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ABSTRACT 

The aim of the present research work is to estimate the unknown parameters by using the 

information obtained from in-house steady state heat transfer experiments and to employ 

stochastic inverse techniques. With the advent of latest technologies in the field of advance 

computing, conjugate heat transfer problems that are highly complex can easily be solved to 

obtain temperature distributions. 

In the present work, suitable mathematical models are proposed as forward models for a class 

of conjugate heat transfer problem. The first problem solved was a conjugate heat transfer 

from a mild steel fin. The numerical model is developed using ANSYS FLUENT with an 

extended model which facilitates natural convection heat transfer. Based on the experimental 

temperatures and with accompanying mathematical model, heat flux is estimated using 

Genetic Algorithm as inverse method. To accelerate the inverse estimation, Genetic 

algorithm is assisted with the Levenberg- Marquardt method for the estimation of the heat 

flux, thus making the whole process as hybrid estimation. In the second problem, 3-D 

conjugate fin model is proposed for the estimation of heat flux and heat transfer coefficient 

using Artificial Neural Network (ANN) method. The novelty of the work is to inject the 

experimental temperature methodologically in to the forward model which is trained by 

Neural network thereby the forward model is driven by experimental data and to accomplish 

the task of parameter estimation, ANN is used as inverse method that leads to a non-iterative 

solution.  

The concept of a priori information is then introduced for the simultaneous estimation of heat 

flux and heat transfer coefficient using experimental data. This was accomplished using 

Bayesian framework along with Markov Chain Monte Carlo (MCMC) method to condition 

the posterior probability density function. A powerful Metropolis-Hastings algorithm is 

exploited in order to attain stable Markov chains during the process of inverse estimation. 

Finally, this was followed by estimation of heat generation and heat transfer coefficient from 

a Teflon cylinder within the Bayesian framework.  

Keywords: inverse, conjugate, estimation, apriori, CFD, GA, ANN, Bayesian, MCMC, 

Metropolis-Hastings 
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CHAPTER 1 

INTRODUCTION 

Of interest in heat transfer problem is the determination of the parameters involved in 

the mathematical formulation of the physical model. The focal point in any mode of 

heat transfer is the determination of temperature distribution along the region of 

interest for the applied boundary condition. Determination of temperature when the 

boundary conditions and other parameters are known will be a direct approach and 

such problems are called as direct problem. Direct problems are also referred as well-

posed problems. But, when the information about any of the parameters is not known, 

the objective is then to estimate the unknown parameter with the knowledge of the 

temperature data. Such an approach is called inverse method which is often referred to 

as ill-posed problems. The parameters that can be estimated using inverse techniques 

include thermal conductivity, heat transfer coefficient, boundary heat flux, emissivity, 

thermal diffusivity, specific heat capacity. 

Inverse parameter estimation problems form a class of estimation problems, where 

one is keen to determine the unknown ‘quantity’ from ‘measurements’, given the 

knowledge about the physical process. The concept of well-posed problem should 

satisfy the three conditions (Hadamard, 1923): 

 Existence of the solution 

 Uniqueness of the solution 

 Stability of the output data for small changes in the input 

(Beck et al. 1985) provides the importance and practical nature of the inverse heat 

conduction problems. Estimation of parameters is an important inverse problem in 

thermal sciences. Estimation techniques can broadly be classified as deterministic and 

stochastic methods. Deterministic methods are invariably calculus based, while 

stochastic methods by definition involve some probabilistic rules associated with the 

procedure. Generally, stochastic methods are better in terms of robustness in solving 

multi-parameter problems which are ill-posed and do not satisfy either one of the 

requirements of existence: uniqueness or stability (Mota et al. 2010).  
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Inverse problem is primarily focused on minimisation of the objective 

function,  

𝐹(𝑥) = ∑ [𝒀𝑖 − 𝑇𝑖(𝑷)]
2𝑁

𝑖=1                                                                           (1.1) 

where i is the number of measurements, Y is observation data, T(P) is the solution 

obtained from the forward or mathematical model for the assumed value of the 

parameter P. A general depiction of the estimation method is shown in Figure 1.1. In 

the Figure 1.1, 𝑇𝑚𝑒𝑎𝑠 represents experimental or simulated temperature and 𝑇𝑠𝑖𝑚 

represents temperature data from forward model for the assumed input. R
2
 is the error 

between the forward model temperature and experimental/simulated temperature and 

generally represented as L2 Norm. When the error is within the limit, the estimation 

process is terminated and the solution to the problem is the initial guess which was 

given as input to the forward model. In accordance to this, when the calculated error 

is not within the limit then a suitable inverse model is incorporated to generate a new 

sample and the process is continued until the objective function is minimized. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.1 General representation of the Inverse problem 
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Stochastic methods provide reasonably accurate results even when the input data is 

noisy or corrupted due to measurement errors. Stochastic methods require generation 

of large amount of data for the forward calculations.   

The widely used stochastic techniques include Genetic Algorithm (GA), 

Simulated Annealing (SA), Artificial Neural Network (ANN) and Bayesian inference 

etc. GA works on the basis of natural selection and mimic the process of biological 

evolution. Fitness function is treated as the objective function (Balaji and Thaseem 

2009), wherein the objective is to minimize the fitness function or cost function. From 

the initial solution, the parents are selected to mate based on probabilistic rules to 

produce the offsprings. These offsprings form the new solution, and they once again 

repeat the process of mating to produce the new one until the fitness function is 

satisfied. Simulated annealing is a search technique where probabilistic rules are 

employed to decide whether a subsequent iterate is acceptable. This process is very 

much similar to the annealing process in metal treatment where the hot metal is 

cooled on a controlled manner so that desired material property can be obtained. 

ANN method mimics the learning process of the human brain and progresses 

by training a large set of forward calculations in order to correlate the output against 

the input by using weights (Balaji and Thaseem 2009). It is a non-iterative technique 

in the inverse estimation.  

Bayesian statistical framework includes probability distribution models 

constructed separately and explicitly for measurement and the unknown parameters 

(Mota et al. 2010). The likelihood function appearing in the Bayesian framework 

includes not only the information about the forward model and measurements but also 

takes in to account the uncertainty associated with the experiments. Any information 

regarding the unknown parameter can be incorporated in the prior model. In fact, this 

information is available before performing experiments. Finally the solution to the 

inverse problem is obtained in the form of posterior probability density function. 

Therefore, the Bayesian framework can be represented in terms of Posterior 

Probability Density Function which is proportional to Likelihood Density Function 

times Prior Density Function.  



4 
 

  

Some specific applications of the inverse problem include (Ozisik and Orlande 2000), 

 Estimation of the boundary heat flux in natural convection and forced 

convection 

 Estimation of thermophysical properties of the materials 

 Estimation of inlet conditions and boundary heat flux in forced convection 

inside tubes 

 Estimation of the interfacial heat transfer coefficient during the solidification 

process 

 Estimation of the source strength 

 Estimation of radiative heat transfer properties 

 Estimation of interface conductance between periodically contacting surfaces. 

1.1 FORWARD PROBLEM 

Satisfactory results in parameter estimation by using inverse approach are 

possible when an appropriate forward model is used. In thermal sciences, the 

output from the forward model is usually temperature with the known boundary 

conditions/source term and material properties. The forward model or the 

mathematical model can be represented in terms of ordinary or partial differential 

equations which explains the complete physics of the problem domain along with 

boundary conditions and initial conditions. The forward problem forms an 

integral part of the inverse approach. When the computations of the forward 

model become complex due to time consuming CFD solutions or complex 

geometry, there is a need for fast forward model. Hence, in this thesis, artificial 

neural network (ANN) is used as the fast forward model which involves training 

a network between the known input and desired output. 

1.2 INVERSE MODEL 

The solution from the inverse model yields the retrieved parameter based on the 

error minimization criteria. The inverse model is classified into two main 

frameworks: deterministic and probabilistic methods. The use of deterministic 

methods is rendered passive because they have the tendency to get trapped in 

local minima and maxima (Gnanasekaran and Balaji 2011), requirement of 
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known constant standard deviation and prior information are not accepted. With 

the use of stochastic methods the problem of getting trapped in the local minima 

and maxima is avoided. Methods such as GA, PSO, SA etc are extensively used 

as optimization techniques in literature. In Bayesian Inference any prior 

information about the unknown parameter can be incorporated in the estimation 

process. In this work GA, ANN and Bayesian Inference is used as the inverse 

model for the estimation of single and multi-parameter. 

1.2.1 Genetic Algorithm (GA) 

Introduction (Sivanandam and Deepa 2008) of the evolutionary computation is 

based on Darwin’s principle “Survival of the fittest”. Genetic Algorithm is one 

such evolutionary computational technique which is based on the evolution of the 

biological species. It is a stochastic algorithm where randomness forms the 

essential role in the process of marching towards the solution. The biological 

species have solved the problem of chance, chaos, nonlinear interactivities and 

existence duration. In other words these problems can be related to the classic 

methods of optimization. Organisms which are most capable of using resources 

and sustain themselves are the ones which carry forward and undergo the function 

of evolution. These organisms are selected over the less capable organisms and 

are said to be fit. These evolutionary principles are embedded in Genetic 

Algorithm. The objective of the algorithm is to optimize the ‘fitness function’ 

either minimize or maximise based on the problem considered. The first work in 

the field of Genetic Algorithm was started in the year 1975 by Holland. 

1.2.2 Artificial Neural Network (ANN) 

ANN resembles the biological nervous system and creates a relationship between 

the input and the output variables. ANN can be used as forward model and inverse 

model. It is composed of nodes which act as the processing elements and the 

channels are called the connections. ANN has the self-learning ability through 

which the weights are adjusted based on the error between the target and the 

network output. Development (Yegnanarayana  2005) in the work of neural network 

started in the year 1943 by Warren McCulloch and Walter Pitts, but the drawback 
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of this model is that the weights are fixed hence it lagged the quality of self- 

learning. Later in the year 1949, Donald Hebb proposed a learning scheme for 

adjusting the connection weights. In 1954 a learning machine was developed by 

Marvin Minsky, in which the connection strengths could be adapted 

automatically. Finally in the year 1958, Rosenblatt proposed the perceptron model 

containing weights adjustable by the perceptron learning law.  

1.2.3 Bayesian Inference 

Bayesian inference is used as a frame work to minimize the objective function or 

to condition the probability density function. The inverse model is based on the 

Bayes’ theorem to relate the experimental/simulated data Y and the parameter x 

is as follows, (Wang and Zabaras  2004) 

 

P(x/Y) =  
P(Y x)⁄  P (x)

P(Y)
 

 

   (1.2) 

where, P(x/Y) – posterior probability density function (PPDF); P(Y/x) – 

likelihood function or the forward model; P(x) – prior density function; P(Y) – 

normalizing constant. 

Markov chain Monte Carlo method along with Metropolis Hastings algorithm is 

used to compute samples from the posterior space. The most commonly used 

MCMC sampling algorithm is the Metropolis-Hastings algorithm, where a value 

is generated from an auxiliary distribution and accepted with the assigned 

probability.  

At the closure of this chapter it is well understood that estimation of single and 

multi-parameter is achieved by using ANN as the forward model and in the 

inverse approach stochastic method such as Genetic Algorithm and Bayesian 

Inference is used. The robustness of these methodologies is tested with simulated 

measurements. After successful estimations, it is further progressed to the 

experimental observations and the results were found promising. With this broad 

idea Figure 1.1 can be further reduced which is shown in Figure 1.2. 
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Figure 1.2 Inverse approach used in the present work 
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1.3 OVERVIEW OF THE WORK  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Overview of the work 
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1.4 ORGANIZATION OF THE THESIS 

Chapter 1 provides a brief introduction about the estimation methodology for the    

solution of inverse heat transfer problems.  

Chapter 2 highlights extensive literature review about the techniques used in the  

inverse estimation and its advantages. Weighted inputs were captured from the 

literature which helped in shaping the work in great deal.   

Chapter 3 gives the constructional details of the experimental set up for each of 

the problems taken up for the investigation and various other instruments used in 

experimentation.  

Chapter 4 explains the mathematical models of the forward problem. Methods 

such as Computational Fluid Dynamics (CFD) and Artificial Neural Network 

(ANN) are explained in detail. 

Chapter 5 provides the details about the inverse methods used in the present 

work. Genetic Algorithm (GA) in conjunction with Levenberg Marquardt 

algorithm used for the estimation of the unknown parameters has been reported. 

ANN and Bayesian framework are also discussed in detail. Markov chain Monte 

Carlo along with Metropolis-Hastings algorithm for the sampling space within the 

Bayesian framework is extensively dealt with in this chapter. 

In Chapter 6 estimation of heat flux is accomplished for the two dimensional 

conjugate heat transfer from fin with horizontal base orientation using ANN as the 

forward model and evolutionary technique Genetic Algorithm as the inverse 

model. Hybrid technique is used by combining Levenberg Marquardt (LM) 

method with GA to obtain the solution. Information from steady state experiments 

is considered for the estimation. 

In Chapter 7, the heat flux and the heat transfer coefficient is estimated for a 3D 

vertical orientation of the fin base setup. Steady state experiments are conducted 

on vertical orientation. ANN is used as both forward and inverse models. 

Experimental data is injected to the simulated data and training is accomplished. 

Using this trained data heat flux and heat transfer coefficient is estimated.  

Chapter 8 deals with simultaneous estimation of heat flux and heat transfer 

coefficient for the horizontal base orientation of the fin setup using Bayesian 

Inference as an inverse approach. Estimation is also carried out for the measured 
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data. Initially 2D computational model is considered to obtain the simulated data 

in order to estimate heat flux as single parameter. This is used as the prior 

information for the simultaneous estimation. Later, 3D model is developed and 

simultaneous estimation of heat flux and heat transfer coefficient is 

accomplished. Sensitivity study has also been carried out.  

In Chapter 9 an application of the Bayesian frame work - Markov Chain Monte 

Carlo – Metropolis Hastings algorithm, for the simultaneous estimation of heat 

generation and heat transfer coefficient from Teflon cylinder which is a low 

thermal conducting material is attempted. ANN is used as the fast forward model. 

Sensitivity study is also carried out. This problem can be related to the estimation 

of the location and size of the tumour present in a human body. 

The last chapter highlights the specific contribution made in the work along with 

the summary of the work. Also scope for future work is presented. 
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CHAPTER 2 

LITERATURE REVIEW 

Heat transfer phenomenon is found in all branches of science; hence the knowledge of 

temperature distribution and the cause for it is an interesting scenario. Direct 

problems, often referred to as forward approach, deal with the determination of 

temperature when the cause is known. But, when the cause is to be determined from 

the knowledge of its effect, say temperature, then such a challenging problem is 

termed as inverse problem in heat transfer. In recent years stimulating growth is 

observed in understanding the theory and application of Inverse Heat Transfer 

Problems (IHTP). Mechanical, chemical and nuclear engineers, aerospace, statistics, 

mathematics are the fields in which IHTP can be applied. The forward model is an 

integral part of the inverse approach. Optimizing the time taken by the forward model 

has created more interest among the investigators when the numerical model involves 

complex geometry and simultaneous partial differential equations to be solved. A 

common practice of an inverse problem is to develop systematic solutions to 

synergistically collaborate the simulation with experiments to obtain maximum 

information about the physical problem. 

2.1 ESTIMATION OF MULTI-PARAMETERS USING EVOLUTIONARY 

ALGORITHM-GENETIC ALGORITHM (GA) AS INVERSE TECHNIQUE 

 Adili et al. (2010) applied Genetic Algorithm (GA) for the estimation of 

thermophysical properties of fouling deposited on internal surface of a heat exchanger 

tube caused due to the presence of inorganic salts. Estimation of thermophysical 

properties of the deposited fouling was important to improve the efficiency of the heat 

exchanger. Experimental temperature measurements are obtained from the copper 

tube that involves fouling. The simulated temperature were obtained by solving the 

one-dimensional linear inverse conduction problem, and by the use of the thermal 

quadrupoles formalism. Sensitivity study was carried out to determine the dependency 

of the parameters. The parameters like thermal diffusivity, thermal conductivity, 

volumetric heat capacity, heat transfer coefficients were estimated using GA.  
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Venugopal et al. (2009) used hybrid optimization technique to develop a Nusselt 

number correlation, in terms of relevant non-dimensional parameters, for turbulent 

forced convection flows in vertical channels for transient cooling experiments. The 

temperature-time curve obtained during the cooling of the hot plate is compared with 

temperature obtained numerically. As an inverse approach, GA along with 

Levenberg-Marquardt method constituting a hybrid approach is used to estimate the 

parameters by minimizing the fitness value. Another global optimization technique, 

Simulated Annealing (SA) was used for retrieving the parameters available in the 

correlation.  

Miroslau  et al. (1995) used GA to solve one-dimensional inverse heat conduction 

problem by using numerical data which is obtained from the solution of the direct 

problem. One dimensional transient heat conduction equation is considered as the 

direct problem. GA was used as inverse method for estimating the heat transfer by 

knowing the information about temperature. Noiseless and noise added data is 

considered. Regularization technique is used to improve the accuracy of the inverse 

method. 

Hao and Xiang (2008) applied genetic algorithm (GA) combined with back 

propagation neural networks (BP) for the optimal design of plate-fin heat exchangers 

(PFHE). Two kinds of case study were considered wherein GA was used as an 

optimization tool to minimise the weight of heat exchanger and to minimise the total 

annual cost of PFHE. GA along with BP algorithm when used as an optimizing tool 

provided better efficiency than the traditional GA method. 

Louis et al. (2009) presented a review paper on the utilization of GA in the field of 

heat transfer. They identified three main classes of problems for which GA could be 

used, (i) thermal systems design problems, (ii) inverse heat transfer problems, and (iii) 

development of heat transfer correlations. Problems including modeling, number of 

variables, and GA settings have also been presented in their work. 

 Imani et al. (2006) simultaneously estimated temperature dependent thermal 

conductivity and heat capacity using modified elitist genetic algorithm (MEGA). The 

forward model temperatures are obtained by solving one dimensional conductive 
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model using Finite Difference Method. They used hydridization technique by 

combining MEGA with Levenberg-Marquardt method to improve accuracy in the 

results. They considered measurements at single location for the estimation and also 

suggested that the estimates can be improved by increasing the number of sensors. 

Sepehr and Hassan  (2010) used GA for thermal modelling and optimal design of 

compact heat exchangers. Maximum effectiveness and minimum total annual cost 

were considered as two objective functions for which fin pitch, fin height, fin offset 

length, cold stream flow length, no-flow length and hot stream flow length were 

considered as parameters. Non-dominated sorting genetic-algorithm (NSGA-II) was 

used to satisfy the objective function. They proposed a correlation between the 

optimal values of two objective functions. Based on the estimation of energy saving 

of the equipment the pay back period was also calculated. 

Reza et al. (2013) combined least squares and genetic algorithm for determining 

temperature in an inverse heat conduction problem. The results suggested that 

excellent estimation was obtained by the implementation of sequential genetic 

algorithm and parallel genetic algorithm for a computer with 2.7GHz speed and 16-

core processor. 

Fung-Bao (2008) estimated unknown heat source for an inverse heat conduction 

problem using modified genetic algorithm. An additional cost function was added to 

the real valued genetic algorithm to obtain the modified genetic algorithm in order to 

improve the computational efficiency. The results obtained from modified genetic 

algorithm were compared with real-valued genetic algorithm, and reduction in the 

computational time was observed. The results also revealed that the accuracy in the 

estimation is inversely proportion to the measurement errors. 

Swati and Balaji (2007) estimated simultaneously conduction–radiation parameter, 

the optical thickness and the boundary emissivity from the information of the 

measured temperature profile of combined conduction and radiation in a plane 

parallel participating medium using Genetic Algorithm. The solution to the forward 

model is obtained from finite volume method. Effect of noise on estimated parameters 

was studied and it was observed that the error in estimation increased with noisy data. 
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Woodbury and Suprasanna (2006) conducted a comparison between binary coding 

and real number encoding for solving a one dimensional heat conduction equation 

with specified boundary conditions considering a test case. It was observed that when 

more number of parameters is to be estimated, the values retrieved by GA deviates 

from the observed value compared to the evolutionary algorithms.  

Woodbury et al. (2004) developed and demonstrated a genetic algorithm based on a 

simple problem of determining the equation of a straight line. Later, GA was modified 

and implemented to estimate the temperature distribution in a gas based on the 

measured infrared transmissivity distribution. The prime objective of the inverse 

method was to determine the gas composition based on these transmissivity 

measurements. 

Balázs and Gyula (2012) simultaneously estimated temperature dependent volumetric 

heat capacity and thermal conductivity of a solid material based on transient 

temperature data. Several data points were considered to obtain the temperature 

distribution. Temperature is recorded during the cooling process with the help of 

sensors. The inverse problem was solved by a real-valued genetic algorithm using 

simulated measurement results. New genetic operators (smooth initialization and 

smooth mutation) were developed and applied. The accuracy of the inverse solution 

was studied in two test cases including linear, square, and sinusoidal functions. They 

analyzed the effects of regularization and random noise in the temperature histories. 

Damian (2008) applied GA to design inverse Stefan problem. They considered the 

problem of reconstructing the function describing the heat transfer coefficient. The 

solution to the Stefan problem involves finding the positions of the moving interfaces 

corresponding to the heat transfer. The objective of the work was to identify the heat 

transfer coefficient in the inverse three-phase Stefan problem. For numerical 

calculations genetic algorithm, Tikhonov regularization and generalized alternating 

phase truncation methods were used. They compared the results from the application 

of genetic algorithms with the results obtained from the Nelder–Mead method and 

found the results of GA to be superior. 
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Ling et al. (2004) proposed a new experimental procedure based on genetic algorithm 

for analyzing exterior wall surface heat transfer process and determine exterior wall 

surface heat transfer coefficient subject to actual conditions. They conducted tests for 

wide range of conditions and obtained value for heat transfer coefficient varying from 

14.315 to 24.412 W/m
2
 K for wind speed ranging from 1.04 to 7.36 m/s and 

developed a correlation based on wind speed. The use of GA suggested improving the 

experimental condition, by adopting flux meter for the estimation of heat transfer 

coefficient accurately. 

Arash et al. (2014) proposed a combined cycle based on the Brayton power cycle and 

the ejector expansion refrigeration cycle that can provide heating, cooling and power 

simultaneously. The working fluid used was CO2. The effects of the thermodynamic 

parameters on the system performance and the exergy destruction rate in the 

components were examined by carrying out parametric study and exergy analysis. 

They observed that the combined cycle saved around 46% of energy compared with 

other system producing the same output. The objective of the evolutionary based 

genetic algorithm was to minimize the heat exchanger size and maximize exergy 

efficiency. They also proposed a correlation between the exergy efficiency and total 

heat exchanger length. Based on the results, the combined cycle was recommended 

for buildings and outside regions. 

Morales et al. (2015) used ANN to predict the coefficient of performance (COP) of an 

absorption heat transformer with a new physical design consisting of compact 

components, and its inverse (ANNi) was used to optimize the  performance of the 

system, coupled for the water purification. The temperature (T), concentration of the 

solution (X), pressure (P) and mass flow (ṁ) are considered as input to the neural 

network. Using the inverse ANN model they developed a strategy for optimization of 

a generator and an evaporator input temperatures and the solution was obtained using 

the method of genetic algorithms (GAs). 

Chyi-Tsong and Hung-I (2013) achieved multi-objective optimization design of plate-

fin heat sinks equipped with flow-through and impingement-flow air cooling systems. 

Simultaneous minimization of the entropy generation rate and the material cost of the 
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heat sinks were attained with the help of Genetic algorithm with direction-based 

crossover operator. Simulation results showed that the plate-fin heat sink with flow-

through air cooling system, having larger size, is better than that with impingement-

flow one in heat dissipation. 

Hotta et al. (2015) used an optimization strategy by combining ANN and GA for 

configuring five heat rectangular heat sources placed on the substrate board at the test 

section of the low speed horizontal wind turbine. Volume of the five heat sources, 

power input and their centroid distance from x and y axis is considered as input to the 

neural network and maximum temperature from the five heat sources is considered as 

output. The objective of GA was to estimate the heat source location that reduced the 

maximum temperature excess considering all possible configurations. The data to GA 

was provided from ANN and experimental data is used as input to ANN. From the 

results they concluded that the combined ANN–GA technique was more accurate 

compared to the  -based heuristic optimization method. 

Ponnada et al. (2016) estimated the dimensions of the heat sink cavity for obtaining 

the maximum melt time and maximum thermal performance of the heat sink by the 

use of ANN based GA. Using the commercially available FLUENT software transient 

three-dimensional simulations were done for a phase-change material (PCM)-based 

heat sink subjected to constant heat flux of 1.59 kW/m
2
. The numerically obtained 

temperature data was validated with the experimental data. Simulations were carried 

out with 30 different geometric configurations to determine the time required for 

complete melting. With the estimated optimal configuration numerical calculations 

were done and the resulting melting time showed a good match with ANN-GA 

predicted values. 

2.2 ANN AS FORWARD AND INVERSE MODEL 

Balaji and Padhi (2010) used ANN in conjunction with Markov Chain Monte Carlo 

method to solve an inverse heat conduction problem. The paper reports a steady state 

two dimensional heat conduction from a square slab with uniform volumetric internal 

heat generation. Heat transfer coefficient, heat generation and thermal conductivity 

are estimated for the simulated data with noise and without noise. They replaced the 
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forward model (conduction equation) with the neural network. Noise was added to the 

data in order to validate the capability of the hybrid technique. Estimation was carried 

out by considering various prior values. The retrieved values obtained using hybrid 

technique is compared with ANN retrieved values and it was observed that the results 

from hybrid technique are superior to the results obtained using ANN as inverse 

technique. This hybrid technique resulted in reduced computational cost and time. 

Guanghui et al. (2003) presented a review paper on the prediction of critical heat flux 

for natural or forced convection under low pressure and oscillation conditions by 

using ANN. They considered six input parameters into the network pressure, mean 

mass flow rate, relative amplitude, period, inlet subcooling and heated length to 

diameter of tube ratio and one output parameter F (nondimensionalized factor of 

CHF). The effect of all these input parameter on F under working conditions is also 

studied. They proposed that the number of neurons in the hidden layer is the product 

of the number of neurons in the input and output layer. 

Najafi and Woodbury  (2014) used ANN as an digital filter for online estimation of 

heat flux from temperatures measured within the domain. The performance of ANN 

was compared with digital filter coefficient. Triangular non-dimensional heat flux is 

used as input in the neural network. They used 38 sets of data with 70% for training, 

15% for testing and 15% for validation. The RMS value of 0.0702 was found between 

the exact solution results and ANN predicted values. They concluded that for the 

geometry and boundary condition the number of future and past time steps required to 

predict the heat flux at the current time step can be minimized. 

Deng and Hwang (2006) used ANN as both forward and inverse models for 

estimating unknown boundary condition. In the forward model continuous-time 

analogue Hopfield neural network is used to obtain temperature distribution for an 

heat conduction problem. The inverse problem uses the back propagation network 

(BPN) for estimating the unknown boundary condition. The numerical results of one 

dimensional cartesian coordinate, one dimensional cylindrical coordinate and two 

dimensional cartesian coordinates under transient conditions are considered. A clear 

layout of Hopfield network and BPN are provided in their work. They concluded that 

the proposed technique estimates the parameter with acceptable error. 
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Juan (2011) estimated auto-ignition temperature (AIT) of organic compounds using 

ANN. He used the combination of group contribution method (GCM) with ANN and 

replacing the traditional back propagation algorithm with particle swarm optimization 

(PSO). AIT of 93 organic compounds was estimated using the combination GCM, 

ANN and PSO and then compared with the values reported in literature. It has been 

observed that the values obtained by using this combination were better in comparison 

to others. He also concluded that the large differences between the structure, physical 

and chemical properties created difficulties in estimation and these problems were 

taken care by ANN and PSO. The results were compared with the experimentally 

measured value of auto ignition temperature and found to be very efficient. 

Kumar et al. (2016) estimated the volumetric heat generation of a Teflon cylinder 

with aluminium heater as the heat source. Simulation of three dimensional conjugate 

heat transfer problem is carried out to obtain temperature distribution over the Teflon 

cylinder and heater temperature. Simulation data is used for training ANN. When 

ANN is used as forward model heat capacity is used as input and temperature as 

output, and while using ANN as inverse method, temperature is considered as input 

and heat capacity as output. Estimation of heat generation was also done for noise 

added data. A maximum error of 7% is observed in the estimation for noise added 

data.  

Balázs et al. (2013) used ANN as the inverse technique for the identification of the 

temperature dependent volumetric heat capacity of a solid body. The network input 

was represented in 2 types of relations one with the classical temperature versus time 

representation and the novel time versus temperature representation. They observed 

that the time versus temperature representation contained more information than the 

classical one. The forward problem includes the solution of the direct heat conduction 

problem with noise and without noise. The inverse method uses the back propagation 

(BP) and radial basis function (RBF) for the estimation volumetric heat capacity from 

transient data. The time versus temperature representation significantly outperformed 

the temperature versus time representation resulting in better accuracy in the case of 

both noiseless and noisy inputs. The best accuracy was provided by the RBF network 

with time versus temperature representation. They also concluded that the RBF 
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provided better accuracy than the BP algorithm, but when limited data sets are 

available, BP algorithm would serve better with little loss in accuracy. 

Jambunathan et al. (1996) estimated convective heat transfer coefficients from 

experimental observations using neural networks. Back propagation algorithm was 

selected and numerous network combinations were considered and they selected 3-6-

3-1 (network structure) arrangement which resulted in minimum error. The 

experimental temperature information was obtained using liquid crystal 

thermography. The neural network consists of 3 inputs θ, thermal diffusivity α, time t 

and the output is heat transfer coefficient h. The error obtained from the network 

arrangement of 3-6-3-1 when compared with the actual value of h was found to be 

2.7%. 

