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ABSTRACT

The study of the entrance region flow, sometimes called entry length prob-

lem, is of considerable technical importance due to its immediate application

in various designs of those chemical, biomedical and food processes in which

the flows of Newtonian and non-Newtonian fluids are encountered. Further-

more, such an entrance flow is encountered in almost every industrial pro-

cess involving non-Newtonian suspensions, emulsion or solutions. In recent

times, experimental researches have shown clear evidence that the use of non-

Newtonian fluids with variable viscosity can improve the fluid properties rela-

tive to that of fluids with constant viscosity. Particularly, Rheologists intend

to use non-Newtonian fluids characterized by an yield value called viscoplastic

fluids. Some of the important fluids which belong to this class are Bingham

plastic, Casson fluid and Hershel-Bulkley fluids. The present work is on the

study of the entrance region flow heat transfer of viscoplastic fluids in rotat-

ing concentric annuli. The analysis has been carried out over the wide range

of non-Newtonian fluid flow parameters and geometrical considerations. The

development of boundary layer is visualized when the fluid enters an annulus

and the fully developed velocity profile is observed in the region starting from

the point down-stream where the boundary layers meet asymptotically with

the outer edge of the plug flow zone. The effects of non-Newtonian flow char-

acteristics and geometrical characteristics on the velocity profiles, pressure

variation and temperature distribution along the radial direction have been

discussed.

Keywords: Entrance Region Flow, Concentric Annuli, Heat Transfer,

Bingham Fluid, Casson Fluid, Herschel-Bulkley Fluids, Yield Stress.
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Chapter 1

INTRODUCTION

1.1 FUNDAMENTAL EQUATIONS OF FLUID

MECHANICS

A fluid, one of the basic constituents of life, is a combined notion of liq-

uids and gases and the subject that deals with the investigation of motion

and equilibrium of fluids is called Fluid Mechanics. The application of fluid

mechanics falls into diversified branches of science and engineering like astro-

physics, biomechanics, plasma physics, biomedicine, hydraulics, lubrication,

Aeronautical engineering, Chemical engineering, Mechanical engineering, etc.

Fluid behavioural aspects can be studied under three different categories as

given below.

1. Statics - Fluid elements are at rest with respect to each other and thus

free from shearing stresses.

2. Kinematics - Study of translation, rotation and rate of deformation of

fluid particles.

3. Dynamics - Consideration of forces acting on the fluid particles in

motion with respect to one another.
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This work mainly focuses on the aspects of dynamics of fluids. Since

relative motion of particles exists, shearing forces are important in the analysis

of flow of fluids. The phenomena considered in fluid dynamics are macroscopic

and hence a fluid is regarded as a continues medium (or Continuum). This

means that any small volume element in the fluid is always supposed so large

that it still contains a very great number of molecules. This is called the

“Continuum Hypothesis”.

Fluids can be broadly classified into two types based on the density:

1. Constant Density Solution ( Incompressible fluids )

2. Variable Density Solution ( Compressible fluids ) (Yuan 1970)

The investigation of any fluid motion finally ends in solving a set of non-

linear partial differential equations called the Fundamental Equations of Fluid

Mechanics. The fundamental equations governing any flow phenomena are

stated below:

1. Equation of Continuity: Mass can neither be created nor destroyed

(Law of Conservation of Mass)

∂ρ

∂t
+∇ · (−→q ρ) = 0 (1.1.1)

Where density is denoted by ρ and −→q is the velocity of the fluid at time

t.

2. Equation of Motion: The total force acting on a fluid mass enclosed

in an arbitrary volume fixed in space is equal to the time rate of change

of linear momentum (Law of Conservation of Momentum)

ρ
D−→q
Dt

=
−→
Xρ−∇p+∇ · τ (1.1.2)

2



Where τ and p represent viscous stress tensor (contains only deviator

stresses) and pressure of the fluid,
−→
X is the body force. The Momentum

equation when written in component form gives rise to Navier-Stokes

Equations.

3. Equation of Energy: The energy added to a closed system increases

the internal energy per unit mass of the fluid (Law of conservation of

Energy)

ρ
DU

Dt
= −(∇ ·

−→
Q)− P (∇ · −→q ) + φ (1.1.3)

Where U is called internal energy,
−→
Q is Heat flux vector, φ = ∇·(−→q τ)−

−→q ∇ · τ is the Dissipation function.

4. Equation of State: Perfect gas equation:
P

ρ
= RT (1.1.4)

Real gas equation (Van der Waals equation):

P = ρRT (
1

1− ρβ
+
αρ

RT
)

Where R is the perfect gas constant, α and β are constants for a given gas.

The above four equations form the backbone of Fluid Mechanics (Schlichting

and Gersten 2000).

1.2 CLASSIFICATION BASED ON SHEAR

STRESS

Further, based on the application of stress in the fluid, we can classify

fluids into two types:-

1. Newtonian Fluids

2. Non-Newtonian Fluids

3



1.2.1 Newtonian Fluids and Non-Newtonian Fluids

Newtonian fluids are those fluids, which obey the Newton’s law, which states

“Shear stress is proportional to the velocity gradient”. Hence, if we plot a

graph of shear stress vs. rate of strain we get a straight line passing through

the origin. This is called the flow curve or Rheogram of the fluid. The Figure

(1.1) shows the shear rate in Newtonian fluid. The constitutive equation for

a Newtonian fluid is given by,

τij = (
2

3
µvk,k)δij + µ(vi,j + vj,i) (1.2.1)

where τij, vij, µ and δij represent shear stress components, velocity compo-

nents, viscosity and Kronecker’s delta function respectively.

Figure 1.1 Shear Rate in Newtonian Fluid

Any fluid which does not obey Newton’s law or any fluid whose flow curve is

not linear is called non-Newtonian fluid i.e., the viscosity of a non-Newtonian

fluid is not a constant at a given temperature and pressure but depends on

various other factors such as the rate of shear in the fluid, apparatus in which

the fluid is contained or even the previous history of the fluid. The subject

that deals with the non–Newtonian fluids is called Rheology. Based on the

4



non-linearity of the flow curve and time in which the fluid has been sheared,

we can classify non-Newtonian fluids as follows:-

1. Time-Independent Non–Newtonian fluids:- Fluids in which the rate of

shear at any point is a function of shearing stress only.

2. Time-Dependent Non-Newtonian fluids:- Fluids in which the rate of

shear rate and shear stress depends on the time the fluid has been

sheared or on its previous history.

3. Viscoelastic fluids:- Fluids which have characteristics of both solids and

fluids and exhibit partial elastic recovery after deformation (Wilkinson

1960).

1.3 TIME-INDEPENDENT NON-NEWTONIAN

FLUIDS

These types of fluids are governed by the rheological equation of the form

eij = f(τij) (1.3.1)

We also name them as non–Newtonian viscous fluids. These fluids can be

subdivided into four categories (Skelland 1967) depending upon the nature of

the function ‘f ’ which are given below:

1. Bingham Plastic

2. Power-law fluids

3. Casson fluid

4. Herschel-Bulkley fluids

1. Bingham plastic (or Bingham fluid): The flow curve is a straight

line with intercept on the shear stress axis. Bingham solid is a material

5



which supports finite stress elastically without flow and which flows with

constant mobility (or plastic fluidity) when the stresses are sufficiently

great. The flow of an isotropic incompressible Bingham material is given

by (Bird et al. 1983)

eij = 0 if τ < τ0

τij = 2

[
µ+ τ0

(2eijeij)
1
2

]
eij if τ ≥ τ0

(1.3.2)

Where µ is the plastic viscosity, τ0 is the yield stress, τij is shear stress

and eij = ( ∂vi
∂xj

+
∂vj
∂xi

) is called rate of strain tensor. Practical examples

of Bingham materials are greases, pastes and suspensions of polymers.

2. Power-law fluids: These fluids are characterized by the equation called

“Power–law”given by

τij = m

∣∣∣∣∣∑
c

∑
d

ecdecd

∣∣∣∣∣
n−1
2

eij (1.3.3)

Where m and n are called the consistency index and flow behaviour

index of a particular fluid. These fluids show no yield value. The flow

curve for these types of fluids becomes linear only at very high rates of

shear.

If n < 1, then the apparent viscosity (ratio of shear stress to the shear

rate ) falls progressively with shear rate and these types of fluids are

called Pseudo–plastic fluids.

If n > 1, then the apparent viscosity for these materials increases with

increasing rates of shear and these types of fluids are called Dilatant

fluids.

n = 1 exhibits Newtonian fluid behaviour. Certain types of high poly-

mers, starch pastes and biological fluids have been characterized as

Power–law fluids.

3. Casson fluid: These fluids are characterized by an yield stress. A

Casson fluid is a shear thinning liquid which has an infinite viscosity at

6



zero rate of shear, yield stress below which no flow occurs, and a zero

viscosity at infinite rate of shear. The constitutive equation governing

these types of fluids is given by (Fung 1981).

eij = 0 if τ < τ0

τij = 2

[
k2c + τ0 +

2kcτ
1
2
0

(
∑
c

∑
d
ecdecd)

1
4

]
eij if τ ≥ τ0

(1.3.4)

Where k2c is a constant for a particular fluid and called the Cassons vis-

cosity and τ0 is the yield stress. This equation has been found to be

accurately applicable to silicone suspensions, blood, lithographic var-

nishes used for preparation of printing inks and synovial fluid present in

the knee, ankle of man and cattle.

4. Herschel-Bulkley fluids: Herschel-Bulkley fluids are materials pos-

sessing a yield value and in flow, they exhibit the characteristics of

shear thinning or shear thickening materials. Shear thinning materials

are those which decreases in viscosity as the rate of shear increases and

shear thickening materials are the one which increases in viscosity as the

rate of shear increases. Herschel-Bukley fluid is the empirical combina-

tion of Bingham plastic material and Power law fluids. These materials

are also called yield–Power law fluids. The constitutive equation of the

Herschel-Bulkley model is given by (Alexandrou et al. 2001)

eij = 0 if τ < τ0

τij =
(
τ0 + η1(

eijeij
2

)
n
2

) eij

(
eijeij

2
)
1
2

if τ ≥ τ0
(1.3.5)

Colloidal suspensions, starch pastes, and blood flow through narrow tubes are

characterized by Herschel-Bulkey model.

In the present research work, we are confining our studies to Incompress-

ible, Time-independent Non–Newtonian fluids with yield stress and in par-

ticular Bingham, Casson and Herschel-Bulkley fluids. The rheogram of these

fluids is depicted in Figure (1.2). The physical importance of the yield stress

fluids are that the material/fluid behaves like a plastic until a certain amount

of stress called the yield stress τ0 is applied. When the stress exceeds the yield
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Figure 1.2 Rheogram

stress it behaves like a fluid. Since these fluids have both viscous and plastic

properties, they are also calledViscoplastic fluids.

1.4 ENTRANCE REGION AND FULLY DE-

VELOPED FLOW

Any fluid flowing through a pipe will have to enter it at some location.

