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ABSTRACT

The notion of K-frames has been introduced by Laura Găvruţa to study the

atomic systems with respect to a bounded linear operator K in a separable Hilbert

space. K-frames are more general than ordinary frames in the sense that the

lower frame bound only holds for the elements in the range of K. Because of

the higher generality of K-frames, many properties for ordinary frames may not

hold for K-frames, such as the corresponding synthesis operator for K-frames is

not surjective, the frame operator for K-frames is not isomorphic, the alternate

dual reconstruction pair for K-frames is not interchangeable in general. Note that

the frame operator S for a K-frame is semidefinite, so there is also S1/2, but not

positive. Operators that preserve K-frames and generating new K-frames from

old ones by taking sums have been discussed. A close relation between K-frames

and quotient operators is established using through operator-theoretic results on

quotient operators and few characterizations are given.

A frame for a Banach space X was defined as a sequence of elements in X ∗,

not of elements in the original space X . However, semi-inner products for Ba-

nach spaces make possible the development of inner product type arguments in

Banach spaces. The concept of a family of local atoms in a Banach space X with

respect to a BK-space Xd was introduced by Dastourian and Janfada using a semi-

inner product. This concept was generalized to an atomic system for an operator

K ∈ B(X ) called X ∗d -atomic system and it has been led to the definition of a new

frame with respect to the operator K, called X ∗d -K-frame. Appropriate changes

have been made in the definitions of X ∗d -atomic systems and X ∗d -K-frames to fit

them for sequences in the dual space without using semi-inner products, called

Xd-atomic systems and Xd-K-frames respectively. New Xd-K-frames are gener-

ated from each Xd-frame for a Banach space X and each operator K ∈ B(X ∗) and

some characterizations are given. With some crucial assumptions, it is shown that

frames for operators in Banach spaces share nice properties of frames for operators

in Hilbert spaces.

Keywords : Frame ; K-frame ; Xd-atomic system ; Xd-K-frame.
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Chapter 1

PRELIMINARIES

1.1 General Introduction

Gabor (Gabor, 1946) introduced a method for reconstructing functions (signals)

using a family of elementary functions. Later, Duffin and Schaeffer (Duffin and

Schaeffer, 1952) presented a similar tool in the context of nonharmonic Fourier se-

ries and this is the starting point of frame theory. After some decades, Daubechies,

Grossmann and Meyer (Daubechies et al., 1986) announced formally the definition

of frame in the abstract Hilbert spaces. After their work, the theory of frames

began to be studied widely and deeply.

Frames are generalizations of orthonormal bases. The linear independence

property for a (Hamel) basis, which allows every vector to be uniquely represented

as a linear combination is very restrictive for practical problems. Frames allow

each element in the space to be written as a linear combination of the elements

in the frame, but linear independence between the frame elements is not required.

They provide basis-like, stable and usually non-unique representations of vectors

in a Hilbert space.

Theoretical research of frames for Banach spaces is quite different from that

of Hilbert spaces. Due to the lack of an inner product, frames for Banach spaces

were simply defined as a sequence of linear functionals, rather than a sequence of

elements in the space itself. Properties of Hilbert frames usually do not transfer

automatically to Banach spaces.
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Frames have been a focus of study for more than three decades in applications

where redundancy plays a vital and useful role. The redundancy and flexibility

offered by frames has spurred their applications in a variety of areas throughout

mathematics and engineering, such as operator theory (Han and Larson, 2000),

harmonic analysis (Gröchenig, 2001), pseudo-differential operators (Gröchenig and

Heil, 1999), quantum computing (Eldar and Forney, 2002), signal and image pro-

cessing (Donoho and Elad, 2003), wireless communication (Jr. and Paulraj, 2002),

and so on.

Moreover, frames are now used to mitigate the effect of losses in pocket-based

communication systems and hence to improve the robustness of data transmis-

sion (Casazza and Kovačević, 2003), and to design high-rate constellation with

full diversity in multiple-antenna code design (Shokrollahi et al., 2001). For an

introduction to the frame theory, we refer to (Christensen, 2003), (Daubechies,

1992), and (Mallat, 2009).

1.2 Schauder Bases

We consider linear spaces only over the complex number field C. The set of all

natural numbers is denoted by N. Though a common index set I may be used

for countable indexing, it is preferred to use N in place of I for convenience. The

space of absolutely square summable sequences of complex numbers is denoted by

`2.

Definition 1.2.1. A subset E of a linear space X is said to be linearly inde-

pendent if for all f1, f2, . . . , fn ∈ E and α1, α2, . . . , αn ∈ K, the equation

α1f1 + α2f2 + · · ·+ αnfn = 0 implies that α1 = α2 = · · · = αn = 0.

A subset E of X is called an algebraic basis or (Hamel) basis for X if E is

a linearly independent set and a spanning set.

When working with finite dimensional linear spaces, it is often convenient to

take a Hamel basis. In an infinite dimensional linear space, the axiom of choice

2



shows that we can still find a Hamel basis for any non-zero linear space : however,

because it is now infinite, its use is often less. This is especially true in a Banach

space, because such an algebraic basis takes no account of the extra structure

induced by the norm. This leads to the notion of a Schauder basis.

Definition 1.2.2. Let X be an infinite dimensional Banach space. A sequence of

vectors {f1, f2, . . .} in X is called a Schauder basis for X if to each vector f in

the space there corresponds a unique sequence of scalars {α1, α2, . . . } such that

f =
∞∑
i=1

αifi. (1.2.1)

The convergence of the series is understood to be with respect to the norm topology

of X . In other words, ∥∥∥∥∥f −
n∑
i=1

αifi

∥∥∥∥∥→ 0 as n→∞.

The equation (1.2.1) is referred as the expansion of f in the basis {fi}∞i=1.

It is easy to see that a Banach space X that can be equipped with a Schauder

basis is separable. Indeed, in this case, the countable set of finite linear combina-

tions of basis elements with rational scalars is everywhere dense in X .

Schauder bases were constructed for many Banach spaces. In 1927, Schauder

formulated the well-known “problem of a basis” : Is it always possible to construct

a Schauder basis in an arbitrary separable Banach space? This problem was solved

in 1972 by P. Enflo who constructed an example of a separable Banach space

without a Schauder basis. Some examples of Schauder bases are given below.

Example 1.2.3. Let X = `p for 1 ≤ p < ∞, or c0. For n ≥ 1, let ei ∈ X be the

sequence which is 0 except with a ‘ 1’ in the ith position. Then {ei} is a Schauder

basis for X .

Example 1.2.4. {1, t, t2, . . .} is a Schauder basis of C[0, 1] (with sup norm ‖.‖∞)

because span{1, t, t2, . . .} is dense in C[0, 1]. Similarly, {1, t, t2, . . .} is a Schauder

basis of Lp[0, 1], 1 ≤ p <∞.
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Example 1.2.5. (Limaye, 1996) Let 1 ≤ p <∞. For t ∈ [0, 1], let f1(t) = 1,

f2(t) =

 1, if 0 ≤ t ≤ 1/2

−1, if 1/2 < t ≤ 1

and for n = 1, 2, . . . , j = 1, 2, . . . , 2n,

f2n+j(t) =


2n/p, if (2j − 2)/2n+1 ≤ t ≤ (2j − 1)/2n+1

−2n/p, if (2j − 1)/2n+1 < t ≤ 2j/2n+1

0, otherwise.

Then the Haar system {f1, f2, . . .} is a Schauder basis for Lp[0, 1]. Each fn is

a step function.

Example 1.2.6. (Limaye, 1996) For t ∈ R, let g0(t) = t, g1(t) = 1− t,

g2(t) =


2t if 0 ≤ t ≤ 1/2

2− 2t if 1/2 < t ≤ 1

0 if t < 0 or t > 1

and g2n+j(t) = g2(2
nt − j + 1) for n = 1, 2, . . . , j = 1, 2, . . . , 2n. If fn is the

restriction of gn on [0, 1], then {f0, f1, . . .} is a Schauder basis for C[0, 1]. Each

fn is a non-negative piecewise linear continuous function, known as a saw-tooth

function.

Equation (1.2.1) merely means that the series

f =
∞∑
i=1

αifi

converges with respect to the chosen order of the elements. If the series (1.2.1)

converges unconditionally for each f ∈ X , we say that {fi}∞i=1 is an unconditional

basis.

If {ei}∞i=1 is a basis which is not unconditional, there exists a permutation σ for

which {eσ(i)}∞i=1 is not a basis (Singer, 1970). It is known that every Banach space

which has a basis also has a conditional basis (Pe lczyński and Singer, 1965). In

the sequel we make the convention that a basis shall be a Schauder basis, unless

explicit reference is made.
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Theorem 1.2.7. (Christensen, 2003) Assume that {fi}∞i=1 is a basis for a Hilbert

space H. Then there exists a unique family {gi}∞i=1 in H for which

f =
∞∑
i=1

〈f, gi〉fi, for all f ∈ H, (1.2.2)

and {gi}∞i=1 is a basis for H.

The basis {gi}∞i=1 satisfying (1.2.2) is called the dual basis or the bi-orthogonal

basis associated to {fi}∞i=1.

1.3 Orthonormal Bases

Definition 1.3.1. A family E of non-zero vectors in an inner product space X is

called an orthogonal set if 〈f, g〉 = 0, for any two distinct elements f and g of

E. If, in addition, ‖f‖ = 1 for all f ∈ E, then E is called an orthonormal set.

A sequence of vectors which constitutes an orthonormal set is called orthonor-

mal sequence.

Example 1.3.2. (Debnath and Mikusiński, 1999) The Legendre polynomials

defined by

P0(x) = 1,

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 1, 2, . . .

form an orthogonal set in L2[−1, 1].

Example 1.3.3. (Debnath and Mikusiński, 1999) The Hermite polynomials

of degree n are defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

.

The functions

ψn(x) = e−x
2/2Hn(x)

form an orthogonal set in L2(R).
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When a sequence of non-zero vectors is orthogonal but not orthonormal, it is

always possible to normalize the vectors and obtain an orthonormal sequence. It

turns out that the same is possible if the original sequence of vectors in an inner

product space is linearly independent, not necessarily orthogonal. The method of

transforming such a sequence into an orthonormal sequence is called the Gram-

Schmidt orthonormalization process.

Theorem 1.3.4. (Debnath and Mikusiński, 1999) Let f1, f2, . . . , fn be an or-

thonormal set of vectors in an inner product space X . Then, for every f ∈ X , we

have ∥∥∥∥∥f −
n∑
i=1

〈f, fi〉fi

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, fi〉|2 (1.3.3)

and
n∑
i=1

|〈f, fi〉|2 ≤ ‖f‖2.

The equality (1.3.3) can be generalized as follows :∥∥∥∥∥f −
n∑
i=1

αifi

∥∥∥∥∥
2

= ‖f‖2 −
n∑
i=1

|〈f, fi〉|2 +
n∑
i=1

|〈f, fi〉 − αi|2 (1.3.4)

for arbitrary complex numbers α1, α2, . . . , αn.

The expression (1.3.4) is minimized by taking αi = 〈f, fi〉. This choice of αi
′s

minimizes ∥∥∥∥∥f −
n∑
i=1

αifi

∥∥∥∥∥
and thus it provides the best approximation of f by a linear combination of vectors

f1, f2, . . . , fn. This property of orthonormal sets is of fundamental importance for

many approximation techniques.

Moreover, orthonormal sequences are weakly convergent to zero but not strongly

convergent. If {fi}∞i=1 is an orthonormal sequence, then by letting n → ∞ in

(1.3.3), we obtain
∞∑
i=1

|〈f, fi〉|2 ≤ ‖f‖2 (1.3.5)

which implies that the series
∑∞

i=1 |〈f, fi〉|2 converges for every f ∈ X . In other

words, the sequence {〈f, fi〉}∞i=1 is an element of `2.

6



We can say that an orthonormal sequence in X induces a mapping from X

into `2. The expansion

f ∼
∞∑
i=1

〈f, fi〉fi (1.3.6)

is called a generalized Fourier series of f . The scalars αi = 〈f, fi〉 are called the

generalized Fourier coefficients of f with respect to the orthogonal sequence

{fi}∞i=1. As mentioned earlier, this set of coefficients gives the best approximation

for any finite set of fi
′s. In general, the series in (1.3.6) may not converge, however

completeness of the space ensures the convergence, from the following theorem.

Theorem 1.3.5. (Debnath and Mikusiński, 1999) Let {fi}∞i=1 be an orthonormal

sequence in a Hilbert space H, and let {αi}∞i=1 be a sequence of complex numbers.

Then the series
∑∞

i=1 αifi converges if and only if
∑∞

i=1 |αi|2 <∞ and in that case∥∥∥∥∥
∞∑
i=1

αifi

∥∥∥∥∥
2

=
∞∑
i=1

|αi|2.

The above theorem and the inequality (1.3.5) imply that in a Hilbert space H,

the series
∞∑
i=1

〈f, fi〉fi converges for every f ∈ H. However, it can happen that it

converges to an element different from f .

Example 1.3.6. Let H = L2[−π, π], and let

fi(t) =
1√
π

sin it for i = 1, 2, . . . .

The sequence {fi}∞i=1 is an orthonormal set in H. On other hand, for f(t) = cos t,

we have
∞∑
i=1

〈f, fi〉 fi(t) = 0 6= cos t.

Definition 1.3.7. An orthonormal sequence {fi}∞i=1 in an inner product space X

is said to be complete if for every f ∈ X we have

lim
n→∞

∥∥∥∥∥f −
n∑
i=1

〈f, fi〉fi

∥∥∥∥∥ = 0,

written as f =
∞∑
i=1

〈f, fi〉fi. In other words, {fi}∞i=1 is complete if

span{f1, f2, . . .} =
{∑n

i=1 αifi : n ∈ N, α1, α2, . . . , αn ∈ C
}

is dense in X .

7



Definition 1.3.8. An orthonormal set E in an inner product space X is called

an orthonormal basis if for every f ∈ X has a unique representation

f =
∞∑
i=1

αifi,

where αi ∈ C and fi
′s are distinct elements of E.

Example 1.3.9. The sequences {en}∞n=1 and
{
eint
√
2π

}
, n = 0,±1,±2, . . . form

orthonormal bases for `2 and L2[−π, π] respectively.

The following theorem gives important characterizations of orthonormal bases

in Hilbert spaces.

Theorem 1.3.10. (Christensen, 2003) Let {fi}∞i=1 be an orthonormal sequence in

a Hilbert space H. Then the following are equivalent :

1. {fi}∞i=1 is an orthonormal basis for H.