Jose et al. (2011) predicted heat capacity of the ionic liquid at constant pressure using 

ANN and mass connectivity index concept. The data required for training the network 

was obtained from the literature and different types of multi-layered feed forward 

model back propagation algorithm were studied. They considered 31 ionic liquids and 

477 data points as input for the neural network. They used one hidden layer in their 

training architecture and Matlab codes were used for training and testing. Based on 

the deviation between the predicted heat capacity and the values available from the 

literature they concluded that the network with 5, 10, 1 neurons in the input, hidden 

and output layer respectively was selected. The absolute deviation between the 

correlated heat capacity and the literature values was less than 1.2%. 

Ghadimi et al. (2014) estimated the heat flux generated by the locomotive brake disc 

by using artificial neural network and sequential function method as the inverse 

approach. A three dimensional turbulent, unsteady and conjugate heat transfer 

problem was considered. The governing equations subject to boundary conditions is 

solved numerically for 47 different heat flux values. Temperature information at 18 

different locations inside the brake disc is obtained. The effect of varying the number 

and location of the sensors on the estimation was also studied. Effect of noise on the 

estimated result has also been dealt with. Back propagation algorithm was used for 

training. Their study concluded that the sensor location must be close to the heat 

source for increasing the accuracy of the estimation. With more input data, the 
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stability of the estimate can be improved and the mean square error of the flux 

estimation is a linear function of the standard deviation of temperature when noise is 

added. 

Sablani et al. (2005) solved the inverse heat conduction problem by estimating heat 

transfer coefficient for a solid/fluid assembly from the temperature information 

available within the domain. They considered two examples, linear and nonlinear 

problems. The first case included a cube with constant thermophysical properties and 

second one with semi-infinite plate with temperature dependent thermal conductivity. 

Neural network was obtained between the dimensionless temperature and the 

dimensionless heat transfer coefficient. Two models were used for estimating the heat 

transfer coefficient at the surface of the cube and semi-infinite plate, in the first model 

the ANN was trained to predict Biot number considering the  slope of the 

dimensionless temperature ratio versus Fourier number as input to the network. In the 

second model an ANN model was used to predict the dimensionless heat transfer 

coefficient using non-dimensional temperature as input to the network. The maximum 

estimation error was found to be 2.5%. 

Mitra and Balaji (2010) estimated the size and position of a spherical tumour in a 

human breast using artificial neural networks. The temperatures measured on the 

surface of the breast through a breast thermogram were used as the input to the 

network. They employed the Pennes bio-heat transfer equation for solving heat 

conduction equation in a cancerous breast using a finite element based commercial 

solver COMSOL. The solution was provided considering two types of heat sources 

inside the tumour, with constant heat generation and variable heat generation. When 

no noise was considered the accuracy in estimation of position and size of the tumour 

for constant heat generation was found to be 90% and 95% respectively and similarly 

for varying heat generation the accuracy observed was 88% and 98% respectively. 

The effect of size of the data on the estimated parameters is studied through 

sensitivity coefficient. A maximum of 22% error in position and 10% error in radius 

of the tumour is recorded when noise is increased from 0.1K to 0.5K. 

Yasar  (2003) predicted the heat transfer rate of the wire-on-tube type heat exchanger 

by applying artificial neural network. Back propagation algorithm is used as the 
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learning algorithm. C++ program was used to solve the algorithm. The mean absolute 

error between the experimental value and the ANN predicted value was below 3%. 

Sablani (2001) carried out a non-iterative procedure using an artificial neural network 

(ANN) for calculating the fluid to particle heat transfer coefficient, hfp, in fluid 

particle systems. The importance of this problem is found in agitation processing of 

cans containing liquid/particle mixtures where the fluid temperature varying with 

time. He considered two configurations of input and output parameters for the neural 

network. In the first one, the fluid and particle temperature which is the input 

parameter and Biot number the output parameter were considered on a linear scale 

and in the second case, the input and output parameters were converted using 

logarithmic and arctangent scales. The network was constructed using 3 hidden layers 

and the Biot number estimated was in the range of 0.1 to 10 with less than 2% error. 

Elham et al. (2016) predicted relative viscosity of nanofluid in broad ranges of 

operating parameters. A feed-forward back-propagation multilayer perceptron 

artificial neural network was developed along with Levenberg–Marquardt training 

algorithm. They considered 1490 experimental data points on relative viscosity of 

different nanofluids. Temperature, nanoparticle size, density, volume fraction, and 

base fluid viscosity are considered as input to the network. Two hidden layers were 

considered in the network structure. The average absolute relative deviation (AARD) 

is 0.41%, and maximum average relative deviation (ARD) is 6.44 % which was 

observed between the ANN predicted values and the experimental data. 

Mohsen et al. (2017) used artificial neural network to evaluate the effects of energy 

utilization, energy efficiency and utilization ratio, exergy loss and efficiency on the 

drying process. Two layered feed forward network was constructed considering inlet 

temperature, velocity and depth of bed of the dryer. The results revealed that energy 

utilization, efficiency and utilization ratio increased by increasing the air velocity and 

depth of the bed. They also observed that by increasing the inlet temperature, velocity 

and depth of the bed the exergy loss and the efficiency could be improved. 

Tan et al. (2009) used artificial neural network models to simulate the thermal 

performance of a compact, fin-tube heat exchanger with air and water/ethylene glycol 

anti-freeze mixtures as the working fluids. The objective of the ANN was to predict 
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the overall heat transfer rate between the liquid and air is a heat exchanger and to 

prove its superiority over the non-linear regression models in dealing with the non-

linear problem. The results obtained were in close agreement with the experimental 

data. The results obtained were potent enough for monitoring the conditions of the 

heat exchangers. 

Soteris and Milorad  (2000) used ANN for the prediction of the energy consumption 

of a passive solar building consisting of one room and an inclined room. They 

considered two cases for the analysis, a fully insulated building and a building with 

one wall made of masonry and the other walls with combination of masonry and 

thermal insulation for two different seasons winter and summer. Multi-layered neural 

network with back propagation was used to model the thermal behaviour of the 

building by creating a simulation programme for the prediction of the energy 

consumption. The results from this model were compared with the dynamic thermal 

building model that was constructed on the basis of finite volumes and time marching. 

The performance of ANN was found to be much faster than the dynamic model. 

Mohammad  (2017) used ANN for processing the experimental data on the flow and 

heat transfer in a nanofluid-based double tube heat exchanger. Nanofluid 

concentration and Reynolds number were the network inputs. The working fluid used 

was Ag/water. Radial basis function (RBF) algorithm was used to predict pressure 

drop and Nusselt number. The results proved that despite the presence of noise in the 

data the RBF algorithm was capabale enough to predict the results with desirable 

accuracy. The results also concluded that the pressure drop and Nusselt number are 

dependent on the nanoparticle volume fraction. 

Hamzaoui et al. (2015) optimized the useful life (UL) of the failure assessment in 

blades of steam turbines using artificial intelligence. The artificial neural network 

inverse (ANNi) integrated with Nelder Mead optimization method was used to 

estimate resonance stress when the UL of the blades is required. When ANN was used 

as forward model, UL was considered as the output. And using ANNi the unknown 

parameter resonance stress is estimated. 

Mohammad et al. (2015) predicted thermal conductivity and dynamic viscosity of 

ferromagnetic nanofluids using ANN. Experimental data in terms of temperature, 
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diameter of particles and solid volume fraction is considered as input to the neural 

network. The maximum error observed in the prediction of thermal conductivity and 

dynamic viscosity was 2% and 2.5% respectively. Based on the ANN outputs, they 

developed two correlations for determining thermal conductivity and dynamic 

viscosity and the results showed that the correlations were in good agreement with the 

experimental data. 

Unal et al. (2009) conducted experiments for analysing heat transfer in oscillating 

flow. Nusselt number is calculated based on experimental results. Neural network is 

trained considering kinetic Reynolds number, dimensionless amplitude, filling heights 

and heat flux as input and Nusselt number as output. Sigmoid function was considered 

as the activation function. 45 sets of experimental data were considered for the 

training of the neural network. A maximum error of 4.47% was found between the 

experimental values and the ANN predicted values.  

Kemal  et al. (2007) proposed feed-forward back-propagation artificial neural network 

(ANN) algorithm for heat transfer analysis of phase change process in a finned-tube, 

latent heat thermal energy storage system. Initially the investigation of effect of fin 

and flow parameter on heat transfer is carried out numerically by solving the 

governing equations heat transfer fluid, pipe wall and phase change material. Heat 

transfer area, Reynolds number, inlet temperature, time are considered as inlet to the 

network and energy stored was considered as output from the network. The absolute 

mean relative error of 5.58% was observed which confirmed that ANN can be used 

for thermal analysis of latent and sensible energy storage systems. 

Elham et al. (2016) estimated the depth, size, and metabolic heat generation rate of a 

tumour using dynamic neural network. The forward model included the finite element 

model. The Pennes bio-heat equation was solved to obtain surface and depth 

temperature distributions which can be used as the input to the neural network. Neural 

network trained for FEM breast model is tested for the thermal breast image. Trained 

neural network is used as inverse method.  

Masoud et al. (2016) proposed a correlation to predict relative viscosity of MWCNTs-

SiO2/AE40 nano-lubricant using experimental data. Optimal artificial neural network 

was designed using minimum prediction error. Experimental data was considered as 



24 
 

input to the neural network. The results confirmed that the output from ANN is better 

than the empirical relation and a deviation of 1.5% was observed from the output of 

optimal neural network. 

Reza and Masoud (2012) developed neural network to estimate heat transfer and 

friction factor in helically coiled tubes. Two separate ANN models were constructed 

for estimating the Nusselt number and the friction factor. Reynolds number, Prandtl 

number, curvature ratio and coil pitch were used as input to the network and Nusselt 

number is considered as output. For friction factor as the output, Reynolds number, 

curvature ratio and coil pitch were used as input to the network. Results showed very 

good agreement with experiments. 

Unal et al. (2016) considered a flat plate having constant heat flux subjected to a 

transversely pulsating jet and estimated heat transfer rate by using ANN. The 

experimental setup includes the flat copper plate heater located in a wind tunnel. 

Dimensionless parameters of Reynolds number (Re), blowing ratio (M), 

dimensionless amplitude (Ao) and Womersley number (Wo) were used as input to the 

neural network. Back propagation algorithm was used for training and the error 

obtained was less than 1%.  

Zeke et al. (2006) proposed ANN-based forecasters to match with the additional non-

linearities in the load pattern for US utility arising due to the competitive electricity 

market environment. The problem of over-fitting caused due to the lack of data is 

overcome by using some common generalization methods such as Early-Stopping, 

Bayesian Regularization, Adaptive-Regularization and Genetic Algorithm-based 

regularization GARNET. Results showed that forecasters trained by using the 

generalization learning techniques produced lower prediction error compared to 

standard error minimization method.  

Jesus et al. (2014) applied Artificial Neural Networks (ANNs) for the prediction of 

thermodynamic properties of refrigerants in vapour - liquid equilibrium. To ensure 

simple design and safe working of the equipment determination of the refrigerant 

properties plays a vital role, that has been predicted using ANN. The use of ANN 

eliminated the necessity of equation of states for determining the thermodynamic 

properties of the refrigerants. With temperature as input to the network, pressure, 
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density of liquid, specific volume of vapour, enthalpy of liquid, enthalpy of vapour, 

entropy of liquid and entropy of vapour were the output from the network. They used 

Monte Carlo cross validation and Wilcoxon signed-rank test for selection of the 

proper ANN model.  

2.3 ESTIMATION OF MULTI-PARAMETERS USING BAYESIAN 

INFERENCE AS INVERSE TECHNIQUE AND STUDY ON SENSITIVITY 

ANALYSIS. 

Kaipio and Somersalo (2004) in their book developed statistical approach as a 

solution to inverse problem which considered numerical modelling. Construction of 

the prior models, modelling of the noise involved in measurements and Bayesian 

estimation has been discussed in detail. The use of the technique for the real world 

application is also cited in their work. 

Mota et al. (2010) considered one dimensional nonlinear heat conduction equation 

and simultaneously estimated volumetric heat capacity, thermal conductivity and 

boundary heat flux using the Bayesian approach. Markov chain Monte Carlo approach 

along with Metropolis Hastings algorithm was employed for the estimation process.  

Wang and Zabaras (2004) used Bayesian inference for the solution of inverse heat 

conduction problem. The posterior probability density function is obtained for the 

unknown heat flux using MCMC sampling algorithm.  

Giralomi M. (2008) proved that the Bayesian influential framework provides 

consistent approach in the estimation of unknown parameters and also provided an 

introduction to Bayesian methodology as applied to system models represented as 

differential equations. .  

Liang et al. (2009) considered one dimensional transient heat conduction problem and 

estimated the Robin coefficient using Bayesian inference. MCMC algorithm was used 

to sample the unknown parameters and proved that Bayesian inference method can 

provide accurate estimates as well as uncertainty for the problem considered.  

Parthasarathy and Balaji (2008) applied Bayesian inference to estimate multiple 

parameters in a two-dimensional conduction problem with convection boundary 

condition and convection-radiation boundary condition. The focus of the work was to 
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determine the effect of noise and prior information on the retrieval results. Different 

a-priori models were used for single and multiple parameter estimations. 

Zabaras (1988) analysed the usefulness of stochastic methods for solving inverse heat 

conduction problems especially in the context of estimation of boundary heat flux 

where in temperature is known. 

Gnanasekaran and Balaji (2011) used the Bayesian approach to estimate average heat 

transfer coefficient ‘h’ and thermal conductivity ‘k’ from fin heat transfer. Steady 

state, simple experiments were conducted on mild steel fin where the heat transfer 

from fin to surrounding is by natural convection. Markov Chain Monte Carlo method 

was used as inverse method to estimate unknown average heat transfer coefficient and 

thermal conductivity with and without subjective priors. Since heat transfer 

coefficient and thermal conductivity are correlated, an informative and subjective 

prior information about one of the parameter was used for the successful estimation of 

‘k’ and ‘h’. 

Konda et al. (2012) carried out transient experiments on rectangular fin and obtained 

temperature data using the transient Liquid Crystal Thermography (LCT) technique, 

treating the inverse problem as an estimation problem, the difference between the 

measured temperature from LCT and simulated temperatures were minimized with 

the Bayesian methodology in the inverse model to determine the point estimates.  

Cheung and Beck (2009) investigated Hybrid Monte Carlo method to show that it can 

be used to solve higher dimensional Bayesian model updating problems. New 

formulae for Markov chain convergence assessment were derived. Practical issues for 

the feasibility of the Hybrid Monte Carlo method to such problems were addressed, 

and improvements were proposed to make it more effective and efficient for solving 

such model updating problems. The effectiveness of the proposed approach were 

illustrated with a simulated data example.  

Gnanasekaran and Balaji (2013) conducted in-house simple and inexpensive transient 

experiments under natural convection with mild steel fin subjected to constant heat 

flux at the base. MCMC sampling algorithm was used to estimate fin parameter ‘m’ 

and thermal diffusivity ‘α’ for the measured values. Initially single parameter 

estimation was carried out and continued with simultaneous estimation of both fin 
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parameter and thermal diffusivity. Results obtained by using Bayesian technique 

without MCMC and with MCMC are compared. The usefulness of priors was also 

investigated.  

Somasundharam and Reddy (2016) used MH-MCMC sampling algorithm in Bayesian 

Inverse frame work and estimated thermal conductivity, heat transfer coefficient and 

emissivity. The paper reported the use of Parallel Tempering (PT) and Evolutionary 

Monte-Carlo (EMC)  along with MH-MCMC to sample through correlated PPDF to 

retrieve the above three thermal properties. It has been concluded that at high noise 

levels Parallel Tempering (PT) and Evolutionary Monte-Carlo (EMC) performs 

equally and estimates the parameter with the maximum deviation of 9%.  

Renjith et al. (2015) used Bayesian Inference for single parameter estimation, specific 

heat and multi-parameter estimation which included specific heat and emissivity by 

combining with MCMC based sampling models. The results were reported in terms of 

MAP, mean and SD. They used Range-Kutta method of the order four as the forward 

model to obtain time dependent temperature for the assumed values of heat capacity 

and emissivity. 

Hamilton et al. (2012) used pressure measurements taken inside the combustion 

chamber of a spark ignition engine to estimate overall time-dependent heat transfer 

coefficient within the Bayesian framework.  Transient zero-dimensional process based 

on the First Law of Thermodynamics for a perfect gas was used to model the 

combustion process, and the fuel burned fraction was modelled through a Wiebe’s 

function model.  

Orlande et al. (2014) improved the accuracy of the inverse problem by using two 

models namely the Delayed Acceptance Metropolis-Hastings (DAMH) Algorithm and 

the Enhanced Approximation Error Model (AEM). Spatially varying heat flux 

generated using laser source is estimated using MCMC with the help of these two 

prior models.  

Naveira-Cotta et al. (2010) used combined approach of integral transform method and 

the generalised integral transform technique (GITT) for solving two dimensional 
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steady state convection problem and used MCMC and MH sampling algorithm as an 

inverse approach for the simultaneous estimation of the momentum and thermal 

accommodation coefficients related to gas flow and heat transfer for laminar forced 

convection within micro-channels, later Biot number was also estimated. The direct 

problem included the combination of numerical and analytical solution, hence termed 

hybrid. The prior information regarding the parameters was used in the form of 

Gaussian distributions. 

Orlande et al. (2008) used radial basis functions for the interpolation of the likelihood 

function for estimation of parameters. They used Bayesian Inference as an estimation 

approach for two different cases, in the first case Bayesian technique was used to 

estimate soil properties such as dispersion of tracers in soil columns and in the second 

case estimation of thermal conductivity in an orthotropic medium considering 

transient case. The incorporation of the interpolation of the likelihood function 

reduced the cost of computation and the estimated values were found to be close to 

the actual value. 

Naveira-Cotta et al. (2011) estimated spatially varying thermal conductivity and 

thermal diffusivity in 1D heat conduction in heterogeneous media. The information of 

temperature is obtained using infrared thermography. The experimental measurements 

obtained from the spatial domain are compressed by using integral transformation of 

the temperature at each measured time. The transformed temperature was then 

considered as the forward model. This transformation was attained by using 

Generalised Integral Transform Technique (GITT). The application of the Bayesian 

inference using MCMC method was to estimate thermophysical properties in 

heterogeneous media. Gaussian prior and uniform prior were used as priors in the 

process of estimation. With the use of data reduction model the time consumed in the 

estimation process was reduced. 

 Patrick et al. (2007) used MCMC sampling algorithm to estimate the gas plume 

content from hyper-spectral thermal image data. Bayesian inference was used as 

inverse technique based on the quality that it will automatically take care of the 

uncertainties associated with the estimation. They used nonlinear Bayesian regression 
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algorithm to produce better estimate from hyper-spectral data. They showed that the 

regression models are dependent on the prior information. 

Phippe et al. (2006) conducted two parameter estimation for a roof mounted radiant 

barrier system (RBS). Sensitivity analysis was carried out to know the most 

influential parameter in order to design and improve the thermal model. Based on this 

study two heat transfer coefficients, upper convective coefficient of the ceiling and 

lower convective coefficient of the RBS were found to be the parameters with high 

sensitivity coefficients. Bayesian Inference was used as the inverse method in the 

estimation process. Effect of different priors in the estimation process was also 

examined. It was observed that by using Bayesian technique even with the far-away 

prior there was improvement in the characteristics of the PPDF. 

Fudym (2008) considered one-dimensional heat conduction problem for comparing 

least-squares, maximum a posteriori and Markov Chain Monte Carlo methods in the 

estimation of spatially-dependent thermophysical properties like thermal diffusivity. 

Finite volume method was used to solve the direct problem considering simulation 

temperature, with noise added. They found that only MCMC method was able to 

estimate the spatially varying thermal diffusivity accurately. 

Gnanasekaran and Balaji (2011) conducted transient experiments for turbulent mixed 

convection by sandwiching heater between two aluminium plates, placed in middle of 

two walls. A correlation for Nusselt number was obtained in terms of Richardson 

number. The Bayesian inference is used as the inverse approach to estimate the 

constants proposed in the correlation. These values were compared with the 

experimentally determined values. They also suggested that by running limited steady 

state experiments different prior information can be obtained which can improve 

Nusselt number correlation and reduce standard deviation. 

Shubhankar and Prasanta (2015) used MCMC algorithm along with MH sampling for 

the reconstruction of the internal hot spot in a 2D conductive domain by determining 

its size, location and boundary temperature. Synthetic data was used initially for the 

determination process which was continued with experimental data. Boundary 

collocation method was used as the forward model for obtaining the temperature at 
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discrete points in the domain. PPDF plot with uncertainty and without uncertainty is 

plotted. They observed that the error involved in the estimation of eccentricity was 

more compared to radius and the boundary temperature. From linearity analysis they 

observed that sensitivity coefficients of source eccentricity, radius and temperature 

are not linearly independent. Hence prediction of these parameters simultaneously 

was not possible which basically acts as an obstruction for the reconstruction of the 

hot spot while considering synthetic and experimental data. 

Julien et al. (2016) explored the use of Bayesian Inference for estimating both the 

thermal conductivity and the internal convective heat transfer coefficient of an old 

historic building wall. One year data of the room air temperature, surface wall 

temperature and temperature within the wall has been considered as the data for the 

estimation problem. Approximation error model has been used to compensate the 

error involved in the mathematical model. The building wall is composed of 3 layers 

lime coat, rubble stone and dressed stone. The results obtained from inverse 

estimation is compared with the standard values, thermal conductivity of rubble stone 

and dressed stone was found to be 8% higher and the internal heat transfer estimation 

was considered to be satisfactory. With the estimated parameters heat flux was 

determined; the difference between estimated heat flux and the standard value is 

5.89kWh/m
2
. 

Xu and Tomasz (2017) used Bayesian framework for uncertainty quantification of 

nuclear reactor simulations using simulated data. They used direct numerical 

simulation and polynomial chaos expansion (PCE) as forward model. They observed 

that polynomial chaos expansion performed better in terms of efficiency and 

accuracy. When PCE was used as simulated model the simulation time was reduced 

by 2-3 orders of magnitude when compared with the direct simulation model. 

Performing inverse uncertainty quantification by using Bayesian analysis the 

calibration of the random input parameters was possible so that the simulation results 

are in better agreement with the experimental data. The parameters estimated are 

external reactivity insertion, Doppler reactivity coefficient and coolant temperature 

coefficient. 
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Dong et al. (2017) investigated statistical methodology in order to obtain the 

probability density function for the model parameters of RELAP5 code related to 

reflood phenomena obtained from flooding experiments with blocked arrays (FEBA) 

experimental data. The complex forward calculations were replaced by Radial basis 

function which was used as the direct problem. The objective of the work is to 

quantify the uncertainties associated with the Best Estimate (BE) models with the use 

of MCMC as the inverse method and the results are expressed in terms of mean and 

standard deviation. The efficiency of the simulated model was improved by an 

adaptive approach based on cross-entropy minimization to increase the density of the 

training samples at space of posterior probability density function. 

Youssef and Dongbin (2009) used Stochastic collocation methods, which is based on 

generalized polynomial chaos (gPC), and used to construct a polynomial 

approximation of the forward solution with the help of the prior distribution. They 

carried out error analysis of the algorithm and established convergence of the 

retrieved posterior towards the exact posterior, also convergence rate was estimated. 

They showed that the convergence rate of the posterior density is same as the L2 

convergence rate of the gPC expansion used for the forward solution, and hence 

clarified that if the gPC representation of the forward solution converges 

exponentially fast then even the posterior density will converge at the same rate. 

Demonstration of the convergence properties of the algorithm was carried out 

numerically by considering two examples: first on an infinitely smooth problem 

involving parameter estimation in the viscous Burgers’ equation, and second with a 

forward model exhibiting discontinuous dependence on its input. 

 Zixi et al. (2017) in their work expressed that Bayesian Inference when used to 

estimate the unknowns of infinite dimensions performed at a slow rate since it is 

depending on dimensions. To overcome this they introduced new MCMC algorithm 

which is dimension independent and named it as preconditioned Crank-Nicolson 

(pCN) methods. By incorporating this method the sampling of infinite dimensional 

parameter was possible. They considered two examples; in the first one they 

considered simple inverse problem with forward model as the ordinary differential 

equation and in the second problem they estimated Robin coefficient for the one 
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dimensional heat conduction equation. They also highlighted the limitation of the 

model, since it determined the effective subspace from the prior distributions. 

Xiang and Zabaras (2009) converted the deterministic forward model into a stochastic 

model by introducing the concept of stochastic prior state space in to the Bayesian 

formulation. The adaptive hierarchical sparse grid collocation (ASGC) method was 

used as the solution of the forward model. They used Hierarchical Bayesian 

formulation to derive the posterior probability density function (PPDF). Markov 

Chain Monte Carlo algorithm is used to explore the state space variables. They 

considered two numeric examples and confirmed that ASGC is much faster than FEM 

computation. The accuracy of the results was more dependent on the noise rather than 

the threshold value. 

Charles et al. (2004) considered three dimensional climate model which included 

three parameters namely obliquity (Earth’s tilt), longitude of the perihelion (celestial 

longitude at which Earth is at its closest approach to the sun), and eccentricity (degree 

of orbit circularity). The simulation results based on the simulated climate model is 

the variation of the surface temperature caused by arbitrary changes in these three 

parameters. Bayesian stochastic inversion along with very fast simulated annealing 

(VFSA) is used as the inverse approach. They observed that multiple VFSA is one to 

two orders of magnitude more efficient than the Metropolis/Gibbs sampler in 

estimation of the parameter uncertainties, when more importance is given to 

dimensionality of the parameter space analysis.  

Kaipio and Colin (2011) presented a review paper on the view of helping researchers 

working in the area of inverse heat transfer. The paper provides the idea as to how 

modelling of uncertainties can be done which arise from real physical phenomena. 

Inverse problems in heat conduction, heat convection and heat radiation have been 

dealt. Prior modelling, noise and likelihood modelling also has been discussed in their 

work by considering examples. 

Wang and Zabaras (2005) addressed uncertainties in the measured temperature data, 

temperature sensor locations and thermophysical properties using Bayesian statistical 

inference with hierarchical Bayesian formulations method for a heat conduction 
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problem. Numerical examples were conducted in which the thermal conductivity and 

the boundary heat flux are estimated. Effect of sensor location on the solution of 

inverse problem was also been dealt. 

Naoya et al. (2016) used Bayesian Inference to estimate the maximum depth of 

corrosion in an oil storage tank. They proposed a new method combining extreme 

value analysis with Bayesian Inference using experimental data. Backside corrosion 

of oil storage was a major problem and the traditional way of measuring the thickness 

is by using discrete ultrasonic thickness measurements. They utilized the detected 

maximum depth of corrosion of discrete thickness measurements from the Japanese 

Fire Service Act (JFSA) guidelines for the year 2006 and 2011 which is considered as 

the measured value. The pulse reflection method was used to measure the thickness of 

the bottom floors of the tank with 12 sensors used to measure the thickness. The 

combined method of extreme value analysis and Bayesian inference provided 

effective results in terms of estimation the maximum depth of corrosion.  

Pereyra et al. (2014) applied sensitivity analysis and parameter estimation to test heat 

transfer and material flow models. A forward-difference approximation was used to 

compute the sensitivity of the solution with respect to the unknown model parameters. 

The Levenberg-Marquardt (LM) method was applied to solve the nonlinear parameter 

estimation problem. The numerical models were developed by the finite element 

method (FEM). 

Ewa et al. (2013) analysed the thin metal film subjected to the ultrashort laser pulse. 

The heat conduction in the domain considered has been described by two-temperature 

model consisting of the system of two coupled parabolic equations determining the 

electron and lattice temperatures. The sensitivity analysis of electron and lattice 

temperatures with respect to the parameters appearing in mathematical description has 

been discussed. The changes of temperatures due to the changes of coupling factor G 

and the film thickness L was estimated. 

Cole et al. (2009) provided exact solutions for the transient temperature in flux-base 

fins with the method of Green’s functions (GF) in the form of infinite series for three 
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different tip conditions. The temperature was expressed as the function of parameters 

to be estimated, which help carry out sensitivity study. 

2.4 MOTIVE AND SCOPE FOR THE PRESENT WORK 

Based on the understanding from the review of literature, inverse heat transfer can be 

viewed as an independent area of research in the field of heat transfer and 

unrestrained work is being carried out in the past few decades. Few principal reasons 

behind this development are, 

1. Availability of high precision measurement techniques 

2. Rapid steps in the mathematical formulation of optimization problems 

3. Availability of sophisticated computational resources to handle complex inverse 

problems that invariably involve repeated solutions to the forward model. 

4. Among the new generation techniques to solve inverse heat transfer problems, GA 

yields results with few iterations, hence proving its robustness. A non-iterative 

technique ANN has also been used as inverse technique. As already stated the 

Bayesian framework gives scope to accommodate prior information and can 

eminently handle noisy measurement data. 

In harmony with this, the primary focus of this thesis is the pursuit of the stochastic 

methods such as Genetic Algorithm, artificial neural network and Bayesian 

framework to solve inverse heat transfer problems. In consideration of this, the scope 

and objectives of the present study are, 

2.5 OBJECTIVES OF THE PRESENT WORK 

1. To develop an inexpensive heat transfer experimental setup in order to 

perform steady state experiments. 

2. Estimation of boundary heat flux using ANN as the fast forward model and 

Genetic Algorithm as the Inverse model for the measured data from conjugate 

fin heat transfer. 
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3. Estimation of boundary heat flux and heat transfer coefficient using ANN as 

both fast forward model and Inverse model based on steady state fin heat 

transfer experiments. 