The region is called the entrance region. Flow in the entrance region of the

pipe is quite complex. As shown in the Figure (1.3), the fluid typically enters

the pipe with a nearly uniform velocity profile at section 1. As the fluid moves

through the pipe, viscous effects cause it to stick to the pipe wall (the no–slip

boundary condition). This is true whether the fluid relatively inviscid air or

very viscous oil (William 2010).

Thus a boundary layer in which the viscous effects are important is pro-

duced along the pipe wall such that the initial velocity profile changes with

the distance along the pipe, x, until the fluid reaches the end of the entrance

length, section 2, beyond which the velocity profile does not develop with x.

The boundary layer has grown in thickness and completely fills the pipe. For

the fluid outside the boundary layer, viscous effects are negligible (it is con-

tained in the inviscid core surrounding the centre line from section 1 to section

8



Figure 1.3 Entrance and Fully Developed Flow in a Pipe

2), however for the fluid in the boundary layer viscous effects are important.

The shape of the velocity profile in the pipe depends on whether the flow is

laminar or turbulent as does the length of the entrance region. Calculating

the velocity profile and pressure distribution at the entrance region is quite

complex, however as the flow steadies out, the flow becomes simpler to de-

scribe since the flow is only a function of the distance from the pipe centre

line, and r is independent of x. This is true until there is an abrupt change

in the shape of the pipe at section 3.

The flow between sections 2 and 3 is termed as fully developed. Once

the abrupt change in shape has occurred, beyond point 4, the flow gradually

returns to being fully developed at section 5 and continues on till another

abrupt change occurs in the pipe design at point 6. Fully developed in a

constant diameter pipe may be driven by gravity and/or pressure forces. For

horizontal pipe flow, gravity is neglected. Only the pressure difference is a

factor.

We are interested in investigating the laminar flow of non–Newtonian flu-

ids in the entrance region of annular channel. In particular, we are analyzing

these problems with the assumption that the inner cylinder is rotating and

the outer cylinder is at rest. The entrance region flow in channels constitutes

a problem of fundamental interest in engineering applications such as nuclear

reactors, polymer processing industries, haemodialyzers and capillary mem-

brane oxygenators. In such installations, the behaviour of the fluid in the

entrance region may play a significant part in the total length of the channel
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and the pressure drop may be markedly greater than for the case where the

flow is regarded as fully developed throughout the channel. Fluid enters a

horizontal inlet channel from a large chamber with an uniform velocity along

the axial direction. The analysis has been carried out over the wide range of

non–Newtonian fluid characteristics and for different values of aspect ratios,

(the ratio of the radius of the inner cylinder to that of the outer cylinder) in

the case of annuli. The development of boundary layer is visualized when the

fluid enters an annulus and the fully developed velocity profile is observed in

the region starting from the point down– stream where the boundary layers

meet asymptotically with the outer edge of the plug flow zone.

1.4.1 Steps Involved in the Analysis of Entrance Region

Flow

The importance of entrance region problem is in analyzing the velocity

profiles, pressure variation and temperature distribution in the entrance region

of a fluid flow in the rotating concentric annuli. The following are the steps

involved in investigating the entrance region flow of non-Newtonian fluid in

rotating concentric annuli:

1. The governing equations are deduced from the Navier-Stokes equations

by using the Prandtl’s boundary layer assumptions.

2. Tangential velocity components W in different regions are derived from

the governing equations by using boundary conditions of the problem.

3. Using the tangential velocity components W in different regions, the

axial velocity components U and pressure variation P are computed at

a time along the radial direction R. Using W, U, P the radial velocity

component V is computed.

4. Again using the velocity profiles U and V, the temperature distribution

T are thus, obtained numerically for various values of non-Newtonian

fluid characteristics and different values of geometrical parameters, wher-

ever applicable.
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1.5 LITERATURE SURVEY

Many authors have analyzed the entrance region flow in different channels,

like, tubes, pipes, cylinder, between two parallel plates, straight channels,

through concentric annulus, between two rotating cylinders, etc. for different

non-Newtonian fluids like Casson, Bingham, Hershel-Bulkley, Power-law, etc.

The problems are investigated using numerical methods to find the variation

of velocity profile, pressure variation, temperature distribution for various flow

parameters and geometrical considerations. Some of the relevant studies are

briefed here.

The problem of entrance region flow heat transfer in a concentric annuli with

rotating inner walls for a Newtonian fluid was studied by many authors. A

contribution to the numerical solution of developing laminar flow in the en-

trance region of concentric annuli with rotating inner walls studied by Coney

and El-Shaarawi (1974a). Also, laminar heat transfer in the entrance region of

concentric annuli with rotating inner walls was reported by the same authors

(1974b). Further, finite difference analysis for laminar flow heat transfer in

concentric annuli with simultaneously developing hydrodynamic and thermal

boundary layers was also studied by Coney and El-Shaarawi (1975).

Narang (1983)analyzed the entrance region flow of Bingham fluid between

parallel plates and could get the exact solution for the problem. Nowak and

Gajdeczko (1983) solved numerically the laminar entrance region flow of the

Bingham fluid in circular tube. Mishra et al. (1985) studied the flow of the

Bingham plastic in the concentric annulus and obtained the results for bound-

ary layer thickness, centre core velocity, pressure drop. Representing blood as

Bingham fluid model, Tandon et al. (1994) analyzed the flow in the arteries.

Kandasamy (1996) investigated the entrance region flow heat transfer in con-

centric annuli for a Bingham fluid and presented the velocity distributions,

temperature and pressure in the entrance region. Poole and Chhabra (2010)

reported the results of a systematic numerical investigation of developing lam-

inar pipe flow of yield stress fluids.

Gupta (1987, 1990) analyzed the entrance flow of Power-law fluids through a
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straight channel by studying a hydro dynamically equivalent model of an ap-

propriate Newtonian fluid. Laminar flow heat transfer in the entrance region

of concentric annuli for power law fluid was studied by Batra and Sudarsan

(1992). Rachid (2002) studied the laminar flow of a Power-law fluid in a cir-

cular tube and flow was analyzed in both the inlet and filled regions using an

integral boundary layer method. Maia and Gasparetto (2003) applied finite

difference method for the Power-law fluid in the annuli and found difference

in the entrance geometries. Sayed-Ahmed and Sharaf-El-Din (2006) applied

finite difference method to study the laminar flow of a Power-Law fluid in the

concentric annulus.

The flow of a Casson fluid in the entrance of annular tubes was investigated

numerically by Liu and Shah (1975). Analytical solution for the entrance

region blood flow in a concentric annuli obtained by Batra and Jena (1990)

by assuming the blood to obey Casson model. Batra and Das (1992) de-

veloped the stress-strain relation for the Casson fluid in the annular space

between two coaxial rotating cylinders where the inner cylinder was at rest

and outer cylinder rotating. Batra and Kandasamy (1992) studied the en-

trance region flow of Casson fluid in a straight channel numerically without

making assumptions on the form of velocity profile within the boundary layer

region by a cross sectional integration of the momentum differential equation.

Pham (1994) analyzed entry and exit flows of Casson fluids. Flow of Casson

fluid in a pipe filled with a homogeneous porous medium was considered by

Dash et al. (1996). Cheng and Deville (1996) studied the pulsatile flow of

non-Newtonian fluids through arterial stenosis by the Casson model. Ahmed

and Attia (1998) investigated Magneto hydrodynamic flow and heat transfer

of a non-Newtonian fluid in an eccentric annulus. Flow of Casson fluid in a

narrow tube with a side branch was investigated by Misra and Ghosh (2000).

A non-Newton fluid flow model for blood flow through a catheterized artery-

steady flow was analyzed by Sankar and Hemalatha (2007). The Casson fluid

over an unsteady stretching surface was investigated by Swati et al. (2013)

Batra and Kandasamy (1990) numerically investigated the flow of Hershel-

Bulkley Fluids in a duct without pre-assuming the form of velocity profile

within the boundary layer region. Das (1992) studied the flow of Herschel-
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Bulkley fluid in a circular tube by using the momentum integral and momen-

tum energy integral techniques, and found that in the case of the momentum

energy method the values of entrance length and loss coefficient are appre-

ciably higher than those obtained by using the momentum integral method.

Round and Yu (1993) analyzed the developing flows of Herschel-Bulkley fluids

through concentric annuli. Nouar et al. (1995) reported the results of numeri-

cal analysis of the thermal convection for Herschel-Bulkley fluids. Soares et al.

(1999) analyzed the heat transfer in the entrance region flow of viscoplastic

material inside the tubes. Numerical modeling of helical flow of viscoplastic

fluid in eccentric annuli was done by Hussain and Sharif (2000). The problem

of laminar heat transfer convection for Herschel-Bulkley within concentric

annular ducts was studied by Viana et al. (2001) with the help of integral

transform method considering the plug flow region. Hammad et al. (2001)

analyzed the laminar flow of a Herschel-Bulkley fluid over an axisymmetric

sudden expansion. Manglik and Fang (2002) numerically investigated the flow

of non-Newtonian fluids through annuli. The study of heat transfer to vis-

coplastic materials flowing axially through concentric annuli was investigated

by Soares et al. (2003). Kandasamy et al. (2007b) investigated the entrance

region flow of heat transfer in concentric annuli for Herschel-Bulkley fluids and

presented the velocity distributions, temperature and pressure in the entrance

region. Recently, Pai and Kandasamy (2014) have investigated the entrance

region flow of Herschel-Bulkley fluid in an annular cylinder without making

prior assumptions on the form of velocity profile within the boundary layer

region.

1.6 ORGANIZATION OF THE THESIS

The present work focuses on the analysis of entrance region flow of time

independent non-Newtonian fluid with yield stress categories, namely, Bing-

ham, Casson, Herschel-Bukley fluids in concentric annuli with heat transfer.

The analysis has been carried out under the assumption that the inner cylin-

der is rotating and the outer cylinder is at rest. With the Prandtl’s boundary

layer assumptions, the equations of conservation of mass, momentum and en-
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ergy are discretized and solved using linearized implicit finite difference tech-

nique. The system of linear and non-linear algebraic equations thus obtained

has been solved by the Gauss-Jordan method and Newton-Raphson iterative

method respectively. The development of axial velocity profile, radial velocity

profile, tangential velocity profile, pressure variation and temperature distri-

bution along the radial direction in the entrance region have been determined

for different values of non-Newtonian flow characteristics and geometrical pa-

rameters. The effects of these on the flow properties have been discussed.

In Chapter 1, a brief introduction to the fundamental equations fluid me-

chanics is given and further the fluids are classified based on the stress-strain

relations or the fluid constitutive equations. A short insight is provided so as

to recall the constitutive theory of non–Newtonian fluid, the assumptions of

boundary layer and brief history of entrance region flow. Further, a review of

some of the important literature related to the present work has been given

in this chapter.