2. f =
∞∑
i=1

〈f, fi〉fi, for every f ∈ H. [Fourier expansion]

3. 〈f, g〉 =
∞∑
i=1

〈f, fi〉〈fi, g〉, for every f, g ∈ H.

4.
∞∑
i=1

|〈f, fi〉|2 = ‖f‖2, for every f ∈ H. [Parseval formula]

5. {fi}∞i=1 is complete.

6. 〈f, fi〉 = 0, for all i ∈ N implies f = 0.

Corollary 1.3.11. If {fi}∞i=1 is an orthonormal basis, then each f ∈ H has an

unconditionally convergent expansion

f =
∞∑
i=1

〈f, fi〉fi.

A basis {gi}∞i=1 is called a dual basis of a basis {fi}∞i=1 if

f =
∞∑
i=1

〈f, gi〉fi for every f ∈ H.

Note that the dual basis of an orthonormal basis is itself.

8



Definition 1.3.12. Let X ,Y be Banach spaces. A mapping T : X → Y is called

a linear operator if for any f, g ∈ X and any scalars α, β

T (αf + βg) = αT (f) + βT (g).

A linear operator f : X → K is called a linear functional on X .

In general, the linear operator may not be defined on the whole space X and

it may be defined on a proper subspace of X . In that case we denote the domain

of definition (simply domain) by D(T ).

We denote the set of all linear operators from X into Y by L(X ,Y) and

L(X ,X ) = L(X ). Every T ∈ L(X ,Y) gives rise to two important subspaces

namely, the null space N(T ), defined by

N(T ) = {f ∈ D(T ) : Tf = 0}

and the range space R(T ) defined as

R(T ) = {Tf : f ∈ D(T )}.

Definition 1.3.13. An operator T ∈ L(X ,Y) is called bounded if there exists

c > 0 such that

‖Tf‖ ≤ c ‖f‖ for all f ∈ X .

In this case, the quantity

‖T‖ := sup

{
‖Tf‖
‖f‖

: f ∈ D(T ), f 6= 0

}
<∞,

is called the norm of T .

We say that T is bounded below if ‖f‖ ≤ c‖Tf‖ for all f ∈ X , for some

c > 0.

If a linear operator is continuous at any point, then it is continuous at every

point and moreover it is bounded. The set of all bounded linear operators from

X to Y is denoted by B(X ,Y) and B(X ,X ) = B(X ). The dual space X ∗ of X

is the set of linear continuous functionals on X .

9



Theorem 1.3.14. (Limaye, 1996) Let X ,Y be Banach spaces and let T ∈ B(X ,Y)

be fixed. Then there exists a unique operator V ∈ B(Y∗,X ∗) that satisfies

g(Tf) = (V g)f for all f ∈ X , g ∈ Y∗.

V is called the adjoint of T , denoted by T ∗. Moreover, ‖T‖ = ‖T ∗‖. If X ,Y are

reflexive, then T ∗∗ = T .

Theorem 1.3.15. Let X ,Y be Banach spaces and T ∈ B(X ,Y). The following

statements hold :

1. T is bounded below if and only if T is injective and R(T ) is closed.

2. T is invertible if and only if T and T ∗ are bounded below.

3. T is bounded below if and only if T ∗ is surjective.

4. T is surjective if and only if T ∗ is bounded below.

5. T has a bounded inverse on R(T ) if and only if T ∗ : Y∗ → X ∗ is surjective.

Every bounded linear operator between Hilbert spaces H and K, with domain

D(T ) can be extended continuously to the closure of D(T ). Hence it can be

extended to the whole space H by defining 0 on D(T )⊥. Thus without loss of

generality we assume that a bounded linear operator is an everywhere defined

operator.

Theorem 1.3.16 (Riesz representation theorem). If φ is a bounded linear func-

tional on a Hilbert space H, then there exists exactly one g in H such that for

every f ∈ H we have φ(f) = 〈f, g〉. Moreover, ‖φ‖ = ‖g‖.

Definition 1.3.17. A Hilbert space H is said to be isomorphic to a Hilbert space

K if there exists a one-to-one linear mapping T from H onto K such that

〈Tf, Tg〉 = 〈f, g〉 for every f, g ∈ H.

Such a mapping is called a Hilbert space isomorphism of H onto K.

10



Definition 1.3.18. Let T ∈ B(H). The unique element V of B(H) which satisfies

〈Tf, g〉 = 〈f, V g〉 for all f, g ∈ H

is called the adjoint of T it is denoted by T ∗.

Definition 1.3.19. Let T ∈ B(H). Then T is called isometry if T ∗T = I ;

unitary if T ∗T = I = TT ∗ ; self-adjoint if T ∗ = T ; invertible if T−1 exists

and belongs to B(H).

A linear operator T on H is said to be positive if 〈Tf, f〉 ≥ 0, for all f ∈ H.

The set of all positive operators on H is denoted by B(H)+.

Definition 1.3.20. Let T ∈ B(H)+. An operator V ∈ B(H) is said to be square

root of T if V 2 = T .

Every operator T ∈ B(H)+ has a unique square root, denoted by T 1/2, which

commutes with every operator in B(H) that commutes with T .

The following theorem characterizes all orthonormal bases for H starting with

an orthonormal basis.

Theorem 1.3.21. Let {fi}∞i=1 be an orthonormal basis for H. Then the orthonor-

mal basis for H are precisely of the form {Tfi}∞i=1, where T : H → H is an unitary

operator.

Before concluding this section, we give some interesting characterizations of a

Hilbert space having a countable orthonormal basis.

Theorem 1.3.22. Let H be a non-zero Hilbert space. Then the following are

equivalent:

1. H has a countable orthonormal basis.

2. H is isomorphic to Kn for some n, or `2.

3. H is separable.

A countable orthonormal basis for H is, in particular, a Schauder basis for H.

Thus every separable Hilbert space has a Schauder basis.
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1.4 Riesz Bases

All orthonormal bases are characterized in terms of unitary operators on a sin-

gle orthonormal basis. A basis is introduced by weakening the condition on the

operator as follows.

Definition 1.4.1. Let H be a separable Hilbert space. A Riesz basis for H is

a family of the form {Tei}∞i=1, where {ei}∞i=1 is an orthonormal basis for H and

T ∈ B(H) is bijective (not necessarily unitary).

Example 1.4.2. Let {ei}∞i=1 be an orthonormal basis for H and consider the

sequence {fi}∞i=1 =
{
e1,

e2√
2
, e3√

3
, . . .

}
. Then {fi}∞i=1 is a Schauder basis but not a

Riesz basis.

Of course, every orthonormal basis is a Riesz basis. In fact, one can characterize

Riesz bases in terms of bases satisfying extra conditions, as shown in the following

result.

Theorem 1.4.3. (Christensen, 2003) A sequence {fi}∞i=1 is a Riesz basis for H

if and only if it is an unconditional basis for H and

0 < inf
i
‖fi‖ ≤ sup

i
‖fi‖ <∞.

The dual basis associated to a Riesz basis is also a Riesz basis:

Theorem 1.4.4. (Christensen, 2003) If a sequence {fi}∞i=1 is a Riesz basis for H,

there exists a unique sequence {gi}∞i=1 in H such that for every f ∈ H,

f =
∞∑
i=1

〈f, gi〉fi, (1.4.7)

{gi}∞i=1 is also a Riesz basis, and {fi}∞i=1 and {gi}∞i=1 are bi-orthogonal (dual of each

other). Moreover, the series in (1.4.7) converges unconditionally for all f ∈ H.

Proposition 1.4.5. (Christensen, 2003) If {fi}∞i=1 is a Riesz basis for H, there

exist two constants 0 < λ ≤ µ <∞ such that for every f ∈ H,

λ‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2. (1.4.8)
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Here λ and µ are called upper and lower bounds respectively. The largest possible

value for λ is 1
‖T−1‖2 , and the smallest possible value for µ is ‖T‖2, where {ei}∞i=1

is an orthonormal basis for H and {fi}∞i=1 = {Tei}∞i=1.

The next theorem gives equality conditions for {fi}∞i=1 being a Riesz basis.

Theorem 1.4.6. Let {fi}∞i=1 be a sequence in a Hilbert space H. Then the follow-

ing are equivalent:

1. {fi}∞i=1 is a Riesz basis for H.

2. {fi}∞i=1 is complete in H, and there exist two constants 0 < λ ≤ µ <∞ such

that for every finite scalar sequence {ci} of scalars,

λ
∞∑
i=1

|ci|2 ≤

∥∥∥∥∥
∞∑
i=1

cifi

∥∥∥∥∥
2

≤ µ
∞∑
i=1

|ci|2.

Example 1.4.7. Let {ei}∞i=1 be an orthonormal basis for H. Given a sequence

{ai}∞i=1 of complex numbers with sup
i
|ai| < 1, we consider a family of vectors

{fi}∞i=1 defined by fi = ei + aiei+1, i ∈ N. Then {fi}∞i=1 is a Riesz basis with

bounds (1− a)2 and (1 + a)2.

1.5 Frames in Hilbert Spaces

Definition 1.5.1. Let H be a (finite or infinite dimensional) Hilbert space. A

sequence {fi}∞i=1 is called a frame (an ordinary frame) for H if there are two

positive constants 0 < λ ≤ µ <∞ satisfying

λ‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H. (1.5.9)

The constants λ and µ are called lower and upper frame bounds, respec-

tively. They are not unique. The optimal upper frame bound is the infimum over

all upper frame bounds and the optimal lower frame bound is the supremum over

all lower frame bounds. Note that the optimal bounds are actually frame bounds.

If λ = µ, then this frame is called λ-tight frame, and if λ = µ = 1, then it

is called Parseval frame. From (1.5.9), it can be said that a sequence of vectors
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{fi}∞i=1 in a Hilbert space H is a frame if the norms ‖f‖H and ‖{〈f, fi〉}∞i=1‖`2 are

equivalent.

Definition 1.5.2. Let {fi}∞i=1 be a frame for H. We call the frame {fi}∞i=1 is

inexact (or, redundant, over complete) if there is at least one element fj

that can be removed from the frame, so that the set {fi}∞i=1
i 6=j

is again a frame for

H.

Definition 1.5.3. A sequence {fi}∞i=1 in H satisfying the upper inequality in

(1.5.9) is called Bessel sequence. If {fi}∞i=1 is a frame for the closed space

span{fi}∞i=1, we call it a frame sequence.

Example 1.5.4. Let {ei}∞i=1 be an orthonormal basis forH. Then {e1, e1, e2, e3, . . .}

is a frame with frame bounds λ = 1 and µ = 2. But the sequence
{
e1,

e2
2
, e3

3
, . . .

}
is not a frame.

Example 1.5.5. Every Riesz basis is a frame by the inequality (1.4.8). The

sequence
{
e1,

e2√
2
, e2√

2
, e3√

3
, e3√

3
, e3√

3
, . . .

}
is a frame but not a Riesz basis.

It is not difficult to prove that {fi}∞i=1 is a Riesz basis if and only if {fi}∞i=1 is

a frame and for {ci}∞i=1 ∈ `2, “
∑∞

i=1 cifi = 0 implies all ci’s are zero.”

Let {fi}∞i=1 be a Bessel sequence and {ei}∞i=1 be an orthonormal basis of H. In

order to analyze an element (signal) f ∈ H, the analysis operator U : H → `2

given by

Uf = {〈f, fi〉}∞i=1 =
∞∑
i=1

〈f, fi〉ei (1.5.10)

is applied. The associated synthesis operator (or, pre-frame operator), de-

noted by L, which provides a mapping from the representation space `2, to H,

is defined to be adjoint of the analysis operator U , L = U∗ : `2 → H, given by

L({ci}∞i=1) =
∞∑
i=1

cifi (OR) L(ei) = fi, i = 1, 2, . . . . (1.5.11)

We obtain the frame operator S : H → H given by S = LU . That is,

Sf = LUf =
∞∑
i=1

〈f, fi〉fi. (1.5.12)
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In particular, for all f ∈ H,

〈f, Sf〉 =

〈
f,
∞∑
i=1

〈f, fi〉fi

〉
=
∞∑
i=1

|〈f, fi〉|2.

Hence the frame operator S for the frame {fi}∞i=1 is a positive, self-adjoint and

invertible operator. And it has a unique positive square root, denoted by S1/2.

Since for each f ∈ H,

λ‖f‖2 ≤ 〈Sf, f〉 ≤ µ‖f‖2,

it follows that {fi}∞i=1 is a frame with frame bounds λ and µ if and only if λI ≤

S ≤ µI. So {fi}∞i=1 is a Parseval frame if and only if S = I.

We have

f = S−1Sf =
∞∑
i=1

〈f, fi〉S−1fi,

and

f = SS−1f =
∞∑
i=1

〈S−1f, fi〉fi =
∞∑
i=1

〈f, S−1fi〉fi.

Hence the frame operator S leads to the important frame reconstruction for-

mula

f =
∞∑
i=1

〈f, fi〉S−1fi =
∞∑
i=1

〈f, S−1fi〉fi, for all f ∈ H. (1.5.13)

Note that the above two series converge unconditionally for all f ∈ H [(Chris-

tensen, 2003), Theorem 5.1.6 ]. The collection {f̃i = S−1fi}∞i=1 is also a frame for

H and {f̃i}∞i=1 is a dual frame of {fi}∞i=1. The sequence {S−1fi}∞i=1 is called the

canonical dual frame of {fi}∞i=1.

The canonical dual frame {S−1fi}∞i=1 is the one having the least square property

among all dual frames {f̃i}∞i=1, that is, we have

∞∑
i=1

|〈f, S−1fi〉|2 ≤
∞∑
i=1

|〈f, f̃i〉|2, for all f ∈ H.

If {fi}∞i=1 is a frame for H, then {fi}∞i=1 has a unique dual frame if and only

if it is exact (and in this case the unique dual is the canonical dual frame) (Han

et al., 2008).

If {fi}∞i=1 is a frame sequence, by replacingH in (1.5.10 - 1.5.12) with span{fi}∞i=1,

the associated operators are still obtained. The corresponding synthesis operator

and frame operator are respectively, surjective and invertible.
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In this case, the following reconstruction formula is satisfied :

f =
∞∑
i=1

〈f, fi〉S−1fi =
∞∑
i=1

〈f, S−1fi〉fi, for all f ∈ span{fi}∞i=1.

Definition 1.5.6. Two sequences {fi}∞i=1 and {gi}∞i=1 in a Hilbert space are equiv-

alent if there is an invertible linear operator T between their spans with Tfi = gi

for all i ∈ N.

Given any frame {fi}∞i=1, {S−1/2fi}∞i=1 is a Parseval frame equivalent to {fi}∞i=1.

