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & v_{n}
\end{array}\right) . \text { Then, define a matrix } A^{\prime} \text { as } \\
A^{\prime}=A+V=\left(\begin{array}{ccccc}
v_{1} & e_{12} & e_{13} & \ldots & e_{1 n} \\
e_{12} & v_{2} & e_{23} & \ldots & e_{2 n} \\
e_{13} & e_{23} & v_{3} & \ldots & e_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
e_{1 n} & e_{2 n} & e_{3 n} & \ldots & v_{n}
\end{array}\right) .
\end{aligned}
$$

Let $C=\left[c_{i j}\right]$ be a matrix where $c_{i j}(i \neq j)$, is the color of $e_{i j}$ (i.e., $\left.c_{i j}=c\left(e_{i j}\right)\right)$ and $c_{i i}$ is the color of v_{i}. We call C as the color matrix of A^{\prime}. Then C is the Symmetric Latin Square (see(Bryant and Rodger, 2004)). As the elements of M are the vertices of H_{n}, one can assign the colors to the vertices of H_{n} from the color matrix C, by the color $c_{i j}$, for $i, j=1,2, \ldots, n$ and $i \neq j$ to the vertex $b_{i j}$ in H_{n} and the color $c_{i i}$, for $i=1,2, \ldots n$ to the vertex $a_{i i}$ in H_{n}. Hence H_{n} is n colorable.

As H_{n} is the graph satisfying the hypothesis of Conjecture 2.1.1. By using the coloring of H_{n} which is the graph satisfying the hypothesis of Conjecture 2.1.1 we extend the n-coloring of all possible graphs G satisfying the hypothesis of Conjecture 2.1.1.

The following example is an illustration of assigning colors to the graph H_{n} for $n=6$.

Example 2.3.2. Consider the graph H_{6} as shown in Figure 2.8 The corresponding Symmetric Latin Square C of order 6×6 is given below:

$$
C=\left(\begin{array}{llllll}
6 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 6 & 2 & 4 \\
2 & 5 & 4 & 1 & 6 & 3 \\
3 & 6 & 1 & 4 & 5 & 2 \\
4 & 2 & 6 & 5 & 3 & 1 \\
5 & 4 & 3 & 2 & 1 & 6
\end{array}\right)
$$

Assign the six colors to the graph H_{6} using the above Symmetric Latin Square as follows:

Assign the color $c_{i, j}$ (where $c_{i, j}$ denotes the value at the (i, j)-th entry in the color matrix C) for $i \neq j$ and $i, j=1,2, \ldots, 6$ to the vertex $b_{i, j}$ in H_{6}, and assign the color $c_{i, i}$ (where $c_{i, i}$ denotes the value at the (i, i)-th entry in the color matrix C) for $i=1,2, \ldots, 6$ to the vertex $a_{i i}$ in H_{6}. The colors Red, Green, Cyan, Blue, Tan, Maroon in the Figure 2.12 corresponds to the numbers 1, 2, 3, 4, 5, 6 respectively in the matrix C.

Then one can verify that the resultant graph is 6 colorable as shown in Figure 2.12

2.4 Coloring of G

Let G be the graph satisfying the hypothesis of Conjecture 2.1.1. Let \hat{H} be the graph obtained by removing the vertices of clique degree one from graph G. i.e. \hat{H} is the induced subgraph of G having all the common vertices of G.

Theorem 2.4.1. If G is a graph satisfying the hypothesis of the Conjecture 2.1.1 and every $A_{i}(1 \leq i \leq n)$ has at most \sqrt{n} vertices of clique degree greater than 1 , then G is n-colorable.

Proof. Let G be a graph satisfying the hypothesis of the Conjecture 2.1.1 and every A_{i} $(1 \leq i \leq n)$ has at most \sqrt{n} vertices of clique degree greater than 1 . Let \hat{H} be the induced subgraph of G consisting of the vertices of clique degree greater than one in G. Define $X=\left\{b_{i, j}: A_{i} \cap A_{j}=\emptyset\right\}, X_{i}=\left\{v \in G: d^{K}(v)=i\right\}$ for $i=1,2, \ldots, n$.

Figure 2.12 A coloring of H_{6} with six colors

From (Sánchez-Arroyo, 2008), it is true that the vertices of clique degree greater than or equal to \sqrt{n} can be assigned with at most n colors. Assign the colors to the vertices of clique degree in non increasing order. Assume we next color a vertex v of clique degree $1<k<\sqrt{n}$. At this point only vertices of clique degree $\geq k$ have been assigned colors. By assumption every $A_{i}(1 \leq i \leq n)$ has at most \sqrt{n} vertices of clique degree greater than 1 and clique degree of v is $k(k<\sqrt{n})$, then for these $k A_{i}^{\prime} s$ there are at most $k \sqrt{n}<n$ vertices have been colored. Therefore, there is an unused color from the set of n colors, then that color can be assigned to the vertex v.

Theorem 2.4.2. If G is a graph satisfying the hypothesis of the Conjecture 2.1.1 and every $A_{i}(1 \leq i \leq n)$ has at most $\left\lceil\frac{n+d-1}{d}\right\rceil$ vertices of clique degree greater than or equal to $d(2 \leq d \leq n)$, then G is n-colorable.

Proof. Let G be a graph satisfying the hypothesis of the Conjecture 2.1.1 and every A_{i} $(1 \leq i \leq n)$ has at most $\left\lceil\frac{n+d-1}{d}\right\rceil$ vertices of clique degree greater than or equal to d ($2 \leq d \leq n$). Let \hat{H} be the induced subgraph of G consisting of the vertices of clique
degree greater than one in G. Define $X=\left\{b_{i, j}: A_{i} \cap A_{j}=\emptyset\right\}, X_{i}=\left\{v \in G: d^{K}(v)=i\right\}$ for $i=1,2, \ldots, m$.

Assign the colors to the vertices of clique degree in non increasing order. Assume we next color a vertex v of clique degree k. At this point only vertices of clique degree $\geq k$ have been assigned colors. By assumption every $A_{i}(1 \leq i \leq n)$ has at most $\left\lceil\frac{n+k-1}{k}\right\rceil$ vertices of clique degree greater than 1 and clique degree of v is k, then for these $k A_{i}^{\prime} s$ there are at most $k\left(\left\lceil\frac{n+k-1}{k}\right\rceil-1\right)<n$ vertices have been colored. Therefore, there is an unused color from the set of n colors, then that color can be assigned to the vertex v.

Theorem 2.4.3. If G is a graph satisfying the hypothesis of Conjecture 2.1.1 and every $A_{i}(1 \leq i \leq n)$ has atmost $\frac{n}{2}$ vertices of clique degree greater than one, then G is n colorable.

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1 and and every $A_{i}(1 \leq i \leq n)$ has atmost $\frac{n}{2}$ vertices of clique degree greater than one. Let \hat{H} be the induced subgraph of G consisting of the vertices of clique degree greater than one in G. For every vertex v of clique degree greater than one in G, label the vertex v by u_{A} where $A=\left\{i: v \in A_{i} ; i=1,2, \ldots, n\right\}$. Define $X=\left\{b_{i, j}: A_{i} \cap A_{j}=\emptyset\right\}, X_{i}=\left\{v \in G: d^{K}(v)=i\right\}$ for $i=1,2, \ldots, m$.

Let $1,2, \ldots, n$ be the n-colors and C be the color matrix (of size $n \times n$) as defined in the proof of Lemma 2.3.1. The following construction applied on the color matrix C, gives a modified color matrix C_{M}, using which we assign the colors to the graph \hat{H}. Then this coloring can be extended to the graph G. Construct a new color matrix C_{1} by putting $c_{i, j}=0, c_{j, i}=0$ for every $b_{i, j}$ in X. Also, let $c_{i, i}=0$ for each $i=1,2, \ldots, n$.

Construction:

Let $T=\cup_{i=3}^{n} X_{i}, P=\emptyset, T^{\prime \prime}=X_{2}$ and $P^{\prime \prime}=\emptyset$.

Step 1: If $T=\emptyset$, let C_{m} be the color matrix obtained in Step 4 and go to Step 5. Otherwise, choose a vertex $u_{i_{1}, i_{2}, \ldots, i_{m}}$ from T, where $i_{1}<i_{2}<\cdots<i_{m}$, and then choose
$\binom{m}{2}$ vertices $b_{i_{1}, i_{2}}, b_{i_{1}, i_{3}}, \ldots, b_{i_{1}, i_{m}}, b_{i_{2}, i_{3}}, \ldots, b_{i_{m-1}, i_{m}}$ from $V\left(H_{n}\right)$ corresponding to the set $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$. Take $T^{\prime}=\left\{b_{i_{1}, i_{2}}, b_{i_{1}, i_{3}}, \ldots, b_{i_{1}, i_{m}}, b_{i_{2}, i_{3}}, \ldots, b_{i_{m-1}, i_{m}}\right\}$ and $P^{\prime}=\emptyset$. Let $T_{1}^{\prime}=\left\{b_{i, j}: b_{i, j} \in T^{\prime}, c\left(b_{i, j}\right)\right.$ appear more than once in the $i^{\text {th }}$ row or $j^{\text {th }}$ column in $C\}$ and $T_{2}^{\prime}=\left\{b_{i, j}: b_{i, j} \in T^{\prime}, c\left(b_{i, j}\right)\right.$ appear exactly once in the $i^{\text {th }}$ row and $j^{t h}$ column in $\left.C\right\}$. If $T_{1}^{\prime} \neq \emptyset$, choose a vertex $b_{s, t}$ from T_{1}^{\prime}, otherwise choose a vertex $b_{s, t}$ from T_{2}^{\prime}. Then add the vertex $b_{s, t}$ to P^{\prime} and remove it from T^{\prime}. Go to Step 2.

Step 2: If $T_{2}^{\prime} \neq \emptyset$, go to Step 3. Otherwise, choose a vertex $b_{i_{m-1}, i_{m}}$ from T_{1}^{\prime}. Let $A=\left\{c_{i, j}: c_{i, j} \neq 0 ; i=i_{m-1}, 1 \leq j \leq n\right\}, B=\left\{c_{i, j}: c_{i, j} \neq 0 ; j=i_{m}, 1 \leq i \leq n\right\}$. If $|A \cap B|<n$, then construct a new color matrix C_{2}, replacing $c_{i_{m-1}, i_{m}}, c_{i_{m}, i_{m-1}}$ by x, where $x \in\{1,2, \ldots, n\} \backslash A \cup B$. Then add the vertex $b_{i_{m-1}, i_{m}}$ to T_{2}^{\prime} and remove it from T_{1}^{\prime}. Go to Step 3. Otherwise choose a color x which appears exactly once either in $i_{m-1}^{\text {th }}$ row or in $i_{m}^{\text {th }}$ column of the color matrix and construct a new color matrix C_{2} replacing $c_{i_{m-1}, i_{m}}, c_{i_{m}, i_{m-1}}$ by x. Then add the vertex $b_{i_{m-1}, i_{m}}$ to T_{2}^{\prime} and remove it from T_{1}^{\prime}. Go to Step 3.

Step 3: If $T^{\prime}=\emptyset$, then add the vertex $u_{i_{1}, i_{2}, \ldots, i_{m}}$ to P and remove it from T, go to Step 1 . Otherwise, if $T^{\prime} \cap T_{1}^{\prime} \neq \emptyset$ choose a vertex $b_{i, j}$ from $T^{\prime} \cap T_{1}^{\prime}$, if not choose a vertex $b_{i, j}$ from $T^{\prime} \cap T_{2}^{\prime}$. Go to Step 4.

Step 4: Let $c\left(b_{i, j}\right)=x, c\left(b_{s, t}\right)=y$. If $c\left(b_{i, j}\right)=c\left(b_{s, t}\right)$, then add the vertex $b_{i, j}$ to P^{\prime} and remove it from T^{\prime}. Go to Step 3. Otherwise, let $A=\left\{c_{l, m}: c_{l, m}=x\right\}$, $B=\left\{c_{l, m}: c_{l, m}=y\right\} \backslash\left\{c_{l, m}, c_{m, l}: b_{l, m} \in P^{\prime}, l<m\right\}$. Construct a new color matrix C_{3} by putting $c_{l, m}=y$ for every $c_{l, m}$ in A and $c_{l, m}=x$ for every $c_{l, m}$ in B. Then add the vertex $b_{i, j}$ to P^{\prime} and remove it from T^{\prime}. Go to Step 3.

Step 5: If $T^{\prime \prime}=\emptyset$, consider $C_{M}=C_{m_{1}}$ stop the process. Otherwise, choose a vertex $u_{i, j}$ from $T^{\prime \prime}$ and go to Step 6.

Step 6: If $c_{i, j}$ appears exactly once in both $i^{t h}$ row and $j^{t h}$ column of the color matrix
C_{m}, then add the vertex $b_{i, j}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$, go to Step 5. Otherwise, let $A=\left\{c_{i, j}: c_{i, j} \neq 0 ; 1 \leq j \leq n\right\}, B=\left\{c_{i, j}: c_{i, j} \neq 0 ; 1 \leq i \leq n\right\}$. Construct a new color matrix $C_{m_{1}}$ by putting x in $c_{i, j}, c_{j, i}$ where $x \in\{1,2, \ldots, n\} \backslash A \cup B$ (Since every $A_{i}(1 \leq i \leq n)$ has atmost $\frac{n}{2}$ vertices of clique degree greater than one, $|A \cup B|<n$). Then add the vertex $u_{i, j}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$, go to Step 5 .

Thus, in step 6 , we get the modified color matrix C_{M}. Then, color the vertex v of \hat{H} by $c_{i, j}$ of C_{M}, whenever $v \in A_{i} \cap A_{j}$. Then, extend the coloring of \hat{H} to G by assigning the remaining colors which are not used for A_{i} from the set of n-colors, to the vertices of clique degree one in $A_{i}, 1 \leq i \leq n$. Thus G is n-colorable.

Remark 2.4.4. One can see that Theorem 2.4 .3 covers the following cases:

1. G has no clique degree 2 vertices.
2. G has atmost $\frac{n}{2}$ vertices of clique degree greater than one in each $A_{i}, 1 \leq i \leq n$.

Corollary 2.4.5. Sánchez-Arroyo (2008) Consider a linear hypergraph H consisting of n edges each of size at most n and $\boldsymbol{\delta}(\boldsymbol{H}) \geq 2$. If H is dense, then $\chi(\boldsymbol{H}) \leq n$.

Following is an example illustrating the construction given in the proof of Theorem 2.4.3.

Example 2.4.6. Let G be the graph shown in Figure 2.13

$$
\begin{gathered}
\text { Let } V\left(A_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}, V\left(A_{2}\right)=\left\{v_{1}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}\right\}, \\
V\left(A_{3}\right)=\left\{v_{1}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}\right\}, V\left(A_{4}\right)=\left\{v_{1}, v_{17}, v_{18}, v_{19}, v_{20}, v_{21}\right\}, \\
V\left(A_{5}\right)=\left\{v_{6}, v_{7}, v_{16}, v_{22}, v_{23}, v_{24}\right\}, V\left(A_{6}\right)=\left\{v_{9}, v_{16}, v_{19}, v_{25}, v_{26}, v_{27}\right\} .
\end{gathered}
$$

Relabel the vertices of clique degree greater than one in G by u_{A} where $A=\{i: v \in$ A_{i} for $\left.1 \leq i \leq 6\right\}$. The labeled graph is shown in Figure 2.14 . Figure 2.15 is the graph \hat{H}, where \hat{H} is obtained by removing the vertices of clique degree 1 from G.

Figure 2.13 Graph G

Figure 2.14 Graph G after relabeling the vertices of clique degree greater than one

Figure 2.15 Graph \hat{H}

Let $X=\left\{b_{i j}: A_{i} \cap A_{j}=\emptyset\right\}=\left\{b_{1,6}, b_{4,5}\right\}$,

$$
\begin{aligned}
X_{1}= & \left\{v \in G: d^{K}(v)=1\right\}=\left\{v_{2}, v_{3}, v_{5}, v_{8}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15},\right. \\
& \left.v_{17}, v_{18}, v_{20}, v_{21}, v_{22}, v_{23}, v_{24}, v_{25}, v_{26}, v_{27}\right\},
\end{aligned}
$$

$X_{2}=\left\{v \in G: d^{K}(v)=2\right\}=\left\{v_{6}, v_{7}, v_{9}, v_{19}\right\}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\}$,
$X_{3}=\left\{v \in G: d^{K}(v)=3\right\}=\left\{v_{16}\right\}=\left\{u_{3,5,6}\right\}$,
and $X_{4}=\left\{v \in G: d^{K}(v)=4\right\}=\left\{v_{1}\right\}=\left\{u_{1,2,3,4}\right\}$.

Let $1,2, \ldots, 6$ be the six colors and $C=$

$$
\left(\begin{array}{llllll}
6 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 6 & 2 & 4 \\
2 & 5 & 4 & 1 & 6 & 3 \\
3 & 6 & 1 & 4 & 5 & 2 \\
4 & 2 & 6 & 5 & 3 & 1 \\
5 & 4 & 3 & 2 & 1 & 6
\end{array}\right)
$$

be the color matrix (as well as symmetric latin square) of order 6×6.
Consider the sets $T=X_{3} \cup X_{4}=\left\{u_{3,5,6}, u_{1,2,3,4}\right\}, T^{\prime \prime}=X_{2}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\}$,
$P=\emptyset$ and $P^{\prime \prime}=\emptyset$. Then, by applying the construction given in the proof of Theorem 2.4.3 we get a new color matrix C_{1} by putting $c_{i, j}=0, c_{j, i}=0$ for every $b_{i, j}$ in X and $c_{i, i}=0$ for each $i=1,2, \ldots, 6$ and go to Step 1 .

$$
C_{1}=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 0 \\
1 & 0 & 5 & 6 & 2 & 4 \\
2 & 5 & 0 & 1 & 6 & 3 \\
3 & 6 & 1 & 0 & 0 & 2 \\
4 & 2 & 6 & 0 & 0 & 1 \\
0 & 4 & 3 & 2 & 1 & 0
\end{array}\right)
$$

Step 1: Since $T \neq \emptyset$, choose the vertex $u_{1,2,3,4}$ from T. Let $T^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}, b_{3,4}\right\}$ and $P^{\prime}=\emptyset$, then $T_{1}^{\prime}=\emptyset$ and $T_{2}^{\prime}=T^{\prime}$. Since $T_{1}^{\prime}=\emptyset$, choose the vertex $b_{2,4}$ from T_{2}^{\prime}, add it to P^{\prime} and remove it from T^{\prime}. Then $T^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{3,4}\right\}$ and $P^{\prime}=\left\{b_{2,4}\right\}$. Go to step 2.