In chapter 2, the entrance region flow heat transfer in concentric annuli

with rotating inner wall for Bingham non-Newtonian fluid has been studied

numerically. The inner cylinder is assumed to be rotating with a constant an-

gular velocity and the outer cylinder is stationary. A finite difference analysis

is used to obtain the velocity components, pressure variation and temperature

distribution along the radial direction. With the Prandtl’s boundary layer as-

sumptions, the continuity, momentum and energy equations are solved itera-

tively using a finite difference method. Computational results are obtained for

various non-Newtonian flow parameters and geometrical considerations. The

development of the axial velocity profile, radial velocity profile, tangential ve-

locity profile, pressure variation and temperature distribution in the entrance

region have been analyzed. From this study, it is found that the tangential

velocity decreases from the inner wall to outer wall of the annulus. Also, it

is observed that the value of pressure increases from a minimum at the inner

wall to a maximum at the outer wall and the pressure does not vary so much

with respect to the radial coordinate in the region near the outer wall. The

effect of the inner wall rotation on all these flow characteristics seem to be
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less significant. Further it is found that by increasing the Bingham number,

the temperature decreases. Comparison of the present results with the results

available in literature for various particular cases has been done and found to

be in agreement.

The chapter 3 deals with the problem of entrance region flow heat trans-

fer of Casson fluid in concentric annuli with rotating inner wall. The Casson

fluid enters the horizontal concentric annuli from a large chamber with a uni-

form flat velocity along the axial direction and with some initial pressure and

temperature. The inner cylinder rotates with constant angular velocity and

the outer cylinder is at rest. We consider the flow as steady, laminar, incom-

pressible, axisymmetric with constant physical properties, having negligible

viscous dissipation and no internal heat generation. Moreover, it is assumed

that the axial heat diffusion is negligible as compared to the radial diffusion.

Using finite difference technique with Prandtl’s boundary layer assumptions,

the equations of conservation of mass, momentum and energy are solved it-

eratively. The development of axial velocity profile, radial velocity profile,

tangential velocity profile, pressure variation and temperature distribution in

the entrance region have been determined for different values of aspect ra-

tio, Casson number, Prandtls number and axial position. The axial velocity

component increases when the annular gap is becoming small for all values of

Casson numbers. It is observed that the temperature keeps decreasing for the

fluids with high Casson number. Moreover, it is found that the temperature

is high when the flow is taking place in a small annular gap. Comparisons are

done with the results of other recent works for various particular cases and

good agreement is observed.

A finite difference analysis of the entrance region flow heat transfer of

Herschel-Bulkley fluids in concentric annuli with rotating inner wall has been

carried out and presented in the next chapter. The analysis is made for simul-

taneously developing hydrodynamic boundary layer in concentric annuli with

the inner cylinder assumed to be rotating with a constant angular velocity

and the outer cylinder being stationary. A finite difference analysis is used to

obtain the velocity profiles, pressure variation and temperature distribution
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along the radial direction. With the Prandtl’s boundary layer assumptions,

the continuity, momentum and energy equations are solved iteratively using

a finite difference method. Computational results are obtained for various

non-Newtonian flow parameters and geometrical considerations. A signifi-

cant asymmetry is found in the entrance region which is gradually reduced

as the flow develops. For smaller values of aspect ratio and higher values of

Herschel-Bulkley number the flow is found to stabilize more gradually. Also,

it is found that increasing the flow behaviour index, the axial velocity com-

ponent increases at all values of Herschel-Bulkley numbers and the velocity

profile develops faster as flow behaviour index increases. It indicates that the

axial velocity is more for shear thinning fluids and for shear thickening fluids

the axial velocity component is less. Further, it is observed that the velocity

profile takes the parabolic form as n tends to 1 with Herschel-Bulkley num-

ber being zero (Newtonian fluid). The values of radial velocity are negative

in the region near the outer wall since it is in the opposite direction to the

radial coordinate R and it has positive values near the inner wall because it

has the same direction of the radial coordinate. This phenomena is due to

the rotation of the inner cylinder of the annulus. Also, it is observed that the

the temperature decreases from the rotating inner wall to the stationary outer

wall of the annulus. Moreover, for the fluids with high Herschel Bulkley num-

bers, i.e., for high viscous fluids the temperature is found to decreasing. The

present results are compared with results of particular cases of non-rotating

cylinders, the Bingham and Power-law fluids and are found to be matching.

The present work is mainly about the investigation of velocity profiles,

pressure variation and temperature distribution of viscoplastic fluids along

the radial direction in the entrance region of concentric annuli with rotating

inner wall. The last chapter concludes the entire research work presented and

describes possible future research work in this area.
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Chapter 2

ENTRANCE REGION FLOW HEAT
TRANSFER IN CONCENTRIC
ANNULI WITH ROTATING INNER
WALL FOR BINGHAM FLUID

2.1 INTRODUCTION

The study of non-Newtonian laminar flow heat transfer in the entrance re-

gion of an annuli is of practical importance in engineering applications such

as design of compact heat exchangers, axial-flow turbo machinery and poly-

mer processing industries. Very often, optimum conditions are provided by

laminar flow operations for keeping low pumping power in proportion to the

heat transfer rate. In the nuclear reactor field, this happens when coolant

flow rates are reduced. In case of turbulent flow, when heating starts at the

duct entrance, the hydrodynamic boundary layers normally are linear near

the duct entrance and the transitions to turbulence occurs at some distance

downstream from the entrance. Hence, it is necessary to take into considera-

tion the presence of such laminar entrance flow in calculating the heat transfer

parameters for a duct in which the fully developed flow is turbulent. Many

important industrial fluids are non-Newtonian in their flow characteristics and

are referred to as rheological fluids. These include blood; various suspensions

such as coalwater or coal-oil slurries, glues, inks, foods; polymer solutions;

paints and many others. The fluid considered here is the Bingham model,

which is of ‘time-independent yield stress’ fluid category.
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In this chapter, the problem of entrance region flow heat transfer of Bingham

fluid in concentric annuli with rotating inner wall has been investigated. The

analysis has been carried out under the assumption that the inner cylinder

is rotating and the outer cylinder is at rest. With Prandtl’s boundary layer

assumptions, the equation of conservation of mass, momentum and energy

are discretized and solved using linearized implicit finite difference technique.

The system of linear algebraic equations thus obtained, has been solved by

the Gauss-Jordan method. The development of axial velocity profile, radial

velocity profile, tangential velocity profile, pressure variation and temperature

distribution in the entrance region have been determined for different values

of non-Newtonian flow characteristics and geometrical parameters along the

radial direction. The effects of these on the flow properties have been dis-

cussed.

2.2 MATHEMATICAL FORMULATION OF

THE PROBLEM

The geometry of the problem is shown in Figure (2.1). The Bingham fluid

enters the horizontal concentric annuli with inner and outer radius R1 and R2,

respectively, from a large chamber with a uniform flat velocity profile u0 along

the axial direction z and with an initial pressure p0 and temperature t0. The

inner cylinder rotates with an angular velocity ω and the outer cylinder is at

rest. The flow is steady, laminar, incompressible, axisymmetric with constant

physical properties, having negligible viscous dissipation and no internal heat

generation. Moreover, it is assumed that the axial heat diffusion is negligible

as compared to the radial diffusion. We consider a cylindrical polar coordinate

system with the origin at the inlet section on the central axis of the annulus,

the z -axis along the axial direction and the radial direction r perpendicular

to the z -axis.

Under the above assumptions with the usual Prandtl’s boundary layer as-

sumptions Schlichting and Gersten (2000), the governing equations in polar

coordinate system (r, θ, z) for a Bingham fluid in the entrance region are:

Continuity equation :
∂(rv)

∂r
+
∂(ru)

∂z
= 0 (2.2.1)
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Figure 2.1 Geometry of the Problem

r −momentum equation :
w2

r
=

1

ρ

∂p

∂r
(2.2.2)

θ −momentum equation : v
∂w

∂r
+ u

∂w

∂z
+
vw

r
=

1

ρr2
∂

∂r

(
r2
[
τ0 + µr

∂

∂r
(
w

r
)

])
(2.2.3)

z −momentum equation : v
∂u

∂r
+ u

∂u

∂z
= −1

ρ

∂p

∂z
+

1

ρr

∂

∂r

(
r

[
τ0 + µ

∂u

∂r

])
(2.2.4)

Energy equation : v
∂t

∂r
+ u

∂t

∂z
= α

[
∂2t

∂r2
+

1

r

∂t

∂r

]
(2.2.5)

where u, v, w are the velocity components in z, r, θ directions respectively,

t is the fluid temperature at any point, ρ is the density of the fluid, α is the

thermal diffusivity, τ0 is the yield stress, µ is the viscosity and p is the pres-

sure.

The boundary conditions associated with the hydrodynamic part of the prob-

lem are given by

for z ≥ 0 and r = R1, v = u = 0 and w = ωR1

for z ≥ 0 and r = R2, v = u = w = 0

for z = 0 and R1 < r < R2, u = u0 (2.2.6)

at z = 0, p = p0
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Using the boundary conditions (2.2.6), the continuity Equation (2.2.1) can be

expressed in the following integral form:

2

∫ R2

R1

rudr = (R2
2 −R2

1)u0 (2.2.7)

Introducing the following dimensionless variables and parameters,

R =
r

R2

, U =
u

u0
, V =

ρvR2

µr
,W =

w

ωR1

, N =
R1

R2

, P =
p− p0
ρu20

Z =
2z(1−N)

R2Re
,B =

τ0R2

µu0
, Ta =

2ω2ρ2R2
1(R2 −R1)

3

µ2
r(R1 +R2)

, here µr = µ

(
ωR1

R2

)

T =
t− t0
tw − t0

, Re =
2ρ(R2 −R1)u0

k
, Pr =

µCp
K

Here B is the Bingham number, Re is the Reynolds number, Ta is the Taylor

number, µr is know as reference viscosity, Pr is the Prandtl’s number, Cp is

the specific heat at constant pressure, K is the thermal conductivity, t0 is the

fluid temperature at annulus entry, tw is the isothermal wall temperature and

N is known as aspect ratio of the annulus.