Frames can be described as images of an orthonormal basis by bounded linear

operators in an infinite dimensional Hilbert space. They can be classified by the

following result.

Theorem 1.5.7. (Casazza and Kovačević, 2003) Let {ei}∞i=1 be an arbitrary in-

finite orthonormal basis for H. The frames {fi}∞i=1 for H are the precisely the

families {Tei}∞i=1, where T ∈ B(H) is surjective.

This operator T is just the composition of the analysis operator of the or-

thonormal basis and the synthesis operator of the frame.

In the finite dimensional case, frames are equivalent to spanning sets. Here

frames are the only feasible generalization of basis, if reconstruction is wanted. To

be able to work with numerical methods, data and operators have to be discretized.

Applications and algorithms always work with finite dimensional data. The typical

properties of frames can be understood easily in the context of finite dimensional

vector spaces.

For finite dimensional applications, Theorem 1.5.7 can be reformulated as:

Theorem 1.5.8. The frames with m elements in Cn are exactly the images of an

orthonormal basis in Cm by a surjective linear operator.

Hence it is easy to recognize that the columns of “matrices with full rank”

correspond exactly to frames. We have an infinite frame in any finite dimensional

space.

Example 1.5.9. Consider a basis {ei}ni=1 in Cn. Let e
(`)
i =

ei
`
, for ` = 1, 2, . . . .

Then
{
e
(`)
i

}
i,`

is an infinite tight frame in Cn.
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It is well known that for any orthonormal basis {ei}∞i=1 of a Hilbert space H,∑∞
i=1 ‖ei‖ < ∞ if and only if the dimension of the space is finite. But it is not

true with frame, as in the above example,∑
i,`

‖e(`)i ‖ =
∞∑
`=1

n∑
i=1

∥∥∥ei
`

∥∥∥ =
∞∑
`=1

n

`
=∞.

But taking the sequence sum of the norms of frame elements of H, there is an

equivalent condition for H being finite dimensional:

Theorem 1.5.10. (Balazs, 2008) Let {ei}∞i=1 be an orthonormal basis and {fi}∞i=1

be a frame of a Hilbert space H. Then the following statements are equivalent:

1.
∞∑
i=1

‖ei‖2 <∞.

2.
∞∑
i=1

‖fi‖2 <∞.

3. the space H is finite dimensional.

There are several generalizations of frame – all of these generalizations have

been proved to be useful in many applications. Găvruţa (Găvruţa, 2012) recently

presented a generalization of ordinary frames with a bounded linear operator K,

called K-frames, when working on atomic systems for operators. Characteriza-

tions, methods of constructing K-frames and a class of operators in B(H) asso-

ciated with a given atomic system are discussed in Chapter 2. Operators that

preserve K-frames and generating new K-frames from old ones by taking sums

have been discussed. Moreover, a close relation between K-frames and quotient

operators is established using through operator-theoretic results on quotient op-

erators in Chapter 3.

1.6 Frames in Banach Spaces

Extensions of the concept frame to Banach spaces were introduced during the last

years and they became topic of investigation for many mathematicians. The prop-

erties of Hilbert frames usually do not transfer automatically to Banach spaces.
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In Hilbert spaces, the norm equivalence hypothesis leads immediately to the re-

construction formula (1.5.13). This does not hold in Banach spaces in general.

Gröchenig (Gröchenig, 1991) generalized frames to Banach spaces and called

them atomic decompositions. The main feature of frames that Gröchenig was

trying to capture in a general Banach space was the unique association of a vec-

tor in a Hilbert space with the natural set of frame coefficients. Gröchenig also

defined a more general notion for Banach spaces called a Banach frame. Atomic

decompositions and Banach frames are defined with respect to certain sequence

spaces.

A sequence space Xd is called a BK-space if it is a Banach space and the

coordinate functionals are continuous on Xd. That is, xn = {α(n)
i }∞i=1, x = {αi}∞i=1

are elements in Xd and lim
n→∞

xn = x imply that lim
n→∞

α
(n)
i = αi, for each i = 1, 2, . . . .

If the canonical vectors form a Schauder basis for Xd, then Xd is called a

CB-space and its canonical basis is denoted by {ei}∞i=1. If Xd is reflexive and a

CB-space, then Xd is called an RCB-space. Also the dual of Xd is denoted by

X ∗d . When X ∗d is a CB-space, then its canonical basis is denoted by {e∗i }∞i=1.

Definition 1.6.1. (Gröchenig, 1991) Let X be a Banach space and Xd be a BK-

space. Let {gi}∞i=1 be a sequence of elements from X ∗ and {fi}∞i=1 be a sequence of

elements of X . If the following statements hold :

1. {gi(f)}∞i=1 ∈ Xd, for each f ∈ X ;

2. the norms ‖f‖X and ‖{gi(f)}∞i=1‖Xd
are equivalent, that is, there exist two

constants 0 < λ ≤ µ <∞ such that for each f ∈ X

λ‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X

3. f =
∞∑
i=1

gi(f) fi, for each f ∈ X ;

then ({gi}∞i=1, {fi}∞i=1) is called an atomic decomposition of X with respect

to Xd. The constants λ and µ are called lower and upper atomic bounds for

({gi}∞i=1, {fi}∞i=1) respectively.
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Definition 1.6.2. (Gröchenig, 1991) Let X be a Banach space and Xd be a BK-

space. Let {gi}∞i=1 be a sequence of elements from X ∗ and S : Xd → X be given.

If the following statements hold :

1. {gi(f)}∞i=1 ∈ Xd, for each f ∈ X ;

2. the norms ‖f‖X and ‖{gi(f)}∞i=1‖Xd
are equivalent, that is, there exist two

constants 0 < λ ≤ µ <∞ such that for each f ∈ X

λ‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X

3. S is a bounded linear operator from Xd to X , and

S({gi(f)}∞i=1) = f, for each f ∈ X (1.6.14)

then ({gi}∞i=1, S) is a Banach frame for X with respect to Xd. The mapping

S is called the reconstruction operator (or the pre-frame operator). The

constants λ, µ are called lower and upper frame bounds for ({gi}∞i=1, S).

The Banach frame ({gi}∞i=1, S) is called tight if λ = µ and normalized tight

if λ = µ = 1. If the removal of one gi renders the collection {gi}∞i=1 ⊆ X ∗ no longer

a Banach frame for X , then ({gi}∞i=1, S) is called an exact Banach frame.

Note that (1.6.14) can be considered as some kind of “generalized reconstruc-

tion formula” in the sense that it tells how to come back to f ∈ X based on the

coefficients {gi(f)}∞i=1. The condition, however, does not imply reconstruction via

an infinite series.

It turns out there is a natural relationship between these two definitions.

Namely, a Banach frame is an atomic decomposition if and only if the unit vectors

form a basis for the space Xd. This result is stated formally in the next proposition.

Proposition 1.6.3. (Casazza et al., 1999) Let X be a Banach space and Xd be

a BK-space. Let {gi}∞i=1 be a sequence of elements from X ∗ and S : Xd → X

be given. Let {ei}∞i=1 be the unit vectors in Xd, defined by ei(j) = δij. Then the

following are equivalent:
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1. ({gi}∞i=1, S) is a Banach frame for X with respect to Xd and {ei}∞i=1 is a

Schauder basis for Xd.

2. ({gi}∞i=1, {S(ei)}∞i=1) is an atomic decomposition for X with respect to Xd.

Definition 1.6.4. Let X be a Banach space. A sequence of vectors {gi}∞i=1 from

X ∗ is said to be total on X if “gi(f) = 0 for all i ∈ N implies f = 0.”

Every orthonormal basis of a separable Hilbert space is total.

Proposition 1.6.5. (Singer, 1981) Let {gi}∞i=1 ⊆ X ∗ be total on a Banach space

X . The linear space

Zd :=
{
{gi(f)}∞i=1 : f ∈ X

}
with the norm ‖{gi(f)}∞i=1‖Zd

:= ‖f‖X is a BK-space, isometrically isomorphic to

X .

Proposition 1.6.6. (Casazza et al., 2005) Let {gi}∞i=1 ⊆ X ∗ be total on a Banach

space X . Then there exists a bounded linear operator S : Zd → X such that

({gi}∞i=1, S) is a Banach frame for X with respect to Zd.

The following is an example of a Banach frame for a Hilbert space, which is not

frame.

Example 1.6.7. Let {ei}∞i=1 be an orthonormal basis for a separable Hilbert space

H. The sequence {ei + ei+1}∞i=1 is not a frame for H. But by Proposition 1.6.6, it

is a Banach frame for H with respect to the BK-space

Zd =
{
{〈h, ei + ei+1〉} : h ∈ H

}
=

{
{ci + ci+1} : {ci} ∈ `2

}
with the norm ‖{ci + ci+1}‖Zd

= ‖{ci}‖`2.

Peter G Casazza (Casazza et al., 1999) studied the relationship between frames

and atomic decompositions and the various forms of the approximation properties.

This study of Banach space frames answers the questions concerning which Banach

spaces have frames or atomic decompositions.
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1. Every separable Banach space has a normalized tight Banach frame. There

are Banach spaces which do not have frames or atomic decompositions de-

fined on them. Because they cannot be complemented in a space with a

basis.

2. There are Banach spaces which have atomic decompositions, but no frames.

The simplest examples for this are L1[0, 1] or C[0, 1]. Both these spaces have

bases and hence atomic decompositions, but neither of them embeds as a

complemented subspace of a Banach space with an unconditional basis.

3. There is a Banach space X with a frame so that X ∗ fails to have an atomic

decomposition : The space `1 has an unconditional basis (hence a frame)

while its dual is `∞, non-separable and hence `∗1 has no atomic decomposi-

tions.

4. There is a Banach space X so that X ∗ has a frame, but X does not have

a frame: Any pre-dual of `1 which is complemented in a space with an

unconditional basis must be isomorphic to c0. So if X is a pre-dual of `1 is

not isomorphic to c0, then X is a Banach space without any frames whose

dual has an conditional basis (hence a frame).

A frame for a Banach space X was defined as a sequence of elements in X ∗,

not of elements in the original space X . However, semi-inner products for Banach

spaces make possible the development of inner product type arguments in Banach

spaces. A family of local atoms in a Banach space has been introduced and it has

been generalized to an atomic system for operators in Banach spaces, which has

been further led to introduce new frames for operators by Dastourian and Janfada,

by making use of semi-inner products. Unlike the traditional way of considering

sequences in the dual space, sequences in the original space are considered to study

them. Appropriate changes have been made in the definitions of atomic systems

and frames for operators to fit them for sequences in the dual space without using

semi-inner products so that the new notion for Banach spaces can be thought

of a generalization of Banach frames. With some crucial assumptions, we show
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in Chapter 4 that frames for operators in Banach spaces share nice properties of

frames for operators in Hilbert spaces.

Throughout the thesis H and K will denote separable Hilbert spaces, X and

Y will denote separable Banach spaces, X ∗ the dual space of X , Xd a Banach

sequence space and X ∗d the dual of Xd. The analysis, synthesis and frame operators

are denoted by U,L and S respectively. All spaces are nontrivial ; operators are

non-zero.
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Chapter 2

K-FRAMES IN HILBERT

SPACES

There are several generalizations of frame – all of these generalizations have been

proved to be useful in many applications. Some generalizations of frame signif-

icance have been presented such as fusion frames (frame of subspaces) (Casazza

and Kutyniok, 2004), generalized frames (Sun, 2006; Xiao et al., 2015), continuous

frames (Fornasier and Rauhut, 2005) and continuous fusion frames (Faroughi and

Ahmadi, 2010). In the sequel, we discuss results on one such generalization of

frames, called K-frames.

The notion of K-frames have been recently introduced by Laura Găvruţa

(Găvruţa, 2012) to study the atomic systems with respect to a bounded operator

K in Hilbert spaces. It is known that K-frames are more general than ordinary

frames – in the sense that the lower frame bound only holds for the elements in

the range of K.

Because of the higher generality of K-frames, many properties for ordinary

frames may not hold for K-frames. Several methods to construct K-frames and

the stability of perturbations for the K-frames have been discussed in (Xiao et al.,

2013). In this chapter, we construct a frame sequence for the closed subspace

R(K) (the range of K) from an atomic system for a closed range operator K. In

the end, we find a class of bounded operators in which a given Bessel sequence is

an atomic system for every member in the class.
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2.1 Atomic Systems

Definition 2.1.1. (Găvruţa, 2012) Let K ∈ B(H). A sequence {fi}∞i=1 in H is

called an atomic system for K, if the following conditions are satisfied :

1. {fi}∞i=1 is a Bessel sequence ;

2. there exists c > 0 such that for every f ∈ H there exists af = {ai}∞i=1 ∈ `2
such that

‖af‖`2 ≤ c‖f‖ and Kf =
∞∑
i=1

aifi.

Every operator K ∈ B(H) has an atomic system (Găvruţa, 2012). One may ask

whether every Bessel sequence {fi}∞i=1 has an operator K which makes {fi}∞i=1 an

atomic system for K. The answer is in the affirmative by the following proposition.

Proposition 2.1.2. Let {fi}∞i=1 be a Bessel sequence in H. Then {fi}∞i=1 is an

atomic system for the frame operator S.

Proof. Since {fi}∞i=1 is a Bessel sequence in H, we have a bounded operator

L : `2 → H defined by L({ci}∞i=1) =
∞∑
i=1

cifi,

with bound µ and its adjoint

U : H → `2 defined by Uf = {〈f, fi〉}∞i=1.

Let S = LU . Then

S : H → H, Sf =
∞∑
i=1

〈f, fi〉fi (2.1.1)

is a bounded operator on H. Let af = {ai}∞i=1 = {〈f, fi〉}∞i=1 ∈ `2.

Now

‖af‖`2 = ‖{〈f, fi〉}∞i=1‖`2 =

(
∞∑
i=1

|〈f, fi〉|2
)1/2

≤ √µ‖f‖ (2.1.2)

Since {fi}∞i=1 is a Bessel sequence, from the relations (2.1.1) and (2.1.2), {fi}∞i=1

is an atomic system for S.

Theorem 2.1.3. (Găvruţa, 2012) Let {fi}∞i=1 be a sequence in H and K ∈ B(H).

Then the following statements are equivalent:
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1. {fi}∞i=1 is an atomic system for K ;

2. there exist two constants 0 < λ ≤ µ <∞ such that

λ‖K∗f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H

3. there exists a Bessel sequence {gi}∞i=1 such that Kf =
∞∑
i=1

〈f, gi〉fi.

Each atomic system is associated with a bounded operator on H. We now find a

class of bounded linear operators in which a given Bessel sequence is an atomic

system for every member in the class.

