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ABSTRACT

The iterative root problem is one of the classical problem in the theory of iterative

functional equations and is described as follows: Given a non-empty X, a self map

F on X and a fixed positive integer n, to find another self map f on X such that

fn = F . If such a function f exists, then it is called an nth iterative root of F .

Existence of iterative roots for strictly monotone continuous functions are well-

studied. Among the piecewise monotone continuous (PM) functions, the existence

of iterative roots of functions with height less than two is also well-studied.

In this thesis, we develop the method of characteristic interval to any contin-

uous functions and discuss the properties of non-isolated forts of any continuous

functions on a compact interval. This helps us to derive the conditions on the ex-

istence of iterative roots for a class of PM functions with non-monotonicity height

greater than one and a class of continuous functions with infinitely many forts.

As an application we obtain a new class of functions which is dense in the space

of all continuous functions from a compact interval into itself.

We also provide sufficient conditions on the existence of solutions of series-like

iterative functional equation for a class of PM functions. We conclude the thesis

with results on the uniqueness of iterative roots of order preserving homeomor-

phisms by using the set of points of coincidence.

Mathematics Subject Classification (AMS-2010): 39B12, 39B22.

Keywords: Iterative Roots, Fractional iterates, Forts, Isolated forts, Non-isolated

Forts, Functional equations, PM Functions, Height, Characteristic Interval, Home-

omorphisms, Commuting functions, Subcommuting functions, Comparable func-

tions.
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Chapter 1

Introduction

The term functional equation, in a simple manner, can be defined as follows: Func-

tional equation is an equation involving independent functions whose unknowns

are functions. The theory of functional equations is a classical tool in mathe-

matics to solve many mathematical models which arises in applied mathematics

and engineering. The algebraic, analytical and topological structures of functional

equations not only helps us to study the mathematical models, but also provides

wide scope in pure mathematics. Functional equations finds applications widely

in the study of mechanics, dynamical systems, economics, game theory, geometry,

neural networks, artificial intelligence, probability and statistics (cf. (Aczél, 1966;

Castillo et al., 2005; Iannella and Kindermann, 2005; Kindermann, 1998)).

One of the oldest example of a functional equation is

f(x+ y)− f(x− y) = g(x)h(y). (1.0.1)

J. D’ Alembert reduced a problem of vibrating string to the functional equation

(1.0.1) and it is the first ever functional equation in the modern theory of functional

equations (D’Alembert, 1747).

Some well-known examples of functional equations:

1. f(x+ y) + f(x− y) = 2f(x)f(y) (D’ Alembert)

2. f(x+ y) = f(x) + f(y) (Cauchy)

3. f
(
x+y
2

)
= f(x)+f(y)

2
(Jensen)

The existence of solutions and other analytical properties of above functional equa-

tions can be found in (Kuczma et al., 1990; Aczél, 1966; Castillo et al., 2005;
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Kannappan, 2009).

1.1 Iterative Functional Equations

Functional equations which involve iterates or compositions of unknown functions

are called iterative functional equations. The study of iterative functional equation

is rooted in the classical works of Abel (Abel, 1826), Babbage (Babbage, 1815),

Schröder (Schröder, 1870) and many other well-known mathematicians.

The first ever study of iterative functional equation was due to Charles Babbage

(Babbage, 1815). He discussed the functional equation of the form

f 2(x) = id(x), (1.1.2)

where id denotes the identity function. The equation (1.1.2) named after him as

Babbage Functional Equation. Some other classical examples of iterative functional

equations are

1. f(h(x)) = h(x+ 1) (Abel),

2. h(f(x)) = g(h(x)) (Schröder).

There are many other examples of iterative functional equations, however, we

mostly concentrate on the generalization of Babbage’s functional equation.

1.2 Iterative Root Problem

Given a non-empty set X and a function f : X → X, define f 0(x) = x for all

x ∈ X and for n ∈ N, fn(x) = f(fn−1(x)) for all x ∈ X. The function fn is

called the nth iterate of f . Iterative root problem is one of the classical problem

in iterative functional equations and is described as follows: Let F : X → X be

any function and n ∈ N be fixed. The iterative root problem is to find function

f : X → X such that

fn(x) = F (x) for all x ∈ X. (1.2.3)

2



The function f , if it exists, is called an iterative root of order n or a fractional

iterate of order n of the given function F .

1.2.1 Examples

Example 1.2.1. The function f(x) = x2 is a square iterative root of F (x) = x4

on R.

Example 1.2.2. For each fixed positive real number α, we define the function

F : R → R by F (x) = αx for all x ∈ R. Then for each positive integer n, the

function f : R → R defined by f(x) = βx for all x ∈ R satisfies the functional

equation

fn(x) = F (x) for all x ∈ R,

where β is the positive real number such that βn = α. Hence f is an iterative root

order n of F .

Example 1.2.3. The function F : [0, 1] → [0, 1] defined by F (x) = 1 − x for all

x ∈ R does not have any continuous iterative root of order 2n for all n ∈ N.

For n ∈ N, let f : [0, 1]→ [0, 1] be any continuous function such that f 2n(x) =

F (x) for all x ∈ [0, 1]. Since the function F is bijective, we see that f is also

bijective (see  Lojasiewicz (1951)). Therefore, f is either monotonically increasing

or decreasing, in either case we see that f 2n is always increasing on [0, 1], however

F is always decreasing on [0, 1]. Thus F has no continuous iterative root of order

2n for all n ∈ N.

1.2.2 Applications

Iterative functional equations find applications in embedding flow problem (Fort,

1955), invariant curves (Kuczma et al., 1990), neural networks (Kindermann, 1998;

Iannella and Kindermann, 2005) and several engineering applications require solu-

tions of the iterative root problem (see the monographs (Aczél, 1966) and (Castillo
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et al., 2005)). We give a brief introduction about how the iterative root problem

can be applied in finding invariant curves and to the embedding flow problem.

Invariant Curves Problem: Let F : Rn → Rn be any map. A subset M of Rn

is said to be invariant under F , if F (M) ⊆M .

Given a map F : Rn → Rn and a curve M in Rn, the invariant curve problem is

to determine the condition that the curve is invariant under F . For the simplicity,

we discuss this problem in R2.

Let F : R2 → R2 be any map and let f, g : R2 → R be its corresponding

coordinate functions. Let ϕ : [0, 1] → R be any curve and Ω = {(x, ϕ(x)) ∈

R2 | t ∈ [0, 1]} be the graph of ϕ. Now the condition that the curve ϕ is invariant

under F (i.e., F (Ω) ⊆ Ω) reduces to the following iterative functional equation:

ϕ(f(x, ϕ(x))) = g(x, ϕ(x)) for all x ∈ [0, 1]. (1.2.4)

If f(x, y) = x+ y, g(x, y) = αy, for all (x, y) ∈ R2 and α is a fixed real number,

then the above functional equation (1.2.4) reduces to the functional equation

ϕ(x+ ϕ(x)) = αϕ(x). (1.2.5)

If α = 1 then the equation (1.2.5) is known as Euler’s functional equation. Further,

if f(x, y) = y, g(x, y) = x, then the functional equation (1.2.4) reduces to the

Babbage functional equation

ϕ2(x) = x.

A detailed discussion on invariant curve problems can be found in the books by

Nitecki (Nitecki, 1971) and Kuczma (Kuczma et al., 1990).

LetX be a topological space. A (topological) flow onX is a continuous function

F : X × R→ X such that

(a) For each t ∈ R, the function Ft(x) = F (x, t) is a homeomorphism from X

onto X, and

(b) F (x, t+ s) = F (F (x, s), t) for all x ∈ X and t, s ∈ R.
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Embedding Flow Problem: For a given topological space X and a given home-

omorphism f from X onto itself, does there exist a flow on X for which F1 = f?

If such a flow F exists, then f is said to be embedded in F . Suppose, for a given

homeomorphism f : X → X there exists a flow F on X. Then, for each positive

integer n, property (b) reduces into the following iterative functional equation

fn(x) = Fn(x) for all x ∈ X,

where fn denote the nth iterate of f . Therefore, f is the nth iterative root of Fn

becomes necessary condition for solving embedding flow problem.

In fact, the existence of solutions of embedding flow problem on an interval

was proved by Fort.

Theorem 1.2.4. (Fort, 1955) Any order preserving homeomorphism of an inter-

val onto itself can be embedded in a flow.

A detailed results on embedding flow problem can be found in (Fort, 1955;

Zdun, 2014)

1.3 Basic Results on Iterative Root Problem

Mathematicians like Bödewadt (Bödewadt, 1944),  Lojasiewicz ( Lojasiewicz, 1951),

Haidukov (Haidukov, 1958), Kuczma (Kuczma, 1961; Kuczma et al., 1990) and

Zhang (Zhang, 1997) have made contribution to the significant growth of the study

on the iterative root problem. Recent works in this field are due to Zhang (Liu

and Zhang, 2011; Liu et al., 2012), Jarczyk (Baron and Jarczyk, 2001), Lin (Lin,

2014; Lin et al., 2017), Liu (Liu and Gong, 2017) and many others.

We would like to emphasize few existence and nonexistence of solutions of

iterative root problems in our context.

5



1.3.1 Iterative Roots of Monotone Functions

Iterative roots of strictly monotone functions are well-studied and some of the

basic results are the following:

Theorem 1.3.1. (Babbage, 1815) Let f be a particular solution of the functional

equation

fn(x) = x for all x ∈ R. (1.3.6)

Then for any invertible function h on R the function h−1 ◦ f ◦ h is also a solution

of the functional equation (1.3.6).

Theorem 1.3.2. (Isaacs, 1950) Let F : X → X be a function such that F (a) = b

and F (b) = a for some a, b ∈ X with a 6= b. If, for any x ∈ X, the equality

F 2(x) = x implies that x ∈ {a, b, F (x)}, then the equation

f 2(x) = F (x) for all x ∈ X

has no solutions.

Proposition 1.3.3. ( Lojasiewicz, 1951) Let f : X → X be any function satisfies

the equation fn = F on X for some n ≥ 1. Then

(i) f is one-one if and only if F is one-one.

(ii) f is onto if and only if F is onto.

(iii) f is bijective if and only if F is bijective.

The functional equation (1.2.3) need not possess solution when the function F

is not continuous.

Example 1.3.4. (Dikof and Graw, 1980) Let F : R→ R be the strictly increasing

function F (x) = 2(x + [x]) + 5
2
, x ∈ R, where [x] is the integer part of x. Then

the function F has no iterative root of any order.
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Throughout the thesis, we fix I = [a, b] and C(I) be the set of all continuous

self mappings from I into I, unless otherwise stated. One of the fundamental

result in the theory of existence of iterative roots was proved by Bödewadt.

Theorem 1.3.5. (Bödewadt, 1944) Let F : I → I be any strictly increasing home-

omorphism. Then for each n ∈ N, there is a strictly increasing homeomorphism

f : I → I such that fn = F on I.

An another classical result on the existence of solutions of the functional equa-

tion (1.2.3) is due to Kuczma. The following theorem is often used in many of our

results, so we sketch the proof of this theorem.

Theorem 1.3.6. (Kuczma et al., 1990) If F : I → I is a continuous strictly

increasing function, then the equation (1.2.3) has continuous strictly increasing

solution for all n ∈ N.

Proof. Put F = {x ∈ [a, b] | F (x) = x}. Then I = F ∪ (
⋃
α,β∈F

Iαβ), where Iαβ is

a pairwise disjoint interval of the form [α, β] with α, β ∈ F or α = a or β = b.

Clearly F |Iαβ : Iαβ −→ Iαβ is a strictly increasing continuous function and either

α < F (x) < x < β for all x ∈ (α, β)

or

α < x < F (x) < β for all x ∈ (α, β).

Suppose on each Iαβ there is a strictly increasing continuous function fαβ such

that

fnαβ(x) = F (x) for all x ∈ Iαβ,

then the function f : I → I defined by

f(x) :=

 fαβ(x), if x ∈ Iαβ
x, if x ∈ F,

is a continuous strictly increasing function and satisfies the functional equation

fn(x) = F (x) for all x ∈ I.

7



Therefore to prove the result, it is enough if we prove F has an iterative root

of order n on each Iαβ = [α, β]. Without loss of generality we may assume that

α < F (x) < x < β for all x ∈ (α, β). Fix arbitrarily a point x0 ∈ (α, β) and

n ∈ N, choose any points x1 > x2 > · · · > xn−1 from the interval (F (x0), x0). Put

xn = F (x0) , xn+1 = F (x1) , xn+2 = F (x2), . . . ,

and

x−1 = F−1(xn−1) , x−2 = F−1(xn−2) , x−3 = F−1(xn−3), . . . .

Then it is easy to observe that

· · · < xn < · · · < x2 < x1 < x0 < x−1 < x−2 < · · · < x−n < · · · .

Put Ik = [xk+1, xk] for all k ∈ Z. Now for each k ∈ {0, 1, . . . n − 2}, let fk be

the arbitrary but fixed strictly increasing homeomorphism from Ik onto Ik+1. For

k ≥ n− 1, put

fk(x) := F ◦ f−1k−n+1 ◦ · · · ◦ f
−1
k−1(x) for all x ∈ Ik

and for k ≤ −1, put

fk(x) := f−1k+1 ◦ · · · ◦ f
−1
k+n−1(x) ◦ F (x) for all x ∈ Ik.

Thus for each k ∈ Z, the function fk is a strictly increasing homeomorphism from

Ik onto Ik+1. Therefore the function f : [α, β] −→ [α, β] defined by

f(x) :=


α, if x = α

fk(x), if x ∈ Ik
β, if x = β

is also a strictly increasing homeomorphism on [α, β]. Also for each x ∈ Ik and

k ≥ 0,

fn(x) = fk+n−1 ◦ fk+n−2 ◦ · · · ◦ fk+1 ◦ fk(x)

= F ◦ f−1k ◦ f
−1
k+1 ◦ · · · ◦ f

−1
k+n−2 ◦ fk+n−2 ◦ · · · ◦ fk+1 ◦ fk(x)

= F (x).

8



On the other hand, if k ≤ −1 we have,

fn(x) = fk+n−1 ◦ fk+n−2 ◦ · · · ◦ fk+1 ◦ fk(x)

= fk+n−1 ◦ fk+n−2 ◦ · · · ◦ fk+1 ◦ f−1k+1 ◦ · · · ◦ f
−1
k+n−1(x) ◦ F (x)

= F (x).

Thus the function f satisfies the functional equation (1.2.3) on [α, β].

We remark here that the solution constructed above depends on strictly in-

creasing homeomorphisms from an interval into itself and there are infinitely many

such homeomorphisms. Therefore, iterative roots of strictly increasing continuous

functions are not necessarily unique.

Theorem 1.3.7. (Kuczma et al., 1990) Let F : I → I is a continuous strictly de-

creasing onto function. Then, for each odd n ∈ N there exists a strictly increasing

and continuous function f : I → I such that fn = F on I.

The following theorem gives the continuous strictly monotone solutions of the

Babbage functional equation which is discussed in (Vincze, 1959; McShane, 1961).

Theorem 1.3.8. (McShane, 1961) If a self mapping f of a real interval I is a

continuous solution of equation fn(x) = x for all x ∈ I, then either f itself is the

identity mapping or n has to be even and f is a strictly decreasing involution.

Let W (n) = {fn | f ∈ C(I)} and W = ∪∞n=2W (n).

Theorem 1.3.9. (Simon, 1989) The set W is of first category and W 6= C(I).

Theorem 1.3.10. (Blokh, 1992) The set W is nowhere dense in C(I).

Even though the set of all continuous functions possessing continuous iterative

roots on a compact interval are topologically small, in the sense that they does

not contain any open ball in C(I), developing a theory of the existence of iterative

root for the class of non-monotone functions is challenging and interesting.

9



1.3.2 Iterative Roots of PM Functions

As in (Zhang, 1997), we present some notations and basic results for the study of

PM functions.

Definition 1.3.11. (Zhang, 1997) Let F : I → I be a continuous function. A

point α ∈ int I is called a fort of F , if F is not strictly monotone in any neigh-

borhood of α.

Note that, the point α ∈ int I is a fort of F if and only if for each ε >

there exist two distinct points x1, x2 ∈ Nε(α) = {x ∈ I | |x − α| < ε} such that

F (x1) = F (x2).

We call a continuous function F : I → I is a piecewise monotone (PM) func-

tion, if F has only finitely many forts. The collection of all PM functions from I

into I is denoted by PM(I).

If S(F ) and N(F ) denotes the set of all forts and the number of forts of F

respectively, then it is easy to observe that every fort of F is a fort of F n for all

n ∈ N and hence {N(F n)} is a non-decreasing sequence of non-negative integers.