Step 2: Since $T_{2}^{\prime} \neq \emptyset$, go to step 3.
Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{1,2}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{1,2}\right)=1, c\left(b_{2,4}\right)=6$ and $c\left(b_{1,2}\right) \neq c\left(b_{2,4}\right)$, interchange 1, 6 in the matrix C_{1} except the color of $b_{2,4}$. Add the vertex $b_{1,2}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
C_{2} & =\left(\begin{array}{cccccc}
0 & 6 & 2 & 3 & 4 & 0 \\
6 & 0 & 5 & 6 & 2 & 4 \\
2 & 5 & 0 & 6 & 1 & 3 \\
3 & 6 & 6 & 0 & 0 & 2 \\
4 & 2 & 1 & 0 & 0 & 6 \\
0 & 4 & 3 & 2 & 6 & 0
\end{array}\right), \\
T^{\prime} & =\left\{b_{1,3}, b_{1,4}, b_{2,3}, b_{3,4}\right\} \text { and } P^{\prime}=\left\{b_{1,2}, b_{2,4}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{1,3}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{1,3}\right)=2, c\left(b_{2,4}\right)=6$ and $c\left(b_{1,3}\right) \neq c\left(b_{2,4}\right)$, interchange 2, 6 in the
matrix C_{2} except the color of $b_{1,2}, b_{2,4}$. Add the vertex $b_{1,3}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
C_{3} & =\left(\begin{array}{cccccc}
0 & 6 & 6 & 3 & 4 & 0 \\
6 & 0 & 5 & 6 & 6 & 4 \\
6 & 5 & 0 & 2 & 1 & 3 \\
3 & 6 & 2 & 0 & 0 & 6 \\
4 & 6 & 1 & 0 & 0 & 2 \\
0 & 4 & 3 & 6 & 2 & 0
\end{array}\right), \\
T^{\prime} & =\left\{b_{1,4}, b_{2,3}, b_{3,4}\right\} \text { and } P^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{2,4}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{1,4}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{1,4}\right)=3, c\left(b_{2,4}\right)=6$ and $c\left(b_{1,4}\right) \neq c\left(b_{2,4}\right)$, interchange 3, 6 in the matrix C_{3} except the color of $b_{1,2}, b_{1,3}, b_{2,4}$. Add the vertex $b_{1,4}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
& C_{4}=\left(\begin{array}{cccccc}
0 & 6 & 6 & 6 & 4 & 0 \\
6 & 0 & 5 & 6 & 3 & 4 \\
6 & 5 & 0 & 2 & 1 & 6 \\
6 & 6 & 2 & 0 & 0 & 3 \\
4 & 3 & 1 & 0 & 0 & 2 \\
0 & 4 & 6 & 3 & 2 & 0
\end{array}\right), \\
& T^{\prime}=\left\{b_{2,3}, b_{3,4}\right\} \text { and } P^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,4}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{2,3}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{2,3}\right)=5, c\left(b_{2,4}\right)=6$ and $c\left(b_{2,3}\right) \neq c\left(b_{2,4}\right)$, interchange 5, 6 in the matrix C_{4} except the color of $b_{1,2}, b_{1,3}, b_{1,4}, b_{2,4}$. Add the vertex $b_{2,3}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
C_{5} & =\left(\begin{array}{cccccc}
0 & 6 & 6 & 6 & 4 & 0 \\
6 & 0 & 6 & 6 & 3 & 4 \\
6 & 6 & 0 & 2 & 1 & 5 \\
6 & 6 & 2 & 0 & 0 & 3 \\
4 & 3 & 1 & 0 & 0 & 2 \\
0 & 4 & 5 & 3 & 2 & 0
\end{array}\right), \\
T^{\prime} & =\left\{b_{3,4}\right\} \text { and } P^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{3,4}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{3,4}\right)=2, c\left(b_{2,4}\right)=6$ and $c\left(b_{3,4}\right) \neq c\left(b_{2,4}\right)$, interchange 2, 6 in the matrix C_{5} except the color of $b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}$. Add the vertex $b_{3,4}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
C_{6}=\left(\begin{array}{cccccc}
0 & 6 & 6 & 6 & 4 & 0 \\
6 & 0 & 6 & 6 & 3 & 4 \\
6 & 6 & 0 & 6 & 1 & 5 \\
6 & 6 & 6 & 0 & 0 & 3 \\
4 & 3 & 1 & 0 & 0 & 6 \\
0 & 4 & 5 & 3 & 6 & 0
\end{array}\right)
$$

$T^{\prime}=\emptyset$ and $P^{\prime}=\left\{b_{1,2}, b_{1,3}, b_{1,4}, b_{2,3}, b_{2,4}, b_{3,4}\right\}$. Go to step 3 .
Step 3: Since $T^{\prime}=\emptyset$, add the vertex $u_{1,2,3,4}$ to P and remove it from T, then $T=$ $\left\{u_{3,5,6}\right\}$ and $P=\left\{u_{1,2,3,4}\right\}$. Go to step 1 .

Step 1: Since $T \neq \emptyset$, choose the vertex $u_{3,5,6}$ from T. Let $T^{\prime}=\left\{b_{3,5}, b_{3,6}, b_{5,6}\right\}$ and $P^{\prime}=\emptyset$, then $T_{1}^{\prime}=\emptyset$ and $T_{2}^{\prime}=T^{\prime}$. Since $T_{1}^{\prime}=\emptyset$, choose the vertex $b_{5,6}$ from T_{2}^{\prime}, add it to P^{\prime} and remove it from T^{\prime}. Then $T^{\prime}=\left\{b_{3,5}, b_{3,6}\right\}$ and $P^{\prime}=\left\{b_{5,6}\right\}$. Go to step 2.

Step 2: Since $T_{2}^{\prime} \neq \emptyset$, go to step 3.
Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{3,6}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{3,6}\right)=5, c\left(b_{5,6}\right)=6$ and $c\left(b_{3,6}\right) \neq c\left(b_{5,6}\right)$, interchange 5, 6 in the
matrix C_{6} except the color of $b_{5,6}$. Add the vertex $b_{3,6}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
C_{7} & =\left(\begin{array}{cccccc}
0 & 5 & 5 & 5 & 4 & 0 \\
5 & 0 & 5 & 5 & 3 & 4 \\
5 & 5 & 0 & 5 & 1 & 6 \\
5 & 5 & 5 & 0 & 0 & 3 \\
4 & 3 & 1 & 0 & 0 & 6 \\
0 & 4 & 6 & 3 & 6 & 0
\end{array}\right), \\
T^{\prime} & =\left\{b_{3,5}\right\} \text { and } P^{\prime}=\left\{b_{3,6}, b_{5,6}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{3,5}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{3,5}\right)=1, c\left(b_{5,6}\right)=6$ and $c\left(b_{3,5}\right) \neq c\left(b_{5,6}\right)$, interchange 1,6 in the matrix C_{7} except the color of $b_{3,6}, b_{5,6}$. Add the vertex $b_{3,5}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
C_{8}=\left(\begin{array}{cccccc}
0 & 5 & 5 & 5 & 4 & 0 \\
5 & 0 & 5 & 5 & 3 & 4 \\
5 & 5 & 0 & 5 & 6 & 6 \\
5 & 5 & 5 & 0 & 0 & 3 \\
4 & 3 & 6 & 0 & 0 & 6 \\
0 & 4 & 6 & 3 & 6 & 0
\end{array}\right)
$$

$T^{\prime}=\emptyset$ and $P^{\prime}=\left\{b_{3,5}, b_{3,6}, b_{5,6}\right\}$. Go to step 3 .
Step 3: Since $T^{\prime}=\emptyset$, add the vertex $u_{3,5,6}$ to P and remove it from T, then $T=\emptyset$ and $P=\left\{u_{3,5,6}, u_{1,2,3,4}\right\}$. Go to step 1 .

Step 1: Since $T=\emptyset$ consider $C_{m}=C_{8}$, go to step 5 .
Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{1,5}$ from $T^{\prime \prime}$. Go to step 6 .
Step 6: Since $c_{1,5}=4$ appears exactly once in both $1^{\text {st }}$ row and $5^{\text {th }}$ column of the color matrix C_{m}. Add the vertex $u_{1,5}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=$ $\left\{u_{2,5}, u_{2,6}, u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,5}\right\}$. Go to Step 5.

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{2,5}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{2,5}=3$ appears exactly once in both $2^{\text {nd }}$ row and $5^{\text {th }}$ column of the
color matrix C_{m}. Add the vertex $u_{2,5}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\left\{u_{2,6}, u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,5}, u_{2,5}\right\}$. Go to Step 5 .

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{2,6}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{2,6}=4$ appears exactly once in both $2^{\text {nd }}$ row and $6^{\text {th }}$ column of the color matrix C_{m}. Add the vertex $u_{2,6}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\left\{u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,5}, u_{2,5, u_{2,6}}\right\}$. Go to Step 5.

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{4,6}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{4,6}=3$ appears exactly once in both $4^{\text {th }}$ row and $6^{\text {th }}$ column of the color matrix C_{m}. Add the vertex $u_{4,6}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\emptyset$ and $P^{\prime \prime}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\}$. Go to Step 5 .

Step 5: Since $T^{\prime \prime}=\emptyset$, consider $C_{M}=C_{m}$.
Stop the process.
Assign the colors to the graph \hat{H} using the matrix C_{M}, i.e., color the vertex v by the (i, j)-th entry $c_{i, j}$ of the matrix C_{M}, whenever $A_{i} \cap A_{j} \neq \emptyset$ (see Figure 2.16a), where the numbers 1, 2, 3, 4, 5, 6 corresponds to the colors Green, Cyan, Blue, Maroon, Tan, Red respectively. Extend the coloring of \hat{H} to G by assigning the remaining colors which are not used for A_{i} from the set of 6-colors to the vertices of clique degree one in each $A_{i}, 1 \leq i \leq 6$. The colored graph G is shown in Figure $2.16 b$

Following example shows that the construction mentioned in the proof of Theorem 2.4.3 does not work, if the graph G has more than $\frac{n}{2}$ vertices of clique degree greater than one in some $A_{i}, 1 \leq i \leq n$.

Example 2.4.7. Let G be the graph shown in Figure 2.17a.
Let $V\left(A_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}, V\left(A_{2}\right)=\left\{v_{2}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}\right\}$,
$V\left(A_{3}\right)=\left\{v_{3}, v_{8}, v_{12}, v_{13}, v_{14}, v_{15}\right\}, V\left(A_{4}\right)=\left\{v_{4}, v_{9}, v_{16}, v_{17}, v_{18}, v_{20}, v_{21}\right\}$,
$V\left(A_{5}\right)=\left\{v_{5}, v_{10}, v_{14}, v_{18}, v_{20}, v_{21}\right\}, V\left(A_{6}\right)=\left\{v_{6}, v_{10}, v_{15}, v_{19}, v_{22}, v_{23}\right\}$.
Relabel the vertices of clique degree greater than one in G by u_{A} where $A=\{i: v \in$ A_{i} for $\left.1 \leq i \leq 6\right\}$. The labeled graph is shown in Figure 2.17b. Figure 2.18 is the graph

Figure 2.16 The graphs \hat{H} and G, after colors have been assigned to their vertices.
\hat{H}, where \hat{H} is obtained by removing the vertices of clique degree 1 from G.

(a) Graph G

(b) Graph G after relabeling the vertices of clique degree greater than one

Figure 2.17 Graph G : before and after relabeling the vertices

Figure 2.18 Graph \hat{H}

Let $X=\left\{b_{i j}: A_{i} \cap A_{j}=\emptyset\right\}=\left\{b_{3,4}\right\}$,
$X_{1}=\left\{v \in G: d^{K}(v)=1\right\}=\left\{v_{1}, v_{7}, v_{11}, v_{12}, v_{13}, v_{16}, v_{17}, v_{20}, v_{21}, v_{22}, v_{23}\right\}$,

$$
\begin{aligned}
X_{2} & =\left\{v \in G: d^{K}(v)=2\right\}=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{8}, v_{9}, v_{14}, v_{15}, v_{18}, v_{19}\right\} \\
& =\left\{u_{1,2}, u_{1,3}, u_{1,4}, u_{1,5}, u_{1,6}, u_{2,3}, u_{2,4}, u_{3,5}, u_{3,6}, u_{4,5}, u_{4,6}\right\}
\end{aligned}
$$

and $X_{3}=\left\{v \in G: d^{K}(v)=3\right\}=\left\{v_{10}\right\}=\left\{u_{2,5,6}\right\}$,

Let $1,2, \ldots, 6$ be the six colors and $C=$

$$
\left(\begin{array}{llllll}
6 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 5 & 6 & 2 & 4 \\
2 & 5 & 4 & 1 & 6 & 3 \\
3 & 6 & 1 & 4 & 5 & 2 \\
4 & 2 & 6 & 5 & 3 & 1 \\
5 & 4 & 3 & 2 & 1 & 6
\end{array}\right)
$$

be the color matrix (as well as symmetric latin square) of order 6×6.
Consider the sets $T=X_{3}=\left\{u_{2,5,6}\right\}$,
$T^{\prime \prime}=X_{2}=\left\{u_{1,2}, u_{1,3}, u_{1,4}, u_{1,5}, u_{1,6}, u_{2,3}, u_{2,4}, u_{3,5}, u_{3,6}, u_{4,5}, u_{4,6}\right\}, P=\emptyset$ and $P^{\prime \prime}=\emptyset$. Then by applying the construction given in the proof of Theorem 2.4.3 we get a new color matrix C_{1} by putting $c_{i, j}=0, c_{j, i}=0$ for every $b_{i, j}$ in X and $c_{i, i}=0$ for each $i=1,2, \ldots, 6$ and go to Step 1 .

$$
C_{1}=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 0 & 5 & 6 & 2 & 4 \\
2 & 5 & 0 & 0 & 6 & 3 \\
3 & 6 & 0 & 0 & 5 & 2 \\
4 & 2 & 6 & 5 & 0 & 1 \\
5 & 4 & 3 & 2 & 1 & 0
\end{array}\right)
$$

Step 1: Since $T \neq \emptyset$, choose the vertex $u_{2,5,6}$ from T. Let $T^{\prime}=\left\{b_{2,5}, b_{2,6}, b_{5,6}\right\}$ and $P^{\prime}=\emptyset$, then $T_{1}^{\prime}=\emptyset$ and $T_{2}^{\prime}=T^{\prime}$. Since $T_{1}^{\prime}=\emptyset$, choose the vertex $b_{5,6}$ from T_{2}^{\prime}, add it to P^{\prime} and remove it from T^{\prime}. Then $T^{\prime}=\left\{b_{2,5}, b_{2,6}\right\}$ and $P^{\prime}=\left\{b_{5,6}\right\}$. Go to step 2.

Step 2: Since $T_{2}^{\prime} \neq \emptyset$, go to step 3 .
Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{2,5}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{2,5}\right)=2, c\left(b_{5,6}\right)=1$ and $c\left(b_{2,5}\right) \neq c\left(b_{5,6}\right)$, interchange 2,1 in the matrix C_{1} except the color of $b_{5,6}$. Add the vertex $b_{2,5}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
C_{2}=\left(\begin{array}{llllll}
0 & 2 & 1 & 3 & 4 & 5 \\
2 & 0 & 5 & 6 & 1 & 4 \\
1 & 5 & 0 & 0 & 6 & 3 \\
3 & 6 & 0 & 0 & 5 & 2 \\
4 & 1 & 6 & 5 & 0 & 1 \\
5 & 4 & 3 & 2 & 1 & 0
\end{array}\right)
$$

$$
T^{\prime}=\left\{b_{2,6}\right\} \text { and } P^{\prime}=\left\{b_{2,5}, b_{5,6}\right\} . \text { Go to step } 3 .
$$

Step 3: Since $T^{\prime} \neq \emptyset$ and $T^{\prime} \cap T_{1}^{\prime}=\emptyset$, choose the vertex $b_{2,6}$ from $T^{\prime} \cap T_{2}^{\prime}$ and go to step 4.

Step 4: Since $c\left(b_{2,6}\right)=4, c\left(b_{5,6}\right)=1$ and $c\left(b_{2,6}\right) \neq c\left(b_{5,6}\right)$, interchange 4, 1 in the
matrix C_{2} except the color of $b_{2,5}, b_{5,6}$. Add the vertex $b_{2,6}$ to P^{\prime} and remove it from T^{\prime}. Then

$$
\begin{aligned}
& C_{3}=\left(\begin{array}{cccccc}
0 & 2 & 4 & 3 & 1 & 5 \\
2 & 0 & 5 & 6 & 1 & 1 \\
4 & 5 & 0 & 0 & 6 & 3 \\
3 & 6 & 0 & 0 & 5 & 2 \\
1 & 1 & 6 & 5 & 0 & 1 \\
5 & 1 & 3 & 2 & 1 & 0
\end{array}\right) \\
& T^{\prime}=\emptyset \text { and } P^{\prime}=\left\{b_{2,5}, b_{2,6}, b_{5,6}\right\} . \text { Go to step } 3 .
\end{aligned}
$$

Step 3: Since $T^{\prime}=\emptyset$, add the vertex $u_{2,5,6}$ to P and remove it from T, then $T=\emptyset$ and $P=\left\{u_{2,5,6}\right\}$. Go to step 1 .

Step 1: Since $T=\emptyset$ consider $C_{m}=C_{3}$, go to step 5 .
Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{1,2}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{1,2}=2$ appears exactly once in both $1^{\text {st }}$ row and $2^{\text {nd }}$ column of the color matrix C_{m}. Add the vertex $u_{1,2}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\left\{u_{1,3}, u_{1,4}, u_{1,5}, u_{1,6}, u_{2,3}, u_{2,4}, u_{3,5}, u_{3,6}, u_{4,5}, u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,2}\right\}$. Go to Step 5.

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{1,3}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{1,3}=4$ appears exactly once in both $1^{\text {st }}$ row and $3^{\text {rd }}$ column of the color matrix C_{m}. Add the vertex $u_{1,3}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\left\{u_{1,4}, u_{1,5}, u_{1,6}, u_{2,3}, u_{2,4}, u_{3,5}, u_{3,6}, u_{4,5}, u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,2}, u_{1,3}\right\}$. Go to Step 5.

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{1,4}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{1,4}=3$ appears exactly once in both $1^{\text {st }}$ row and $4^{\text {th }}$ column of the color matrix C_{m}. Add the vertex $u_{1,4}$ to $P^{\prime \prime}$ and remove it from $T^{\prime \prime}$. Then $T^{\prime \prime}=\left\{u_{1,5}, u_{1,6}, u_{2,3}, u_{2,4}, u_{3,5}, u_{3,6}, u_{4,5}, u_{4,6}\right\}$ and $P^{\prime \prime}=\left\{u_{1,2}, u_{1,3}, u_{1,4}\right\}$. Go to Step 5.

Step 5: Since $T^{\prime \prime} \neq \emptyset$, choose the vertex $u_{1,5}$ from $T^{\prime \prime}$. Go to step 6.
Step 6: Since $c_{1,5}=1$ and it appears more than once in the $5^{\text {th }}$ column of the color matrix C_{m}. Let $A=\left\{c_{1, j}: c_{1, j} \neq 0 ; 1 \leq j \leq 6\right\}=\{1,2,3,4,5\}, B=\left\{c_{i, 5}: c_{i, 5} \neq 0 ; 1 \leq\right.$ $i \leq 6\}=\{1,5,6\}$, then $A \cup B=\{1,2,3,4,5,6\}$ and $\{1,2,3,4,5,6\} \backslash A \cup B=\emptyset$.

It can't be go further.
In the illustration of Example 2.4.7 if we choose the color matrix (symmetric latin square) given below, then exists an n-coloring of G.

$$
\text { Let } C^{\prime}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 3 & 4 & 5 & 6 & 1 \\
3 & 4 & 5 & 6 & 1 & 2 \\
4 & 5 & 6 & 1 & 2 & 3 \\
5 & 6 & 1 & 2 & 3 & 4 \\
6 & 1 & 2 & 3 & 4 & 5
\end{array}\right)
$$

Appying the method of construction as in Example 2.4.7 we get

$$
C_{M}^{\prime}=\left(\begin{array}{cccccc}
0 & 2 & 3 & 6 & 5 & 1 \\
2 & 0 & 6 & 5 & 4 & 4 \\
3 & 6 & 0 & 0 & 1 & 2 \\
6 & 5 & 0 & 0 & 2 & 3 \\
5 & 4 & 1 & 2 & 0 & 4 \\
1 & 4 & 2 & 3 & 4 & 0
\end{array}\right) .
$$

Color the vertex v by the (i, j)-th entry $c_{i, j}$ of the matrix C_{M}^{\prime}, whenever $A_{i} \cap A_{j} \neq$ \emptyset (see Figure 2.19a), where the numbers 1, 2, 3, 4, 5, 6 corresponds to the colors Blue, Red, Green, Maroon, Tan, Cyan respectively. Extend the coloring of \hat{H} to G by assigning the remaining colors which are not used for A_{i} from the set of 6-colors to the vertices of clique degree one in each $A_{i}, 1 \leq i \leq 6$. The colored graph G is shown in Figure $2.19 b$

Remark 2.4.8. From the above example, one can see that the construction will work for some symmetric latin squares and will not work for some other, for the graphs having more than $\frac{n}{2}$ vertices of clique degree greater than one in some $A_{i}(1 \leq i \leq n)$ in G.

Theorem 2.4.9. If G is a graph satisfying the hypothesis of Conjecture 2.1.1 then G is n-colorable.

Figure 2.19 The graphs \hat{H} and G, after colors have been assigned to their vertices.

Proof. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. Let \hat{H} be the induced subgraph of G consisting of the vertices of clique degree greater than 1 in G. Relable the vertex v of clique degree greater than 1 in G by u_{x}, where $x=k_{1}, k_{2}, \ldots, k_{j}$; vertex v is in $A_{k_{i}}, 1 \leq i \leq j$. Define $X=\left\{b_{i, j}: A_{i} \cap A_{j}=\emptyset\right\}, X_{i}=\left\{v \in G: d^{K}(v)=i\right\}$ for $i=1,2, \ldots, n$.

Let C be the intersection matrix (color matrix) of the cliques $A_{i}^{\prime} s$ of G is the $n \times n$
matrix in which entry $c_{i, j}$ for $i \neq j$ is 0 if $A_{i} \cap A_{j}=\emptyset$ otherwise c, and $c_{i, i}$ is 0 .
Let $1,2, \ldots, n$ be the n-colors. The following construction applied on the color matrix C, gives a modified color matrix C_{M}, using which we assign the colors to the graph \hat{H}. Then this coloring can be extended to the graph G.