Theorem 2.1.4. Let K1, K2 ∈ B(H). If {fi}∞i=1 is an atomic system for K1 and

K2, and α, β are scalars, then {fi}∞i=1 is an atomic system for αK1 + βK2 and

K1K2.

Proof. It is given that {fi}∞i=1 is an atomic system for K1 and K2, then there are

positive constants 0 < λn ≤ µn <∞ (n = 1, 2) such that

λn‖K∗nf‖
2 ≤

∞∑
i=1

|〈f, fi〉|2≤ µn‖f‖2, for all f ∈ H. (2.1.3)

By simple calculations, now we have

‖(αK1 + βK2)
∗f‖2 ≤ |α|2‖K1

∗f‖2 + |β|2‖K2
∗f‖2

≤ |α|2
[

1

λ1

∞∑
i=1

|〈f, fi〉|2
]

+ |β|2
[

1

λ2

∞∑
i=1

|〈f, fi〉|2
]

=

[
|α|2

λ1
+
|β|2

λ2

] ∞∑
i=1

|〈f, fi〉|2.

It follows that

λ1λ2
λ2|α|2 + λ1|β|2

‖(αK1 + βK2)
∗f‖2 ≤

∞∑
i=1

|〈f, fi〉|2.

Hence {fi}∞i=1 satisfies the lower frame condition. And from inequalities (2.1.3),

we get
∞∑
i=1

|〈f, fi〉|2 ≤
(
µ1 + µ2

2

)
‖f‖2, for all f ∈ H.
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Therefore {fi}∞i=1 is an atomic system for αK1 + βK2.

Now for each f ∈ H, we have

‖(K1K2)
∗f‖2 = ‖K2

∗K1
∗f‖2 ≤ ‖K2

∗‖2‖K1
∗f‖2.

Since {fi}∞i=1 is an atomic system for K1,

‖(K1K2)
∗f‖2

‖K2
∗‖2

≤ ‖K1
∗f‖2 ≤ 1

λ1

∞∑
i=1

|〈f, fi〉|2 ≤
µ1

λ1
‖f‖2.

This implies that

λ1
‖K2

∗‖2
‖(K1K2)

∗f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ1‖f‖2, for all f ∈ H.

Therefore {fi}∞i=1 is an atomic system for K1K2.

Corollary 2.1.5. If {fi}∞i=1 is an atomic system for A, where A ⊆ B(H), then

{fi}∞i=1 is an atomic system for any operator in the subalgebra generated by A.

Corollary 2.1.6. If {fi}∞i=1 is an atomic system for a normal operator K, then

{fi}∞i=1 is an atomic system for any operator in the subalgebra generated by K and

K∗.

Definition 2.1.7. (Limaye, 1996) Let H be a Hilbert space, and suppose that

T ∈ B(H) has a closed range. Then there exists an operator T † ∈ B(H) for which

N(T †) = R(T )⊥, R(T †) = N(T )⊥, TT †f = f, f ∈ R(T ).

We call the operator T † the pseudo-inverse of T . This operator is uniquely

determined by these properties. In fact, if T is invertible, then we have T−1 = T †.

Let T ∈ B(H) have a closed range. Then the following holds:

1. The orthogonal projection of H onto R(T ) is given by TT †.

2. The orthogonal projection of H onto R(T †) is given by T †T .

3. T ∗ has a closed range, and (T ∗)† = (T †)∗.

4. On R(T ), the operator T † is given explicitly by T † = T ∗(TT ∗)−1.
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Traditionally, frames have been studied for the whole space or for the closed

subspace. A frame sequence for the closed subspace R(K) has been constructed

from an atomic system for a closed range operator K.

Theorem 2.1.8. Let {fi}∞i=1 be an atomic system for an operator K having a

closed range. Then there exists a Bessel sequence {gi}∞i=1 such that {(K†|R(K))
∗gi}∞i=1

is a frame sequence for R(K).

Proof. As {fi}∞i=1 is an atomic system, by Theorem 2.1.3, there exists a Bessel

sequence {gi}∞i=1 such that

Kf =
∞∑
i=1

〈f, gi〉fi. (2.1.4)

Since {gi}∞i=1 is a Bessel sequence, there exists µ > 0 such that

∞∑
i=1

|〈f, gi〉|2 ≤ µ‖f‖2, for every f ∈ H.

Hence

∞∑
i=1

|〈f,K†∗gi〉|2 =
∞∑
i=1

|〈K†f, gi〉|2 ≤ γ‖f‖2, where γ = µ‖K†‖2. (2.1.5)

Using the definition of pseudo-inverse and equation (2.1.4), for any f ∈ R(K),

f = KK†f =
∞∑
i=1

〈K†f, gi〉fi =
∞∑
i=1

〈f,K†∗gi〉fi.

Now

‖f‖4 = |〈f, f〉|2 =

(
〈f,

∞∑
i=1

〈f,K†∗gi〉fi〉

)2

=

(
∞∑
i=1

〈f,K†∗gi〉〈f, fi〉

)2

≤
∞∑
i=1

|〈f,K†∗gi〉|2
∞∑
i=1

|〈f, fi〉|2

≤
∞∑
i=1

|〈f,K†∗gi〉|2µ‖f‖2.

Therefore
1

µ
‖f‖2 ≤

∞∑
i=1

|〈f,K†∗gi〉|2, for all f ∈ R(K).
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That is

µ1‖f‖2 ≤
∞∑
i=1

|〈f,K†∗gi〉|2, where µ1 =
1

µ
(2.1.6)

Thus from equations (2.1.5) and (2.1.6), we get that {(K†|R(K))
∗gi}∞i=1 is a frame

sequence for R(K).

2.2 Characterizations and Generating New

K-frames

Definition 2.2.1. (Găvruţa, 2012) Let K ∈ B(H). A sequence {fi}∞i=1 in H is

called a K-frame for H if there exist two constants 0 < λ ≤ µ <∞ such that

λ‖K∗f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H.

We call λ, µ the lower and upper bounds for the K-frame {fi}∞i=1 respectively.

If the above inequalities hold only for f ∈ span{fi}∞i=1, then {fi}∞i=1 is said to be

a K-frame sequence.

If K is equal to I, the identity operator on H, then K-frames and K-frame

sequences are just ordinary frames and frame sequences, respectively.

Definition 2.2.2. (Ding et al., 2013) Let K ∈ B(H). A sequence {fi}∞i=1 in H is

said to be a tight K-frame with bound λ if

λ‖K∗f‖2 =
∞∑
i=1

|〈f, fi〉|2, for all f ∈ H. (2.2.7)

When λ = 1, it is called a Parseval K-frame.

There are many essential differences between K-frames and ordinary frames

due to the involved operator K. For instance, we know that that an important

equivalent characterization of ordinary frames is that the corresponding synthesis

operators are bounded and surjective. But for K-frames, it is required that the

corresponding synthesis operators are bounded and the range of K is included in

the ranges of the synthesis operators.
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Theorem 2.2.3. (Găvruţa, 2012) Let H be a Hilbert space. Then {fi}∞i=1 is a

K-frame for H if and only if there exists a bounded operator L : `2 → H such that

fi = Lei and R(K) ⊆ R(L), where {ei}∞i=1 is an orthonormal basis for `2.

Every frame generates aK-frame by forming image of the frame elements under

K: {fi}∞i=1 is an ordinary frame for H, then {Kfi}∞i=1 is a K-frame for H (Xiao

et al., 2013). But we prove that every frame is a K-frame, for any K ∈ B(H).

Theorem 2.2.4. Let K ∈ B(H) with ‖K‖ ≥ 1. Then every ordinary frame is a

K-frame for H.

Proof. Suppose {fi}∞i=1 is a frame for H. Then there exist two constants 0 < λ ≤

µ <∞ such that

λ‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H. (2.2.8)

For K ∈ B(H), we have ‖K∗f‖ ≤ ‖K‖‖f‖, for all f ∈ H. This implies that

1
‖K‖‖K

∗f‖ ≤ ‖f‖, for all f ∈ H. From the inequality (2.2.8), we have

λ

‖K‖2
‖K∗f‖2 ≤ λ‖f‖2 ≤

∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H.

Therefore {fi}∞i=1 is a K-frame for H.

Given K ∈ B(H), every ordinary frame is a K-frame but converse need not be

true. The following example illustrates that there exists a sequence {fi}∞i=1 which

is a K-frame but not a frame for H.

Example 2.2.5. Suppose that H = C3, {ei}3i=1 = {e1, e2, e3}, where e1, e2, e3 is

an orthonormal basis for H. Define K ∈ B(H) as follows K : H → H,

Ke1 = e1, Ke2 = e1, Ke3 = e2.

Let fi = Kei, for i = 1, 2, 3 Obviously, {ei}3i=1 is an ordinary frame for H. Then

{fi}3i=1 is a K-frame for H but not a frame for H because span{fi} 6= H.
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Given a closed range operator K ∈ B(H), every frame sequence is a K-sequence

(Zhong and Yong, 2016). But the converse is not true in general.

Example 2.2.6. (Zhong and Yong, 2016) Let {ei}∞i=1 be an orthonormal basis for

H and define K : H → H as follows :

Kf =
∞∑
i=1

〈f, e2i〉e2i.

Clearly, K is well-defined, bounded linear operator with

K∗f =
∞∑
i=1

〈f, e2i〉e2i.

Define fi = ei when i is even and fi = ei
i

when i is odd. Then {fi}∞i=1 is a K-frame

sequence but it is not a frame sequence.

For a fixed K ∈ B(H), it is obvious that every K-frame for H is a K-frame

sequence, but not conversely. The following proposition gives a condition under

which a K-frame sequence is a K-frame.

Example 2.2.7. (Zhong and Yong, 2016) Let {ei}∞i=1 be an orthonormal basis for

H and let N be a fixed natural number. Define K ∈ B(H) as follows : Kei = iei

for 1 ≤ i ≤ N and Kei = ei for i > N. Then {ei}∞i=N+1 is not a K-frame for H

but it is a K-frame for span{ei}∞i=N+1.

Proposition 2.2.8. (Zhong and Yong, 2016) Let K ∈ B(H) be a closed range. Let

{fi}∞i=1 be a K-frame sequence in H with bounds λ and µ. If R(K) ⊆ span{fi}∞i=1,

then {fi}∞i=1 is a K-frame for H.

Characterizations for Bessel sequences to become K-frames are given after the

statement of famous Douglas’ factorization theorem which finds a relation between

range inclusion, majorization and factorization of bounded operators on Hilbert

spaces.

Definition 2.2.9. (Barnes, 2005) Assume that T, V ∈ B(H). Then V majorizes

T if there exists λ > 0 such that ‖Tf‖ ≤ λ‖V f‖ for all f ∈ H.
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Theorem 2.2.10 (Douglas’ factorization theorem). (Douglas, 1966) Let H be a

Hilbert space and T, V ∈ B(H). Then the following are equivalent:

1. R(T ) ⊆ R(V ).

2. TT ∗ ≤ α2V V ∗ for some α > 0 [ V ∗ majorizes T ∗ ].

3. T = VW for some W ∈ B(H).

Theorem 2.2.11. (Xiao et al., 2013) Let {fi}∞i=1 be a Bessel sequence in H and

K ∈ B(H). Then {fi}∞i=1 is a K-frame for H if and only if there exists λ > 0 such

that S ≥ λKK∗, where S is the frame operator for {fi}∞i=1.

Theorem 2.2.12. Let {fi}∞i=1 be a Bessel sequence in H. Then {fi}∞i=1 is a K-

frame for H if and only if K = S1/2W , for some W ∈ B(H).

Proof. Suppose {fi}∞i=1 is a K-frame, by Theorem 2.2.11, there exist two constants

0 < λ ≤ µ <∞ such that

λKK∗ ≤ S1/2S1/2∗.

Then by definition of inner product, for each f ∈ H, ‖K∗f‖2 ≤ λ−1‖S1/2∗f‖2.

Therefore S1/2∗ majorizes K∗. Then by Douglas’ factorization theorem,

K = S1/2W , for some W ∈ B(H).

On the other hand, let K = S1/2W , for some W ∈ B(H). Then by Douglas’

factorization theorem, S1/2 majorizes K∗. Then there is a positive number λ such

that

‖K∗f‖ ≤ λ‖S1/2f‖, for all f ∈ H

which implies that S ≥ λ2KK∗. Hence by Theorem 2.2.11, {fi}∞i=1 is a K-frame

for H.

The following two examples illustrate that a Bessel sequence {fi}∞i=1 is a K-

frame but it is not the same for other operator R.

Example 2.2.13. Let H = C3 and {e1, e2, e3} be an orthonormal basis for H.

Define K : H → H by Ke1 = e1, Ke2 = e1, Ke3 = e2. Then {fi}3i=1 = {e1, e1, e2}
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is a K-frame for H. By using the definition

Sf =
3∑
i=1

〈f, fi〉fi.

We get

Se1 =
3∑
i=1

〈e1, fi〉fi = 〈e1, e1〉e1 + 〈e1, e1〉e1 + 〈e1, e2〉e2 = 2e1,

Se2 =
3∑
i=1

〈e2, fi〉fi = 〈e2, e1〉e1 + 〈e2, e1〉e1 + 〈e2, e2〉e2 = e2,

Se3 =
3∑
i=1

〈e3, fi〉fi = 〈e3, e1〉e1 + 〈e3, e1〉e1 + 〈e3, e2〉e2 = 0.

The frame operator is S =


2 0 0

0 1 0

0 0 0

 and its square root is S1/2 =


√

2 0 0

0 1 0

0 0 0

 .

Let R =


2 0 0

0 1 0

0 1 1

 and f = e3 ∈ H. Then
3∑
i=1

|〈f, fi〉|2 = 0 and ‖L∗f‖2 = 4.

Hence {fi}3i=1 is not a R-frame for H.

In the example, the matrix R is not of the form S1/2W , for any matrix W of

order 3, because R has a column which is not a linear combination of columns of

S1/2.

Example 2.2.14. Let {ei}∞i=1 be an orthonormal basis in `2. Define operators T

and K on `2 by Tei = ei−1 for i > 1 and Te1 = 0 and Kei = ei+1 respectively. It

is clear that {Kei}∞i=1 is a K-frame for `2. Suppose {Kei}∞i=1 is a T -frame. Then

by Theorem 2.2.11, there exists λ > 0 such that KK∗ ≥ λTT ∗. Hence by Douglas’

factorization theorem, R(T ) ⊆ R(K). But this is contradiction to R(T ) * R(K),

since e1 ∈ R(T ) but e1 /∈ R(K).