Equations (2.2.1) to (2.2.5) and (2.2.7) in the dimensionless form are given by

∂V

∂R
+
V

R
+
∂U

∂Z
= 0 (2.2.8)

W 2

R
=
Re2(1−N)

2(1 +N)Ta

∂P

∂R
(2.2.9)

V
∂W

∂R
+ U

∂W

∂Z
+
VW

R
=
∂2W

∂R2
+

1

R

∂W

∂R
− W

R2
+

2B

R
(2.2.10)
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V
∂U

∂R
+ U

∂U

∂Z
= −∂P

∂Z
+

1

R
.
∂U

∂R
+
∂2U

∂R2
+
B

R
(2.2.11)

V
∂T

∂R
+ U

∂T

∂Z
=

1

Pr

[
∂2T

∂R2
+

1

R

∂T

∂R

]
(2.2.12)

and

2

∫ 1

N

RUdR = (1−N2) (2.2.13)

The boundary conditions (2.2.6) associated with the hydrodynamic part of

the problem in the dimensionless form are given by

for Z ≥ 0 and R = N, V = U = 0 and W = 1

for Z ≥ 0 and R = 1, V = U = W = 0

for Z = 0 and N < R < 1, U = 1 (2.2.14)

at Z = 0, P = 0

For the thermal part, considering the outer cylinder to be adiabatic and the

inner cylinder to be isothermal, the problem has been solved under the fol-

lowing boundary conditions:

for Z ≥ 0, T = 1 at R = N

for Z ≥ 0,
∂T

∂R
= 0 at R = 1

for Z = 0 and N < R < 1, T = 0 (2.2.15)

The problem can be similarly analyzed for the case when the inner cylinder is

adiabatic and the outer cylinder is isothermal. The boundary conditions for
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this case will be

for Z ≥ 0, T = 1 at R = 1

for Z ≥ 0,
∂T

∂R
= 0 at R = N

for Z = 0 and N < R < 1, T = 0 (2.2.16)

2.3 SOLUTION OF THE PROBLEM

The numerical analysis and the method of solution adopted here can be con-

sidered as an indirect extension of the work of Coney and El-Shaarawi (1974a).

Considering the mesh network of Figure (2.2), the following difference repre-

sentations are made. Here ∆R and ∆Z represent the grid size along the radial

and axial directions respectively.

Figure 2.2 Grid Formation for Finite-Difference Representations

Vi+1,j+1 = Vi,j+1

(
N + i∆R

N + (i+ 1)∆R

)
− ∆R

4∆Z

(
2N + (2i+ 1)∆R

N + (i+ 1)∆R

)
∗

(Ui+1,j+1 + Ui,j+1 − Ui+1,j − Ui,j) (2.3.1)
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W 2
i,j+1

N + i∆R
=

(1−N)Re2

2Ta(1 +N)

Pi,j+1 − Pi−1,j+1

∆R
(2.3.2)

V i, j

(
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R

)
+ Ui, j

(
Wi,j+1 −Wi,j

∆Z

)
+

Vi,jWi,j

N + i∆R
=
Wi+1,j+1 +Wi+1,j − 2Wi,j+1 − 2Wi,j +Wi−1,j +Wi−1,j+1

2(∆R)2
+

Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

(N + i∆R)4∆R
− Wij

(N + i∆R)2
+

2B

N + i∆R
(2.3.3)

V i, j

(
Ui+1,j+1 − Ui−1,j+1

2∆R

)
+ Ui, j

(
Ui,j+1 − Ui,j

∆Z

)
= −

(
Pi,j+1 − Pi,j

∆Z

)
+

(
Ui+1,j+1 − Ui−1,j+1

(N + i∆R)2∆R

)
+

(
Ui+1,j+1 − 2Ui,j+1 + Ui−1,j+1

(∆R)2

)
+

B

N + i∆R

(2.3.4)

Where i=0 at R=N and i=m at R=1. Here m is the number of radial incre-

ments in the mesh.

The application of trapezoidal rule to Equation (2.2.13) gives

∆R

2
(NU0,j + Um,j) + ∆R

m−1∑
i=1

Ui,j(N + i∆R) =

(
1−N2

2

)

The boundary condition (2.2.14) gives U0,j = Um,j = 0 and the above equation

reduces to

∆R
m−1∑
i=1

Ui,j(N + i∆R) =

(
1−N2

2

)
(2.3.5)

The set of difference Equations (2.3.1) to (2.3.6) have been solved by the iter-

ative procedure. Starting at the j =0 column (annulus entrance) and applying

Equation (2.3.3) for 1 ≤ i ≤ m− 1, we get a system of linear algebraic equa-

tions. This system has been solved by using Gauss-Jordan method to obtain

the values of the tangential velocity component W at the second column j =1.
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Then applying Equations (2.3.2) and (2.3.4) for 1 ≤ i ≤ m − 1 and Equa-

tion (2.3.5), we get a system of linear equations. Again solving this system by

Gauss-Jordan method, we obtain the values of the axial velocity component U

and the pressure P at the second column j =1. Finally, the values of the radial

velocity component V at the second column j =1 are obtained from Equation

(2.3.1) by Gauss-Jordan method using the known values of U. Repeating this

procedure, we can advance, column by column, along the axial direction of

the annulus until the flow becomes axially and tangentially fully developed.

With the values of V and U known, the energy Equation (2.2.12) can be

considered as a linear equation in T with variable coefficients. By using the

implicit finite difference technique, the energy equation can be represented as

Ti+1,j+1

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
+

Ti−1,j+1

(
1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2

)
=

Ti,j

(
Ui,j+1 + Ui,j

2∆Z
− 1

Pr(∆R)2

)
− Ti,j+1

(
Ui,j+1 + Ui,j

2∆Z
+

1

Pr(∆R)2

)
+

Ti+1,j

(
1

2Pr(∆R)2
+

1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R

)
+

Ti−1,j

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
(2.3.6)

Equation (2.3.6), with the boundary conditions (2.2.15), have been solved

to obtain the temperature distribution in the annular entrance region. The

system of linear equations associated with each column has been solved by

Gauss-Jordan elimination method.
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2.4 RESULTS AND DISCUSSION

Numerical calculations have been performed for all admissible values of Bing-

ham number B, aspect ratio N and various parameters as shown in Table

(2.4.1). The Prandtl’s number has been chosen initially as 7 and gradually

increased to 15. The velocity profiles and pressure variation along radial di-

rection R have been computed for different values of N and B and shown in

Figures (2.3) to (2.26). The temperature distributions during the rotation of

the inner wall of the annuli have been shown in Figures (2.27) to (2.42).

Table 2.4.1 List of Various Parameters Used

Various Values of Parameters
Aspect
Ratio N

Radial Posi-
tion R

Axial Posi-
tion Z

Rt=Re2/Ta Bingham
Number B

0.3 0.1 0.02, 0.03 0, 20 0, 10, 20, 30
0.5 0.1 0.02, 0.03 0, 20 0, 10, 20, 30
0.8 0.05 0.02, 0.03 0, 20 0, 10, 20, 30

Figures (2.3) to (2.8) show the development of the tangential velocity pro-

file component W for N =0.3, 0.5, 0.8 at axial positions of Z =0.02, 0.03 and

for different values of Bingham numbers B. Here, the parameter Rt which is

the ratio of Reynolds number to Taylor number is fixed as 20. The values of

tangential velocity decrease from the inner wall to outer wall of the annulus.

Also, it is found that with the increase of aspect ratio N, the tangential ve-

locity profile increases. That is, the tangential velocity is more when the gap

of the annuli is small. Further, it is found that with the increase of Bingham

number, the tangential velocity profile increases. This means, the tangential

velocity tends to increase for thick viscous fluids when the inner cylinder is

rotating. From the computed results corresponding to various values of Rt , it

is observed that the effect of the parameter Rt is negligible for the tangential

velocity.

Figures (2.9) to (2.14) show the development of the axial velocity profile

component U for same parameter values. The computation has been done

for various values of the parameter Rt to study the effect of rotation of inner
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cylinder. The values corresponding to Rt=0 and 20 are depicted in these fig-

ures. It is found that the velocity component U increases with the increase of

Bingham number B as well as aspect ratio N. Also for stationary (Rt=0) as

well as rotating inner cylinder (Rt=20), it is observed that the velocity profile

takes the parabolic form when Bingham number B reaches zero (Newtonian

fluid) for both the cases. But the rotational effect on the axial velocity compo-

nent is very small as per the observed results. Here, our results corresponding

to B=0 match with the results of Coney and El-Shaarawi (1974a) and Rt=0

with various Bingham numbers match with the results of Kandasamy (1996).

The radial velocity profile component V for N = 0.3, 0.5 and 0.8 for dif-

ferent values of Bingham number B and axial positions are depicted in the

Figures (2.15) to (2.20). Again, the parameter Rt values are taken as 0 and

20 for computational purpose. The values of radial velocity are negative in

the region near the outer wall since it is in the opposite direction to the radial

coordinate R and it has positive values near the inner wall because it has

the same direction of the radial coordinate. The values of the radial velocity

decreases with increase of Rt and Bingham number B at any cross section

of the axis. The results of particular cases like Rt=0 (without rotation) and

B=0 ( Newtonian fluid) match fully with the earlier research works of the

same authors.

Figures (2.21) to (2.26) show the distribution of the pressure P along the

radial coordinate R for the same chosen values of the parameters involved. It

is found that the value of P increases from a minimum at the inner wall to a

maximum at the outer wall. Further, it is found that with increase of Bingham

numbers, increases the pressure values P. This is because of the pressure will

tend to be higher for thick viscous fluids. Moreover, it is observed that the

pressure is slowly becoming independent of the radial coordinate in the region

close to the outer wall. The effect of inner wall rotation on the fluid pressure

seems to be very low at any cross section. Here also, the results correspond-

ing to B=0 and Rt=0 are in agreement with the earlier results of same authors.

Figures (2.27) to (2.42) shows the temperature distribution T and it is ob-

served from the results obtained, that the temperature decreases with increase

26



of Bingham number B for a fixed annular width. Other wise we can say that

the temperature distribution is less for a high viscous fluids. The temperature

is found to decrease from the rotating inner wall gradually to the stationary

outer wall of the annulus. This is for the case of inner wall being isothermal

and outer wall being adiabatic in our analysis. The pattern may be in reverse

if the outer cylinder is isothermal and inner cylinder is adiabatic. Further,

the temperature keeps increasing, if we reduce the annular gap for a fixed

Bingham number.

For our computation, the Prandtl’s number has been initially set as 7 and

the results of the temperature distribution have been obtained by increas-

ing the value of Prandtl’s number Pr up to 15. The results corresponding to

Pr=7 and Pr=15 are shown here. The temperature is found to decrease grad-

ually when we increase the Prandtl’s number by fixing the other parameters,

Bingham number and aspect ratio. Again, for high viscous fluids i.e., for the

fluids with high Bingham number, the temperature is found to be decreasing.

But the temperature is becoming more along the axial direction for the fixed

aspect ratio, Bingham number and Prandtl’s number.

The present results are compared with available results in literature for var-

ious particular cases and are found to be in agreement. When the Bingham

number B=0, our results match with the results corresponding to Newtonian

fluid of Coney and El-Shaarawi (1974a). In the case of stationary cylinders,

the results in our analysis are matching with the results of Kandasamy (1996).

Also in the case of non-thermal part these results match with the results of

Nadiminti and Kandasamy (2016b).

27



2.5 CONCLUSION

Numerical results for the entrance region flow heat transfer in concentric an-

nuli with rotating inner wall for Bingham fluid are presented. The effects of

the parameters N, Pr and B on the velocity profiles, pressure variation and

temperature distribution are studied along radial direction R. The present

results are found in agreement with the results corresponding to various par-

ticular cases available in literature.

From this study, the following can be concluded.

1. Tangential velocity decrease from the inner wall to outer wall of the annu-

lus and the tangential velocity is high for thick viscous fluids.

2. Increasing the aspect ratio N, the axial velocity component U increases at

all values of Bingham numbers B.