Construction:

Let $T_{i}=X_{i}, P_{i}=\emptyset$ and $S=\left\{j: T_{j} \neq \emptyset, 2 \leq j \leq n\right\}$.
If $S=\emptyset$, then the graph G has no vertex of clique degree greater than one, which implies G has exactly n^{2} (maximum number) vertices. i.e., G is n components of K_{n}. Otherwise follow the steps.

Step 1: If $S=\emptyset$, stop the process. Otherwise, let $\max (S)=k$, for some $k, 2 \leq k \leq n$. Then consider the sets T_{k} and P_{k}, go to step 2.

Step 2: If $T_{k}=\emptyset$, go to step 1 . Otherwise, choose a vertex $u_{i_{1}, i_{2}, \ldots, i_{k}}$ from T_{k}, where $i_{1}<i_{2}<\cdots<i_{k}$ and go to Step 3.

Step 3: Let $Y_{i}=\left\{y\right.$: color y appears atleast $k-1$ times in the $i^{\text {th }}$ row of the color matrix $\}, i=1,2, \ldots, n$. If $\left|\bigcup_{i=i_{1}}^{i_{k}} Y_{i}\right|=n$, let $B_{T}=\bigcup_{i=2}^{n} P_{i}, B_{P}=\emptyset$ and go to Step 4. Otherwise, construct a new color matrix C_{1} by putting least x in $c_{i, j}$, where $x \in\{1,2,3, \ldots n\} \backslash \bigcup_{i=i_{1}}^{i_{k}} Y_{i}, i \neq j, i_{1} \leq i, j \leq i_{k}$. Then add the vertex $u_{i_{1}, i_{2}, \ldots, i_{k}}$ to P_{k} and remove it from T_{k}, go to Step 2.

Step 4: Choose a vertex v from B_{T} such that $v \in A_{i}$, for some $i, i_{1} \leq i \leq i_{k}$. Let $B=\{i$: $\left.v \in A_{i}, 1 \leq i \leq n\right\}$ and go to Step 5.

Step 5: Let $Y_{i}=\left\{y:\right.$ color y appears atleast $k-1$ times in the $i^{\text {th }}$ row of the color matrix $\}$, for every $i \in B$. If $\left|\bigcup_{i \in B} Y_{i}\right|=n$ add the vertex v to B_{P} and remove it from B_{T}, go to Step 4. Otherwise construct a new color matrix C_{2} by putting x in $c_{i, j}$, where $x \in\{1,2,3, \ldots n\} \backslash \bigcup_{i \in B} Y_{i}, i \neq j, i, j \in B$. Go to Step 3 .

Thus, we get the modified color matrix C_{M}. Then, color the vertex v of \hat{H} by $c_{i, j}$
of C_{M}, whenever $v \in A_{i} \cap A_{j}$. Then, extend the coloring of \hat{H} to G. Thus G is n colorable.

Following is an example illustrating the algorithm given in the proof of Theorem 2.4.9.

Example 2.4.10. Let G be the graph shown in Figure 2.20a
Let $V\left(A_{1}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}, V\left(A_{2}\right)=\left\{v_{1}, v_{7}, v_{8}, v_{9}, v_{10}, v_{11}\right\}$,
$V\left(A_{3}\right)=\left\{v_{1}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}\right\}, V\left(A_{4}\right)=\left\{v_{1}, v_{17}, v_{18}, v_{19}, v_{20}, v_{21}\right\}$,
$V\left(A_{5}\right)=\left\{v_{6}, v_{7}, v_{16}, v_{22}, v_{23}, v_{24}\right\}, V\left(A_{6}\right)=\left\{v_{9}, v_{16}, v_{19}, v_{25}, v_{26}, v_{27}\right\}$.
Relabel the vertices of clique degree greater than one in G by u_{A} where $A=\{i: v \in$ A_{i} for $\left.1 \leq i \leq 6\right\}$. The labeled graph is shown in Figure 2.20b. Figure 2.21 is the graph \hat{H}, where \hat{H} is obtained by removing the vertices of clique degree 1 from G.

Let $X=\left\{b_{i, j}: A_{i} \cap A_{j}=\emptyset\right\}=\left\{b_{1,6}, b_{4,5}\right\}$,

$$
\begin{aligned}
X_{1}= & \left\{v \in G: d^{K}(v)=1\right\}=\left\{v_{2}, v_{3}, v_{5}, v_{8}, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15},\right. \\
& \left.v_{17}, v_{18}, v_{20}, v_{21}, v_{22}, v_{23}, v_{24}, v_{25}, v_{26}, v_{27}\right\},
\end{aligned}
$$

$X_{2}=\left\{v \in G: d^{K}(v)=2\right\}=\left\{v_{6}, v_{7}, v_{9}, v_{19}\right\}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\}$,
$X_{3}=\left\{v \in G: d^{K}(v)=3\right\}=\left\{v_{16}\right\}=\left\{u_{3,5,6}\right\}$,
$X_{4}=\left\{v \in G: d^{K}(v)=4\right\}=\left\{v_{1}\right\}=\left\{u_{1,2,3,4}\right\}$,
$X_{5}=\emptyset$ and $X_{6}=\emptyset$.

Let $1,2, \ldots, 6$ be the six colors and $C=$

$$
\left(\begin{array}{llllll}
0 & c & c & c & c & 0 \\
c & 0 & c & c & c & c \\
c & c & 0 & c & c & c \\
c & c & c & 0 & 0 & c \\
c & c & c & 0 & 0 & c \\
0 & c & c & c & c & 0
\end{array}\right)
$$

be the color matrix (intersection matrix) of order 6×6.

Figure 2.20 Graph G : before and after relabeling the vertices

Consider the sets $T_{i}=X_{i}, P_{i}=\emptyset$ for $i=1,2, \ldots 6$ and $S=\left\{j: T_{j} \neq \emptyset, 2 \leq j \leq n\right\}=$ $\{2,3,4\}$. Then by applying the algorithm given in the proof of Theorem 2.4 .9 we get the following,

Step 1: Since $S \neq \emptyset$ and $\max (S)=4$, then choose the sets $T_{4}=\left\{u_{1,2,3,4}\right\}$ and $P_{4}=\emptyset$.
Go to step 2.

Figure 2.21 Graph \hat{H}

Step 2: Since $T_{4} \neq \emptyset$, choose the vertex $u_{1,2,3,4}$ from T_{4}, go to step 3 .
Step 3: Since $Y_{1}=\emptyset, Y_{2}=\emptyset, Y_{3}=\emptyset, Y_{4}=\emptyset$ and $\left|Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=1,2,3,4} Y_{i}$ and construct a new color matrix C_{1} by putting 1 in $c_{i, j}, i \neq j, i, j=1,2,3,4$. Add the vertex $u_{1,2,3,4}$ to P_{4} and remove it from T_{4}. Then
$C_{1}=\left(\begin{array}{llllll}0 & 1 & 1 & 1 & c & 0 \\ 1 & 0 & 1 & 1 & c & c \\ 1 & 1 & 0 & 1 & c & c \\ 1 & 1 & 1 & 0 & 0 & c \\ c & c & c & 0 & 0 & c \\ 0 & c & c & c & c & 0\end{array}\right)$,
$T_{4}=\emptyset, P_{4}=\left\{u_{1,2,3,4}\right\}$. Go to step 2.
Step 2: Since $T_{4}=\emptyset$, go to step 1 .
Step 1: Since $S \neq \emptyset$ and $\max (S)=3$, then choose the sets $T_{3}=\left\{u_{3,5,6}\right\}$ and $P_{3}=\emptyset$. Go to step 2.

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex $u_{3,5,6}$ from T_{3}, go to step 3 .
Step 3: Since $Y_{3}=\{1\}, Y_{5}=\emptyset, Y_{6}=\emptyset$, and $\left|Y_{3} \cup Y_{5} \cup Y_{6}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=3,5,6} Y_{i}$ and construct a new color matrix C_{2} by
putting 2 in $c_{i, j}, i \neq j, i, j=3,5,6$. Add the vertex $u_{3,5,6}$ to P_{3} and remove it from T_{3}. Then

$$
\begin{aligned}
& C_{2}=\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & c & 0 \\
1 & 0 & 1 & 1 & c & c \\
1 & 1 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & c \\
c & c & 2 & 0 & 0 & 2 \\
0 & c & 2 & c & 2 & 0
\end{array}\right) \\
& T_{3}=\emptyset, P_{3}=\left\{u_{3,5,6\}}\right\} . \text { Go to step } 2 .
\end{aligned}
$$

Step 2: Since $T_{3}=\emptyset$, go to step 1 .
Step 1: Since $S \neq \emptyset$ and $\max (S)=2$, then choose the sets $T_{2}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\}$ and $P_{2}=\emptyset$. Go to step 2.

Step 2: Since $T_{2} \neq \emptyset$, choose the vertex $u_{1,5}$ from T_{2}, go to step 3 .
Step 3: Since $Y_{1}=\{1\}, Y_{5}=\{2\}$ and $\left|Y_{1} \cup Y_{5}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=1,5} Y_{i}$ and construct a new color matrix C_{3} by putting 3 in $c_{i, j}$, $i \neq j, i, j=1,5$. Add the vertex $u_{1,5}$ to P_{2} and remove it from T_{2}. Then

$$
\begin{aligned}
C_{3} & =\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 3 & 0 \\
1 & 0 & 1 & 1 & c & c \\
1 & 1 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & c \\
3 & c & 2 & 0 & 0 & 2 \\
0 & c & 2 & c & 2 & 0
\end{array}\right), \\
T_{2} & =\left\{u_{2,5}, u_{2,6}, u_{4,6}\right\}, P_{2}=\left\{u_{1,5}\right\} . \text { Go to step } 2 .
\end{aligned}
$$

Step 2: Since $T_{2} \neq \emptyset$, choose the vertex $u_{2,5}$ from T_{2}, go to step 3 .
Step 3: Since $Y_{2}=\{1\}, Y_{5}=\{2,3\}$ and $\left|Y_{2} \cup Y_{5}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=2,5} Y_{i}$ and construct a new color matrix C_{4} by putting 4 in $c_{i, j}, i \neq j, i, j=2,5$. Add the vertex $u_{2,5}$ to P_{2} and remove it from T_{2}. Then

$$
\begin{aligned}
C_{4} & =\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 3 & 0 \\
1 & 0 & 1 & 1 & 4 & c \\
1 & 1 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & c \\
3 & 4 & 2 & 0 & 0 & 2 \\
0 & c & 2 & c & 2 & 0
\end{array}\right), \\
T_{2} & =\left\{u_{2,6}, u_{4,6}\right\}, P_{2}=\left\{u_{1,5}, u_{2,5}\right\} . \text { Go to step } 2 .
\end{aligned}
$$

Step 2: Since $T_{2} \neq \emptyset$, choose the vertex $u_{2,6}$ from T_{2}, go to step 3 .
Step 3: Since $Y_{2}=\{1,4\}, Y_{6}=\{2\}$ and $\left|Y_{2} \cup Y_{6}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=2,6} Y_{i}$ and construct a new color matrix C_{5} by putting 3 in $c_{i, j}, i \neq j, i, j=2,6$. Add the vertex $u_{2,6}$ to P_{2} and remove it from T_{2}. Then
$C_{5}=\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 3 & 0 \\ 1 & 0 & 1 & 1 & 4 & 3 \\ 1 & 1 & 0 & 1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 0 & c \\ 3 & 4 & 2 & 0 & 0 & 2 \\ 0 & 3 & 2 & c & 2 & 0\end{array}\right)$,
$T_{2}=\left\{u_{4,6}\right\}, P_{2}=\left\{u_{1,5}, u_{2,5}, u_{2,6}\right\}$. Go to step 2 .
Step 2: Since $T_{2} \neq \emptyset$, choose the vertex $u_{4,6}$ from T_{2}, go to step 3 .
Step 3: Since $Y_{4}=\{1\}, Y_{6}=\{2,3\}$ and $\left|Y_{4} \cup Y_{6}\right|<6$, choose the minimum color from the set $\{1,2, \ldots, 6\} \backslash \cup_{i=4,6} Y_{i}$ and construct a new color matrix C_{6} by putting 4 in $c_{i, j}, i \neq j, i, j=4,6$. Add the vertex $u_{4,6}$ to P_{2} and remove it from T_{2}. Then

$$
\begin{aligned}
C_{6} & =\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 3 & 0 \\
1 & 0 & 1 & 1 & 4 & 3 \\
1 & 1 & 0 & 1 & 2 & 2 \\
1 & 1 & 1 & 0 & 0 & 4 \\
3 & 4 & 2 & 0 & 0 & 2 \\
0 & 3 & 2 & 4 & 2 & 0
\end{array}\right), \\
T_{2} & =\emptyset, P_{2}=\left\{u_{1,5}, u_{2,5}, u_{2,6}, u_{4,6}\right\} . \text { Go to step } 2 .
\end{aligned}
$$

Step 2: Since $T_{2}=\emptyset$, go to step 1.
Step 1: Since $S=\emptyset$, stop the process.
Assign the colors to the graph \hat{H} using the matrix $C_{M}=C_{6}$, i.e., color the vertex v by the (i, j)-th entry $c_{i, j}$ of the matrix C_{M}, whenever $A_{i} \cap A_{j} \neq \emptyset$ (see Figure 2.22a), where the numbers 1, 2, 3, 4, 5, 6 corresponds to the colors Maroon, Tan, Green, Red, Blue, Cyan respectively. Extend the coloring of \hat{H} to G by assigning the remaining colors which are not used for A_{i} from the set of 6-colors to the vertices of clique degree one in each $A_{i}, 1 \leq i \leq 6$. The colored graph G is shown in Figure $2.22 b$

Here we give the construction for assigning colors to the linear hypergraph \mathbf{H} with n edges each with at most n vertices.

Coloring of \mathbf{H} :
Let \mathbf{H} be a linear hypergraph with n edges each with at most n vertices. By using the following method one can color the linear hypergraph \mathbf{H} with at most n colors.

Let $E_{1}, E_{2}, \ldots, E_{n}$ be the edges of \mathbf{H}. Let $1,2, \ldots, n$ be the n-colors. Define $X_{i}=$ $\{v \in H:$ degree of v is $i\}$ for $i=1,2, \ldots, n$.

Construction:

Let $T_{i}=X_{i}, P_{i}=\emptyset$ and $S=\left\{j: T_{j} \neq \emptyset, 2 \leq j \leq n\right\}$.

Step 1: If $S=\emptyset$, stop the process. Otherwise, let $\max (S)=k$, for some $k, 2 \leq k \leq n$. Then consider the sets T_{k} and P_{k}, go to step 2.

Step 2: If $T_{k}=\emptyset$, go to Step 1. Otherwise choose a vertex v from T_{k} and go to Step 3.

Step 3: Let Y_{v} be the set of all used colors of the edges which contains the vertex v. If $\left|Y_{v}\right|=n$, let $B_{T}=\bigcup_{i=2}^{n} P_{i}, B_{P}=\emptyset$ and go to Step 4. Otherwise, assign the minimum value color from the set of unused colors to the vertex v. Then add the vertex v to P_{k} and remove it from T_{k}, go to Step 2.

Step 4: Choose a vertex u from B_{T} such that v and u belong to same edge E_{i} for some $1 \leq i \leq n$. Go to Step 5.

Figure 2.22 The graphs \hat{H} and G, after colors have been assigned to their vertices.

Step 5: Let Y_{u} be the set of all used colors of the edges which contains the vertex u. If $\left|Y_{u}\right|=n$ add the vertex u to B_{P} and remove it from B_{T}, go to Step 4. Otherwise, assign the minimum value color from the set of unused colors to the vertex u. Go to Step 3.

Thus, we get a proper coloring of the linear hypergraph \mathbf{H} using at most n colors.

Figure 2.23 A 6 coloring of hypergraph \mathbf{H} corresponding to the graph G shown in Figure 2.22 b

2.4.1 Fano plane

A projective plane has the same number of lines as it has points (infinite or finite). Thus, for every finite projective plane there is an integer $N \geq 2$ such that the plane has

- $N^{2}+N+1$ points,
- $N^{2}+N+1$ lines,
- $N+1$ points on each line, and
- $N+1$ lines through each point.

The number N is called the order of the projective plane.
In finite geometry, the Fano plane is the finite projective plane of order 2, having the smallest possible number of points and lines, 7 each, with 3 points on every line and 3 lines through every point.

Figure 2.24 Fano Plane

Figure 2.25 Graph G

Example 2.4.11. Let G be the graph shown in Figure 2.25.
Figure 2.26 is the graph \hat{H} (Fano plane) of G, where \hat{H} is obtained by removing the vertices of clique degree 1 from G.

Let $E_{1}=\left\{v_{1}, v_{5}, v_{6}\right\}, E_{2}=\left\{v_{1}, v_{4}, v_{7}\right\}, E_{3}=\left\{v_{1}, v_{2}, v_{3}\right\}, E_{4}=\left\{v_{2}, v_{5}, v_{7}\right\}, E_{5}=$ $\left\{v_{3}, v_{6}, v_{7}\right\}, E_{6}=\left\{v_{3}, v_{4}, v_{5}\right\}, E_{7}=\left\{v_{2}, v_{4}, v_{6}\right\}$ and $1,2,3 \ldots 7$ be the 7 colors.

Figure 2.26 Fano Plane (\hat{H})

Let $X_{1}=\emptyset, X_{2}=\{v \in H: d(v)=2\}=\emptyset$,
$X_{3}=\{v \in H: d(v)=3\}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}, X_{4}=\emptyset, X_{5}=\emptyset, X_{6}=\emptyset$ and $X_{7}=\emptyset$.

Consider the sets $T_{i}=X_{i}, P_{i}=\emptyset$, for $i=1,2, \ldots 7$ and $S=\left\{j: T_{j} \neq \emptyset, 1 \leq j \leq 7\right\}=$ \{3\}. Then by applying the above construction we get,

Step 1: Since $S \neq \emptyset$ and $\max (S)=3$, then choose the sets T_{3} and P_{3}. Go to step 2 .
Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{1} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{1}}=\emptyset$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash Y_{v_{1}}$. Add the vertex v_{1} to P_{3} and remove it from T_{3}. Then color of v_{1} is $1, T_{3}=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and $P_{3}=\left\{v_{1}\right\}$. Go to step 2 .

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{2} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{2}}=\{1\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash$ $Y_{v_{2}}$. Add the vertex v_{2} to P_{3} and remove it from T_{3}. Then color of v_{2} is $2, T_{3}=$ $\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}\right\}$. Go to step 2 .

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{3} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{3}}=\{1,2\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash Y_{v_{3}}$. Add the vertex v_{3} to P_{3} and remove it from T_{3}. Then color of v_{3} is $3, T_{3}=\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Go to step 2.

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{4} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{4}}=\{1,2,3\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash$ $Y_{v_{4}}$. Add the vertex v_{4} to P_{3} and remove it from T_{3}. Then color of v_{4} is $4, T_{3}=\left\{v_{5}, v_{6}, v_{7}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Go to step 2.

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{5} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{5}}=\{1,2,3,4\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash$ $Y_{v_{5}}$. Add the vertex v_{5} to P_{3} and remove it from T_{3}. Then color of v_{5} is $5, T_{3}=\left\{v_{6}, v_{7}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Go to step 2 .

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{6} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{6}}=\{1,2,3,4,5\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash$
$Y_{v_{6}}$. Add the vertex v_{6} to P_{3} and remove it from T_{3}. Then color of v_{6} is $6, T_{3}=\left\{v_{7}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Go to step 2.

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{7} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{7}}=\{1,2,3,4,5,6\}$, choose the minimum color from the set $\{1,2, \ldots, 7\} \backslash$ $Y_{v_{7}}$. Add the vertex v_{7} to P_{3} and remove it from T_{3}. Then color of v_{7} is $7, T_{3}=\emptyset$ and $P_{3}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$. Go to step 2.

Step 2: Since $T_{3}=\emptyset$, go to step 1 .
Step 1: Since $S=\emptyset$, stop the process.
Assign the colors to the graph \hat{H} (see Figure 2.27).

Figure 2.27 A 7 coloring of Fano Plane

2.4.2 Steiner Triple Systems

Definition 2.4.12 (Grannell et al. (2000)). A Steiner triple system (STS) $S=(V ; B)$ of order v, denoted by STS(v), is a collection B of triples (3-element subsets) of the set V, where $|V|=v$, such that each unordered pair of elements (points) of V is contained in precisely one triple from B. It is well known that an STS(v) exists if and only if $v \equiv 1$ or $3(\bmod 6)$; such values of v are called admissible.

