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ABSTRACT

Cloud comprises of many hardware and software resources and managing these re-

sources will play an important role in executing a clients request. Now-a-days clients

from different parts of the world are demanding for various services at a rapid rate. In

this present situation efficient load balancing algorithms will play an vital role in allo-

cating the clients requests and also ensuring the usage of the resources in an intelligent

way so that underutilization of the resources will not occur in the cloud environment.

Clients demand for different cloud resources w.r.t Service Level Agreement (SLA) in

a seamless manner, therefore resource allocation and management plays an important

role in Infrastructure as a Service (IaaS) based cloud environment.

Computing systems in the cloud environment heavily rely on virtualization tech-

nology and thus makes the servers feasible for independent applications. Further,

virtualization process improves the power efficiency of the data centers (consolidation

of physical machines (PMs)) and thereby enabling the assignment of multiple virtual

machines (VMs) to a single physical PM. These VM instances can be procured in the

form of On-Demand and Spot instances. Consequently, some of the PMs in the cloud

data center can be turned off (sleep state) and resulting in low power consumption

and thus making cloud data center more efficient.

In this research work, the main focus is towards designing and development of

efficient QoS aware load balancing and resources allocation/management algorithms

using Bio-Inspired techniques which ensures fault tolerant task execution in hetero-

geneous cloud environment. Experimental results demonstrate that our proposed



Bio-Inspired Load Balancing and QoS Aware Resources Allocation/Management al-

gorithms outperforms peer research and benchmark algorithms in terms of efficient

utilization of the cloud resources, improved reliability and reduced average response

time.

Keywords: Scheduling, Load Balancing, Resource Management, Virtual Ma-

chines, Instances, Data Center, Bio-Inspired.
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Chapter 1

Introduction

This chapter gives an overview of cloud computing, deployment models, Quality of

Service (QoS) parameters, different types of instances offered by the cloud data center

and Bio-Inspired computing. Further, this chapter gives the details of scheduling,

cloud resource management and virtualization. Further, this chapter highlights the

motivations for carrying out this research work.

1.1 Cloud Computing

A cloud is an elastic execution environment of resources involving multiple stakehold-

ers and providing the metered service at multiple granularities for a specified level of

quality of service. Figure 1.1 shows the complete details of the cloud computing en-

vironment and its components. Cloud computing is a form of distributed computing

and it follows a dynamic approach of pay-as-you-go model. The cloud acts as a global

hub of resources and has a capacity to provide the metered service at any time. From

Figure 1.1, it is clearly observed that components such as stakeholders, deployment

models, service types and many more are directly related to the cloud system.

Terms such as cloud and data center are used repeatedly as they are closely related

to each other. Cloud is an off-premise form of computing that stores the data on the

Internet, whereas a data center refers to on-premise hardware that stores data within

1



Introduction 2

Figure 1.1: Cloud Computing Environment (Hwang et al. (2013))

an organization’s local network. Thus, the data center consists of Physical Machines

(PMs) which can host several Virtual Machines (VMs) during the computation. Fur-

ther, it consists of load balancers, diesel generators, cooling units and many more.

Data centers are situated at different geographical places and these data centers are

connected intelligently by cloud. Users have the choice to use the data center as

per their convenience. The data center consists of several components as mentioned

above and these are consumed by cloud customers with Service Level Agreements

(SLA). A data center can also host different centralized services which are procured

by different cloud customers (Hwang et al. (2013)).

The optimum bandwidth network, low cost sharing machines, hardware virtual-

ization and service oriented architecture lead to drastic growth of the cloud computing

environment since a few years. Due to the high computing capacity of servers and

low cost of services rendered by cloud data centers, the growth rate of cloud is $18.2
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billion in 2012 and it is expected to reach $45.6 billion in 2017. Hence, due to this

trend, many industries (small and large) are moving to the cloud and because of this

the size of the data center is also growing at a rapid rate in order to match the future

demand of the cloud users. As mentioned earlier, the data center consists of huge

resources and managing these resources is a challenging issue as these resources are

consumed by cloud customers. Thus, the emergence of cloud computing has made a

tremendous impact on the Information Technology (IT) industry over the past few

years, where large companies such as Google, Amazon and Microsoft strive to provide

more powerful, reliable and cost-efficient cloud platforms. Accordingly the business

enterprises seek to reshape their business models to gain maximum profit from this

new paradigm of cloud computing (Liu et al. (2014)). Cloud computing provides

several significant features and the details are given below:

• No up-front investment

• Lowering operating cost

• Highly scalable

• Easy access

• Reducing business risks and maintenance expenses.