Proposition 2.2.15. Let {fi}∞i=1 be a K-frame for H. Let T ∈ B(H) with R(T ) ⊆

R(K). Then {fi}∞i=1 is a T -frame for H.
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Proof. Suppose {fi}∞i=1 is a K-frame for H. Then there are positive constants

0 < λ ≤ µ <∞ such that

λ‖K∗f‖2≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H. (2.2.9)

Since R(T ) ⊆ R(K), by Douglas’ factorization theorem, there exists α > 0 such

that TT ∗ ≤ α2KK∗.

From the inequality (2.2.9), we have

λ

α2
‖T ∗f‖2 ≤ λ‖K∗f‖2 ≤

∞∑
i=1

|〈f, fi〉|2, for all f ∈ H.

Hence {fi}∞i=1 is a T -frame for H.

2.3 Sums of K-frames

Necessary and sufficient conditions on Bessel sequences {fi}∞i=1, {gi}∞i=1 and oper-

ators T1, T2 on H so that {T1fi + T2gi}∞i=1 is a frame for H, have been discussed

in (Obeidat et al., 2009).

It is a consequence of Douglas’ factorization theorem that the operators A and

(AA∗)1/2 have the same range. This fact leads the following result.

Theorem 2.3.1. (Fillmore and Williams, 1971) Let T, V,W ∈ B(H). Then the

following are equivalent:

1. R(T ) ⊆ R(V ) +R(W ).

2. TT ∗ ≤ α2(V V ∗ +WW ∗) for some α > 0.

3. T = V C +WD for some C,D ∈ B(H).

Theorem 2.3.2. Let {fi}∞i=1 and {gi}∞i=1 be K-frames for H and the correspond-

ing synthesis operators be L1 and L2 respectively. If L1L
∗
2 and L2L

∗
1 are positive

operators, then {fi + gi}∞i=1 is a K-frame for H.

Proof. Suppose that {fi}∞i=1 and {gi}∞i=1 are K-frames for H, then by Theorem

2.2.3, there exist bounded operators L1 and L2 such that L1ei = fi, L2ei = gi and

R(K) ⊆ R(L1), R(K) ⊆ R(L2), where {ei}∞i=1 is an orthonormal basis for `2.
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So R(K) ⊆ R(L1) +R(L2), by Theorem 2.3.1,

KK∗ ≤ α2(L1L
∗
1 + L2L

∗
2), for some α > 0.

Now, for each f ∈ H,

∞∑
i=1

|〈f, fi + gi〉|2 =
∞∑
i=1

|〈f, L1ei + L2ei〉|2

= ‖(L1 + L2)
∗f‖2

= 〈L1L
∗
1f, f〉+ 〈L1L

∗
2f, f〉+ 〈L2L

∗
1f, f〉+ 〈L2L

∗
2f, f〉

≥
〈
(L1L

∗
1 + L2L

∗
2)f, f

〉
[∵ L1L

∗
2 and L2L

∗
1 are positive.]

≥ 1

α2
〈KK∗f, f〉 =

1

α2
‖K∗f‖2. (2.3.10)

Suppose µ1 and µ2 are Bessel bounds of {fi}∞i=1 and {gi}∞i=1 respectively. Then,

applying Minkowski’s inequality, for each f ∈ H, we have(
∞∑
i=1

|〈f, fi + gi〉|2
) 1

2

≤

(
∞∑
i=1

|〈f, fi〉|2
) 1

2

+

(
∞∑
i=1

|〈f, gi〉|2
) 1

2

≤ √µ1‖f‖+
√
µ2‖f‖

= (
√
µ1 +

√
µ2)‖f‖. (2.3.11)

From (2.3.10) and (2.3.11), {fi + gi}∞i=1 is a K-frame for H.

Corollary 2.3.3. Let {fi}∞i=1 and {gi}∞i=1 be K-frames for H with frame operators

S1 and S2 respectively. Then K = S
1/2
1 C + S

1/2
2 D, for some C,D ∈ B(H).

Proof. Since {fi}∞i=1 and {gi}∞i=1 are K-frames for H, by Theorem 2.2.11, there

are positive constants λ1 and λ2 such that

S1 ≥ λ1KK
∗ and S2 ≥ λ2KK

∗.

Hence by Douglas’ factorization theorem, we get R(K) ⊆ R(S
1/2
1 ) and R(K) ⊆

R(S
1/2
2 ). Hence R(K) ⊆ R(S

1/2
1 ) +R(S

1/2
2 ). By Theorem 2.3.1, there exist C,D ∈

B(H) such that K = S
1/2
1 C + S

1/2
2 D.

Theorem 2.3.4. Let {fi}∞i=1 be a K-frame for H with the frame operator S and

let T be a positive operator. Then {fi + Tfi}∞i=1 is a K-frame. Moreover for any

natural number n, {fi + T nfi}∞i=1 is a K-frame for H.
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Proof. Suppose {fi}∞i=1 is a K-frame for H. Then by Theorem 2.2.11, there exists

λ > 0 such that S ≥ λKK∗. The frame operator for {fi + Tfi}∞i=1 is (I+T )S(I+

T )∗ because for each f ∈ H,

∞∑
i=1

〈
f, (fi + Tfi)

〉
(fi + Tfi) = (I + T )

∞∑
i=1

〈f, (I + T )fi〉fi

= (I + T )S(I + T )∗f.

As we have

(I + T )S(I + T )∗ = S + ST ∗ + TS + TST ∗ ≥ S ≥ λKK∗,

again by Theorem 2.2.11, we can conclude that {fi + Tfi}∞i=1 is a K-frame for H.

For any natural number n, the frame operator for {fi + T nfi}∞i=1 is (I +T n)S(I +

T n)∗ ≥ S. Thus {fi + T nfi}∞i=1 is a K-frame for H.

Corollary 2.3.5. Let {fi}∞i=1 be a K-frame for H with the frame operator S and

let {I1, I2} be a partition of N. For j = 1, 2, let Sj be the K-frame operator for

the Bessel sequence {fi}i∈Ij . Then

{fi + Sm1 fi}i∈I1 ∪ {fi + Sn2 fi}i∈I2

is a K-frame for H for any natural numbers m and n.

Proof. For any natural number m, we can define Sm by

Smf =
∞∑
i=1

〈f, S
m−1

2 fi〉S
m−1

2 fi.

For each f ∈ H,
∞∑
i=1

〈f, fi + Sm1 fi〉(fi + Sm1 fi) = (I + Sm1 )
∞∑
i=1

〈f, fi + Sm1 fi〉fi

= (I + Sm1 )
∞∑
i=1

〈f, (I + Sm1 )fi〉fi

= (I + Sm1 )S1(I + Sm1 )∗f

= (I + Sm1 )
(
S1 + S

(1+m)
1

)
f

=
(
S1 + 2S

(1+m)
1 + S

(1+2m)
1

)
f.
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Thus the frame operators for {fi + Sm1 fi}i∈I1 and {fi + Sn2 fi}i∈I2 are S1+2S
(1+m)
1 +

S
(1+2m)
1 and S2 + 2S

(1+n)
2 + S

(1+2n)
2 respectively. Let S0 be the frame operator for

{fi + Sm1 fi}i∈I1 ∪ {fi + Sn2 fi}i∈I2 .

Since {fi}∞i=1 is a K-frame for H, there exists λ > 0 such that S ≥ λKK∗ and

S0 ≥ S1 + S2 = S ≥ λKK∗. Hence {fi + Sm1 fi}i∈I1 ∪ {fi + Sn2 fi}i∈I2 is a K-frame

for H.

Theorem 2.3.6. Let {fi}∞i=1 and {gi}∞i=1 be Parseval K-frames for H, with syn-

thesis operators L1 and L2 respectively. If L1L
∗
2 = 0 then {fi + gi}∞i=1 is a 2-tight

K-frame for H.

Proof. Suppose {fi}∞i=1 and {gi}∞i=1 are two Parseval K-frames for H. Then there

are synthesis operators L1, L2 ∈ B(H) such that L1ei = fi and L2ei = gi with

R(K) = R(L1), R(K) = R(L2) respectively. For each f ∈ H, we have

∞∑
i=1

|〈f, fi + gi〉|2 =
∞∑
i=1

|〈f, L1ei + L2ei〉|2

= ‖(L1 + L2)
∗f‖2

= ‖L1
∗f‖2 + 〈L2L

∗
1f, f〉+ 〈L1L

∗
2f〉+ ‖L2

∗f‖2

= ‖L1
∗f‖2 + ‖L2

∗f‖2

= 2‖K∗f‖2.

Theorem 2.3.7. Let {fi}∞i=1 and {gi}∞i=1 be K-frames for H, and let L1 and L2

be synthesis operators of {fi}∞i=1 and {gi}∞i=1 respectively, such that L1L
∗
2 = 0 and

let Tj ∈ B(H) with R(Lj) ⊆ R(TjLj), for j = 1, 2. Then {T1fi + T2gi}∞i=1 is a

K-frame for H.

Proof. Suppose that {fi}∞i=1 and {gi}∞i=1 are K-frames for H. Then by Theorem

2.2.3, there exists an orthonormal basis {ei}∞i=1 in `2 such that L1ei = fi, L2ei = gi

36



and R(K) ⊆ R(L1), R(K) ⊆ R(L2). For each f ∈ H,

∞∑
i=1

|〈f, T1fi + T2gi〉|2 =
∞∑
i=1

|〈f, T1L1ei + T2L2ei〉|2

= ‖(T1L1 + T2L2)
∗f‖2

= ‖(T1L1)
∗f‖2 + 〈T2L2L

∗
1T
∗
1 f, f〉+ 〈T1L1L

∗
2T2
∗f〉+ ‖(T2L2)

∗f‖2

= ‖(T1L1)
∗f‖2 + ‖(T2L2)

∗f‖2. [∵ L1L
∗
2 = 0].

We have that R(K) ⊆ R(Lj) ⊆ R(TjLj) for j = 1, 2. So by Douglas’ factorization

theorem, for each j = 1, 2, there exists αj > 0 such that

KK∗ ≤ αj(TjLj)(TjLj)
∗.

Then from the above inequality, for each f ∈ H
∞∑
i=1

|〈f, T1fi + T2gi〉|2 = ‖(T1L1)
∗f‖2 + ‖(T2L2)

∗f‖2 ≥
(

1

α1

+
1

α2

)
‖K∗f‖2.

Hence {T1fi + T2gi}∞i=1 is a K-frame for H.

2.4 Conclusion

Frame for operators in Hilbert spaces introduced by Găvruţa is one of the general-

izations of frames available in literature. Because of its relationship with operators,

it has been chosen and analyzed in the thesis. Frame sequences are constructed

and a class of operators associated with a given Bessel sequence, making it a frame

for each operator in the class is also explored.
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Chapter 3

FRAME OPERATORS OF

K-FRAMES

Many properties for ordinary frames may not hold for K-frames, such as the

corresponding synthesis operator for K-frames is not surjective, the frame operator

for K-frames is not isomorphic, the alternate dual reconstruction pair for K-frames

is not interchangeable in general.

A central object in frame theory, both from the theoretical and applications

points of view, is the frame operator. It is known that the frame operator of a

frame is a bounded positive invertible operator. However, the design of a frame

corresponding to a given bounded positive invertible operator on a Hilbert space

is of considerable practical importance.

A question here is : which bounded operators onH can arise as frame operators

of frames in H? The answer (Easwaran Nambudiri and Parthasarathy, 2012) in

the context of abstract frames turns out to be simple: Every bounded positive

invertible operator on a separable Hilbert space H is the frame operator of a

suitable frame in H. Indeed, for a given bounded positive invertible operator A

on H, there is a bounded positive invertible operator B on H such that A = B2,

that is, B is the positive square root of A. Choose an orthonormal basis {ei}∞i=1

for H. Then {Bei}∞i=1 is a Riesz basis. The frame operators of the orthonormal

basis {ei}∞i=1 and the Riesz basis (frame) are I (the identity operator) and BIB

respectively. Hence A is the frame operator of the frame {Bei}∞i=1.
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The results in this chapter are organized as follows. Operators that preserve

K-frames and generating new K-frames from old ones by taking sums have been

discussed. Moreover, a close relation between K-frames and quotient operators

is established using through operator-theoretic results on quotient operators and

few characterizations are given.

3.1 Operators for Frames

Let {fi}∞i=1 be a sequence in H. Consider the synthesis operator L : `2 → H

defined by

L({ci}∞i=1) =
∞∑
i=1

cifi.

As the domain D(L) contains c00 (all sequences with finitely many non-zero

terms), D(L) is dense in `2. Also, the range R(L) lies in between span{fi}∞i=1

and span{fi}∞i=1. The linear operator L may be unbounded. When L has a closed

range, then R(L) = span{fi}∞i=1. As L has a dense domain, the adjoint L∗ of L

exists. If only the upper inequality in (1.5.9) is satisfied, then D(L) = `2 and L is

bounded with the norm ‖L‖ ≤ λ.

The analysis operator U : H → `2, mapped by f 7→ {〈f, fi〉}∞i=1, is well-defined

and linear. The domain

D(U) =
{
f ∈ H : {〈f, fi〉}∞i=1 ∈ `2

}
is a subspace (not necessarily closed) of H. If {fi}∞i=1 satisfies only the lower

inequality in (1.5.9), then U is bounded on D(U) with the norm ‖U‖ ≤ 1
µ
. Note

that in this case, {fi}∞i=1 is total in H.

It is well known that frames are equivalent to spanning sets in a finite dimen-

sional cases. So we can consider an infinite dimensional separable Hilbert space

with an orthonormal basis {ei}∞i=1. The sequence { ei
i
}∞i=1 satisfies only the up-

per inequality, whereas the sequence {iei}∞i=1 satisfies only the lower inequality.

Moreover, if {fi}∞i=1 is a frame for H, then U∗ = L and L∗ = U .

Theorem 3.1.1. (Antoine and Balazs, 2012) Let {fi}∞i=1 be a Bessel sequence in

H, with the synthesis operator L. The following statements hold:
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1. {fi}∞i=1 is a frame sequence if and only if L has a closed range.

2. {fi}∞i=1 is a frame for H if and only if L is surjective.

3. {fi}∞i=1 is a Riesz sequence if and only if L is injective and has a closed

range.

4. {fi}∞i=1 is a Riesz basis of H if and only if L is invertible.

A classification of finite dimensional spaces with frames is as follows:

Theorem 3.1.2. (Christensen, 2003) Let {fi}∞i=1 be a frame in H. The frame

operator S is compact if and only if H is finite dimensional.

3.2 Operators Preserving K-frames

The frame operator S for a K-frame is semidefinite, so there is also S1/2, but not

positive. In general, it is not invertible, shown below by an example. But in the

case of K having a closed range, it is proved to be invertible on R(K).