Proposition 1.3.12. (Zhang, 1997) Let F ∈ PM(I). If N(Fm) = N(Fm+1),

then N(Fm) = N(Fm+i) for all i ∈ N and F is strictly monotone on the range of

Fm.

Definition 1.3.13. (Zhang, 1997) The height of a PM function F ∈ PM(I),

denoted by H(F ), is defined to be the least non-negative integer m such that

N(Fm) = N(Fm+1), if it exists. Otherwise, H(F ) =∞.

Example 1.3.14. Any strictly increasing continuous function from an interval

onto itself is of height zero.

Example 1.3.15. Consider f : [0, 1]→ [0, 1] defined by

f(x) :=


x, if x ∈ [0, 1

4
)

3
8
− x

2
, if x ∈ [1

4
, 3
4
)

2x− 3
2
, if x ∈ [3

4
, 1].
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It is easy to observe that

f 2(x) = f 3(x) =



x, if x ∈ [0, 1
4
)

3
8
− x

2
, if x ∈ [1

4
, 3
4
)

2x− 3
2
, if x ∈ [3

4
, 7
8
)

9
8
− x, if x ∈ [7

8
, 1].

Here S(f) = {1
4
, 3
4
} and S(f 2) = {1

4
, 3
4
, 7
8
}. Moreover N(f) < N(f 2) = N(f 3).

This shows that H(f) = 2.

0 1
4

1
2

3
4

7
8

1

1
4

1
2

3
4

1

Figure. 1.3.1

f(x)

f 2(x)

Example 1.3.16. Let T : [0, 1]→ [0, 1] be the tent map defined by

T (x) =

 2x, if x ∈ [0, 1
2
),

2− 2x, if x ∈ [1
2
, 1].

Then S(Tm) = { 1
2m
, 2
2m
, . . . , 2

m−1
2m
} for all m ∈ N, whence H(T ) =∞.

Zhang and Yang (Zhang and Yang, 1983) defined the characteristic interval

of PM functions of height less than or equal to one written in Chinese, however

Zhang (Zhang, 1997) published it in English as follows:

Let F : I → I be a PM function of height less than or equal to one. Then, by

Proposition 1.3.12, F is strictly monotone on the range of F . Now, by extending

the interval on which F is monotone, there exist two points a′, b′ such that

11



(i) [a′, b′] ⊇ R(F ),

(ii) a′ and b′ are either forts or endpoints,

(iii) there is no fort inside (a′, b′).

Definition 1.3.17. (Zhang, 1997) The unique interval [a′, b′] defined above is the

characteristic interval of F , denoted by ChF .

Characteristic interval plays an important role on the existence of iterative

roots of a PM function of height less than or equal to one. The monotonicity

of F on the characteristic interval gives the existence of solution of the iterative

functional equation (1.2.3) on the characteristic interval based on Theorem 1.3.6

and Theorem 1.3.7. Therefore, to study the existence of iterative root on the

whole interval I, it is enough to study the possible extension of the iterative root

of the function from the characteristic interval to the whole interval. The following

theorem gives one such extension:

Theorem 1.3.18. (Zhang, 1997) Let F ∈ PM(I) with H(F ) ≤ 1 and F0 =

F |ChF . Suppose

(i) there exists a continuous function f0 such that fn0 = F0 on ChF and

(ii) F (I) ⊆ F (ChF ).

Then there exists a continuous function f from I into I such that f(x) = f0(x)

for all x ∈ ChF and fn = F on I.

Theorem 1.3.19. (Liu and Zhang, 2011) Every continuous iterative root of a PM

function F with H(F ) ≤ 1 is an extension of an iterative root of F of the same

order from the characteristic interval of F .

We now discuss the iterative roots of a PM function of height greater than one.

Li and Chen generalized Theorem 1.3.19 for any PM functions with finite height.

12



Theorem 1.3.20. (Li and Chen, 2014) Let F ∈ PM(I) and H(F ) = k. Then

every continuous iterative root of F is an extension of an iterative root of F of the

same order from the characteristic interval of F k.

The following theorem gives the nonexistence of iterative roots of PM functions

of height greater than one.

Theorem 1.3.21. (Zhang, 1997) Let F ∈ PM(I) and H(F ) > 1. Then F has

no continuous iterative roots of order n, for n > N(F ).

Having proved that a PM function F with H(F ) ≥ 2 has no continuous iter-

ative root of order n for n > N(F ), Zhang raised the following problem (Zhang,

1997):

Problem 1.3.22. Does there exist iterative roots of order n of a PM function

F ∈ PM(I) with H(F ) ≥ 2 for n ≤ N(F )?

The article by Liu et al. (Liu et al., 2012) offers a necessary and sufficient

condition for the existence of iterative root of F for the case n = N(F ), which

we will discuss in Chapter 2. The results on iterative roots of non-PM functions,

i.e., functions having infinitely many forts, can be found in (Lin, 2014; Lin et al.,

2017). In both papers the authors discussed the existence and nonexistence of

iterative roots of non-PM functions which are constant on some subinterval and

strictly monotone elsewhere. One can refer (Baron and Jarczyk, 2001; Zdun and

Solarz, 2014) for a detailed survey of recent results on iterative roots.

1.3.3 Some Generalizations

There are many iterative functional equations which is a generalization of itera-

tive root problem. Zhao (Zhao, 1983) discussed the existence and uniqueness of

solutions the following functional equation of the form

λ1f(x) + λ2f
2(x) = F (x). (1.3.7)
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Mukherjea and Ratti (Mukherjea and Ratti, 1983) studied the functional equation

of the form
n∑
i=0

cif
i(x) = 0, (1.3.8)

where ci’s are positive real numbers.

W. Zhang (Zhang, 1988) further generalized the iterative functional equation

(1.2.3) into the following functional equation

n∑
i=1

λif
i(x) = F (x), (1.3.9)

where F : I → I is a given map, f : I → I is an unknown map, and all

λi (i = 1, . . . , n) are real constants. The functional equation (1.3.9) is known as

polynomial-like iterative functional equation. It is easy to observe that the prob-

lem of finding solution of the functional equation (1.3.9) reduces to the iterative

root problem when λn = 1 and λi = 0 for 1 ≤ i ≤ n− 1.

Zhang (Zhang, 1988) proved the existence and uniqueness of continuous solu-

tions of the polynomial-like iterative functional equation for the class of continuous

strictly increasing functions using fixed point theory.

By generalizing the polynomial-like iterative functional equation (1.3.9), Jar-

czyk (Jarczyk, 1997) considered the following functional equation of the form

∞∑
i=1

aif
i(x) = x, (1.3.10)

however a more generalized functional equation of the polynomial-like iterative

functional equation (1.3.9) was considered by Murugan and Subrahmanyam (Mu-

rugan and Subrahmanyam, 2005). The authors considered the functional equation

of the form
∞∑
i=1

λif
i(x) = F (x) (1.3.11)

and discussed the existence and uniqueness of continuous solutions of the above

functional equation for the class of continuous strictly increasing functions using
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fixed point theory. The equation (1.3.11) is known as series-like iterative functional

equation.

For a more detailed study on the existence of continuous, differentiable so-

lutions of the functional equation (1.3.11) and its generalization, one can refer

(Jarczyk, 1987; Murugan and Subrahmanyam, 2005, 2009). It is notable that the

existence of the solutions of the polynomial-like and series-like functional equa-

tions has been studied only for the class of strictly monotone functions. Recently

Liu et al., (Liu and Gong, 2017), proved the existence of solutions of polynomial-

like iterative functional equations for PM functions of height less than or equal

to one, however, the problem on the existence of solutions of series-like iterative

functional equations for PM functions is unsolved.

1.4 Outline of the Remaining Chapters

Chapter 2 deals with the iterative root problem for the class of PM functions with

height greater than one. Our main contributions are the following:

• We defined characteristic interval for any PM functions by generalizing the

definition of characteristic interval.

• We proved results on existence of iterative roots of order less than the num-

ber of forts of PM function of height greater than one on its characteristic

interval.

• We also obtained theorem on extension of iterative roots from the charac-

teristic interval to the whole interval.

Thus Chapter 2 provides an affirmative answer to the Problem 1.3.22.

In Chapter 3, we considered the iterative root problem for the class of Non-

PM functions. We discussed the iterative roots for the class of Non-PM functions

which are non-constant in any interval, but having infinitely many forts. The main

results are the following:
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• Extension of iterative roots of continuous functions having infinitely many

forts from the characteristic interval to the whole interval, if it exists on the

characteristic interval.

• By generalizing the method of characteristic interval, we proved results on

nonexistence of iterative roots of continuous functions having infinitely many

forts for a special class of functions.

• We also proved that the set of continuous functions from I into itself which

do not possess iterative roots are dense in C(I).

In Chapter 4, our main result describes the existence of solutions of series-like

iterative functional equation of the form

∞∑
i=1

λif
i(x) = F (x),

for the class of PM functions of height less than or equal to one using the method

of characteristic interval.

Chapter 5 concludes our thesis with the discussion of uniqueness of iterative

roots of order preserving homeomorphism. Our main results provide some suffi-

cient conditions on uniqueness of iterative roots of order preserving homeomor-

phism. Indeed, we proved that an order preserving homeomorphism from an inter-

val onto itself does not possess different iterative roots which are subcommuting

or comparable using the points of coincidence of functions.
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Chapter 2

Iterative Roots of PM Functions

In this chapter, we investigate iterative root problem for the class of PM functions

of height greater than one. For any F ∈ PM(I) with H(F ) ≥ 2 does not possess

iterative roots of order n, n > N(F ) (cf. Theorem 1.3.21). Liu et al. (Liu et al.,

2012) gave a necessary and sufficient condition for the existence of iterative root

of F for the case n = N(F ).

2.1 Introduction

We begin our discussion with few results from (Liu et al., 2012).

Definition 2.1.1. (Liu et al., 2012) A strictly increasing function φ on I into

itself is said to be a reversing correspondence, if there exists a fixed point ξ of φ

and a strictly decreasing function ψ maps the fixed points of φ onto itself which

fixes ξ such that for every consecutive fixed points ξ1 and ξ2 of φ the expression

φ(x)− x has opposite signs in the intervals (ξ1, ξ2) and (ψ(ξ2), ψ(ξ1)).

An nth iterative root f of a PM function F is called type τ1 (type τ2), if f is

strictly increasing (decreasing) on the smallest closed interval containing all the

forts of F .

Theorem 2.1.2. (Liu et al., 2012) Let F ∈ PM(I) with H(F ) ≥ 2 and assume

that N(F ) ≥ 2. Suppose that c1, c2, . . . , cn are forts of F with c1 < c2 < · · · < cn.

Then F has a continuous iterative root of order n, n = N(F ), of type τ1 if and

only if one of the following conditions is fulfilled:
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(i) n is even, F |[a,c1] is a reversing correspondence,

F (a) ≥ F (c2) ≥ · · · ≥ F (cn−2) ≥ F (cn) ≥ a, (2.1.1)

F (c1) ≤ F (c3) ≤ · · · ≤ F (cn−3) ≤ F (cn−1) ≤ c1

and either all inequalities of (2.1.1) are equalities, or at most one of them,

namely F (a) ≥ F (c2) or F (cn) ≥ a, is an equality ;

(ii) n is odd, F |[a,c1] is decreasing,

F (a) ≤ F (c2) ≤ · · · ≤ F (cn−1) ≤ c1, (2.1.2)

F (c1) ≥ F (c3) ≥ · · · ≥ F (cn) ≥ a

and either all inequalities of (2.1.2) are equalities, or at the most one of

them, namely F (a) ≤ F (c2) or F (cn) ≥ a, is an equality;

(iii) n is even, F |[cn,b] is a reversing correspondence,

F (b) ≤ F (cn−1) ≤ · · · ≤ F (c1) ≤ b, (2.1.3)

F (cn) ≥ F (cn−2) ≥ · · · ≥ F (c2) ≥ cn

and either all inequalities of (2.1.3) are equalities, or at the most one of

them, namely F (b) ≤ F (cn−1) or F (c1) ≤ b, is an equality;

(iv) n is odd, F |[cn,b] is decreasing,

F (b) ≥ F (cn−1) ≥ · · · ≥ F (c2) ≥ cn, (2.1.4)

F (cn) ≤ F (cn−2) ≥ · · · ≥ F (c1) ≤ b

and either all inequalities of (2.1.4) are equalities, or at the most one of

them, namely F (b) ≥ F (cn−1) or F (c1) ≤ b, is an equality.

Now we remark here that, the existence of nth iterative roots of PM functions

F of height greater than two has been solved only for the case n = N(F ). So we

observe the the following problems.
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Problem 2.1.3. (Liu et al., 2012) Does any F ∈ PM(I) with H(F ) ≥ 2 have a

type τ2 iterative root of order n, for n = N(F )?

Problem 2.1.4. (Liu et al., 2012) Does any F ∈ PM(I) with H(F ) ≥ 2 have an

iterative root of order n, for n < N(F )?

This chapter focuses Problem 2.1.4. We provide necessary conditions on the

existence of iterative roots of order n < N(F ) for PM functions F with H(F ) ≥ 2.

At first we generalize the definition of characteristic interval which defined for the

class of PM functions of height less than two to the class of all PM functions.

Then, by producing iterative roots of F in its characteristic interval, we extend

that iterative root of F to the whole interval.

2.2 Properties of Forts

The problem of finding nth iterative root of PM function F depends on the forts,

it is worth studying the properties of forts under iteration. It is known that, for

any f ∈ PM(I), S(fn−1) ⊆ S(fn) for all n ∈ N. It is possible that S(fn−1) can

be a proper subset of S(fn), the following proposition describes how the new forts

have been generated under the iteration of f .

For x ∈ S(f), n ∈ N, we define

Snx (f) := (∪n−1m=0f
−m(x)) ∩ I0, (2.2.5)

where f−m(x) = {y ∈ I | fm(y) = x} and I0 is the interior of I. It is easy to

observe that S1
x(f) = {x} and S(f) = ∪x∈S(f)S1

x. The following proposition gives

a more general result.

Proposition 2.2.1. S(fn) = ∪x∈S(f)Snx (f) for f ∈ PM(I) and n ∈ N.

Proof. Let t ∈ Snx (f) and fm(t) = x, for some m with 1 ≤ m ≤ n − 1. If t ∈

∪n−1i=1 S(f i), then obviously t ∈ S(fn). Assume t /∈ S(f i) for any i = 1, 2, . . . , n− 1
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and let ε > 0 be given. Note that fm is strictly monotone at t. Now, by the

continuity of fm at t, choose δε > 0 such that

fm(t− ε, t+ ε) ⊆ (fm(t)− δε, fm(t) + δε).

Since x = fm(t) is a fort for f , there exist

y1 ∈ (fm(t)− δε, fm(t)) ∩ fm(t− ε, t+ ε),

and

y2 ∈ (fm(t), fm(t) + δε) ∩ fm(t− ε, t+ ε)

such that f(y1) = f(y2). Therefore, by intermediate value theorem, there exist

x1, x2 ∈ (t− ε, t+ ε) such that x1 6= x2 and fm(x1) = y1 and fm(x2) = y2 so that

fm+1(x1) = fm+1(x2). Hence t ∈ S(fm+1) ⊆ S(fn).

On the other hand, suppose t ∈ S(fn). Let m(≤ n) be the least positive integer

such that t ∈ S(fm). We prove t = f−(m−1)(x) for some x ∈ S(f). If fm−1(t) 6= x

for any x ∈ S(f), then f is monotone at fm−1(t), which in turn implies that fm

is monotone at t, a contradiction.

2.3 Generalization of Characteristic Interval

J. Zhang and L. Yang defined characteristic interval for PM functions of height

less than or equal to one (Zhang and Yang, 1983) (cf. Definition (1.3.17)). We

observe that every PM function (not necessarily be of with height ≤ 1) possesses

a similar interval. Motivated by J. Zhang and L. Yang (Zhang and Yang, 1983),

we define the characteristic interval for any PM function as follows:

Let F ∈ PM(I) be any function and let [m,M ] be its range. Put a′ = a, if F

has no fort on [a,m], otherwise a′ = sup{x ∈ [a,m] | x ∈ S(F )} and put b′ = b,

if F has no forts on [M, b], otherwise b′ = inf{x ∈ [M, b] | x ∈ S(F )}. Then the

interval [a′, b′] posses the following properties:

(a) a′, b′ ∈ S(F ) ∪ {a, b}.
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(b) If [α, β] any subinterval of I containing [m,M ] with α, β ∈ S(F ) ∪ {a, b},

then [a′, b′] ⊆ [α, β].