1.1.1 Characteristics of Cloud

Cloud computing inherits many characteristics from different computing paradigms,

but the essential characteristics of the cloud are as follows.

On-demand Services: Each cloud provider has its own portal in which the cloud

customer can automatically provide the computing capabilities such as instances,

memory and Central Processing Unit (CPU).
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Resource Pooling: The data center consists of numerous cloud resources in

terms of PMs, VMs etc. and pooled to server multiple cloud customers using multi-

tenant model. The resources are dynamically assigned and reassigned according to

customers demand. Generally, cloud customers have a higher level of abstraction

about the location of the data center.

Broad Network Access: The cloud resources can be easily accessed via the

Internet through standard access mechanisms. These mechanisms provide platform

independent access through the use of heterogeneous client platforms such as mobiles,

laptop, workstation, tablets etc.

Measured Service: Cloud provides its resources to the user based on pay-as-

you-go model. The resources consumed by the cloud customers are charged according

to its usage. Cloud provides the resources such as Central Processing Unit (CPU)

cycles, Random Access Memory (RAM) storage units etc.

Rapid Elasticity: Many industries are moving to the cloud and there is a rapid

requirement for cloud resources in a data center. To fulfill the resources demand, the

cloud has a model called elasticity in which the resources can be scaled up or scaled

down, depending on the cloud customer’s requirement.

1.1.2 Computing Paradigms

The technology has evolved from different computing paradigms (Centralized Com-

puting, Parallel Computing, Distributed Computing etc.) and cloud computing en-

vironment is evolved from all these computing paradigms.

Centralized Computing: In centralized computing, all computer resources are

centralized in one physical system. All resources (processors, memory and storage)

are fully shared and tightly coupled within an integrated OS. Many data centers and

supercomputers are centralized systems, but they are used in parallel, distributed,

and cloud computing applications.
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Parallel Computing: In parallel computing, all processors are either tightly

coupled with centralized shared memory or loosely coupled with distributed memory

and this discipline is referred to as parallel processing. Inter-processor communication

is accomplished through shared memory or via message passing.

Distributed Computing: In distributed computing, multiple autonomous com-

puters with their own private memory, communicates through a computer network in

peer to peer fashion. Information exchange in a distributed system is accomplished

through message passing. It is mainly used in engineering field where the information

processing is done at different locations.

Cloud Computing: In cloud computing, the Internet based cloud resources can

be either centralized or distributed. The cloud applies parallel or distributed comput-

ing, or both paradigms. Clouds can be built with physical or virtualized resources over

large data centers that are centralized or distributed. The cloud can be considered

as a form of utility computing with different forms of computing paradigms.

1.1.3 Cloud Service Models

In the cloud, the services can be categorized into different models, namely: Infrastruc-

ture as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS)

and Anything as a Service (XaaS). Figure 1.2 shows the three important cloud service

models and the details of IaaS, PaaS, SaaS and XaaS are as follows.

Infrastructure as a Service (IaaS): This IaaS model puts together infrastruc-

ture as demanded by the cloud users, namely: servers, VMs, storage, networks, and

the data center fabric. The user can deploy and run on multiple VMs in the guest OSs

of specific applications. The user does not manage or control the underlying cloud

infrastructure, but can specify when to request and release the needed resources (Liu

et al. (2014)) and these services are managed by the cloud service provider. Further,

the metrics used for billing purpose are based on the type of VMs, number of VMs,
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Figure 1.2: Cloud Service Models (Liu et al. (2014))

duration and amount of virtual storage, etc. and these are provisioned based on the

pay-as-you-go paradigm.