Definition 2.4.13. A Pasch configuration, also known as a quadrilateral, consists of four triples of a Steiner triple system whose union is a set of six points, that is to say, four
triples which must be of the form $\{a, b, c\},\{a, y, z\},\{x, b, z\}$ and $\{x, y, c\}$. An $\operatorname{STS}(v)$ is anti-Pasch or quadrilateral-free if it does not contain a Pasch configuration. We will denote such a system by QFSTS(v).

Definition 2.4.14. BQFSTS($u,-m$) designs (m-bipartite quadrilateral-free $\operatorname{STS}(u,-m)$) The points of the system are $1,2, \ldots, u$. These comprise the points of the hole labelled $M(1,2, \ldots, m)$, points labelled $A\left(m+1, m+2, \ldots, \frac{m+u}{2}\right)$ and points labelled B $\left(\frac{m+u+2}{2}, \frac{m+u+4}{2}, \ldots, u\right)$. The systems are $\operatorname{STS}(u,-m) s$,
i.e. Steiner triple systems of order u with a hole of size m. No pairs labelled M,M appear in a triple, but all other pairs do appear in a triple.

Each system is m-bipartite, i.e. there are no M,A,A or M,B,B triples. Each system is quadrilateral-free (i.e. anti-Pasch) Grannell et al. (2000).

A full listing of the triples of a $\operatorname{BQFSTS}(19 ;-3)$ is given below. For clarity, we list blocks omitting set brackets and commas. A specimen of each of the BQFSTS(u;-m) designs used in this paper is available from the JCD website (JCD). $1,2, \ldots 19$ are the 19 edges of $\operatorname{BQFSTS}(19 ;-3)$ and each block is a triplet a, b, c and it represents a vertex. Triplet a, b, c means it is the common vertex to the edges a, b and c.

Example 2.4.15. $\operatorname{BQFSTS}(19,-3)$

$v_{1}: 1$	4	12	$v_{2}: 1$	5	13	$v_{3}: 1$	6	14	$v_{4}: 1$	7	15
$v_{5}: 1$	8	16	$v_{6}: 1$	9	17	$v_{7}: 1$	10	18	$v_{8}: 1$	11	19
$v_{9}: 2$	4	13	$v_{10}: 2$	5	14	$v_{11}: 2$	6	15	$v_{12}: 2$	7	16
$v_{13}: 2$	8	17	$v_{14}: 2$	9	18	$v_{15}: 2$	10	19	$v_{16}: 2$	11	12
$v_{17}: 3$	4	14	$v_{18}: 3$	5	15	$v_{19}: 3$	6	16	$v_{20}: 3$	7	17
$v_{21}: 3$	8	18	$v_{22}: 3$	9	19	$v_{23}: 3$	10	12	$v_{24}: 3$	11	13
$v_{25}: 4$	5	17	$v_{26}: 4$	6	10	$v_{27}: 4$	7	9	$v_{28}: 4$	8	15
$v_{29}: 4$	11	16	$v_{30}: 4$	18	19	$v_{31}: 5$	6	19	$v_{32}: 5$	7	10
$v_{33}: 5$	8	9	$v_{34}: 5$	11	18	$v_{35}: 5$	12	16	$v_{36}: 6$	7	18
$v_{37}: 6$	8	12	$v_{38}: 6$	9	11	$v_{39}: 6$	13	17	$v_{40}: 7$	8	19

$v_{41}: 7$

$v_{45}: 9$ 11 | 14 | 14 |
| :--- | :--- |

BQFSTS (19, -3) is the hypergraph \boldsymbol{H} with 19 edges and every vertex of degree is exactly 3. Let $X_{3}=\{v \in H: d(v)=3\}=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{56}\right\}, X_{i}=\emptyset$ for $1 \leq i \leq 19, i \neq 3$.

Consider the sets $T_{i}=X_{i}, P_{i}=\emptyset$ for $i=1,2, \ldots 19$ and $S=\left\{j: T_{j} \neq \emptyset, 1 \leq j \leq\right.$ $19\}=\{3\}$. Then by applying the above construction we get,

Step 1: Since $S \neq \emptyset$ and $\max (S)=3$, then choose the sets T_{3} and P_{3}. Go to step 2 .
Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{1} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{1}}=\emptyset$, choose the minimum color from the set $\{1,2, \ldots, 19\} \backslash Y_{v_{1}}$. Add the vertex v_{1} to P_{3} and remove it from T_{3}. Then color of v_{1} is $1, T_{3}=\left\{v_{2}, v_{3}, \ldots, v_{56}\right\}$ and $P_{3}=\left\{v_{1}\right\}$. Go to step 2.

Step 2: Since $T_{3} \neq \emptyset$, choose the vertex v_{2} from T_{3}, go to step 3 .
Step 3: Since $Y_{v_{2}}=\{1\}$, choose the minimum color from the set $\{1,2, \ldots, 19\} \backslash Y_{v_{2}}$. Add the vertex v_{2} to P_{3} and remove it from T_{3}. Then color of v_{2} is $2, T_{3}=\left\{v_{3}, v_{4}, \ldots, v_{56}\right\}$ and $P_{3}=\left\{v_{1}, v_{2}\right\}$. Go to step 2.

Continuing like this we get

$v_{1}: 1$	4	$12(1)$	$v_{2}: 1$	5	$13(2)$	$v_{3}: 1$	6	$14(3)$	$v_{4}: 1$	7	$15(4)$
$v_{5}: 1$	8	$16(5)$	$v_{6}: 1$	9	$17(6)$	$v_{7}: 1$	10	$18(7)$	$v_{8}: 1$	11	$19(8)$
$v_{9}: 2$	4	$13(3)$	$v_{10}: 2$	5	$14(1)$	$v_{11}: 2$	6	$15(2)$	$v_{12}: 2$	7	$16(6)$
$v_{13}: 2$	8	$17(4)$	$v_{14}: 2$	9	$18(5)$	$v_{15}: 2$	10	$19(9)$	$v_{16}: 2$	11	$12(7)$
$v_{17}: 3$	4	$14(2)$	$v_{18}: 3$	5	$15(3)$	$v_{19}: 3$	6	$16(1)$	$v_{20}: 3$	7	$17(5)$
$v_{21}: 3$	8	$18(6)$	$v_{22}: 3$	9	$19(4)$	$v_{23}: 3$	10	$12(8)$	$v_{24}: 3$	11	$13(9)$
$v_{25}: 4$	5	$17(7)$	$v_{26}: 4$	6	$10(4)$	$v_{27}: 4$	7	$9(8)$	$v_{28}: 4$	8	$15(9)$
$v_{29}: 4$	11	$16(10)$	$v_{30}: 4$	18	$19(11)$	$v_{31}: 5$	6	$19(5)$	$v_{32}: 5$	7	$10(10)$
$v_{33}: 5$	8	$9(11)$	$v_{34}: 5$	11	$18(4)$	$v_{35}: 5$	12	$16(9)$	$v_{36}: 6$	7	$18(9)$
$v_{37}: 6$	8	$12(10)$	$v_{38}: 6$	9	$11(12)$	$v_{39}: 6$	13	$17(8)$	$v_{40}: 7$	8	$19(1)$
$v_{41}: 7$	11	$14(11)$	$v_{42}: 7$	12	$13(12)$	$v_{43}: 8$	10	$11(2)$	$v_{44}: 8$	13	$14(7)$
$v_{45}: 9$	10	$13(1)$	$v_{46}: 9$	12	$14(13)$	$v_{47}: 9$	15	$16(7)$	$v_{48}: 10$	14	$15(5)$
$v_{49}: 10$	16	$17(3)$	$v_{50}: 11$	15	$17(1)$	$v_{51}: 12$	15	$18(14)$	$v_{52}: 12$	17	$19(2)$
$v_{53}: 13$	15	$19(6)$	$v_{54}: 13$	16	$18(13)$	$v_{55}: 14$	16	$19(12)$	$v_{56}: 14$	17	$18(10)$

Triplet $a, b, c(x)$ means, it is the common vertex to the edges a, b and c and x is the color assigned to that vertex. In this example it takes only 14 colors.

Here is the example BQFSTS (31, -7). Using the above algorithm it takes only 23 colors.

BQFSTS ($31,-7$)																				
1	8	20	1	9	30	1	10	22	1	11	26	1	12	24	1	13	28	1	14	21
1	15	31	1	16	23	1	17	27	1	18	25	1	19	29	2	8	24	2	9	26
2	10	20	2	11	28	2	12	22	2	13	30	2	14	25	2	15	27	2	16	21
2	17	29	2	18	23	2	19	31	3	8	22	3	9	28	3	10	24	3	11	30
3	12	20	3	13	26	3	14	23	3	15	29	3	16	25	3	17	31	3	18	21
3	19	27	4	8	21	4	9	31	4	10	23	4	11	27	4	12	25	4	13	29
4	14	26	4	15	24	4	16	28	4	17	20	4	18	30	4	19	22	5	8	25
5	9	27	5	10	21	5	11	29	5	12	23	5	13	31	5	14	30	5	15	20
5	16	26	5	17	22	5	18	28	5	19	24	6	8	23	6	9	29	6	10	25
6	11	31	6	12	21	6	13	27	6	14	28	6	15	22	6	16	30	6	17	24
6	18	26	6	19	20	7	8	31	7	9	25	7	10	27	7	11	21	7	12	29
7	13	23	7	14	24	7	15	30	7	16	20	7	17	26	7	18	22	7	19	28
8	9	16	8	10	13	8	11	14	8	12	30	8	15	18	8	17	19	8	26	29
8	27	28	9	10	17	9	11	24	9	12	13	9	14	18	9	15	23	9	19	21
9	20	22	10	11	12	10	14	19	10	15	28	10	16	31	10	18	29	10	26	30
11	13	20	11	15	16	11	17	23	11	18	19	11	22	25	12	14	15	12	16	19
12	17	28	12	18	31	12	26	27	13	14	22	13	15	21	13	16	24	13	17	18
13	19	25	14	16	17	14	20	27	14	29	31	15	17	25	15	19	26	16	18	27
16	22	29	17	21	30	18	20	24	19	23	30	20	21	26	20	23	31	20	25	30
20	28	29	21	22	24	21	23	28	21	25	31	21	27	29	22	23	27	22	26	31
22	28	30	23	24	26	23	25	29	24	25	27	24	28	31	24	29	30	25	26	28
27	30	31																		

	E_{1}	E_{2}	E_{3}	E_{4}	E_{5}	E_{6}	E_{7}	E_{8}	E_{9}	E_{10}	E_{11}	E_{12}	E_{13}	E_{14}	E_{15}	E_{16}	E_{17}	E_{18}	e_{19}	E_{20}	E_{21}	E_{22}	E_{23}	E_{24}	E_{25}	E_{26}	E_{27}	E_{28}	E_{29}	E_{30}	E_{31}
E_{1}	0	0	0	0	0	0	0	1	2	3	4	5	6	7	8	9	10	11	12	1	7	3	9	5	11	4	10	6	12	2	8
E_{2}	0	0	0	0	0	0	0	2	1	4	3	6	5	8	7	10	9	12	11	4	10	6	12	2	8	1	7	3	9	5	11
E_{3}	0	0	0	0	0	0	0	4	5	1	6	2	3	10	11	7	12	8	9	2	8	4	10	1	7	3	9	5	11	6	12
E_{4}	0	0	0	0	0	0	0	3	4	2	5	1	7	6	9	8	11	10	13	11	3	13	2	9	1	6	5	8	7	10	4
E_{5}	0	0	0	0	0	0	0	5	3	6	1	4	2	9	10	11	7	13	8	10	6	7	4	8	5	11	3	13	1	9	2
E_{6}	0	0	0	0	0	0	0	6	8	9	7	11	1	2	5	3	4	14	15	15	11	5	6	4	9	14	1	2	8	3	7
E_{7}	0	0	0	0	0	0	0	9	6	8	2	3	11	12	1	13	5	15	4	13	2	15	11	12	6	5	8	4	3	1	9
E_{8}	1	2	4	3	5	6	9	0	12	10	11	7	10	11	16	12	14	16	14	1	3	4	6	2	5	13	15	15	13	7	9
E_{9}	2	1	5	4	3	8	6	12	0	13	10	9	9	17	14	12	13	17	16	18	16	18	14	10	6	1	3	5	8	2	4
E_{10}	3	4	1	2	6	9	8	10	13	0	12	12	10	5	17	14	13	18	5	4	6	3	2	1	9	15	8	17	18	15	14
E_{11}	4	3	6	5	1	7	2	11	10	12	0	12	8	11	15	15	16	19	19	8	2	14	16	10	14	4	5	3	1	6	7
E_{12}	5	6	2	1	4	11	3	7	9	12	12	0	9	13	13	17	18	20	17	2	11	6	4	5	1	16	16	18	3	7	20
E_{13}	6	5	3	7	2	1	11	10	9	10	8	9	0	16	4	18	21	21	20	8	4	16	11	18	20	3	1	6	7	5	2
E_{14}	7	8	10	6	9	2	12	11	17	5	11	13	16	0	13	1	1	17	5	14	7	16	10	12	8	6	14	2	15	9	15
E_{15}	8	7	11	9	10	5	1	16	14	17	15	13	4	13	0	15	2	16	18	10	4	5	14	9	2	18	7	17	11	1	8
E_{16}	9	10	7	8	11	3	13	12	12	14	15	17	18	1	15	0	1	2	17	13	10	19	9	18	7	11	2	8	19	3	14
E_{17}	10	9	12	11	7	4	5	14	13	13	16	18	21	1	2	1	0	21	14	11	17	7	16	4	2	5	10	18	9	17	12
E_{18}	11	12	8	10	13	14	15	16	17	18	19	20	21	17	16	2	21	0	19	3	8	15	12	3	11	14	2	13	18	10	20
E_{19}	12	11	9	13	8	15	4	14	16	5	19	17	20	5	18	17	14	19	0	15	16	13	21	8	20	18	9	4	12	21	11
E_{20}	1	4	2	11	10	15	13	1	18	4	8	2	8	14	10	13	11	3	15	0	9	18	5	3	12	9	14	16	16	12	5
E_{21}	7	10	8	3	6	11	2	3	16	6	2	11	4	7	4	10	17	8	16	9	0	20	1	20	13	9	21	1	21	17	13
E_{22}	3	6	4	13	7	5	15	4	18	3	14	6	16	16	5	19	7	15	13	18	20	0	17	20	14	10	17	11	19	11	10
E_{23}	9	12	10	2	4	6	11	6	14	2	16	4	11	10	14	9	16	12	21	5	1	17	0	7	22	7	17	1	22	21	5
E_{24}	5	2	1	9	8	4	12	2	10	1	10	5	18	12	9	18	4	3	8	3	20	20	7	0	19	7	19	21	14	14	21
E_{25}	11	8	7	1	5	9	6	5	6	9	14	1	20	8	2	7	2	11	20	12	13	14	22	19	0	23	19	23	22	12	13
E_{26}	4	1	3	6	11	14	5	13	1	15	4	16	3	6	18	11	5	14	18	9	9	10	7	7	23	0	16	23	13	15	10
e_{27}	10	7	9	5	3	1	8	15	3	8	5	16	1	14	7	2	10	2	9	14	21	17	17	19	19	16	0	15	21	18	18
E_{28}	6	3	5	8	13	2	4	15	5	17	3	18	6	2	17	8	18	13	4	16	1	11	1	21	23	23	15	0	16	11	21
e_{29}	12	9	11	7	1	8	3	13	8	18	1	3	7	15	11	19	9	18	12	16	21	19	22	14	22	13	21	16	0	14	15
E_{30}	2	5	6	10	9	3	1	7	2	15	6	7	5	9	1	3	17	10	21	12	17	11	21	14	12	15	18	11	14	0	18
E_{31}	8	11	12	4	2	7	9	9	4	14	7	20	2	15	8	14	12	20	11	5	13	10	5	21	13	10	18	21	15	18	0)

The following results give a relation between the number of complete graphs and clique degrees of a graph.

Theorem 2.4.16. Let G be a graph satisfying the hypothesis of Conjecture 2.1.1. If the intersection of any two A_{i} 's is non empty, then

$$
\binom{d^{K}\left(v_{1}\right)}{2}+\binom{d^{K}\left(v_{2}\right)}{2}+\cdots+\binom{d^{K}\left(v_{l}\right)}{2}=\frac{n(n-1)}{2}
$$

where $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ is the set of all vertices of clique degree greater than 1 in G.

Proof. If G is isomorphic to the graph H_{n} for some n, then the result is obvious. If not there exists at least one vertex v of clique degree greater than 2 . Define $I_{v}=\left\{i: v \in A_{i}\right\}$ then $d^{K}(v)=\left|I_{v}\right|=p$. For every unordered pair of elements (i, j) of I_{v} there is a vertex $b_{i j}($ where $i<j)$ in H_{n}. Therefore corresponding to the elements of I_{v} there are $\binom{p}{2}$ vertices in H_{n}. Since G satisfies the hypothesis of Conjecture 2.1.1, there is no vertex v^{\prime} different from v in G such that $v^{\prime} \in A_{i} \cap A_{j}$ where $i, j \in I_{v}$. Therefore for every vertex v of clique degree greater than 1 in G, there are $\binom{d^{K}(v)}{2}$ vertices of clique degree greater than 1 in H_{n}. As there are $\frac{n(n-1)}{2}$ vertices of clique degree greater than 1 in H_{n}, $\frac{n(n-1)}{2}=\binom{d^{K}\left(v_{1}\right)}{2}+\binom{d^{K}\left(v_{2}\right)}{2}+\cdots+\binom{d^{K}\left(v_{l}\right)}{2}$ where $\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ is the set of all vertices of clique degree greater than 1 in G.

Corollary 2.4.17. If G is a graph satisfying the hypothesis of conjecture 2.1.1] then G has at most $\frac{\binom{n}{2}}{\binom{m}{2}}$ vertices of clique degree m where $m \geq 2$.

Proof. Let $A=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ be the set of vertices of clique degree greater than 1 in G and $p=\frac{\binom{n}{2}}{\binom{m}{2}}$. We have to prove that G has at most p vertices of clique degree m. Suppose G has $q>p$ vertices of clique degree m. Then by the definition of A, it follows that, q vertices are in A. Let those vertices be $v_{1}, v_{2}, \ldots, v_{q}$. By Theorem 2.4.16 we get,

$$
\begin{aligned}
\frac{n(n-1)}{2} & =\binom{d^{K}\left(v_{1}\right)}{2}+\binom{d^{K}\left(v_{2}\right)}{2}+\cdots+\binom{d^{K}\left(v_{l}\right)}{2} \\
& \geq\binom{ d^{K}\left(v_{1}\right)}{2}+\binom{d^{K}\left(v_{2}\right)}{2}+\cdots+\binom{d^{K}\left(v_{q}\right)}{2} \\
& =q\binom{m}{2} \\
& \geq(p+1)\binom{m}{2} \\
\frac{\binom{n}{2}}{\binom{m}{2}} & \geq p+1 \\
p & \geq p+1
\end{aligned}
$$

which is a contradiction. Hence there are at most $\frac{\binom{n}{2}}{\binom{n}{2}}$ vertices of clique degree m in G, where $m \geq 2$.

Chapter 3

CLIQUE GRAPH

Let G be a graph and \mathscr{K}_{G} be the set of all cliques of G, then the clique graph of G denoted by $K(G)$ is the graph with vertex set \mathscr{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathscr{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=K\left(K^{n-1}(G)\right)$ for $n>0$.

In this chapter, we prove a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$, give a partial characterization for clique divergence of the join of graphs and prove that if G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$.

3.1 Introduction

Given a simple graph $G=(V, E)$, not necessarily finite, a clique in G is a maximal complete subgraph in G. Let G be a graph and \mathscr{K}_{G} be the set of all cliques of G, then the clique graph operator is denoted by K and the clique graph of G is denoted by $K(G)$, where $K(G)$ is the graph with vertex set \mathscr{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathscr{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Clique graph was introduced by Hamelink in 1968 Hamelink, 1968). Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=$ $K\left(K^{n-1}(G)\right)$ for $n>0$ (see Hedetniemi and Slater, 1972; Prisner, 1995; Szwarcfiter, 2003)).

Definition 3.1.1. A graph G is said to be K-periodic if there exists a positive integer n such that $G \cong K^{n}(G)$ and the least such integer is called the K-periodicity of G, denoted K-per (G).