Suppose there is an interval, say [t1, t2], posses the properties (a) and (b). Then

[t1, t2] ⊆ [a′, b′] by property (b). Since t1 ∈ S(F )∪{a, b} and t1 ≤ m, by definition

of a′, t1 ≤ a′. Similarly b′ ≤ t2. Hence [a′, b′] = [t1, t2]. Therefore the interval

[a′, b′] is unique and has the properties (a) and (b).

Definition 2.3.1. Let F : I → I be any PM function. Then the smallest closed

interval containing the range of F whose end points are either forts of F or the

end points of [a, b], denoted by ChF , is called the characteristic interval of F .

We do call ChF as the characteristic interval because of the natural general-

ization of Definition 1.3.17. Indeed, if F is a PM function of height less or equal

to one, then Definition 1.3.17 and Definition 2.3.1 are equivalent.

Example 2.3.2. Let f : [−π, π] → [−π, π] be defined as f(x) = sinx. Then

ChF = [−π
2
, π
2
] (See Figure 2.2.1).

0

1−1
π
2−π

2
π−π

sin(x)

Figure 2.2.1

−1

1

Example 2.3.3. The characteristic interval of the tent map T : [0, 1] → [0, 1]

defined by

T (x) =

 2x, if x ∈ [0, 1
2
),

2− 2x, if x ∈ [1
2
, 1],

is the interval [0, 1].
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2.4 Existence of Iterative Roots

Our aim is to establish the existence of nth iterative root of F ∈ PM(I) with

H(F ) ≥ 2 and n < N(F ). The following results describes the behavior of such

iterative roots.

Proposition 2.4.1. Let F ∈ PM(I) with H(F ) ≥ 2. Suppose there exists a

function f ∈ PM(I) that satisfies the functional equation fn = F on I. Then

N(f) ≤ N(F )− (n− 1).

Proof. Since H(F ) ≥ 2, we have

N(f) < N(f 2) < . . . < N(fn−1) < N(fn) = N(F ) < N(F 2). (2.4.6)

This implies N(F )−N(f) ≥ n− 1 so that N(f) ≤ N(F )− (n− 1).

Lemma 2.4.2. Let F ∈ PM(I) with H(F ) ≥ 2. Suppose that a function f ∈

PM(I) satisfies the functional equation fn = F on I with N(f) = N(F )−(n−1).

Then there exists a fort c ∈ S(F ) such that S(F ) = S(f) ∪ Snc (f). Moreover

|Snc (f)\S(f)| = n− 1.

Proof. Equation (2.4.6) forces that on each iteration of f only one new fort has

to be generated, hence S(f i+1)\S(f i) (1 ≤ i ≤ n − 1) is a singleton set. Let

{xi} = S(f i+1)\S(f i) (1 ≤ i ≤ n − 1). Further, in view of Proposition 2.2.1, we

have

S(f l) = S(f) ∪ {x1, x2, . . . , xl−1} for 2 ≤ l ≤ n,

and

f i(xi) ∈ S(f) for 1 ≤ i ≤ l − 1.

To prove this lemma, it is enough to prove f l(xl) = c, for 2 ≤ l ≤ n − 1 and

for some c ∈ S(f). We prove this result using induction on l. As H(f) ≥ 2, for

each x ∈ S(f), f−1(x) ⊆ S(f) is true except at one fort, call it c. Hence

S(f 2) = S(f) ∪ {x1} where x1 ∈ f−1(c).
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Suppose S(f 3) = S(f) ∪ {x1, x2} for some x2 ∈ f−2(c′) where c′ ∈ S(f). Put

f(x2) = t. If c′ 6= c, then t ∈ S(f). Therefore x2 ∈ f−1(t) ⊆ S(f 2), a contradic-

tion. This concludes that c = c′ and S(f 3) becomes

S(f 3) = S(f) ∪ {x1, x2} where f(x1) = f 2(x2) = c.

Assume,

S(f l) = S(f) ∪ {xi}l−1i=1 and f i(xi) = c for 1 ≤ i < l < n. (2.4.7)

Note that S(f l+1) = S(f) ∪ {x1, x2, . . . , xl−1, xl}, where f l(xl) = c′ for some

c′ ∈ S(f). Put t = f l−1(xl). If c 6= c′, then t ∈ S(f). Therefore by (2.4.7),

xl ∈ f−l+1(t) ⊆ S(f l), a contradiction as xl /∈ S(f l). Hence c = c′ and by

induction hypothesis,

S(F ) = S(fn) = S(f) ∪ {x1, x2, . . . , xn−1},

where f l(xl) = c, c ∈ S(f) for 1 ≤ l ≤ n − 1. Since {x1, x2, . . . , xn−1} ⊆ Snc (f)

and, by Proposition 2.2.1,

S(F ) = ∪x∈S(f)Snx (f) = S(f) ∪ Snc (f).

Also Snc (f)\S(f) = {x1, x2, . . . , xn−1} implies |Snc (f)\S(f)| = n− 1.

Proposition 2.4.1 asserts that any nth iterative root of F , H(F ) ≥ 2 and

n < N(F ), possesses at least N(F )− (n−1) number of forts. We now concentrate

on constructing the nth (n < N(F )) iterative root f of a PM function F with

H(F ) ≥ 2 such that N(f) = N(F ) − (n − 1). The following theorem gives a

necessary condition for the existence of iterative roots of F .

Theorem 2.4.3. Let F ∈ PM(I) with H(F ) ≥ 2. Suppose F has an nth iterative

root f ∈ PM(I) such that N(f) = N(F ) − (n − 1). Then N(F |Chf ) = n and

N(f |Chf ) = 1.
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Proof. Let S(f) = {c1, c2, . . . , cN(F )−(n−1)} with c1 < c2 < . . . < cN(F )−(n−1). By

Lemma 2.4.2 we have,

S(F ) = S(f) ∪ {x1, x2, . . . , xn−1}, where f j(xj) = ci (1 ≤ j ≤ n− 1) (2.4.8)

for some i. Clearly, f is strictly monotone at all these xi, in particular at x1. We

prove the result by assuming f is increasing at x1, the case at which f is strictly

decreasing at x1 can be proved similarly. Note that ci 6= x1.

Case 1: ci < x1

In this case we prove xj ∈ (ci, ci+1) for 1 ≤ j ≤ n − 1. If ci+1 < x1, then

f [a, x1] ⊆ [ci−1, ci] and f [x1, b] ⊆ [ci, ci+1] so that

f 2[a, b] ⊆ [ci−1, ci].

This leads a contradiction toH(F ) ≥ 2 and hence x1 < ci+1. Since f(x2) = x1, and

f [a, x1] ⊆ [ci−1, ci], we have x1 < x2. Suppose that ci+1 < x2. Then f(ci+1) ≤ x1.

If not, there exists an y ∈ (x1, ci+1) such that f(y) = x1. Therefore, by Proposition

2.2.1, y ∈ S(f 3) = S(f) ∪ {x1, x2}, a contradiction. As f(ci+1) ≤ x1, we have

f [a, x2] ⊆ [ci−1, x1] and f [x2, b] ⊆ [x1, ci+1] so that

f 3[a, b] ⊆ [ci−1, ci],

again a contradiction to H(F ) ≥ 2. Thus ci < x1 < x2 < ci+1 and f is increasing

on [ci, x2] (see Figure. 2.2.2).

Assume that ci < x1 < x2 < . . . < xm < ci+1 for m < n − 1. Note that

f is increasing on [ci, xm]. Since f(xm+1) = xm and f [a, xm] ⊆ [ci−1, xm−1] we

have xm < xm+1. If ci+1 < xm+1, then f(ci+1) ≤ xm and f [a, xm+1] ⊆ [ci−1, xm],

f [xm+1, b] ⊆ [xm, ci+1] which implies that

fm+2[a, b] ⊆ [ci−1, ci],

a contradiction to H(F ) ≥ 2. Hence, by induction hypothesis, we have

ci < x1 < x2 < . . . < xn−1 < ci+1 (2.4.9)
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and f is increasing on [ci, ci+1] (see Figure. 2.2.2). In this case, if f(ci+1) ≤

xn−1 then fn[a, b] = F [a, b] ⊆ [ci−1, ci], a contradiction to H(F ) ≥ 2. Therefore

f(ci+1) > xn−1 and hence the characteristic interval of f is Chf = [ci−1, ci+1],

N(F |Chf ) = n and N(f |Chf ) = 1.

a ci−1 ci x1 xn−1ci+1 b

F igure. 2.2.2

ci−1
ci

xn−2
xn−1
ci+1

b

a ci−1xn−1 cici+1 bx1

Figure. 2.2.3

ci−1
xn−1
xn−2

ci
ci+1

b

Case 2: ci > x1

In this case we prove xj ∈ (ci−1, ci) for 1 ≤ j ≤ n − 1. If x1 < ci−1, then

f [a, x1] ⊆ [ci−1, ci] and f [x1, b] ⊆ [ci, ci+1] so that

f 2[a, b] ⊆ [ci, ci+1]

which leads a contradiction to the fact that H(F ) ≥ 2. Hence ci−1 < x1.

Since f(x2) = x1, and f [x1, b] ⊆ [ci, ci+1], we have x2 < x1. Suppose that

x2 < ci−1. Then f(ci−1) ≥ x1. If not, there exists an y ∈ (ci−1, x1) such that

f(y) = x1. Therefore, by Proposition 2.2.1, y ∈ S(f 3) = S(f) ∪ {x1, x2}, a

contradiction. Hence we have f [a, x2] ⊆ [ci−1, x1] and f [x2, b] ⊆ [x1, ci+1] so that

f 3[a, b] ⊆ [ci, ci+1],

again a contradiction to H(F ) ≥ 2. Therefore ci−1 < x2 < x1 < ci and f is

increasing on [x2, ci] (See Figure. 2.2.3).

Assume that ci−1 < xm < xm−1 < . . . < x2 < x1 < ci, for m < n−1. As above,

we have f is increasing on [xm, ci]. Since f(xm+1) = xm and f [xm, b] ⊆ [xm−1, ci+1]
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we have xm+1 < xm. If xm+1 < ci−1, then f(ci−1) ≥ xm and f [a, xm+1] ⊆ [ci−1, xm],

f [xm+1, b] ⊆ [xm, ci+1] which implies that

fm+2[a, b] ⊆ [ci, ci+1],

a contradiction to H(F ) ≥ 2. Hence by the induction hypothesis we have

ci−1 < xn−1 < . . . < x2 < x1 < ci (2.4.10)

and f is increasing on [ci−1, ci] (See Figure. 2.2.3). In this case, if f(ci−1) ≥

xn−1, then fn[a, b] = F [a, b] ⊆ [ci, ci+1], a contradiction to H(F ) ≥ 2. Hence

f(ci−1) < xn−1 and it is clear that the characteristic interval of f is [ci−1, ci+1] and

N(F |Chf ) = n and N(f |Chf ) = 1.

We present the following remark as in (Liu et al., 2012).

Remark 2.4.4. Suppose f be the function described as in case 1 of Theorem 2.4.3.

Let h : I = [a, b] → I be the homeomorphism defined by h(x) = a + b − x for all

x ∈ I and let g : I → I be the function g(x) = h−1 ◦ f ◦ h(x) for all x ∈ I. If

S(f) = {c1, c2, . . . , cN(F )−(n−1)}, then from equations (2.4.8) and (2.4.9), we have,

f(x1) = ci, f(x2) = x1, . . . , f(xn−1) = xn−2,

ci < x1 < x2 < · · · < xn−1 < ci+1,

 (2.4.11)

and

f([a, x1]) ⊆ [ci−1, ci]

f([x1, ci+1]) ⊆ [ci, f(ci+1)]

f([ci+1, b]) ⊆ [xn−2), ci+1].

 (2.4.12)

Moreover, f is strictly increasing on [ci, ci+1].

Put

di = a+ b− ci, for 1 ≤ i ≤ N(F )− (n− 1)

and

yi = a+ b− xi, for 1 ≤ i ≤ n− 1.
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Then S(g) = {di | 1 ≤ i ≤ N(F )− (n− 1)} and

g(y1) = di, g(y2) = y1, . . . , g(yn−1) = yn−2,

di−1 < yn−1 < yn−2 < · · · < y2 < y1 < di.

 (2.4.13)

and g is strictly increasing on [di−1, di]. Moreover,

g([a, yn−1]) ⊆ [di−1, yn−2]

g([yn−1, di]) ⊆ [di−1, g(di)]

g([di, b]) ⊆ [di, di+1].

 (2.4.14)

Also, it is easy to observe that gn = G, where, G : I → I the function defined by

G(x) = h−1 ◦ F ◦ h(x) for all x ∈ I with H(G) ≥ 2 and N(g) = N(G)− (n− 1).

Hence, if f is the function described in case 1 of Theorem 2.4.3, then the

function g acts like the function described in case 2 of Theorem 2.4.3. Therefore, in

order to study the iterative roots of functions satisfying the hypothesis of Theorem

2.4.3, it is enough to discuss the iterative roots described either in case 1 or case

2.

Remark 2.4.5. Suppose, for F ∈ PM(I) with H(F ) ≥ 2, there exists f ∈

PM(I) such that fn = F and N(f) = N(F ) − (n − 1), n < N(F ). Then by

Theorem 2.4.3, there exist x1, x2, . . . , xn−1 ∈ S(F ) such that f(x1) = ci, f(x2) =

x1, . . . , f(xn−1) = xn−2 for some ci ∈ S(F ). Using this behavior of the function

f , we can predict the iteration of the function f . In fact, for i ∈ {1, 2, . . . , n− 1},

f i([a, xi]) ⊆ [ci−1, ci]

f i([xi, ci+1]) ⊆ [ci, f
i(ci+1)]

f i([ci+1, b]) ⊆ [xn−(i+1), f
i−1(ci+1)]

 (2.4.15)

and

fn([a, xn−1]) ⊆ [ci−1, ci]

fn([xn−1, ci+1]) ⊆ [ci, f
n(ci+1)]

fn([ci+1, b]) ⊆ [x1, f
n−1(ci+1)].

 (2.4.16)

In particular, F ([a, b]) = fn([a, b]) ⊆ [ci−1, f
n−1(ci+1)]. Therefore, the charac-

teristic interval of F is depending on the value of fn−1(ci+1). Also, it is an
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easy observation that ChF = Chf = [ci−1, ci+1] when xn−1 < fn−1(ci+1) and

ChF = [ci−1, xk] when fn−1(ci+1) ≤ xn−1, where k is the least positive integer such

that fn−1(ci+1) ≤ xk.

The existence of iterative roots on the characteristic interval becomes necessary

for the existence of iterative roots of PM functions, it is necessary to study the

existence of iterative roots of PM functions on the characteristic interval.

In the rest of this chapter, we use the following notation: For F ∈ PM(I)

with H(F ) ≥ 2, n < N(F ) and ChF = [a′, b′], denote F0 = F |ChF . As H(F ) ≥ 2,

ChF contains at least one fort of F so that H(F0) 6= 0. Also, by Remark 2.4.5,

N(F0) < n when H(F0) = 1 and N(F0) = n when H(F0) ≥ 2. We prove the

existence of iterative root of F , by assuming H(F0) ≥ 2.

Suppose H(F0) ≥ 2 with N(F0) = n. Let S(F0) = {α1, α2, . . . , αn} with

a′ = α0 < α1 < α2 < . . . < αn < αn+1 = b′. Therefore, Theorem 2.1.2 guarantees

the the existence of type τ1 iterative root of F0. Also, the following lemma will be

useful in the extension of iterative roots.

Lemma 2.4.6. (Liu et al., 2012) If f0 ∈ PM(I) is an type τ1 iterative root of

order n = N(F0) of F , then N(f0) = 1 and S(f0) is either {α1} or {αn}.

2.5 Extension of Iterative Roots

In this section, by assuming the existence of nth iterative of F on the characteristic

interval, we extend that iterative root on I.

Theorem 2.5.1. Let F ∈ PM(I) with H(F ) ≥ 2. Let F0 := F |ChF be such that

H(F0) ≥ 2, N(F0) = n and n < N(F ). Suppose

(a) F0 has nth iterative root f0 of type τ1.

(b) F ([a, a′]) ⊆ F ([a′, α1]), F ([b′, b]) ⊆ F [αn, b
′].

Then F has an nth iterative root f ∈ PM(I) such that N(f) = N(F )− (n− 1).
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Proof. Since fn0 = F0, by Lemma 2.4.6, either S(f0) = {α1} or S(f0) = {αn}. The

function f0 is of type τ1, we see that, f0 is strictly increasing on [α1, b
′] and f0

assumes minimum at α1 when S(f0) = {α1} and f0 is strictly increasing on [a′, αn]

and f0 assumes maximum at αn when S(f0) = {α1}. Therefore, by Remark 2.4.5,

it is enough to prove this result by assuming S(f0) = {α1}.