Platform as a Service (PaaS): This PaaS model enables the user to deploy

user-built applications onto a virtualized cloud platform. The PaaS includes middle-

ware, databases, development tools, and some runtime support such as Web 2.0 and

Java. The platform includes both hardware and software integrated with specific pro-

gramming interfaces. The provider supplies the Application Programming Interface

(API) and software tools (e.g., Java, Python, Web 2.0, .NET). The user is freed from

managing the cloud infrastructure.

Software as a Service (SaaS):This SaaS model refers to browser-initiated ap-

plication software over thousands of paid cloud customers. These SaaS applications

are platform independent, and these services can be accessed by different client de-

vices such as tablets, mobile, smart phones, etc. The SaaS model applies to business
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processes, industry applications, Consumer Relationship Management (CRM), En-

terprise Resource Planning (ERP), Human Resources (HR), and collaborative appli-

cations. On the customer side, there is no upfront investment in servers or software

licensing and clients will not be aware of underlying cloud infrastructure (servers,

operating systems, network etc.). On the service provider side, costs are rather low

in comparison with conventional hosting of user applications. Further, these applica-

tions can be accessed anywhere from the client side.

Anything as a Service (XaaS): Earlier services are categorized into IaaS, PaaS

and SaaS but nowadays the cloud is capable of hosting any type of application which

can be rendered as XaaS. Cloud can host a different database service, then the services

related to these databases are referred as a Data Base as a Service (DBaaS). Similarly,

many services including the security can be hosted by cloud providers and these can

be listed under XaaS service model.

1.1.4 Cloud Deployment Models

The cloud can be categorized into different deployment models depending on its size,

ownership and access methodology. Each model has its own nature and properties

of the cloud which is suited to the specific client environment. Figure 1.3 shows the

four cloud deployment models such as Private, Public, Community and Hybrid and

details of each deployment are as follows.

Private Cloud: The private cloud is deployed in a secure environment using

firewalls which are managed by the governance of the corporate department. This

type of cloud has its own boundaries and permits only authorized users to access the

cloud. As the private cloud is restricted to its users and environment and therefore

it is also called Internal cloud. Applications such as dynamic needs, mission critical

assignments, etc. are better suited to adapt private cloud environment.
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Figure 1.3: Cloud Deployment Models

Public Cloud: The public cloud consists of all the infrastructure (servers, VMs,

communication network, etc.) which is hosted by the cloud environment. Typically,

these services are consumed by cloud customers based on the pay-as-you-go model.

Public cloud provides services in a seamless manner and hence, this type of cloud

is best suited for government organizations, academic institutions, research organi-

zations, business enterprises, etc. Due to the decreased capital overheads and oper-

ational cost, this model is economical when compared to other deployment models.

As an example, Google cloud is referred to as public deployment model.

Community Cloud: This type of cloud is mutually shared between many or-

ganizations that belong to a particular community, i.e. banks and trading firms. It

is multi-tenant setup which is shared among several organizations that belong to a

specific group. All the members of the organizations can access the cloud with the

same security policies. This type of cloud can be hosted internally or externally and
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the budget required to setup this type of cloud is shared by each organization and

hence, this model is cheaper and has cost saving capacity.

Hybrid Cloud: It is an integrated deployment cloud model of private, public

or community cloud models which are bound together and serve the cloud customers

according to their model principles. It cannot be categorized into private or public

cloud model as it crosses the isolation and boundary checks given by the organization.

It has an ability to increase its resources according to cloud usage. Hence, this type of

cloud model is much suitable for e-commerce applications and can be hosted externally

or internally. Usually critical, deadline oriented applications are hosted in a private

cloud and non critical applications are deployed on public cloud.

1.1.5 Virtualization

In cloud computing, virtualization plays a major role as it emulates the underlying

PM and creates many VMs within a given PM. A conventional computer has a sin-

gle OS image and it offers a rigid architecture that tightly couples the application

software to a specific hardware platform. Some software runs on a PM may not

be executable on another platform with a different instruction set under a fixed OS

(Hwang et al. (2013)). Virtual machines (VMs) offer novel solutions to underutilized

resources, application inflexibility, software manageability, and security concerns in

existing physical machines. Figure 1.4 (Hwang et al. (2013)) shows the status of a

computer machine before and after virtualization.