3. Radial velocity is found to be dependent only on the axial coordinate.

4. Pressure increases from a minimum at the inner wall to a maximum at

the outer wall of the annulus and pressure does not vary so much with respect

to the radial coordinate in the region near the outer wall.

5. The temperature decreases from the rotating inner wall to the station-

ary outer wall of the annulus.

6. When increasing the Bingham numbers B, it is observed that the tem-

perature decreases.

7. With the increase of Prandtl’s numbers, the temperature decreases.

8. When aspect ratio N increases, it is found that the temperature increases.

9. With the increase of axial position Z, the temperature also increases.
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Figure 2.3 Tangential Velocity Profile for N =0.3 at Z =0.02
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Figure 2.4 Tangential Velocity Profile for N =0.5 at Z =0.02
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Figure 2.5 Tangential Velocity Profile for N =0.8 at Z =0.02
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Figure 2.6 Tangential Velocity Profile for N =0.3 at Z =0.03
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Figure 2.7 Tangential Velocity Profile for N =0.5 at Z =0.03
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Figure 2.8 Tangential Velocity Profile for N =0.8 at Z =0.03
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Figure 2.9 Axial Velocity Profile for N =0.3 at Z =0.02
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Figure 2.10 Axial Velocity Profile for N =0.5 at Z =0.02
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Figure 2.11 Axial Velocity Profile for N =0.8 at Z =0.02
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Figure 2.12 Axial Velocity Profile for N =0.3 at Z =0.03
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Figure 2.13 Axial Velocity Profile for N =0.5 at Z =0.03
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Figure 2.14 Axial Velocity Profile for N =0.8 at Z =0.03
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Figure 2.15 Radial Velocity Profile for N =0.3 at Z =0.02
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Figure 2.16 Radial Velocity Profile for N =0.5 at Z =0.02
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Figure 2.17 Radial Velocity Profile for N =0.8 at Z =0.02
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Figure 2.18 Radial Velocity Profile for N =0.3 at Z =0.03
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Figure 2.19 Radial Velocity Profile for N =0.5 at Z =0.03
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Figure 2.20 Radial Velocity Profile for N =0.8 at Z =0.03
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Figure 2.21 Pressure Variation for N =0.3 at Z =0.02
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Figure 2.22 Pressure Variation for N =0.5 at Z =0.02
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Figure 2.23 Pressure Variation for N =0.8 at Z =0.02
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Figure 2.24 Pressure Variation for N =0.3 at Z =0.03
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Figure 2.25 Pressure Variation for N =0.5 at Z =0.03
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Figure 2.26 Pressure Variation for N =0.8 at Z =0.03
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Figure 2.27 Temperature Distribution for N=0.3, Pr=7 and B=0
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Figure 2.28 Temperature Distribution for N =0.8, Pr=7 and B=0
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Figure 2.29 Temperature Distribution for N=0.3, Pr=7 and B=10
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Figure 2.30 Temperature Distribution for N=0.8, Pr=7 and B=10
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Figure 2.31 Temperature Distribution for N=0.3, Pr=7 and B=20
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Figure 2.32 Temperature Distribution for N=0.8, Pr=7 and B=20
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Figure 2.33 Temperature Distribution for N=0.3, Pr=7 and B=30
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Figure 2.34 Temperature Distribution for N=0.8, Pr=7 and B=30
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Figure 2.35 Temperature Distribution for N=0.3, Pr=15 and B=0
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Figure 2.36 Temperature Distribution for N=0.8, Pr=15 and B=0
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Figure 2.37 Temperature Distribution for N=0.3, Pr=15 and B=10
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Figure 2.38 Temperature Distribution for N=0.8, Pr=15 and B=10
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Figure 2.39 Temperature Distribution for N=0.3, Pr=15 and B=20
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Figure 2.40 Temperature Distribution for N=0.8, Pr=15 and B=20
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Figure 2.41 Temperature Distribution for N=0.3, Pr=15 and B=30
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Figure 2.42 Temperature Distribution for N=0.8, Pr=15 and B=30
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Chapter 3

ENTRANCE REGION FLOW HEAT
TRANSFER IN CONCENTRIC
ANNULI WITH ROTATING INNER
WALL FOR CASSON FLUID

3.1 INTRODUCTION

The problem of entrance region flow heat transfer in concentric annuli with

rotating inner wall for non-Newtonian fluids is of practical importance in

engineering applications such as the design of cooling systems for electric ma-

chines, compact rotary heat exchangers and combustion chambers, axial-flow

turbo machinery and polymer processing industries. In the nuclear reactor

field, laminar flow conditions occur when the coolant flow rates are reduced

during periods of low power operation. Many important industrial fluids are

non-Newtonian in their flow characteristics and are referred to as rheological

fluids. These include blood, various suspensions such as coalwater or coal-oil

slurries, glues, inks, foods, polymer solutions, paints and many others. The

fluid considered here is the Casson model, which is of ‘time-independent yield

stress’ fluid category.

This chapter deals with the problem of entrance region flow heat transfer

of Casson fluid in concentric annuli with rotating inner wall. The analysis

has been carried out under the assumption that the inner cylinder is rotating

and the outer cylinder is at rest. With Prandtl’s boundary layer assump-

tions, the equation of conservation of mass, momentum and energy are dis-
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cretized and solved using linearized implicit finite difference technique. The

system of non-linear algebraic equations thus obtained, has been solved by

the Newton-Raphson iterative method for simultaneous non-linear equations.

The development of axial velocity profile, radial velocity profile, tangential ve-

locity profile, pressure variation and temperature distribution in the entrance

region have been determined for different values of non-Newtonian flow char-

acteristics and geometrical parameters along the radial direction. The effects

of these on flow properties have been discussed.

3.2 MATHEMATICAL FORMULATION OF

THE PROBLEM

The Casson fluid enters the horizontal concentric annuli with inner and outer

radius R1 and R2, respectively, from a large chamber with a uniform flat ve-

locity profile u0 along the axial direction z and with some initial pressure p0

and temperature t0. The inner cylinder rotates with an angular velocity ω and

the outer cylinder is at rest. The geometry of the problem is shown in Figure

(3.1). We consider the flow as steady, laminar, incompressible, axisymmetric

with constant physical properties, having negligible viscous dissipation and no

internal heat generation. Moreover, it is assumed that the axial heat diffusion

is negligible as compared to the radial diffusion.

The governing equations under the above assumptions with the usual Prandtl’s

boundary layer assumptions Schlichting and Gersten (2000), in polar coordi-

nate system for a Casson fluid in the entrance region are as follows:

Continuity equation :
∂(rv)

∂r
+
∂(ru)

∂z
= 0 (3.2.1)

r −momentum equation :
w2

r
=

1

ρ

∂p

∂r
(3.2.2)
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Figure 3.1 Geometry of the Problem

θ −momentum equation : v
∂w

∂r
+ u

∂w

∂z
+
vw

r
=

1

ρr2
∂

∂r

(
r2

(
τ0 +K2

c r
∂

∂r
(
w

r
) + 2Kc

√
τ0r

∂

∂r
(
w

r

))
(3.2.3)

z −momentum equation : v
∂u

∂r
+ u

∂u

∂z
= −1

ρ

∂p

∂z
+

1

ρr

∂

∂r

(
r

(
τ0 +K2

c

∂u

∂r
+ 2Kc

√
τ0
∂u

∂r

))
(3.2.4)

Energy equation : v
∂t

∂r
+ u

∂t

∂z
= α

[
∂2t

∂r2
+

1

r

∂t

∂r

]
(3.2.5)

Here u, v, w are the velocity components in z, r, θ directions respectively, t

is the fluid temperature at any point, ρ is the density of the fluid, α is the

thermal diffusivity, τ0 is the yield stress, K2
c is a constant for a particular fluid

and called the Casson viscosity and p is the pressure.
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The boundary conditions of the problem are given by

for z ≥ 0 and r = R1, v = u = 0 and w = ωR1

for z ≥ 0 and r = R2, v = u = w = 0

for z = 0 and R1 < r < R2, u = u0 (3.2.6)

at z = 0, p = p0

Again, the integral form of the continuity Equation (3.2.1) can be given by

2

∫ R2

R1

rudr = (R2
2 −R2

1)u0 (3.2.7)

It is worth to introduce the following dimensionless variables and parameters

R =
r

R2

, U =
u

u0
, V =

ρvR2

K2
c

,W =
w

ωR1

, N =
R1

R2

, P =
p− p0
ρu20

, Z =
2z(1−N)

R2Re

Yc =
τ0R2

u0K2
c

, Ta =
2ω2ρ2R2

1(R2 −R1)
3

µ2
r(R1 +R2)

, here µr = K2
c

(
ωR1

R2

)

T =
t− t0
tw − t0

, Re =
2R2(1−N)ρu0

K2
c

, P r =
µCp
K

(
ωR2

u0

) 1
2

Here Yc is the Casson number, Re is the Reynolds number, Ta is the Taylor

number, µr is know as reference viscosity, Pr is the Prandtl’s number, Cp is

the specific heat at constant pressure, K is the thermal conductivity, t0 is the

fluid temperature at annulus entry, tw is the isothermal wall temperature and

N is known as aspect ratio of the annulus.

The dimensionless form of the above Equations (3.2.1) to (3.2.5) and (3.2.7)
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are given by

∂V

∂R
+
V

R
+
∂U

∂Z
= 0 (3.2.8)

W 2

R
=
Re2(1−N)

2(1 +N)Ta

∂P

∂R
(3.2.9)

V
∂W

∂R
+ U

∂W

∂Z
+
VW

R
=

4Y
1
2
c

R

(
∂W

∂R
− W

R

) 1
2

+ Y
1
2
c

(
∂W

∂R
− W

R

)− 1
2

∗

(
∂2W

∂R2
− 1

R

∂W

∂R
+
W

R2

)
+

(
∂2W

∂R2
+

1

R

∂W

∂R
− W

R2

)
+

2Yc
R

(3.2.10)

V
∂U

∂R
+ U

∂U

∂Z
= −∂P

∂Z
+

1

R

∂U

∂R
+

2Y
1
2
c

R

(
∂U

∂R

) 1
2

+ Y
1
2
c

(
∂U

∂R

)− 1
2 ∂2U

∂R2

+
∂2U

∂R2
+
Yc
R

(3.2.11)

V
∂T

∂R
+ U

∂T

∂Z
=

1

Pr

[
∂2T

∂R2
+

1

R

∂T

∂R

]
(3.2.12)

and

2

∫ 1

N

RUdR = (1−N2) (3.2.13)

The boundary conditions (3.2.6) associated with the hydrodynamic part of

the problem in the dimensionless form are given by

for Z ≥ 0 and R = N, V = U = 0 and W = 1

for Z ≥ 0 and R = 1, V = U = W = 0

for Z = 0 and N < R < 1, U = 1 (3.2.14)

at Z = 0, P = 0
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Considering the outer cylinder to be adiabatic and the inner cylinder to be

isothermal, the following boundary conditions are used for analyzing the ther-

mal part.

for Z ≥ 0, T = 1 at R = N

for Z ≥ 0,
∂T

∂R
= 0 at R = 1

for Z = 0 and N < R < 1, T = 0 (3.2.15)

3.3 SOLUTION OF THE PROBLEM

Considering the mesh network of Figure (3.2), the following difference repre-

sentations are made. Here ∆R and ∆Z represent the grid size along the radial

and axial directions respectively.