Example 3.2.1. Let H = C3 and {e1, e2, e3} be an orthonormal basis for H. De-

fine K : H → H by Ke1 = e1, Ke2 = e1, Ke3 = e2. Then {fi}3i=1 = {e1, e1, e2} is

a K-frame for H with the frame operator S =


2 0 0

0 1 0

0 0 0

, which is not invertible.

Theorem 3.2.2. Let K ∈ B(H) have a closed range. The frame operator of a

K-frame is invertible on the subspace R(K) of H.

Proof. Suppose {fi}∞i=1 is a K-frame for H. Then there is some λ > 0 such that

∞∑
i=1

|〈f, fi〉|2 ≥ λ‖K∗f‖2, for all f ∈ H. (3.2.1)

Since R(K) is closed, then KK†f = f , for all f ∈ R(K). That is,

KK†|R(K) = IR(K),

we have I∗R(K) = (K†|R(K))
∗K∗.
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For any f ∈ R(K), we obtain

‖f‖ = ‖(K†|R(K))
∗K∗f‖ ≤ ‖K†‖.‖K∗f‖,

hence ‖K∗f‖2 ≥ ‖K†‖−2‖f‖2. Combined with (3.2.1), we have

∞∑
i=1

|〈f, fi〉|2 ≥ λ‖K∗f‖2 ≥ λ‖K†‖−2‖f‖2, for all f ∈ R(K).

So, from the definition of K-frame, we have

λ‖K†‖−2‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ R(K).

Hence

λ‖K†‖−2‖f‖ ≤ ‖Sf‖ ≤ µ‖f‖, for all f ∈ R(K).

Thus S : R(K)→ R(S) is a bounded linear operator and invertible on R(K).

Theorem 3.2.3. Let K ∈ B(H) be with a dense range. Let {fi}∞i=1 be a K-frame

and T ∈ B(H) have a closed range. If {Tfi}∞i=1 is a K-frame for H, then T is

surjective.

Proof. Suppose {Tfi}∞i=1 is a K-frame for H with frame bounds λ and µ. Then

for any f ∈ H,

λ‖K∗f‖2 ≤
∞∑
i=1

|〈f, Tfi〉|2 ≤ µ‖f‖2. (3.2.2)

As K has a dense range, H = R(K), so K∗ is injective. Then from (3.2.2), T ∗

is injective since N(T ∗) ⊆ N(K∗). Moreover, R(T ) = N(T ∗)⊥ = H. Thus T is

surjective.

Theorem 3.2.4. Let K ∈ B(H) and let {fi}∞i=1 be a K-frame for H. If T ∈ B(H)

has a closed range with TK = KT , then {Tfi}∞i=1 is a K-frame for R(T ).

Proof. Since T has a closed range, it has the pseudo-inverse T † such that TT † = I.

Now I = I∗ = T †
∗
T ∗. Then for each f ∈ R(T ), K∗f = T †

∗
T ∗K∗f , so we have

‖K∗f‖ = ‖T †∗T ∗K∗f‖ ≤ ‖T †∗‖ ‖T ∗K∗f‖.

Therefore ‖T †∗‖−1‖K∗f‖ ≤ ‖T ∗K∗f‖.
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Now for each f ∈ R(T ),

∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 ≥ λ‖K∗T ∗f‖2

= λ‖T ∗K∗f‖2

≥ λ‖T †∗‖−2‖K∗f‖2.

Since {fi}∞i=1 is a Bessel sequence with bound µ, for each f ∈ R(T ) we have

∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 ≤ µ‖T ∗f‖2 ≤ µ‖T‖2‖f‖2.

Therefore {Tfi}∞i=1 is a K-frame for R(T ).

Remark 3.2.5. From the above Theorems 3.2.3 and 3.2.4, we conclude the fol-

lowing : Let K ∈ B(H) be with a dense range. Let {fi}∞i=1 be a K-frame for H

and T ∈ B(H) have a closed range with TK = KT . Then {Tfi}∞i=1 is a K-frame

for H if and only if T is surjective.

Theorem 3.2.6. Let K ∈ B(H) be with a dense range. Let {fi}∞i=1 be a K-frame

and let T ∈ B(H) have a closed range. If {Tfi}∞i=1 and {T ∗fi}∞i=1 are K-frames

for H, then T is invertible.

Proof. Suppose {Tfi}∞i=1 is a K-frame for H with frame bounds λ1 and µ1. Then

for any f ∈ H,

λ1‖K∗f‖2 ≤
∞∑
i=1

|〈f, Tfi〉|2 ≤ µ1‖f‖2. (3.2.3)

As K has a dense range, K∗ is injective. Then from (3.2.3), T ∗ is injective since

N(T ∗) ⊆ N(K∗). Moreover R(T ) = N(T ∗)⊥ = H. Then T is surjective.

Suppose {T ∗fi}∞i=1 is a K-frame for H with frame bounds λ2 and µ2. Then for

any f ∈ H,

λ2‖K∗f‖2 ≤
∞∑
i=1

|〈f, T ∗fi〉|2 ≤ µ2‖f‖2. (3.2.4)

As K has a dense range, K∗ is injective. Then from (3.2.4), T is injective since

N(T ) ⊆ N(K∗). Therefore T is bijective. By Bounded Inverse Theorem, T is

invertible.

43



Theorem 3.2.7. Let K ∈ B(H) and let {fi}∞i=1 be a K-frame for H and let

T ∈ B(H) be co-isometry with TK = KT . Then {Tfi}∞i=1 is a K-frame for H.

Proof. Suppose {fi}∞i=1 is a K-frame for H. Now for each f ∈ H

∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 ≥ λ‖K∗T ∗f‖2

= λ‖T ∗K∗f‖2

= λ‖K∗f‖2 [∵ T is co-isometry ]

It is clear that {Tfi}∞i=1 is a Bessel sequence. Since {fi}∞i=1 is a Bessel sequence,

for each f ∈ H we have

∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 ≤ µ‖T‖2‖f‖2.

Therefore {Tfi}∞i=1 is a K-frame for H.

3.3 Frame Operators for K-frames

Let A,B ∈ B(H). The quotient [A/B] is a map from R(B) to R(A) defined

by Bf 7→ Af . We note that T = [A/B] is a linear operator on H if and only

if N(B) ⊆ N(A). In this case D(T ) = R(B), R(T ) ⊆ R(A) and TB = A. The

quotient [A/B] is called a semiclosed operator and its collection is closed under

sum and product. Moreover, it is the smallest collection which contains all closed

operators, their sum and product (Kaufman, 1979). We present few results on

K-frames using techniques on quotients of bounded operators.

Theorem 3.3.1. Let {fi}∞i=1 be a Bessel sequence in H with the frame operator

S and K ∈ B(H). Then {fi}∞i=1 is a K-frame if and only if the quotient operator[
K∗/S1/2

]
is bounded.

Proof. Suppose that {fi}∞i=1 is a K-frame for H. Then there exists a constant

λ > 0 such that

λ‖K∗f‖2≤
∞∑
i=1

|〈f, fi〉|2, for all f ∈ H.
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That is, λ‖K∗f‖2≤‖S1/2f‖2, for all f ∈ H. Define

Q : R(S1/2)→ R(K∗) by Q(S1/2f) = K∗f.

Then Q is well-defined because N(S1/2) ⊆ N(K∗). As for all f ∈ H,

‖QS1/2f‖ = ‖K∗f‖ ≤ 1√
λ
‖S1/2f‖,

Q is bounded. From the notion of quotient of bounded operators, Q can be

expressed as
[
K∗/S1/2

]
.

Conversely, suppose that the quotient operator
[
K∗/S1/2

]
is bounded. Then

there exists µ > 0 such that

‖K∗f‖2≤µ‖S1/2f‖2, for all f ∈ H. (3.3.5)

Let {ei}∞i=1 be an orthonormal basis for H. Then for each f ∈ H,

f =
∞∑
i=1

〈f, ei〉ei.

Then we have

‖S1/2f‖2 =
∞∑
i=1

|〈f, S1/2ei〉|2, for all f ∈ H.

From the equation (3.3.5),

‖K∗f‖2 ≤ µ‖S1/2f‖2 = µ
∞∑
i=1

|〈f, S1/2ei〉|2.

Define fi = S1/2ei for i = 1, 2, . . . . Then 1
µ
‖K∗f‖2 ≤

∑∞
i=1 |〈f, fi〉|2. Therefore

{fi}∞i=1 is a K-frame for H.

Corollary 3.3.2. Let {fi}∞i=1 be a Bessel sequence in H with the frame operator

S. Then {fi}∞i=1 is a frame if and only if the frame operator S is invertible.

Proof. Suppose {fi}∞i=1 is a frame for H. As S ≤ µI, for some µ, it is enough to

show that λI ≤ S, for some λ > 0. Since {fi}∞i=1 is a frame for H, then there

exist constants 0 < λ ≤ µ <∞0 such that

λ‖f‖2 ≤
∞∑
i=1

|〈f, fi〉|2 ≤ µ‖f‖2, for all f ∈ H. (3.3.6)

Then λI ≤ S ≤ µI. The other way is trivial.
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Theorem 3.3.3. Let {fi}∞i=1 be a K-frame with the frame operator S and T ∈

B(H). Then the following are equivalent :

1. {Tfi}∞i=1 is a TK-frame ;

2.
[
(TK)∗/S1/2T ∗

]
is bounded ;

3.
[
(TK)∗/(TST ∗)1/2

]
is bounded.

Proof. (1)⇒(2); Suppose that {Tfi}∞i=1 is a TK-frame. Then there exists λ > 0

such that

λ‖(TK)∗f‖2 ≤
∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 = ‖S1/2(T ∗f)‖2.

Therefore
[
(TK)∗/S1/2T ∗

]
is bounded.

(2)⇒(3); Suppose
[
(TK)∗/S1/2T ∗

]
is bounded. Then there exists µ > 0 such

that

‖(TK)∗f‖2 ≤ µ‖S1/2T ∗f‖2, for all f ∈ H.

Now

‖(TST ∗)1/2f‖2 =
〈
(TST ∗)1/2f, (TST ∗)1/2f

〉
= 〈(TST ∗)f, f〉

= 〈ST ∗f, T ∗f〉 =
∥∥S1/2T ∗f

∥∥2 ≥ 1

µ
‖(TK)∗f‖2

Therefore [(TK)∗/(TST ∗)1/2] is bounded.

(3)⇒(1); Suppose
[
(TK)∗/(TST ∗)1/2

]
is bounded. Then there exists µ > 0

such that

‖(TK)∗f‖2 ≤ µ‖(TST ∗)1/2f‖2 for all f ∈ H.

Consider

∞∑
i=1

|〈f, Tfi〉|2 =
∞∑
i=1

|〈T ∗f, fi〉|2 = ‖S1/2T ∗f‖2

= 〈S1/2T ∗f, S1/2T ∗f〉

= 〈TST ∗f, f〉
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because TST ∗ is positive and self-adjoint, its square root exists, and it is denoted

by (TST ∗)1/2. Hence for each f ∈ H,

∞∑
i=1

|〈f, Tfi〉|2 = ‖(TST ∗)1/2f‖2 ≥ 1

µ
‖(TK)∗f‖2.

Thus {Tfi}∞i=1 is a TK-frame for H.

Corollary 3.3.4. Let {fi}∞i=1 be a frame for H and let K ∈ B(H). Then the

following are equivalent:

1. {Kfi}∞i=1 is a K-frame frame H;

2.
[
K∗/S1/2

]
is bounded.

Corollary 3.3.5. Let {ei}∞i=1 be an orthonormal basis for H and let K ∈ B(H).

Then the following are equivalent:

1. {Kei}∞i=1 is a K-frame frame H;

2. [K∗/I] is bounded.

Theorem 3.3.6. Let {fi}∞i=1 be a Bessel sequence in H with the frame operator

S and let K ∈ B(H) with N(K) = N(S1/2). Then {fi}∞i=1 is a K-tight frame if

and only if the quotient operator
[
K∗/S1/2

]
is invertible.

Proof. Suppose {fi}∞i=1 is a K-tight frame for H, then R(K) = R(S1/2). As

N(K) = N(S1/2), by (Fillmore and Williams, 1971, Corollary 1) there exists an

invertible operator Q on H such that K = S1/2Q. From the notion of quotient

operator,
[
K∗/S1/2

]
is invertible.

3.4 Conclusion

Given a Bessel sequence in a Hilbert space, one can have synthesis, analysis, and

frame operators. The study of these associated operators is quite useful to un-

derstand some properties of the Bessel sequence. For instance, if the synthesis

operator is invertible, then the sequence is a Riesz basis and vice versa. Neverthe-

less, the frame operator for K-frame gives a quotient of bounded operators. Using
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operator-theoretic results on quotient operators, new K-frames are generated from

old ones and few characterizations are derived.
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Chapter 4

K-FRAMES IN BANACH

SPACES

The theoretical research of frames for Banach spaces is quite different from that

of Hilbert spaces. Due to the lack of an inner product, frames for Banach spaces

were simply defined as a sequence of linear functionals in X ∗, the dual of X ,

rather than a sequence of basis-like elements in X itself. The concept of p-frame

was introduced by (Aldroubi et al., 2001) and some abstract theories for it were

studied by Chirstensen and Stoeva (Christensen and Stoeva, 2003; Stoeva, 2006).

A sequence {gi}∞i=1 ⊆ X ∗ is a p-frame (1 ≤ p ≤ ∞) if the norm ‖.‖X is

equivalent to the `p-norm of the sequence {gi(.)}∞i=1, that is, if there are constants

0 < λ ≤ µ <∞ such that for each f ∈ X ,

λ‖f‖X ≤

(
∞∑
i=1

|gi(f)|p
)1/p

≤ µ‖f‖X .

For the case p =∞,

(
∞∑
i=1

|gi(f)|p
)1/p

is replaced by sup
i
|gi(f)|. If there exists

a 2-frame for a Banach space, then the Banach space is isomorphic to a Hilbert

space.

Casazza, Christensen and Stoeva (Casazza et al., 2005) defined an Xd-frame

which is a natural generalization of Hilbert frames to Banach frames.
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Definition 4.0.1. (Casazza et al., 2005) Let X be a Banach space and Xd be a

BK-space. A sequence {gi}∞i=1 of elements in X ∗, which satisfies

1. {gi(f)}∞i=1 ∈ Xd, for all f ∈ X ,

2. there are constants 0 < λ ≤ µ <∞ such that for each f ∈ X

λ‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X (4.0.1)

is called an Xd-frame for X . The constants λ and µ are called lower and

upper bounds respectively for {gi}∞i=1. When {gi}∞i=1 satisfies (1) and the upper

inequality in (4.0.1) for all f ∈ X , {gi}∞i=1 is called an Xd-Bessel sequence for

X .