Suppose S(f0) = {α1}, we see that from Theorem 2.4.3 that,

f0(αi) = αi−1 for 2 ≤ i ≤ n. (2.5.17)

Note that the function f0 is injective on [a′, α1] and f0 maps [a′, α1] into [a′, α1].

i.e., f0([a
′, α1]) ⊆ [a′, α1]. (2.5.18)

Also, f0 is injective on [α1, b
′]. Now, for i ∈ {1, 2, . . . , n− 1}, let

φi : f i0([a
′, α1])→ f i+1

0 ([a′, α1])

and

ψi : f i0([αn, b
′])→ f i+1

0 ([αn, b
′])

be the homeomorphisms defined by

φi(x) = f0(x) for all x ∈ f i0([a′, α1])

and

ψi(x) = f0(x) for all x ∈ f i0([αn, b′]).

Now, define the function f : I = [a, b]→ I by

f(x) :=


φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x), if x ∈ [a, a′)

f0(x), if x ∈ [a′, b′]

ψ−11 ◦ ψ−12 ◦ . . . ◦ ψ−1n−1 ◦ F (x), if x ∈ (b′, b].

By hypothesis (b),

F ([a, a′]) ⊆ F ([a′, α1]) = fn0 ([a′, α1])
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and

F ([b′, b]) ⊆ F ([αn, b
′]) = fn0 ([αn, b

′]),

the function f is well-defined and fn(x) = F (x) for all x ∈ [a′, b′].

Also, for x ∈ [a, a′),

fn(x) = fn−10 ◦ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x)

= fn−10 ◦ f−10 ◦ f−10 ◦ . . . ◦ f−10︸ ︷︷ ︸ ◦F (x)

(n-1) times

= F (x).

Similarly, for x ∈ (b′, b],

fn(x) = fn−10 ◦ ψ−11 ◦ ψ−12 ◦ . . . ◦ ψ−1n−1 ◦ F (x)

= fn−10 ◦ f−10 ◦ f−10 ◦ . . . ◦ f−10︸ ︷︷ ︸ ◦F (x)

(n-1) times

= F (x).

Now, to prove f is continuous on [a, b], it is enough to prove f is continuous at

a′ and b′. If a = a′ then the continuity follows immediately from the definition

of f . Suppose a′ ∈ (a, b). Let (xn) ∈ [a, a′) be a sequence such that xn → a′ as

n→∞. Since F is continuous at a′ we have

F (xn)→ F (a′) = F0(a
′) as n→∞.

By hypothesis (b), F (xn) ∈ fn0 ([a′, α1]) for all n and φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 is

continuous at F0(a
′) = fn0 (a′), we have

φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (xn)→ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1(F0(a
′)) = f0(a

′) as n→∞.

Thus f is continuous at a′. Similarly we can prove f is continuous at b′ and hence

f is continuous on [a, b]. As F, f0 are PM functions, we have f ∈ PM(I).

To prove N(f) = N(F ) − (n − 1), it is enough if we prove S(f) = S(F )

\{α2, α3 . . . αn}. Since S(f) = S(F ) on I\ChF and α1 is a fort of f0, it is enough
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to prove a′, b′ ∈ S(f) whenever a′, b′ ∈ S(F ). Since a′ is a fort for F we have for

every ε > 0, there exist x1 ∈ (a′ − ε, a′) and x2 ∈ (a′, a′ + ε) such that

F (x1) = F (x2)

⇒ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x1) = φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x2),

⇒ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x1) = φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F0(x2),

⇒ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x1) = φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ fn0 (x2),

⇒ φ−11 ◦ φ−12 ◦ . . . ◦ φ−1n−1 ◦ F (x1) = f0(x2),

⇒ f(x1) = f(x2).

i.e., for every ε > 0, there exist x1 ∈ (a′ − ε, a′) and x2 ∈ (a′, a′ + ε) such that

f(x1) = f(x2). Hence a′ is a fort for f . Similarly we can show that b′ is a fort for

f .

Corollary 2.5.2. Let F ∈ PM(I) with H(F ) ≥ 2. Let F0 := F |ChF with S(F0) =

{α1, α2} and H(F0) ≥ 2. Suppose F ([a, a′]) ⊆ F ([a, α1]), F ([b′, b]) ⊆ F ([α2, b
′])

and F satisfies any one of the following condition:

(a) F0|[a′,α1] is a reversing correspondence and

F0([a
′, α1]) ⊆ F0([α1, α2]) ⊆ [a′, α1].

(b) F0|[α2,b′] is a reversing correspondence and

F0([α2, b
′]) ⊆ F0([α1, α2]) ⊆ [α2, b

′].

Then F has square iterative root f such that N(f) = N(F )−1 and has no iterative

roots of order n ≥ 3.

Proof. Suppose that there exists f ∈ PM(I) such that fn = F . As H(F ) ≥ 2 we

have H(f) ≥ 2 and therefore

N(f) < N(f 2) < . . . < N(fn) = N(F ),
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which is a contradiction to N(f) = N(F )− 1 when n ≥ 3.

If F satisfies either (a) or (b), by Theorem 2.1.2, there exists an type τ1 iterative

root f0 on ChF0 . By Theorem 2.5.1, f0 can be extended to a PM function f on I

such that f 2 = F and N(f) = N(F )− 1.

2.6 Illustrative Examples

Example 2.6.1. Consider the function F : [0, 1]→ [0, 1] defined as follows

F (x) =



x, if x ∈ [0, 1
6
)

2
6
− x, if x ∈ [1

6
, 2
6
)

x− 2
6
, if x ∈ [2

6
, 3
6
)

3
2
x− 7

12
, if x ∈ [3

6
, 11
18

)

9
4
x− 25

24
, if x ∈ [11

18
, 4
6
)

23
24
− 3

4
x, if x ∈ [4

6
, 5
6
)

3
4
x− 7

24
, if x ∈ (5

6
, 1].

Here S(F ) = {1
6
, 2
6
, 4
6
, 5
6
} and H(F ) = 2, ChF = [0, 4

6
] (See graph of the function

F given in Figure. 2.4.1). Clearly F0 : ChF → ChF is a PM function such that

H(F0) ≥ 2, S(F0) = {1
6
, 2
6
} and f0 : ChF → ChF is defined by

f0(x) =


1
6
− x, if x ∈ [0, 1

6
)

x− 1
6
, if x ∈ [1

6
, 3
6
)

3
2
x− 5

12
, if x ∈ [3

6
, 4
6
],

is a square iterative root of F0. Now, by Theorem 2.5.1, define the homeomorphism

φ : [1
6
, 4
6
]→ [1

6
, 4
6
] by φ(x) = f0(x) and it is easy to calculate φ−1 ◦ F = 11

12
− x

2
on

[4
6
, 5
6
] and φ−1 ◦ F = x

2
+ 1

12
on [5

6
, 1] so that

f(x) =


f0(x), if x ∈ [0, 4

6
]

11
12
− x

2
, if x ∈ (4

6
, 5
6
)

x
2

+ 1
12
, if x ∈ [5

6
, 1],

is a square iterative root of F with S(f) = {1
6
, 4
6
, 5
6
}.
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Example 2.6.2. Consider the function F : [0, 1]→ [0, 1] defined by

F (x) =



2
5
− x, if x ∈ [0, 1

5
)

x, if x ∈ [1
5
, 2
5
)

4
5
− x, if x ∈ [2

5
, 3
5
)

2x− 1, if x ∈ [3
5
, 7
10

)

4x− 12
5
, if x ∈ [ 7

10
, 4
5
)

12
5
− 2x, if x ∈ [4

5
, 1].

Here H(F ) = ∞, S(F ) = {1
5
, 2
5
, 3
5
, 4
5
} and ChF = [1

5
, 4
5
](See graph of the function

F given in Figure. 2.4.2). Therefore F0 = F |ChF : ChF → ChF is a self map such

that S(F0) = {2
5
, 3
5
}, H(F0) ≥ 2. It is clear that, F0 is reversing correspondence

on [1
5
, 2
5
] and F0([

1
5
, 2
5
]) = F0([

2
5
, 3
5
]) = [1

5
, 2
5
]. Therefore, by Corollary 2.5.2, F0

has square iterative root on [1
5
, 4
5
]. Indeed, it can be shown that the function f0 :

[1
5
, 4
5
]→ [1

5
, 4
5
] defined by

f0(x) =


3
5
− x, if x ∈ [1

5
, 2
5
)

x− 1
5
, if x ∈ [2

5
, 3
5
)

2x− 4
5
, if x ∈ [3

5
, 4
5
],

is a square iterative root of F0. Also, F ([0, 1
5
] ⊆ F ([1

5
, 2
5
]) and F ([4

5
, 1] ⊆ F ([2

5
, 4
5
]),

again by using Corollary 2.5.2, define φ1 : [1
5
, 2
5
] → [1

5
, 2
5
] by φ1(x) = x + 1

5
and

φ2 : [2
5
, 4
5
]→ [1

5
, 2
5
] by

φ2(x) =

 x− 1
5
, if x ∈ [2

5
, 3
5
)

2x− 4
5
, if x ∈ [3

5
, 4
5
].
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Now it is easy to calculate φ−11 ◦ F = x+ 1
5

on [0, 1
5
] and φ−12 ◦ F = 8

5
− x on [4

5
, 1]

so that f : [0, 1]→ [0, 1] defined by

f(x) =


x+ 1

5
, if x ∈ [0, 1

5
)

f0(x), if x ∈ [1
5
, 4
5
]

8
5
− x, if x ∈ (4

5
, 1],

is a square iterative root of F with S(F ) = {1
5
, 2
5
, 4
5
}.

Example 2.6.3. Let F : [0, 1]→ [0, 1] be defined by

F (x) =



1
6
− x, if x ∈ [0, 1

6
)

x− 1
6
, if x ∈ [1

6
, 2
6
)

3
6
− x, if x ∈ [2

6
, 3
6
)

2x− 1, if x ∈ [1
6
, 7
12

)

4x− 13
6
, if x ∈ [ 7

12
, 15
24

)

8x− 28
6
, if x ∈ [15

24
, 4
6
)

20
6
− 4x, if x ∈ [4

6
, 9
12

)

11
6
− 2x, if x ∈ [ 9

12
, 5
6
)

2x− 9
6
, if x ∈ [5

6
, 11
12

)

4x− 20
6
, if x ∈ (11

12
, 1].

Here S(F ) = {1
6
, 2
6
, 3
6
, 4
6
, 5
6
}, H(F ) = ∞ and F ([0, 1]) = F ([0, 4

6
]) = [0, 4

6
] (See

graph of the function F given in Figure. 2.4.3).

Now F0 := F |[0, 4
6
] : [0, 4

6
]→ [0, 4

6
] such that S(F0) = {1

6
, 2
6
, 3
6
} and f0 : [0, 4

6
]→

[0, 4
6
] defined by

f0(x) =


1
6
− x, if x ∈ [0, 1

6
)

x− 1
6
, if x ∈ [1

6
, 3
6
)

2x− 4
6
, if x ∈ [3

6
, 4
6
],

is a cubic iterative root of F0.

Define the homeomorphism φ : [1
6
, 4
6
] → [0, 4

6
] by φ(x) = f0(x) on [1

6
, 4
6
] as in

Theorem 2.5.1. Now, φ−1◦φ−1◦F (x) = 8
6
−x on [4

6
, 5
6
] and φ−1◦φ−1◦F (x) = x− 2

6
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on [5
6
, 1], so that

f(x) =


f0(x), if x ∈ [0, 4

6
]

8
6
− x, if x ∈ (4

6
, 5
6
)

x− 2
6
, if x ∈ [5

6
, 1],

is a cubic iterative root of F with S(f) = {1
6
, 4
6
, 5
6
}.

Summary of the Chapter

In this chapter, we introduced the concept of characteristic interval of any PM

functions. Using the method of characteristic interval, we proved the following:

• The existence of iterative roots of PM functions of height greater than one

on its characteristic interval.

• Extension of iterative roots from the characteristic interval to the whole

interval.

We end this chapter with the following questions:

1. Does there exist τ2 iterative roots of order n of PM functions F with H(F ) ≥

2 and n = N(F )?

2. Does there exist iterative roots f of order n of PM functions F with H(F ) ≥

2 and N(f) < N(F )− (n− 1)?
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Chapter 3

Iterative Roots of Non-PM Func-

tions

3.1 Introduction

Lin et al., (Lin, 2014; Lin et al., 2017) discussed the iterative root problem for

a particular class of non-PM continuous functions which are constant on some

subinterval and piecewise monotone elsewhere.

Let α, β ∈ (0, 1) such that α < β. We say a continuous function F : [0, 1] →

[0, 1] is in the class Ω1([α, β]), if F satisfies the condition (C1). Similarly, we say

F is in the class Ω2([α, β]), if F satisfies the condition (C2), where,

(C1) F is constant on [0, α], and F is strictly decreasing on [α, β] but strictly

increasing on [β, 1].

(C2) F is constant on [0, α], and F is strictly increasing on [α, β] but strictly

decreasing on [β, 1].

Theorem 3.1.1. (Lin, 2014) Suppose that F ∈ Ω1([α, β]) with F (α) < α. Then

F has infinitely many iterative roots of order n ≥ 2.

Theorem 3.1.2. (Lin, 2014) Suppose that F ∈ Ω2([α, β]) with F ([0, 1]) ⊆ [α, β]

and either F (α) = α or F (1) > α. Then F has infinitely many iterative roots of

order n ≥ 2.

For a detailed study on further results on the existence and nonexistence of

iterative roots of the class of continuous functions Ω1([α, β]) and Ω2([α, β]), one can

37



refer (Lin, 2014). Similar results on the existence of iterative roots of continuous

functions F : [0, 1] → [0, 1] which is constant on the interval [α, β] and strictly

monotone on [0, 1]\[α, β] can be found in (Lin et al., 2017).

3.2 Generalization of Forts and Characteristic

Interval

Let f : I → I be any continuous function, recall from Definition 1.3.11 that,

a point α ∈ int I is called a fort of f , if f is not strictly monotone in any

neighborhood of α.

For continuous functions, the end points of the interval I may exhibit the same

non-monotonic behavior like a fort which is an interior point of I. For example

consider the functions

f1(x) =

{
x sin 1

x
if x ∈ [−1, 1]\{0}

0 if x = 0.

and

f2(x) =

{
1
2
, if x = 0,

1
2

+ x2 sin(π
x
), if x ∈ (0, 1].

Note that, for each ε > 0, both the functions f1 and f2 are not strictly monotone

on the neighborhood Nε(0) = {x ∈ I | |x − 0| < ε}. In other words, the point 0

exhibits the same non-monotonic behavior, for the functions f1 and f2, regardless

of the interior point or end point of the interval.

By generalizing naturally, we define fort of a continuous functions as follows:

Definition 3.2.1. Let f : I → I be any continuous function. A point α ∈ I is

called a fort of f , if f is not strictly monotone in any neighborhood of α in I.

This natural generalization of fort allows us to to define the characteristic

interval for any continuous functions as follows:
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Definition 3.2.2. Let f : I → I be any continuous function. Then the smallest

closed interval containing the range of f whose end points are either forts of f or

the end points of [a, b] is called the characteristic interval of f .

Note that the Definition 3.2.2 is a generalization of Definition 1.3.17(cf. (Zhang,

1997)) for the class of PM functions of height less than two and Definition 2.3.1(cf.

Chapter 2) for the class of all PM functions. We denote the characteristic inter-

val of f by Chf . The existence and uniqueness of the characteristic interval of

continuous functions is similar to the discussion in Chapter 2.

Example 3.2.3. Let f : [a, b]→ [a, b] be the constant function defined by f(x) = α

for all x ∈ [a, b] and α ∈ [a, b]. Then the characteristic interval of f is the singleton

set {α}.

Example 3.2.4. Consider the function f : [0, 1]→ [0, 1] defined as follows:

f(x) =

 1
2
, if x = 0,

1
2

+ x2 sin(π
x
), if x ∈ (0, 1].

Clearly, f is a continuous self-mapping on [0, 1]. The graph of the function f is

given below.

Figure. 3.2.1

Since the function f is not strictly monotone at 0, we see that 0 is a fort

of f . The other forts of f are given by {x ∈ [0, 1] | x = π
2

cot(π
x
)}. Let m =

inf{f(x) | x ∈ [0, 1]} and M = sup{f(x) | x ∈ [0, 1]}. Put α = sup{x ∈

[0,m] | x = π
2

cot(π
x
)} and β = inf{x ∈ [M, 1] | x = π

2
cot(π

x
)}. Then, it is

easy to see that the characteristic interval of f is [α, β].