Figure 3.2 Grid Formation for Finite-Difference Representations

Vi+1,j+1 = Vi,j+1

(
N + i∆R

N + (i+ 1)∆R

)
− ∆R

4∆Z

(
2N + (2i+ 1)∆R

N + (i+ 1)∆R

)
∗ (3.3.1)

(Ui+1,j+1 + Ui,j+1 − Ui+1,j − Ui,j)
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W 2
i,j+1

N + i∆R
=

(1−N)Re2

2Ta(1 +N)

Pi,j+1 − Pi−1,j+1

∆R
(3.3.2)

V i, j

[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R

]
+ Ui, j

[
Wi,j+1 −Wi,j

∆Z

]
+

Vi,jWi,j

N + i∆R
=

4(Yc)
1/2

N + i∆R

[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R
− Wi,j

N + i∆R

] 1
2

+ (Yc)
1/2

[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R
− Wi,j

N + i∆R

]− 1
2

∗

(
Wi+1,j+1 +Wi+1,j − 2Wi,j+1 − 2Wi,j +Wi−1,j +Wi−1,j+1

2(∆R)2
−

Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

(N + i∆R)4∆R
+

Wi,j

(N + i∆R)2
)+

(
Wi+1,j+1 +Wi+1,j − 2Wi,j+1 − 2Wi,j +Wi−1,j +Wi−1,j+1

2(∆R)2
+

Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

(N + i∆R)4∆R
− Wi,j

(N + i∆R)2
) +

2Yc
N + i∆R

(3.3.3)

Pi,j+1 + Ui−1,j+1[
∆Z

2∆R(N + i∆R)
− ∆Z

2∆R
Vi,j −

∆Z

(∆R)2
− (Yc)

1/2∆Z

(∆R)2
∗

(
Ui+1,j+1 − Ui−1,j+1

2(∆R)

)−1/2

] + Ui,j+1[Ui,j +
2∆Z

(∆R)2
+

2(Yc)
1/2∆Z

(∆R)2
∗

(
Ui+1,j+1 − Ui−1,j+1

2(∆R)

)−1/2

] + Ui+1,j+1[−
∆Z

2∆R(N + i∆R)
+

∆Z

2∆R
Vi,j −

∆Z

(∆R)2

− (Yc)
1/2∆Z

(∆R)2

(
Ui+1,j+1 − Ui−1,j+1

2(∆R)

)−1/2

]− 2(Yc)
1/2∆Z

N + i∆R

(
Ui+1,j+1 − Ui−1,j+1

2(∆R)

)1/2

= Pi,j + U2
i,j +

Yc(∆Z)

N + i∆R
(3.3.4)

Where i=0 at R=N and i=m at R=1. Here m is the number of radial incre-

ments in the mesh.
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The application of trapezoidal rule to Equation (3.2.13), with the boundary

condition (3.2.14) gives

∆R
m−1∑
i=1

Ui,j(N + i∆R) =

(
1−N2

2

)
(3.3.5)

First, the set of difference Equations (3.3.1) to (3.3.6) have been solved by

the finite difference iterative method. Starting with j =0 column (annulus

entrance) and applying Equation (3.3.3), we have a system of non-linear alge-

braic equations and this system has been solved by Newton-Raphson method

to obtain the values of the velocity component W at the second column j =1.

Then applying Equations (3.3.2) and (3.3.4) for 1 ≤ i ≤ m− 1 and Equation

(3.3.5), we get a system of non-linear equations. Again solving this system

by Newton-Raphson method to obtain the values of the velocity component

U and the pressure P at the second column j =1. Lastly, the values of the

velocity component V at the second column j =1 are obtained from Equation

(3.3.1) by Gauss-Jordan method using the known values of U. Repeating this

procedure, we can advance, column by column, along the axial direction of

the annulus until the flow becomes axially and tangentially fully developed.

With the values of V and U known, the energy Equation (3.2.12) can be

considered as a linear equation in T with variable coefficients. By using the

implicit finite difference technique, the energy equation can be represented as

Ti+1,j+1

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
+

Ti−1,j+1

(
1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2

)
=

Ti,j

(
Ui,j+1 + Ui,j

2∆Z
− 1

Pr(∆R)2

)
− Ti,j+1

(
Ui,j+1 + Ui,j

2∆Z
+

1

Pr(∆R)2

)
+

Ti+1,j

(
1

2Pr(∆R)2
+

1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R

)
+

Ti−1,j

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
(3.3.6)
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The above equation has solved by using the boundary condition (3.2.15) to ob-

tain the temperature distribution in the annular entrance region. The system

of linear equations associated with each column has been solved by Gauss-

Jordan elimination method.

3.4 RESULTS AND DISCUSSION

Numerical solutions have been obtained for all different values of Casson Num-

ber Yc, aspect ratio N and various parameters as shown in Table (3.4.1). The

Prandtl’s number has been chosen as 15. Here, the velocity profiles, pressure

variation and temperature distribution along the radial direction R during the

rotation of the inner wall of the annuli have been shown in figures (3.3) to

(3.22).

Table 3.4.1 List of Various Parameters Used

Various Values of Parameters
Aspect
Ratio N

Radial Posi-
tion R

Axial Posi-
tion Z

Rt=Re2/Ta Casson Number
Yc

0.3 0.1 0.01 1 0, 10, 20, 30
0.5 0.1 0.02 10 0, 10, 20, 30
0.8 0.05 0.03 20 0, 10, 20, 30

Figures (3.3) to (3.5) show the development of the tangential velocity

profile component W for N =0.3, 0.5, 0.8 and for different values of Casson

numbers Yc with Prandtl’s number 15. The computation has been done for

various values of the parameter Rt to study the effect of rotation of inner

cylinder. The values corresponding to Rt=1, 10 and 20 are depicted in the

figures. The values of tangential velocity decrease from the inner wall to outer

wall of the annulus. It is found that with the increase of aspect ratio N, the

tangential velocity profile increases. Further, as observed for the other yield-

stress fluid, viz. Bingham fluid, here also it is found that with the increase

of Casson number, the tangential velocity profile increases. The effect of the

parameter Rt is negligible for the tangential velocity.
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Figures (3.6) to (3.8) show the development of the axial velocity profile com-

ponent U for N=0.3, 0.5, 0.8 at axial positions of Z = 0.01, 0.02, 0.03 and

for different values of the Casson numbers Yc. It is found that, by increasing

the aspect ratio N, the axial velocity component U increases at all values of

Casson numbers Yc. Also, it is observed that the velocity profile takes the

parabolic form with Casson number Yc being zero (Newtonian fluid).

The radial velocity profile component V for N=0.3, 0.5 and 0.8, for differ-

ent values of the Casson numbers Yc at different axial positions Z are shown

in Figures (3.9) to (3.11). Again, the parameter Rt values are taken as 1, 10

and 20 for computational purpose. The values of radial velocity are negative

in the region near the outer wall since it is in the opposite direction to the

radial coordinate R and it has positive values near the inner wall because

it has the same direction of the radial coordinate. The values of the radial

velocity decreases with increase of Casson number Yc. This phenomena is due

to the rotation of the inner cylinder of the annuli. It is noted here that the

radial velocity components purely depends on the axial coordinate.

Figures (3.12) to (3.14) show the variation of the pressure P along the ra-

dial coordinate R for N=0.3, 0.5 and 0.8 and for different value of Casson

numbers Yc. It is found that the value of P increases from a minimum at the

inner wall to a maximum at the outer wall. Also, it is realized that increase

in the value of Casson numbers Yc, reduces the pressure values P. Further, it

is observed that the pressure does not vary so much with respect to the radial

coordinate in the region near the outer wall.

Figures (3.15) to (3.22) show the distribution of temperature T for N=0.3,

0.8 at axial positions of Z=0.01, 0.02, 0.03, 0.04 and for different values of

Casson number Yc=0, 10, 20, 30. Here the Prandtl’s number is fixed as 15.

It is observed from the results obtained, that the temperature decreases with

increase of Casson Number for a fixed annular width. When the aspect ratio

N increases, it is found that the temperature increases for a fixed Casson

Number. Also, it is found that with the increase of axial position the temper-

ature also increasing for a fixed aspect ratio N, Casson Number Yc.
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The present results are compared with other recent work done by Kandasamy

et al. (2007a) for a particular case of stationary cylinders and the results in

our analysis are matching with the results of it.

3.5 CONCLUSION

From this study, the following conclusions can be drawn:

1. Tangential velocity decreases from the rotating inner wall to the stationary

outer wall of the annulus.

2. For a fixed Casson number Yc, the axial velocity component U increases if

we decrease the annular gap.

3. The pressure is found to be minimum at the inner wall and gradually

increasing to a maximum at the outer wall for all values of Casson numbers

Yc and pressure variation is not much with respect to the radial coordinate

near the outer wall.

4. As observed in the case of Bingham study here also the temperature de-

creases from the rotating inner wall to the stationary outer wall of the annulus.

5. The temperature is decreasing when we increase the Casson number Yc

and the same phenomena is observed for the increment of aspect ratio N.
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Figure 3.3 Tangential Velocity Profile for N=0.3, R = 0.1 at Z = 0.01
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Figure 3.4 Tangential Velocity Profile for N=0.5, R = 0.1 at Z = 0.02
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Figure 3.5 Tangential Velocity Profile for N=0.8, R = 0.05 at Z = 0.03
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Figure 3.6 Axial Velocity Profile for N=0.3, R = 0.1 at Z = 0.01

61



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

0.8

1

1.2

R

U

 

 

Yc=0

Yc=10

Yc=20

Yc=30

Figure 3.7 Axial Velocity Profile for N=0.5, R = 0.1 at Z = 0.02
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Figure 3.8 Axial Velocity Profile for N=0.8, R = 0.05 at Z = 0.03
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Figure 3.9 Radial Velocity Profile for N=0.3, R = 0.1 at Z = 0.01
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Figure 3.10 Radial Velocity Profile for N=0.5, R = 0.1 at Z = 0.02
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Figure 3.11 Radial Velocity Profile for N=0.8, R = 0.05 at Z = 0.03
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Figure 3.12 Pressure Variation for N=0.3, R = 0.1 at Z = 0.01
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Figure 3.13 Pressure Variation for N=0.5, R = 0.1 at Z = 0.02
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Figure 3.14 Pressure Variation for N=0.8, R = 0.05 at Z = 0.03
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Figure 3.15 Temperature Distribution for N=0.3, Pr=15 and Yc=0
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Figure 3.16 Temperature Distribution for N=0.8, Pr=15 and Yc=0
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Figure 3.17 Temperature Distribution for N=0.3, Pr=15 and Yc=10
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Figure 3.18 Temperature Distribution for N=0.8, Pr=15 and Yc=10
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Figure 3.19 Temperature Distribution for N=0.3, Pr=15 and Yc=20
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Figure 3.20 Temperature Distribution for N=0.8, Pr=15 and Yc=20
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Figure 3.21 Temperature Distribution for N=0.3, Pr=15 and Yc=30
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Figure 3.22 Temperature Distribution for N=0.8, Pr=15 and Yc=30
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Chapter 4

ENTRANCE REGION FLOW HEAT
TRANSFER IN CONCENTRIC
ANNULI WITH ROTATING INNER
WALL FOR HERSCHEL-BULKLEY
FLUIDS

4.1 INTRODUCTION

Herschel-Bulkley fluids are materials possessing a yield value and in flow,

they exhibit the characteristics of shear thinning or shear thickening mate-

rials. Shear thinning materials are those which decreases in viscosity as the

rate of shear increases and shear thickening materials are the one which in-

creases in viscosity as the rate of shear increases. Herschel-Bukley fluid is

the empirical combination of Bingham plastic material and Power law fluids.