4. Simultaneous estimation of boundary heat flux and heat transfer coefficient for 

the fin using ANN as the forward model and Bayesian Inference as the Inverse 

model for the measured data. 

5. Simultaneous estimation of heat generation and heat transfer coefficient for 

Teflon cylinder using ANN as the forward model and Bayesian Inference as 

the Inverse model for the measured data. 

2.6 Closure 

A detailed discussion on the literature review apropos to the problems considered in 

this study was presented in this chapter. The objectives of the present work listed. In 

the next chapter, the experimental set up and the instruments used for experimentation 

is elucidated. 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

CHAPTER 3 

EXPERIMENTAL SETUP 

3.1 INTRODUCTION 

This chapter explains the details of the experimental setup and the instruments used to 

perform steady state experiments. The experimental setup is designed such that the 

effect of surroundings is minimised to enable natural convection to take place. Steady 

state experiments are conducted for different power levels.  

3.2 EXPERIMENTAL SETUP 

In-house experimental setup has been developed to facilitate the natural convection 

heat transfer from fin. The layout of the experimental setup is shown in Figure 3.1. 

The mild steel fin with dimensions 150x250x6mm
3
 is placed centrally on to the 

aluminium base of dimension 150x250x8mm
3
. A nichrome wire wound over a mica 

 

Figure 3.1 Layout of the experimental setup. 
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sheet is used as a heater, having the dimensions of the aluminium plate with thickness 

1.4mm, shown in Figure 3.2. The sides of the aluminium base plate and bottom of the 

heater are insulated with glass wool to prevent heat loss. The fin setup is placed in an 

enclosed chamber of dimensions 975x995x930mm
3
, so as to avoid disturbances from 

the surroundings. Holes of 3mm diameter are drilled for a depth of 20mm along the 

measuring length of the fin and also in the base plate. Calibrated K-type sheathed 

thermocouples are used to measure the temperature of the fin and the base plate. A 

heater, provided below the base plate, is powered by a DC power source that can 

supply constant power to the setup. The temperature recorded by the thermocouples is 

stored with the help of data acquisition system equipped with Labview software  

 

Figure 3.2 Nichrome heater plate 

supplied by the National Instruments. Figure 3.3 shows the experimental setup used in 

the present work. The temperature data is recorded for every 10s during the course of 

the experiment however, only steady state measurements are taken into account for 

the purpose of estimation. A typical natural convection fin experiment require 6-7 

hours to reach steady state. The steady state is confirmed when the change in 

temperature is less than 0.2°C for the time duration of 10min. Experiments are 

conducted for different heat input values and corresponding steady state temperatures 

are stored. Two attachments are used so that estimation can be carried out for 

different orientation of base i.e vertical and horizontal. Figure 3.4 (a) and (b) shows 

the horizontal and the vertical attachment respectively.  
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Figure 3.3 Photographic representation of the experimental setup. 

 

 

 

  

Figure 3.4 (a) Horizontal base (b) Vertical base 

In addition to the fin setup the estimation of the parameter using inverse method is 

also extended to volumetric heat generation, to accommodate this, an experimental 

setup is developed using Teflon cylinder which is having low thermal conductivity. A 

Teflon cylinder of radius 50 mm and height 100 mm is considered consisting of the 

cylindrical heater placed at the centre. Figure 3.6 shows the dimensions of the Teflon 

cylinder along with the aluminium cylindrical heater. Same DC power source is used 

to supply power to the cylindrical heater placed in the Teflon cylinder. The power 

supply can deliver a range of power required for the experiments (voltage: 0-60V, 

current: 0-5A). K-type thermocouples are used to measure the temperature data at 

Fin assembly 

DC power 

source 

Computer 

Thermocouples 

DAQ 

Extended 

domain 

(a) (b) 
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several locations of the Teflon cylinder at various depths and also the temperature of 

the heater is measured. Steady state experiments are conducted for different values of 

heat generation and the temperature is recorded. A photographic view of experimental 

setup is shown in Figure 3.5. The thermocouples are fixed by drilling holes in the 

Teflon cylinder and then bonded using epoxy adhesive. The other end of the 

thermocouples is connected to a data logger to collect the data and using Lab view 

software the data is stored in the computer for every 5mins. The duration for single 

experiment starting from heating, continued as steady state and followed by cooling 

consumes 7 hours. In order to avoid the resistance created by the air inside the hole-

gap, epoxy adhesive has been applied. Steady state experiments are carried out for 

different power levels and temperature is recorded. Steady state is said to have been 

reached when the temperature difference does not vary by more than 0.1
°
C within 10 

minutes. 

 

Figure 3.5 Teflon cylinder with thermocouples 
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Figure 3.6 Schematic representation of the Teflon cylinder along with aluminum 

heater 

3.3 INSTRUMENTATION 

3.3.1 DC power source 

DC power source is used to supply power to the heater. Different trials of experiments 

can be conducted by varying the range of power input to the heater. The specifications 

of the DC power source are shown in Table 3.1. 

Table 3.1 Specifications of DC power source 

Features Specifications 

Output Voltage 0-150V 

Output Current 0-2A 

AC input 1phase AC220V ±15%, 50/60Hz 

Source voltage regulation Constant voltage ≤0.2% 

Load regulation Constant voltage≤1%, constant current≤2% 

Make Proxim Asia Inc. 

3.3.2 Data Acquisition system (DAQ) 

The data acquisition system is supplied by the National Instruments. The DAQ used 

in the present work consists of 16 channels with the model no: NI 9213. Figure 3.7 
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shows the pictorial view of DAQ used in the present work. Using the labview 

software the measured temperature is stored. A simple network diagram is created 

using labview such that the temperature is stored for every 10 seconds. The 

temperature reading from beginning of the experiment till the end is stored in the 

system with the help of DAQ. 

 

Figure 3.7 Data acquisition system 

3.3.3 Digital Multimeter 

Digital multimeter is used to measure the current flowing across the terminal of the 

DC power source into the heater. Voltage across the output terminal of the DC power 

source is also measured with the help of Digital multimeter. For the input voltage of 

40V the voltage measured using multimeter is 39.7V. The photographic view of 

Digital multimeter is shown in Figure 3.8. 

 

Figure 3.8 Digital Multimeter 
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 3.3.4 Thermocouple 

 Temperature along the height of fin and the base is measured using thermocouples. 

Sixteen K-type sheathed thermocouples are used for measurement. Thermocouple 

with 3mm diameter is inserted into the holes created on the measuring side of the fin 

and base. The other end of the thermocouple is connected to the data acquisition 

system for recording the data. Before using the thermocouple for measurement it is 

calibrated with the standard thermostatic bath supplied by Thermo Scientific, with the 

range of -60°C to 200°C and with accuracy of 0.01°C. Table 3.2 shows the details of 

calibration. 

Table 3.2 Calibration chart 

Number of thermocouples Thermostatic bath temperature, °C 

50.5 60.05 70.06 

Thermocouple reading, °C 

1 50.02 59.48 69.31 

2 50.04 59.45 69.41 

3 50.1 59.49 69.4 

4 50.16 59.51 69.44 

5 50.2 59.56 69.45 

6 50.19 59.57 69.45 

7 50.12 59.51 69.48 

8 50.24 59.55 69.35 

9 50.08 59.57 69.48 

10 50.32 59.63 69.54 

11 50.22 59.54 69.51 

12 50.12 59.5 69.57 

13 50.08 59.6 69.47 

14 50.24 59.57 69.41 

15 50.14 59.61 69.45 

16 50.2 59.46 69.61 

Average percentage error 0.684 0.856 0.859 
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3.4 Closure 

This chapter provided the details about the experimental setup and the equipments and 

attachments required for the smooth conduction of the experiment along with its 

specifications. The next chapter explains about the forward model used in the present 

work. 
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CHAPTER 4 

FORWARD MODEL 

4.1 INTRODUCTION 

This chapter deals with the techniques which have been used as forward model in the 

present work. The forward model in this context refers to obtaining temperature as the 

output when heat flux or any other boundary condition is given as input. In any 

inverse estimation problem, the forward model becomes the integral part of it. 

Numerical simulation and ANN is used as the forward model. ANN replaces the 

conventional numerical simulation by optimizing the computational time without 

compromising much in accuracy and hence called as Fast Forward Model. 

4.2 NUMERICAL SIMULATIONS 

ANSYS fluent is used as the computational tool. 2D and 3D models representing the 

horizontal and vertical attachments of the fin setup are developed. Grid independence 

test is carried out to fix the number of grids for the numerical model that can be used 

for further study. Heat flux is given as the input for the numerical model and 

temperature is obtained as the output. Temperature distribution, velocity contour and 

information about heat transfer coefficient are obtained as output from the numerical 

simulations. Based on the residual value, the convergence criteria for continuity 

equation is specified as 10−4 and for momentum, energy equations it is specified 

as 10−6. The governing equations are solved by using ANSYS fluent solver which 

employs finite volume method as its solution strategy. The velocities and the pressure 

are calculated using the semi implicit pressure linked equation solver (SIMPLE) 

algorithm. Second order upwind scheme is used to discretize the convective terms. 

4.3 ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is a numerical tool which is used to correlate the inputs and outputs of a certain 

experiment. The name of this technique is inspired from the biological nervous 

system which acts according to the input stimulus, processes the information in the 

neurons taking into account the previous experiences and gives out the reactions as 

required. The artificial neural network simulates such a process. But still the 
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biological neural network is superior to even the most sophisticated artificial network 

in terms of robustness, flexibility, ability to deal with different data situations and 

collective computation. The main advantage of using ANN is that it can model 

nonlinear relationships between the inputs and outputs very well. The architecture of 

the artificial neural network consists of an input layer, variable quantity of hidden 

layers and an output layer. Figure 4.1 shows the layout of ANN. To train the network, 

the inputs and their corresponding outputs are filled in the input and output layers. 

The input and output data is obtained from CFD simulations or any other forward 

model. A perceptron in an ANN is the analogous element to the neuron in the 

biological nervous system. Each input and output is individually represented by a 

perceptron (neuron). The perceptron is a processing node which processes data and 

sends it to the next layer in the network. The number of hidden layers and the number 

of perceptron in the hidden layers can highly affect the accuracy of each architecture. 

Hence, there arises the task of fixing the number of neurons before using the network 

for obtaining the desired output. Each perceptron in the network has a weight 

associated with it to determine the importance of that particular information stored in 

that node. In the first iteration of the training, based upon the inputs and default 

weights, the network finds an output and compares this with the actual output. Based 

upon the error observed, the weights are modified in each successive iteration until 

the error becomes zero. The training is done using the back propagation algorithm. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Basic layout of ANN 

 

The process can be explained using an example, let the following be the mathematical 

model for the forward model network- 

Input layer Hidden layer Output layer 

Connections Neurons 
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The matrix W is the matrix of all weights. The matrix F is the input matrix i.e the 

matrix of the flux data. Matrix B is the bias matrix which provides the required bias to 

get the desired output. The Matrix O signifies the output matrix which contains the 

temperature data. 
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f1, f2,and f3 are the fluxes as inputs and w1,w4 and w7 are the weights associated 

with the flux f1, w2, w5 and w8 with f2 and w3, w6 and w9 with flux f3. These 

weights are modified in each iteration so that the above LHS produces the desired 

RHS. 

4.3.1 Backpropogation using Levenberg-Marquardt method 

Training of artificial neural network is a process where the error between the actual 

outputs and desired outputs is computed and the weight matrix is modified such that 

in the next iteration, the disparity is reduced. This is done until the error vanishes or 

reduces below a threshold value. The backward propagation mainly works in two 

steps- first, the calculations are done in the forward direction, the outputs and 

derivatives are calculated. Second, the network is run backward and the pre-calculated 

derivatives are used to modify the weight matrix. We use a Levenberg-Marquardt 

method which is based on least square error curve fitting. This method is a 

combination of the gradient descent and Gauss-Newton algorithm and delivers the 

advantages of both. The error or activation function should be continuous and 

differentiable multiple times. The error square is defined as- 


 


L

L

O

O

OLeE
1 1

2

,5.0       (4.1) 

L – index of patterns 

O – index of outputs 

e – error at each output using different patterns 

The constant 0.5 will disappear when E is once differentiated. This small arrangement 

makes the function E easy to use. 

[W] [F] [B] [O] 
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The error gradient G is – 
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The Newton’s method takes into account the descent of the error gradient i.e 
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And in the process defines a Hessian matrix H where 
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From these equations, the modifications to be made in weights can be found to be 

GHw 1      i.e 
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       (4.5) 

 

m - count of the iteration. 

 

But the Hessian matrix involves calculating double differentials which to calculate 

each time is computationally expensive. Hence the Gauss-Newton method defines a 

jacobian matrix J 
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Such that  
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Substituting (4.7) in (4.5) 

                              mm
T

mm JeJJww )()( 1

1



                                                        (4.8) 

 

The Hessian matrix sometimes may not be invertible and will create problems during 

calculations. The trick to evade this problem is to try to make all the diagonal 

elements of H larger than zero. Hence, the Levenberg-Marquardt method states an 

approximation that 

                                   IJJH T                                                                        (4.9) 

λ is always positive and is called combination coefficient 
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I is the identity matrix 

This approximation changes (4.8) as follows 

                                   
mm

T

mm JeIJJww )()( 1

1



                                           (4.10) 

 

This equation can be efficiently used to modify weights in each iteration and stop the 

process when the error gradient reaches its minimum. One disadvantage of the 

backward propagation algorithm is that it might stop at the local gradient minima and 

would not wait for the global minima to be achieved which will affect the accuracy of 

the output drastically. Hence this algorithm can be used appropriately in small or 

moderately hard problems where the error functions are not changing extremely. 

Neuron independence is carried out to fix the number of neurons while training the 

network for the forward model. Number of neurons in the hidden layer is fixed based 

on the performance of certain characteristics given below (Balaji and Padhi 2010). 

Mean Relative Error: 

                 𝑀𝑅𝐸 =
1

𝑁
∑

|𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑖|

𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖

𝑁
𝑖=1                                                        (4.11)  

Correlation Coefficient: 

                𝑅2 = 1 −
∑ (𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖−𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘,𝑖)

2𝑁
𝑖=1

∑ (𝑇𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)
2𝑁

𝑖=1

                                                          (4.12) 

4.4 Closure 

This chapter provided the details of the forward model used in the present work. The 

parameters used in CFD simulation and the algorithm used in training the artificial 

neural network were discussed. The next chapter provides an insight to the inverse 

model used.  
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CHAPTER 5 

INVERSE MODEL 

5.1 INTRODUCTION 

This chapter provides an insight to the inverse model used in the present work. The 

word inverse highlights the fact of estimating the cause for the observed effect. The 

observed effect is the measured temperature. The objective of any inverse method is 

to minimise the error between measured and simulated temperatures. Genetic 

Algorithm (GA), Artificial Neural Network (ANN) and Bayesian Inference are used 

as inverse methods. 

5.2 GENETIC ALGORITHM (GA) 

Genetic Algorithm (GA) is a search method which is basically devised to model 

adaptation process and is based on natural selection. The basic principles of GA was 

first introduced by Holland in the year 1960, which is well explained in nature, 

individuals in a population compete with each other for resources such as food, water 

and shelter. It was later developed by Goldberg in 1989 (Goldberg 2006). It works on 

the principle of evolution of species where in the best individual in the species 

survives and will be predominant, hence becoming a successor in continuing its 

generation. GA is a kind of evolutionary algorithm, a search technique which models 

the natural selection and survival of the fittest in the biological world. These 

algorithms are search techniques which search from a ‘population’ of solutions. Every 

individual in the population represents a potential solution to the problem and is 

implemented as a data structure. Each solution is evaluated to give some measure of 

fitness. Then the individuals with more fit values are selected to form a new 

population. New solutions are formed from the population by undergoing some 

transformations. The transformation in the population is carried out by genetic 

operators. Creating a new offspring by making a small change in a single individual is 

termed as unary transformation. When changes are made in more than one individual 

higher order transformation is accomplished creating new individual. After some 

number of generations the algorithm converges and it is expected that the best 

individual represents a near optimum solution. 
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The concept of survival of fittest can effectively be used in solving various 

engineering problems. To solve such problems, defining an objective function as 

shown in Equation (5.1) is very much necessary, which can be either maximizing or 

minimizing.  

𝑆(𝑃) = ∑ ∑ [𝒀𝑖𝑚 − 𝑻𝑖𝑚(𝑷)]
2  𝑁

𝑛=1
𝑀
𝑚=1     (5.1) 

where P is the estimated parameter in vector form. Yim is the i
th

 observation from the 

m
th

 measurement; M and N are the number of measurements and observations, 

respectively. Tim(P) is the simulated temperature obtained from the forward model of 

the problem considered. Based on Equation (5.1) the unknown parameter is estimated 

by minimizing the sum of the squared difference between the simulated and the 

measured temperatures. 

The basic steps of GA are population initialization, evaluation of the fitness function, 

selection, crossover, mutation and generation of off springs. Population initialization 

is the creation of set of individuals which are called chromosomes. Each chromosome 

is made of genes. The fitness function values are evaluated for each chromosome and 

the ranking of the chromosomes is carried out based on the fitness values. The 

chromosome with the best fitness value will be retained for the next generations and 

worst chromosome is rejected. The selected set of chromosomes will be allowed to 

produce a new offsprings by the process called crossover where the chromosomes are 

randomly swapped at random cross over sites to generate new offsprings. Even two 

point or multipoint crossover can be used. This new set of chromosomes has a great 

tendency to produce good performance in retrieving the solution. Mutation process is 

the modification in the genes, where few genes of particular chromosome which has a 

capability to enhance the liability to vary the population. Figure 5.1 shows the 

crossover site and mutation. From the new population, every location of bit in the 

chromosome will go through random change in with identical probability. Thus the 

new born population is used to find the fitness function and the process is continued 

until the stopping criterion is reached. Figure 5.2 shows the flowchart for the 

execution of genetic algorithm. 
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Steps used in Genetic Algorithm 

Every genetic algorithm incorporates the following basic steps: 

i. A population of possible solutions is initialized randomly. 

ii. The fitness of each solution is determined according to an appropriate fitness 

function. 

iii. Pairs of the population are selected to be parents of the new generation. This 

selection of parents is based on the most-fit members of the current 

population. 

iv. The selected parent pairs combine to form children, which constitute the new 

population. 

v. Variation is introduced into the new population through mutation, crossover, 

and creep. 

vi. Steps (ii)-(v) are repeated until the program ends according to user-specified 

criterion. 

 

 

 

 

 

 

 

Figure 5.1 Crossover and Mutation 

5.2.1 Levenberg Marquardt Method (LM- method) 

Levenberg Marquardt method is an iterative method used for solving nonlinear least 

square problem of parameter estimation. It was first derived by Levenberg in the year 

1944 and later modified by Marquardt in 1963. Estimation of the parameter using LM 

Parent 1 1 2 3 4 5 

Parent 2 3 5 2 1 4 

Child 1 1 2 3 1 4 

Child 2 3 5 2 4 5 

Child 1 1 2 3 1 1 

Cross over site 

Mutation site 
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method requires proper selection of the initial guess. With poor selection of the initial 

guess the chances of getting trapped in the local minima is more likely to occur. In 

this work the output from the GA is provided as the initial guess to LM algorithm. 

The LM algorithm is as follows. It is based on minimization of the ordinary least 

squares norm which is given as: 

𝑆(𝑃) =  ∑ [𝑌𝑖 − 𝑇𝑖(𝑃)]
2𝐼

𝑖=1         (5.2) 

Where,   S = sum of squares error or objective function 

𝑃𝑇      = [𝑃1, 𝑃2, …𝑃𝑁], vector of unknown parameters 

𝑇𝑖(𝑃) =  estimated temperature, 

𝑌𝑖        = measured temperature, 

N        = number of unknown parameters 

I         = number of measurements, where I ≥ N 

Step 1: The forward problem is solved using 𝑃𝑘 as the initial guess to obtain 

temperature vector. (set k=0 for initial guess and 𝜇0=0.001) 

Step 2: Compute 𝑆(𝑃𝑘) from Equation (6.20) 

Step 3: Compute the sensitivity matrix 𝐽𝑘 and 𝛺𝑘 using the current value of 𝑃𝑘, where 

𝐽𝑘 is given as 𝐽(𝑃) = [
𝜕𝑇𝑇(𝑃)

𝜕𝑃
]
𝑇

 and 𝛺𝑘 = 𝑑𝑖𝑎𝑔[(𝐽𝑘)𝑇𝐽𝑘]  

Step 4:  Calculate the new set of estimate  𝑃𝑘+1, 

𝑃𝑘+1=𝑃𝑘+[(𝐽𝑘)𝑇𝐽𝑘 + 𝐽𝑘𝛺𝑘]−1 (𝐽𝑘)𝑇 [𝑌 − 𝑇(𝑃𝑘)]    (5.3) 

Step 5: Solve the direct problem for the new estimate 𝑃𝑘+1 to obtain  𝑇(𝑃𝑘+1).  

Step 6: Compute 𝑆(𝑃𝑘+1) 

Step 7: If 𝑆(𝑃𝑘+1) ≥ 𝑆(𝑃𝑘), replace 𝜇𝑘 by 10𝜇𝑘 and return to step 4. 

Step 8: If 𝑆(𝑃𝑘+1) < 𝑆(𝑃𝑘), accept the new estimate 𝑃𝑘+1 and replace 𝜇𝑘  by 0.1𝜇𝑘 

Step 9: Check the stopping criteria. If the criteria is satisfied, then stop the iterative 

procedure otherwise replace k by k+1 and move to step 3.  The stopping criteria is 

given as 𝑆(𝑃𝑘+1) < 𝜖1.  

5.3 ARTIFICIAL NEURAL NETWORK (ANN) 

The ability of ANN to learn from examples, manage large number of variables and 

respond to changes in the information makes it a versatile technique. A non-iterative 

technique like ANN with this potential quality is also used as Inverse technique in 
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estimation process. In the preceding chapter ANN as forward model has already been 

explained. The structure of the neural network remains the same when used for 

inverse process. While using ANN as the inverse model the input considered is the 

temperature and the output will be heat flux or any other parameter of interest. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Flowchart for Genetic Algorithm 
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5.4 BAYESIAN INFERENCE 

Gaining statistical knowledge about the unknown variables when the model and the 

measured data are available require certain attractive techniques such as the Bayesian 

Inference. The name Bayesian inference comes from the frequent use of Baye’s 

theorem in the inference process. The primary objective of the Bayesian estimation is 

to deduce the probability distribution of the unknown parameters based on the 

available data. It is used to relate the experimental measurement Y and the unknown 

parameter P for the continuous random variables and is given as follows: 

𝜋(𝑷 𝒀⁄ ) =
𝜋(𝒀 𝑷⁄ ) × 𝜋(𝑷)

𝜋(𝒀)
     (5.4) 

Where 𝜋(𝑷 𝒀⁄ ) is the posterior probability density function (PPDF) that the variable 

P caused the measurement Y, 𝜋(𝒀 𝑷⁄ ) is the likelihood function, 𝜋(𝑷) is the prior 

knowledge about the parameter P and can be incorporated in the analysis in the form 

of a distribution within the Bayesian framework, 𝜋(𝒀) is the normalizing constant. 

The likelihood function is arrived at by computing the temperature for the assumed 

values of the parameter P based on the forward/mathematical model and then 

calculating the probability based on the simulated and experimental temperatures. 

This is then represented as likelihood probability density function. Assuming the 

temperature data to be additive, uncorrelated, Gaussian, with zero mean and constant 

standard deviation, the likelihood can be written as (Orlande et al. 2008), 

𝜋(𝒀 𝑷⁄ ) =
1

(2𝜋𝜎2)
𝑛
2

𝑒𝑥𝑝 [−
(𝒀−𝑻(𝑷))𝑇 (𝒀−𝑻(𝑷))

2𝜎2
]                          (5.5) 

Where 𝑇(𝑷) is the calculated temperature for the given value of parameter P, 

𝑛 = 𝑁 ×𝑀 is the total number of temperature measurements, 𝜎 is the standard 

deviation. 

The prior 𝜋(𝑷) is assumed to be normal distribution with mean 𝜇𝑃 and standard 

deviation  𝜎𝑝, and is expressed as : 

𝜋(𝑷) =
1

(2𝜋𝜎𝑝
2)
0.5 𝑒𝑥𝑝 [−

(𝑷−𝜇𝑝)
2

2𝜎𝑝
2 ]                                            (5.6) 
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The prior density function 𝜋(𝑷) typically follows a uniform or normal distribution. In 

case of a uniform prior, 𝜋(𝑷) is same for all values of 𝑷. Equation (5.6) is used when 

normal prior is incorporated. Use of normal prior would result in sharper PPDF and 

also low values of standard deviation. PPDF as shown in Equation (5.4) is the product 

of likelihood function and the prior function and is given as: 

𝜋(𝑷 𝒀⁄ ) =
1

(2𝜋𝜎2)
𝑛
2

𝑒𝑥𝑝 [−
(𝒀−𝑻(𝑷))𝑇 (𝒀−𝑇(𝑷))

2𝜎2
] ×

1

(2𝜋𝜎𝑝
2)
0.5 𝑒𝑥𝑝 [−

(𝑷−𝜇𝑝)
2

2𝜎𝑝
2 ] (5.7) 

When uniform prior is used in the estimation, then PPDF will be decided by the 

likelihood function alone and is given by: 

𝜋(𝑷 𝒀⁄ ) ∝
1

(2𝜋𝜎2)
𝑛
2

𝑒𝑥𝑝 [−
(𝒀−𝑻(𝑷))𝑇 (𝒀−𝑇(𝑷))

2𝜎2
]   (5.8) 

In order to calculate the unknown estimates based on Equation (5.4), numerical 

integration must be performed. If analytical treatment of the posterior probability 

function is not possible, one can use Markov chain Monte Carlo methods to draw 

samples from a distribution. 

MCMC is the most widely adopted numerical method used for exploring the posterior 

state space. Samples are to be generated and an efficient sampling algorithm is 

required for the successful implementation of the Bayesian method. Solution 

procedure of the Bayesian framework can be split up into three steps (Diego et al. 

2012). In the first step prior probability density function can be evaluated with the 

available information about the parameter P. In the second step the forward model or 

the likelihood function 𝜋(𝒀 𝑷⁄ ) can be calculated for the given value of P. And the 

third step includes developing models to explore the posterior probability density 

𝜋(𝑷 𝒀⁄ ). Hence numerical techniques like MCMC are used to perform the third step. 

MCMC is used to obtain samples that accurately represent the posterior probability 

density. Metropolis-Hastings algorithm is the most commonly used MCMC sampling  
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Figure 5.3 Flow chart for MH algorithm 

algorithm. Since the posterior state space has high dimension and it is required to 

obtain the marginal distributions of individual parameters. MCMC is one such 

Initialise state 𝑷(𝑡−1) 

Obtain new state 𝑃∗ from the proposal density 

𝑞(𝑷∗, 𝑷(𝑡−1))   

Generate a random number U(0,1) 

Calculate Acceptance ratio, A 

If U≤A 

𝑷𝑡 = 𝑷∗ 

𝑷𝑡 = 𝑷(𝑡−1) 

Specify number of iterations 

Calculate mean, MAP and standard deviation 

of the parameter. 

YES 

NO 
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algorithm used to accomplish this task. A class of algorithms used generally for 

computational inference is called Markov Chain Monte Carlo methods. The process 

followed in MH algorithm is showed in the form of flow chart in Figure 5.3. 

The steps involved in MCMC-MH algorithm for single parameter estimation can be 

summarised as (Orlande et al. 2008), 

i. Sample a candidate 𝑃∗ from the distribution 𝑞(𝑷∗, 𝑷(𝑡−1)). 

ii. Generate a random number U uniformly distributed on (0,1). 

iii. Calculate the acceptance ratio, 𝐴(𝑷∗, 𝑷(𝑡−1)) = 𝑚𝑖𝑛 [1,
𝜋(𝑷∗ 𝒀⁄ )𝑞(𝑷(𝑡−1), 𝑷∗)

𝜋(𝑷(𝑡−1) 𝒀⁄ )𝑞(𝑷∗, 𝑷(𝑡−1))
] 

iv. If U≤ A, then 𝑷𝑡 = 𝑷∗; otherwise 𝑷𝑡 = 𝑷(𝑡−1). 

v. Return to step 1 so that the sequence {𝑷1, 𝑷2, …… . 𝑷𝑛} can be generated. 

Hence stochastic iterative techniques like GA, non-iterative technique ANN and  

Bayesian Inference are successfully used as inverse techniques in the estimation 

process. 

5.5 Closure 

This chapter discussed about the methods used as inverse approach in the present 

work. The methods are explained with the help of flow chart. Further chapter deals 

with the application of these inverse techniques for the estimation purpose. 
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CHAPTER 6 

ESTIMATION OF HEAT FLUX USING COMBINED ANN-GA AND 

EXPERIMENTAL BASED TECHNIQUE FOR A CONJUGATE HEAT 

TRANSFER PROBLEM 

6.1 INTRODUCTION 

This chapter deals with the estimation of heat flux at the boundary for the vertical fin 

on a horizontal base. A two dimensional numerical fin model is created for the 

analysis of temperature distribution for the known heat flux at the base. Navier Stokes 

equation is solved by incorporating Boussinesq approximation. Using the 2D 

simulation data, a neural network is developed as the forward model. The conjugate 

heat transfer NN model is now coupled with Genetic algorithm (GA) for the solution 

of the inverse problem. Initially, GA is applied to the pure simulated data, the results 

are then used as input to the Levenberg-Marquardt (LM) method and such 

hybridization is proven to result in accurate estimation of the unknown heat flux. The 

hybrid method is then applied for the experimental temperature to estimate the 

unknown heat flux.  