39



Proposition 3.2.5. Let F : I → I be a continuous function. Then

(i) ChF ⊇ ChF 2 ⊇ · · · ⊇ ChFn ⊇ · · · ;

(ii) If F is constant on ChF , then F n is constant for all n ≥ 2;

(iii) ChF = I if and only if S(F ) ⊆ R(F )0, where R(F ) is the range of F ;

Proof. (i) Let In = [an, bn] be the characteristic interval of F n. Then In ⊇ R(F n),

the range of F n, and an, bn ∈ S(F n) ∪ {a, b}. Since R(F n) ⊇ R(F n+1) and

S(F n+1) ⊇ S(F n) we have In ⊇ R(F n+1) and an, bn ∈ S(F n+1)∪{a, b}. Therefore

the interval In contains the range of F n+1 and the end points of In are either forts

of F n+1 or the end points of I. But In+1 is the smallest interval having the above

property, In ⊇ In+1.

(ii) If F is constant on ChF , then F is constant on R(F ). Now it is immediate

that F n is constant for all n ∈ N.

(iii) Let R(F ) = [m,M ]. If ChF = I, then F has no forts on (a,m] and

[M, b). Suppose there is a t ∈ S(F ) but t /∈ (m,M). If t ∈ [a,m], then t = a

as ChF = I. Since a is a fort of F , F is not strictly monotone at a. Therefore

every neighborhood of a has a fort of F other than a, which lead a contradiction

as ChF = I. On the other hand if t ∈ [M, b], then t = b. Again, as b is a

fort of F , F is not strictly monotone at b. Therefore every neighborhood of b

has a fort of F other than b, which leads to a contradiction as ChF = I. Hence

S(F ) ⊆ R(F )0 ∪ {a, b}.

Conversely, assume S(F ) ⊆ R(F )0∪{a, b}. Note that F has no forts on (a,m]

and [M, b). Therefore, by definition of characteristic interval, ChF = I.

3.3 Non-isolated Forts

In order to study the iterative root problem for the class of continuous functions

having infinitely many forts (i.e., non-PM functions), we further classify the forts

of continuous functions into two category as follows:
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Definition 3.3.1. Let f : I → I be a continuous function. We say a fort x∗

of f is a non-isolated fort, if for each ε > 0, the neighborhood Nε(x
∗) = {x ∈

I | |x − x∗| < ε} contains a fort of f other than x∗. Otherwise, x∗ is called an

isolated fort of f .

For any continuous function f : I → I, we denote the set of all forts of f by

S(f) and the set of all non-isolated forts of f by S∗(f). Let N(F ) and N∗(f)

denotes the number of forts and the number of non-isolated forts of f respectively.

Example 3.3.2. Consider the function defined in Example 3.2.4, we see that,

S(f) =
{
x ∈ [0, 1] | x = π

2
cot(π

x
)
}
∪ {0} and S∗(f) = {0}.

For any continuous function f : I → I, every non-isolated fort of f is a limit point

of forts of f , moreover, if f is a PM function then every fort of f is an isolated

fort.

Proposition 3.3.3. The fort x∗ is a non-isolated fort of f if and only if for each

ε > 0, there are distinct points α1, α2, α3 ∈ Nε(x
∗) such that f(α1) = f(α2) =

f(α3).

Proof. Suppose that x∗ is a non-isolated fort for f . If f is constant on a neigh-

borhood of x∗, then the results is trivial. If not, then there is a sequence {xm} of

distinct forts of f such that lim
m→∞

xm → x∗. For sufficiently large mi, choose four

consecutive forts, say xmi , so that either xmi ∈ (x∗ − ε, x∗) or xmi ∈ (x∗, x∗ + ε)

for i = 0, 1, 2, 3 with xm0 < xm1 < xm2 < xm3 . Since f is monotone on each

of the subintervals [xmi , xmi+1
], either f is increasing on [xm0 , xm1 ] and [xm2 , xm3 ]

and decreasing on [xm1 , xm2 ] and [xm3 , xm4 ] or f is decreasing on [xm0 , xm1 ] and

[xm2 , xm3 ] and increasing on [xm1 , xm2 ] and [xm3 , xm4 ]. Thus in either case, there

exists

t ∈ f([xm0 , xm1 ]) ∩ f([xm1 , xm2 ]) ∩ f([xm2 , xm3 ])

or

t ∈ f([xm1 , xm2 ]) ∩ f([xm2 , xm3 ]) ∩ f([xm3 , xm4 ]).
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Therefore, there are points α1, α2, α3 ∈ (xm0 , x
∗) or α1, α2, α3 ∈ (x∗, xm3) such

that

f(α1) = f(α2) = f(α3) = t

depending on xmi ∈ (x∗ − ε, x∗) or xmi ∈ (x∗, x∗ + ε) for i = 0, 1, 2, 3.

Conversely, suppose for each positive integer m ≥ 1, there exist

αm1 , αm2 , αm3 ∈ N 1
m

(x∗)

such that f(αm1) = f(αm2) = f(αm3). Note that at least two of the αmi lies in

either (x∗ − 1
m
, x∗) or (x∗, x∗ + 1

m
). Without loss of generality, assume αm1 , αm2 ∈

(x∗, x∗ + 1
m

) such that f(αm1) = f(αm2). Therefore, there exists xm ∈ (αm1 , αm2)

such that f assumes either local maximum or local minimum at xm. Hence xm ∈

S(f) and |xm − x∗| < 1
m

for all m, so that lim
m→∞

xm → x∗. Therefore, x∗ is an

non-isolated fort of f .

Remark 3.3.4. If x∗ is a non-isolated fort of f , then for each ε > 0 there are

distinct points α1, α2 ∈ Nε(x
∗) such that f(α1) = f(α2). But the converse is not

necessarily true. For example, consider the tent map T : [0, 1]→ [0, 1] defined by

T (x) =

 2x if x ∈ [0, 1
2
],

2(1− x) if x ∈ (1
2
, 1].

Clearly 1
2

is a fort of T . In fact, for each ε > 0 the points 1−ε
2
, 1+ε

2
∈ Nε(

1
2
) such

that T (1−ε
2

) = T (1+ε
2

). But 1
2

is not a non-isolated fort of T .

Remark 3.3.5. Suppose for each ε > 0 there exist distinct α1, α2, α3, α4 ∈ Nε(x
∗)

such that f(α1) = f(α2) = f(α3) = f(α4). Then x∗ is a non-isolated fort of

f . But the converse is not necessarily true. For example, consider the function

f : [0, 1]→ [0, 1] defined by

f(x) =


0 if x = 0,

2x− 3

2n+2
if x ∈ ( 1

2n+1 ,
3

2n+2 ], n = 0, 1, 2, . . . ,

3

2n+1
− x if x ∈ ( 3

2n+2 ,
1
2n

], n = 0, 1, 2, . . . .
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Then S(f) = { 1
2n+1 ,

3
2n+2 | n = 0, 1, 2, . . .} ∪ {0}. Since, for each ε > 0, the

neighborhood Nε(0) contains all but finitely many 1
2n

, the point 0 is a non-isolated

fort of f . See the graph of the function f given in Figure 3.3.1.

Figure. 3.3.1
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Put In = ( 3
2n+2 ,

1
2n

], Jn = ( 1
2n+1 ,

3
2n+2 ] and An = In ∪ Jn for all n = 0, 1, 2, . . . .

Let m and n are any non-negative integers such that m− n ≥ 2. Then

f(An) ∩ f(Am) = f

((
1

2n+1
,

1

2n

])
∩ f

((
1

2m+1
,

1

2m

])
=

(
1

2n+2
,

3

2n+2

]
∩
(

1

2m+2
,

3

2m+2

]
.

Since m ≥ n+ 2, we have,

1

2m+2
<

3

2m+2
=

3

4

1

2m
<

1

2n+2
<

3

2n+2
.

Therefore

f(An) ∩ f(Am) = ∅ for m ≥ n+ 2. (3.3.1)

Now, suppose for each ε > 0 there exist distinct points α1, α2, α3, α4 ∈ Nε(0) such

that

f(α1) = f(α2) = f(α3) = f(α4). (3.3.2)

Since the collection of sets {An | n = 0, 1, 2, . . .} ∪ {0} forms a partition of [0, 1],

the points α1, α2, α3, α4 ∈ ∪∞n=0An∪{0}. Since the function f is strictly monotone
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on each In and Jn, the interval An can contain at most two αi’s. Without loss of

generality, assume α1, α2 ∈ An and α3, α4 ∈ Am for some n,m with m ≥ n+ 1.

If m > n+1, then equation (3.3.1) leads a contradiction to (3.3.2). Therefore,

we must have m = n+ 1. But, in this case,

f(An+1) ∩ f(An)

= {f(Jn+1) ∪ f(In+1)} ∩ {f(Jn) ∪ f(In)}

=

{(
1

2n+3
,

3

2n+3

]
∪
[

1

2n+2
,

3

2n+3

)}
∩
{(

1

2n+2
,

3

2n+2

]
∪
[

1

2n+1
,

3

2n+2

)}
=

(
1

2n+3
,

3

2n+3

]
∩
(

1

2n+2
,

3

2n+2

]
= ∅ for n = 0, 1, 2, . . .

This leads a contradiction to equation (3.3.2). Therefore, if x∗ is a non-isolated

fort of f , then for each ε > 0, it is not necessary that there exist distinct α1, α2, α3, α4 ∈

Nε(x
∗) such that f(α1) = f(α2) = f(α3) = f(α4).

For any continuous function f , we define

S∗L(f) := {x∗ ∈ S∗(f) : x∗ = lim
m→∞

xm, where xm ∈ S(f) ∩ (a, x∗)} (3.3.3)

and

S∗R(f) := {x∗ ∈ S∗(f) : x∗ = lim
m→∞

xm, where xm ∈ S(f) ∩ (x∗, b)}. (3.3.4)

Proposition 3.3.6. If x∗ ∈ S∗(f), then the following statements are true:

(i) x∗ ∈ S∗(fn) for all n ∈ N;

(ii) If t ∈ f−(n−1)(x∗) ∩ S(fn−1)c ∩ I0, then t ∈ S∗(fn) for all n ∈ N;

(iii) If x∗ ∈ S∗L(f) and t ∈ f−(n−1)(x∗) such that fn−1 attains local maximum at

t, then t ∈ S∗(fn);

(iv) If x∗ ∈ S∗R(f) and t ∈ f−(n−1)(x∗) such that fn−1 attains local minimum at

t, then t ∈ S∗(fn).
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Proof. (i) is straight forward from Proposition 3.3.3.

To prove (ii), let ε > 0 be given. Consider the neighborhood Nδ(f
n−1(t)), by the

continuity of fn−1 at t, we can find a neighborhood Nε′(t) such that

fn−1(Nε′(t)) ⊆ Nδ(f
n−1(t))

and hence

fn−1(Nr(t)) ⊆ Nδ(f
n−1(t)),

where r = min{ε, ε′}. Since fn−1(t) is an non-isolated fort of f , by Proposition

3.3.3, there are distinct points y1, y2, y3 ∈ fn−1(Nr(t)) ∩Nδ(f
n−1(t)) such that

f(y1) = f(y2) = f(y3).

Now, by the intermediate value theorem, choose three distinct points in Nr(t) such

that fn−1(xi) = yi for i = 1, 2, 3. Therefore, for any ε > 0, there are three distinct

points x1, x2, x3 ∈ Nε(t) such that

fn(x1) = fn(x2) = fn(x3)

and hence t is an non-isolated fort of fn.

For (iii), choose Nδ(f
n−1(t)) = (fn−1(t)− δ, fn−1(t)) in the proof of (ii).

Similarly, for (iv), choose Nδ(f
n−1(t)) = (fn−1(t), fn−1(t) + δ) in the proof of (ii).

This completes the proof.

Lemma 3.3.7. If f : I → I is a continuous function, then S∗(fm) ⊆ S∗(fm+1)

for all m ∈ N.

Proof. Let x∗ be a non-isolated fort of fm. Therefore there exist a sequence of

forts {xn} of fm such that xn → x∗ as n→∞. It is clear from the definition that

S(fm) ⊆ S(fm+1) for all m ∈ N. Therefore {xn} is a sequence of forts of fm+1

such that xn → x∗ as n→∞. Hence x∗ is a non-isolated fort of fm+1.

Proposition 3.3.8. Let f : I → I is a continuous function. Then
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(i) if N∗(f) = 0, then N∗(fm) = 0 for all m ∈ N.

(ii) if N∗(fm) = N∗(fm+1), for some m ∈ N then N∗(fm) = N∗(fm+i) for all

i ∈ N.

Proof. (i) We prove the result using induction on m. If N∗(f) = 0 then S∗(f) = φ.

Since S∗(f 2) = S∗(f) ∪ {x ∈ [a, b] | f(x) ∈ S∗(f)}, whence S∗(f 2) = φ and

N∗(f 2) = 0. Assume N∗(fm−1) = 0, then S∗(fm−1) = φ. Since

S∗(fm) = S∗(fm−1) ∪ {x ∈ [a, b] | f(x) ∈ S∗(fm−1)},

we have S∗(fm) = φ and N∗(fm) = 0.

(ii) In view of Lemma 3.3.7, we have the following inequality.

N∗(f) ≤ N∗(f 2) ≤ N∗(f 3) ≤ · · · ≤ N∗(fn) ≤ · · ·

If N∗(fm) = ∞, then the result is trivial. Assume N∗(fm) < ∞ and N∗(fm) =

N∗(fm+1). Since

S∗(fm+1) = S∗(fm) ∪ {x ∈ [a, b] | f(x) ∈ S∗(fm)},

we have {x ∈ [a, b] | f(x) ∈ S∗(fm)} = φ. Now,

S∗(fm+2) = S∗(fm+1) ∪ {x ∈ [a, b] | f(x) ∈ S∗(fm+1)}

= S∗(fm+1) ∪ {x ∈ [a, b] | f(x) ∈ S∗(fm)}

= S∗(fm).

Proceed similarly to prove N∗(fm) = N∗(fm+i) for all i ∈ N.

3.4 Extension of Iterative Roots from the Char-

acteristic Interval

Suppose that the given function behaves nicely in the sense that the function is

piecewise monotone in the characteristic interval, then a series of results are avail-

able on the existence of iterative roots in the characteristic interval (see (Zhang,

1997; Liu et al., 2012; Li and Chen, 2014)).
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The following theorem gives an extension of iterative roots of any continuous

function F : I = [a, b]→ I, provided F |ChF has iterative root on ChF .

Theorem 3.4.1. Let F : I → I be a continuous function and let F0 = F |ChF .

Suppose there is a continuous function f0 : ChF = [a′, b′]→ ChF such that fn0 = F0

on ChF with the following properties:

(i) there exist α, β ∈ S(f0) such that f0 has no forts in the intervals (a′, α) and

(β, b′) with a < a′ < α < β < b′ < b,

(ii) F ([a, a′]) ⊆ F0([a
′, α]) ⊆ f0([a

′, α]) ⊆ [a′, α] and F ([b′, b]) ⊆ F0([β, b
′]) ⊆

f0([β, b
′]) ⊆ [β, b′].

Then there exists a continuous function f on I such that f |ChF = f0 and fn = F

on I.

Proof. For i ∈ {1, 2, . . . , n − 1}, let φi : f i−10 ([a′, α]) → f i0([a
′, α]) and ψi :

f i−10 ([β, b′])→ f i0([β, b
′]) be the homeomorphisms defined respectively by

φi(x) = f0(x) for all x ∈ f i−10 ([a′, α])

and

ψi(x) = f0(x) for all x ∈ f i−10 ([β, b′]).

Now, define f : I → I as follows:

f(x) :=


φ ◦ F (x), if x ∈ [a, a′),

f0(x), if x ∈ [a′, b′],

ψ ◦ F (x), if x ∈ (b′, b],

where φ = φ−11 ◦ φ−12 ◦ · · · ◦ φ−1n−1 and ψ = ψ−11 ◦ ψ−12 ◦ · · · ◦ ψ−1n−1. By hypothesis

(ii), the above definition is well-defined. Also, it is clear that, if x ∈ [a′, b′], then
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fn = f0
n = F . For any x ∈ [a, a′],

fn(x) = fn−10 ◦ φ ◦ F (x)

= fn−10 ◦ φ−11 ◦ φ−12 ◦ · · · ◦ φ−1n−1 ◦ F (x)

= fn−10 ◦ f−10 ◦ f−10 ◦ · · · ◦ f−10 ◦ F (x)

= F (x)

and, for any x ∈ [b′, b],

fn(x) = fn−10 ◦ ψ ◦ F (x)

= fn−10 ◦ ψ−11 ◦ ψ−12 ◦ · · · ◦ ψ−1n−1 ◦ F (x)

= fn−10 ◦ f−10 ◦ f−10 ◦ · · · ◦ f−10 ◦ F (x)

= F (x).