We are interested in investigating the laminar flow of non-Newtonian fluids in

the entrance region of annular channel. In particular, we are analyzing these

problems with the assumption that the inner cylinder is rotating and the outer

cylinder is at rest. The entrance region flow in channels constitutes a prob-

lem of fundamental interest in engineering applications. The behaviour of the

fluid in the entrance region may play a significant part in the total length of

the channel and the pressure drop may be markedly greater than for the case

where the flow is regarded as fully developed throughout the channel. The

development of boundary layer is visualized when the fluid enters an annulus

and the fully developed velocity profile is observed in the region starting from
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the point down-stream where the boundary layers meet asymptotically with

the outer edge of the plug flow zone.

A finite difference analysis of the entrance region flow heat transfer of Herschel-

Bulkley fluids in concentric annuli with rotating inner wall has been carried

out and presented in this chapter. The analysis is made for simultaneously de-

veloping hydrodynamic and thermal boundary layer in concentric annuli with

the inner cylinder assumed to be rotating with a constant angular velocity

and the outer cylinder being stationary. A finite difference analysis is used to

obtain the velocity profiles, pressure variation and temperature distribution

along the radial direction. With the Prandtl’s boundary layer assumptions,

the continuity, momentum and energy equations are solved iteratively using

a finite difference method. Computational results are obtained for various

non-Newtonian flow parameters, geometrical considerations and analyzed ex-

tensively for the influence of these parameters on the flow.

4.2 MATHEMATICAL FORMULATION OF

THE PROBLEM

The geometry of the problem is as shown in Figure (2.1). The flow is steady,

laminar, incompressible, axisymmetric with constant physical properties, hav-

ing negligible viscous dissipation and no internal heat generation. Moreover,

it is assumed that the axial heat diffusion is negligible as compared to the

radial diffusion. The governing equations in polar coordinate system (r, θ, z)

for a Herschel-Bulkley fluid in the entrance region are:

Continuity equation :
∂(rv)

∂r
+
∂(ru)

∂z
= 0 (4.2.1)

r −momentum equation :
w2

r
=

1

ρ

∂p

∂r
(4.2.2)
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θ −momentum equation : v
∂w

∂r
+ u

∂w

∂z
+
vw

r
=

1

ρr2
∂

∂r

(
r2
(
τ0 + k

[
r
∂

∂r

(w
r

)]n))
(4.2.3)

z −momentum equation : v
∂u

∂r
+ u

∂u

∂z
= −1

ρ

∂p

∂z
+

1

ρr

∂

∂r

(
r

[
τ0 + k

(
∂u

∂r

)n])
(4.2.4)

Energy equation : v
∂t

∂r
+ u

∂t

∂z
= α

[
∂2t

∂r2
+

1

r

∂t

∂r

]
(4.2.5)

Here k is the consistency index and n is the flow index.

The boundary conditions associated with the hydrodynamic part of the prob-

lem are already given in Equation (2.2.6) as well as in Equation (3.2.6).

The continuity Equation (4.2.1) can be expressed in the following integral

form as

2

∫ R2

R1

rudr = (R2
2 −R2

1)u0 (4.2.6)

The following dimensionless variables and parameters are introduced.

R =
r

R2

, U =
u

u0
, V =

ρvR2

µr
,W =

w

ωR1

, N =
R1

R2

, P =
p− p0
ρu20

, Z =
2z(1−N)

R2Re

Yh =
τ0
k

(
R2

u0

)n
, Ta =

2ω2ρ2R2
1(R2 −R1)

3

µ2
r(R1 +R2)

, here µr = k

(
ωR1

R2

)n
Re =

ρ2(R2 −R1)u0
µr

, T =
t− t0
tw − t0

, P r =
µCp
K

(
ωR2

u0

)1−n

Here Yh is the Hershel-Bulkley number, Re is the Reynolds number, Ta is the

Taylor number and µr is know as reference viscosity.
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Equations (4.2.1) to (4.2.5) and (4.2.7) in the dimensionless form are given by

∂V

∂R
+
V

R
+
∂U

∂Z
= 0 (4.2.7)

W 2

R
=
Re2(1−N)

2(1 +N)Ta

∂P

∂R
(4.2.8)

V
∂W

∂R
+ U

∂W

∂Z
+
VW

R
=

2

R

(
∂W

∂R
− W

R

)n
+ n

(
∂W

∂R
− W

R

)n−1

∗

(
∂2W

∂R2
− 1

R

∂W

∂R
+
W

R2

)
+

2Yh
R

(4.2.9)

V
∂U

∂R
+ U

∂U

∂Z
= −∂P

∂Z
+

1

R

(
∂U

∂R

)n
+ n

(
∂U

∂R

)n−1
∂2U

∂R2
+
Yh
R

(4.2.10)

V
∂T

∂R
+ U

∂T

∂Z
=

1

Pr

[
∂2T

∂R2
+

1

R

∂T

∂R

]
(4.2.11)

and

2

∫ 1

N

RUdR = (1−N2) (4.2.12)

The boundary conditions (2.2.6) associated with the hydrodynamic part of

the problem in the dimensionless form are given in Equation (2.2.14) and

for the thermal part, considering the outer cylinder to be adiabatic and the

inner cylinder to be isothermal, the boundary conditions are given in Equation

(2.2.15).

74



4.3 SOLUTION OF THE PROBLEM

Based on the grid formation shown in Figure (2.2), the finite difference form

of the governing equations are given below:

Vi+1,j+1 = Vi,j+1

(
N + i∆R

N + (i+ 1)∆R

)
− ∆R

4∆Z

(
2N + (2i+ 1)∆R

N + (i+ 1)∆R

)
∗

(Ui+1,j+1 + Ui,j+1 − Ui+1,j − Ui,j) (4.3.1)

W 2
i,j+1

N + i∆R
=

(1−N)Re2

2Ta(1 +N)

Pi,j+1 − Pi−1,j+1

∆R
(4.3.2)

Vi,j

[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R

]
+ Ui,j

[
Wi,j+1 −Wi,j

∆Z

]
+

Vi,jWi,j

N + i∆R
=

2

N + i∆R

[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R
− Wi,j

N + i∆R

]n

+ n ∗
[
Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

4∆R
− Wi,j

N + i∆R

]n−1

∗

(
Wi+1,j+1 +Wi+1,j − 2Wi,j+1 − 2Wi,j +Wi−1,j +Wi−1,j+1

2(∆R)2

− Wi+1,j+1 +Wi+1,j −Wi−1,j −Wi−1,j+1

(N + i∆R)4∆R
+

Wij

(N + i∆R)2
) +

2Yh
N + i∆R

(4.3.3)

Ui−1,j+1

[
− ∆Z

2∆R
Vi,j −

n∆Z

2n−1(∆R)n+1
(Ui+1,j+1 − Ui−1,j+1)

n−1

]

Pi,j+1 + Ui,j+1

[
Ui,j +

n∆Z

2n−2(∆R)n+1
(Ui+1,j+1 − Ui−1,j+1)

n−1

]
+

Ui+1,j+1

[
∆Z

2∆R
Vi,j −

n∆Z

2n−1(∆R)n+1
(Ui+1,j+1 − Ui−1,j+1)

n−1

]
−

− ∆Z

N + i∆R

(
Ui+1,j+1 − Ui−1,j+1

2∆R

)n
= Pi,j + U2

i,j +
Yh(∆Z)

N + i∆R
(4.3.4)
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Where i=0 at R=N and i=m at R=1. Here m is the number of radial incre-

ments in the mesh.

Again, the application of trapezoidal rule to Equation (4.2.13) gives

∆R

2
(NU0,j + Um,j) + ∆R

m−1∑
i=1

Ui,j(N + i∆R) =

(
1−N2

2

)

The boundary condition (2.2.14) gives U0,j = Um,j = 0 and the above equation

reduces to

∆R
m−1∑
i=1

Ui,j(N + i∆R) =

(
1−N2

2

)
(4.3.5)

The computational procedure is again as stated in the chapter 3. The set of

difference Equations (4.3.1) to (4.3.6) have been solved by the iterative proce-

dure. Starting at the j=0 column (annulus entrance) and applying Equation

(4.3.3) for 1 ≤ i ≤ m − 1, we get a system of non-linear algebraic equations.

This system has been solved by using Newton-Raphson method to obtain the

values of the tangential velocity component W at the second column j=1.

Then applying Equations (4.3.2) and (4.3.4) for 1 ≤ i ≤ m− 1 and Equation

(4.3.5), we get a system of non-linear equations. Again solving this system

by Newton-Raphson method, we obtain the values of the axial velocity com-

ponent U and the pressure P at the second column j=1. Finally, the values

of the radial velocity component V at the second column j=1 are obtained

from Equation (4.3.1) by Gauss-Jordan method using the known values of U .

Repeating this procedure, we can advance, column by column, along the axial

direction of the annulus until the flow becomes axially and tangentially fully

developed.

With the values of V and U known, the energy Equation (4.2.12) can be

considered as a linear equation in T with variable coefficients. By using the

implicit finite difference technique, the energy equation can be represented as
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Ti+1,j+1

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
+

Ti−1,j+1

(
1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2

)
=

Ti,j

(
Ui,j+1 + Ui,j

2∆Z
− 1

Pr(∆R)2

)
− Ti,j+1

(
Ui,j+1 + Ui,j

2∆Z
+

1

Pr(∆R)2

)
+

Ti+1,j

(
1

2Pr(∆R)2
+

1

4(N + i∆R)Pr∆R
− Vi,j+1 + Vi,j

8∆R

)
+

Ti−1,j

(
Vi,j+1 + Vi,j

8∆R
− 1

2Pr(∆R)2
− 1

4(N + i∆R)Pr∆R

)
(4.3.6)

Equation (4.3.6), with the boundary conditions (2.2.15) have been used to ob-

tain the temperature distribution in the annular entrance region. The system

of linear equations associated with each column has been solved by Gauss-

Jordan elimination method.