6.2 FORWARD MODEL 

The forward problem proposed is a 2D conjugate heat transfer from fin. The 

numerical model consists of a mild steel fin of dimension 250x150x6mm
3
, which is 

placed vertically on an aluminum base of dimension 250x150x8mm
3
. A known heat 

flux is specified at the base beneath the aluminum plate. The computational domain is 

simplified to a two dimensional model because of its symmetry. An extended domain 

is created for the air to flow on to the fin during natural convection. The flow is 

assumed as incompressible and laminar with constant fluid properties. But the density 

change with temperature in the buoyancy term is taken into account for the analysis. 

Simulation is carried out for different values of heat flux as input and the temperature 

data is recorded. Figure 6.1 shows the computational model used for the present 

study. 
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Figure 6.1 2D computational domain 

The steady state two-dimensional equation of continuity, momentum and energy is: 

Continuity: 

𝜕𝑢

𝜕𝑥
 + 
𝜕𝑣

𝜕𝑦
 = 0      (6.1) 

X-momentum equation: 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
𝜕𝑢

𝜕𝑦
)= - 

𝜕𝑝

𝜕𝑥 
 + µ (

𝜕2 𝑢

𝜕𝑥2
 + 
𝜕2 𝑢

𝜕𝑦2
)       (6.2) 

 

 

g 

a 

c 

b 

d 
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Y-momentum equation: 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣
𝜕𝑣

𝜕𝑦
) = - 

𝜕𝑝

𝜕𝑦 
 + 𝜇 (

𝜕2 𝑣

𝜕𝑥2
 +  
𝜕2 𝑣

𝜕𝑦2
)+ 𝜌𝑔𝛽(𝑇 −  𝑇∞)         (6.3) 

Energy equation for fluid: 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣
𝜕𝑇

𝜕𝑦
)= 𝑘𝑓 (

𝜕2 𝑇

𝜕𝑥2
 +  
𝜕2 𝑇

𝜕𝑦2
)         (6.4) 

where 𝜌 is the density (kg/m
3
),  𝑘𝑓 is thermal conductivity of fluid (W/mK), 𝑐𝑝 is the 

specific heat (J/kgK), g is the gravity constant (m/s
2
), β =

1

𝑇
 (K

-1
), 𝜇 is dynamic 

viscosity (Ns/m2
). 

Along the solid walls no slip condition is applied and the flow velocities on these 

walls are set to zero. The base of the aluminium plate is subjected to constant heat 

flux thermal boundary condition. The sides of the base are subjected to adiabatic 

conditions. Details of these conditions are given below after presenting the governing 

equation for the aluminium base and the mild steel fin. The inlet and outlet boundary 

conditions, also other applied boundary conditions are as follows.  

Velocity and temperature at the inlet at ‘a’,   

          𝑢 = 0 , 𝑣 = 0, 𝑇 = 𝑇∞               (6.5) 

 

Outlet boundary conditions at ‘b’, 

𝜕2𝑣

𝜕𝑦2
= 0, 

 𝜕2𝑢

𝜕𝑦2
= 0, 

𝜕2𝑇

𝜕𝑦2
= 0      (6.6) 

 

The left side of the computational extended domain i.e ‘c’ exhibits symmetry 

boundary condition and is represented as,  
𝜕𝑇

𝜕𝑥
= 0            (6.7) 

The right side of the computational extended domain i.e ‘d’ exhibits the following 

boundary conditions, 
𝜕𝑢

𝜕𝑥
= 0, 

𝜕𝑇

𝜕𝑥
= 0, 𝑢 = 0                                                                                   (6.8) 

     (8) 

Aluminum base: 

𝑘𝑎𝑙 (
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) = 0                                                                              (6.9) 
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At regions 1 and 2, i.e. x =0 and x=L 

𝜕𝑇

𝜕𝑥
= 0                                                                                                 (6.10) 

At region 3, i.e. at y=0 

−𝑘𝑎𝑙
𝜕𝑇

𝜕𝑦
= 𝑞0                                                                                                          (6.11) 

where 𝑞0 is the heat flux (W/m
2
), 𝑘𝑎𝑙 is the thermal conductivity of the aluminium 

base plate (W/mK). 

At region 4, i.e. at y =tal and tms ≤ x ≤ L-tms 

𝑘𝑎𝑙
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
        and       𝑇𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑇𝑓𝑙𝑢𝑖𝑑      (6.12)                                                              

where 𝑘𝑓 is thermal conductivity of fluid (W/mK) and tal is thickness of the 

aluminium base plate, tms is thickness of mild steel fin. 

Mild steel fin: 

𝑘𝑚𝑠 (
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
) = 0                                                                                              (6.13) 

At region 8 i.e x=0 

𝜕𝑇

𝜕𝑥
= 0                                                                                                  (6.14) 

At region 6 i.e. x=tms and tal ≤ y ≤ H 

𝑘𝑚𝑠
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
                   and  𝑇𝑚𝑖𝑙𝑑𝑠𝑡𝑒𝑒𝑙 = 𝑇𝑓𝑙𝑢𝑖𝑑                  (6.15)    

where 𝑘𝑚𝑠 is the thermal conductivity of the mild steel fin (W/mK)                                                        

Region 5 which is at y = tal and 0 ≤ x ≤ tms. It is the intersection between aluminum 

base and mild steel fin, 

𝑞𝑐𝑜𝑛𝑑,𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑞𝑐𝑜𝑛𝑑,𝑚𝑖𝑙𝑑 𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑛                                                   (6.16) 

𝑘𝑎𝑙
𝜕𝑇

𝜕𝑛
= 𝑘𝑚𝑠

𝜕𝑇

𝜕𝑛
   and   𝑇𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑇𝑚𝑖𝑙𝑑𝑠𝑡𝑒𝑒𝑙                                                      (6.17) 

At region 7 i.e. y=H and 0 ≤ x ≤ tms 

𝑘𝑚𝑠
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
     and  𝑇𝑚𝑖𝑙𝑑𝑠𝑡𝑒𝑒𝑙 = 𝑇𝑓𝑙𝑢𝑖𝑑                            (6.18)                                                                                
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6.3 EXPERIMENTAL SETUP  

The experimental setup was elaborately discussed in Chapter 3. Experiments are 

performed in a careful and closed environment in order to prevent the effect of 

external disturbances. The fin is heated from the ambient temperature to the steady 

state temperature for a time duration of 4 to 5 hours and the steady state temperature 

is confirmed when the temperature difference is found to be ±0.1°C for a time interval 

of 10 mins. Upon reaching the steady state temperature, the power supply is turned off 

and the fin is allowed to cool. The temperature distribution thus obtained contains the 

information about heating, steady state and cooling zones. The total duration of the 

experiment will be approximately 6 hours. Figure 6.2 shows the temperature recorded 

by a thermocouple located along the height of the fin. Three zones namely heating, 

steady and cooling can be seen in the plot obtained during experimentation. The 

estimation methodology of the present work is shown in terms of flow chart in Figure 

6.3.  

 

Figure 6.2 Typical experimental plot for heat input of 2133W/m
2 

6.3.1 Uncertainty Analysis 

The uncertainties involved in the measurements of various quantities for the DC 

power supply is shown in Table 6.1. 

Table 6.1 Uncertainty involved in the devices used in the present study 

Instrument Uncertainity 

DC power source ±0.2% 

Digital multimeter ±1.6% 
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Figure 6.3 Flowchart of the estimation methodology 

 

            P = VxI, W 

±√(
𝜕𝑃

𝜕𝑉
𝜎𝑉)
2
+ (
𝜕𝑃

𝜕𝐼
𝜎𝐼)
2
        (6.19) 

      ±√((0.91)(0.002))2 + ((60)(0.016))2 

     ± 0.921W or 1.6%  

6.4 ANN AS FORWARD MODEL 

In solving the inverse conjugate natural convection heat transfer problem, the 

estimation of unknown heat flux can be accomplished with the help of known 

temperature distribution from the fin. The use of ANN as forward model reduces the 
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complexity of the computational process. The following steps are considered to 

develop a relation between the heat flux and temperature distribution.  

1. Training the network: The training sets include heat flux and temperature vectors 

by solving the forward model. While training the network, the range of heat flux is 

important in order to match the target temperature. 

2. Network building: The proper selection of network depends on the size of the input 

and output vectors. There are number of algorithms to develop a proper training 

process and the number of hidden neurons used is also a function of the algorithm 

selected. 

3. Network training: During training, the network tries to understand the facts 

between input and output. Training can be accomplished with the help of learning 

algorithms and training the network is continued till the error is reasonably small. 

4. Network testing: With the trained network, the input which is not contained during 

the training process is chosen to test the neural network. If the error is more, the 

training process is again executed till the testing part is satisfied. 

The above procedure is used to construct network between heat flux and simulated 

temperatures. A neuron independence study is carried out and is shown in Table 6.2.  

A comparison between the simulation temperature and the temperature obtained from 

the network is shown in Table 6.3 and Table 6.4 shows the comparison between 

experimental temperature and the neural network output. The deviation between the 

temperatures obtained from simulation and ANN also between experimental 

temperature and ANN is shown in Figure 6.4 and Figure 6.5 respectively 

Table 6.2 Neuron Independence study 

 

 

 

 

 

 

 

Sl.no Neurons MRE R
2
 

1 6 0.006107889 0.999998511 

2 8 0.003859184 0.999999476 

3 10 0.003875978 0.99999797 



68 
 

Table 6.3 Comparison between simulated and ANN temperature. 

Position of 

thermocouple 

from base,m 

1800W/m
2
 2300W/m

2
 2700W/m

2
 

Tsim, K TANN, K Tsim, K TANN, K Tsim, K TANN, K 

0.006 445.12 444.61 472.30 472.67 497.38 497.93 

0.045 428.60 427.86 451.70 450.45 473.21 472.50 

0.084 414.62 413.04 435.01 432.11 453.28 451.52 

0.110 408.41 406.66 427.42 424.53 444.66 442.82 

0.148 403.86 402.08 421.88 419.31 438.39 436.60 

 

Table 6.4 Comparison between experimental and ANN temperature. 

Position of 

thermocouple 

from base,m 

533W/m
2
 1200W/m

2
 1624W/m

2
 

TExp, K TANN, K TExp, K TANN, K TExp, K TANN, K 

0.006 323.86 324.07 344.68 345.02 355.37 357.78 

0.045 320.36 320.43 337.45 338.50 344.42 346.03 

0.084 318.20 318.27 333.04 333.21 338.33 339.40 

0.110 317.34 317.42 331.21 331.76 335.59 334.58 

0.148 316.89 316.99 330.20 330.40 334.18 332.55 

 

 

 Figure 6.4 Error plot for the simulation temperature and ANN temperature  
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Figure 6.5 Error plot for the measured temperature and ANN temperature 

6.5 GA AS INVERSE METHOD 

The detailed discussion on GA has been provided in Chapter 5. The objective of GA 

is given in Equation (5.8). Simulated temperatures are obtained by executing the ANN 

model for an assumed or known heat flux input. Now in GA, the desired accuracy 

level and the range of the unknown parameter must be selected to represent them in 

the form of binary string. For the present case, the lower range and upper range of 

heat flux is 266 and 3700 W/m
2
, respectively. The whole process in GA is represented 

in binary form so the maximum number of binary required is chosen as 3700 W/m
2
, 

which is the upper range of the unknown heat flux. The binary for the upper and 

lower cases is specified in Table 6.5. 

Table 6.5 Binary representation of string 

Heat flux, W/m
2
 Binary representation 

266 000100001010 

3700 111001110100 
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In the process of GA, the cost function is evaluated for all populations and 

corresponding decimal is obtained. Then, the cost function is calculated for the 

decimals obtained and sorting of those values is done according to the objective 

function, minimum or maximum. If the problem under consideration is minimization, 

the value corresponding to the minimum cost function is rated top because this is the 

best individual or fitness among the population. It is pertinent to mention here that the 

simulated temperatures in the objective function are obtained from ANN, which is 

considered to be the forward model of the problem. Once the cost function is 

evaluated for the population and sorted according to the requirement, the next phase is 

to choose parents among the population for the process of crossover. The best 

individual has the privilege to produce children by the process of crossover among the 

population i.e., the operation involves exchanging the substrings of the chromosomes 

in the population. Most of the time, the chromosomes, which is rated least will be 

discarded as it is of no use for the fitness function or objective function. Moreover, 

the selection of population can be random and it is not necessary to retain entire 

population for crossover process. As mentioned earlier, one can vary the number of 

population and the effect on the objective function can also be studied. The concept of 

mutation is applied in this work. Such operation takes each chromosome from the 

mating pool and changes the chromosomes randomly i.e., the bit is replaced from 0 to 

1, or vice versa. Generally, the mutation rate varies from 0.01 to 0.2 and it plays only 

a minor role in the whole process. Subsequently, the problem of trapping in local 

minima can be avoided and the procedure takes care of attaining global minima. The 

concept of elitism plays important role in the convergence process. Elitism is the 

process of retaining the best individual from the initial iteration to the end for faster 

convergence. For the subsequent iterations, the average fitness function or the average 

objective function reduces which is the sign of attaining global minima. 

6.6 RESULTS AND DISCUSSION 

6.6.1 Estimation of heat flux from simulated data 

The numerical model is subjected to the boundary condition and on solving Equation 

(6.1) – (6.18) temperature distribution is obtained as the output for different values of 

heat flux as input. The temperature data is now given as input to the inverse approach. 
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As explained in earlier section 6.5, the number of chromosomes and genes are fixed 

as 8 and in-house GA code has been developed with commercial software. Figure 6.5 

shows the mean, maximum and minimum fitness functions for a heat flux of 1800 

W/m
2
.It is clearly seen in Figure 6.6 that the best chromosome is stable compared to  

 

 

Figure 6.6  Best, average and worst fitness function values in the population for each 

iteration for heat flux of 1800W/m
2
 with chromosomes=8 and genes=8 

worst and average chromosomes. The best and worst refers to the minimum and maxi- 

mum of the fitness function respectively. The number of iteration was limited to 50. 

The convergence based on the best chromosome for a heat flux of 1800 W/m
2
 is 

plotted in Figure 6.7. Even though the generations specified as 50, the convergence of 

the heat flux takes place within 15 iterations. Similarly, the search procedure is 

extended to two more initial guesses for the same heat flux and the convergence study 

is shown in Figure 6.8 as run 1, 2 and 3. Hence, different runs generate different 

initial guess solution. Eventually, the trend of the fitness functions seems to converge 

in a similar fashion thereby providing highly independent initial guess solutions. One 

of the advantages of using Genetic Algorithm to solve the inverse problems is that the 

initial guesses of the unknown quantities can be chosen arbitrarily. The estimated heat 
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flux is further examined with the actual value and results are reported in Table 6.6. 

Even though the estimated heat flux is very close to the actual heat flux, an attempt is 

made to obtain the accurate estimate thereby resulting in hybrid search approach. The 

hybrid search approach is a combination of Genetic Algorithm and Levenberg-

Marquardt algorithm. 

 

 

Figure 6.7 Convergence study of fitness function for heat flux of 1800W/m
2
, 

genes=8, chromosomes=8 

After selecting the number of population, the estimate is obtained by executing the 

GA code. The result is now given as input to the LM algorithm and finally the 

unknown parameter is estimated with less uncertainty. It is pertinent to mention that 

the number of iterations/generations can be changed to study the effect on the 

performance of the algorithm, but such a study does not help achieve significant 

Table 6.6 Estimation of heat flux using GA and LM for the heat flux 1800 W/m
2
 

Sl 

no Number of chromosomes 

GA, heat 

flux(W/m
2
) Time(s) 

LM_heat 

flux(W/m
2
) 

1 6 1801.2 9.43 1800 

2 8 1801.2 9.63 1800 

3 12 1801.2 14.12 1800 
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contribution to the solution because of the fact that the simulated data used contain no 

noise. Thus the hybrid search (Venugopal et al. 2009) provides the actual value of 

heat flux for different chromosomes. In addition to the estimates, Table 6.6 also 

provides information about the computation time involved in solving the inverse 

algorithm using GA. The computation time increases as the number of chromosome 

increases.  

 

Figure 6.8 Convergence studies of fitness function for the heat flux of 1800 W/m
2
, 

genes=8, chromosomes=8 

Even though there is increase in computational time with respect to chromosomes, the 

estimates are consistent thereby proving the robustness of the inverse methodology. 

All the numerical simulations are performed on a computer system with intel core i5, 

1.70 GHz, 12GB. Similarly, a study based on change of mutation rate and genes is  

Table 6.7 Estimation of heat flux using GA and LM for the heat flux 1800 W/m
2
 for 

different mutation rate 

Sl 

no Mutation rate 

GA heat 

flux(W/m
2
) Time(s) 

LM heat 

flux(W/m
2
) 

1 0.05 1801.2 10.33 1800 

2 0.1 1801.2 9.555 1800 

3 0.15 1801.2 9.51 1800 
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Table 6.8 Estimation of heat flux using GA and LM for the heat flux 1800 W/m
2
 for 

different genes 

Sl no 

Number 

of genes GA_heat flux(W/m
2
) Time(s) LM heat flux(W/m

2
) 

1 8 1801.2 9.63 1800 

2 12 1799.7 9.8 1800 

 

presented in Table 6.7 and 6.8. The mutation rate is varied from 0.05 to 0.15 and the 

estimation is carried out for fixed gene and chromosome. The results show that the 

mutation rate sometimes increases the computational time because the chances of 

retaining the best solution in every iteration is less. The temperature residual is 

calculated in order to assess the model used in the inverse analysis. To achieve this 

parity plot is drawn between the temperature values obtained from the forward model 

heat flux and temperature values obtained from the estimated heat flux. Figure 6.9 

shows such an exercise in which the forward model heat flux is 1800W/m
2
 and the 

estimated value of the heat flux is obtained from Table 6.7 with GA as the inverse 

method. The inverse method is further tested for a heat flux of 2250 W/m
2
 and such a 

test case is shown in Figure 6.10. Therefore, first level of inverse estimation using GA 

is well established for the conjugate natural convection problem and the next 

discussion is about the estimation of heat flux for actual temperature measurements. 

 

Figure 6.9 Parity plot for the temperature obtained from the forward model heat flux 

and the estimated heat flux 
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6.6.2 Estimation of heat flux from measured data 

Having proved the robustness of the retrieval methodology in the previous section, the 

approach for the estimation of unknown heat flux is the same as the previous section 

but the simulated temperature is now replaced with the actual measurement 

temperature. However, the observed temperature data may contain measurement 

errors therefore a neural network is trained for the measurement data thereby 

eliminating the complexity in matching the temperature between the neural network 

trained using CFD simulations and experiments. This in turn reduces the complexity 

associated in modelling and simulating the numerical model.  

 

Figure 6.10 Convergence study for the heat flux of 2250 W/m
2
, genes=8, 

chromosomes=8 

The neuron independence study for the experimental neural network has been carried 

out and selected neurons is found to be 10. The trained neural network temperature is 

compared with the experimental temperature and already shown in Table 6.4. The 

deviation between the experimental and NN temperatures is clearly given in Figure 

6.4 and the variation is less than 2.5K. 

To ascertain the estimated heat flux, several trail run has been conducted and fitness 

function in terms of best, average and worst for the experimental heat flux of 

826.66W/m
2 

is shown in Figure 6.11 which proves that GA is able to estimate the 
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unknown heat flux even for the measured temperatures. Figure 6.12 shows the 

convergence study for the heat flux of 826.66 W/m
2 

for different runs. The percentage  

 

 

Figure 6.11 Fitness function for the heat flux of 826.66 W/m
2
, genes=8, 

chromosomes=8 

 

Figure 6.12 Convergence study for the heat flux of 826.66 W/m
2
, genes=8, 

chromosomes=8. 
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Table 6.9 Estimation of heat flux using GA and LM for the heat flux 826.66 W/m
2
 for 

the measured temperature 

Sl. 

no 

Number of 

chromosomes 

Heat flux 

(W/m
2
) Time, s 

LM GA heat 

flux (W/m
2
) % error 

1 6 827.42 6.24 826.53 0.107 

2 8 827.42 8.4 826.53 0.107 

3 12 827.42 12.77 826.53 0.107 

 

error reported in Table 6.9 for the heat flux of 826.66 W/m2 is very less which further 

corroborates that reliable solution can be obtained even for the measured data. It can 

also be seen from Table 6.9 that the estimates using hybrid GA improves only to a 

small extent and thereby suggesting that the plain GA itself is a robust and powerful 

inverse methodology for the estimation of the heat flux. 

6.7 CONCLUSION 

An inverse approach has been demonstrated to estimate the unknown heat flux for a 

conjugate heat transfer problem. Fluid flow and heat transfer from two dimensional 

fin with base being heated by uniform heat flux was first solved by ANSYS to 

determine the velocity and temperatures in the domain of interest. These calculations 

are validated with limited in-house experiments. Following this a back propagation 

Neural Network was developed that returns the temperatures of the fin for a given 

heat flux. This was then used to drive a Genetic Algorithm engine to estimate the un- 

known heat flux with known measurement. Finally, the output of the Genetic 

Algorithm was given to Levenberg Marquardt Algorithm to improve the accuracy of 

the estimate. The important conclusions of the present study are: 

 ANN-GA is robust and efficient method to estimate problems of this class. 

 ANN can be efficiently used to replace the time consuming CFD model. 

 There is little to choose between a plain GA and hybrid GA method. 

6.8 Closure 

This chapter dealt with the estimation of heat flux using simulated data and 

experimental data using ANN as the forward model and GA as inverse method 

considering 2D geometry. A hybrid inverse approach was incorporated by combining 

deterministic method, Levenberg Marquardt algorithm with stochastic method, 
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Genetic Algorithm. Next chapter explains the use of ANN as both forward and 

inverse problem. 
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CHAPTER 7 

ESTIMATION OF HEAT FLUX AND HEAT TRANSFER COEFFICIENT 

USING ANN AS FORWARD AND INVERSE METHODS 

7.1 INTRODUCTION 

This chapter reports the usefulness of incorporating back propagation neural (BPN) 

network as forward and inverse models in the estimation of unknown heat flux and 

heat transfer coefficient for the vertical base fin setup. The main aim of this work is to 

reduce the computational cost of the inverse estimation. Furthermore, the effect of 

addition of experimental temperature in to the forward model is also studied in order 

to improve the solution of the inverse estimation. The solution procedure begins with 

the simulated data and limited number of experiments is injected in to the simulated 

data for the estimation of heat flux and heat transfer coefficient. The novelty of the 

work is to perform very few numerical simulations and experiments and finally 

combining these two to provide a quick solution to the experimental data driven 

forward model. 

7.2 FORWARD MODEL 

In this work, the numerical model consisting of the fin and base assembly is modelled 

as a three dimensional conjugate heat transfer problem, which is shown in Figure 7.1 

with related boundary conditions. The base plate of the fin is placed vertically to 

ground, the extended domain is modelled to study the effects of convection and also 

to obtain velocity information. The medium considered in the extended domain is air 

which is considered to be of constant thermo-physical properties except for the 

density so as to model natural convection. Boussinesq approximation is incorporated 

to treat density as a constant with the momentum and the continuity equations but 

vary with temperature in the energy equation.  

 

 

 

w 
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Figure 7.1 Numerical model. 

The computational mesh model is shown in Figure 7.2. The governing equations of 

the present study is given as 

Continuity: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0         (7.1) 

X-momentum equation: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜗 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
)     (7.2) 

Y-momentum equation: 

g outlet 

x-face 

inlet 

x-face 

z-face 

z-face 
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𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣
𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜗 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
) + 𝑔𝛽(𝑇 − 𝑇∞)           (7.3) 

Z-momentum equation: 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣
𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜗 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
)            (7.4) 

Energy equation (for fluid): 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣
𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
)              (7.5) 

Energy equation (for solid): 

𝑘𝑠 (
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) = 0                (7.6) 

Figure 7.1 depicts the boundary conditions of the present problem. At the inlet, the 

following boundary conditions are imposed, 

𝑢 = 0 𝑣 = 0 𝑧 = 0 𝑇 = 𝑇∞        (7.7) 

At the outlet of the domain the following boundary condition is used, 

𝜕2𝑣

𝜕𝑦2
= 0         

𝜕2𝑢

𝜕𝑦2
= 0      

𝜕2𝑧

𝜕𝑦2
= 0    

𝜕2𝑇

𝜕𝑦2
= 0      (7.8) 

The x-face of the domain is subjected to, 

𝑢 = 0     𝑣 = 0     𝑧 = 0     
𝜕𝑇

𝜕𝑥
= 0       (7.9) 

Also z-face of the domain is subjected to, 

𝑢 = 0     𝑣 = 0     𝑧 = 0     
𝜕𝑇

𝜕𝑧
= 0       (7.10) 

Region ‘a’ is solid-solid interface and the transfer of energy at this region is through 

conduction, where the wall of the fin and the aluminium base is treated as coupled 

wall. 

𝑘𝑎𝑙
𝜕𝑇

𝜕𝑛
=  𝑘𝑚𝑠

𝜕𝑇

𝜕𝑛
   and  𝑇𝑎𝑙 = 𝑇𝑚𝑠       (7.11) 
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At regions ‘b’, ‘c’ and‘d’ the kind of boundary condition imposed is solid-liquid 

interface so the energy transfer between the fin faces to the air in the extended domain 

is by convection.  

𝑘𝑚𝑠
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
   and  𝑇𝑚𝑠 = 𝑇𝑓𝑙𝑢𝑖𝑑       (7.12) 

Where 𝑘𝑎𝑙 is thermal conductivity of aluminum, 𝑘𝑚𝑠 is thermal conductivity of mild 

steel and 𝑘𝑓 is thermal conductivity of fluid. 

At region ‘e’ i.e along the sides of the base insulation boundary condition is applied. 

𝜕𝑇

𝜕𝑥
= 0          (7.13) 

 No slip condition is applied along all solid walls. All these regions are treated as 

interfaces. 

 

Figure 7.2 Computational mesh domain. 

A grid independence study has been performed to find out the optimum number of 

nodes required for the numerical simulations. From Figure 7.3, 4,72,000 nodes are 

found to be optimum and the forward model computations are performed based on the 

optimum grid. Numerical simulations are carried out in a 32core 64GB RAM 



83 
 

workstation and the average time taken for obtaining a single forward solution was 

45mins. 

 

Figure 7.3 Grid Independence study. 

7.3 EXPERIMENTAL SETUP 

Chapter 3 provides the details about the experimental setup. The results of the steady 

state temperature distribution obtained from the vertical base fin for different power 

levels and simulation temperature results are compared and are shown in Figure 7.4.  

 

Figure 7.4 Comparison of temperature along the length of fin. 
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7.4 RESULTS AND DISCUSSION 

Equation (7.1) - (7.13) is solved to obtain the temperature distribution along the 

length of the fin. Numerical simulations are carried out using different values of heat 

flux as input and the temperature contour and velocity contour are shown in Figures 

7.5 and 7.6 respectively. The forward model consists of a 3D geometry which is 

modelled and meshed using ANSYS 14.5 with the selected grid size. The heat flux 

applied at the base is varied from 305-3300W/m
2
. The selection of heat flux range 

confirms that the Rayleigh number does not exceed the critical value and the flow 

remains laminar.  

 

Figure 7.5 Temperature contour along the height of fin obtained for heat flux of 1600 

W/m
2 

Steady state heat transfer simulations are carried out for different values of heat flux 

and the corresponding temperature data is obtained. Temperature along the height of 

fin is plotted against different values of heat flux. It can be observed that along the 

length of the fin there is a gradual increase in the temperature indicating that the heat 

transfer from the fin surface to ambient as y→L is decreasing because the cold air 

from the bottom receives more heat, raises upstream due to the density difference 

which is evident from the Figure 7.7. Information about the heat transfer coefficient 

along the length of the fin is shown in Figure 7.8 which also justifies the increase in 

temperature along the length of fin observed in Figure 7.7.  
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Figure 7.6 Velocity plot for heat flux of 1200W/m
2 

 

Figure 7.7 Temperature plot for different values of heat flux 
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Figure 7.8 Heat transfer coefficient plot over the length of fin 

7.4.1 ANN as forward model 

The main aim of the present work is to minimize the computational cost of the 

forward model as well as the inverse model. Generally, any iterative technique used 

for the inverse estimation of unknown parameters requires forward model solution  

for every iteration thereby leading to more computational cost.  In order to avoid this 

situation, a neural network can be trained between the known input and the 

temperature data. To develop a neural network for the forward model, the temperature 

distribution is obtained for the known values of the parameters involved in the 

mathematical model using CFD solution. Temperature data at 3 sensor locations have 

been considered. Therefore, training is done between the unknown heat flux or heat 

transfer coefficient and the temperatures. Neuron independence is carried out to fix 

the number of neurons while training the network for the forward and inverse models. 

Table 7.1 shows the comparison of simulation temperature and the ANN temperature. 

It is very much evident from the table that ANN can be used as an alternate for the 

conventional forward model.  
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Table 7.1 Comparison between simulation temperature and ANN temperature for 

simulated data 

Location,

m 

Heat flux = 1100W/m
2
 Heat flux = 1600W/m

2
 Heat flux = 2200W/m

2
 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 363.43   363.43 389.49   389.52 419.77   419.78 

0.005 333.36   333.35 346.33   346.32 361.10   361.09 

0.178 338.54   338.53 353.42   353.42 370.30   370.30 

 

Initially, ANN is trained using simulated measurements. The simulated data used for 

training is shown in Table A2 in Appendix. Later, experimental temperature is 

injected in to the simulated measurements one by one and training of the network is 

carried out. Hence, the forward model is now driven by the experimental input to 

accurately estimate the unknown parameters. To accomplish this, the experimental 

temperature injected into the forward model is classified as Model 1, Model 2, Model 

3 and Model 4. Model 1 to Model 4 represents the experimental temperature injected 

as one temperature value, two temperature values, three temperature values and four 

temperature values respectively. The correlation coefficient for such an exercise is 

shown in Figure 7.9. Similarly, for the inverse analysis, a network is created based on 

the temperature data obtained from CFD simulations as input and the heat flux/heat 

transfer coefficient as output.   