Note that the definition of Xd-frame is a part of the definition of a Banach frame

introduced by Gröchenig (Gröchenig, 1991). An `p-frame for a Banach space is

exactly a p-frame (here the sequence space Xd is `p). Since a Banach space X can

be identified with a subspace of the bidual space X ∗∗ of X , for a given sequence in

X , the Xd-Bessel sequence (respectively, frame) for X ∗ can be analogously defined.

In a similar way, X ∗d -Bessel sequence for X ∗ can be defined for a sequence {fi}∞i=1

of elements of X : if there exists a constant µ > 0 such that

‖{g(fi)}∞i=1‖Xd
∗ ≤ µ‖g‖X ∗ , for all g ∈ X ∗.

If X is a Hilbert space and Xd = `2, (4.0.1) means that {gi}∞i=1 is a frame, and

in this case it is well-known that there exists a sequence {fi}∞i=1 in X such that

f =
∞∑
i=1

〈f, fi〉 gi =
∞∑
i=1

〈f, gi〉 fi.

Similar reconstruction formulas are not always available in the Banach space set-

ting.

The following proposition answers the question of existence of an Xd-frame for

X with respect to a given BK-space Xd.

Proposition 4.0.2. (Casazza et al., 2005) Let X be a Banach space and Xd be a

BK-space. Then there exists an Xd-frame for X if and only if X is isomorphic to

a subspace of Xd.
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Lemma 4.0.3. (Casazza et al., 2005) Let Xd be a BK-space for which the canoni-

cal unit vectors {ei}∞i=1 form a Schauder basis. Then the space Yd =
{
{F (ei)}∞i=1 :

F ∈ X ∗d
}

with norm ‖{F (ei)}∞i=1‖Yd = ‖F‖X ∗
d

is a BK-space isometrically isomor-

phic to X ∗d . Also, every continuous linear functional F on Xd has the form

F ({ci}∞i=1) =
∞∑
i=1

cidi,

where {di} = F (ei), is uniquely determined by di = F (ei), and ‖F‖X ∗
d

= ‖{di}‖Yd .

Lemma 4.0.4. (Casazza et al., 2005) Let Xd be a BK-space and X ∗d be a CB-

space. If {gi}∞i=1 ⊆ X ∗ is an Xd-Bessel sequence for X with bound µ, then the

operator L : {di}∞i=1 7→
∑∞

i=1 digi is well-defined (hence bounded) from X ∗d into X ∗

and ‖L‖ ≤ µ. If Xd is reflexive, the converse is also true.

4.1 Operators for Xd-frames

Let Xd be a BK-space and {gi}∞i=1 be a sequence in X ∗. If {gi}∞i=1 satisfies only

the upper inequality in (4.0.1), the analysis operator U from X to Xd mapped

by f 7→ {gi(f)}∞i=1, is well-defined and linear, having domain

D(U) =
{
f ∈ X : {gi(f)}∞i=1 ∈ Xd

}
.

The domain D(U) is a subspace (not necessarily closed) of X . If {gi}∞i=1 is a

Xd-Bessel sequence for X , then D(U) = X and U is bounded with the norm

‖U‖ ≤ µ.

If only the lower inequality in (4.0.1) is satisfied by {gi}∞i=1, then U is bounded

below on D(U). Thus if {gi}∞i=1 satisfies the Xd-frame inequalities (4.0.1), we get

that U is bounded and bounded below on D(U). Hence R(U) is closed in Xd and

the inverse U−1 : R(U) → D(U) is also bounded with the norm ‖U−1‖ ≤ 1
λ
. We

can conclude that given an Xd-frame {gi}∞i=1 ⊆ X ∗ for X , the analysis operator

U : X → Xd defined by

Uf = {gi(f)}∞i=1

is an isomorphism of X onto R(U).
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Given a sequence {gi}∞i=1 in X ∗, we now consider a function L : X ∗d → X ∗,

called the synthesis operator, mapped as {di}∞i=1 7→
∑∞

i=1 digi is well-defined

and linear on the domain

D(L) =

{
{di}∞i=1 ∈ X ∗d :

∞∑
i=1

digi converges in X ∗
}
.

If {gi}∞i=1 ⊆ X ∗ is an Xd-Bessel sequence in X with bound µ and if X ∗d is a CB-

space, then L is bounded from X ∗d to X ∗ and ‖L‖ ≤ µ, by Lemma 4.0.4. If Xd
is a CB-space, then U∗ = L. If Xd is reflexive and {gi}∞i=1 is an Xd-frame for X ,

then U = L∗ because X is isomorphic to a closed subspace of Xd and every closed

subspace of a reflexive space is reflexive. Hence X is also reflexive.

In the Hilbert frame case, the frame operator S = LU exists and this operator

S is helpful to produce the reconstruction formula. But in the Xd-frame case the

corresponding operators U : X → Xd and L : Xd∗ → X ∗ cannot be composed.

A map from Xd into Xd∗ is needed and for this the duality mapping on Xd is

used : The mapping φX from X into the the set of subsets of X ∗, determined by

φX (f) =
{
g ∈ X ∗ : g(f) = ‖f‖2 = ‖g‖2

}
is called the duality mapping on X . By the Hahn-Banach Theorem, φX (f) is

a non-empty set for all f ∈ X and φX (0) = 0.

In general, the duality mapping is set-valued, but for certain spaces it is single-

valued and such spaces are called smooth.

Definition 4.1.1. A Banach space X is called strictly convex whenever

‖f1 + f2‖X = ‖f1‖X + ‖f2‖X

where f1, f2 6= 0 then f1 = αf2 for some α > 0.

Proposition 4.1.2. (Stoeva, 2008) Let X be a Banach space. Then the following

statements hold :

1. If X ∗ is strictly convex, then for every f ∈ X , φX (f) is single-valued.

2. If X and X ∗ are strictly convex and X is reflexive, then φX is bijective.
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3. If H is a Hilbert space and H∗ is identified with H by the Riesz representation

theorem, then φH(f) = f, for every f ∈ H.

Definition 4.1.3. (Stoeva, 2008) Let X ∗d be strictly convex and {gi}∞i=1 be a se-

quence in X ∗. If {gi}∞i=1 is an Xd-frame for a Banach space X , then the bounded

map S : X → X ∗, S := LφXd
U is called the Xd-frame map for {gi}∞i=1.

When X = H is a Hilbert space and {gi}∞i=1 is a frame for X , the `2-frame map

S = LφXd
U

gives the Hilbert frame operator S = LU .

Theorem 4.1.4. (Stoeva, 2008) Let Xd be a RCB-space such that X ∗d is strictly

convex. Let {gi}∞i=1 be an Xd-frame for X with lower and upper bounds λ and µ

respectively. The Xd-frame map S has the following properties:

1. S = U∗φXd
U .

2. λ2‖f‖2X ≤ Sf(f) ≤ µ2‖f‖2X , for all f ∈ X .

Definition 4.1.5. (Limaye, 1996) Let M be a closed subspace of X . We say that

M is called (topologically) complemented if there exists a closed subspace N

of X such that M ∩N = {0} and M +N = X . In this case we write X = M ⊕N .

Subspace N is called a complement of M .

Examples 4.1.6. 1. Every finite dimensional subspace (or, a subspace with

finite codimension) is complemented. Every `p (p > 1, p 6= 2) has a closed

subspace which is not complemented. Also c0 is not complemented in `∞.

2. Every infinite dimensional complemented subspace of `∞ is isomorphic to

`∞. This also holds if `∞ is replaced by `p, 1 ≤ p <∞, c0, or c.

3. Every infinite dimensional Banach space which is not isomorphic to a Hilbert

space contains a closed subspace which has no complement. In a Hilbert space

every closed subspace has a complement (its orthogonal complement).
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4. A closed subspace M of X has a complement if and only if there exists a

continuous projection operator onto M .

Proposition 4.1.7. Let X ,Y be Banach spaces and let B ∈ B(X ,Y). Then there

exists a bounded linear operator A : Y → X satisfying AB = I if and only if B is

bounded below and R(B) is a complemented subspace of Y.

Proof. Let A : Y → X be a bounded linear operator satisfying AB = I. Suppose

Bf1 = Bf2 for some f1, f2 ∈ X with f1 6= f2. Then ABf1 = ABf2, so, f1 = f2.

This contradiction proves that B is injective.

Since AB = I, (BA)2 = BA and R(B) = R(BAB) ⊆ R(BA) ⊆ R(B). Hence

BA is a projection onto R(BA) = R(B), and R(B) is a complemented subspace

of Y . Also, R(B) = N(I −BA), which is closed. Hence B is bounded below.

Conversely, let P ∈ B(Y) be a projection onto R(B). Since B is bounded

below, B is injective, hence B−1 : R(B) → X is bounded. Define A1 = B−1P .

Then A1 is bounded and A1B = I.

Proposition 4.1.8. Let X ,Y be Banach spaces and let B ∈ B(X ,Y). Then there

exists a bounded linear operator C : Y → X satisfying BC = I if and only if B is

surjective and N(B) is a complemented subspace of X .

Proof. Let C : Y → X be a bounded linear operator satisfying BC = I. Since

B(R(C)) = Y , B is surjective. As (CB)2 = CB, CB is a projection onto R(CB).

Hence X = R(CB) ⊕ N(CB). It is easy to see that N(B) ⊆ N(CB). Let

f ∈ N(BC). Then CBf = 0, so BCBf = 0, hence f ∈ N(B). Therefore

N(B) = N(CB). Thus N(B) is a complemented subspace of X .

Conversely, let B be a surjective and let X = N(B) ⊕ M for some closed

subspace M of X . Consider the operator B|M : M → Y , the restriction of B to

M . (B|M)−1 exists and it is bijective, by Bounded Inverse Theorem, (B|M)−1 is

bounded. Define B1 = J(B|M)−1, where J is the natural embedding. Then B1 is

bounded and BC = I.

Definition 4.1.9. Let X ,Y be Banach spaces and let B ∈ B(X ,Y). A is called

left-inverse of B if A ∈ B(Y ,X ) and AB = I ; C is called right-inverse of B

if C ∈ B(Y ,X ) and BC = I.
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We have seen that every Banach frame for X with respect to Xd is an Xd-frame

for X . One may ask a question whether every Xd-frame {gi}∞i=1 has a bounded

linear operator S : Xd → X such that ({gi}∞i=1, S) is a Banach frame for X with

respect to Xd. The answer is in affirmative. This guarantees a natural existence

of reconstruction operator for any Xd-frame for X .

Proposition 4.1.10. Let Xd be a BK-space and {gi}∞i=1 ⊆ X ∗ be an Xd-frame for

X . If R(U) is complemented in Xd, then there exists a bounded linear operator

V : Xd → X such that ({gi}∞i=1, V ) is a Banach frame for X with respect to Xd.

Proof. Since {gi}∞i=1 is an Xd-frame for X , there are constants 0 < λ ≤ µ < ∞

such that

λ‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X , for all f ∈ X .

Since R(U) is complemented in Xd, there exists a closed subspace M of Xd such

that

Xd = R(U)⊕M. (4.1.2)

Since U is an isomorphism from X onto R(U), U−1 is a bounded linear from R(U)

into X . From (4.1.2), U−1 can be extended to Xd by defining U−1f = 0 for f ∈M .

Again from (4.1.2), we can find a projection of Xd onto R(U), say P .

Define V : Xd → X by V = U−1P . Each coordinate functional on Xd is

continuous and it is denoted by ei, for i = 1, 2, . . . . Let gi = U∗ei. Then for each

f ∈ X we have

gi(f) = (U∗ei)(f) = ei(Uf), for all i = 1, 2, . . . .

Hence the image of f under U is the sequence {gi(f)}∞i=1 in Xd. Since U is an

isomorphism, for each f ∈ X , S({gi(f)}∞i=1) = f . Thus ({gi}∞i=1, V ) is a Banach

frame for X with respect to Xd.

Theorem 4.1.11. Let {gi}∞i=1 ⊆ X ∗ be an Xd-frame for X and let V : Xd → X

be a bounded linear operator satisfying V ({gi(f)}∞i=1) = f, for each f ∈ X , then

R(U) is complemented.
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Proof. The hypothesis shows that V is a left-inverse of U . By Proposition 4.1.7,

R(U) is complemented.

Analysis operator U coming from a Banach frame of a Banach space X de-

composes Xd a direct sum of two closed subspaces of Xd.

Example 4.1.12. Let X = c0, Xd = `∞, and {gi}∞i=1 be the canonical unit vectors

as a basis of `1. Then {gi}∞i=1 is an Xd-frame for c0. Note that

1. Xd = `∞ does not have the canonical unit vectors as a basis.

2. R(U) is not complemented in Xd = `∞.

The section ends with a result connecting majorization, factorization and range

inclusion for operators on Banach spaces.

Theorem 4.1.13. (Barnes, 2005) Let X ,Y ,Z be Banach spaces and let A ∈

B(X ,Y), B ∈ B(Z,Y). Then the following statements hold :

1. If A = BT for some T ∈ B(X ,Z), then B∗ majorizes A∗. Converse is true

when N(B) is complemented in Z, and Z is reflexive.

2. If R(A) ⊆ R(B), then B∗ majorizes A∗. Converse is true when Z is reflex-

ive.

4.2 Xd-Atomic Systems and Xd-K-frames

A frame for a Banach space X was defined as a sequence of elements in X ∗, not of

elements in the original space X . However, semi-inner products for Banach spaces

make possible the development of inner product type arguments in Banach spaces.

Frame (sequence of elements in X ) for Banach spaces via semi-inner product were

defined by (Zhang and Zhang, 2011).

The concept of a family of local atoms in a Banach space X with respect

to a BK-space Xd was introduced by Dastourian and Janfada (Dastourian and

Janfada, 2016) using a semi-inner product. This concept was generalized to an
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atomic system for an operator K ∈ B(X ) called X ∗d -atomic system and it has been

led to the definition of a new frame with respect to the operator K, called X ∗d -

K-frame. Unlike the traditional way of considering sequences in the dual space

X ∗, sequences in the original space X are considered in (Dastourian and Janfada,

2016) to study a family of X ∗d -local atoms and X ∗d -atomic systems by making use

of semi-inner products. Here X is assumed to be a reflexive separable Banach

space.

Appropriate changes have been made in the definitions of X ∗d -atomic systems

and X ∗d -K-frames to fit them for sequences in the dual space without using semi-

inner products, called Xd-atomic systems and Xd-K-frames respectively. Thus

the notion of Xd-K-frames for Banach spaces can be thought of a generalization

of Xd-frames.