4.4 RESULTS AND DISCUSSION

Numerical calculations have been performed for all admissible values of Herschel-

Bulkley number Yh, aspect ratio N and various parameters as shown in Table

(4.4.1). The Prandtl’s number has been chosen as 7. The velocity profiles and

pressure variation along radial direction R have been computed for different

values of N and Yh are shown in Figures (4.3) to (4.22). The temperature

distributions during the rotation of the inner wall of the annuli have been

shown in Figures (4.23) to (4.28).

Table 4.4.1 List of Various Parameters Used

Various Values of Parameters
Aspect
Ratio N

Radial
Position
R

Axial
Position
Z

Rt =
Re2/Ta

Flow Index
n

Herschel-
Bulkley number
Yh

0.3 0.1 0.02 10 0.5, 1, 1.5 0, 10, 20, 30
0.8 0.05 0.03 20 0.5, 1, 1.5 0, 10, 20, 30
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Figures (4.3) to (4.8) show the development of the tangential velocity pro-

file component W for N=0.3 and 0.8, for values of n as 0.5, 1, and 1.5 and for

different values of Herschel-Bulkley numbers. The values of tangential veloc-

ity decrease from the inner wall to outer wall of the annulus. It is found that

with the increase of aspect ratio N , the tangential velocity profile increases.

That is, the tangential velocity is more when the gap of the annuli is small.

Also, it is observed that the value of W increases with the increasing value of

flow index n. Further, it is found that with the increase of Herschel-Bulkley

number, the tangential velocity profile increases. This means, the tangential

velocity tends to increase for the thick viscous fluids when the inner cylinder

is rotating. The effect of the parameter Rt is negligible for the tangential

velocity.

Figures (4.9) to (4.14) show the development of the axial velocity profile com-

ponent U for N=0.3, 0.8 and the value of n chosen as 0.5, 1, and 1.5, for dif-

ferent values of the Herschel-Bulkley numbers. It is found that increasing the

flow index n, the axial velocity component increases at all values of Herschel-

Bulkley numbers and the velocity profile develops faster as n increases. It

indicates that the axial velocity is more for shear thinning fluids(n > 1) and

for shear thickening fluids(n < 1) the axial velocity component is less. Also it

is observed that the velocity profile takes the parabolic form as n tends to 1

with Herschel-Bulkley number being zero (Newtonian fluid).

The radial velocity profile component V for N=0.3 and 0.8 when n=1, at

different sections of the axial direction Z are shown in Figures (4.15) and

(4.16). The values of radial velocity are negative in the region near the outer

wall since it is in the opposite direction to the radial coordinate R and it has

positive values near the inner wall because it has the same direction of the

radial coordinate. This phenomena is due to the rotation of the inner cylinder

of the annuli. It is noted here that the radial velocity components purely

depends on the axial coordinate.

Figures (4.17) to (4.22) show the variation of the pressure P along the ra-

dial coordinate R for N=0.3 and 0.8 and the value of n=0.5, 1, and 1.5. It

is found that the value of P increases from a minimum at the inner wall to
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a maximum at the outer wall for all values of the parameter n. Further it

is realized that increase in the value of Herschel-Bulkley numbers Yh , the

pressure P values also increases. This is because of the fact that the pressure

will tend to be lower for thick viscous fluids. Moreover, it is observed that the

pressure does not vary so much with respect to the radial coordinate in the

region near the outer wall.

The temperature distribution along radial direction have been plotted for dif-

ferent axial positions with N =0.3, 0.8, n=0.5, 1, 1.5 and Yh =0, 10. Here the

temperature distributions during the rotation of the inner wall of the annuli

have been shown in Figures (4.23) to (4.28). It is observed from the results

obtained, that the temperature decreases with increase of Herschel-Bulkley

Number for a fixed annular width. When the aspect ratio N increases, it is

found that the temperature increases for a fixed Herschel-Bulkley Number Yh.

Moreover, with the increase of flow index ‘n’ the temperature decreases for

a fixed aspect ratio N and Herschel-Bulkley Number. Also, it is found that

with the increase of axial position the temperature also increasing for a fixed

aspect ratio N and Herschel-Bulkley Number Yh.

The present results are compared with available results in literature for various

particular cases and are found to be in agreement. When the Herschel-Bulkley

Number Yh=0 and n=1, our results match with the results corresponded to

Newtonian fluid of Coney and El-Shaarawi (1974a). Also when the Herschel-

Bulkley number Yh=0, our results match with the results corresponded to

power-law fluids given by Sayed-Ahmed and Sharaf-El-Din (2006). In the case

of non-rotating cylinders, the results in our analysis are matching with that of

the results of Kandasamy et al. (2007b). Also, in the case of non-thermal part

these results matches with the results of Kandasamy and Nadiminti (2015).
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4.5 CONCLUSION

The velocity distribution, pressure variation and temperature variations along

radial direction R have been presented geometrically. From this study, the fol-

lowing can be concluded.

1. Tangential velocity decrease from the inner wall to outer wall of the annu-

lus and the tangential velocity is high for thick viscous fluids.

2. Increasing the flow index n, the axial velocity component U increases

at all values of Herschel-Bulkley numbers Yh and the velocity profile develops

faster as ‘n’ increases.

3. Radial velocity is found to be depends only on the axial coordinate.

4. Pressure increases from a minimum at the inner wall to a maximum at

the outer wall for all values of the flow index ‘n’ and pressure does not vary

so much with respect to the radial coordinate in the region near the outer wall.

5. The temperature decreases from the rotating inner wall to the station-

ary outer wall of the annulus.

6. When increasing the Herschel-Bulkley Number, it is observed that the

temperature decreases.

7. With the increase of flow index ‘n’, the temperature decreases.

8. When aspect ratio N increases, it is found that the temperature increases.

9. With the increase of axial position Z, the temperature also increases.
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Figure 4.1 Tangential Velocity Profile for N=0.3, n=0.5, R = 0.1, Z = 0.02
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Figure 4.2 Tangential Velocity Profile for N=0.3, n=1, R = 0.1 at Z = 0.02
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Figure 4.3 Tangential Velocity Profile for N=0.3, n=1.5, R = 0.1, Z = 0.02
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Figure 4.4 Tangential Velocity Profile for N=0.8, n=0.5, R = 0.05, Z = 0.03
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Figure 4.5 Tangential Velocity Profile for N=0.8, n=1, R = 0.05 at Z = 0.03
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Figure 4.6 Tangential Velocity Profile for N=0.8, n=1.5, R = 0.05, Z = 0.03
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Figure 4.7 Axial Velocity Profile for N=0.3, n=0.5, R = 0.1 at Z = 0.02
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Figure 4.8 Axial Velocity Profile for N=0.3, n=1, R = 0.1 at Z = 0.02
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Figure 4.9 Axial Velocity Profile for N=0.3, n=1.5, R = 0.1 at Z = 0.02
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Figure 4.10 Axial Velocity Profile for N=0.8, n=0.5, R = 0.05 at Z = 0.03
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Figure 4.11 Axial Velocity Profile for N=0.8, n=1, R = 0.05 at Z = 0.03
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Figure 4.12 Axial Velocity Profile for N=0.8, n=1.5, R = 0.05 at Z = 0.03
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Figure 4.13 Radial Velocity Profile for N=0.3, n=1, R = 0.1 at Z = 0.02

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

R

V

 

 

Z=0.01

Z=0.02

Z=0.03

Z=0.04

Figure 4.14 Radial Velocity Profile for N=0.8, n=1, R = 0.05 at Z = 0.03
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Figure 4.15 Pressure Variation for N=0.3, n=0.5, R = 0.1 at Z = 0.02
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Figure 4.16 Pressure Variation for N=0.3, n=1, R = 0.1 at Z = 0.02
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Figure 4.17 Pressure Variation for N=0.3, n=1.5, R = 0.1 at Z = 0.02
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Figure 4.18 Pressure Variation for N=0.8, n=0.5, R = 0.05 at Z = 0.03
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Figure 4.19 Pressure Variation for N=0.8, n=1, R = 0.05 at Z = 0.03
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Figure 4.20 Pressure Variation for N=0.8, n=1.5, R = 0.05 at Z = 0.03
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Figure 4.21 Temperature Distribution for N=0.3, n=0.5, Pr=7 and Yh=0
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Figure 4.22 Temperature Distribution for N=0.8, n=0.5, Pr=7 and Yh=10
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Figure 4.23 Temperature Distribution for N=0.3, n=1, Pr=7 and Yh=0
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Figure 4.24 Temperature Distribution for N=0.8, n=1, Pr=7 and Yh=10
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Figure 4.25 Temperature Distribution for N=0.3, n=1.5, Pr=7 and Yh=0
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Figure 4.26 Temperature Distribution for N=0.8, n=1.5, Pr=7 and Yh=10
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Chapter 5

CONCLUSION AND FUTURE
SCOPE

5.1 CONCLUSION

Numerical results for the entrance region flow heat transfer in concentric an-

nuli with rotating inner wall for the viscoplastic fluids have been presented.

The effects of the non-Newtonian flow characteristics and geometrical param-

eters on the velocity profiles, pressure variation and temperature distribution

are studied. Numerical calculations have been performed for all admissible

values of yield numbers, flow index n and aspect ratio N . The velocity pro-

files, pressure variation and temperature distribution along radial direction

R have been presented geometrically. From this study, the following can be

concluded.

VELOCITY PROFILES

* For all the viscoplastic fluids analyzed, it is observed that the values of

tangential velocity W decrease from the inner wall to outer wall of the

annulus and it is observed that with the increase of aspect ratio N , the

tangential velocity profile increases. That is, the tangential velocity is more

when the gap of the annuli is small.

* By increasing the aspect ratio N , the axial velocity component U increases.
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* The values of radial velocity V are negative in the region near the outer

wall since it is in the opposite direction to the radial coordinate R and it

has positive values near the inner wall because it has the same direction of

the radial coordinate.

* For Newtonian fluid the shape of the axial velocity profile is parabolic. It

is very much evident in our investigation, as the parameters B, Yc, and Yh

with flow index n being one, tending to zero refer Newtonian fluid.

PRESSURE VARIATION

* It is found that the value of the pressure P increases from a minimum at

the inner wall to a maximum at the outer wall.

* Moreover, it is observed that the pressure P does not vary so much with

respect to the radial coordinate in the region near the outer wall.

TEMPERATURE DISTRIBUTION

* The temperature decreases T from the rotating inner wall to the stationary

outer wall of the annulus.

* It is observed from the results obtained, that the temperature T decreases,

when the aspect ratio N increases.

* Also, it is found that with the increase of axial position Z, the temperature

T also increases for a fixed aspect ratio N .

5.2 FUTURE SCOPE

The effects of the rotation of the annular cylinders in a concentric way as well

as in the opposite direction can be studied further. Then the flow of such

time-independent non-Newtonian fluids in eccentric annuli can be analyzed.
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