 

 
(a) 

(b) 
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Figure 7.9 Correlation coefficient plot for forward model (a) one experiment value, 

(b) Two experiment values, (c) Three experiment values (d) Four experiment values. 

Tables 7.2 to 7.5 show the comparison between ANN temperature and simulation 

temperature which is obtained by injecting experimental data one by one in to the 

simulation data. From these tables the maximum errors observed are 0.03%, 0.06%, 

0.22% and 0.46% respectively. Figure 7.10 shows the mean absolute error obtained 

from Model 1 to 4. 

Table 7.2 Comparison between simulation temperature and ANN temperature when 

single experiment value is considered (Model 1) 

Location, 

m 
q = 1100W/m

2
 q = 1600W/m

2
 q = 2200W/m

2
 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 363.43 363.391 389.49 389.490 419.77 419.717 

0.005 333.36 333.465 346.33 346.328 361.10 361.046 

0.178 338.54 338.6513 353.42 353.424 370.30 370.237 

 

 

 

 

(c) (d) 
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Table 7.3 Comparison between simulation temperature and ANN temperature when 

two experiment values is considered (Model 2) 

Location, 

m 
q = 1100W/m

2
 q = 1600W/m

2
 q = 2200W/m

2
 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 
363.43 363.208 389.49 389.612 419.77 419.708 

0.005 
333.36 333.339 346.33 346.352 361.10 361.125 

0.178 
338.54 338.520 353.42 353.421 370.30 370.339 

  

Table 7.4 Comparison between simulation temperature and ANN temperature when 

Three experiment values is considered (Model 3) 

Location, 

m 
Heat flux = 1100W/m

2
 Heat flux = 1600W/m

2
 Heat flux = 2200W/m

2
 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 363.43 363.136 389.49 389.503 419.77 420.046 

0.005 333.36 334.115 346.33 346.252 361.10 360.726 

0.178 338.54 338.783 353.42 353.328 370.30 370.398 

  

Table 7.5 Comparison between simulation temperature and ANN temperature when 

four experiment values is considered (Model 4) 

Location q = 1100W/m
2
 q = 1600W/m

2
 q = 2200W/m

2
 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 363.43 362.332 389.49 389.421 419.77 419.811 

0.005 333.36 334.922 346.33 346.583 361.10 360.838 

0.178 338.54 339.088 353.42 353.533 370.30 370.187 
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Figure 7.10 shows the Mean Absolute Error for the ANN data. 

After establishing the network between heat flux and the temperature, an attempt has 

been made to estimate both heat flux and heat transfer coefficient simultaneously. As 

a result of this, the forward model now contains heat flux and heat transfer coefficient 

as input to the network and temperatures as output. Information about heat transfer 

coefficient along the length of the fin is shown in Figure 7.8. The number of neurons 

is fixed after carrying out neuron independence study. Table 7.6 shows the 

comparison of temperature between the simulated output and ANN. 

Table 7.6 Heat flux and heat transfer coefficient as input to the network 

 

 

Location, 

m 

q =1500 W/m
2
,
 

h= 4.540W/m
2
K 

q = 2000 W/m
2 
,
 

h = 4.924W/m
2
K 

q= 2700 W/m
2 
, 

h = 5.320W/m
2
K 

TCFD, K TANN, K TCFD, K TANN, K TCFD, K TANN, K 

Base 384.36 384.101 409.79 409.869 444.43 444.626 

0.005 343.80 343.686 356.23 356.239 372.93 372.995 

0.178 350.53 350.423 364.76 364.785 383.76 383.742 
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7.4.2 ANN as Inverse model for single parameter estimation 

For estimation purpose, the input and the output data used in Model 1 to 4 has now 

been interchanged to obtain Inverse Model 1 to 4. Nevertheless, the Inverse Model 1 

to 4 contains heat flux as output and temperatures as input. 

Before estimating the heat flux based on Models 1 to 4, an attempt has been made to 

estimate the heat flux for simulated data. The results of the estimation are shown in 

Table 7.7. 

Table 7.7 Estimation of heat flux for the simulated data. 

Actual heat flux, 

W/m
2
 

Estimated heat flux, 

W/m
2
 

Error percentage 

1100 1099.78 0.020 

1600 1599.7 0.018 

2200 2198.65 0.061 

2900 2915.44 0.532 

 

ANN when used as inverse model produce a maximum error of 0.53% as seen from 

the table; therefore, this could be well attributed that the methodology proposed so far 

can be a potential tool for the estimation of heat flux for the experiment data as well. 

The results of inverse model is reported in Table 7.8 which shows the estimation of 

heat flux using the Inverse Models 1- 4. 

Table 7.8 Estimation of heat flux using the Inverse Models 1- 4 

Actual heat 

flux, W/m
2
 

Retrieved heat flux, W/m
2
 

Inverse Model 

1 

Inverse Model 

2 
Inverse Model 3 

Inverse 

Model 4 

1100 1102.7 1098.9 1099.6 1098.5 

1600 1599.3 1599.4 1599.4 1599.0 

2200 2197.1 2200.3 2199.2 2201.8 
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Temperature residual between the forward model heat flux and the estimated heat flux 

is shown in Table 7.9 the low residual value indicates the suitability of the model used 

in the inverse analysis. 

Table 7.9 Temperature residual 

Location, m 

Temperature, K from 

forward model heat 

flux 2200W/m
2
 

Temperature, K from 

estimated heat flux 

2198.65W/m
2
 

Residual 

Base 403.344 402.812 1.32E-03 

0.005 383.374 382.513 2.246E-03 

0.178 377.558 376.277 3.393E-03 

 

From the table it is observed that the maximum deviation in the estimated heat flux is 

0.24%. Figure 7.11 shows the percentage deviation plot for the estimated heat flux 

when experimental data was injected to the simulation results.  

 

Figure 7.11 Percentage deviation plot for the retrieved heat flux 
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7.4.3 Simultaneous estimation of heat flux and heat transfer coefficient 

The efficacy of the Neural network is further proved by simultaneous estimation of 

heat flux and heat transfer coefficient. NN is trained using temperature as the input, 

heat flux and heat transfer coefficient as the output. ANN when used as inverse tool in 

estimating heat flux yielded very good results as evident from Table 7.7. Table 7.10 

and it further buttresses that the retrieved values of the unknown parameters for the 

experimental temperature with the maximum error of 6.2% and 2.1% for heat flux and 

heat transfer coefficient respectively. 

Table 7.10 Estimation of heat flux and heat transfer coefficient for experimental data 

Actual Estimated 

Error (%)   

Heat flux, 

W/m
2
 

Error (%)  

Heat 

transfer 

coefficient, 

W/m
2
K 

Heat flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

Heat flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

853 3.78 823.64 3.71 3.44 1.64 

1232 4.28 1155.6 4.37 6.20 2.10 

 

7.5 CONCLUSIONS 

3-D Computational model was created with appropriate boundary conditions, using a 

commercial software ANSYS-FLUENT. Initially, simulations were carried out to 

obtain the temperature data. Simulation results were used to train the NN and the 

accuracy of NN was shown in terms of Mean Absolute Error. In the first stage the 

heat flux was used as the input to NN and temperature was obtained as the output, 

later the same NN was then injected with experimental temperature in various stages 

to obtain Model 1 to Model 4.  In the second stage, Inverse Models 1 – 4 were 

developed to estimate the unknown heat flux based on the temperature data. After 

establishing the robustness of the retrieval methodology, ANN was again applied for 

simultaneous estimation of heat flux and heat transfer coefficient based on the 

experimental temperature. Based on the proposed analysis, the following are the 

highlights of the work 

(i) CFD simulations are replaced by the neural network model to reduce the 

computation time. 
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(ii) ANN driven by experimental temperature for effective estimation of 

unknown parameters 

(iii) ANN was also used as inverse method thereby eliminating the process of 

iterative solutions to the proposed inverse problem. 

(iv) The efficacy and robustness of the proposed methodology has been 

demonstrated through single parameter and multi-parameter estimations. 

7.6 Closure 

This chapter dealt with the use of ANN as both and forward models for single and 

multi-parameter estimations. The concept of experimental data driven ANN forward 

and inverse models has been established for the solution of inverse conjugate free 

convection heat transfer problem. The next chapter deals with the single and multi-

parameter estimations for horizontal base orientation using ANN as the forward 

model and Bayesian Inference as a inverse model. 
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CHAPTER 8 

SIMULTANEOUS ESTIMATION OF HEAT FLUX AND HEAT TRANSFER 

COEFFICIENT USING BAYESIAN INFERENCE FOR CONJUGATE HEAT 

TRANSFER FROM FIN 

8.1 INTRODUCTION  

This chapter deals with the simultaneous estimation of the heat flux and heat transfer 

coefficient using Bayesian framework. The computational model, which consists of a 

mild steel fin, is created using ANSYS. Steady state heat transfer experiments are 

conducted under natural convection. Initially, for the purpose of estimation, a two 

dimensional computational symmetric model is considered. The fin geometry is 

enclosed by an extended domain filled with air so as to account natural convection 

conjugate heat transfer. Grid independence study is carried out to fix the number of 

grids. Later, a 3-D model is developed to capture more physics of the problem and 

one can obtain the surface temperature of the fin to estimate the unknown parameters. 

The estimation process is classified into 2 stages. In the first case, for the 2D 

computational model, the heat flux is estimated using the simulated measurements. In 

the second case where 3D model is involved, simultaneous estimation of heat flux and 

heat transfer coefficient is attempted for experimental data. Additionally, ANN is 

used as the forward model within the Bayesian framework. 

8.2 METHODOLOGY 

8.2.1 2D Numerical Model 

The problem includes a mild steel fin which is placed on an aluminium base plate  and 

a heater is provided beneath the base plate to supply constant heat flux. The extended 

domain is modelled to study the convection effects and to capture the velocity profile. 

The medium considered for the extended domain is air which is considered to be of 

constant thermo-physical properties except for the density to model the natural 

convection. The problem is modelled as a two dimensional conjugate heat transfer 

problem. The fluid flow is symmetry and half of the physical domain is considered to 

save the computational cost. Grid independence study is carried out to fix the number 

of grids and simulation is carried out for various values of heat flux. The geometry 
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and boundary conditions considered for 2D simulation along with the dimensions 

(mm) is shown in Figure 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 2D simulation model with boundary condition  

Table 8.1 shows the boundary conditions used in the analysis. The location 2 of the 

simulation domain is the solid-fluid interface. Since the problem is conjugate heat 

transfer, the transfer of energy from aluminium base to steel fin is by conduction and 

from the fin wall to the fluid medium also from top of the aluminium base to the fluid 

medium is by convection. So, at the solid-fluid interfaces the transfer of energy will 

be by convection. At location 8 which is solid-fluid interface the information across 

the interface is prevented by providing insulation. At the solid liquid interface 

inflation layers are used for the flow of information from grid of one phase to the grid 

of other phase as well as between fin (solid) and base (solid).   

𝜕2𝑢

𝜕𝑦2
= 0 

𝜕2𝑇

𝜕𝑦2
= 0 

𝜕2𝑣

𝜕𝑦2
= 0 

8mm 

7 

200mm 

150mm 

6 

5 

75mm 50mm 

Extended domain, 

Air 

1 

3 

2 

4 

3mm 

Mild Steel fin 

Aluminium base 8 

g 
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Table 8.1 Types of boundary conditions for analysis 

Boundary Type of Boundary condition 

1 
𝑞 = −𝑘

𝜕𝑇

𝜕𝑦
 

2 Solid-fluid interface 

3 𝜕𝑇

𝜕𝑥
= 0 

4 Pressure outlet 

5 Pressure outlet 

6 Pressure outlet 

7 𝜕𝑇

𝜕𝑥
= 0 

8 Solid-fluid interface 

 

The properties of the materials considered for the numerical analysis are given in 

Table 8.2. The governing equation along with the appropriate boundary conditions is 

solved using ANSYS fluent 14.5.  

Table 8.2 Properties of the materials used in simulation 

Properties Mild Steel Aluminium 

Density  (kg/m
3
) 8030 2719 

Specific heat (J/kgK) 502.48 871 

Thermal conductivity (W/mK) 45 202.4 

 

The numerical model is validated using analytical solution. The fundamental 

equations of the fluid flow are the continuity equation, momentum equations (Navier 

Stokes equation) and energy equation. All the cases considered in the present study 

involve laminar, two-dimensional, steady convection. The density changes are 

modelled with the Boussinesq approximation which treats the fluid density as a linear 

function of temperature for the buoyancy term in the momentum equation. Viscous 
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heat dissipation, compressibility effects are considered to be negligible. Based on the 

above assumptions, the governing equations can be written as follows. 

Continuity: 

          
𝜕𝑢

𝜕𝑥
 + 
𝜕𝑣

𝜕𝑦
 =0                             (8.1)                                                               

X-momentum equation: 

     𝑢
𝜕𝑢

𝜕𝑥
 + 𝑣
𝜕𝑢

𝜕𝑦
 = - 
1

𝜌

𝜕𝑝

𝜕𝑥 
 + 𝜈(

𝜕2 𝑢

𝜕𝑥2
 + 
𝜕2 𝑢

𝜕𝑦2
)                                                   (8.2) 

 Y-momentum equation: 

     𝑢
𝜕𝑣

𝜕𝑥
 + 𝑣
𝜕𝑣

𝜕𝑦
 = - 
1

𝜌

𝜕𝑝

𝜕𝑦 
 + 𝜈(

𝜕2 𝑣

𝜕𝑥2
 + 
𝜕2 𝑣

𝜕𝑦2
) + gβ (T - 𝑇∞)                              (8.3) 

Energy equation (fluid): 

       𝑢
𝜕𝑇

𝜕𝑥
 + 𝑣
𝜕𝑇

𝜕𝑦
 = α(

𝜕2 𝑇

𝜕𝑥2
 + 
𝜕2 𝑇

𝜕𝑦2
)                                                               (8.4) 

Energy equation (solid): 

       k (
𝜕2𝑇

𝜕𝑥2
 + 
𝜕2𝑇

𝜕𝑦2
) = 0                                    (8.5) 

Equation (8.1) - (8.5) is solved for the appropriate boundary conditions (refer Figure 

8.1) and the temperature distribution is obtained for the heat flux specified at the base.  

8.2.2 Forward model verification 

Any numerical simulation must be verified against analytical solution, considering 

one dimensional steady state fin the governing equation turns out to be ; 

         
𝜕2 𝜃

𝜕𝑋2
 - (𝑚𝐿)2θ = 0                                                      (8.6) 

    Where θ = 
𝑇−𝑇∞

𝑇𝜊−𝑇∞
,     X = 

𝑥

𝐿
  

 θ is  non dimensional temperature 

X is non dimensional length 

 𝑇𝜊=  base temperature, K 
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 𝑇∞= ambient temperature, K 

 fin constant , 𝑚2= 
ℎ𝑝

𝑘𝐴
;    

 h= heat transfer coefficient, W/𝑚2K 

 p = perimeter of the fin, m 

 k = thermal conductivity of the fin material, W/m K 

 A= heat transfer area of fin, 𝑚2 

Writing the general solution in the form 

                θ = 𝐶1𝑒
𝑚𝑥+𝐶2𝑒

−𝑚𝑥                          (8.7) 

Using boundary conditions, 

                At  x = 0,   θ(0)= 1 

                   x= L,  hθ(L) = -k 
𝑑𝜃

𝑑𝑥
  

 The expression for temperature distribution when subjected to the above boundary 

condition is obtained as ( Incropera and DeWitt 2002), 

               θ = 
cosh𝑚(𝐿−𝑥)+(

ℎ

𝑚𝑘
) sinh𝑚(𝐿−𝑥)

cosh𝑚𝐿+(
ℎ

𝑚𝑘
) sinh𝑚𝐿

                               (8.8) 

For the known input and boundary conditions Equation (8.8) can be solved to obtain 

temperature distribution. Figure 8.2 shows the comparison of non-dimensional 

temperature along the length of the fin obtained from simulation and analytical 

method. Maximum difference of 1.47% is observed between the simulated and the 

analytical values. 
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Figure 8.2 Comparison between simulation and analytical method 

8.2.3 Grid independence test 

Simulation is carried out using ANSYS 14.5 tool to obtain temperature distribution 

and velocity profile. Grid independence is carried out to fix the number of grids which 

helps reduce the computational cost and time. To carry out grid independence study, 

the temperature at five different locations (30mm, 60mm, 90mm, 120mm, 150mm) 

along the length of fin is considered. Maximum temperature difference is observed as 

3.2°C between 18494 and 22722 nodes. Also, maximum of 1.2°C is observed 

between 25088 and 28457. When nodes of 18494 and 25088 are compared with the 

nodes of 28457, the average deviation in temperature for all five locations are found 

to be 0.28% and 0.19% respectively.  

Table 8.3 Grid independence study 

  Temperature at  Position (x, y) mm 

Nodes 1.5,30 1.5,60 1.5,90 1.5,120 1.5,150 

13294 392.67 377.62 365.89 359.00 355.66 

18494 395.92 379.70 367.16 359.78 356.17 

22722 394.53 376.74 363.83 356.47 352.97 

25088 396.32 379.83 367.57 360.04 356.67 

28457 396.86 381.05 368.64 360.96 356.65 
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q 

Input layer Hidden layer Output layer 

T 

Therefore, based on the above analysis 25088 nodes is considered for the present 

study. Table 8.3 shows the grid independence result for the geometry considered. 

8.2.4 ANN as the forward model 

ANN is a non-iterative method which can be used as forward model to obtain relation 

between input and output. Section (4.3) in chapter 4 provides the comprehensive 

information about neural network. ANN acts as a computational tool used to find out 

relation between large number of input and output data. These known inputs and 

outputs train the ANN function to give the corresponding unknown outputs to the 

various different inputs given. This is done by interconnected neurons and processing 

elements called nodes. Each node is associated with some weights which is used to 

determine the strength of the signal input to find the output as weighted sum of these 

different inputs. Figure 8.3 shows the depiction of a typical neural network model. 

Advantage of using ANN is their ability to large and complex systems with many 

interrelated parameters.  

 

 

 

 

 

 

 

Figure 8.3 Layout of Neural Network 

Training is accomplished using a set of network inputs for which the desired outputs 

are known. A single hidden layer is used in this work because of the linear relation 

between heat flux and temperature. The selection of the number of hidden neurons is 

based on the values of some of the common performance metrics used, which is given 

by the Equation (4.11) and (4.12). This is termed as neuron independence study. 

 The neuron independence study is carried out which is similar to grid 

independence study. Such a study is carried out by varying the number of neurons and 

the changes in training the network are observed. Table 8.4 shows the neuron 
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independence study and it can be seen that 8 neurons are sufficient for training the 

network. Training is done based on heat flux as input and the temperature distribution 

as output. To train the network, a large set of data is obtained from CFD simulations. 

A typical CFD solution takes 20 - 30 mins to converge whereas ANN takes only few 

seconds to provide the necessary output. 

Table 8.4 Neuron independence study. 

No.of neurons MRE R
2
 Rtest 

4 0.00664 0.99993443 0.997818 

6 0.00700 0.999922362 0.999949 

8 0.00608 0.999941288 0.999949 

10 0.00656 0.999938161 0.997362 

13 0.00617 0.999940957 0.997676 

 

Table 8.5 shows the comparison between the temperature obtained from CFD and 

ANN at a location (x, y), (1.5, 60) mm. A maximum error of 0.9% is noticed which 

justifies that ANN can be used as forward model without compromising the accuracy.  

Table 8.5 Comparison between temperatures obtained from CFD and ANN 

q, W/m
2
 TCFD TANN Error (%) 

930 339.36 338.20 0.34 

1050 340.04 343.11 0.90 

1280 349.49 351.54 0.58 

1450 355.93 356.12 0.05 

 

8.2.5 Sensitivity study for single parameter heat flux  

It is important to carry out the sensitivity analysis to determine the behaviour of the 

unknown parameter before attempting the estimation process. The sensitivity study is 

carried out to know the behaviour of the temperature with the changes in the 

estimated parameter. The sensitivity analysis is basically the Jacobian matrix that 
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investigates the behaviour between the inputs and the outputs. The objective of SA is 

to identify how the variability in an output quantity of interest (𝑇𝑖) is connected to an 

input (𝑃𝑗) in the model; the result is a sensitivity derivative(
𝜕𝑇𝑖

𝜕𝑃𝑗
). Before addressing 

the estimation of the unknown parameters the behaviour of the determinant of the 

information matrix 𝐉𝐓𝐉 ( Ozisik & Orlande 2000, Cole et al. 2009) is determined. The 

information matrix is also called as sensitivity matrix J and the entries of the matrix Jij 

are called sensitivity coefficients. The sensitivity matrix (Ozisik & Orlande 2000) is 

defined as: 

𝑱(𝑷) = [
𝝏𝑻𝑻(𝑷)

𝝏𝑷
]

𝑻

=

[
 
 
 
 
 
 
 
𝝏𝑻𝟏
𝝏𝑷𝟏

𝝏𝑻𝟏
𝝏𝑷𝟐

𝝏𝑻𝟏
𝝏𝑷𝟑

…
𝝏𝑻𝟏
𝝏𝑷𝑵

𝝏𝑻𝟐
𝝏𝑷𝟏

𝝏𝑻𝟐
𝝏𝑷𝟐

𝝏𝑻𝟐
𝝏𝑷𝟑

…
𝝏𝑻𝟐
𝝏𝑷𝑵

⋮
𝝏𝑻𝑰
𝝏𝑷𝟏

⋮
𝝏𝑻𝑰
𝝏𝑷𝟐

⋮
𝝏𝑻𝑰
𝝏𝑷𝟑

…

⋮
𝝏𝑻𝟏
𝝏𝑷𝑵]
 
 
 
 
 
 
 

 

The present work involves Navier Stokes equations and it is not easy to obtain the 

Jacobian Matrix. As a representative case, the steady state temperature using Green’s 

function (Cole et al. 2009) is considered for a fin with high thermal conductivity and 

an attempt has been made to calculate the sensitivity coefficient. The steady state 

temperature is given as,  

 𝑇(𝑥, 𝑡) − 𝑇∞ =
𝑞𝐿

𝑘

(𝑒−𝑚𝑥−𝑒−𝑚(2𝐿−𝑥))

𝑚𝐿(1+𝑒−2𝑚𝐿)
                      (8.9) 

∂Ti

∂q
= (
e−mxi−e−m(2L−xi)

mL(1+e−2mL)
)
L

k
                         (8.10) 

The sensitivity coefficient with respect to an unknown parameter P is determined by 

differentiating the solution with respect to P. The plot of sensitivity coefficient is 

shown in Figure 8.4.When the determinant of J
T
J ≈0, the inverse problem is then ill-

conditioned. Therefore it is desirable to have linearly-independent sensitivity 

coefficients Jij with large magnitudes, such that the inverse problem is not very 

sensitive to measurement errors and accurate estimates of the parameters can be 

obtained. From Figure 8.4 it is seen that the trend of the graph is decreasing and one 

can come to a conclusion that the estimation of heat flux is possible when the 
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temperature sensor is closer to the base of the fin due to high sensitivity coefficient Jij 

and it tends to zero as we move from base of the fin towards tip. 

 

 Figure 8.4 Plot of sensitivity coefficients along with positions.  

8.2.6 3D computational model 

Three dimensional computational model of the fin and the base assembly is created 

using ANSYS FLUENT. The computational model is shown in Figure 8.5 along with 

the boundary conditions. The numerical model consists of an extended domain in 

which air is present and Boussinesq approximation is incorporated so as to account 

for natural convection. Grid independence study which is shown in Table 8.6, is 

performed for a heat flux of 304 W/m
2
. Based on the study, 1203824 nodes are 

considered for the numerical analysis. 

The governing equations of the present study are given below which are same as the 

one used in chapter 7. 

Continuity: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0                (8.11) 

X-momentum equation: 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣
𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜗 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
)            (8.12) 

Y-momentum equation: 
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𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣
𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜗 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
+
𝜕2𝑣

𝜕𝑧2
) + 𝑔𝛽(𝑇 − 𝑇∞)                     (8.13) 

 

Z-momentum equation: 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣
𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜗 (

𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2
+
𝜕2𝑤

𝜕𝑧2
)           (8.14) 

Energy equation for fluid: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣
𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼 (

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
)             (8.15) 

Energy equation for fin and base: 

𝑘𝑠 (
𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
) = 0               (8.16) 

Figure 8.5 depicts the materials used and the boundary conditions of the present 

problem. At the inlet, the following boundary conditions are imposed, 

𝑢 = 0 𝑣 = 0 𝑧 = 0 𝑇 = 𝑇∞                         (8.17) 

At the outlet of the domain the following boundary condition is used, 

𝜕2𝑣

𝜕𝑦2
= 0         

𝜕2𝑢

𝜕𝑦2
= 0      

𝜕2𝑧

𝜕𝑦2
= 0    

𝜕2𝑇

𝜕𝑦2
= 0                       (8.18) 

The x-face of the domain as represented in Figure5 is subjected to, 

𝑢 = 0     𝑣 = 0     𝑧 = 0     
𝜕𝑇

𝜕𝑥
= 0             (8.19) 

Also z-face of the domain is subjected to, 

𝑢 = 0     𝑣 = 0     𝑧 = 0     
𝜕𝑇

𝜕𝑧
= 0             (8.20) 
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Figure 8.5 3D Computational Model 

Along the sides of the fin, the kind of boundary condition imposed is solid-liquid 

interface hence the energy transfer between the fin faces to the air in the extended 

domain is by convection. The contact region between the fin and the base is defined 

as solid-solid interface and transfer of energy at this region is through conduction, 

where the wall of the fin and the aluminium base is treated as coupled wall. No slip 

condition is applied along all solid walls. All these regions are treated as interfaces 

At region where aluminium base is in contact with fluid, the boundary condition is 

written as, 

𝑘𝑎𝑙
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
    and  𝑇𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑇𝑓𝑙𝑢𝑖𝑑      (8.21) 

Similarly, the region where mild steel is in contact with fluid, it can be written as, 

𝑘𝑚𝑠
𝜕𝑇

𝜕𝑛
= 𝑘𝑓

𝜕𝑇

𝜕𝑛
   and  𝑇𝑚𝑖𝑙𝑑𝑠𝑡𝑒𝑒𝑙 = 𝑇𝑓𝑙𝑢𝑖𝑑      (8.22) 

The contact region between base and fin is defined as 

g 

x-face 
x-face 

z-face 

z-face 

inlet 

outlet 
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𝑞𝑐𝑜𝑛𝑑,𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑞𝑐𝑜𝑛𝑑,𝑚𝑖𝑙𝑑 𝑠𝑡𝑒𝑒𝑙 𝑓𝑖𝑛        (8.23)                                                   

𝑘𝑎𝑙
𝜕𝑇

𝜕𝑛
= 𝑘𝑚𝑠

𝜕𝑇

𝜕𝑛
   and   𝑇𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 = 𝑇𝑚𝑖𝑙𝑑𝑠𝑡𝑒𝑒𝑙     (8.24) 

Table 8.6 Grid Independence test 

Nodes Maximum temperature, K 

822494 325.76 

1203824 324.38 

2395862 325.14 

 

8.2.7 Experimental setup 

Steady state experiments are conducted on horizontal orientation of the base and the 

corresponding temperature distributions are recorded. One end of the calibrated 

thermocouples is placed along the length of the fin and the other end is connected to 

DAQ. The temperature distribution based on experiments and simulations is shown in 

Figure 8.6 

 

Figure 8.6 Comparison between simulation and experimental data 

8.2.8 ANN as forward model for 3D model 

Use of ANN as forward model and its advantage has already been discussed in the 

earlier chapters. It is pertinent to mention that the solution to the inverse problem 
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requires sampling of the unknown parameters using MCMC algorithm. Furthermore, 

the iterative process becomes cumbersome when CFD solutions are used as the 

forward model. Therefore, ANN replaces the conventional CFD solution in order to 

reduce the computational cost. Input in the form of heat flux and heat transfer 

coefficient is given to the neural network. The simulated data used for training the 

network is shown in Table A3 in Appendix. Similarly, neuron independence study is 

carried out to obtain reliable output from the neural network and is shown in Table 

8.7. The comparison between the temperature obtained from simulation and neural 

network is shown in Table 8.8. 

Table 8.7 Neuron independence study 

Number of neurons MRE R
2
 

6 0.010602136 0.999848021 

14 0.046005804 0.996379603 

18 0.005979928 0.999939249 

 

Table 8.8 Comparison of temperature between simulation and ANN 

Location, 

m 

q = 700W/m
2
,  

h = 4.044W/m
2
K 

q = 1800W/m
2
, 

 h = 4.086W/m
2
K 

q = 2400W/m
2
,  

h = 5.897W/m
2
K 

TCFD TANN TCFD TANN TCFD TANN 

0.006 350.007 351.092 403.344 401.539 429.933 426.557 

0.071 341.307 339.174 383.374 381.335 401.698 401.794 

0.123 338.728 338.110 377.558 375.746 393.441 393.293 

 

From the table, a maximum error of only 0.78% is observed between simulation and 

ANN. These results further corroborate the use of ANN as forward model.  