A traditional computer runs with a host operating system specially tailored for

its hardware architecture as shown in Figure 1.4a. After virtualization, different user

applications managed by their own operating systems (guest OS) can run on the

same hardware, independent of the host OS. This is often done by adding additional

software referred to as virtualization layer as shown in Figure 1.4b. This virtualization

layer is known as a hypervisor or Virtual Machine Monitor (VMM). The VMs are
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Figure 1.4: Cloud Deployment Models (Hwang et al. (2013))

shown in the upper boxes, where applications run with their own guest OS over the

virtualized CPU, memory, and I/O resources.

Hypervisor: Hypervisor is a firmware or hardware which acts as an intermediate

layer between the host and guest operating systems (i.e. layer between PM and VMs).

The hypervisor is responsible for the correct functioning of the VM which is hosted

on the PM and hence, hypervisors are also called VMM. The hypervisor is classified

into the following two categories (types):

• Type-1 or bare-metal hypervisors

In this type, hypervisors run directly on the host’s hardware and they are able to

manage the guest operating system. These hypervisors do not need a host operating

system and hence, these are also called as bare-metal hypervisors.

Example: Xen, Hyper-V and ESX/ESXi.
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• Type-2 or hosted hypervisors

In this type, hypervisors sit on top of the host operating system. Type-2 hyper-

visors abstract guest operating systems from the host operating system.

Example: VMware Workstation, QEMU and VirtualBox.

1.1.6 Cloud Instances and QoS Parameters

Typically, data center consists of many cloud resources, including VMs. Usually VMs

are referred to as cloud instance, i.e. an instance is nothing but a VM which is offered

to the cloud customer on a pay-as-you-go model. Different cloud providers offer many

types of instances. Most commonly used cloud instances are discussed below.

On-Demand Instance: In this type of instance, the cloud customer has to pay

on an hourly basis. Here, the user has a flexibility to increase or decrease the compute

capacity depending on the application scenario. There is no long term commitment

for this type of instances and user will follow pay-as-you-go model. This type of

instances are suited for applications with short term deadlines or workloads which

cannot be interrupted.

Reserved Instance: In this type of instance, the cloud customer can reserve the

compute instances for the future scheduling of the applications. The working model

will be same as that of On-Demand instances, but the price can be significantly

reduced if the customer reserves the instances for long term usage. This type of

instances are typically used by the applications in which the need for computing

capacity keeps on fluctuating.

Spot Instance: In this type of instance, the cloud customer can get the instance

at a lower price compared to On-Demand instances. Here, the cloud customers can

bid for spare instances to procure the Spot instances. Many customers can bid for

Spot instances, and the Spot instance will be assigned to the user whose bid will be

higher. Usually the price of the Spot instances keeps on fluctuating, and it is region
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specific. Predicting the bid price will be a major challenge and these are not reliable

if the applications are critical. The Spot instance is taken off from the cloud customer

if another user bids higher than the current customer. This is the major drawback of

using Spot instances. If the Spot instance is terminated by the cloud provider, then

the user will not be charged for the Spot instance usage. But, if the Spot instance

is deleted by the customer then payment will be on hourly basis. For example: even

one minute usage of Spot instance is treated as one hour.

The following QoS parameters play a major role in cloud computing:

• Performance

- Speed and Capacity.

• Reliability

- Availability, Consistency and Throughput w.r.t cloud resources.

• Time

- Response Time and Execution Time.

• Cost

- Bidding Strategy and Billing.

1.1.7 Load Balancing

In a cloud environment, load balancing technique plays a major role as it distributes

the incoming load on the available cloud resources. Each data center has one or many

load balancers and maintains the uniform load on the servers within a data center.

Cloud has an ability to scale its resources using elasticity property and hence, load

balancers are needed to maintain this type of activity.

Cloud customers’ workloads are increasing day by day and scheduling of these

workloads is also a challenging issue. Before balancing, the incoming workloads have
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to be scheduled in an intelligent way so that cloud resources are utilized in an ef-

ficient manner. Using load balancing, QoS parameters (Reliability and Time) are

significantly optimized and thus leading to efficient utilization of cloud resources with

minimum response time. The details of commonly used load balancing algorithms

along with scheduling are as follows.