Definition 3.1.2. A graph G is said to be K-Convergent if $\left\{K^{n}(G): n \in \mathbb{N}\right\}$ is finite, otherwise it is K-Divergent (see (Neumann-Lara 1978)).

Definition 3.1.3. A graph H is said to be K-root of a graph G if $K(H)=G$.
If G is a clique graph, then one can observe that, the set of all K - roots of G is either empty or infinite.

Definition 3.1.4. (Prisner 1995) A graph G is a Clique-Helly Graph if the set of cliques has the Helly-Property. That is, for every family of pairwise intersecting cliques of the graph, the total intersection of all these cliques should be non-empty also.

Definition 3.1.5. Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be the two graphs. Then their join $G_{1}+G_{2}$ is obtained by adding all possible edges between the vertices of G_{1} and G_{2}.

Definition 3.1.6. The Cartesian product of two graphs G and H, denoted $G \square H$, is a graph with vertex set $V(G \square H)=V(G) \times V(H)$, i.e., the set $\{(g, h) \mid g \in G, h \in H\}$. The edge set of $G \square H$ consists of all pairs $\left[\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right]$ of vertices with $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$, or $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in E(H)$ (see (Imrich et al., 2008) page no 3).

3.2 Results

One can observe that the clique graph of a complete graph and star graph are always complete. Let G be a graph with n vertices and having a vertex of degree $n-1$, then the clique graph of G is also complete.

Theorem 3.2.1. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$, then X is a clique in G_{1} and Y is clique in G_{2} if and only if $X+Y$ is a clique in $G_{1}+G_{2}$.

Proof. Let $G=G_{1}+G_{2}$ and X be a clique in G_{1} and Y be a clique in G_{2}. Suppose that $X+Y$ is not a maximal complete subgraph in $G_{1}+G_{2}$, then there is a maximal complete subgraph (clique) Q in $G_{1}+G_{2}$ such that $X+Y$ is a proper subgraph of Q. Since $X+Y$ is a proper subgraph of Q, there is a vertex v in Q which is not in $X+Y$ and v is adjacent to every vertex of $X+Y$, then by the definition of $G_{1}+G_{2}, v$ should
be in either G_{1} or G_{2}. Suppose v is in G_{1}, then the induced subgraph of $V(X)+\{v\}$ is complete in G_{1}, which is a contradiction as X is maximal. Therefore $X+Y$ is the maximal complete subgraph (clique) in $G_{1}+G_{2}$.

Conversely, let Q be a clique in $G_{1}+G_{2}$. Suppose that $Q \neq X+Y$, where X is a clique in G_{1} and Y is a clique in G_{2}. If $Q \cap G_{1}=\emptyset$, then Q is a subgraph of G_{2}. This implies that Q is a clique in G_{2} as Q is a clique in G. Let v be a vertex of G_{1}. Then by the definition of $G_{1}+G_{2}$, one can observe that the induced subgraph of $V(Q) \cup\{v\}$ is complete in G, which is a contradiction as Q is a maximal complete subgraph. Therefore $Q \cap G_{1} \neq \emptyset$. Similarly we can prove that $Q \cap G_{2} \neq \emptyset$. Let X be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{1}\right)$ and Y be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{2}\right)$, then $Q=X+Y$. Since Q is a maximal complete subgraph of G, X and Y should be maximal complete subgraphs in G_{1} and G_{2} respectively. Otherwise, if X is not a maximal complete subgraph in G_{1} then there is a maximal complete subgraph X^{\prime} in G_{1} such that X is subgraph of X^{\prime} and this implies that $X+Y$ is a subgraph of $X^{\prime}+Y$ and $X^{\prime}+Y$ is complete, which is a contradiction. Therefore X and Y are maximal complete subgraphs (cliques) in G_{1} and G_{2} respectively.

Corollary 3.2.2. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If n, m are the number of cliques in G_{1}, G_{2} respectively, then G has $n m$ cliques.

Proof. Let $G=G_{1}+G_{2}, \mathscr{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of all cliques of G_{1} and $\mathscr{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ be the set of all cliques of G_{2}. Then by Theorem 3.2.1 it follows that $\mathscr{K}_{G}=\left\{X_{i}+Y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is the set of all cliques of G. Since G_{1} has n and G_{2} has m number of cliques, $G_{1}+G_{2}$ has $n m$ number of cliques.

In the following result we give a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$.

Theorem 3.2.3. Let G_{1}, G_{2} be two graphs. If $G=G_{1}+G_{2}$, then $K(G)$ is complete if and only if either $K\left(G_{1}\right)$ is complete or $K\left(G_{2}\right)$ is complete.

Proof. Let $G=G_{1}+G_{2}$ and $K(G)$ be complete. Suppose that neither $K\left(G_{1}\right)$ nor $K\left(G_{2}\right)$ are complete, then there exist two cliques X, X^{\prime} in G_{1} and two cliques Y, Y^{\prime} in G_{2} such that $X \cap X^{\prime}=\emptyset$ and $Y \cap Y^{\prime}=\emptyset$. By Theorem 3.2.1 it follows that $X+Y, X^{\prime}+Y^{\prime}$ are cliques in G. Since $X \cap X^{\prime}$ and $Y \cap Y^{\prime}$ are empty, it follows that $\{X+Y\} \cap\left\{X^{\prime}+Y^{\prime}\right\}=\emptyset$, which is a contradiction as $K(G)$ is complete.

Conversely, suppose that $K\left(G_{1}\right)$ is complete and $\mathscr{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \mathscr{K}_{G_{2}}=$ $\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$. By Corollary 3.2.2, it follows that G has exactly $n m$ number of cliques. Let $\mathscr{K}_{G}=\left\{Q_{i j}: Q_{i j}=X_{i}+Y_{j}\right.$, for $\left.i=1,2, \ldots, n ; j=1,2, \ldots, m\right\}$ be the set of all cliques of G. Then Q is the vertex set of $K(G)$. Arranging the elements of \mathscr{K}_{G} in the matrix form $M=\left[m_{i j}\right]$ where $m_{i j}=Q_{i j}$, we have

$$
M=\left(\begin{array}{ccccc}
Q_{11} & Q_{12} & Q_{13} & \ldots & Q_{1 m} \\
Q_{21} & Q_{22} & Q_{23} & \ldots & Q_{2 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Q_{n 1} & Q_{n 2} & Q_{n 3} & \ldots & Q_{n m}
\end{array}\right)
$$

Let $Q_{i j}, Q_{k l}$ be any two elements in M. Since $Q_{i j}=X_{i}+Y_{j}, Q_{k l}=X_{k}+Y_{l}$, it follows that X_{i}, X_{k} are cliques in G_{1}. Since $K\left(G_{1}\right)$ is complete, $X_{i} \cap X_{k} \neq \emptyset$ and then $Q_{i j} \cap Q_{k l} \neq \emptyset$. Therefore $Q_{i j}, Q_{k l}$ are adjacent in $K(G)$. Hence $K(G)$ is complete.

Lemma 3.2.4. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then for every clique in $K\left(G_{1}\right)$ there is a clique in $K(G)$ and for every clique in $K\left(G_{2}\right)$ there is a clique in $K(G)$.

Proof. Let $G=G_{1}+G_{2}$ be a graph such that $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are not complete. Let $V\left(K\left(G_{1}\right)\right)=\left\{X_{i}: X_{i}\right.$ is a clique in $\left.G_{1}, 1 \leq i \leq n\right\}$ and $V\left(K\left(G_{2}\right)\right)=\left\{Y_{j}: Y_{j}\right.$ is a clique in $\left.G_{2}, 1 \leq j \leq m\right\}$, then by Theorem 3.2.1 it follows that $V(K(G))=\left\{X_{i}+Y_{j}: 1 \leq i \leq\right.$ $n, 1 \leq j \leq m\}$. Let Q be a clique of size l in $K\left(G_{1}\right)$ and $V(Q)=\left\{X_{Q_{1}}, X_{Q_{2}}, \ldots, X_{Q_{l}}\right\}$ where $X_{Q_{i}}$ is a clique in G_{1} for $1 \leq i \leq l$. Let $A_{Q}=\left\{X_{Q_{i}}+Y_{j}: 1 \leq i \leq l, 1 \leq j \leq m\right\}$. Then clearly A_{Q} is subset of $V(K(G))$.

Let $X_{Q_{1}}+Y_{1}, X_{Q_{2}}+Y_{2}$ be two elements in A_{Q}. Since $X_{Q_{1}}, X_{Q_{2}}$ are the vertices of the clique Q of $K\left(G_{1}\right)$, we have $X_{Q_{1}} \cap X_{Q_{2}} \neq \emptyset$. Therefore $\left\{X_{Q_{1}}+Y_{1}\right\} \cap\left\{X_{Q_{2}}+Y_{2}\right\} \neq \emptyset$.

Hence the intersection of any two elements in A_{Q} is non-empty. Then, it follows that the elements of A_{Q} form a complete subgraph in $K(G)$. Suppose that it is not a maximal complete subgraph in $K(G)$. Then there is a vertex, say $X_{1}+Y_{1}$ in $K(G)$ which is not in A_{Q} and $X_{1}+Y_{1}$ is adjacent with every vertex of A_{Q}. Since $K\left(G_{2}\right)$ is not complete, there exists a vertex say Y_{2} in $K\left(G_{2}\right)$ such that Y_{2} is not adjacent to Y_{1} in $K\left(G_{2}\right)$. Since Q is a clique in $K\left(G_{1}\right)$ and $K\left(G_{1}\right)$ is not complete, there is a vertex say $X_{Q_{1}}$ in $V(Q)$ which is not adjacent to X_{1} in $K\left(G_{1}\right)$. By the definition of A_{Q} one can see that $X_{Q_{1}}+Y_{2}$ is an element of A_{Q}. Therefore $\left\{X_{Q_{1}}+Y_{2}\right\} \cap\left\{X_{1}+Y_{1}\right\}=\emptyset$, which is a contradiction. Thus A_{Q} is a maximal complete subgraph in $K(G)$. Hence for every clique in $K\left(G_{1}\right)$ there is a clique in $K(G)$.

On similar lines we can also prove that for every clique in $K\left(G_{2}\right)$, there is a clique in $K(G)$.

Corollary 3.2.5. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then the number of cliques in $K(G)$ is at least the sum of the number of cliques in $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$.

Theorem 3.2.6. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then $K^{2}\left(G_{1}\right)+K^{2}\left(G_{2}\right)$ is an induced subgraph of $K^{2}(G)$.

Proof. Let $G=G_{1}+G_{2}$ be a graph such that $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are not complete. Let $X_{1}, X_{2}, \ldots, X_{n}$ be the cliques of $K\left(G_{1}\right)$, and $Y_{1}, Y_{2}, \ldots Y_{m}$ be the cliques of $K\left(G_{2}\right)$. By Lemma 3.2.4, it follows that for every clique X_{i} of $K\left(G_{1}\right)$ there is a clique X_{i}^{\prime} in $K(G)$, $1 \leq i \leq n$ and for every clique Y_{j} of $K\left(G_{2}\right)$ there is a clique Y_{j}^{\prime} in $K(G), 1 \leq j \leq m$.

Claim 1: $X_{i} \cap X_{j} \neq \emptyset$ in $K\left(G_{1}\right)$ if and only if $X_{i}^{\prime} \cap X_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $i \neq j$.
Let X_{i}, X_{j} be two cliques in $K\left(G_{1}\right)$ and $X_{i} \cap X_{j} \neq \emptyset$. Let v be a vertex in $X_{i} \cap X_{j}$. By Lemma 3.2.4, it follows that if v is a vertex in the clique X_{i} in $K\left(G_{1}\right)$, then for any vertex u in $K\left(G_{2}\right), v+u$ is a vertex in the clique X_{i}^{\prime} in $K(G)$ corresponding to the clique X_{i} in $K\left(G_{1}\right)$. Therefore $v+u$ is a vertex in $X_{i}^{\prime} \cap X_{j}^{\prime}$.

Conversely, suppose that $X_{i}^{\prime}, X_{j}^{\prime}$ be two cliques in $K(G)$ and $X_{i}^{\prime} \cap X_{j}^{\prime} \neq \emptyset$. Let w be
a vertex in $X_{i}^{\prime} \cap X_{j}^{\prime}$. By Theorem 3.2.1. it follows that $w=v+u$, where v is a vertex of $K\left(G_{1}\right)$ and u is a vertex of $K\left(G_{2}\right)$. Since $w=v+u$ is a vertex of the clique X_{i}^{\prime} in $K(G)$, it follows that v is a vertex of the clique X_{i} in $K\left(G_{1}\right)$. Similarly v is a vertex of the clique X_{j} in $K\left(G_{1}\right)$. Therefore v is in $X_{i} \cap X_{j}$.

Similarly we can prove that, $Y_{i} \cap Y_{j} \neq \emptyset$ in $K\left(G_{2}\right)$ if and only if $Y_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $i \neq j$.

Claim 2: $X_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $1 \leq i \leq n, 1 \leq j \leq m$.
Let $X_{i}^{\prime}, Y_{j}^{\prime}$ be two cliques in $K(G), 1 \leq i \leq n, 1 \leq j \leq m$ and X_{i}, Y_{j} are the cliques in $K\left(G_{1}\right), K\left(G_{2}\right)$ corresponding to the maximal cliques $X_{i}^{\prime}, Y_{j}^{\prime}$ in $K(G)$ respectively. Let v be a vertex in X_{i} and u be a vertex in Y_{j}, then by Lemma 3.2.4 $v+u$ be the vertex in X_{i}^{\prime} as well as in Y_{j}^{\prime}. Therefore $X_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$.

By claims 1 and 2 it follows that $K^{2}\left(G_{1}\right)+K^{2}\left(G_{2}\right)$ is an induced subgraph of $K^{2}(G)$.

Note: Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If G is K-divergent, then G_{1}, G_{2} don't need to be K-divergent

Example 3.2.7. If H is a graph consisting of just two nonadjacent vertices and we define for every $n>1$ the graph $J_{n}=\underbrace{(((H+H)+H)+\ldots)+H}_{n \text { times }}$, it turns out that $K\left(J_{n}\right)=J_{2^{n-1}}$. Suppose $G_{1}=J_{2}=C_{4}, G_{2}=H$ then $G_{1}+G_{2}=J_{3}$ and $K\left(G_{1}+G_{2}\right)=J_{4}$. Therefore $K^{2}\left(G_{1}+G_{2}\right)=J_{8}$. Which implies that $G_{1}+G_{2}$ is K-divergent. But G_{1} and G_{2} are not K-divergent.

3.2.1 Observations

Let $G=G_{1}+G_{2}$ be a graph and $\mathscr{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of all cliques of G_{1} and $\mathscr{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ be the set of all cliques of G_{2}. By Theorem 3.2.1. it follows that $\mathscr{K}_{G}=\left\{Q_{i j}=X_{i}+Y_{j}: 1 \leq i \leq n ; 1 \leq j \leq m\right\}$ is the set of all cliques of G. Let $v_{i j}$ be the vertex of $K(G)$ corresponding to the clique $Q_{i j}$ of G. Arrange the vertices of $K(G)$ as a matrix $M=\left[m_{i j}\right]$, where $m_{i j}=v_{i j}$, i.e.,

$$
\mathbf{M}=\left(\begin{array}{ccccc}
v_{11} & v_{12} & v_{13} & \ldots & v_{1 m} \\
v_{21} & v_{22} & v_{23} & \ldots & v_{2 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{n 1} & v_{n 2} & v_{n 3} & \ldots & v_{n m}
\end{array}\right) .
$$

From the above matrix one can observe that the $i^{t h}$ row corresponds to the clique X_{i} of G_{1} and $j^{\text {th }}$ column corresponds to the clique Y_{j} of $G_{2}, 1 \leq i \leq n, 1 \leq j \leq m$.

Claim 1: Any two elements in the same row or same column in M are adjacent in $K(G)$.

Let $Q_{i j}, Q_{i k}$ be any two elements in the $i^{\text {th }}$ row. Since $Q_{i j}=X_{i}+Y_{j}, Q_{i k}=X_{i}+Y_{k}$, $Q_{i j} \cap Q_{i k}=X_{i} \neq \emptyset$. Therefore $Q_{i j}, Q_{i k}$ are adjacent in $K(G)$. Similarly, any two elements in the same column are adjacent.

Claim 2: If $X_{i} \cap X_{j} \neq \emptyset$, then every vertex of $i^{\text {th }}$ row is adjacent to every vertex of $j^{\text {th }}$ row, $1 \leq i \neq j \leq n$.

Let $X_{i} \cap X_{j} \neq \emptyset$ and $v_{i k}, v_{j l}$ be any two elements of $i^{t h}$ and $j^{t h}$ rows respectively in M. Since $Q_{i k}=X_{i}+Y_{k}, Q_{j l}=X_{j}+Y_{l}$ are the cliques of G corresponding to the vertices $v_{i k}, v_{j l}$ of $K(G)$ and $X_{i} \cap X_{j} \neq \emptyset$, we have $Q_{i k} \cap Q_{j l} \neq \emptyset$. Therefore $v_{i k}, v_{j l}$ are adjacent in $K(G)$.

Similarly if $Y_{i} \cap Y_{j} \neq \emptyset$, then every vertex of $i^{t h}$ column is adjacent to every vertex of $j^{\text {th }}$ column, $1 \leq i \neq j \leq m$.

One can see that the following observations will follow from Claim 1 and Claim 2. 1. If $G=G_{1}+G_{2}$, then $K(G)$ is Hamiltonian.
2. If $G=G_{1}+G_{2}$, then $K(G)$ is planar if it satisfies one of the following:
i). The number of cliques in G_{1} and G_{2} is less than 3.
ii). If the number of cliques in G_{1} is 3 , then either G_{2} is a complete graph or G_{2} has exactly two cliques and $K\left(G_{1}\right)=\overline{K_{3}}, K\left(G_{2}\right)=\overline{K_{2}}$.
iii). If the number of cliques in G_{1} is 4 , then G_{2} is a complete graph.
3. If $G=G_{1}+G_{2}$ and n, m are the number of cliques in G_{1}, G_{2} respectively, then the degree of any vertex in $K(G)$ is $(n+m-2)+k(n-1)+l(m-1)-k l, 0 \leq k<m$ and $0 \leq l<n$.
4. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$,
i) If both G_{1} and G_{2} have odd number of cliques, then $K(G)$ is Eulerian if one of $K\left(G_{1}\right)$ or $K\left(G_{2}\right)$ is Eulerian.
ii) If both G_{1} and G_{2} have even number of cliques, then $K(G)$ is Eulerian if $K\left(G_{1}\right)$, $K\left(G_{2}\right)$ are Eulerian.
iii) If G_{1} has even number of cliques and G_{2} has odd number of cliques, then $K(G)$ is Eulerian if degree of each vertex in $K\left(G_{2}\right)$ is odd and $K\left(G_{1}\right)$ is Eulerian.

3.3 Cartesian product of graphs

In this section we are considering G_{1}, G_{2} be connected graphs only.

Theorem 3.3.1. If G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$.