8.2.9 Sensitivity study for two parameters 

Sensitivity study for the two unknown parameters is discussed. The sensitivity 

coefficient is expressed as, 

𝐽𝑖𝑗 =
𝜕𝑇𝑖

𝜕𝑃𝑗
=
𝑇𝑖(𝑃1…..,𝑃𝑗+∆𝑃𝑗…..,𝑃𝑁)−𝑇𝑖(𝑃1…..,𝑃𝑗…..,𝑃𝑗)

∆𝑃𝑗
                                                       (8.25) 
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Where 𝐽𝑖𝑗 is the sensitivity coefficient, 𝑇𝑖 is the 𝑖𝑡ℎ estimated temperature, 𝑃𝑗 is the 𝑗𝑡ℎ 

unknown parameter, ∆𝑃𝑗 is the change in the unknown parameter. When the 

magnitude of Jij is small, it indicates that large changes in 𝑃𝑗 results in small changes 

in 𝑇𝑖. In such case, the estimation of unknown parameters is exceedingly difficult. 

 

Figure 8.7 Sensitivity plot 

The magnitude of the sensitivity coefficient of heat flux, shown in Figure 8.7, is found 

to be less and positive, while the other sensitivity coefficient is negative. The 

sensitivity coefficient of the heat flux and the heat transfer coefficient show linear 

dependence among them hence the simultaneous estimation of the heat flux and the 

heat transfer coefficient is more difficult without a priori information and also the 

magnitude of the sensitivity coefficient of the heat flux which is close to zero.  

8.3 RESULTS AND DISCUSSION 

8.3.1 Forward solution from CFD   

The results of the 2D numerical model in terms of the temperature distribution and 

velocity plot for the heat flux value of 1280 W/m
2
 are shown in Figure 8.8 and 8.9 

respectively. The temperature decreases along the height of the fin as a result of 

natural convection where the cold air is able to absorb more heat at the bottom 

compared to the top portion of the fin.  
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Figure 8.8 Temperature plot obtained from numerical simulation for heat flux value 

of 1200W/m
2 

Numerical simulations are carried out with known boundary conditions and the 

convergence criterion is set to 1e-6. The heat flux applied at the base is varied from 

1100 to 3100W/m
2
. The heat flux range is selected such that the Rayleigh number is 

found to be 1.7e7 which is less than the critical value; thus, the flow is assumed to be 

laminar. Variation of temperature along the length of the fin for different heat flux is 

shown in Figure 8.10. 

 

Figure 8.9 Velocity contour for heat flux of 1200W/m
2
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Figure 8.10 Temperature distributions along the height of the fin for different heat 

flux input 

8.3.2 Estimation of single parameter heat flux using 2D numerical model.  

Estimation of heat flux using Bayesian framework is initially attempted for simulated 

measurements. PPDF is calculated based on the Markov chain Monte Carlo method  

along with Metropolis-Hastings algorithm. In this work, heat flux is estimated with  

and without subjective prior. When uniform prior is considered, the PPDF is directly 

proportional to the likelihood function. The forward model measurement error is 

assumed to be 5% and the effect of number of samples on the estimation is discussed 

  

 

 

 

(a) (b) 



112 
 

 
 

 Figure 8.11 PPDF plot for (a)= 5000 samples (b) = 10000 samples (c) =15000 

samples (d) = 20000 samples 

in Table 8.9. It is observed that as the number of samples is increased the changes in 

the point estimates are negligible. Thus, the number of samples is limited to 5000 as a 

result of less computational time. 

Table 8.9 Effect of sample size on Bayesian retrieval of heat flux 

 

 

 

 

 

 

The PPDF of heat flux 1200W/m
2
 plotted against different samples is shown in 

Figure 8.11. The mean and SD of the estimated heat flux is reported in Table 8.9 

and there is no much difference in the values of the heat flux estimated for 

different samples.   

 Figure 8.12 represents the Markov states of the heat flux with initial guess of 

800W/m
2 

and is clearly seen that the samples oscillate with respect to the mean 

1200W/m
2
. When a Gaussian prior is incorporated, the PPDF now becomes 

Equation (5.4) given in chapter 5.  

Heat flux, q 

W/m
2
 

Number of 

samples 

Bayesian retrieved values 

for q(W/m
2
) 

1200 

 Mean SD 

5000 1200.27 10.005 

10000 1200.36 10.085 

15000 1200.26 10.194 

20000 1200.71 10.028 

(c) (d) 
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Figure 8.12 Frequency histogram data of heat flux 1200W/m
2
 for (a) =5000samples  

(b) =10000samples (c) = 15000samples (d)=20000samples 

Table 8.10 Retrieved values of heat flux using MH-MCMC 

with prior and without prior 

Heat flux Prior model 

Number of samples 

=5000 

Number of samples 

=10000 

Mean SD Mean SD 

930 
Uniform  929.76 8.675 929.93 8.552 

Normal 929.41 7.747 929.31 7.686 

1050 
Uniform 1050.25 8.587 1050.11 8.774 

Normal 1047.90 7.518 1048.10 9.428 

1450 
Uniform 1451.47 13.900 1451.26 15.351 

Normal 1447.00 14.905 1447.10 14.751 

 

(a) (b) 

(c) (d) 
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The expression for the Gaussian prior is given by Equation (5.3). From Table 8.10 it 

is seen that the assumed value of heat flux used to obtain simulated temperature and 

the heat flux estimated using MH-MCMC algorithm agrees very well for both the 

prior models considered. The estimated heat fluxes are reported as mean and standard 

deviation. There is no much difference between the heat flux values estimated by 

using uniform prior and normal prior. The use of Gaussian prior helps reduce the 

standard deviation of the estimates. Table 8.10 also shows the comparison between 

number of samples considered for the estimation process. There is no remarkable 

difference between the values estimated by using 5000 samples and 10000 samples. 

The concept of burn in has been adopted to avoid the influence of initial guess i.e., 

first 1000 samples are not considered to calculate mean and SD. The entire estimation 

procedure is repeated for different heat flux. As a result, the robustness of the 

Bayesian framework along with MH-MCMC algorithm is proved using simulated 

measurements and the estimation of boundary heat flux for the conjugate heat transfer 

problem is successfully demonstrated with and without prior knowledge. Figure 8.13 

shows the posterior probability density function of the retrieved values of heat flux 

with uniform prior and normal prior respectively. Temperature residuals are 

calculated in order to assess the model used for the inverse analysis and for the 

retrieved value of 1447W/m
2
 the value is found to be 5.47E-03. 

Figure 8.14 shows the Markov chain of the heat flux 1200W/m
2
. The robustness of 

the methodology is further tested for two different initial guesses i.e., 800W/m
2
and 

1800W/m
2
 and the Markov states quickly converge to the actual heat flux of 1200 

W/m
2
 within 500 samples which are evident from Figure 8.14 (a) and (b) 

respectively.  

8.3.3 Estimation of heat flux from perturbed data  

In reality the temperature distribution cannot be pure and the presence of random 

noise is observed when experiments are performed. In view of this, the measurement 

data is contaminated with Gaussian errors that can cause large deviations of the final 

solution from the exact solution. To mimic experimental data, the simulated data is 

now added with noise at various levels i.e., the forward model is solved for the known 

heat flux and the temperature distribution obtained is perturbed by adding Gaussian 
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noise such as 0.1K and 0.5K. This represents noisy data similar to the experimental 

temperature. Therefore, the estimation of heat flux becomes challenging when the 

simulated measurements contain noise. The estimation results with 0.1K and 0.5K 

noise in the data are shown in Table 8.11. 

With the noise level of (σ = 0.5K) which in terms of measurement level will be 3σ 

(1.5K), the error in the estimation is 1.2%. When prior information about the 

parameter is incorporated, even with the noisy data the estimated values are closer to 

the actual value compared to the uniform prior case. The PPDFs plot for the perturbed 

data for both uniform prior and normal prior at noise levels 0.1K and 0.5K are shown 

in Figures 8.15 and 8.16 respectively. When normal prior is used for estimation, the 

estimated values are closer to the actual value whereas the value obtained from 

uniform prior deviates from the actual value signifying that when non-informative 

prior is used, the standard deviation of the estimates reduces drastically. It has also 

been observed from Table 8.11 that the standard deviation of the estimates using 

normal prior is lesser than the uniform prior for all heat fluxes. This is due to the a 

priori information of the unknown parameter which simplifies the Markov chain 

process. 
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Figure 8.13 PPDF for different heat flux values with uniform and normal prior. 
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Figure 8.14 Sampling distribution for heat flux1200W/m
2
 with initial guess (a) 

= 800W/m
2 
(b) = 1800W/m

2
. 

Table 8.11 Estimation of heat flux for perturbed data at different noise levels. 

Heat 

flux, 

W/m
2
 

Prior 

model 

Noise level = 0.1K Noise level = 0.5K 

Mean SD Mean SD 

930 

Uniform  932.17 8.533 942.28 8.731 

Normal 930.16 8.754 938.72 8.591 

1050 

Uniform 1052.6 8.902 1062.8 8.860 

Normal 1050.4 8.892 1059.2 8.317 

1450 

Uniform 1455.0 15.681 1473.4 16.036 

Normal 1451.5 17.103 1466.7 17.427 

 

 

 

 

 

(a) (b) 
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Table 8.12 Estimation of heat flux using Gaussian prior 

 

 

 

 

 

 

 

 

 

For the incorporation of Gaussian prior the standard deviation is considered as {σp = 

0.05, 0.06, 0.09} of the Gaussian mean. Different combinations of Gaussian mean and 

standard deviation are considered. From Table 8.12, it also shows that when σp = 0.09 

the mean estimate is closer to the actual value of the heat flux. For the heat flux of 

930W/m
2
, several combinations of mean and standard deviation are used and it was 

observed that when the mean value was below 700W/m
2
 the estimated values are 

deviating from the actual values. Figure 8.17 shows the comparison of PPDF obtained 

for heat flux value of 1450 W/m
2
 at 0.1 K noise levels, when uniform and normal 

prior are used during estimation. It is clearly observed that the standard deviation of 

the PPDF for normal prior is lesser than that of the standard deviation of the PPDF for 

uniform prior. This strongly proves the fact that incorporating prior information in the 

Bayesian framework will result in minimizing the uncertainty associated with the 

estimated parameters. 

 

 

Heat flux, 

W/m
2
 

Gaussian prior q W/m
2
, Retrieved 

𝜇𝑝(q) 𝜎𝑝(q) Mean SD 

930 

850 45.5 926.65 9.240 

850 51 927.90 9.236 

850 76.5 928.61 8.999 

1050 

950 47.5 1045.9 7.803 

950 57 1046.0 9.309 

950 85.5 1048.4 8.933 

1450 

1350 65 1445.1 15.339 

1350 78 1446.3 16.656 

1350 117 1448.3 16.263 
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                           Figure 8.15 PPDF at noise level = 0.1K 
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Noise level = 0.5K 
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Figure 8.16 PPDF at noise level = 0.5K 
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Figure 8.17 Comparison of PPDF for 1450 W/m
2
 at 0.1K noise level. 

8.3.4 Simultaneous estimation of heat flux and heat transfer coefficient for the 

experimental data 

The primary aim of the work is the simultaneous estimation of heat flux and heat 

transfer coefficient from the available temperature data. Nevertheless, the Bayesian 

framework provides a window in to the simultaneous estimation of heat flux and heat 

transfer coefficient with the help of a priori knowledge. To accomplish this, the 

combination of MCMC-MH algorithm is used along with the prior information. Like 

previous analysis, the effect of sample size has been carried out for the simultaneous 

estimation of two unknown parameters. Three different samples 5000, 10000 and 

20000 are considered and the estimation for heat flux value of 700W/m
2
and heat 

transfer coefficient of 4.04W/m
2
K in terms of mean and SD is shown in Table 8.13.  

Table 8.13 Effect of sample size on estimation. 

Number 

of 

samples 

Heat flux, W/m
2
 

Heat transfer 

coefficient, W/m
2
K 

Time(s) 

Mean SD Mean SD 

5000 686.48 23.488 3.70 0.388 548.9951 

10000 688.12 23.854 3.73 0.374 1065.814 

20000 687.81 22.569 3.75 0.387 2090.159 
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There is no much difference in the values of heat flux and heat transfer coefficient 

among the samples considered, as a result, sample size of 5000 has been selected for 

further study. Table 8.14 shows the results for the simultaneous estimation of the heat 

flux and heat transfer coefficient for the simulated data in terms of mean and SD. The 

value of 𝜎𝑝𝑟𝑖𝑜𝑟 considered is 5% of the mean value.  

Table 8.14 Simultaneous estimation for simulated data. 

Actual 
Retrieved Heat flux, 

W/m
2
 

Retrieved heat transfer 

coefficient, W/m
2
K 

Heat 

flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

Mean SD Mean SD 

700 4.04 690.92 23.488 3.783 0.388 

1000 3.86 990.36 37.110 3.890 0.300 

1800 4.09 1778.42 77.271 3.864 0.307 

 

The maximum error observed in the estimation of parameters from the Table 8.14 is 

1.29%. The PPDF plot for heat flux value of 700W/m
2
 and heat transfer coefficient 

4.04W/m
2
K is shown in Figure 8.18 and PPDF plot for 1800W/m

2
 and heat transfer 

coefficient 4.09W/m
2
K is shown in Figure 8.19. The temperature residual for the 

estimated heat flux is given in Table 8.15. 

Table 8.15 Temperature residual 

Location,m 

Temperature from 

forward model heat 

flux 1800W/m
2
 

Temperature from 

estimated heat flux 

1778.42 W/m
2
 

Residual 

0.006 419.770 419.730 9.4575E-05 

0.071 354.164 353.993 4.8282E-04 

0.123 364.521 364.462 1.6315E-04 
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Figure 8.18 PPDF plot for heat flux 700W/m
2
 and heat transfer coefficient 

4.04W/m
2
K with 𝜎𝑝𝑟𝑖𝑜𝑟= 5% of the mean. 

 

 

 

Figure 8.19 PPDF plot for heat flux 1800W/m
2
 and heat transfer coefficient 

4.09W/m
2
K with 𝜎𝑝𝑟𝑖𝑜𝑟= 5% of the mean. 

With the successful estimation of the parameters for the simulated data, the estimation 

is now extended to the measured data. Experiments are conducted for different power 

levels and the temperature is recorded. Now this information is used for the 

simultaneous estimation of the parameters. Table 8.16 shows the estimation of 

parameters with mean and SD. The Gaussian prior used for actual heat flux of 
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544W/m
2
 and heat transfer coefficient of 3.89W/m

2
K is, mean (q) =450, 𝜎(𝑞)=23 and 

mean (h)= 3.5, 𝜎(ℎ)=0.18 respectively. Similarly, for the heat flux of 853 W/m
2
 and 

heat transfer coefficient of 2.57W/m
2
K the Gaussian prior used is mean (q) = 780, 

𝜎(𝑞)=39 and mean (h) =3, 𝜎(ℎ) = 0.13 respectively. 

Table 8.16 Simultaneous estimation using experimental temperature 

Actual 
Retrieved Heat flux, 

W/m
2
 

Retrieved heat transfer 

coefficient, W/m
2
K 

Heat 

flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

Mean SD Mean SD 

544 3.89 483.88 15.599 3.88 0.168 

853 2.57 808.69 42.354 2.17 0.032 

 

For the heat flux 544W/m
2
 and heat transfer coefficient 3.89W/m

2
K the error 

observed is 11% and 0.25% respectively. Similarly for the heat flux of 853W/m
2
 and 

heat transfer coefficient 2.57W/m
2
K the error observed is 5.19% and 15.56%. The 

PPDF plot for 544W/m
2
 and 3.86W/m

2
K is shown in Figure 8.20. And PPDF plot for 

853W/m
2
 and 2.57W/m

2
K is shown in Figure 8.21. 

  

Figure 8.20 PPDF plot heat flux 544W/m
2
 and heat transfer coefficient 3.89W/m

2
K 
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Figure 8.21 PPDF plot heat flux 853W/m
2
 and heat transfer coefficient 2.57W/m

2
K 

8.4 CONCLUSIONS 

In this chapter 2D and 3D computational model of steady state conjugate heat transfer 

from fin was considered. The fin setup was modelled using ANSYS fluent and 

simulations were carried out to obtain the temperature distribution. Grid independence 

study was carried out to fix the number of grids. The data obtained from simulation 

was used to train the network. ANN acts as the forward model to obtain temperature 

distribution for various heat fluxes. Validation of the ANN results is done with the 

output of CFD and a maximum error of 0.90% has been observed. Hence, CFD is 

replaced by ANN as the forward model. With ANN contributing as forward model, 

Bayesian inference method was successfully implemented as inverse method to 

estimate the unknown heat flux. The MCMC with MH algorithm has been explored to 

estimate the heat flux for the simulated data considering 2D simulation data. The 

unknown heat flux was also retrieved for the noisy simulated data with good 

accuracy. Gaussian prior has been incorporated for the unknown parameters. Steady 

state heat transfer experiments were conducted and simultaneous estimation of heat 

flux and heat transfer coefficient has been done, the data considered in this case is the 

3D simulation data. Sensitivity study has also been discussed. The computation cost 

was drastically reduced with the use of ANN as the forward model.  
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8.5 Closure 

This chapter dealt with the estimation of single parameter estimation and 

simultaneous estimation of two parameters for a conjugate heat transfer problem. 

Bayesian framework has been used as inverse model in conjunction with ANN for the 

estimation for both 2D and 3D geometric model. The next chapter deals with the 

application of the inverse problem for the simultaneous estimation of heat generation 

and heat transfer coefficient for a Teflon cylinder. 
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CHAPTER 9 

AN MARKOV CHAIN MONTE CARLO-METROPOLIS HASTINGS 

APPROACH FOR THE SIMULTANEOUS ESTIMATION OF HEAT 

GENERATION AND HEAT TRANSFER COEFFICIENT FROM A TEFLON 

CYLINDER 

9.1 INTRODUCTION 

This chapter deals with the simultaneous estimation of volumetric heat generation and 

heat transfer coefficient of the Teflon cylinder from experimental data. Bayesian 

Inference along with MCMC-MH algorithm is used as the inverse method for the 

estimation process. ANN with back-propagation algorithm is used as the forward 

model to replace CFD simulation. Initially retrieval of volumetric heat generation is 

carried out as single parameter estimation later with the knowledge of volumetric heat 

generation, prior is incorporated within the Bayesian framework and simultaneous 

estimation of volumetric heat generation and heat transfer coefficient is accomplished.  

9.2 FORWARD MODEL 

Three-dimensional, steady state, conjugate heat transfer from a Teflon cylinder of 

dimensions 100 mm diameter and 100 mm length with uniform volumetric internal 

heat generation is considered. Volumetric heat generation takes place at the centrally 

located cylindrical aluminum heater. Temperature distribution is obtained throughout 

the Teflon cylinder. 3-D numerical model is created and cylindrical heater is placed at 

the center of the model. The material selected is Teflon and its properties are 

incorporated in the simulation. The internal heat generation qv causes temperature 

distribution inside the cylinder and also on its surface. The velocity profiles and 

convection effects are studied by modeling an extended domain. Air is the medium 

considered for extended domain with constant thermo-physical properties except 

density where Boussinesq approximation is invoked to include natural convection. 

Meshing is done and grid independence study is carried out to fix the number grids 

for the numerical model. Computations are performed using the commercially 

available ANSYS FLUENT. A convergence criterion of 10
-6

 on the residual was used 

to declare convergence. Figure 9.1 shows the computational model used in this work.  

The following equations are used to solve the conjugate heat transfer problem. 
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Continuity 

1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
1

𝑟

𝜕(𝑢𝜃)

𝜕𝜃
+
𝜕𝑢𝑧
𝜕𝑧
= 0 

                                                                          (9.1) 

r-momentum equation 

𝜌 [𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟
+
𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃
−
𝑢𝜃
2

𝑟
+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧
]

= −
𝜕𝑝

𝜕𝑟
+ 𝜌𝑔𝑟 + 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑟
𝜕𝑟
) −
𝑢𝑟
𝑟2
+
1

𝑟2
𝜕2𝑢𝑟
𝜕𝜃2
−
2

𝑟2
𝜕𝑢𝜃
𝜕𝜃
+
𝜕2𝑢𝑟
𝜕𝑧2
] 

 

(9.2) 

θ-momentum equation 

𝜌 [𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟
+
𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃
+
𝑢𝑟𝑢𝜃
𝑟
+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧
]

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜌𝑔𝜃 + 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝜃
𝜕𝑟
) −
𝑢𝜃
𝑟2
+
1

𝑟2
𝜕2𝑢𝜃
𝜕𝜃2
+
2

𝑟2
𝜕𝑢𝑟
𝜕𝜃
+
𝜕2𝑢𝜃
𝜕𝑧2
] 

 

(9.3) 

z-momentum equation 

𝜌 [𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟
+
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃
+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧
]

= −
𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 + 𝜇 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢𝑧
𝜕𝑟
) +
1

𝑟2
𝜕2𝑢𝑧
𝜕𝜃2
+
𝜕2𝑢𝑧
𝜕𝑧2
] + 𝑔𝛽(𝑇 − 𝑇∞) 

 

(9.4) 

Energy equation 

𝑢𝑟
𝜕𝑇

𝜕𝑟
+
𝑢𝜃
𝑟

𝜕𝑇

𝜕𝜃
+ 𝑢𝑧
𝜕𝑇

𝜕𝑧
= 𝛼 [
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +
1

𝑟2
𝜕2𝑇

𝜕𝜃2
+
𝜕2𝑇

𝜕𝑧2
] (9.5) 

Solid region: Energy equation 

 
1

𝑟

𝜕

𝜕𝑟
(𝑘𝑟
𝜕𝑇

𝜕𝑟
) +
1

𝑟2
𝜕

𝜕𝜃
(𝑘
𝜕𝑇

𝜕𝜃
) +
𝜕

𝜕𝑧
(𝑘
𝜕𝑇

𝜕𝑧
) + 𝑞𝑣 = 0    (9.6) 

Equation (9.1) – (9.6) are solved subject to the following boundary conditions to 

obtain the temperature distribution on the Teflon cylinder.  
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Figure 9.1 Numerical Model 

Boundary Conditions: 

On the outer surface of the Teflon cylinder, the boundary condition imposed is given 

as 

𝑘𝑡𝑒𝑓𝑙𝑜𝑛
∂T

∂n
 = 𝑘𝑓𝑙𝑢𝑖𝑑

𝜕𝑇

𝜕𝑛
  and 𝑇𝑡𝑒𝑓𝑙𝑜𝑛 = 𝑇𝑓𝑙𝑢𝑖𝑑 

(9.7) 

For the extended domain: 

𝑢𝑟→ 0, 𝑢𝜃 →0, 𝑢𝑧 →0, T→T∞ when r → ∞  (9.8) 

Extended domain inlet: 

Heater 

Teflon 

cylinder 

Extended 
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r
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p=p∞ and T=T∞   (9.9) 

No slip and impermeability conditions are specified at the solid-fluid interfaces i.e, 

𝑢𝑟 = 𝑢𝜃 = 𝑢𝑧 = 0. At the inlet of the extended domain a uniform pressure p=p∞ and 

temperature T=T∞ is specified. Similarly, at the outlet of the extended domain the 

flow variables are imposed to zero such that there is no diffusion. It should also be 

noted that the heat generation term qv (W/m
3
) in Equation (9.6) is constant for the 

heater and is zero elsewhere in the solid region. 

A grid independence study has been carried out to determine the optimum grid size 

for meshing the whole domain to obtain a balance between computational cost and 

accuracy. The domain is meshed with a coarse mesh and the case is run with the 

convergence criteria of 10
-6

. The grid is then refined and cases are studied until the 

solution becomes invariant. The optimum grid size is selected after carrying out many 

trials. Table 9.1 represents the details of study considered for heat generation of qv = 

5x10
5
 W/m

3
. From the study, the grid size of 110000 is selected as optimum grid. 

Table 9.1 Results of the grid independence study. 

No. of nodes Temperature(K) 

Ta Tb Tc Td Te 

50000 340.95 340.63 341.02 339.17 463.91 

75000 341.69 341.86 342.21 341.31 464.78 

90000 341.56 343.03 343.11 339.86 465.24 

110000 339.83 339.71 335.16 332.15 463.06 

120000 339.37 338.62 334.18 331.3 463.09 

 

9.3 EXPERIMENTAL SETUP 

Chapter 3 provides the information on the Teflon experimental setup used in this 

work along with pictorial representation. Table 9.2 shows the thermocouple locations 

on the Teflon cylinder in terms of x, y and z dimensions. Steady state experiments are 

carried out for different power supply and temperatures are measured using 

thermocouple. The process of experiment includes heating, steady state and cooling. 

Temperature during all these stages is recorded. Steady state is said to have been 

reached when the temperature difference does not vary by more than 0.2°C for time 
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span of 10 minutes. The measured temperature for different volumetric heat 

generation is shown in Table 9.3. 

Table 9.2 Points on the Teflon cylinder considered for temperature measurement 

Points 

Dimensions 

(mm) 

A (24,0,75) 

B (34,0,77) 

C (41,0,75) 

D (40,0,90) 

E (35,0,85) 

F (30,0,80) 

G (25,0,30) 

H (35,0,15) 

I (28,0,5) 

J (50,0,50) 

 

9.4 ANN AS FORWARD MODEL 

The estimation process is an iterative process and the forward model is executed for 

every sample generated using the inverse algorithm. In order to reduce the 

computational cost involved in the inverse methodology, the forward model is solved 

for a set of input data (heat generation W/m
3
) and corresponding temperature 

distribution is obtained thereby developing a relationship between the input and the 

output. To create the relationship between the input and output data ANN is 

employed. Therefore, in the inverse process when a sample is accepted instead of 

running the forward model the ANN model is executed to obtain the temperature 

distribution thereby reducing the computational cost. The detailed study of ANN is 

provided in chapter 4. Training is accomplished using a set of network inputs for 

which the desired outputs are known. Table 9.4 shows the neuron independence 

study. The selection of the number of hidden neurons is based on the values of some 

of the common performance metrics used, as mentioned by Equation (4.11) and (4.12) 

in chapter 4. 
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Table 9.3 Temperature distribution for different heat flux 

 

Table 9.4 Results of the neuron independence study 

No. of neurons in 

the hidden layer 

MRE  R
2
 

5 0.010137 0.99974 

10 0.0000175 0.99999 

15 0.0019204 0.99988 

 

9.5 INVERSE METHOD 

The Bayesian inference algorithm is explained in detail in chapter 5. Bayesian 

Inference along with MCMC-MH algorithm is used as the inverse method for the 

estimation of volumetric heat generation and heat transfer coefficient. Mathematically 

for the retrieval problem, the Bayes theorem can be stated as  

Power (W) 2.72 3.63 4.80 5.73 6.51 

qv (W/m
3
) 128347.8 171386.2 226466.3 270270.8 307113.7 

Heater temperature 

(K)/Location 336 350 358 366 372 

Ta 317 324 327 332 334 

Tb 313 317 320 323 325 

Tc 311 315 317 320 321 

Td 309 312 314 316 317 

Te 310 315 317 319 321 

Tf 313 318 321 325 326 

Tg 318 325 329 334 336 

Th 310 313 315 317 318 

Ti 310 311 313 316 317 

Tj 311 314 318 321 324 
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P (qv|T) =  
P(T|qv) P(qv)

P(T)
 (9.10) 

where qv represents the state vector (volumetric heat generation) and 𝑇 represents the 

measurement vector. P(qv) is the prior probability density function (PDF) of the state 

qv.P(T|qv) is the conditional probability density function of the measurements given 

the state vector, and P (qv|T) is the posterior probability density function of the state 

vector. P(T|qv) is the likelihood probability density function and assuming a normal 

distribution it can be written as 

P(T|qv)= 
1

(2πσ2) 
0.5 e
−∑

(𝐓exp−𝐓network)
2

2σ2
n
i=1  (9.11) 

The uncertainty 𝜎 is due to the measurement errors and the error in the forward 

model. For a uniform prior, P(qv)is automatically set to 1 and the PPDF now 

becomes, 

P (qv|T) =
1

(2πσ2)
N
2

  e( 
−∑ (𝐓exp−𝐓network)

2N
i=1

2σ2
) (9.12) 

where the normalizing constant in the denominator of Equation (9.10) is left out for 

convenience. In Equation (9.12), N represents the total number of temperatures 

measured in the experiment. 

 For simplicity, let χ
2
be defined as 

χ
2 
= 
∑ (Texp,i−Tnetwork,i)

2N
i=1

σ2
 (9.13) 

When prior information is incorporated, a frequently employed prior is the Gaussian 

prior given below: 

P(qv) =
1

√2πσp
2
e{
−(∅−μp)

2

2σp
2 } (9.14) 
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P(qv|T) = 
1

(2πσ2)
N
2

 e{ 
−χ2

2
} x  

1

√2πσp
2
e{
−(∅−μp)

2

2σp
2 } (9.15) 

Equation (9.15) represents the posterior probability density function of obtaining the 

state vector qv for a given set of temperature measurements after our prior knowledge 

of parameters and the forward model have been incorporated in the analysis. The 

PPDF is discrete and has to be numerically evaluated for every assumed value of qv. 

To derive point estimates of qv from Equation (9.15), further processing of the PPDF 

is required. Two frequently used estimators are the (i) maximum a posteriori (MAP) 

and (ii) mean or expectation. In order to determine the mean and SD, the process 

becomes iterative process and large number of data must be sampled. Samples are 

drawn with the help of Metropolis-Hastings (MH) algorithm.  

9.5.1 Metropolis-Hastings Algorithm 

Markov chain Monte Carlo method is implemented using Metropolis-Hastings 

algorithm. The Markov chain suggests the generation of samples from the posterior. 

The unknown parameters are initially guessed and the forward model is solved to 

obtain temperature distribution. The temperature distribution is now compared with 

the experimental temperature distribution and the probability is calculated using 

Equation (9.15). The current state of heat generation and heat transfer coefficient is 

moved to the next state with the help of Metropolis Hastings algorithm based on the 

acceptance criteria. Similarly, many such samples are generated and finally the PPDF 

is obtained. The detailed explanation of the algorithm and the flow chart is shown in 

Chapter 5. 