Round Robin: In this algorithm, servers or VMs in the cloud data center are

assigned one after the other to serve the incoming users’ tasks. It is a very simple load

balancing technique and typically suited for the homogeneous cloud environment.

Weighted Round Robin: It is an extension to the Round Robin technique in

which the servers are assigned with some static numerical weights. Usually servers

which have higher weight-age will receive more user requests.

Least Connections: In this algorithm, the load on each server is considered

before scheduling with them. The user requests are assigned to the server with the

least active connections.

Adaptive Load Balancing: In this algorithm, there will be an agent assigned

to each server for continuous monitoring of the load on each server. The new task will

be assigned to the server with less load. The same process continues and maintains

the balanced load on the available servers.

There are a few more load balancing algorithms such as Priority Based, Session

Based, Chained Failover etc.

1.2 Bio-Inspired Computing

Bio-inspired computing is a popular technique for solving the optimization problem

and can be defined as Designing distributed problem-solving devices or algorithms

inspired by the behavior of social insects and other animal societies (Bonabeau et al.

(1999)). Bio-Inspired computing heavily relies on the fields of Biology, Computer

Science and Mathematics. It is a phenomenon of using behavior of living creatures and
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modelling them into different frameworks and using these frameworks or approaches

in the fields of computer science, engineering and mathematics. These techniques

work in a distributed fashion and help to find out the optimal solution in a given

environment. The details of different bio-inspired techniques are as follows.

1.2.1 Bio-Inspired Techniques

Bio-Inspired techniques are broadly classified into the following categories (LD and

Krishna (2013)).

• Evolution Based

• Ecology Based

• Swarm Intelligence Based.

Evolution Based: Evolution Algorithms (EA) are the most well known, classical

and established algorithms among nature inspired algorithms which are based on the

biological evolution in nature that are being responsible for the design of all living

beings on earth, and for the strategies they use to interact with each other. EA

employ this powerful design philosophy to find solutions to hard problems. EA are

non-deterministic algorithms or cost based optimization algorithms.

A family of successful EA comprises of Genetic Algorithm (GA), Genetic Pro-

gramming (GP), Differential Evolution, Evolutionary Strategy (ES) and most recent

Paddy Field Algorithm. The members of the EA family share a great number of

features in common. They are all population-based stochastic search algorithms per-

forming with survival of the fittest criteria. Each algorithm commences by creating

an initial population of feasible solutions, and evolves iteratively from generation to

generation towards the best solution. In successive iterations of the algorithm, fitness-

based selection takes place within the population of solutions. Better solutions are

preferentially selected for survival into the next generation of solutions.
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Ecology Based: Natural ecosystems provide a rich source of mechanisms for de-

signing and solving difficult engineering and computer science problems. It comprises

the living organisms along with the abiotic environment with which organisms inter-

act with, such as air, soil, water etc. There can be numerous and complex types of

interactions among the species of the ecosystem. Also, this can occur as interspecies

interaction (between species) or intraspecies interaction (within species). The nature

of these interactions can be cooperative or competitive.

Swarm Intelligence Based: Swarm Intelligence (Neumann and Witt (2013)) is

a recent and emerging paradigm in Bio-Inspired computing for implementing adap-

tive systems. Swarm Intelligent encompasses the implementation of the collective

intelligence of groups of simple agents that are based on the behavior of real world

insect swarms as a problem solving tool. The word swarm comes from the irregular

movements of the particles in the problem space (Binitha et al. (2012)).

Swarm Intelligence can be described by five fundamental principles and

the details are as follows:

Proximity Principle: The population should be able to carry out simple space

and time computations.

Quality Principle: The population should be able to respond to quality factors

in the environment.

Diverse Response Principle: The population should not commit its activity

along excessively narrow channels.

Stability Principle: The population should not change its mode of behavior

every time the environment changes.

Adaptability Principle: The population should be able to change its behavior

mode when it is worth the computational price.