Therefore, f satisfies the functional equation fn = F on I. It remains to prove

that f is continuous on I. To prove f is continuous, it is enough to prove that f

is continuous at a′ and b′.

Let (xn) ∈ [a, a′) be a sequence such that xn → a′ as n → ∞. Since F is

continuous at a′, it follows that F (xn) → F (a′) as n → ∞. By hypothesis (ii)

F (xn) ∈ F0([a
′, α]) for all n. Since the function φ is continuous at F (a) = F0(a

′),

we have

φ(F (xn))→ φ(F0(a
′)) = f0(a

′) as n→∞.

i.e., f(xn)→ f(a) as n→∞.

Thus f is continuous at a′. Similarly, we can prove that f is continuous at b′ and

hence f is continuous on [a, b]. This completes the proof.

In the view of Theorem 3.4.1, in order to study the iterative roots of continuous

non-PM functions, it is sufficient to study the iterative roots on its characteristic

interval. The problem of finding iterative roots becomes difficult only when F is

not a PM function on its characteristic interval, i.e., if F has infinitely many forts

in its characteristic interval. We address this problem partially in the next section.
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Now, we present an example to illustrate Theorem 3.4.1.

Example 3.4.2. Consider the continuous function F : [0, 1]→ [0, 1] defined by

F (x) =



1
4
, if x = 0,

3
4
− nx, if x ∈ ( 1

2n+1
, 1
2n

] (n ≥ 2),

nx− 1
4
, if x ∈ ( 1

2n
, 1
2n−1 ] (n ≥ 3),

x, if x ∈ (1
4
, 3
8
],

9
8
− 2x, if x ∈ (3

8
, 7
16

],

4x− 3
2
, if x ∈ ( 7

16
, 9
16

],

15
8
− 2x, if x ∈ ( 9

16
, 5
8
],

x, if x ∈ (5
8
, 3
4
],

9
8
− x

2
, if x ∈ (3

4
, 1].

The graph of the function F is given below.
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Note that F is continuous on [0, 1] and ChF = [1
4
, 3
4
]. Clearly, the function f0 :

[1
4
, 3
4
]→ [1

4
, 3
4
] defined by

f0(x) =


5
8
− x, if x ∈ (1

4
, 3
8
],

2x− 1
2
, if x ∈ (3

8
, 5
8
],

11
8
− x, if x ∈ (5

8
, 3
4
]

is a iterative root of order 2 of F on [1
4
, 3
4
], i.e., f 2

0 = F0. Here α = 3
8
, β = 5

8
and

f0([
1
4
, 3
8
]) = [1

4
, 3
8
], f0([

5
8
, 3
4
]) = [5

8
, 3
4
].
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Further,

F ([0, 1
4
]) ⊆ F0([

1
4
, 3
8
]) = [1

4
, 3
8
] and F ([3

4
, 1]) ⊆ F0([

5
8
, 3
4
]) = [5

8
, 3
4
]

(see Figure. 3.4.1 and Figure. 3.4.2). Therefore, the function f : [0, 1] → [0, 1]

computed by using Theorem 3.4.1 as

f(x) =



3
8
, if x = 0

nx− 1
8
, if x ∈ ( 1

2n+1
, 1
2n

] (n ≥ 2)

7
8
− nx, if x ∈ ( 1

2n
, 1
2n−1 ] (n ≥ 3)

f0(x), if x ∈ (1
4
, 3
4
]

1
4

+ x
2
, if x ∈ (3

4
, 1],

is actually continuous and satisfies f 2(x) = F (x) for all x ∈ [0, 1].

3.5 Nonexistence of Iterative Roots

The following theorem gives the nonexistence of iterative roots of continuous func-

tions having infinitely many forts:

Theorem 3.5.1. If F ∈ C(I) has only one non isolated fort, say x∗, on its range

such that F (x∗) 6= x∗ and x∗ ∈ S∗L(F ) ∩ S∗R(F ), then F has no iterative root of

any order n ≥ 2.

Proof. Suppose that there exists f ∈ C(I) such that fn = F on I. If f has no

non-isolated forts in its range, then the function F = fn also have no non-isolated

forts in its range, which is not possible. Therefore, f must have at least one non-

isolated fort on its range. Further, this non-isolated fort cannot be a fixed point of

f as F has no non-isolated fort which is also a fixed point. Hence, by Proposition

3.3.6 (ii), fn have at least two non-isolated forts, which is a contradiction to our

assumption. This completes the proof.

Example 3.5.2. Let F : [−1, 1]→ [−1, 1] be the function defined by

F (x) =

 1
4
, if x = 0,

1
4

+ x2 sin(π
x
), if x ∈ [−1, 1]\{0}.
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Clearly 0 is the only non-isolated fort which is not a fixed point of F . Therefore

by Theorem 3.5.1, F has no iterative roots of order n ≥ 2. The graph the function

F is given below.

Figure. 3.5.1

Theorem 3.5.3. Let Ω be the set of all F ∈ C(I) which has only one non-isolated

fort, say x∗, on its range such that F (x∗) 6= x∗ and x∗ ∈ S∗L(F ) ∩ S∗R(F ). Then Ω

is dense in C(I).

Proof. Let ε > 0 be given. Since, any f ∈ C(I) is uniformly continuous, we can

find δ > 0 such that |f(x) − f(y)| < ε
4

whenever |x − y| < δ. Choose a positive

integer M such that 1
M
< δ. Let x0 ∈ R(f) be any arbitrary point. Define

x−k = x0 −
k

M
for 1 ≤ k ≤ m1, (3.5.5)

where m1 is the least positive integer satisfies the inequality (x0 − m1

M
) − a < 1

M
.

Define

xk = x0 +
k

M
for 1 ≤ k ≤ m2, (3.5.6)

where m1 is the least positive integer satisfies the inequality b − (x0 + m2

M
) < 1

M
.

Therefore, equations (3.5.5) and (3.5.6), we have

a = x−(m1+1) < x−m1 < · · · < x−1 < x0 < x1 < · · · < xm2 < xm2+1 = b.

Define the function g : I → I as follows:

g(xk) =

 f(xk) + ε
8
, if k = 0,

f(xk), if k 6= 0 and − (m1 + 1) ≤ k ≤ m2 + 1,
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and g is linear on each of the subintervals [x−(k+1), x−k] for 1 ≤ k ≤ m1 and linear

on each of the subintervals [xk, xk+1] for 1 ≤ k ≤ m2.

Now, consider the interval [x−1, x1]. Let m be the least positive integer such

that x0 + 1
2m

< x1 and x−1 < x0 − 1
2m

. First, we define g on the points x0 + 1
2m+k

and x0 − 1
2m+k for k = 0, 1, 2, . . . . Then extend this g linearly as before. Define

g
(
x0−

1

2m+k

)
=

(
f(x0 −

1

2m
)− ε

4

)
+

(
f(x0)−

(
f(x0 −

1

2m
)− 3ε

8

))(
2k − 1

2k

)

when k ∈ {0, 2, 4, . . .} and

g
(
x0 −

1

2m+k

)
= f(x−1) +

(f(x0) + ε
8
)− f(x−1)

x0 − x−1

(
(x0 −

1

2m+k
)− x−1

)

when k ∈ {1, 3, 5, · · · }. Similarly, define

g
(
x0 +

1

2m+k

)
=
(
f(x0) +

ε

8

)
−
((

f(x0)−
ε

8

)
− f(x0 +

1

2m
)

)(
1

2k

)

when k ∈ {0, 2, 4, · · · } and

g
(
x0 +

1

2m+k

)
= f(x1) +

(f(x0) + ε
8
)− f(x1)

x0 − x1

(
(x0 +

1

2m+k
)− x1

)

when k ∈ {1, 3, 5, · · · }. Now, define g is linear on each of the subintervals [x0 +

1
2m+k+1 , x0 + 1

2m+k ] and [x0− 1
2m+k , x0− 1

2m+k+1 ] for all k = 0, 1, 2, . . ., also linear on

[x−1, x0 − 1
2m

] and [x0 + 1
2m
, x1].

Note that g is continuous on I and having only one non-isolated fort on the

range of g, namely, x0 (see Figure. 3.4.2). By choice, x0 ∈ S∗L(g) ∩ S∗R(g) and, if

g(x0) = f(x0) + ε
8

= x0, then we replace ε
8

by ε
16

in the definition of g(x0) so that

we may assume g(x0) 6= x0. Therefore g ∈ Ω.
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Figure.3.4.2

b

x0x−1x−2x−m1a x1 x2 xm2 b

f + ε
4

f

f − ε
4

Also, whenever x ∈ [xk, xk+1] for some −(m1 + 1) ≤ k ≤ m2, then g(x) lies

between f(xk)± ε
4

and f(xk+1)± ε
4
. Moreover, as |xk − x| ≤ 1

M
< δ, we have

|f(xk)− f(x)| < ε

4
, |g(x)− f(xk)| ≤ |f(xk+1)− f(xk)|+

ε

2
<

3ε

4
.

Therefore |f(x) − g(x)| < ε and hence ||f − g||∞ = sup
x∈I
|f(x) − g(x)| < ε. This

completes the proof.

We now prove an another theorem on nonexistence of iterative roots of contin-

uous functions having finitely many non-isolated forts by generalizing the concepts

of height given in (Zhang, 1997).

From Proposition 3.3.8, we see that {N∗(fk)}∞k=1 is a non-decreasing sequence

of non-negative integers. Let H∗(f) denotes the least positive integer m such that

N∗(fm) = N∗(fm+1), if it exists, otherwise H∗(f) =∞.

Note that, H∗(F ) ≤ 1 if and only if F has no non-isolated forts in its charac-

teristic interval. Therefore, if H∗(F ) ≤ 1, then the existence of iterative roots of

F can be given based on the assumptions of Theorem 3.4.1. On the other hand, if

H∗(F ) > 1 the following theorem establishes the nonexistence of iterative roots.
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Theorem 3.5.4. Let F : I → I be a continuous function such that H∗(F ) > 1

then F has no iterative roots of order n > N∗(F ).

Proof. Suppose f be an iterative root of order n > N∗(F ) of F . Since H∗(F ) > 1,

we have

N∗(fn) = N∗(F ) < N∗(F 2) = N∗(f 2n)

and hence H∗(f) > n. Therefore

N∗(f) < N∗(f 2) < N∗(f 3) < · · · < N∗(fn).

This implies that N∗(fn) = N∗(F ) ≥ n, a contradiction.

Theorem 3.5.5. Let G : I → I be a continuous function. Then for any ε > 0

and any n ∈ N, there exists a continuous function F : I → I with N∗(F ) = n and

H∗(F ) > 1 such that ||F −G||∞ < ε.

Proof. Let α1, α2, . . . , αn be any points in [a, b] such that at least one of the αi

is a fixed point of G and α1 < α2 < . . . < αn. For 1 ≤ i ≤ n, let [ai, bi] be a

closed neighborhood of αi such that [ai, bi] ∩ [aj, bj] = φ for all i 6= j. Define the

functions Gi : [ai, bi]→ R by,

Gi(x) =

 (x− αi) sin 1
(x−αi) , if x 6= αi

0, if x = αi,

where 1 ≤ i ≤ n. Choose a positive real number βi such that

βiGi : [ai, bi]→ [G(αi)−
ε

2
, G(αi) +

ε

2
].

Let Λ0 = [a, a1] and Λi = [bi, ai+1] for 1 ≤ i ≤ n − 1 and Λn = [bn, b]. Choose

continuous functions Hi : Λi → G(Λi) such that

Hi(x) ∈ (G(x)− ε

2
, G(x) +

ε

2
) for all x ∈ Λi,

in particular H0(a) = G(a), and Hi(ai+1) = Gi(ai+1), Hi(bi) = Gi(bi) for 1 ≤ i ≤

n− 1 and Hn(bn) = Gn(bn), Hn(b) = G(b). Now, define G : I → I by

F (x) =

 Hi(x), if x ∈ Λi

βiGi(x), if x ∈ [ai, bi].
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By construction, F is continuous on I, S∗(F ) = {α1, α2, . . . , αn}, H∗(F ) > 1 and

||G− F ||∞ < ε.

From Theorem 3.5.5, we can conclude that, for each positive integer n if Cn =

{F ∈ C(I) | H∗(F ) > 1 and N∗(F ) = n} then Cn is dense in C(I) where each

member in Cn does not possess iterative root of order k > n.

Summary of the Chapter

In this chapter we studied the iterative root problem for the class of non-PM

functions using characteristic interval. We proved the following:

• An extension theorem of iterative roots from characteristic interval.

• As an application of nonexistence theorem we constructed a class of functions

which are dense in C(I).

We also observe the following problems for future work.

1. Let F : I → I be any continuous function with finitely many non-isolated

forts and H∗(F ) > 1. Does there exist iterative roots of order n ≤ N∗(F )?
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Chapter 4

Series-Like Iterative Functional Equa-

tion for PM Functions

In this chapter, we study the existence of solutions of the series-like iterative

functional equation

∞∑
n=1

λnf
n(x) = F (x) for all x ∈ I, (4.0.1)

where {λn} is a sequence of non-negative real numbers such that
∞∑
n=1

λn = 1 and

F ∈ C(I). The equation (4.0.1) is obviously a generalization of the functional

equation

fn(x) = F (x) for all x ∈ I, (4.0.2)

discussed in Chapter 2. It has been proved that the iterative functional equation

(4.0.1) has solution provided F is strictly increasing. We extend this problem for

the class of piecewise monotone functions.

4.1 Preliminaries

The existence of continuous and differentiable solutions of the polynomial-like

iterative functional equation

n∑
i=1

λif
i(x) = F (x) for all x ∈ I (4.1.3)

has been studied by W. Zhang (Zhang, 1988, 1990). For given real numbers M ≥ 0

and m > 0, we define
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R(I) = {f ∈ C(I, I) : f(a) = a, f(b) = b},

R(I,M) = {f ∈ R(I) : 0 ≤ f(x)− f(y) ≤M(x− y) ∀ x, y ∈ I with x > y}

and

R(I,m,M) = {f ∈ R(I,M) : m(x− y) ≤ f(x)− f(y) ∀ x, y ∈ I with x > y}.

Theorem 4.1.1. (Zhang, 1988) Let m,M and λ1 be positive real numbers and

λi ≥ 0 for 2 ≤ i ≤ n with
n∑
i=1

λi = 1. Then for each F ∈ R(I, λ1M) there

is a function f ∈ R(I,m,M) such that f satisfies the polynomial-like iterative

functional equation (4.1.3). Moreover, if λ1 ≥ 1− m∑n−1
i=1 M

i
, then the solution is

unique and stable.

Further, Zhang (Zhang, 1990) proved the existence of differentiable solutions of

the polynomial-like functional equation (4.1.3).

For given constants M ≥ 0, M∗ ≥ 0, and m > 0, we define the families of

functions

R1(I,M) = {f ∈ C1(I, I) : f(a) = a, f(b) = b, 0 ≤ f ′(x) ≤M ∀ x ∈ I},

R1(I,M,M∗) = {f ∈ R1(I,M) : |f ′(x)− f ′(y)| ≤M∗|x− y| ∀ x, y ∈ I}

and

R1(I,m,M,M∗) = {f ∈ R1(I,M,M∗) : m ≤ f ′(x) ∀ x ∈ I}.

Theorem 4.1.2. (Zhang, 1990) Let m,M and M∗ be positive real numbers. Sup-

pose that M > 1 and λ1 > K0M
2 where K0 = 1

M−1

n−1∑
i=1

λi+1M
i−1(M i−1) and λ1 >

0, λi ≥ 0, i = 2, 3, . . . , n with
n−1∑
i=1

λi = 1. Then for each F ∈ R1(I,m, λ1M,M∗)

there is a function f ∈ R1(I,M,M ′) such that f satisfies the polynomial-like

functional equation (4.1.3), where M ′ = M∗

(λ1−K0M2)
.

The existence of solutions of the equation (4.1.3) with variable coefficients can

be found in (Zhang and Baker, 2000; Li and Deng, 2005). Moreover, the existence

of continuous and differentiable solutions and stability of the solution of a more
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general equation of the form (4.0.1) has been studied in (Jarczyk, 1997; Murugan

and Subrahmanyam, 2005, 2009).

For any sequence of real numbers {ai}, define the support of the sequence {ai}

by Supp {ai} = {i ∈ N : ai 6= 0}. Further, for any non-empty, non-zero subset of

integers I, the greatest common divisor of I is defined to be the maximal number

p ∈ N such that I ⊆ pZ.

Theorem 4.1.3. (Jarczyk, 1997) Let {ai} be a non-zero sequence of non-negative

real numbers such that the greatest common divisor of Supp{ai} equals 1. If either

D ⊆ (−∞, 0) or D ⊆ (0,∞) and f : D → D satisfies the equation

∞∑
i=1

aif
i(x) = x, (4.1.4)

then there is exactly one positive real root of the equation
∞∑
i=1

aiλ
i = 1 and f(x) =

cx for all x ∈ D.