Proof. Let G_{1}, G_{2} be Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots u_{n_{2}}\right\}$, then by the definition of $G_{1} \square G_{2}$, it follows that $V(G)=\left\{V_{i j}: V_{i j}=\left(v_{i}, u_{j}\right)\right.$ where $\left.1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}\right\},|V(G)|=n_{1} n_{2}$. Also, G has n_{2} copies of G_{1} (say, $G_{1}^{1}, G_{1}^{2}, \ldots, G_{1}^{n_{2}}$) are vertex disjoint induced subgraphs and n_{1} copies of G_{2} (say, $G_{2}^{1}, G_{2}^{2}, \ldots, G_{2}^{n_{1}}$) are vertex disjoint induced subgraphs. Clearly one can observe that $V\left(G_{2}^{i}\right) \cap V\left(G_{1}^{j}\right)=V_{i j}, V_{i j}$ is not in $V\left(G_{2}^{n}\right)$ and $V\left(G_{1}^{m}\right)$ for $n \neq i$, $m \neq j$ for all $1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. As $G=G_{1} \square G_{2}$, we can see that every clique in G_{1} and G_{2} are cliques in G. Let $\mathscr{K}_{G_{1}}=\left\{Q_{1}, Q_{2}, \ldots, Q_{l_{1}}\right\}$ and $\mathscr{K}_{G_{2}}=\left\{P_{1}, P_{2}, \ldots, P_{l_{2}}\right\}$, then

$$
\begin{aligned}
& \mathscr{K}_{G}=\left\{Q_{1}^{1}, Q_{2}^{1}, \ldots, Q_{l_{1}}^{1}, Q_{1}^{2}, Q_{2}^{2}, \ldots, Q_{l_{1}}^{2}, \ldots Q_{1}^{n_{2}}, Q_{2}^{n_{2}}, \ldots, Q_{l_{1}}^{n_{2}},\right. \\
& \left.P_{1}^{1}, P_{2}^{1}, \ldots, P_{l_{2}}^{1}, P_{1}^{2}, P_{2}^{2}, \ldots, P_{l_{2}}^{2}, \ldots, P_{1}^{n_{1}}, P_{2}^{n_{1}}, \ldots, P_{l_{2}}^{n_{1}}\right\} .
\end{aligned}
$$

Claim 1: For every vertex $V_{i j}$ in G there is a clique in $K(G)$.
Let $V_{i j}$ be a vertex in G for some $i, j, 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. Define $A_{i j}=\{Q$: $\left.V_{i j} \in Q\right\} \subseteq \mathscr{K}_{G}$. Clearly intersection of any two cliques in $A_{i j}$ is non-empty. Therefore the vertices corresponding to these cliques in $K(G)$ form a complete subgraph in $K(G)$. Suppose it is not a maximal complete subgraph in $K(G)$, then there exists a vertex V in $K(G)$ such that V is adjacent to all the vertices of $A_{i j}$. Let Q_{V} be the clique in G
corresponding to the vertex V in $K(G)$. Clearly $V_{i j}$ is not in Q_{V}. Since every clique in G is either a clique in G_{1} or a clique in G_{2}, assume that Q_{V} is a clique in G_{1}^{j}. Let Q be a clique in G_{2}^{i} having the vertex $V_{i j}$, then Q is in $A_{i j}$. Since $V\left(G_{2}^{i}\right) \cap V\left(G_{1}^{j}\right)=$ $V_{i j}, Q$ is a clique in G_{2}^{i} and $V_{i j} \in V(Q)$ and $V(Q) \cap V\left(G_{1}^{j}\right)=V_{i j}$. Which implies that $V(Q) \cap\left(V\left(G_{1}^{j}\right) \backslash\left\{V_{i j}\right\}\right)=\emptyset$. Since $V_{i j}$ is not in Q_{V} and Q_{V} is a clique in $G_{1}^{j}, V\left(Q_{V}\right) \subseteq$ $\left(V\left(G_{1}^{j}\right) \backslash V_{i j}\right)$. Therefore $V(Q) \cap V\left(Q_{V}\right)=\emptyset$, a contradiction to the fact that Q_{V} is adjacent to all the vertices of $A_{i j}$ in $K(G)$. Hence the elements of $A_{i j}$ form a clique in $K(G)$.

Claim 2: For any clique Q in $K(G)$, intersection of all the cliques of G corresponding to the vertices of Q is non-empty and a singleton.

Let Q be a clique in $K(G)$ and $V(Q)=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$. Suppose all x_{k} 's are cliques in G_{1}^{j} for some $j, 1 \leq j \leq n_{2}$, then the intersection of all x_{k} 's is non-empty in G, where $x_{k} \in V(Q)$, as G_{1}^{j} satisfies Clique-Helly property. Let $V \in \cap_{x_{k} \in Q} x_{k}$, then V is in G_{2}^{i} for some $i, 1 \leq i \leq n_{1}$. Let P be any clique in G_{2}^{i} having a vertex V, then P intersects with every element of $V(Q)$. Therefore $V(Q) \cup\{P\}$ forms a complete graph in $K(G)$, a contradiction to the assumption that Q is maximal complete subgraph. Thus the elements of Q are the cliques of G_{1} and cliques of G_{2}. Since G_{1}^{j},s are vertex disjoint and G_{2}^{i} 's are vertex disjoint, any element of Q is either a clique of G_{1}^{j} or a clique of G_{2}^{i} for fixed i, j, $1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. Let $x_{1}, x_{2}, \ldots, x_{l}$ be the cliques of G_{1}^{j} and $x_{l+1}, x_{l+2}, \ldots, x_{n}$ be the cliques of G_{2}^{i}. Since $V\left(G_{1}^{j}\right) \cap V\left(G_{2}^{i}\right)=V_{i j}, x_{l_{1}}$ is a clique of $G_{1}^{j}, x_{l_{2}}$ is a clique of G_{2}^{i} and $V\left(x_{l_{1}}\right) \cap V\left(x_{l_{2}}\right) \neq \emptyset, 1 \leq l_{1} \leq l, l+1 \leq l_{2} \leq n, V\left(x_{l_{1}}\right) \cap V\left(x_{l_{2}}\right)=V_{i j}$. Which implies that $V_{i j}$ belongs to every x_{k} in Q. Therefore $\cap_{x_{k} \in Q} x_{k}=V_{i j}$.

As the cliques of $K(G)$ are the vertices of $K^{2}(G)$, by Claims 1 and 2 one can see that there is a one to one correspondence between the vertices of G and $K^{2}(G)$.

Claim 3: Let U, V be any two adjacent vertices in G. Then the intersection of the cliques in $K(G)$ corresponding to these vertices is non-empty.

Let U, V be any two adjacent vertices in G and Q_{U}, Q_{V} be the cliques in $K(G)$ corresponding to the vertices U, V in G respectively. Since there is an edge between U,
V in G, there exists a clique Q in G such that the vertices U, V are in Q. By Claims 1 and 2 it follows that, the vertices of Q_{U} in $K(G)$ are the cliques of G having the vertex U in G is in common. Therefore Q is in $V\left(Q_{U}\right)$. Similarly Q is in $V\left(Q_{V}\right)$. Which implies that $Q_{U} \cap Q_{V} \neq \emptyset$. Since cliques of $K(G)$ are the vertices of $K^{2}(G)$, the vertices corresponding to the cliques Q_{U} and Q_{V} of $K(G)$ are adjacent in $K^{2}(G)$.

Claim 4: Let P, Q be any two cliques in $K(G)$. If the intersection of P and Q is non-empty, then the vertices in G corresponding to these two cliques are adjacent.

Let P, Q be any two cliques in $K(G), P \cap Q \neq \emptyset$ and U, V be the vertices in G corresponding to the cliques P, Q of $K(G)$ respectively. Since $P \cap Q \neq \emptyset$, there exists a vertex Q_{1} belonging to $V(P) \cap V(Q)$. By Claims 1 and 2 , one can observe that Q_{1} is a clique in G and $\cap_{P_{i} \in V(P)} P_{i}=U, \cap_{Q_{i} \in V(Q)} Q_{i}=V$. Thus U, V belongs to $V\left(Q_{1}\right)$ in G. Therefore U, V are adjacent in G.

By Claims 3 and 4 it follows that, two vertices are adjacent in G if and only if the corresponding vertices are adjacent $K^{2}(G)$.

Therefore $K^{2}(G)$ is the same as G, if $G=G_{1} \square G_{2}$ and G_{1}, G_{2} are Clique-Helly graphs such that G_{1}, G_{2} are different from K_{1}.

Corollary 3.3.2. Let G_{1}, G_{2} be two graphs and $G=G_{1} \square G_{2}$. If G_{1}, G_{2} are Clique-Helly graphs different from K_{1}, then
i) G is a Clique-Helly graph.
ii) G is K-periodic.
iii) G is K-convergent.

Chapter 4

FOREST GRAPH

In 1966, Cummins introduced the "tree graph": the tree graph $\mathbf{T}(G)$ of a graph G (possibly infinite) has all its spanning trees as vertices, and distinct such trees correspond to adjacent vertices if they differ in just one edge. i.e., two spanning trees T_{1} and T_{2} are adjacent if $T_{2}=T_{1}-e+f$ for some edges $e \in T_{1}$ and $f \notin T_{1}$. The tree graph of a connected graph need not be connected. To obviate this difficulty, we define the "forest graph": let G be a labeled graph of order α, finite or infinite, and let $\mathfrak{N}(G)$ be the set of all labeled maximal forests of G. The forest graph of G, denoted by $\mathbf{F}(G)$, is the graph with vertex set $\mathfrak{N}(G)$ in which two maximal forests F_{1}, F_{2} of G form an edge if and only if they differ exactly by one edge, i.e., $F_{2}=F_{1}-e+f$ for some edges $e \in F_{1}$ and $f \notin F_{1}$.

We write $\mathbf{F}^{2}(G)$ to denote $\mathbf{F}(\mathbf{F}(G))$, and in general $\mathbf{F}^{n}(G)=\mathbf{F}\left(\mathbf{F}^{n-1}(G)\right)$ for $n \geq 1$, with $\mathbf{F}^{0}(G)=G$.

Definition 4.0.3. A graph G is said to be \mathbf{F}-convergent if $\left\{\mathbf{F}^{n}(G): n \in \mathbb{N}\right\}$ is finite; otherwise it is \mathbf{F}-divergent.

A graph H is said to be an \mathbf{F}-root of G if $\mathbf{F}(H)$ is isomorphic to $G, \mathbf{F}(H) \cong G$. The F-depth of G is

$$
\sup \left\{n \in \mathbb{N}: G \cong \mathbf{F}^{n}(H) \text { for some graph } H\right\} .
$$

The \mathbf{F}-depth of a graph G that has no \mathbf{F}-root is said to be zero.
The graph G is said to be \mathbf{F}-periodic if there exists a positive integer n such that $\mathbf{F}^{n}(G)=G$. The least such integer is called the \mathbf{F}-periodicity of G. If $n=1, G$ is called

F-stable.

This chapter is organized as follows. In Section 4.1 we give some basic results. In later sections, using Zorn's lemma, transfinite induction, the well ordering principle and the theory of cardinal numbers, we study the number of \mathbf{F}-roots and determine the \mathbf{F}-convergence, \mathbf{F}-divergence, \mathbf{F}-depth and \mathbf{F}-stability of any graph G. In particular, we show that:
(i) A graph G is \mathbf{F}-convergent if and only if G has at most one cycle of length 3 .
(ii) The \mathbf{F}-depth of any graph G different from K_{3} and K_{1} is finite.
(iii) The \mathbf{F}-stable graphs are precisely K_{3} and K_{1}.
(iv) A graph that has one \mathbf{F}-root has innumerably many, but only some \mathbf{F}-roots are important.

4.1 Preliminaries

For standard notation and terminology in graph theory we follow Diestel (Diestel, 2005) and Prisner (Prisner, 1995).

Some elementary properties of infinite cardinal numbers that we use are (see, e.g., Kamke (Kamke, 1950)):

1. $\alpha+\beta=\alpha \cdot \beta=\max (\alpha, \beta)$ if α, β are cardinal numbers and β is infinite. In particular, $2 . \beta=\aleph_{0} . \beta=\beta$.
2. $\beta^{n}=\beta$ if β is an infinite cardinal and n is a positive integer.
3. $\beta<2^{\beta}$ for every cardinal number.
4. The number of finite subsets of an infinite set of cardinality β is equal to β.

We consider finite and infinite labeled graphs without multiple edges or loops. An isthmus of a graph G is an edge e such that deleting e divides one component of G into two of $G-e$. Equivalently, an isthmus is an edge that belongs to no cycle. Each isthmus is in every maximal forest, but no non-isthmus is.

Let $\mathfrak{C}(G)$ and $\mathfrak{N}(G)$ denote the set of all possible cycles and the set of all maximal forests of a graph G, respectively. Note that a maximal forest of G consists of a spanning tree in each component of G. A fundamental fact, whose proof is similar to that of the existence of a maximal forest, is the following forest extension lemma:

Lemma 4.1.1. In any graph G, every forest is contained in a maximal forest.

Proof. Let G be a graph and F be a forest of G. If F is maximal forest of G we are done. Suppose F is not maximal forest of G. If G is connected, maximal forest is same as spanning tree. Since F is not maximal forest, then F must be acyclic and disconnected. Add the edges from $E(G) \backslash E(F)$ to F such that it remains acyclic and connected, call it as F^{\prime}. Clearly F^{\prime} is maximal forest of G. By the above construction it follows that F is contained in F^{\prime}. If G is disconnected, repeat the above process to each connected component in G, we will get a maximal forest F^{\prime} which contains F.

Lemma 4.1.2. If G is a complete graph of infinite order α, then $|\mathfrak{N}(G)|=2^{\alpha}$.

Proof. Let $G=(V, E)$ be a complete graph of order α (α infinite), i.e., $G=K_{\alpha}$. Let v_{1}, v_{2} be two vertices of G and $V^{\prime}=V \backslash\left\{v_{1}, v_{2}\right\}$. Then for every $A \subseteq V^{\prime}$ there is a spanning tree T_{A} such that every vertex of A is adjacent only to v_{1} and every vertex of $V^{\prime} \backslash A$ is adjacent only to v_{2}. It is easy to see that $T_{A} \neq T_{B}$ whenever $A \neq B$. As the cardinality of the power set of V^{\prime} is 2^{α}, there are at least 2^{α} spanning trees of G. Since G is connected, the maximal forests are the spanning trees; therefore $|\mathfrak{N}(G)| \geq 2^{\alpha}$. Since the degree of each vertex is α and G contains α vertices, the total number of edges in G is $\alpha . \alpha=\alpha$. The edge set of a maximal forest of G is a subset of E and the number of all possible subsets of E is 2^{α}. Therefore, G has at most 2^{α} maximal forests, i.e., $|\mathfrak{N}(G)| \leq 2^{\alpha}$. Hence $|\mathfrak{N}(G)|=2^{\alpha}$.

For two maximal forests of G, F_{1} and F_{2}, let $d\left(F_{1}, F_{2}\right)$ denote the distance between them in $\mathbf{F}(G)$. We connect this distance to the number of edges by which F_{1}, F_{2} differ; the result is elementary but we could not find it anywhere in the literature. We say F_{1}, F_{2} differ by l edges if $\left|E\left(F_{1}\right) \backslash E\left(F_{2}\right)\right|=\left|E\left(F_{2}\right) \backslash E\left(F_{1}\right)\right|=l$.

Lemma 4.1.3. Let l be a natural number. For two maximal forests F_{1}, F_{2} of a graph G, if $\left|E\left(F_{1}\right) \backslash E\left(F_{2}\right)\right|=l$, then $\left|E\left(F_{2}\right) \backslash E\left(F_{1}\right)\right|=l$. Furthermore, F_{1} and F_{2} differ by exactly l edges if and only if $d\left(F_{1}, F_{2}\right)=l$.

Proof. We prove the first part by induction on l. Let F_{1}, F_{2} be maximal forests of G and let $E\left(F_{1}\right) \backslash E\left(F_{2}\right)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k}^{\prime}\right\}, E\left(F_{2}\right) \backslash E\left(F_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{l}\right\}$. If $l=0$ then $k=0=l$ because $F_{2}=F_{1}$. Suppose $l>0$; then $k>0$ also. Deleting e_{l} from F_{2} divides a tree of F_{2} into two trees. Since these trees are in the same component of G, there is an edge of F_{1} that connects them; this edge is not e_{1} so it is not in F_{2}; therefore, it is an e_{i}^{\prime}, say e_{k}^{\prime}. Let $F_{2}^{\prime}=F_{2}-e_{l}+e_{k}^{\prime}$. Then $E\left(F_{1}\right) \backslash E\left(F_{2}^{\prime}\right)=\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{k-1}^{\prime}\right\}$, $E\left(F_{2}\right) \backslash E\left(F_{1}\right)=\left\{e_{1}, e_{2}, \ldots, e_{l-1}\right\}$. By induction, $k-1=l-1$.

We also prove the second part by induction on l. Assume F_{1}, F_{2} differ by exactly l edges and define F_{2}^{\prime} as above. If $l=0,1$, clearly $d\left(F_{1}, F_{2}\right)=l$. Suppose $l>1$. In a shortest path from F_{1} to F_{2}, whose length is $d\left(F_{1}, F_{2}\right)$, each successive edge of the path can increase the number of edges not in F_{1} by at most 1. Therefore, F_{1} and F_{2} differ by at most $d\left(F_{1}, F_{2}\right)$ edges. That is, $l \leq d\left(F_{1}, F_{2}\right)$. Conversely, $d\left(F_{1}, F_{2}^{\prime}\right)=l-1$ by induction and there is a path in $\mathbf{F}(G)$ from F_{1} to F_{2}^{\prime} of length $l-1$, then continuing to F_{2} and having total length l. Thus, $d\left(F_{1}, F_{2}\right) \leq l$.

Lemma 4.1.4. For any graph $G, \mathbf{F}(G)$ is connected if and only if any two maximal forests of G differ by at most a finite number of edges.

Proof. Proof of this Lemma follows by the Lemma 4.1.3

Lemma 4.1.5. If $G=K_{\alpha}, \alpha$ infinite, then $\mathbf{F}(G)$ is disconnected.

Proof. Proof of this Lemma follows by the Lemma 4.1.3

Lemma 4.1.6. Let G be a graph with α vertices and β edges and with no isolated vertices. If either α or β is infinite, then $\alpha=\beta$.

Proof. We know that $|E(G)| \leq|V(G)|^{2}$, i.e., $\beta \leq \alpha^{2}$ so if β is infinite, α must also be infinite. We also know, since each edge has two endpoints, that $|V(G)| \leq 2|E(G)|$, i.e.,
$\alpha \leq 2 . \beta$ so if α is infinite, then β must be infinite. Now assuming both are infinite, $\alpha^{2}=\alpha$ and 2. $\beta=\beta$, hence $\alpha=\beta$.

The following lemmas are used to prove \mathbf{F}-convergence and \mathbf{F}-divergence in Section 4.4 and \mathbf{F}-depth in Section 4.5.

Lemma 4.1.7. Let G be a graph. If $K_{n}($ for finite $n \geq 2)$ is a subgraph of G, then $K_{\left\lfloor n^{2} / 4\right\rfloor}$ is a subgraph of $\mathbf{F}(G)$.

Proof. Let G be a graph such that $K_{n}(n \geq 2$, finite $)$ is a subgraph of G with vertex labels $v_{1}, v_{2}, \ldots, v_{n}$. Then there is a path $L=v_{1}, v_{2}, \ldots, v_{n}$ of order n in G. Let F be a maximal forest of G such that F contains the path L. In F if we replace the edge $v_{\lfloor n / 2\rfloor} v_{\lfloor n / 2\rfloor+1}$ by any other edge $v_{i} v_{j}$ where $i=1, \ldots,\lfloor n / 2\rfloor$ and $j=\lfloor n / 2\rfloor+1, \ldots, n$, we get a maximal forest $F_{i j}$. Since there are $\left\lfloor n^{2} / 4\right\rfloor$ such edges $v_{i} v_{j}$, there are $\left\lfloor n^{2} / 4\right\rfloor$ maximal forests $F_{i j}$ (of which one is F). Any two forests $F_{i j}$ differ by one edge. It follows that they form a complete subgraph in $\mathbf{F}(G)$. Therefore $K_{\left\lfloor n^{2} / 4\right\rfloor}$ is a subgraph of $\mathbf{F}(G)$.

Lemma 4.1.8. If G has a cycle of (finite) length n with $n \geq 3$, then $\mathbf{F}(G)$ contains K_{n}.
Proof. Suppose that G has a cycle C_{n} of length n with edge set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Let $P_{i}=C_{n}-e_{i}$ for $i=1,2, \ldots, n$ and let F_{1} be a maximal forest of G containing the path P_{1}. Define $F_{i}=F_{1} \backslash P_{1} \cup P_{i}$ for $i=2,3, \ldots, n$. These F_{i} 's are maximal forests of G and any two of them differ by exactly one edge, so they form a complete graph K_{n} in $\mathbf{F}(G)$.

In particular, $\mathbf{F}\left(C_{n}\right)=K_{n}$.

Lemma 4.1.9. Suppose that G contains K_{n}, where $n \geq 3$. Then $\mathbf{F}^{2}(G)$ contains $K_{n^{n-2}}$.
Proof. Cayley's formula states that K_{n} has n^{n-2} spanning trees. Cummins Cummins, 1966) proved that the tree graph of a finite connected graph is Hamiltonian. Therefore, $\mathbf{F}\left(K_{n}\right)$ contains $C_{n^{n-2}}$. Let $F_{T_{0}}$ be a spanning tree of G that extends one of the spanning trees T_{0} of the K_{n} subgraph. Replacing the edges of T_{0} in $F_{T_{0}}$ by the edges of any other
spanning tree T of K_{n}, we have a spanning tree F_{T} that contains T. The F_{T} 's for all spanning trees T of K_{n} are n^{n-2} spanning trees of G that differ only within K_{n}; thus, the graph of the F_{T} 's is the same as the graph of the T 's, which is Hamiltonian. That is, $\mathbf{F}(G)$ contains $C_{n^{n-2}}$. By Lemma 4.1.8, $\mathbf{F}^{2}(G)$ contains $K_{n^{n-2}}$.