9.6 RESULTS AND DISCUSSION  

9.6.1 Forward Solution from Numerical Model 

Numerical simulations are carried out with appropriate boundary conditions and with 

fixed convergence criteria. The computational model is shown in Figure 9.1. The 

volumetric heat generation value, qv applied to the heater is varied from 1x10
5
 to 

5x10
5
 W/m

3
. The selection of qv range confirms that the Rayleigh number does not 

exceed the critical value and the flow remains laminar. Figures 9.2 and 9.3 show the 

temperature distribution and velocity contours for qv = 4.5x10
5
W/m

3
, respectively. As 
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a result of natural convection conjugate heat transfer, the boundary layer grows from 

leading edge to the trailing edge. Heat has to be dissipated from the heater to the 

Teflon cylinder and then to the boundary layer. As a result of heat flux across the 

boundary layer and because of the fact that the boundary layer becomes thicker at the 

top, the temperature at the top of the Teflon is slightly higher than the bottom of the 

Teflon and it is clearly seen in Figure 9.4. 

 

Figure 9.2 Temperature (K) distribution in the Teflon cylinder for qv = 4.5x10
5
 W/m

3 

(Longitudinal mid-section) 

 

Figure 9.3 Velocity (m/s) contours for qv = 4.5x10
5
 W/m

3
 (Longitudinal mid-section) 
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Figure 9.4 Variation of temperature on the surface of the Teflon cylinder for different 

qv 

9.6.2 Forward Solution from ANN 

The temperature data obtained from full numerical simulations and ANN are 

compared for different values of qv at (50, 0, 50) (mm) on the Teflon cylinder to test 

the adequacy of the network and the results of such an exercise is shown in Table 9.5. 

The accuracy of the ANN is clearly evident from this comparison. Typically, one 

FLUENT simulation takes 20 to 30 mins to reach convergence. In the MH algorithm, 

the samples are accepted or rejected by solving the forward model and comparing 

their probabilities thereby resulting in huge computational times. ANN provides the 

output for a given set of inputs based on the correlation developed during the training 

phase almost instantaneously. So the computation of the conventional forward model 

is now eliminated by using the ANN as the forward model. 

Table 9.5 Comparison between full numerical solution and ANN 

qv, W/m
3
 TCFD, K TANN, K Error (%) 

100000 308.85 307.89 0.31 

200000 317.14 316.28 0.27 

300000 324.99 323.72 0.39 

400000 332.54 331.44 0.33 
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9.6.3 Single Parameter estimation qv 

The experimental temperature data at various locations of the Teflon cylinder are 

available. The objective is to estimate qv given the temperature data for different 

power inputs. To establish the MCMC method driven by Bayesian approach, first 

numerically obtained temperature data for assumed values of qv are used. In order to 

reduce computational time and cost, a trained neural network is used as forward 

model which replaces the numerically obtained temperature data. For these 

temperature data obtained from neural network, the MCMC method driven by 

Bayesian approach, the value of qv is retrieved. 

Table 9.6 Effect of sample size on Bayesian retrieval of qv 

No. of 

samples 

 

Bayesian retrieved 

value of qv, W/m
3
 

Mean SD 

5000 216571.5 407.57 

7500 216571.5 407.58 

10000 216571.5 407.57 

 

Samples 5000, 7500, 10000 were selected to study the retrieval methodology. The 

burn in concept is incorporated to cut off the effect of initial guess on the parameter 

estimation. The burn-in considered in the present study is 2000 samples (i.e. the first 

2000 samples) are not used for calculating mean and SD. Table 9.6 reports the 

retrieved values of qv for various values of samples considered.  

Table 9.7 Estimation of qv from experimental temperatures 

Actual qv 

(W/m
3
) 

 

Bayesian retrieved values of 

qv (W/m
3
) Error (%) 

 Mean SD 

128347.83 125549.8 780.19 2.18 

171386.16 166296 476.96 2.97 

226466.26 216571.5 407.57 4.37 

270270.76 259249.1 1145.77 4.08 

307113.71 296780.2 387.689 3.36 
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To obtain consistent solution to the samples driven by MCMC, the entire retrieval is 

carried out for 5000 samples. Table 9.7 shows the mean and SD of the retrieved 

values of qv using the MCMC-MH method for the experimental temperature. The 

standard deviations that show the uncertainty in the retrieved parameter is also 

reported in Table 9.7. Figures 9.5 and 9.6 show the PPDF for the retrieval of qv and 

Figures 9.7 and 9.8 show the variation of the mean of the PPDF with respect to 

iterations for heat generation qv= 216571.5W/m
3
 with different initial guesses.  

 

Figure 9.5 PPDF for qv = 259248.7W/m
3 

 

Figure 9.6 PPDF for qv = 296780.2 W/m
3 
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Figure 9.7 Sampling history with initial guess qv = 1x10
5
 W/m

3
 

 

Figure 9.8 Sampling history with initial guess qv = 2.5x10
5
 W/m

3 

Figure 9.9 shows a parity plot between simulated temperature and experimental 

temperature for qv=307113.7 W/m
3
. It is clear from the Figure 9.9 that the simulated 

temperature and experimental temperature agree very well with the maximum 

deviation of 0.48%. 
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Figure 9.9 Parity plot for 307113.7 W/m
3 

9.6.4 Single parameter retrieval of h from known qv 

The sole idea of this work is simultaneous retrieval of heat generation qv and heat 

transfer coefficient h for the temperature data. In order to obtain the prior information 

of these parameters estimation is carried out separately as single parameter estimation 

on heat transfer coefficient ‘h’ and heat generation qv. In this section retrieval of heat 

transfer coefficient ‘h’ is attempted for the known heat generation ‘qv’. 

Table 9.8 Estimation of h for known qv 

  

 

 

 

Table 9.8 shows the mean and SD of the retrieved values of h using the MCMC-MH 

method. The standard deviations showing the uncertainty in the retrieved parameter is 

also reported. Figure 9.10 and 9.11 shows the PPDF for the retrieval of h and Figure 

9.12 and 9.13 shows the variation of the mean of the heat transfer coefficient with 

respect to iterations. 

qv (W/m
3
) 

Bayesian retrieved values of h 

(W/m
2
K) 

Mean SD 

171386.16 3.34 0.047 

226466.26 3.8 0.028 
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Figure 9.10 PPDF for h = 3.36 W/m
2
K 

 

Figure 9.11 PPDF for h = 3.81 W/m
2
K 
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Figure 9.12 Sampling history for h = 3.36 W/m
2
K 

 

Figure 9.13 Sampling history for h = 3.81 W/m
2
K 

9.6.5 Two Parameter estimation 

Estimation of volumetric heat generation and heat transfer coefficient as single 

parameter estimation has been carried out successfully and reported as well. In this 

section, the results of simultaneous retrieval of qv and h are reported. Now the 

problem is modified into two parameter estimation. Same temperature data is used for 

the estimation which was earlier used for single parameter estimation. The parameters 
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can be correlated parameters and in such a situation without prior information one 

cannot estimate the unknown parameters. Under such circumstances adequate prior 

information can be injected with the help of single parameter retrievals. In the present 

study, appropriate Gaussian prior is specified for both heat transfer coefficient and 

heat generation. For the first case a Gaussian prior with a mean value of 200000W/m
3
 

for qv, a standard deviation for the prior is also required and is assumed to be 1000 

W/m
3
. Table 9.9 reports the results of the simultaneous retrieval of qv and h by 

injecting appropriate Gaussian priors.  

Table 9.9 Estimation of qv and h for experimental temperatures 

Gaussian prior 

qv (W/m
3
) h (W/m

2
K) 

Actual Mean SD Actual Mean SD 

Mean (k)=200000, 

σ(k)=1000. 

Mean (h)= 3, σ(h)=0.5 226466.3 199948 1011.24 3.12 3.03 0.28 

Mean (k)=350000, 

σ(k)=800. 

Mean (h)= 3,σ(h)=0.5 370152.4 350014 852.45 4.18 4.03 0.34 

 

It is seen from Table 9.9 that the unknown parameters have been retrieved 

simultaneously with reasonable standard deviation. Figure 9.14 shows the sampling 

history and PPDF plot for qv = 350014 W/m
3
 and h = 4.032 W/m

2
K with the initial 

guess of qv = 380000 W/m
3
 and h = 2.5 W/m

2
K respectively. The exercise is repeated 

for different combination of volumetric heat generation and heat transfer coefficient 

and the results are extracted. Figure 9.15 shows the sampling history and PPDF for 

the retrieval of qv = 199948 W/m
3
 and h = 3.031 W/m

2
K with initial guess of qv = 

225000W/m
3 

and h = 4.5 W/m
2
K respectively. 
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Figure 9.14 (a) sampling history for qv= 350014 W/m
3 

(b) sampling history for h = 

4.032 W/m
2
K (c) PPDF for qv= 350014 W/m

3 
(d) PPDF for h = 4.032 W/m

2
K 

(a) (b) 

(c) (d) 
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Figure 9.15 (a) sampling history for qv= 199948W/m
3 

(b) sampling history for h = 

3.031 W/m
2
K (c) PPDF for qv= 199948W/m

3 
(d) PPDF for h = 3.031 W/m

2
K 

9.7 CONCLUSIONS 

Volumetric internal heat generation rate, qv has been estimated for a Teflon cylinder 

using an inverse heat transfer model with the experimentally obtained surface 

temperature as the input. The forward model for three dimensional conjugate heat 

transfer has been solved using the commercially available Fluent 14.5. qv is assumed 

to be known and the temperature values are obtained. ANN is then used to replace the 

forward model to save computational cost. Simulation data is used to train network. 

Single parameter estimation of qv and h is carried out initially using MCMC-MH 

(a) (b) 

(c) 

(d) 
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technique and later simultaneous estimation of both qv and h from the experimentally 

obtained temperature is carried out. A maximum error of 0.39% is observed between 

temperature obtained from Computational Fluid Dynamics and ANN. The unknown 

qv and h was retrieved for the obtained experimental temperature data and the 

maximum retrieved parameter error was found to be 4.37%. Thus the MCMC-MH 

method is a powerful optimization technique for the simultaneous estimation of 

volumetric heat generation and heat transfer coefficient from surface temperature 

data. 

9.8 Closure 

This chapter reported the multi-parameter estimation in terms of volumetric heat 

generation and heat transfer coefficient considering experimental temperature on the 

surface of the Teflon cylinder. MCMC-MH algorithm was used as the inverse 

algorithm with apriori information obtained from single parameter estimation. 
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CHAPTER 10 

CONCLUSIONS 

The thesis is directed towards estimation of unknown parameters from a natural 

convection conjugate heat transfer problem. The estimation is carried out considering 

steady state condition. Numerical simulations of conjugate heat transfer model are 

carried to obtain temperature data for the given input. ANN replaces the conventional 

CFD solutions as fast forward model. The inverse part includes the use of methods 

such as GA, ANN and Bayesian Inference for the estimation of unknown parameters. 

In fact, ANN is used as both forward and inverse models in the estimation process. 

The corner stone of the work is the use of the hybrid method in the process of 

estimation, where stochastic method GA is combined with the deterministic method 

LM for estimation. The estimation is initiated using simulated data considering the 2D 

model in order to justify its robustness and later measured data has been used. Both 

2D and 3D computational models have been used in this work. Also, steady state 

experiments on Teflon cylinder is conducted for simultaneously estimating heat 

generation and heat transfer coefficient. 

The thesis started with the introduction to the estimation methods. A brief 

introduction to the forward model and the inverse model was provided and the 

methods appearing under forward and inverse models were also discussed in Chapter 

1. The concept of estimation procedure was explained with the sketch. Finally the 

organization of the thesis was presented. Chapter 2 provided literature review about 

the techniques used in the inverse estimation and its advantages. The experimental 

setup, horizontal and vertical orientation of the fin, Teflon cylinder, data acquisition 

system, calibration of the thermocouples, along with other instrumentations were 

discussed in Chapter 3 with pictorial view. Chapter 4 discussed about the forward 

problem used in the estimation process. Numerical simulations and Artificial Neural 

Network (ANN) were explained in detail. 

Chapter 5 provided the idea about the inverse method used in the present work. 

Genetic Algorithm (GA) was discussed with its phenomena such as crossover and 

mutation. Use of ANN as inverse method was highlighted. Bayesian Inference along 
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with the sampling algorithm MCMC-MH was explained in the form of flow chart. In 

Chapter 6 2D horizontal base model was considered for the estimation of heat flux 

for the measured data using GA as the inverse method. ANN was used as the forward 

model. A hybrid method was proposed in this chapter wherein LM was combined 

with GA for the retrieval process. Chapter 7 dealt with the use of ANN as both 

forward and inverse models for the estimation of heat flux and heat transfer 

coefficient for 3D vertical base setup. This chapter also showed the effect of injecting 

experimental data into the simulated data in the retrieval process.   

Chapter 8 showed the simultaneous estimation of heat flux and heat transfer 

coefficient for the 3D horizontal base conjugate heat transfer problem using 

experimental data. ANN was used as the forward model. Bayesian Inference along 

with MCMC-MH sampling algorithm was used as the inverse method. The process 

began with the single parameter estimation for the simulated data considering the 2D 

model and later extended to 3D model and experimental data was considered for the 

simultaneous estimation of heat flux and heat transfer coefficient. Apriori information 

was incorporated in the estimation process. A study on sensitivity coefficient was also 

provided.  

Finally Chapter 9 dealt with the application of Bayesian inference to a different 

problem wherein a low thermal conductivity Teflon cylinder was used. Cylindrical 

heater was used as the heat source and MCMC-MH algorithm has been adopted for 

the estimation of heat generation and heat transfer coefficient for the Teflon cylinder. 

Once again ANN was used as the forward model. This problem can be related to the 

investigation of the presence of tumor in the human body. 

10.1 SCOPE FOR FUTURE WORK. 

1. The estimation of the parameters can be extended to 3D transient heating or 

cooling problems along with conjugate approach. 

2. Delayed Acceptance Metropolis-Hastings algorithm can be used to improve 

the computational time of Markov Chain Monte Carlo methods. 

3. Model reduction using Approximation Error Model (AEM) can be used for the 

inverse conjugate heat transfer problems wherein the statistical aspect of the 
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approach is retained during estimation of unknown parameters within the 

Bayesian framework. 
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APPENDIX 

1. Calculation of the Rayleigh Number for Vertical orientation. 

Surface temperature for the maximum heat flux considered (3300 W/m
2
) is 394.96K 

𝑇𝑠 = 394.96𝐾        𝑇∞ = 303𝐾        𝑘𝑎𝑖𝑟 = 0.0242𝑊/𝑚𝑘     𝜗 = 1.789 ∗ 10
−5𝑚2 𝑠⁄        

𝑔 = 9.81𝑚 𝑠2⁄         𝑃𝑟 = 0.732 𝑓𝑜𝑟 𝑎𝑖𝑟      𝐿 = 0.250𝑚    𝑇𝑓 =
𝑇𝑠+𝑇∞

2
= 348.98𝐾  

  𝛽 =
1

𝑇𝑓
= 0.0028𝐾−1  

𝑅𝑎 =
𝑔 ∗ 𝛽 ∗ (𝑇𝑠 − 𝑇∞) ∗ 𝐿

3

𝜗2
∗ 𝑃𝑟 

𝑹𝒂 = 𝟗. 𝟎𝟐𝟔𝟖 ∗ 𝟏𝟎𝟕  

  

2. Calculation of the Rayleigh Number for Horizontal orientation. 

Surface temperature for the maximum heat flux considered (3500 W/m
2
) is 439.11K 

𝐿 = 0.150𝑚       𝑇𝑠 = 439.11𝐾            𝑇𝑓 =
𝑇𝑠+𝑇∞

2
= 371.05𝐾        𝛽 =

1

𝑇𝑓
= 0.00269𝐾−1  

𝑅𝑎 =
𝑔∗𝛽∗(𝑇𝑠−𝑇∞)∗𝐿

3

𝜗2
∗ 𝑃𝑟  

𝑹𝒂 = 𝟐. 𝟕𝟕𝟐𝟓 ∗ 𝟏𝟎𝟕  

Table A1: Properties of materials used in simulations 

Properties Aluminum Mild steel Teflon 

Density(kg/m
3
) 2719 8030 2200 

Specific heat (J/kgK) 871 502.48 1100 

Thermal conductivity 

(W/mK) 

202.4 45 0.25 
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Table A2: Simulated data used for neural network training for Vertical base 3D 

model  

Heat flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

Base 0.005m 0.178m 

305 2.38 318.45 310.48 312.12 

400 2.74 323.84 313.46 315.57 

544 3.15 333.02 317.81 320.60 

700 3.51 341.75 322.33 325.84 

853 3.78 350.18 326.63 330.79 

1000 4.00 358.10 330.68 335.46 

1232 4.28 370.41 336.85 342.55 

1400 4.46 379.16 341.22 347.58 

1500 4.54 384.36 343.80 350.53 

1700 4.72 394.64 348.83 356.29 

1800 4.79 399.69 351.32 359.13 

1900 4.86 404.78 353.79 361.96 

2000 4.92 409.79 356.23 364.76 

2400 5.16 429.71 365.90 375.78 

2500 5.24 434.64 368.24 378.43 

2600 5.27 439.53 370.56 381.08 

2700 5.32 444.43 372.93 383.76 

2784 5.37 448.52 374.89 385.95 

3200 5.53 459.04 384.45 396.82 

3300 5.58 473.49 386.74 399.38 

 

Table A3 Simulated data used for neural network training for Horizontal base 

3D model 

Heat flux, 

W/m
2
 

Heat 

transfer 

coefficient, 

W/m
2
K 

0.006 0.071 0.123 

304 4.438 324.40 320.69 319.46 

400 3.369 330.08 325.08 323.59 

544 3.885 338.83 332.13 330.14 

853 2.565 357.09 346.81 343.77 

1000 3.862 365.57 353.20 349.62 

1100 3.730 369.17 356.27 352.47 

1232 2.415 377.06 362.03 357.70 

1500 3.177 390.45 371.98 366.62 

1600 4.264 395.77 376.05 370.43 

1680 3.775 400.81 381.18 375.26 
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1900 5.117 407.06 384.07 377.56 

2000 3.315 412.70 389.26 382.34 

2200 3.974 420.74 395.75 388.31 

2500 5.713 435.99 407.29 398.82 

2600 2.502 443.10 411.61 402.47 

2700 4.750 448.10 416.04 407.08 

2784 3.104 451.77 418.34 408.61 

2900 5.555 451.39 417.77 407.85 

3200 5.361 463.98 427.76 417.31 

3300 5.127 469.09 431.79 421.22 

3500 5.000 475.73 436.04 424.63 

 

 

Bayesian Inference 

Single Parameter with normal prior 

clc; 

clear all; 

m(1) =2.4; 

mew_prior = 3; 

sigma_prior = 0.01*mew_prior; 

sigma1 = 0.01; 

j=2; 

n=10000; 

%t_meas= input('enter Texp =  ') 

t_meas=[357.1012 

  346.7650 

  343.7256] 

  

while j<n 

 u = rand; 

 %-------------------- 

% q_mstar = P(m*) 

%-------------------- 

q_mstar(j-1) = rand; 

 %------------------ 

% sigma for P(m*) 

%------------------ 

sigma = 0.02*m(j-1); 
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temp(j-1) = rand; 

 if temp(j-1)>0.5 

    m_star(j-1) = m(j-1) - sqrt(-2*sigma^2*log(q_mstar(j-1))); 

else 

    m_star(j-1) = m(j-1) + sqrt(-2*sigma^2*log(q_mstar(j-1))); 

end 

 % sqrt(2*pi*sigma1^2) IGNORED FOR NORMALIZATION PURPOSE 

 %------------------------------------------------ 

% CALCULATING t_sim and t_meas 

t_sim =oneD_fin_150mm_steady_input_m(m(j-1)); 

% CALCULATING PPDF 

% TAKING PRIOR VALUE AS 1 

 X = (((t_sim-t_meas)'*(t_sim-t_meas))/(2*sigma1*sigma1*10000)); 

P_m0(j-1) = exp(-1*X)*exp(-(m_star(j-1)-

mew_prior)^2/2/sigma_prior^2); 

  %------------------------------------------------ 

% CALCULATING P(m0) or P(m(j-1)) 

  

%P_m0(j-1) = exp(-1*X/(2*sigma^2));    

 %------------------------------------------------ 

% CALCULATING P(m_star) 

 sum1(j-1) = 0; 

t_sim1 =oneD_fin_150mm_steady_input_m(m_star(j-1)); 

X = (((t_sim1-t_meas)'*(t_sim1-t_meas))/(2*sigma1*sigma1*10000)); 

 P_mstar(j-1) = exp(-1*X)*exp(-(m_star(j-1)-

mew_prior)^2/2/sigma_prior^2); 

 %------------------------------------------------ 

 % CALCULATING A 

 A1 = P_mstar(j-1)/P_m0(j-1); 

A(j-1) = min(1,A1); 

  

% METROPOLITAN HASTINGS CHECK 

count = 0; 

 if u<A(j-1) 

    m(j) = m_star(j-1); 

    count= count + 1; 

 else 

    m(j) = m(j-1); 
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 end 

 j = j+1; 

 %------------------------------------------------  

end 

plot(m_star,P_mstar) 

hist(P_mstar,20) 

 %------------------------------------------------ 

%VALUE FOR M FOR WHICH MAX PPDF IS OBTAINED 

j=2; 

max_p = P_m0(1); 

while j<n 

       if max_p < P_m0(j-1) 

        max_p = P_m0(j-1); 

      count = j; 

    else 

        j = j+1; 

    end 

end 

 %m(count) 

Mean= sum(P_mstar.*m_star)/sum(P_mstar) 

Var=sum(((m_star-Mean).^2).*P_mstar)/sum(P_mstar.*m_star); 

Std_dev= sqrt(Var) 

[M,I]= max(P_mstar); 

MAP=m_star(I) 

Single parameter with uniform prior 

clc; 

clear all; 

m(1) = 1000; 

%------------------ 

% sigma1 for PPDF 

%------------------ 

lambda = 10; 

sigma1 = 0.01; 

j=2; 

n=20000; 

t_meas= input('enter Texp =  ') 

while j<n 

u = rand; 
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%-------------------- 

% q_mstar = P(m*) 

%-------------------- 

q_mstar(j-1) = rand; 

 %------------------ 

% sigma for P(m*) 

%------------------ 

 sigma = 0.02*m(j-1); 

 temp(j-1) = rand; 

 if temp(j-1)>0.5 

    m_star(j-1) = m(j-1) - sqrt(-2*sigma^2*log(q_mstar(j-1))); 

else 

    m_star(j-1) = m(j-1) + sqrt(-2*sigma^2*log(q_mstar(j-1))); 

end 

 % sqrt(2*pi*sigma1^2) IGNORED FOR NORMALIZATION PURPOSE 

 %------------------------------------------------ 

% CALCULATING t_sim and t_meas 

 t_sim =oneD_fin_150mm_steady_input_m(m(j-1)); 

%------------------------------------------------ 

 % CALCULATING PPDF 

% TAKING PRIOR VALUE AS 1 

X = (((t_sim-t_meas)*transp(t_sim-t_meas))/(2*sigma1*sigma1*1000)); 

P_m0(j-1) = exp(-1*X); 

%------------------------------------------------ 

% CALCULATING P(m0) or P(m(j-1)) 

%------------------------------------------------ 

% CALCULATING P(m_star) 

 sum1(j-1) = 0; 

  t_sim1 =oneD_fin_150mm_steady_input_m(m_star(j-1)); 

X = (((t_sim1-t_meas)*transp(t_sim1-t_meas))/(2*sigma1*sigma1*1000)); 

 P_mstar(j-1) = exp(-1*X); 

 %------------------------------------------------ 

 % CALCULATING A 

 A1 = P_mstar(j-1)/P_m0(j-1); 

A(j-1) = min(1,A1); 

  

% METROPOLITAN HASTINGS CHECK 

count = 0; 

 if u<A(j-1) 
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    m(j) = m_star(j-1); 

    count= count + 1; 

 else 

    m(j) = m(j-1); 

 end 

 j = j+1; 

 %------------------------------------------------  

end 

plot(m_star,P_mstar) 

hist(P_mstar,20) 

 %------------------------------------------------ 

%VALUE FOR M FOR WHICH MAX PPDF IS OBTAINED 

j=2; 

max_p = P_m0(1); 

while j<n 

     

    if max_p < P_m0(j-1) 

        max_p = P_m0(j-1); 

      count = j; 

    else 

        j = j+1; 

    end 

end 

 %m(count) 

Mean= sum(P_mstar.*m_star)/sum(P_mstar) 

Var=sum(((m_star-Mean).^2).*P_mstar)/sum(P_mstar); 

Std_dev= sqrt(Var) 

[M,I]= max(P_mstar); 

MAP=m_star(I) 

 

Two parameter with prior model 

clc 

clear all 

tic 

load '18neurons.mat'   loads the trained neural network 

n=5000; %iterations 

m(n,2)=zeros; % initialise storage for parameters q n h 

m(1,1)= 500; %initial guess for q 
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m(1,2)=4; %initial guess for h 

sigma1=0.05; %std dev for the PPDF,varying this will vary the maximum 

PPDF value.also small std dev. 

j=2 

while j<n 

    u=rand; 

    q_mstar((j-1),1) = rand; %required to obtain new value of q 

    sigmaa = 0.05*m((j-1),1);%lowering this would result in estimates 

far from the required value. 

    temp((j-1),1) = rand; 

    if temp(j-1)>0.5 

        %finding new value of q 

    m_star((j-1),1) = m((j-1),1) - sqrt(-2*sigmaa^2*log(q_mstar((j-

1),1)));%to find new value of q 

    else 

    m_star((j-1),1) = m((j-1),1) + sqrt(-2*sigmaa^2*log(q_mstar((j-

1),1))); 

    end 

    %finding new value of h 

    q_mstar((j-1),2)=rand; 

    sigmab=0.05*m((j-1),2); 

     temp((j-1),2) = rand; 

    if temp(j-1)>0.5 

    m_star((j-1),2) = m((j-1),2) - sqrt(-2*sigmab^2*log(q_mstar((j-

1),2))); 

    else 

    m_star((j-1),2) = m((j-1),2) + sqrt(-2*sigmab^2*log(q_mstar((j-

1),2))); 

    end 

    %calculation simulated temp for initial guess value of q n h 

    t_sim= neuralnetwork_for_fin_m( m(j-1,1),m(j-1,2) ); 

%     q_h = [m(j-1,1);m(j-1,2)]; 

    t_meas=[333.205914 

327.242272 

325.231468]; 

% t_sim=sim(network1,q_h); 

% calculating the likelihood 

X = (((t_sim-t_meas)'*(t_sim-t_meas))/(2*sigma1*sigma1*1000)); 

P_m0(j-1) = exp(-1*X); %PPDF for initial guess of q n h 



159 
 

  

%calculation of simulated temp for nxt value of q n h 

t_sim1=neuralnetwork_for_fin_m( m_star(j-1,1),m_star(j-1,2) ); 

% q_h = [m_star(j-1,1);m_star(j-1,2)]; 

    t_meas=[333.205914 

327.242272 

325.231468]; 

% t_sim1=sim(network1,q_h); 

%calculating likelihood 

X = (((t_sim1-t_meas)'*(t_sim1-t_meas))/(2*sigma1*sigma1*1000)); 

P_mstar(j-1) = exp(-1*X); %PPDF for new value of q n h 

  

% calculating acceptance ratio 

A1=P_mstar(j-1)/P_m0(j-1); 

A(j-1)= min(1,A1); 

  

% METROPOLITAN HASTINGS CHECK 

count = 0; 

 if u<A(j-1) 

    m(j,1) = m_star((j-1),1); 

    count= count + 1; 

 else 

    m(j,1) = m((j-1),1); 

 end 

 if u<A(j-1) 

    m(j,2) = m_star((j-1),2); 

    count= count + 1; 

 else 

    m(j,2) = m((j-1),2); 

 end 

 j = j+1 

end 

Mean1= sum(P_mstar'.*m_star(:,1))/sum(P_mstar) 

Mean2= sum(P_mstar'.*m_star(:,2))/sum(P_mstar) 

Var1=sum(((m_star(:,1)-Mean1).^2).*P_mstar')/sum(P_mstar') 

Var2=sum(((m_star(:,2)-Mean2).^2).*P_mstar')/sum(P_mstar') 

Std_dev1= sqrt(Var1) 

Std_dev2= sqrt(Var2) 
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[M,I]= max(P_mstar); 

MAP=m_star(I,:) 

toc 

subplot(1,2,1); 

plot(m_star(:,1),P_mstar); 

xlabel('heatflux');ylabel('PPDF'); 

title('PPDF plot for q'); 

  

subplot(1,2,2); 

plot(m_star(:,2),P_mstar); 

xlabel('heat transfer coefficient');ylabel('PPDF'); 

title('PPDF plot for h'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 
 

REFERENCES 

Adili, A., Hasni, N.,  Kerkeni, C., Nasrallah, S. B.,  (2010), “An inverse problem 

based on genetic algorithm to estimate thermophysical properties of fouling.” Int. J. 

Therm. Sci., 49, 889-900. 

Arash, J., Pouria, A. and Mohammad, N. M. J. (2014). “Optimization of a novel 

carbon dioxide cogeneration system using artificial neural network and multi-

objective genetic algorithm.” Appl. Therm. Eng., 64, 293-306. 

Arnout, W. (2009). “Using the Inverse Heat Conduction Problem and thermography 

for the Determination of Local Heat Transfer Coefficients and Fin Effectiveness for 

Longitudinal Fins.” Ph.D thesis, Sint-Pietersnieuwstraat 41, 9000 Gent,  Belgium. 