Theorem 4.1.4. (Murugan and Subrahmanyam, 2005) Let {λn}, {αn} and {βn}

are sequence of non-negative numbers and αn ≤ λn ≤ βn such that
∞∑
n=1

λn = 1.

Suppose 0 < m < 1, M > 1 and

(i)
∞∑
n=1

βnM
n <∞ (ii) K0 =

∞∑
n=1

αnm
n−1 > 0.

Then for any F ∈ R(I,K1m,K0M) the series-like functional equation (4.0.1) has

a solution f ∈ R(I,m,M), where K1 =
∞∑
n=1

βnM
n−1.

We remark here that the solutions of all the above functional equations has

studied exclusively for the class of continuous strictly increasing functions. Re-

cently Liu et al., (Liu and Gong, 2017), proved the existence of solutions of

polynomial-like functional equations for PM functions of height less than two.

In the rest of this chapter we study the continuous solutions of the series-like

functional equation (4.0.1) for the class of PM functions of height less than or

equal to one using characteristic interval.
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4.2 A Topological Result

In order to study the existence of solutions of series-like iterative functional equa-

tion (4.0.1) for the class of PM functions, at first we study the existence of solutions

in the characteristic interval and then we extend that iterative root to the whole

interval.

Let I = [a, b] be any closed and bounded interval in the real line and a′, b′ ∈ I

such that a′ < b′ and m,M be positive real numbers. Define,

S([a′, b′],m,M) = {f ∈ PM(I) : Chf = [a′, b′], f |Chf ∈ R([a′, b′],m,M)}.

Since any f ∈ S([a′, b′],m,M) is strictly increasing in Chf , the set S([a′, b′],m,M)

consists only a collection of PM functions of height less than or equal to one whose

characteristic interval is [a′, b′].

Proposition 4.2.1. The set S([a′, b′],m,M) is a compact, convex subset of

C(I,R).

Proof. First we prove S is a convex set. Let f, g ∈ S. For each t ∈ (0, 1), put

ht = tf+(1−t)g. Clearly ht(a
′) = a′ and ht(b

′) = b′. Now we prove Chht = [a′, b′].

For any x ∈ I, since f(x), g(x) ∈ [a′, b′] and every interval is convex we have,

ht(x) ∈ [a′, b′]. Consequently the range of ht is contained in [a′, b′]. As ht is a

order preserving homeomorphism on [a′, b′], to prove Chht = [a′, b′], it is enough if

we prove a′ and b′ are forts of ht. For each ε > 0, if α ∈ (a′ − ε, a′) we have,

ht(α) = tf(α) + (1− t)g(α) ≥ tf(a′) + (1− t)g(a′) = ht(a
′)

as f(α) ≥ f(a′) and g(α) ≥ g(a′). Therefore for every ε > 0, ht is monotonically

decreasing on (a′− ε, a′). Since ht is monotonically increasing on [a′, b′], it follows

that a′ is a fort of ht. Similarly we can prove b′ is a fort of ht.

Also, for any x, y ∈ [a′, b′] with x > y, an easy calculation shows that

m(x− y) ≤ ht(x)− ht(y) ≤M(x− y)
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as m(x− y) ≤ f(x)− f(y) ≤M(x− y) and m(x− y) ≤ g(x)− g(y) ≤M(x− y).

This proves that S is convex.

To prove S is compact, first we prove S is closed. Let {fn} be a sequence

in S such that fn converges to f uniformly. Then f(a′) = lim
n→∞

fn(a′) = a′ and

f(b′) = lim
n→∞

fn(b′) = b′. Also, it is easy to verify that

m(x− y) ≤ f(x)− f(y) ≤M(x− y) ∀ x, y ∈ [a′, b′] with x > y.

Note that range of f is contained in [a′, b′] and f is monotone on [a′, b′]. Therefore

to prove Chf = [a′, b′], it is enough to prove for each ε > 0, the function f is

monotonically decreasing on (a′ − ε, a′) and (b′, b′ + ε). Let α ∈ (a′ − ε, a′) and

β ∈ (b′, b′ + ε). Since fn(α) ≥ fn(a′) and fn(b′) ≤ fn(β) we have,

f(α) ≥ f(a′) and f(b′) ≤ f(β).

This shows that f ∈ S. i.e., S is closed. Also, for any f ∈ S, |f(x)| ≤ max{|a|, |b|}

and hence S is uniformly bounded. Now it follows from Arzela-Ascoli’s theorem

that S is compact.

4.3 Existence of Solutions on the Characteristic

Interval

Let F ∈ PM(I) with H(F ) ≤ 1 and ChF = [a′, b′]. Let F0 = F |[a′,b′]. Then

F0 is strictly monotone on [a′, b′]. Therefore, by applying Theorem 4.1.4, the

functional equation (4.0.1) has a solution for F0 on [a′, b′]. The following Lemma

establishes a solution to the functional equation (4.0.1) for the class of functions

in R([a′, b′],m,M). The proof of the lemma given below follows from Theorem

4.1.4.

Lemma 4.3.1. Let F ∈ PM(I) with H(F ) ≤ 1, ChF = [a′, b′] and F0 = F |[a′,b′].

Let {λn}, {αn} and {βn} are sequence of non-negative numbers and αn ≤ λn ≤ βn
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such that
∞∑
n=1

λn = 1. Suppose 0 < m < 1, M > 1 and

(i)
∞∑
n=1

βnM
n <∞ (ii) K0 =

∞∑
n=1

αnm
n−1 > 0.

If F0 ∈ R([a′, b′], K1m, K0M), then there exists a function f0 ∈ R([a′, b′],m,M)

such that

∞∑
n=1

λnf
n
0 (x) = F0(x) for all x ∈ [a′, b′],

where K1 =
∞∑
n=1

βnM
n−1.

For each F ∈ S([a′, b′],m,M), Lemma 4.3.1 guarantees the solution of the

series-like iterative functional equation (4.0.1) on the characteristic interval of F .

The following lemma will be useful in extending the above solution to the whole

interval I.

Lemma 4.3.2. Let {λn}, {αn} and {βn} are sequence of non-negative numbers

and αn ≤ λn ≤ βn such that
∞∑
n=1

λn = 1. Suppose 0 < m < 1, M > 1 and

(i)
∞∑
n=1

βnM
n <∞ (ii) K0 =

∞∑
n=1

αnm
n−1 > 0.

For each f ∈ R([a′, b′], K0, K1), let Lf : [a′, b′]→ [a′, b′] be a function defined by

Lf (x) =
∞∑
n=1

λnf
n−1(x) for all x ∈ [a′, b′]. (4.3.5)

Then Lf ∈ R([a′, b′], K0, K1) and the function Lf is invertible, in particular L−1f ∈

R([a′, b′], 1
K0
, 1
K1

).

Proof. The proof follows from Lemma 3.2 of (Murugan and Subrahmanyam, 2009).
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4.4 Extension of Solutions from the Character-

istic Interval

Suppose that F ∈ PM(I) with H(F ) ≤ 1. Then F |[a′,b′] is strictly monotone,

where ChF = [a′, b′]. Therefore, by using the hypothesis of Lemma 4.3.1, any

F |ChF ∈ R([a′, b′], K1m,K0M) the series-like functional equation (4.0.1) has a so-

lution in R([a′, b′],m,M). By extending this solution, we prove that, any function

F ∈ S([a′, b′],m,M) and for any non-negative sequence {λn} such that
∞∑
n=1

λn = 1,

the functional equation (4.0.1) has a solution.

Theorem 4.4.1. Let {λn}, {αn} and {βn} are sequence of non-negative numbers

and αn ≤ λn ≤ βn such that
∞∑
n=1

λn = 1. Suppose 0 < m < 1, M > 1 and

(i)
∞∑
n=1

βnM
n <∞, (ii) K0 =

∞∑
n=1

αnm
n−1 > 0, (iii) F (I) ⊆ F ([a′, b′]).

Then for any F ∈ S([a′, b′], K1m,K0M) the series-like functional equation (4.0.1)

has a solution f ∈ S([a′, b′],m,M), where K1 =
∞∑
n=1

βnM
n−1.

Proof. Put F0 = F |[a′,b′]. Then F |[a′,b′] ∈ R([a′, b′], K1m,K0M). Therefore, by

Lemma 4.3.1, there exists f0 ∈ R([a′, b′],m,M) such that

∞∑
n=1

λnf
n
0 (x) = F0(x) for all x ∈ [a′, b].

We now extend this f0 to the whole interval I. For this, we define the function

Lf0 : [a′, b′]→ [a′, b′] by

Lf0(x) =
∞∑
n=1

λnf
n−1
0 (x) for all x ∈ [a′, b′].

Then, by Lemma 4.3.2, Lf0 ∈ R([a′, b′], K0, K1) and Lf0 is invertible. Moreover

L−1f0 ∈ R([a′, b′], 1
K1
, 1
K0

).
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Now we define f : I → I as follows:

f(x) :=


L−1f0 ◦ F (x) if a ≤ x < a′

f0(x) if a′ ≤ x ≤ b′

L−1f0 ◦ F (x) if b′ < x ≤ b.

The function f is well defined by condition (iii). Consequently, for each x ∈ [a′, b′]

we have
∞∑
n=1

λnf
n(x) =

∞∑
n=1

λnf
n
0 (x) = F0(x) = F (x).

On other hand, if x ∈ I\[a′, b] then

∞∑
n=1

λnf
n(x) = λ1f(x) + λ2f

2(x) + · · ·+ λnf
n(x) + · · ·

= λ1L
−1
f0

(F (x)) + λ2f0(L
−1
f0

(F (x))) + · · ·+ λnf
n−1
0 (L−1f0 (F (x))) + · · ·

=
∞∑
n=1

λnf
n−1
0 (L−1f0 (F (x)))

= Lf0(L
−1
f0

(F (x)))

= F (x).

Hence f satisfies the functional equation (4.0.1) for all x ∈ I. To prove f is

continuous on I it is enough if we prove f is continuous at a′ and b′. Let {xn} be

a sequence in [a, a′) such that xn → a′ as n→∞. Now,

lim
n→∞

f(xn) = lim
n→∞

L−1f0 (F (xn)) = L−1f0 (F (a′)) = L−1f0 (a′) = f(a′).

Therefore f is continuous at a′. Similarly, we can prove that f is continuous at b′.

Since Chf = [a′, b′] and f0 ∈ R([a′, b′],m,M), we have f ∈ S([a′, b′],m,M).

Example 4.4.2. Let F : [0, 1]→ [0, 1] be a function defined by

F (x) =

 x if x ∈ [0, 1
2
]

1− x if x ∈ (1
2
, 1].

Clearly F ∈ PM([0, 1]) with H(F ) = 1 and N(F ) = 1. Now, consider the series-

like iterative functional equation (4.0.1) with λ1 = 2
3

and λn = 1
4n−1 for all n ≥ 2.

Choose αn = βn = λn for all n ∈ N and m = 1
4
, M = 2. Note that

∞∑
n=1

βnM
n =

4

3
+ 2

∞∑
n=2

1

2n−1
<∞,
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and

K0 =
∞∑
n=1

αnm
n−1 =

2

3
+
∞∑
n=2

1

42n−2 =
11

15
,

also

K1 =
∞∑
n=1

βnM
n−1 =

2

3
+
∞∑
n=2

1

2n−2
=

8

3
.

Clearly F ∈ S([0, 1
2
], 2

3
, 22
15

). Therefore, by Theorem 4.4.1, the functional equation

(4.0.1) has a solution f ∈ S([0, 1
2
], 1

4
, 2).

Summary of the Chapter

In this chapter, we discussed the solutions of series-like iterative functional equa-

tion for a class of PM functions. More specifically we proved the following.

• For every F ∈ S([a′, b′], K1m,K0M), the series-like iterative functional equa-

tion (4.0.1) has a solution.

Observations and future work:

1. Under what condition the series-like iterative functional equation (4.0.1) has

a solution for a PM function having height greater than one?
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Chapter 5

Uniqueness of Iterative Roots

It is known that the iterative roots of continuous functions are not necessarily

unique, if exists. In this chapter, we discuss the uniqueness of iterative roots

of order preserving homeomorphisms. We prove an order preserving homeomor-

phism from an interval onto itself do not possess different iterative roots which

are subcommuting or comparable using the points of coincidence of functions.

5.1 Introduction

Let us recall Theorem 1.3.6 for the case of an order preserving homeomorphism.

Theorem 5.1.1. (Kuczma et al., 1990) Let I ⊆ R be any interval. Then ev-

ery strictly increasing continuous function F from I into itself possesses strictly

increasing continuous iterative roots of order n ∈ N.

Theorem 5.1.1 guarantees the existence of strictly increasing continuous iter-

ative roots of a strictly increasing continuous functions. Moreover, this strictly

increasing continuous nth order iterative root depends on arbitrary strictly increas-

ing homeomorphisms (see Theorem 1.3.6), and hence its iterative roots are not

unique. In fact, every strictly increasing continuous function, other than identity,

possesses infinitely many strictly increasing continuous nth order iterative roots.

The uniqueness of iterative roots of a special class of monotonic functions was

conjectured by Bödewadt (Bödewadt, 1944) and answered in negative by Smajdor

(Smajdor, 1973). Motivated by Bödewadt, suppose f and g are two iterative

roots of order n of a strictly increasing homeomorphism F (i.e. fn = gn = F ), it

is reasonable to ask under what condition f and g are identically equal?
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Zdun (Zdun, 1988) gave an affirmative answer to the above question.

Theorem 5.1.2. (Zdun, 1988) If f and g are strictly order preserving homeo-

morphisms from I onto itself such that f ◦ g = g ◦ f and fn = gn for some n ∈ N,

then f = g.

In this chapter, our aim is to provide weaker condition than commutativity to

get the uniqueness of iterative roots of order preserving homeomorphisms. One of

the weaker condition of commutativity given by Sessa (Sessa, 1982) is as follows:

The functions f, g : X → X are called weakly commuting, if d(fg(x), gf(x)) ≤

d(f(x), g(x)) for all x ∈ X. It is clear from definition that every pair of commuting

functions are weakly commuting, but not conversely.

Remark 5.1.3. If f, g are order preserving homeomorphisms such that f, g are

weakly commuting but not commuting, then there is at least one x ∈ I such that

d(fg(x), gf(x)) > 0. Therefore, d(f(x), g(x)) ≥ d(fg(x), gf(x)) > 0. This im-

mediately implies that f 6= g on I. Thus, the condition of weakly commuting is

helpless in the study of uniqueness of iterative roots of order preserving homeo-

morphisms.

We further investigate this uniqueness problem. Indeed, we prove Theorem

5.1.2 with a weaker condition. In due course, we also provide some sufficient

conditions on the uniqueness of iterative roots order preserving homeomorphisms,

using the points of coincidence of functions.

Throughout this chapter we fix I = (a, b), where −∞ ≤ a ≤ b ≤ ∞, and

let H (I) denote the set of all order preserving homeomorphisms from I onto

itself. Here after we always assume all the functions are in the class H (I) unless

otherwise stated.
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5.2 Set of Points of Coincidence

Let f and g be two order preserving homeomorphisms from the interval I onto

J ⊆ I. We say f and g are comparable, if either f(x) ≤ g(x) or g(x) ≤ f(x) for all

x ∈ I, and if the inequalities are strict then we say f and g are strictly comparable.

Proposition 5.2.1. If f and g are two strictly comparable order preserving home-

omorphisms from I onto J ⊆ I then fn and gn are strictly comparable order pre-

serving homeomorphisms, for all n ∈ N. In addition to that, if J = I then f−n and

g−n are also strictly comparable order preserving homeomorphisms, for all n ∈ N.

Proof. First we prove the result for positive integers. Assume f(x) < g(x) for all

x ∈ I. Since f is strictly increasing, by applying f on the above inequality, we

have

f 2(x) < f(g(x)) < g2(x) for all x ∈ I. (5.2.1)

Now, by applying f on the inequality (5.2.1) repeatedly we get,

fn(x) < gn(x) for all x ∈ I (n ∈ N). (5.2.2)

Now, we prove the result for negative integers by assuming J = I. First we prove

if f(x) < g(x), then g−1(x) < f−1(x) for all x ∈ I. Suppose there is a t ∈ I such

that g−1(t) ≥ f−1(t). Then

t = g(g−1(t)) ≥ g(f−1(t)) > f(f−1(t)) = t.