Definition 4.2.1. Let X be a Banach space and Xd be a BK-space. Let K ∈ B(X ∗)

and {gi}∞i=1 ⊆ X ∗. We say that {gi}∞i=1 is an Xd-atomic system for X with

respect to K if the following statements hold :

1.
∞∑
i=1

digi converges in X ∗ for all d = {di}∞i=1 in X ∗d and there exists µ > 0

such that
∥∥∥ ∞∑
i=1

digi

∥∥∥
X ∗
≤ µ‖d‖X ∗

d
;

2. there exists c > 0 such that for every g ∈ X ∗ there exists ag = {ai}∞i=1 ∈ Xd
such that ‖ag‖Xd

≤ c‖g‖X ∗ and

Kg =
∞∑
i=1

aigi.

When Xd is reflexive, the condition (1) in Definition 4.2.1 actually says that

{gi}∞i=1 is an Xd-Bessel sequence for X with bound µ, by Lemma 4.0.4. We find a

necessary condition for a sequence {gi}∞i=1 ⊆ X ∗ to be an Xd-atomic system for X

with respect to a given operator K if the associated sequence space satisfies the

following crucial property: For each {gi}∞i=1, {hi}∞i=1 ∈ Xd,∣∣∣ ∞∑
i=1

gihi

∣∣∣ ≤ ‖{gi}∞i=1‖Xd
‖{hi}∞i=1‖Xd

. (4.2.3)
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For instance, let {gi}∞i=1, {hi}∞i=1 ∈ `p and p ∈ (1, 2]. Then the conjugate of p, q

lies in [2,∞). Hence by Hölder’s inequality, the sequence space `p for 1 < p ≤ 2

satisfies (4.2.3).

Theorem 4.2.2. Let Xd be a BK-space. Let {gi}∞i=1 be a sequence in X ∗ and

K ∈ B(X ∗). If {gi}∞i=1 is an Xd-atomic system for X with respect to K and the

sequence space Xd satisfies the inequality (4.2.3), then there exists a constant λ > 0

such that

‖K∗f‖X ≤ λ‖{gi(f)}∞i=1‖Xd
for each f ∈ X .

Proof. Suppose {gi}∞i=1 is an Xd-atomic system for X with respect to K. Then

there is some c > 0 such that for every g ∈ X ∗ there exists ag = {ai}∞i=1 ∈ Xd such

that

‖ag‖Xd
≤ c ‖g‖X ∗

and Kg =
∑∞

i=1 aigi. Hence for each f ∈ X ,

‖K∗f‖X = sup
g∈X ∗, ‖g‖=1

|g(K∗f)|

= sup
g∈X ∗, ‖g‖=1

|(Kg)(f)|

= sup
g∈X ∗, ‖g‖=1

∣∣∣ ∞∑
i=1

aigi(f)
∣∣∣

≤ sup
g∈X ∗, ‖g‖=1

‖{ai}∞i=1‖Xd
‖{gi(f)}∞i=1‖Xd

= sup
g∈X ∗, ‖g‖=1

‖ag‖Xd
‖{gi(f)}∞i=1‖Xd

≤ c sup
g∈X ∗, ‖g‖=1

‖g‖X ∗ ‖{gi(f)}∞i=1‖Xd
[∵ ‖ag‖Xd

≤ c ‖g‖X ∗ ]

Thus for some c > 0, ‖K∗f‖X ≤ c ‖{gi(f)}∞i=1‖Xd
, for each f ∈ X .

Definition 4.2.3. Let X be a Banach space and Xd be a BK-space. Let K ∈ B(X ∗)

and {gi}∞i=1 ⊆ X ∗. We say that {gi}∞i=1 is an Xd-K-frame for X if the following

statements hold:

1. {gi(f)}∞i=1 ∈ Xd, for each f ∈ X ;

2. there exist two constants 0 < λ ≤ µ <∞ such that

λ‖K∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X , for each f ∈ X .
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The elements λ and µ are called the lower and upper Xd-K-frame bounds.

We say that an Xd-frame for X is an Xd-I-frame for X , where I is the identity

operator on X ∗. The set of all Xd-frames for X can be considered as a subset of

Xd-K-frames for X . Thus Xd-K-frame is a generalization of Xd-frame for a Banach

space X . We present an example for an Xd-K-frame which is not an Xd-frame for

X .

Example 4.2.4. Let X be the space of all triplets (α1, α2, α3) with complex scalars

and having 3/2-norm, denoted by `3/2(3). Let {gi}∞i=1 ⊆ X ∗ = `3(3) be such that

gi(ej) = δij, where ej’s are vectors in X , having 1 in jth place and 0 elsewhere,

and gi = 0 for all i ≥ 4. Define K : X ∗ → X ∗ by

Kg1 = 0, Kg2 = g3, and Kg3 = g2.

For any f ∈ X , we have f =
3∑
i=1

αiei and

‖K∗f‖X = ‖α2e3 + α3e2‖3/2 =
(
|α2|3/2 + |α3|3/2

)2/3
= ‖{gi(f)}∞i=2‖`3/2 .

Then {gi}∞i=2 is an Xd-K frame for X . But it is not an Xd-frame because there is

no constant λ such that for any scalar α1,

λ‖f‖X =
(
|α1|3/2 + |α2|3/2 + |α3|3/2

)2/3 ≤ (|α2|3/2 + |α3|3/2
)2/3

= ‖{gi(f)}∞i=2‖`3/2 .

4.3 Generating New Xd-K-frames and Charac-

terizations

We can generate new Xd-K-frames for X from each Xd-frame for X and each

operator K ∈ B(X ∗), by the following proposition.

Proposition 4.3.1. If {gi}∞i=1 is an Xd-frame for X and K ∈ B(X ∗), then

{Kgi}∞i=1 is an Xd-K-frame for X .

Proof. Suppose {gi}∞i=1 is an Xd-frame for X . Then {gi(f)}∞i=1 ∈ Xd, for all f ∈ X

and there are constants 0 < λ ≤ µ <∞ such that for each f ∈ X

λ‖f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X .
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Let f ∈ X be fixed. Since (Kgi)(f) = gi(K
∗f) andK∗f ∈ X , we have {(Kgi)(f)}∞i=1 ∈

Xd. Also, ‖K∗f‖X ≤ ‖K‖ ‖f‖X gives that for each f ∈ X ,

λ‖K∗f‖X ≤ ‖{(Kgi)(f)}∞i=1‖Xd
≤ µ‖K‖ ‖f‖X .

Thus {Kgi}∞i=1 is an Xd-K-frame for X .

The following example illustrates that an Xd-Bessel sequence is an Xd-K-frame

but it is not the same for the other operator T .

Example 4.3.2. Let X = `3/2(3). Let {gi}∞i=1 ⊆ X ∗ = `3(3) be such that for

i = 1, 2, 3, gi(ej) = δij, and gi = 0 for all i ≥ 4. Define K and T from X ∗ to X ∗

as follows:

Kg1 = 0, Kg2 = g3, and Kg3 = g2,

and

Tg1 = g1, T g2 = g3, and Tg3 = g2.

Then {gi}∞i=2 is an Xd-K frame but it is not an Xd-T -frame for X .

Theorem 4.3.3. Let {gi}∞i=1 be an Xd-K-frame for X . Let T ∈ B(X ∗) be such

that R(T ) ⊆ R(K). Then {gi}∞i=1 is an Xd-T -frame for X .

Proof. Suppose {gi}∞i=1 is an Xd-K-frame for X . Then there are constants 0 <

λ ≤ µ <∞ such that for each f ∈ X

λ‖K∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X . (4.3.4)

Since R(T ) ⊆ R(K), by Theorem 4.1.13, there exists c > 0 such that ‖T ∗f‖X ≤

c‖K∗f‖X . From the inequality (4.3.4), we have for each f ∈ X

λ

c
‖T ∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd

≤ µ‖f‖X .

Hence {gi}∞i=1 is an Xd-T -frame for X .

Theorem 4.3.4. Let Xd be a reflexive space and let {gi}∞i=1 ⊆ X ∗. Let {ei}∞i=1

be the canonical unit vectors for Xd and Xd∗. Then {gi}∞i=1 is an Xd-K-frame for

X if and only if there exists a bounded linear operator L : X ∗d → X ∗ such that

Lei = gi and R(K) ⊆ R(L).
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Proof. Since {gi}∞i=1 is an Xd-K-frame for X , there exist constants 0 < λ ≤ µ <∞

such that for each f ∈ X ,

λ‖K∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µ‖f‖X .

Hence the operator U : X → Xd defined by Uf = {gi(f)}∞i=1 is bounded and

‖U‖ ≤ µ. The adjoint of U , U∗ : X ∗d → X ∗ satisfies

(U∗ei)(f) = ei(Uf) = gi(f).

Since Xd is an RCB-space, U∗ = L, hence we get Lei = gi. Also we have

λ‖K∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
= ‖L∗f‖Xd

, for each f ∈ X .

Thus by Theorem 4.1.13, R(K) ⊆ R(L).

On the other hand, suppose there exists a bounded linear operator L : X ∗d →

X ∗ such that Lei = gi and R(K) ⊆ R(L). Then by Theorem 4.1.13, there exists

λ > 0 such that λ‖K∗f‖X ≤ ‖L∗f‖Xd
. Thus for each f ∈ X ,

λ‖K∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
= ‖L∗f‖Xd

≤ ‖L‖ ‖f‖X .

Corollary 4.3.5. Let Xd be a reflexive space and let {gi}∞i=1 ⊆ X ∗. Let {ei}∞i=1 be

the canonical unit vectors for Xd and X ∗d . Let N(L) be complemented in X ∗d . Then

{gi}∞i=1 is an Xd-K-frame for X if and only if L = KV for some V ∈ B(X ∗d ,X ∗).

Zhang and Zhang defined frames in Banach spaces via a compatible semi-inner

product, which is a natural substitute for inner products on Hilbert spaces. As

assumed in the paper (Zhang and Zhang, 2011), we assume that Xd is reflexive, the

canonical unit vectors {ei}∞i=1 form a Schauder basis for Xd and X ∗d ; the following

crucial requirement is also imposed as in (Zhang and Zhang, 2011): If d = {di}∞i=1

is a sequence of scalars satisfying
∑∞

i=1 cidi converges for every c = {ci}∞i=1 ∈ Xd,

then d ∈ X ∗d , and if the above series converges for all d ∈ X ∗d , then c ∈ Xd.

For instance, if Xp = `p, 1 < p <∞, then X ∗d = `q, where
1

p
+

1

q
= 1, it satisfies

all of our requirements on Xd and X ∗d . The above requirements about the spaces

X and Xd are assumed in the rest of the chapter. We now prove that the converse

of the Theorem 4.2.2 with the above assumptions.
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Theorem 4.3.6. Let X be a Banach space and Xd be a BK-space. Let {gi}∞i=1 ⊆

X ∗ be an Xd-Bessel sequence for X , and K ∈ B(X ∗). If N(L) is complemented,

and if there exists a constant λ > 0 such that for each f ∈ X ,

‖K∗f‖X ≤ λ‖{gi(f)}∞i=1‖Xd
,

then {gi}∞i=1 is an Xd-atomic system for X with respect to K.

Proof. Using the synthesis operator L, the given inequality in hypothesis can be

written as

‖K∗f‖X ≤ λ‖L∗f‖Xd
for all f ∈ X .

By Theorem 4.1.13, K = LT for some T ∈ B(X ∗,X ∗d ). Let g ∈ X ∗ be fixed. Then

Tg ∈ X ∗d . Since Xd has the canonical unit vectors {ei}∞i=1 as a Schauder basis,

the continuous linear functional Tg on Xd has the form Tg(c) =
∑∞

i=1 cidi, where

{di}∞i=1 ∈ Xd is uniquely determined di = F (ei), and

‖Tg‖X ∗
d

= ‖{di}∞i=1‖Xd
.

Since T is bounded, the sequence {di}∞i=1 associated for g ∈ X ∗ satisfies

‖{di}∞i=1‖Xd
= ‖Tg‖X ∗

d
≤ ‖T‖ ‖g‖X ∗ .

Also, we have

Kg = LTg = L({di}∞i=1) =
∞∑
i=1

digi.

Thus {gi}∞i=1 is an Xd-atomic system for X with respect to K.

Theorem 4.3.7. Let K1, K2 ∈ B(X ∗). Let {gi}∞i=1 be an Xd-atomic system for

X with respect to K1, K2, and α, β are scalars. If N(L) is complemented, then

{gi}∞i=1 is an Xd-atomic system for αK1 + βK2.

Proof. Suppose {gi}∞i=1 is an Xd-atomic system for X with respect to K1, K2 and

α, β be any scalars. Then there are constants 0 < λi ≤ µi < ∞ (i = 1, 2) such

that for each f ∈ X

λi‖K∗i f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤ µi‖f‖X .
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By simple calculations, we get( |α|
λ1

+
|β|
λ2

)−1
‖(αK1 + βK2)

∗f‖X ≤ ‖{gi(f)}∞i=1‖Xd
≤
(µ1 + µ2

2

)
‖f‖X .

Therefore by Theorem 4.3.6, {gi}∞i=1 is an atomic system for αK1 + βK2.

We now prove that the notions, “atomic systems” and “frames for operators”

are equivalent under the crucial assumptions. The proof of the result given below

follows from Theorem 4.2.2 and Theorem 4.3.6.

Theorem 4.3.8. Let Xd be a sequence space satisfying the inequality (4.2.3) and

{gi}∞i=1 ⊆ X ∗ be an Xd-Bessel sequence for X . Let N(L) be complemented and

K ∈ B(X ∗). Then the following statements are equivalent :

1. {gi}∞i=1 is an Xd-atomic system for X with respect to K.

2. {gi}∞i=1 is an Xd-K-frame for X .

Corollary 4.3.9. (Găvruţa, 2012) Let {fi}∞i=1 be a sequence in a Hilbert space H

and let K ∈ B(H). Then the following statements are equivalent :

1. {fi}∞i=1 is an atomic system for K.

2. {fi}∞i=1 is a K-frame for H.

Proof. The proof follows from the Theorem 4.3.8 because the assumptions are

“redundant” if X is considered to be a Hilbert space with the sequence space

Xd = `2 in Theorem 4.3.8.

4.4 Conclusion

The notion of frames for operators is introduced for a sequence of continuous linear

functionals defined on a Banach space. It is proved that the new notion is a natu-

ral extension of Banach frames defined by Casazza et al., in 2005. Necessary and

sufficient conditions are derived and results on generating frames for operators

are given. Moreover, it is shown that “atomic systems” and “frame for opera-

tors” defined in the thesis are not equivalent in general unless some additional

requirements are not met by the associated sequence spaces.
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