Lemma 4.1.10. If G has two edge disjoint triangles, then $\mathbf{F}^{2}(G)$ contains K_{9}.

Proof. Suppose that G has two edge disjoint triangles whose edges are e_{1}, e_{2}, e_{3} and f_{1}, f_{2}, f_{3}, respectively. The union of the triangles has exactly 9 maximal forests $F_{i j}^{\prime}$, obtained by deleting one e_{i} and one f_{j} from the triangles. Extend F_{11}^{\prime} to a maximal forest F_{11} and let $F_{i j}$ be the maximal forest $F_{11} \backslash E\left(F_{11}^{\prime}\right) \cup F_{i j}$, for each $i, j=1,2,3$. The nine maximal forests $F_{i j}^{\prime}$, and consequently the maximal forests $F_{i j}$ in $\mathbf{F}(G)$, form a Cartesian product graph $C_{3} \times C_{3}$, which contains a cycle of length 9 . By Lemma 4.1.8, $\mathbf{F}^{2}(G)$ contains K_{9}.

We now show that repeated application of the forest graph operator to many graphs creates larger and larger complete subgraphs.

Lemma 4.1.11. If G has a cycle of (finite) length n with $n \geq 4$ or it has two edge disjoint triangles, then for any finite $m \geq 1, \mathbf{F}^{m}(G)$ contains $K_{m^{2}}$.

Proof. We prove this lemma by induction on m.
Case 1: Suppose that G has a cycle C_{n} of length n ($n \geq 4, n$ finite). By Lemma4.1.8, $\mathbf{F}(G)$ contains K_{n} as a subgraph, which implies that $\mathbf{F}(G)$ contains K_{4}. By Lemma4.1.9, $\mathbf{F}^{3}(G)$ contains K_{16} and in particular it contains $K_{3^{2}}$.

Case 2: Suppose that G has two edge disjoint triangles. By Lemma 4.1.10 $\mathbf{F}^{2}(G)$ contains K_{9} as a subgraph. It follows by Lemma 4.1.7that $\mathbf{F}^{3}(G)$ contains $K_{\left\lfloor 9^{2} / 4\right\rfloor}=K_{20}$ as a subgraph. This implies that $\mathbf{F}^{3}(G)$ contains $K_{3^{2}}$ as a subgraph.

By Cases 1 and 2 it follows that the result is true for $m=1,2,3$. Let us assume that the result is true for $m=l \geq 3$, i.e., that $\mathbf{F}^{l}(G)$ contains $K_{l^{2}}$ as a subgraph. By Lemma 4.1.7 it follows that $\mathbf{F}\left(\mathbf{F}^{l}(G)\right)$ has a subgraph $K_{\left\lfloor l^{4} / 4\right\rfloor}$. Since $\left\lfloor l^{4} / 4\right\rfloor>(l+1)^{2}$, it follows
that $\mathbf{F}^{l+1}(G)$ contains $K_{(l+1)^{2}}$. By the induction hypothesis $\mathbf{F}^{m}(G)$ contains $K_{m^{2}}$ for any finite $m \geq 1$.

With Lemma 4.1 .9 it is clearly possible to prove a much stronger lower bound on complete subgraphs of iterated forest graphs, but Lemma 4.1.11 is good enough for our purposes.

Lemma 4.1.12. A forest graph that is not K_{1} has no isolated vertices and no isthmi.

Proof. Let $G=\mathbf{F}(H)$ for some graph H. Consider a vertex F of G, that is, a maximal forest in H. Let e be an edge of F that belongs to a cycle C in H. Then there is an edge f in C that is not in F and $F^{\prime}=F-e+f$ is a second maximal forest that is adjacent to F in G. Since C has length at least 3 , it has a third edge g. If g is not in F, let $F^{\prime \prime}=F-e+g$. If g is in F, let $F^{\prime \prime}=F-g+f$. In both cases $F^{\prime \prime}$ is a maximal forest that is adjacent to F and F^{\prime}. Thus, F is not isolated and the edge $F F^{\prime}$ in G is not an isthmus.

Suppose $F, F^{\prime} \in \mathfrak{N}(H)$ are adjacent in G. That means there are edges $e \in E(F)$ and $e^{\prime} \in E\left(F^{\prime}\right)$ such that $F^{\prime}=F-e+e^{\prime}$. Thus, e belongs to the unique cycle in $F+e^{\prime}$. As shown above, there is an $F^{\prime \prime} \in \mathfrak{N}(H)$ that forms a cycle with F and F^{\prime}. Therefore the edge $F F^{\prime}$ of G is not an isthmus.

Let $F \in \mathfrak{N}(H)$ be an isolated vertex in G. If H has an edge e not in F, then $F+e$ contains a cycle so F has a neighboring vertex in G, as shown above. Therefore, no such e can exist; in other words, $H=F$ and G is K_{1}.

4.2 Basic Properties of an Infinite Forest Graph

We now present a crucial foundation for the proof of the main theorem in Section 4.4 . The cyclomatic number $\beta_{1}(G)$ of a graph G can be defined as the cardinality $\mid E(G) \backslash$ $E(F) \mid$ where F is a maximal forest of G.

Proposition 4.2.1. Let G be a graph such that $|\mathfrak{C}(G)|=\beta$, an infinite cardinal number. Then:
(i) $\beta_{1}(G)=\beta$ and $\beta_{1}(\mathbf{F}(G))=2^{\beta}$.
(ii) Both the order of $\mathbf{F}(G)$ and its number of edges equal 2^{β}. Both the order and the number of edges of G equal β, provided that G has no isolated vertices and no isthmi.
(iii) $\mathbf{F}(G)$ is β-regular.
(iv) The order of any connected component of $\mathbf{F}(G)$ is β, and it has exactly β edges.
(v) $\mathbf{F}(G)$ has exactly 2^{β} components.
(vi) Every component of $\mathbf{F}(G)$ has exactly β cycles.
(vii) $|\mathfrak{C}(\mathbf{F}(G))|=2^{\beta}$.

Proof. Let G be a graph with $|\mathfrak{C}(G)|=\beta$ (β infinite).
(i) Let F be a maximal forest of G. The number of cycles in G is not more than the number of finite subsets of $E(G) \backslash E(F)$. This number is finite if $E(G) \backslash E(F)$ is finite, but it cannot be finite because $|\mathfrak{C}(G)|$ is infinite. Therefore $E(G) \backslash E(F)$ is infinite and the number of its finite subsets equals $|E(G) \backslash E(F)|=\beta_{1}(G)$. Thus, $\beta_{1}(G) \geq|\mathfrak{C}(G)|$. The number of cycles is at least as large as the number of edges not in F, because every such edge makes a different cycle with F. Thus, $|\mathfrak{C}(G)| \geq \beta_{1}(G)$. It follows that $\beta_{1}(G)=|\mathfrak{C}(G)|=\beta$. Note that this proves $\beta_{1}(G)$ does not depend on the choice of F.

The value of $\beta_{1}(\mathbf{F}(G))$ follows from this and part (vii).
(ii) For the first part, let F be a maximal forest of G and let F_{0} be a maximal forest of $G \backslash E(F)$. As $G \backslash E(F)$ has $\beta_{1}(G)=\beta$ edges by part (i), it has β non-isolated vertices by Lemma 4.1.6. F_{0} has the same non-isolated vertices, so it too has β edges.

Any edge set $A \subseteq F_{0}$ extends to a maximal forest F_{A} in $F \cup A$. Since $F_{A} \backslash F=A$, the F_{A} 's are distinct. Therefore, there are at least 2^{β} maximal forests in $F_{0} \cup F$. The maximal forest F consists of a spanning tree in each component of G; therefore, the vertex sets of components of F are the same as those of G, and so are those of $F_{0} \cup F$. Therefore,
a maximal forest in $F_{0} \cup F$, which consists of a spanning tree in each component of $F_{0} \cup F$, contains a spanning tree of each component of G.

We conclude that a maximal forest in $F_{0} \cup F$ is a maximal forest of G and hence that there are at least 2^{β} maximal forests in G, i.e., $|\mathfrak{N}(G)| \geq 2^{\beta}$. Since G is a subgraph of K_{β}, and since $\left|\mathfrak{N}\left(K_{\beta}\right)\right|=2^{\beta}$ by Lemma 4.1.2, we have $|\mathfrak{N}(G)| \leq 2^{\beta}$. Therefore $|\mathfrak{N}(G)|=2^{\beta}$. That is, the order of $\mathbf{F}(G)$ is 2^{β}. By Lemmas 4.1.12 and 4.1.6, that is also the number of edges of $\mathbf{F}(G)$.

For the second part, note that G has infinite order or else $\beta_{1}(G)$ would be finite. If G has no isolated vertices and no isthmi, then $|V(G)|=|E(G)|$ by Lemma 4.1.6. By part (i) there are β edges of G outside a maximal forest; hence $\beta \leq|E(G)|$.

Since every edge of G is in a cycle, by the axiom of choice we can choose a cycle $C(e)$ containing e for each edge e of G. Let $\mathfrak{C}=\{C(e): e \in E(G)\}$. The total number of pairs (f, C) such that $f \in C \in \mathfrak{C}$ is no more than $\aleph_{0} \cdot|\mathfrak{C}| \leq \aleph_{0} \cdot|\mathfrak{C}(G)|=\aleph_{0} \cdot \beta=\beta$. This number of pairs is not less than the number of edges, so $|E(G)| \leq \beta$. It follows that G has exactly β edges.
(iii) Let F be a maximal forest of G. By part (i), $|E(G) \backslash E(F)|=\beta$. By adding any edge e from $E(G) \backslash E(F)$ to F we get a cycle C. Removing any edge other than e from the cycle C gives a new maximal forest which differs by exactly one edge with F. The number of maximal forests we get in this way is $\beta_{1}(G)$ because there are $\beta_{1}(G)$ ways to choose e and a finite number of edges of C to choose to remove, and $\beta_{1}(G)$ is infinite. Thus we get β maximal forests of G, each of which differs by exactly one edge with F. Every such maximal forest is generated by this construction. Therefore, the degree of any vertex in $\mathbf{F}(G)$ is β.
(iv) Let A be a connected component of $\mathbf{F}(G)$. As $\mathbf{F}(G)$ is β-regular by part (iii), it follows that $|V(A)| \geq \beta$. Fix a vertex v in A and define the $n^{\text {th }}$ neighborhood $D_{n}=\left\{v^{\prime}\right.$: $\left.d\left(\nu, v^{\prime}\right)=n\right\}$ for each n in \mathbb{N}. Since every vertex has degree $\beta,\left|D_{0}\right|=1,\left|D_{1}\right|=\beta$ and $\left|D_{k}\right| \leq \beta\left|D_{k-1}\right|$. Thus, by induction on $n,\left|D_{n}\right| \leq \beta$ for $n>0$.

Since A is connected, it follows that $V(A)=\bigcup_{i \in \mathbb{N} \cup\{0\}} D_{i}$, i.e., $V(A)$ is the countable
union of sets of order β. Therefore $|A|=\beta$, as $|\mathbb{N}| \cdot \beta^{\prime}=\beta^{\prime}$. Hence any connected component of $\mathbf{F}(G)$ has β vertices. By Lemma 4.1 .6 it has β edges.
(v) By parts (ii, iv) the order of $\mathbf{F}(G)$ is 2^{β} and the order of each component of $\mathbf{F}(G)$ is β. Since $|\mathbf{F}(G)|=2^{\beta}, \mathbf{F}(G)$ has at most 2^{β} components. Suppose that $\mathbf{F}(G)$ has β^{\prime} components where $\beta^{\prime}<2^{\beta}$. As each component has β vertices, it follows that $\mathbf{F}(G)$ has order at most $\beta^{\prime} . \beta=\max \left\{\beta^{\prime}, \beta\right\}$. This is a contradiction to part (ii). Therefore $\mathbf{F}(G)$ has exactly 2^{β} components.
(vi) Let A be a component of $\mathbf{F}(G)$. Since it is infinite, by part (iv) it has exactly β edges. Suppose that $|\mathfrak{C}(A)|=\beta^{\prime}$. Then β^{\prime} is at most the number of finite subsets of $E(A)$, which is β since $|E(A)|=\beta$ is infinite; that is, $\beta^{\prime} \leq \beta$. By the argument in part (iii) every edge of $\mathbf{F}(G)$ lies on a cycle. The length of each cycle is finite. Thus A has at most $\aleph_{0} . \beta^{\prime}=\max \left\{\beta^{\prime}, \aleph_{0}\right\}=\beta^{\prime}$ edges if β^{\prime} is infinite and it has a finite number of edges if β^{\prime} is finite. Since $|E(A)|=\beta$, which is infinite, $\beta^{\prime} \geq \beta$. We conclude that $\beta^{\prime}=\beta$.
(vii) By parts (v, vi) $\mathbf{F}(G)$ has 2^{β} components and each component has β cycles. Since every cycle is contained in a component, $|\mathfrak{C}(\mathbf{F}(G))|=\beta .2^{\beta}=2^{\beta}$.

From the above proposition it follows that an infinite graph cannot be a forest graph unless every component has the same infinite order β and there are 2^{β} components. A consequence is that the infinite graph itself must have order 2^{β}. Hence,

Lemma 4.2.2. Any infinite graph whose order is not a power of 2, including \aleph_{0} and all other limit cardinals, is not a forest graph.

Lemma 4.2.3. For a graph G the following statements are equivalent.
i) $\mathbf{F}(G)$ is connected.
ii) $\mathbf{F}(G)$ is finite.
iii) The union of all cycles in G is a finite graph.

Proof. (i) \Longrightarrow (iii). Suppose that $\mathbf{F}(G)$ is connected. If G has infinitely many cycles then by Proposition 4.2.1 (v) $\mathbf{F}(G)$ is disconnected. Therefore G has finitely many cycles. Let $A=\{e \in E(G)$: edge e lies on a cycle in $G\}$. Then $|A|$ is finite because the length of each cycle is finite. That proves (iii).
(iii) \Longrightarrow (ii). As every maximal forest of G consists of a maximal forest of A and all the edges of G which are not in A, G has at most 2^{n} maximal forests where $n=|A|$. Hence $\mathbf{F}(G)$ has a finite number of vertices and consequently is finite.
(ii) \Longrightarrow (i). By identifying vertices in different components (Whitney vertex identification; see Section 4.3) we can assume G is connected so $\mathbf{F}(G)=\mathbf{T}(G)$. Cummins (Cummins, 1966) proved that the tree graph of a finite graph is Hamiltonian; therefore it is connected.

4.3 F-Roots

In this section we establish properties of \mathbf{F}-roots of graphs. We begin with the question of what an \mathbf{F}-root should be.

Since any graph H^{\prime} that is isomorphic to an \mathbf{F}-root H of G is immediately also an F-root, the number of non-isomorphic F-roots is a better question than the number of labeled \mathbf{F}-roots. We now show in some detail that a still better question is the number of non-isomorphic \mathbf{F}-roots without isthmi.

Let t_{β} be the number of non-isomorphic rooted trees of order β. We note that $t_{\aleph_{0}} \geq 2^{\aleph_{0}}$, by a construction of Reinhard Diestel (personal communication, July 10 , 2015). (We do not know a corresponding lower bound on t_{β} for $\beta>\aleph_{0}$.) Let P be a one-way infinite path whose vertices are labelled by natural numbers, with root 1 ; choose any subset S of \mathbb{N} and attach two edges at every vertex in S, forming a rooted tree T_{S} (rooted at 1). Then S is determined by T_{S} because the vertices in S are those of degree at least 3 in T_{S}. (If $2 \in S$ but $1 \notin S$, then vertex 1 is determined only up to isomorphism by T_{S}, but S itself is determined uniquely.) The number of sets S is $2^{{ }^{N_{0}}}$, hence $t_{\aleph_{0}} \geq 2^{\aleph_{0}}$.

Proposition 4.3.1. Let G be a graph with an \mathbf{F}-root of order α. If α is finite, then G
has infinitely many non-isomorphic finite \mathbf{F}-roots. If α is finite or infinite, then G has at least t_{β} non-isomorphic \mathbf{F}-roots of order β for every infinite $\beta \geq \alpha$.

Proof. Let G be a graph which has an \mathbf{F}-root H, i.e., $\mathbf{F}(H) \cong G$, and let α be the order of H. We may assume H has no isthmi and no isolated vertices unless it is K_{1}.

Suppose α is finite; then let T be a tree, disjoint from H, of any finite order n. Identify any vertex v of H with any vertex w of T. The resulting graph H_{T} also has G as its forest graph since T is contained in every maximal forest of H_{T}. As the order of H_{T} is $\alpha+n-1$ and n can be any natural number, the graphs H_{T} are an infinite number of non-isomorphic finite graphs with the same forest graph up to isomorphism.

Suppose α is finite or infinite and $\beta \geq \alpha$ is infinite. Let T be a rooted tree of order β with root vertex w; for instance, T can be a star rooted at the star center. Attach T to a vertex v of H by identifying v with the root vertex w. Denote the resulting graph by H_{T}; it is an \mathbf{F}-root of G and it has order β because it has order $\alpha+\beta$, which equals β because β is infinite and $\beta \geq \alpha$. As H has no isthmi, T and w are determined by H_{T}; therefore, if we have a non-isomorphic rooted tree T^{\prime} with root w^{\prime} (that means there is no isomorphism of T with T^{\prime} in which w corresponds to $\left.w^{\prime}\right), H_{T^{\prime}}$ is not isomorphic to H_{T}. (The one exception is when $H=K_{1}$, which is easy to treat separately.) The number of non-isomorphic \mathbf{F}-roots of G of order β is therefore at least the number of non-isomorphic rooted trees of order β, i.e., t_{β}.

Proposition 4.3.1 still does not capture the essence of the number of \mathbf{F}-roots. Whitney's 2-operations on a graph G are the following (Whitney, 1933):

1. Whitney vertex identification. Identify a vertex in one component of G with a vertex in a another component of G, thereby reducing the number of components by 1 . For an infinite graph we modify this by allowing an infinite number of vertex identifications; specifically, let W be a set of vertices with at most one from each component of G, and let $\left\{W_{i}: i \in I\right\}$ be a partition of W into $|I|$ sets (where I is any index set); then for each $i \in I$ we identify all the vertices in W_{i} with each other.
2. Whitney vertex splitting. The reverse of vertex identification.
3. Whitney twist. If u, v are two vertices that separate G-that is, $G=G_{1} \cup G_{2}$ where $G_{1} \cap G_{2}=\{u, v\}$ and $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|>2$, then reverse the names u and v in G_{2} and then take the union $G_{1} \cup G_{2}$ (so vertex u in G_{1} is identified with the former vertex v in G_{2} and v with the former vertex u). Call the new graph G^{\prime}. For an infinite graph we allow an infinite number of Whitney twists.

It is easy to see that the edge sets of maximal forests in G and G^{\prime} are identical, hence $\mathbf{F}(G)$ and $\mathbf{F}\left(G^{\prime}\right)$ are naturally isomorphic. It follows by Whitney vertex identification that every graph with an F-root has a connected \mathbf{F}-root, and it follows from Whitney vertex splitting that every graph with an F-root has an \mathbf{F}-root without cut vertices.

We may conclude from Proposition 4.3 .1 that the most interesting question about the number of \mathbf{F}-roots of a graph G that has an \mathbf{F}-root is not the total number of nonisomorphic F-roots (which by Proposition 4.3.1 cannot be assigned any cardinality); it is not the number of a given order; it is not even the number that have no isthmi; it is the number of non-2-isomorphic, connected \mathbf{F}-roots with no isthmi and (except when $G=K_{1}$) no isolated vertices.

We do not know which graphs have F-roots, but we do know two large classes that cannot have F-roots.

Theorem 4.3.2. No infinite connected graph has an \mathbf{F}-root.

Proof. This follows by Lemma 4.2.3.

Theorem 4.3.3. No bipartite graph G has an \mathbf{F}-root.

Proof. Let G be a bipartite graph of order $p(p \geq 2)$ and let H be a root of G, i.e., $\mathbf{F}(H) \cong G$. Suppose H has no cycle; then $\mathbf{F}(H)$ is K_{1}, which is a contradiction. Therefore H has a cycle of length ≥ 3. It follows by Lemma 4.1.8 that $\mathbf{F}(H)$ contains K_{3}, a contradiction. Hence no bipartite graph G has a root.