This is a contradiction. Hence g−1(x) < f−1(x) for all x ∈ I. Therefore, by

proceeding similar to (5.2.1) and (5.2.2), we get

g−n(x) < f−n(x) for all x ∈ I (n ∈ N). (5.2.3)

This completes the proof.
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For any two functions f and g, we denote the set of points of coincidence of f

and g by Z(f, g) and is defined by Z(f, g) = {x ∈ I | f(x) = g(x)}.

Theorem 5.2.2. If Z(f, g) is a finite set, then fn 6= gn for all n ∈ Z\{0}.

Proof. If Z(f, g) is empty, then either f(x) < g(x) or g(x) < f(x) for all x ∈ I.

Therefore, by Proposition 5.2.1, gn(x) 6= fn(x) for all x ∈ I and for all n ∈ Z\{0}.

On the other hand, if Z(f, g) is non empty, we proceed as follows:

If f and g does not have a common fixed point, then the set {x ∈ I | f(x) =

g(x) = x} must be empty. On the one hand, if at least one of them have a fixed

point say f(t) = t for some t ∈ I, then g(t) 6= t. Without loss of generality, let

g(t) < t. Hence gn(t) < t but fn(t) = t, which in turn implies fn 6= gn for all

n ∈ Z.

On the other hand, if none of them have a fixed point, then either f(x) < x

and g(x) < x for all x ∈ I or x < f(x) and x < g(x) for all x ∈ I.

In the first case, choose α ∈ Z(f, g) such that t /∈ Z(f, g) for all t ∈ (a, α).

Then the functions f and g are order preserving homeomorphisms from (a, α) onto

(f(a), f(α)) ⊆ (a, α), moreover, f and g are comparable on (a, α). Therefore, by

Proposition 5.2.1, fn 6= gn for all n ∈ Z.

In the later case, choose α ∈ Z(f, g) such that t /∈ Z(f, g) for all t ∈ (α, b).

Then the functions f and g are order preserving homeomorphisms from (α, b)

onto (f(α), f(b)) ⊆ (α, b), moreover, f and g are comparable on (α, b), again by

Proposition 5.2.1, fn 6= gn for all n ∈ Z.

If f and g have common fixed points, then choose α ∈ {x ∈ I | f(x) = g(x) =

x} such that t /∈ {x ∈ I | f(x) = g(x) = x} for all t ∈ (a, α). Hence f and g are

self maps on (a, α) and none of the function f and g have a common fixed point

on (a, α). Therefore, by above argument fn 6= gn on (a, α) ⊆ I for all n ∈ Z.

Lemma 5.2.3. If fg = gf , then fngm = gmfn for all n,m ∈ Z.

Proof. First we prove fng = gfn for all n ∈ N using induction on n. Clearly
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f 2g = f(fg) = f(gf) = (gf)f = gf 2. Assume

fkg = gfk for all 1 ≤ k ≤ n− 1. (5.2.4)

Hence, fng = f(fn−1g) = f(gfn−1) = gfn. Therefore

fng = gfn for all n ∈ N. (5.2.5)

Pre and post multiplying by f−1 on fg = gf , we get f−1g = gf−1. Hence

by repeating process as in (5.2.4) and (5.2.5), we get f−ng = gf−n for all n ∈ N.

Therefore,

fng = gfn for all n ∈ Z. (5.2.6)

Since fng = gfn for each n ∈ Z, again by above argument, we have fngm =

gmfn for all m ∈ Z.

Proposition 5.2.4. If x ∈ Z(f, g) and fg = gf , then fn(x), gn(x) ∈ Z(f, g) for

all n ∈ Z.

Proof. For x ∈ Z(f, g), f(f(x)) = f(g(x)) = g(f(x)), therefore f(x) ∈ Z(f, g).

Hence fn(x) ∈ Z(f, g) for all n ∈ N. Since

f(f−1(x)) = f−1(f(x)) = f−1(g(x)) = g(f−1(x)), (5.2.7)

we must have, f−1(x) ∈ Z(f, g), here the last equality in (5.2.7) holds by Lemma

5.2.3. Therefore, by above argument, f−n(x) ∈ Z(f, g) for all n ∈ N. Similarly

gn(x) ∈ Z(f, g) for all n ∈ Z.

Theorem 5.2.5. If fg = gf , then Z(f, g) = Z(fn, gn) for all n ∈ Z\{0}

Proof. Step: 1 We prove Z(f, g) = Z(fn, gn) for all n ∈ N using induction on n.

First we prove Z(f, g) = Z(f 2, g2). By Proposition 5.2.4, we have Z(f, g) ⊆

Z(f 2, g2). Let x ∈ Z(f 2, g2). If f(x) 6= g(x), without loss of generality, say

f(x) < g(x) then

f 2(x) < f(g(x)) = g(f(x)) < g2(x),
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which is not possible. Therefore Z(f, g) = Z(f 2, g2).

Assume Z(f, g) = Z(fk, gk) for 2 ≤ k ≤ n− 1. For x ∈ Z(f, g), we have

fn(x) = fn−1(f(x))

= fn−1(g(x))

= f(gn−1(x)) (since fn(x) = fn−1(g(x)) = f(gn−1(x)) = fn(x))

= gn−1(f(x)) (by Lemma 5.2.3)

= gn−1(g(x))

= gn(x).

Therefore Z(f, g) ⊆ Z(fn, gn). If x ∈ Z(fn, gn) with f(x) < g(x), then

f 2(x) < f(g(x)) = g(f(x)) < g2(x)

=⇒ f 3(x) < f 2(g(x)) = g(f 2(x)) < g3(x)

...

=⇒ fn(x) < fn−1(g(x)) = g(fn−1(x)) < gn(x)

which is not possible. Therefore, Z(f, g) = Z(fn, gn) for all n ∈ N.

Step: 2 We prove Z(f, g) = Z(f−n, g−n) for all n ∈ N.

It is clear from Step: 1 that, Z(f−1, g−1) = Z(f−n, g−n) for all n ∈ N. Therefore

to prove Step: 2, it is enough to prove Z(f, g) = Z(f−1, g−1).

For x ∈ Z(f, g), if f−1(x) < g−1(x) then x < f(g−1(x)). But,

f(g−1(x)) = g−1(f(x)) (by Lemma 5.2.3)

= g−1(g(x)) (as f(x) = g(x))

= x,

which is a contradiction to the fact that x < f(g−1(x)). On the other hand, if

g−1(x) < f−1(x) then x < g(f−1(x)). But,

g(f−1(x)) = f−1(g(x)) (by Lemma 5.2.3)

= f−1(f(x)) (as f(x) = g(x))

= x,
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again a contradiction to x < g(f−1(x)). Therefore f−1(x) = g−1(x) whenever

f(x) = g(x), i.e. Z(f, g) ⊆ Z(f−1, g−1). Now by replacing f and g by f−1 and

g−1 respectively, we get Z(f, g) = Z(f−1, g−1).

Now, it is easy to observe that the Theorem 5.1.2 is a straight forward appli-

cation of the above theorem.

Theorem 5.2.6. Let f, g ∈ H (I) with out fixed points such that fg = gf . Sup-

pose Z(fn, gn) is an interval for some n ∈ Z. Then f = g on I.

Proof. Since fg = gf , by Theorem 5.2.5, Z(f, g) = Z(fn, gn). Without loss

of generality, let α ∈ Z(f, g) such that α < f(α). Also by Proposition 5.2.4,

f(α) ∈ Z(f, g). Since fm(α)→ b and f−m(α)→ a as m→∞. Therefore,

I = (a, b) = ∪m∈Z[fm(α), fm+1(α)].

Let y ∈ [fm(α), fm+1(α)] be arbitrary. Then there is an element x ∈ [α, f(α)] such

that y = fn(x). Since f = g on [α, f(α)], we have y = fm(x) = gm(x). Therefore,

by Lemma 5.2.3,

f(y) = f(gm(x)) = gm(f(x)) = gm(g(x)) = g(gm(x)) = g(y).

This completes the proof.

5.3 Subcommuting and Comparable Iterative Roots

Definition 5.3.1. (G lazowska and Matkowski, 2016) Let f and g be order pre-

serving homeomorphisms on I. We say f subcommutes with g, if fg(x) ≤ gf(x)

for all x ∈ I and g subcommutes with f , if gf(x) ≤ fg(x) for all x ∈ I.

Note that every commuting functions are subcommuting, but the converse is

not necessarily true.
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Example 5.3.2. Let f, g : (0,∞)→ (0,∞) be two functions defined by f(x) = 2x

and g(x) = x2 for all x ∈ (0,∞). Clearly, f subcommutes with g as f(g(x)) =

2x2 ≤ g(f(x)) = 4x2 for all x ∈ (0,∞). But f and g do not commute with each

other, as f(g(x)) = 2x2 6= g(f(x)) = 4x2 for all x ∈ (0,∞).

Let F : I → I be an order preserving homeomorphism. We prove that it is

not possible to have different iterative roots of F which are either comparable or

subcommuting.

Theorem 5.3.3. Let F ∈H (I). Suppose f, g ∈H (I) satisfies fn = gn = F for

some n ∈ Z, then the following are equivalent.

(i) f subcommutes with g.

(ii) f and g are comparable.

(iii) f = g.

Proof. (iii) implies (i) and (ii) are trivial.

((i)⇒ (iii)) In view of Theorem 5.2.5, it is enough if we prove fg = gf on I.

Suppose fg(x) < gf(x) for some x. Then

gn+1(x) = gn(g(x))

= fn(g(x))

= fn−1(f(g(x)))

< fn−1(g(f(x)))

≤ fn−2(g(f 2(x)))

...

≤ g(fn(x))

= gn+1(x).

i.e, gn+1(x) < gn+1(x), a contradiction. Hence fg = gf . Therefore, by Theorem

5.2.5, f = g on I.
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((ii)⇒ (iii)) Assume

f ≤ g. (5.3.8)

If possible, let f(t) 6= g(t) for some t ∈ I. Therefore f(t) < g(t). Since fn = gn,

we have

gn(t) = fn(t) < fn−1(g(t)) ≤ g(fn−2(g(t))), (5.3.9)

where the last inequality in (5.3.9) holds by (5.3.8). But then gn−1(t) < fn−2(g(t))

as g−1 is an order-preserving homeomorphisms. Therefore,

gn−1(t) < fn−2(g(t)) ≤ g(fn−3(g(t))), (5.3.10)

here the last inequality in (5.3.10) holds by (5.3.8). Since g−1 is an order-preserving

homeomorphisms, the inequality (5.3.10) becomes, gn−2(t) < fn−3(g(t)). Contin-

uing this process up to (n− 2) times we get

g(g(t)) < f(g(t)),

a contradiction to our assumption. Therefore f = g on I.

Part of a theorem due to McShane (McShane, 1961) is observed below.

Corollary 5.3.4. (McShane, 1961) The only order preserving iterative root of

any order of the identity function on R is the identity function.

Proof. Clearly, identity function is an iterative root of any order of the identity

function, it follows from Theorem 5.3.3, that any order preserving homeomorphism

whose iteration is identity becomes identity, as the identity function subcommutes

(also commutes, so Theorem 5.2.5 also applicable) with any function.

Further, if f ∈ H (I) such that fn(x) = x for all x ∈ I but f not identity,

then there exists an interval (α, β) such that either f(x) < x or f(x) > x for all

x ∈ (α, β) and f((α, β)) = (α, β). Since fn(x) = x for all x ∈ (α, β) and f is

comparable with identity, by Theorem 5.3.3, f(x) = x on (α, β), which is a con-

tradiction. This forces that identity is the only order preserving homeomorphism

of the identity function.
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From Theorem 5.3.3, we can conclude that the non-commuting, non-comparable

iterative roots of an order preserving homeomorphism are all different. We pro-

vide an illustrative example. The construction given in this example is based on

Theorem 1.3.6.

Example 5.3.5. Consider the order preserving homeomorphism F : [0, 1]→ [0, 1]

defined by

F (x) =


4x, if x ∈ [0, 1

8
)

4
3
x+ 1

3
, if x ∈ [1

8
, 1
4
)

4
9
x+ 5

9
, if x ∈ [1

4
, 1].

In order to construct iterative roots of this function, first we define a sequence of

disjoint intervals whose union is [0, 1] and on each interval we define homeomor-

phism which serves as a iterative root of order 2 of F .

To start with, let x0 = 1
8

and x1 = 1
4
. Define

x2k := F (x2k−2), x2k+1 := F (x2k−1) for all k ∈ N

and

x−(2k+1) := F−1(x−(2k−1)), x−2k := F−1(x−(2k−2)) for all k ∈ N ∪ {0}.

Note that x2 = F (x0) = 1
2
; x3 = F (x1) = 2

3
; x4 = F (x2) = 1

2
(4
9
) + 5

9
; x5 =

F (x3) = 2
3
(4
9
) + 5

9
. In general,

x2k =
1

2

(
4

9

)k−1
+

5

9

k−2∑
i=0

(
4

9

)i
, x2k+1 =

2

3

(
4

9

)k−1
+

5

9

k−2∑
i=0

(
4

9

)i
∀ k ∈ N.

Also, x−1 = F−1(x1) = 1
4
(1
4
); x−2 = F−1(x0) = 1

8
(1
4
); x−3 = F−1(x−1) = 1

4
(1
4
)2;

x−4 = F−1(x−2) = 1
8
(1
4
)2. In general,

x−(2k+1) =
1

4

(
1

4

)k+1

, x−2k =
1

8

(
1

4

)k
∀ k ∈ N ∪ {0}.

Define Ik = [xk, xk+1] for k ∈ Z. Since x2k → 1, x2k+1 → 1, x−2k → 0, x−(2k+1) →

0 as k → ∞ we have ∪k∈ZIk = [0, 1]. Let φ0 : I0 → I1 be the homeomorphism
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defined by φ0(x) = 2x for all x ∈ I0. Now, define φk : Ik → Ik+1 by

φk(x) = F ◦ φ−1k−1(x) for all x ∈ Ik and k ∈ N.

Also define φ−k : I−k → I−(k−1) by

φ−k(x) = φ−1−(k−1) ◦ F (x) for all x ∈ Ik and k ∈ N.

Consider the homeomorphism f : [0, 1] → [0, 1] defined by f(x) = φk(x) if x ∈ Ik
for all k ∈ Z. By calculation we can show that

f(x) =

 2x, if x ∈ [0, 1
4
)

2
3
x+ 1

3
, if x ∈ [1

4
, 1]

and f 2(x) = F (x) for all x ∈ [0, 1].

Now we construct another order preserving homeomorphism g which does not sub-

commute and not comparable with f but g2 = F .

For this, let ψ0 : I0 → I1 be the homeomorphism defined by

ψ0(x) =

 x+ 1
8
, if x ∈ [1

8
, 3
16

)

3x− 1
4
, if x ∈ [ 3

16
, 1
4
].

Now, define ψk : Ik → Ik+1 by

ψk(x) = F ◦ ψ−1k−1(x) for all x ∈ Ik and k ∈ N.

Also, define ψ−k : I−k → I−(k−1) by

ψ−k(x) = ψ−1−(k−1) ◦ F (x) for all x ∈ Ik and k ∈ N.

Then the homeomorphism g : [0, 1]→ [0, 1] defined by

g(x) = ψk(x) if x ∈ Ik, for all k ∈ Z

satisfies g2(x) = F (x) for all x ∈ [0, 1]. Since,

ψ1(x) = F ◦ ψ−10 (x) =

 4
3
x+ 1

6
, if x ∈ [1

4
, 5
16

)

4
9
x+ 4

9
, if x ∈ [ 5

16
, 1
2
],
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and

ψ2(x) = F ◦ ψ−11 (x) =

 1
3
x+ 1

2
, if x ∈ [1

2
, 7
12

)

x+ 1
9
, if x ∈ [ 7

12
, 2
3
],

we observe that

f

(
g

(
3

16

))
= f

(
ψ0

(
3

16

))
= f

(
5

16

)
=

13

24
< g

(
f

(
3

16

))
= ψ1

(
3

8

)
=

11

18
,

and

g

(
f

(
13

32

))
= ψ2

(
29

48

)
=

103

144
< f

(
g

(
13

32

))
= f

(
ψ1

(
13

32

))
= f

(
45

72

)
=

27

36
.

Moreover, g( 3
16

) = 5
16
< f( 3

16
) = 3

8
and f( 5

16
) = 13

24
< g( 5

16
) = 7

12
. Thus we

have two order preserving homeomorphisms f and g such that they are neither

comparable nor subcommuting but f 2 = g2 = F and f 6= g.

Summary of the chapter

In this chapter we discussed the conditions for which the iterative roots of an order

preserving roots are equal using the set of points of coincidence. We proved the

following results:

• Suppose that the nth iterate of two commuting order preserving homeomor-

phisms are equal in a subinterval. Then the functions are equal on the whole

interval.

• The set of points of coincidence of two commuting order preserving homeo-

morphisms are preserved under iteration.
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