Balaji, C. and Padhi, T. (2010). “A new ANN driven MCMC method for multi-

parameter estimation in two-dimensional conduction with heat generation.” Int. J. 

Heat Mass Transfer 53, 5440–5455. 

Balaji, C. and Thaseem, T. (2009). “An example of Bayesian Inference in thermal 

sciences.”  Reson., 14, 1171-1182. https://doi.org/10.1007/s12045-009-0112-7 

Balázs, C., Gyula, G. (2012). “Simultaneous identification of temperature-dependent 

thermal properties via enhanced genetic algorithm.” Int.  J. Thermophys, 33, 1023–

1041. 

Balázs, C., Woodbury, K. A. and· Gyula, G., (2013). “Inverse Identification of 

Temperature-Dependent Volumetric Heat Capacity by Neural Networks.” Int. J. 

Thermophys., 34, 284–305. DOI 10.1007/s10765-013-1410-6 

Beck, J. V., Blackwell, B. and  Clair, C. S. (1985). “ Inverse Heat Conduction: Ill-

posed problems.” New York, Wiley. 

Charles, J., Mrinal, K. S. and Paul L. S. (2004). “An Efficient Stochastic Bayesian 

Approach to Optimal Parameter and Uncertainty Estimation for Climate Model 

Predictions.” J. Climate, 17, 2828-2841. 

Cheung, S. H. and Beck, J. L. (2009). “Bayesian Model Updating Using Hybrid 

Monte Carlo Simulation with Application to Structural Dynamic Models with Many 

Uncertain Parameters.” J. Eng. Mech. 135, 243-255. 

Chyi-Tsong, C. and Hung-I, C. (2013),  “Multi-objective optimization design of plate-

fin heat sinks using a direction-based genetic algorithm.” J. Taiwan Inst. Chem. E., 44 

257–265. 



162 
 

Cole, K.D, Tarawneh, C. and Wilson, B. (2009). “Analysis of flux-base fins for 

estimation of heat transfer coefficient.” Int. J. Heat Mass Transfer, 52, 92–99. 

Damian, S. (2008). “Using genetic algorithms for the determination of an heat transfer 

coefficient in three-phase inverse Stefan problem.” Int. Commun. Heat Mass., 35, 

149–156. 

Deng, S. and Hwang, Y. (2006). “Applying neural networks to the solution of forward 

and inverse heat conduction problems.” Int. J. Heat Mass Transfer, 49, 4732–4750.   

Diego, C.K., Navier-Cotta, C.P., Joao, V.C.A., Cotta, R.M. and Orlande, H.R.B. 

(2012). “Theoritical- experimental analysis of heat transfer in nonhomogeneous solids 

via improved lumped formulation, integral transforms and infrared thermograpghy.” 

Int. J. Therm. Sci., 62, 71-84. 

DOI: 10.1080/08916152.2013.871867 

Dong, L., Xiaojing, L. and Yanhua, Y. (2017). “Investigation of uncertainty 

quantification method for BE models using MCMC approach and application to 

assessment with FEBA data.” Ann. Nucl. Energy, 107, 62–70. 

Dorfman, A.S. (2006). “Conjugate problems in convective heat transfer.” CRC Press, 

Taylor & Francis group, Boca Raton, Florida. 

Elham, H., Mohammad, A. S. and Salman, M. (2016). “Accurate prediction of 

nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-

ANN).” Chemometr. Intell. Lab., 155, 73–85. 

Elham, S., Saeed, S., Mohammad, E. A. and Mitra, N. (2016).  “Parameter estimation 

of breast tumour using dynamic neural network from thermal pattern.” J. Adv. Res., 7, 

1045–1055 

Ewa, M., Jolanta, D., and Grażyna, K. (2013). “Application of sensitivity analysis in 

microscale heat transfer.”  Comput. Assist. Meth. Eng. Sci., 20, 113–121.  

Fudym, O., Orlande, H.R.B., Bamford, M. and Batsale, J.C. (2008). “Bayesian 

approach for thermal diffusivity mapping from infrared images with spatially random 

heat pulse heating.” J. Phys. Conf. Ser., 135, 012042. 

Fung-Bao, L. (2008). “A modified genetic algorithm for solving the inverse heat 

transfer problem of estimating plan heat source.” Int. J. Heat Mass Transfer, 51, 

3745–3752. 



163 
 

Ghadimi, B., Kowsary, F. and  Khorami, M. (2015). “Heat flux on-line estimation in a 

locomotive brake disc using artificial neural networks.” Int. J. Therm. Sci., 90, 203-

213. 

Giralomi, M. (2008). “Bayesian inference for differential equations.” Theor. Comput. 

Sci., 408, 4-16. 

Gnanasekaran, N. (2011). “A Bayesian approach for multi-parameter estimation using 

heat transfer experiments.” Ph. D thesis, IITM, India.  

Gnanasekaran, N. and Balaji, C. (2011). “A Correlation For Nusselt Number Under 

Turbulent Mixed Convection Using Transient Heat Transfer Experiments.” Front. 

Heat Mass Transfer (FHMT), 2, 023008.   DOI: 10.5098/hmt.v2.2.3008 

Gnanasekaran, N. and Balaji, C. (2011). “A Bayesian approach for the simultaneous 

estimation of surface heat transfer coefficient and thermal conductivity from steady 

state experiments on fins.” Int. J. Heat Mass Transfer 54, 3060–3068. 

Gnanasekaran, N. and Balaji, C. (2013). “Markov Chain Monte Carlo (MCMC) 

approach for the determination of thermal diffusivity using transient fin heat transfer 

experiments.” Int. J.  Therm. Sci. 63, 46-54. 

Goldberg, D.E. (2006). “Genetic algorithms.” Pearson Education, India.  

Guanghui, S., Morita, K., Fukuda, K.,  Pidduck, M., Dounan, J. and Jaakko, M. 

(2003). “Analysis of the critical heat flux in round vertical tubes under low pressure 

and flow oscillation conditions, Applications of artificial neural network.” Nucl. Eng. 

Des. 220, 17-35. 

Hadamard,J. (1923). “Lectures on Cauchy’s Problem in Linear Differential 

Equations.”  New Haven, CT , Yale University Press. 

Hamidreza, N. and Woodbury, K. A. (2014). “Application of Artificial Neural 

Network As Digital Filter For Online Heat Flux Estimation.” Pro. ASME Int. 

Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada. 

Hamilton, F. C., Marcelo, J. C., Rogério, N. C. and Albino, J.K.L. (2014). “Heat 

transfer coefficient estimation of an internal combustion engine using particle filters.” 

Inverse Probl. Sci. En. 22(3), 483–506.  

http://dx.doi.org/10.1080/17415977.2013.797411 

http://dx.doi.org/10.1080/17415977.2013.797411


164 
 

Hamzaoui, Y.E., Rodríguez, J.A.,  Hernandez, J.A.,  Victor. S. (2015). “Optimization 

of operating conditions for steam turbine using an artificial neural network inverse.” 

Appl. Therm. Eng., 75, 648-657. 

Hao, P. and Xiang, L. (2008). “Optimal design approach for the plate-fin heat 

exchangers using neural networks cooperated with genetic algorithms.” Appl. Therm. 

Eng. 28. 642–650. 

Hotta, T. K., Balaji, C. and Venkateshan, S. P. (2015). “Experiment Driven Ann-GA 

Based Technique for Optimal Distribution of Discrete Heat Sources Under Mixed 

Convection.” Exp. Heat Transfer, 28(3), 298-315. 

http://dx.doi.org/10.1080/17415970600844242 

Imani, Ranjbar, A. A.  and  Esmkhani, M. (2006). “Simultaneous estimation of 

temperature-dependent thermal conductivity and heat capacity based on modified 

genetic algorithm.” Inverse Probl. Sci. En., 14(7), 767–783. 

Incropera, F. P.  and David P. De W. (2002). “Fundamentals of Heat and Mass 

Transfer.” fifth ed., New York, John Wiley & Sons, Chapter 3. 

Jambunathan, K., Hartle, S. L., Ashforth-Frost, S.  and Fontama, V. N. (1996). 

“Evaluating convective heat transfer coefficients using neural networks.” Int. J. Heat 

Mass Transfer, 39 (11), 2329-2332. 

Jesus, E. M. R., Carlos, P. T., Felix F. G. N. and Juan De D. O. D. (2014). 

“Thermodynamic properties of refrigerants using artificial neural networks.” Int. J. 

Refrig., 46, 9-16. 

Jingbo, W. and Zabaras, N. (2005). “Hierarchical Bayesian models for inverse 

problems in heat conduction.” Inverse Probl., 21, 183–206. Doi:10.1088/0266-

5611/21/1/012 

José, O. V., Gwendolyn, M. and ·Claudio, A. F. (2011). “Heat Capacity of Ionic 

Liquids Using Artificial Neural Networks and the Concept of Mass Connectivity.” 

Int. J. Thermophys., 32, 942–956. DOI 10.1007/s10765-011-0954-6 

Juan, A. L. (2011). “Autoignition Temperature Prediction Using an Artificial Neural 

Network with Particle Swarm Optimization.” Int. J. Thermophys., 32, 957–973, DOI 

10.1007/s10765-011-0956-4 

http://dx.doi.org/10.1080/17415970600844242


165 
 

Julien, B., Orlande, H. R. B., Nathan, M. and Sihem, G., (2016). “Bayesian inference 

for estimating thermal properties of a historic building wall.” Build. Environ., 106, 

327-339. 

Kaipio, J. and Somersalo, E., (2004). “Statistical and Computational Inverse 

Problems.” Applied Mathematical Sciences 160, New York, USA, Springer-Verlag. 

Kaipio, J. P. and Colin F. (2011). “The Bayesian Framework for Inverse Problems in 

Heat Transfer.” Heat Transfer Eng., 32(9), 718-753. 

DOI:10.1080/01457632.2011.525137 

Kemal, E., Aytunc, E. and Ibrahim, D. (2007). “Heat transfer analysis of phase 

change process in a finned-tube thermal energy storage system using artificial neural 

network.” Int. J. Heat Mass Transfer, 50, 3163–3175. 

Konda,R., B., Gnanasekaran, N. and Balaji, C. (2012). “Estimation of thermo-

physical and transport properties with Bayesian inference using transient liquid crystal 

thermography experiments.” J. Physics: Conference Series 395, 012082. 

Kumar, S., Kumar, H. and Gnanasekaran, N. (2016). “A neural network based method 

for estimation of heat generation from a teflon cylinder.” Front. Heat Mass Transfer 

(FHMT) 7-15.  

Liang, Y., Fenglian, Y. and Chuli, Fu. (2009). “A Bayesian inference approach to 

identify a Robin coefficient in one-dimensional parabolic problems” J. Comput. Appl. 

Math., 231, 840-850. 

Ling, Z., Nan, Z., Fuyun, Z. and Youming, C. (2004). “A genetic-algorithm-based 

experimental technique for determining heat transfer coefficient of exterior wall 

surface.” Appl. Therm. Eng., 24, 339–349. 

Louis, G., Maxime, T.G., François, M. P. (2009), “Review of utilization of genetic 

algorithms in heat transfer problems.” Int. J. Heat Mass Transfer, 52, 2169–2188.  

Masoud, A., Karim Nazari, N., Nima, S., Mohammad, R. S., Kherbeet, A.S., 

Somchai, W. and Mahidzal. D. (2016). “Prediction of dynamic viscosity of a hybrid 

nano-lubricant by an optimal artificial neural network.”  Int. Commun. Heat Mass., 

76, 209–214. 

Miroslav, R., Woodbury, K. A., Kral, J. and Brezina, T.  (1995). “Genetic Algorithm 

In Solution Of Inverse Heat Conduction Problems.” Numer. Heat Tr. B- Fund., 28, 

293-306. 



166 
 

Mitra, S. and Balaji, C. (2010). “A neural network based estimation of tumour 

parameters from a breast thermogram.” Int. J. Heat Mass Transfer, 53, 4714–4727.  

Mohammad, H. E. (2017). “Designing a neural network for predicting the heat 

transfer and pressure drop characteristics of Ag/water nanofluids in a heat exchanger.” 

Appl. Therm. Eng., 126, 559–565. 

Mohammad, H. E., Seyfolah, S., Nima, S., Masoud, A. and Sara, R. (2015). 

“Designing an artificial neural network to predict thermal conductivity and dynamic 

viscosity of ferromagnetic nanofluid.” Int. Commun. Heat Mass., 68 50–57. 

Mohsen, A., Hajar, A., Armin, Z. and Mohammad, V. T. (2017). “Application of 

artificial neural network method to exergy and energy analyses of fluidized bed dryer 

for potato cubes.” Energy, 120, 947-958. 

Morales, L.I., Conde-Gutierrez, R.A., Hernandez, J.A., Huicochea, A., Juarez-

Romero, D. and Siqueiros, J. (2015). “Optimization of an absorption heat transformer 

with two-duplex components using inverse neural network and solved by genetic 

algorithm” Appl. Therm. Eng., 85, 322-333. 

Mota, C. A. A., Orlande, H. R. B., Carvalho, M. O. M. D., Kolehaminen, V. and 

Kaipio, J. P. (2010). “Bayesian estimation of temperature-dependent thermophysical 

properties and transient boundary heat flux.” Heat Transfer Eng. 31, 570-580.  

Naoya, K., Shunsuke, M., Koichi, T., Kazuyoshi, S., Tomohiko, T. and Yukitaka, S. 

(2016). “Predicting maximum depth of corrosion using extreme value analysis and 

Bayesian inference.” Int. J. Pres. Ves. Pip., 146, 129-134. 

  Naveira-Cotta, C. P., Cotta, R. M. and Orlande, H. R. B.  (2010).“Inverse Analysis of 

forced convection in micro channels with slip flow via integral transforms and 

Bayesian inference.” Int. J. Therm. Sci., 49, 879-888. 

Naveira-Cotta, C. P., Cotta, R. M. and Orlande, H. R. B. (2011). “Inverse Analysis 

with integral transformed temperature fields: Identification of thermophysical 

properties in heterogrneous media.” Int. J. Heat Mass Transfer, 54, 1506-1519. 

 Orlande, H. R. B., Dulikravich, G. S., Markus, N., Daniel, W. and Marcelo J. C. 

(2014). “Accelerated Bayesian Inference For The Estimation Of Spatially Varying 

Heat Flux In A Heat Conduction Problem.” Numer Heat Tr. A-Appl., 65, 1–25.  DOI: 

10.1080/10407782.2013.812008 



167 
 

Orlande, H.R.B., Marcelo J. C. and Dulikravich, G. S. (2008). “Approximation of 

likelihood function in the Bayesian technique for solution of inverse technique.” 

Inverse  Probl. Sci. En., 16(6), 677-692. DOI: 10.1080/17415970802231677 

Ozisik, M. N. and Orlande, H. R. B. (2000). “Inverse Heat Transfer: Fundamentals 

and Applications.” New York, Taylor and Francis. 

Parthasarathy, S. and Balaji, C. (2008). “Estimation of parameters in multi-mode heat 

transfer problems using Bayesian inference-effect of noise and a prior.” Int. J. Heat 

Mass Transfer 51, 2313-2334. 

 Patrick, H., Christian P., Jeff, H. and Kevin, A. (2007), “Nonlinear Bayesian 

Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal 

Image data.” Sensors, 7, 905-920. 

Pereyra, S., Lombera, G.A., Frontini, G. and Urquiza, S.A. (2014). “Sensitivity 

Analysis and Parameter Estimation of Heat Transfer and Material Flow Models in 

Friction Stir Welding.”  Mat. Res., 17(2), 397-404.. 

Phippe, L., Frederic, M., Harry, B., Francois, G. and Laetitia, A. (2006). “Bayesian 

Parameter Estimation of Convective Heat Transfer Coefficients of a Roof Mounted 

Radiant Barrier System.”  J. Sol. Energy Eng., 128, 213-225. 

Ponnada, S., Rajesh, B. and Balaji, C. (2016). “Geometric Optimization of a PCM-

Based Heat Sink—A Coupled ANN and GA Approach.” Heat Transfer Eng., 37(10), 

875-888.  DOI: 10.1080/01457632.2015.1089749 

Premachandran, B. and Balaji, C. (2006). “Conjugate mixed convection with surface 

radiation from a horizontal channel with protruding heat sources.” Int. J. Heat Mass 

Transfer 49, 3568–3582. 

Renjith, R. R., Venugopal, G. and Rajkumar, M. R.  (2015). “Bayesian Inference for 

Parameter Estimation in Transient Heat Transfer Experiments.” J. Heat Transfer, 137  

121011-1-7, [DOI: 10.1115/1.4030955. 

Reza, B. and Masoud, R. (2012). “Prediction of heat transfer and flow characteristics 

in helically coiled tubes using artificial neural networks.” Int. Commun. Heat Mass., 

39, 1279–1285. 

Reza, P., Hasan, D. and Seyed, H. T. (2014), “Solving an inverse heat conduction 

problem using genetic algorithm: sequential and multi-core parallelization approach.” 

Appl. Math. Model., 38, 1948-1958. 



168 
 

Sablani, S. S. (2001). “A neural network approach for non-iterative calculation of heat 

transfer coefficient in fluid–particle systems.” Chem. Eng. Process., 40, 363–369. 

Sablani, S.S., Kacimov, A., Perret, J., Mujumdar, A.S. and Campo, A., (2005). “Non-

iterative estimation of heat transfer coefficients using artificial neural network 

models.” Int. J. Heat Mass Transfer, 48, 665–679. 

Sepehr, S. and Hassan, H. (2010). “Thermal-economic multi-objective optimization of 

plate fin heat exchanger using genetic algorithm.” Appl. Energ., 87, 1893–1902. 

Shubhankar. C., Prasanta, K. D. (2015). “Application of Bayesian Inference  

Technique for the reconstruction of an isothermal hot spot inside a circular disc from 

peripheral temperature measurement – A critical assessment.” Int. J. Heat Mass 

Transfer, 88, 456–469. 

Sivanandam, S.N. and Deepa, S.N. (2008). “Introduction to Genetic Algorithms.” 

New York, Springer. 

Somasundharam, S. and Reddy, K. S. (2016). “Inverse estimation of thermal 

properties using Bayesian inference and three different sampling techniques.” Inverse 

Probl. Sci. Eng. DOI: 10.1080/17415977.2016.1138946 

Soteris, A. K. and Milorad, B. (2000). “Artificial neural networks for the prediction of 

the energy consumption of a passive solar building.” Energy, 25, 479–491.  

Swati, V. and Balaji, C. (2007). “Multi-parameter estimation in combined 

conduction–radiation from a plane parallel participating medium using genetic 

algorithms.” Int. J. Heat Mass Transfer, 50, 1706–1714. 

Tan, C.K., Ward, J., Wilcox, S.J. and  Payne, R. (2009). “Artificial neural network 

modelling of the thermal performance of a compact heat exchanger.” Appl.Therm. 

Eng., 29, 3609–3617. 

Unal, A., Aydin, K.M. and  Feridun, O.A. (2009).  “Estimation of heat transfer in 

oscillating annular flow using artificial neural networks.” Adv. Eng. Softw., 40, 864–

870. 

Unal, A., Aydin, K.M. and Selma, A. (2016). “Prediction of heat transfer on a flat 

plate subjected to a transversely pulsating jet using artificial neural networks.”  Appl. 

Therm. Eng., 100, 412–420. 



169 
 

Venugopal, G., Suryakant, Balaji, C. and  Venkateshan, S.P.  (2009). “A hybrid 

optimization technique for developing heat transfer correlations based on transient 

experiments.” Int. J. Heat Mass Transfer, 52, 1954–1964. 

Wang, J. and Zabaras, N. (2004). “A Bayesian inference approach to the inverse heat 

conduction problem.” Int. J. Heat Mass Transfer, 47, 3927-3941. 

Woodbury, K. A. and Suprasanna, D. (2006). “Comparison between the performance 

of binary coding and real number encoding in genetic algorithms applied to the 

IHCP.” Pro. IMECE, ASME Int. Mechanical Engineering Congress and Exposition, 

Chicago, Illinois, USA.  

Woodbury, K. A., Courtney, G., John, B. and Charles, K. (2004). “An inverse method 

using a genetic algorithm to determine spatial temperature distribution from infrared 

tranmissivity measurements in a gas.” Pro.  HT-FED04, ASME Heat Transfer /Fluids 

Engineering Summer Conference, Charlotte, North Carolina USA.  

Xiang, M, and Zabaras, N. (2009). “An efficient Bayesian inference approach to 

inverse problems based on an adaptive sparse grid collocation method.” Inverse 

Probl., 25, 035013. Doi:10.1088/0266-5611/25/3/035013 

Xu, W. and Tomasz, K. (2017). “Inverse uncertainty quantification of reactor 

simulations under the Bayesian framework using surrogate models constructed by 

polynomial chaos expansion.” Nucl. Eng. Des., 313, 29–52. 

Yasar. I. (2003). “A new approach for the prediction of the heat transfer rate of the 

wire-on-tube type heat exchanger––use of an artificial neural network model.” Appl. 

Therm. Eng., 23, 243–249.  

Yegnanarayana, B. (2005). “Artificial Neural Networks.” Prentice-Hall of India 

Private Limited, New Delhi. 

Youssef, M. and Dongbin, X. (2009). “A Stochastic Collocation Approach to 

Bayesian Inference in Inverse Problems.” Commun. Comput. Phys., 6(4), 826-847. 

Zabaras, N. (1988). “Inverse Problems in Heat Transfer1, Handbook of Numerical 

Heat Transfer.” John Wiley & Sons, Inc., US, Chapter-17, 525-558  

Zeke, S.H. C., Ngan, H.W., Rad, A.B.,  David, A.K. and Kasabov, N. (2006). “Short-

term ANN load forecasting from limited data using generalization learning 

strategies.” Neurocomputing, 70, 409–419. 



170 
 

  Zixi, H., Zhewei, Y. and Jinglai, L. (2017).  “On an adaptive preconditioned Crank–

Nicolson MCMC algorithm for infinite dimensional Bayesian inference.” J. Comput. 

Phys., 332, 492–503. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



171 
 

LIST OF PUBLICATIONS 

INTERNATIONAL JOURNAL  

1. Harsha, K., Sharath, K., Gnanasekaran, N. and Balaji, C. (2018). “A Markov 

Chain Monte Carlo-Metropolis Hastings Approach for the Simultaneous 

Estimation of Heat Generation and Heat Transfer Coefficient from a Teflon 

Cylinder.” Heat Transfer Eng., 39(4), 339-352. DOI: 

10.1080/01457632.2017.1305823  

2. Harsha, K. and Gnanasekaran, N. (2018). “A Bayesian inference approach - 

estimation of heat flux from fin for perturbed temperature data.” Sadhana, 

(2018) 43:62.  https://doi.org/10.1007/s12046-018-0861-7. 

3. Harsha K., Vishweshwara, P.S., Gnanasekaran, N. and Balaji, C. (2018). “A 

Combined ANN-GA and Experimental Based Technique for the Estimation of 

the Unknown Heat Flux for a Conjugate Heat Transfer Problem.” Heat and 

Mass Transfer, Springer.  https://doi.org/10.1007/s00231-018-2341-3 

4. Harsha, K. and Gnanasekaran, N. (2017). “A synergistic combination of 

Asymptotic Computational Fluid Dynamics and ANN for the estimation of 

unknown heat flux from fin heat transfer.” Alexandria Engineering Journal, 

Elsevier. http://dx.doi.org/10.1016/j.aej.2017.01.034 

5. Sharath, K, Harsha K. and Gnanasekaran, N. (2016). “A neural network 

based method for estimation of heat generation from a teflon cylinder.” Front. 

Heat Mass Transfer (FHMT), 7, 15. DOI: 10.5098/hmt.7.15. 

6. Amey, S. K., Harsha K. and Gnanasekaran, N. (2015). “A New Forward 

Model Approach for a Mild Steel Fin under Natural Convection Heat 

Transfer.” Int. conference on Computational Heat and Mass Transfer-2015, 

Procedia Engineering 127, 317-324. 

INTERNATIONAL CONFERENCE  

1. Harsha, K., Sharath, K., Sagar, K. S. and Gnanasekaran, N. (2014). “Hybrid 

Monte Carlo approach for estimation of heat flux from fin for perturbed 

temperature data.” 23
rd

 Int. Conference on Interdisciplinary Mathematical, 



172 
 

Statistical and Computational Techniques,(IMSCT 2014- FIMXXIII), Dec.18-

20, NITK, Surathkal. 

2. Harsha, K., Sharath, K., Sagar, K. S. and Gnanasekaran, N. (2015). 

“Synergistic approach for the simultaneous estimation of heat transfer 

coefficient and heat flux using fin from steady state heat transfer 

experiments.” 6th Int. Symp. on Advances in Computational Heat Transfer 

(CHT-15), May 25-29, Rutgers University, Piscataway, USA. 

3. Harsha, K., Amey, S. K. and Gnanasekaran, N. (2015). “Estimation of heat 

transfer coefficient of a mild steel fin using inverse heat transfer approach.” 

Int. Conference on Computer Aided Engineering (CAE-2015), Department of 

Mechanical Engineering, GITAM University, School of Technology, 

Hyderabad, India. 

4. Harsha, K. and Gnanasekaran, N. (2015). “Simultaneous estimation of heat 

transfer coefficient and thermal diffusivity for rectangular fin under heating 

and cooling process.” Proceedings of the 23rd National Heat and Mass 

Transfer Conference and  1st International ISHMT-ASTFE Heat and Mass 

Transfer Conference IHMTC2015, December 17-20, Thiruvananthapuram, 

India.   

5. Harsha, K., Vishweshwara, P.S., and Gnanasekaran, N. (2017). “The use of 

GA and PSO for the inverse estimation of heat flux in a conjugate heat transfer 

problem.” Proc. of the 24
th

National and 2
nd 

Int. ISHMT-ASTFE Heat and 

Mass Transfer Conference (IHMTC-2017), December 27-30, BITS Pilani, 

Hyderabad, India. 

6. Gnanasekaran, N., Harsha, K., and Balaji, C. (2018). “MCMC and 

approximation error model for the simultaneous estimation of heat flux and 

heat transfer coefficient using heat transfer experiments.” Proc. of the 16th Int. 

Heat Transfer Conference, IHTC-16, 2018, August 10-15, Beijing, China. 

7. Gnanasekaran, N. and Harsha, K. (2018). “Accelerating MCMC using model 

reduction for the estimation of boundary properties within Bayesian 

framework.” Int. Conference Numerical Heat Transfer and Fluid Flow, 

January 19-21, NIT Warangal, India. 

 



173 
 

BIO-DATA 

Personal details: 

Name HARSHA KUMAR MK 

Phone 09980019001 

Email harsha84.nitk@gmail.com 

Address SRI DURGA, D.No:2-86/6(1), Behind Paramjyothi Bajana Mandhir 

Alape, Bajal, Mangalore-575007 

 

Work Experience: 

Total experience of  7 years 4 months in teaching and 4 years 2 months in 

research. 

1) Worked as lecturer in S N S Polytechnic College, Bajpe, Mangalore for the 

duration of 3 months in the year 2006. 

2) Worked as Lecturer in Canara Engineering College, Benjanapadavu, Mangalore 

from 09/11/2006 to 31/07/2011 and Assistant professor from 01/08/2011 to 

26/12/2013. 

3) Research Scholar in the department of Mechanical Engineering, National Institute 

of Technology Karnataka, Surathkal, from December 2013 till date. 

 

Subjects Handled: 

Modeling and Finite Element Analysis (MFEA), Operations Research (OR), Basic 

Thermodynamics (BTD), Applied Thermodynamics (ATD), Computer Aided 

Engineering Drawing (CAED), Manufacturing Process I,II and III, CAD/CAM, 

Automotive Engineering, Elements Of Mechanical Engineering, CAMA( Computer 

Aided Modeling and Analysis). 

Technical Skills: 

Analysis Languages Matlab, Ansys, Pro e, Solid Edge 
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Educational Qualifications: 

 

Achievements: 

1. Received best paper award for the paper titled, “Accelerating MCMC using 

model reduction for the estimation of boundary properties within Bayesian 

framework” at International Conference Numerical Heat Transfer and Fluid 

Flow, NIT Warangal, India, Jan 19-21, 2018. 

Industrial Training Undergone: 

1) Kudremukh Iron Ore company, Baikampady during the year 2004 for the 

duration 20 days. 

2) Mangalore Refinery And Petrochemicals Ltd. Surathkal during the year 2005 

for the duration of 25 days. 

3) Suzlon Composites, Padubidri during the year 2009 for the duration of 2 

months. 

 

Number of publications: 6 

Number of conferences: 7 

Number of seminars and workshops Attended: 14 

Degree Board/University Percentage Year of Passing 

M.Tech (Energy System 

Engineering) 

NMAMIT, Nitte, (Karnataka) 9.24 CGPA 2010 

B.Tech (Mechanical 

Engineering 

Malnad College Of Engineering, 

Hassan, (Karnataka), VTU 

65.14% 2006 

P.U.C Milagres P.U. College, Mangalore 

(Karnataka) 

80.66% 2002 

S.S.L.C 

 

Milagres High School, Mangalore 

(Karnataka) 

72.48% 2000 
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Other Activities: 

 

1) Appointed as the secretary of Association of Canara Mechanical Engineers 

(ACME), CEC since 2010. 

2) Was coordinator in the project of MODROBS, which included acquiring grant 

from AICTE, New Delhi, for the advancement of CIM and CAMA lab. And a 

grant of Rs 9,00,000/- was sanctioned by AICTE for the procurement of 

Vertical Milling Machine (CNC) which has been installed in the college in the 

year 2012. 

 

            

 

 