4.4 F-Convergence and F-Divergence

In this section we establish the necessary and sufficient conditions for \mathbf{F}-convergence of a graph.

Lemma 4.4.1. Let G be a finite graph that contains a $C_{n}($ for $n \geq 4)$ or at least two edge disjoint triangles; then G is \mathbf{F}-divergent.

Proof. Let G be a finite graph. By Lemma 4.1.11, $\mathbf{F}^{m}(G)$ contains $K_{m^{2}}$ as a subgraph. Therefore, as m increases the clique size of $\mathbf{F}^{m}(G)$ increases. Hence G is \mathbf{F}-divergent.

Lemma 4.4.2. If $|\mathfrak{C}(G)|=\beta$ where β is infinite, then G is \mathbf{F}-divergent.
Proof. Assume $|\mathfrak{C}(G)|=\beta$ (β infinite). By Proposition 4.2.1.vii), as $2^{\beta}<2^{2^{\beta}}<2^{2^{2^{\beta}}}<$ \cdots, it follows that $|\mathfrak{C}(\mathbf{F}(G))|<\left|\mathfrak{C}\left(\mathbf{F}^{2}(G)\right)\right|<\left|\mathfrak{C}\left(\mathbf{F}^{3}(G)\right)\right|<\cdots$. Therefore, as n increases $\left|\mathfrak{C}\left(\mathbf{F}^{n}(G)\right)\right|$ increases. Hence G is \mathbf{F}-divergent.

Theorem 4.4.3. Let G be a graph. Then,
i) G is \mathbf{F}-convergent if and only if either G is acyclic or G has only one cycle, which is of length 3 .
ii) If G is \mathbf{F}-convergent, then it converges in at most two steps.

Proof. i) If G has no cycle, then it is a forest and $\mathbf{F}(G)$ is K_{1}. If G has only one cycle and that cycle has length 3, then $\mathbf{F}(G)$ is K_{3}. Therefore in each case G is \mathbf{F}-convergent.

Conversely, suppose that G has a cycle of length greater than 3 or has at least two triangles. If G has infinitely many cycles, then it follows by Lemma 4.4.2 that G is F-divergent. Therefore we may assume that G has a finite number of cycles. If G has a finite number of vertices, then it is finite and by Lemma 4.4.1 it is \mathbf{F}-divergent. Therefore G has an infinite number of vertices. However, it can have only a finite number of edges that are not isthmi, because each cycle is finite. Thus G consists of a finite graph G_{0} and any number of isthmi and isolated vertices. Since $\mathbf{F}(G)$ depends
only on the edges that are not isthmi and the vertices that are not isolated, $\mathbf{F}(G)=\mathbf{F}\left(G_{0}\right)$ (under the natural identification of maximal forests in G_{0} with their extensions in G by adding all isthmi of G). Therefore, G is \mathbf{F}-divergent.
ii) If G has no cycle, then G is a forest and $\mathbf{F}(G) \cong \mathbf{F}^{2}(G) \cong K_{1}$. If G has only one cycle, which is of length 3 , then $\mathbf{F}(G) \cong \mathbf{F}^{2}(G) \cong K_{3}$. Therefore G converges in at most 2 steps.

Corollary 4.4.4. A graph G is \mathbf{F}-stable if and only if $G=K_{1}$ or K_{3}.

4.5 F-Depth

In this section we establish results about the F-depth of a graph.

Theorem 4.5.1. Let G be a finite graph. The \mathbf{F}-depth of G is infinite if and only if G is K_{1} or K_{3}.

Proof. Let G be a finite graph. Suppose that G is K_{1} or K_{3}. Then by Corollary 4.4.4, it follows that G is \mathbf{F}-stable. Therefore, the \mathbf{F}-depth of G is infinite.

Conversely, suppose that G is different from K_{1} and K_{3}.
Case 1: Let $|V|<4$. Then G has no \mathbf{F}-root so its \mathbf{F}-depth is zero.
Case 2: Let $|V|=4$. Suppose G has an \mathbf{F}-root H (i.e., $\mathbf{F}(H) \cong G$). Then H should have exactly 4 maximal forests. That is possible only when H has only one cycle, which is of length 4. By Lemma 4.1.8 it follows that $\mathbf{F}(H)$ contains K_{4}, hence it is K_{4}. Therefore G has an \mathbf{F}-root if and only if it is K_{4}. Hence the \mathbf{F}-depth of G is zero, except that the depth of K_{4} is 1 .

Case 3: Let $|V|=n$ where $n>4$. Suppose that G has infinite F-depth. Then for every m there is a graph H_{m} such that $\mathbf{F}^{m}\left(H_{m}\right)=G$. If H_{m} does not have two triangles or a cycle of length greater than 3 , then H_{m} has only one cycle which is of length 3 , or no cycle and H_{m} converges to K_{1} or K_{3} in at most two steps, a contradiction. Therefore H_{m} has two triangles or a cycle of length greater than 3. By Lemma 4.1.11 it follows that $\mathbf{F}^{m}\left(H_{m}\right)$ contains $K_{m^{2}}$ for each $m \geq 2$, so that in particular $\mathbf{F}^{n}\left(H_{n}\right)$ contains $K_{n^{2}}$.

That is, G contains $K_{n^{2}}$. This is impossible as G has order n. Hence the \mathbf{F}-depth of G is finite.

Theorem 4.5.2. The \mathbf{F}-depth of any infinite graph is finite.

Proof. Let G be a graph of infinite order α. If G has an \mathbf{F}-root, then G is without isthmi or isolated vertices.

If G is connected, Theorem 4.3.2 implies that G has no root. Therefore its F-depth is zero.

If G is disconnected, assume it has infinite depth. Then for each natural number n there exists a graph H_{n} such that $G \cong \mathbf{F}^{n}\left(H_{n}\right)$. Let β_{n} denote the order of H_{n}. Since $\mathbf{F}\left(H_{1}\right) \cong G$, by Proposition 4.2.1 (ii) $\alpha=2^{\beta_{1}}$, from which we infer that $\beta_{1}<\alpha$. This is independent of which root H_{1} is, so in particular we can take $H_{1}=\mathbf{F}\left(H_{2}\right)$ and conclude that $\beta_{1}=2^{\beta_{2}}$, hence that $\beta_{2}<\beta_{1}$. Continuing in like manner we get an infinite decreasing sequence of cardinal numbers starting with α. The cardinal numbers are well ordered (Kamke, 1950), so they cannot contain such an infinite sequence. It follows that the \mathbf{F}-depth of G must be finite.

Chapter 5

CONCLUSION

This thesis provides a method for assigning colors to the graphs satisfying the hypothesis of the Erdös - Faber - Lovász conjecture. Also, it contains the results on iterated forest graphs and clique graphs.

We gave a method to construct H_{n}, then assign colors to the graph H_{n} using the symmetric Latin Squares and also gave two different approaches for assigning colors to the graphs satisfying the hypothesis of the Erdös - Faber - Lovász conjecture. One is using Symmetric Latin Squares and second one is using intersection matrix. Also, we gave theoritical proof of the conjecture for some class of graphs.

We provided a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$, gave a partial characterization for clique divergence of the join of graphs and proved that if G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$. Further, one can extend these results to obtain when $G_{1}+G_{2}$ is K-convergent.

We defined the "forest graph" $\mathbf{F}(G)$ of a graph G. Using the theory of cardinal numbers, Zorn's lemma, transfinite induction, the axiom of choice and the well-ordering principle, we established the results on the number of \mathbf{F}-roots and determined the \mathbf{F} convergence, \mathbf{F}-divergence, \mathbf{F}-depth and \mathbf{F}-stability of any graph G. In particular it is shown that a graph G (finite or infinite) is \mathbf{F}-convergent if and only if G has at most one cycle of length 3 . The \mathbf{F}-stable graphs are precisely K_{3} and K_{1}. The \mathbf{F}-depth of any graph G different from K_{3} and K_{1} is finite. In future work one can characterise graphs
using F-root.

Bibliography

"Journal of Combinatorial Designs website".
 http://www.emba.uvm.edu/~jcd/

 reports/426/index.htmlAcharya, B. D. (1979). "Some queries on the periodicity and convergence of a graph". In Professor P. L. Bhatnagar commemoration volume, 185-205. Nat. Acad. Sci., Allahabad.

Alcón, L., Faria, L., de Figueiredo, C. M. H., and Gutierrez, M. (2009). "The complexity of clique graph recognition". Theoret. Comput. Sci., 410(21-23), 2072-2083.

Berge, C. (1990). "On two conjectures to generalize Vizing's theorem". Matematiche (Catania), 45(1), 15-23 (1991). Graphs, designs and combinatorial geometries (Catania, 1989).

Broersma, H. and Xueliang, L. (1996). "The connectivity of the leaf-exchange spanning tree graph of a graph". Ars Combinatoria, 43, 225-231.

Bryant, D. and Rodger, C. (2004). "On the completion of Latin rectangles to symmetric Latin squares". Journal of the Australian Mathematical Society, 76(1), 109-124.

Chang, W. I. and Lawler, E. L. (1988). "Edge coloring of hypergraphs and a conjecture of ErdÖs, Faber, Lovász". Combinatorica, 8(3), 293-295.

Chen, W.-K. (1967). "Hamilton circuits in directed-tree graphs". Circuit Theory, IEEE Transactions on, 14(2), 231-233.

Cummins, R. L. (1966). "Hamilton circuits in tree graphs". Circuit Theory, IEEE Transactions on, СТ-13, 82-90.

Das, K. C. (2007). "A sharp upper bound for the number of spanning trees of a graph". Graphs and Combinatorics, 23(6), 625-632.

Das, K. C., Cevik, A. S., and Cangul, I. N. (2013). "The number of spanning trees of a graph". Journal of Inequalities and Applications, 2013(1), 1-13.

Deza, M., Erdös, P., and Frankl, P. (1978). "Intersection properties of systems of finite sets". Proceedings of the London Mathematical Society, 3(2), 369-384.

Diestel, R. (2005). "Graph theory (Graduate texts in mathematics)". Springer Heidelberg.

Erdős, P. (1975). "Problems and results in graph theory and combinatorial analysis". Proc. British Combinatorial Conj., 5th, 169-192.

Erdős, P. (1981). "On the combinatorial problems which I would most like to see solved". Combinatorica, 1(1), 25-42.

Faber, V. (2010). "The Erdős-Faber-Lovász conjecture-the uniform regular case". J. Comb., 1(2), 113-120.

Feng, L., Guihai, Y., Jiang, Z., and Ren, L. (2008). "Sharp upper bounds for the number of spanning trees of a graph". Applicable Analysis and Discrete Mathematics, 2(2), 255-259.

Feng, L., Xu, K., Das, K. C., Ilić, A., and Yu, G. (2014). "The number of spanning trees of a graph with given matching number". International Journal of Computer Mathematics, (ahead-of-print), 1-7.

Frías-Armenta, M. E., Larrión, F., Neumann-Lara, V., and Pizaña, M. A. (2005). "Local cutpoints and iterated clique graphs". In Proceedings of GRACO2005, 19 of Electron. Notes Discrete Math., 345-349 (electronic), Amsterdam. Elsevier.

Frías-Armenta, M. E., Larrión, F., Neumann-Lara, V., and Pizaña, M. A. (2013). "Edge contraction and edge removal on iterated clique graphs". Discrete Appl. Math., 161(10-11), 1427-1439.

Grannell, M., Griggs, T., and Whitehead, C. (2000). "The resolution of the anti-Pasch conjecture". Journal of Combinatorial Designs, 8(4), 300-309.

Gravier, S., Protti, F., and Sales, C. L. (2004). "On Clique-inverse graphs of K_{p}-free graphs". Electronic Notes in Discrete Mathematics, 18, 139-143.

Grimmett, G. (1976). "An upper bound for the number of spanning trees of a graph". Discrete Mathematics, 16(4), 323-324.

Haddad, L. and Tardif, C. (2004). "A clone-theoretic formulation of the Erdös-FaberLovász conjecture". Discussiones Mathematicae Graph Theory, 24(3), 545-549.

Hamelink, R. C. (1968). "A partial characterization of clique graphs". J. Combinatorial Theory, 5, 192-197.

Harary, F. (1969). "Graph Theory". Addison-Wesley Publishing Company, Inc., California, London.

Harary, F. and Norman, R. Z. (1960). "Some properties of line digraphs". Rendiconti del Circolo Matematico di Palermo, 9(2), 161-168.

Hedetniemi, S. and Slater, P. (1972). "Line graphs of triangleless graphs and iterated clique graphs". In Graph theory and Applications, 139-147. Springer.

Hedman, B. (1984). "Clique graphs of time graphs". J. Combin. Theory Ser. B, 37(3), 270-278.

Hedman, B. (1986). "A polynomial algorithm for constructing the clique graph of a line graph". Discrete Appl. Math., 15(1), 61-66.

Imrich, W., Klavzar, S., and Rall, D. F. (2008). "Topics in graph theory: Graphs and their Cartesian product". AK Peters Ltd.

Jackson, B., Sethuraman, G., and Whitehead, C. (2007). "A note on the Erdős-FarberLovász conjecture". Discrete Math., 307(7-8), 911-915.

Jensen, T. R. and Toft, B. (2011). "Graph coloring problems", 39. John Wiley \& Sons.

Kahn, J. (1992). "Coloring nearly-disjoint hypergraphs with $n+o(n)$ colors". Journal of Combinatorial Theory, Series A, 59(1), 31-39.

Kamke, E. (1950). "Theory of sets". Courier Corporation.
Kishi, G. and Kajitani, Y. (1968). "On Hamilton circuits in tree graphs". Circuit Theory, IEEE Transactions on, 15(1), 42-50.

Krausz, J. (1943). "Démonstration nouvelle dâĂŹune théorème de Whitney sur les réseaux". Mat. Fiz. Lapok, 50(75-85), 11.

Kundu, S., Sampathkumar, E., Shearer, J., and Sturtevant, D. (1980). "Reconstruction of a pair of graphs from their concatenations". SIAM Journal on Algebraic Discrete Methods, 1(2), 228-231.

Laywine, C. F. and Mullen, G. L. (1998). "Discrete mathematics using Latin squares", 17. Wiley New York.

Li, J., Shiu, W. C., and Chang, A. (2010). "The number of spanning trees of a graph". Applied Mathematics Letters, 23(3), 286-290.

Lim, C. K. (1982). "A result on iterated clique graphs". J. Austral. Math. Soc. Ser. A, 32(3), 289-294.

Liu, G. (1988). "On connectivities of tree graphs". Journal of graph theory, 12(3), 453-459.

Mayeda, W. and Seshu, S. (1965). "Generation of trees without duplications". Circuit Theory, IEEE Transactions on, 12(2), 181-185.

Mitchem, J. and Schmidt, R. L. (2010). "On the Erdős-Faber-Lovász conjecture". Ars Combin., 97, 497-505.

Neumann-Lara, V. (1978). "On clique-divergent graphs". Problems Combinatoires et Théorie des Graphes, Colloques internationaux du CNRS, Paris, 260, 313-315.

Ore, O. (1962). "Theory of Graphs". In American Mathematical Society Colloquium Publications, 38.

Paul, V. and Germina, K. A. (2012). "On edge coloring of hypergraphs and Erdös-Faber-Lovász conjecture". Discrete Math. Algorithms Appl., 4(1), 1250003, 5.

Prisner, E. (1995). "Graph dynamics", 338. CRC Press.
Protti, F. and Szwarcfiter, J. L. (2000). "Clique-inverse graphs of K_{3}-free and K_{4}-free graphs". J. Graph Theory, 35(4), 257-272.

Roberts, F. S. and Spencer, J. H. (1971). "A characterization of clique graphs". J. Combinatorial Theory Ser. B, 10, 102-108.

Rodriguez, J. and Petingi, L. (1997). "A sharp upper bound for the number of spanning trees of a graph". Congressus Numerantium, 209-217.

Romero, D. and Alonso-Pecina, F. (2014). "The Erdős-Faber-Lovász conjecture is true for nâL'd' 12". Discrete Mathematics, Algorithms and Applications, 6(03), 1450039.

Romero, D. and Sánchez-Arroyo, A. (2007). "Adding evidence to the Erdős-FaberLovász conjecture". Ars Combin., 85, 71-84.

Sánchez-Arroyo, A. (2008). "The Erdős-Faber-Lovász conjecture for dense hypergraphs". Discrete Math., 308(5-6), 991-992.

Shank, H. (1968). "A note on hamilton circuits in tree graphs". Circuit Theory, IEEE Transactions on, 15(1), 86-86.

Suresh, D. V. V. P. R. V. B., Venkateshwarlu, D., and Rao, S. B. (2010). "Dynamics of spanning tree graph operator". In International Congress of Mathematicians ICM 2010 Short Communications Abstracts Book, 472-473. Hindustan Book Agency.

Szwarcfiter, J. L. (2003). "A survey on clique graphs". In Recent advances in algorithms and combinatorics, 109-136. Springer.

Teranishi, Y. (2005). "The number of spanning forests of a graph". Discrete mathematics, 290(2), 259-267.

West, D. B. et al. (2001). "Introduction to graph theory", 2. Prentice hall Upper Saddle River.

Whitney, H. (1932). "Congruent graphs and the connectivity of graphs". American Journal of Mathematics, 54(1), 150-168.

Whitney, H. (1933). "2-isomorphic graphs". American Journal of Mathematics, 245254.

Ye, X. and Xu, Y. (2011). "On the number of symmetric Latin squares". In Computer Science and Service System (CSSS), 2011 International Conference on, 2366-2369. IEEE.

Zhang, F. and Chen, Z. (1986). "Connectivity of (adjacency) tree graphs". J. Xinjiang Univ. Natur. Sci, 3(4), 1-5.

LIST OF PUBLICATIONS /COMMUNICATIONS BASED ON THESIS:

- Suresh Dara, S. M. Hegde, Venkateshwarlu Deva, S. B. Rao and Thomas Zaslavsky, "The Dynamic of the Forest Graph Operator", Discussiones Mathematicae Graph Theory, 36 (2016) 899-913 (SCI Journal, Web of Science).
- S. M. Hegde, Suresh Dara, "On Clique Convergence of Graphs" AKCE International Journal of Graphs and Combinatorics 13 (3) (2016) 261 - 266 (Scopus Indexed Journal, Web of Science).
- Suresh Dara, Vance Faber, Suresh M. Hegde and Noah Streib, "First-Fit EFL", AMO - Advanced Modeling and Optimization 18 (2) (2016) 279 - 283.
- S. M. Hegde, Suresh Dara, "On Erdös - Faber - Lovász Conjecture", (Communicated).
- S. M. Hegde, Suresh Dara, "Further Results on Erdös - Faber - Lovász Conjecture", (Communicated).

Conference papers / Presentation

- S. M. Hegde, V. V. P. R. V. B. Suresh Dara, On Clique Graph, Extended Abstract published in Proceedings of the national conference on "Emerging Trends in Graph Connections" University of Kerala, Thiruvananthapuram, 2014, pp. 351 - 353.
- S. M. Hegde, V. V. P. R. V. B. Suresh Dara, A Partial Solution of the Erdös Faber - Lovász Conjecture, $23^{\text {rd }}$ International Conference of Forum for Interdisciplinary Mathematics (FIM) on "Interdisciplinary Mathematical, Statistical and Computational Techniques - 2014" NITK, Surathkal, INDIA, from 18/12/2014 to 20/12/2014 (Presented).
- S. M. Hegde, Suresh Dara, A Solution of the Erdös - Faber - Lovász Conjecture, "The Asian Mathematical Conference (AMC) 2016", BNDCC Nusa Dua, Bali, Indonesia, from 25/07/2016 to 29/07/2016 (Presented).
- S. M. Hegde, Suresh Dara, On Clique Convergence of Graphs, International Conference on "Current Trends in Graph Theory and Computation - 2016", Department of Mathematics, South Asian University, New Delhi, INDIA, from 17/09/2016 to 19/09/2016 (Presented).

BIO-DATA

Name	$:$	V. V. P. R. V. B. Suresh Dara
Email Id	$:$	suresh.dara@ gmail.com
Mobile	$:$	$+91-9966116360$
Date of Birth	$:$	February 28, 1986
Address	$:$	S/o. D. V. V. Satyanarayana,
		Door No:3-3-13, Bandi Vari Veedhi,
	Near Patika Factory, Ramnagar,	
	Nidadavole - 534301.	
	Andhra Pradesh, India.	

Educational Qualifications:

Degree	Year of Passing	University
B.Sc.	2006	Andhra University, Visakhapatnam.
M.Sc.	2008	Andhra University, Visakhapatnam.