These swarm intelligence techniques play a major role in the application which are

dynamic in nature and needs optimization, better efficiency, etc. These techniques

are much suited to cloud computing environment in which the algorithms related to
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cloud data center falls under NP-Hard/NP-Complete complexity classes. Next, we

briefly discuss the different Bio-Inspired algorithms.

1.2.2 Different Bio-Inspired Algorithms

Ant Colony Optimization (ACO): ACO is among the most successful swarm in-

telligence based algorithms proposed by Dorigo Di Caro in 1999. It is a metaheuristic

approach based on foraging behavior of ants (Nishant et al. (2012)).

Particle Swarm Optimization (PSO): PSO is a computational intelligence

oriented, stochastic, population-based meta-heuristic technique proposed by Kennedy

and Eberhart in 1995 (Zuo et al. (2014)).

Grey Wolf Optimizer (GWO): GWO based meta-heuristic Bio-Inspired algo-

rithm mimics the leadership hierarchy and hunting mechanism of grey wolves from

the nature (Mirjalili et al. (2014)).

Bat-Termite Algorithm: Hybrid approach by combining the unique features

of both social insect termites and mammals bats.

Honey Bee Algorithm: Is is an optimization algorithm based on the intelligent

foraging behavior of honey bee swarm, proposed by Karaboga in 2005.

1.3 Motivation

Even though there is much advancement in the areas of cloud computing and Inter-

net of Things (IoT) with respect to responsiveness, reliability and flexibility but, still

there is a room for improvement in scheduling, load balancing, optimal resource allo-

cation and management algorithms since these techniques come under NP-Hard/NP-

Complete complexity classes. Many researchers developed efficient scheduling and

load balancing algorithms, but optimization is still needed in dynamic resource alloca-

tion along with VMs migration. Many scheduling algorithms focus only on hardware
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utilization of the resources, but fail to address other important QoS parameters (Re-

liability, Time, Cost and Performance). Once the tasks are assigned by the scheduler

then the load balancer plays a vital role in balancing the cloud data center. Hence,

the algorithm should be capable enough to schedule and balance the load on the

servers in the cloud data center.

Cloud is a global hub of resources which should be managed efficiently and effec-

tively. Many algorithms related to scheduling and resource utilization focus on single

objective and works on homogeneous systems. Service Level Agreement (SLA) plays

a major role in executing the clients’ task within a given deadline and violation of SLA

leads to high cost and low performance. Hence, research in this thesis focuses on the

design and development of scheduling the clients’ task on VMs, resource allocation

and management algorithms and thus motivated the following issues:

• Optimizing the Reliability and Time QoS parameters by efficient scheduling

and load balancing algorithms.

• Maintaining the balanced load on the servers in a cloud data center.

• Effective and efficient utilization of cloud resources using heuristic algorithms

which leads to high performance of the cloud data center.

• Procurement of different types of cloud instances leads to optimize the cost

incurred in executing the clients’ tasks.

• Providing stability to the cloud data center by optimizing several QoS param-

eters (Reliability, Time, Throughput, Cost, etc.).
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1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, existing state-of-

the-art algorithms related to scheduling and load balancing are discussed and ana-

lyzed. Further, the algorithms related to resource allocation and management are

also discussed. The procurement of different cloud instances, workloads are discussed

in detail. Based on the outcome of literature review, the problem statement and

research objectives are defined.

In Chapter 3, we proposed three scheduling and load balancing algorithms. The

proposed algorithms such as Modified Throttled, VM-Assign and Divide and Conquer

based Throttled (DCBT) are compared with other state-of-the-art algorithms for

performance evaluation.

In Chapter 4, the focus is given on efficient utilization of cloud resources. Here, we

proposed Modified Particle Swarm Optimization (MPSO) for scheduling the incoming

tasks. Further, we proposed Modified Cat Swarm Optimization (MCSO) and HY-

BRID (MPSO+MCSO) algorithms for efficient utilization of cloud resources (CPU

and Memory). Further, statistical analysis and time complexity of the HYBRID

algorithm is discussed.

In Chapter 5, we proposed an application of Grey Wolf Optimizer (GWO) algo-

rithm for efficient scheduling of Bag of Tasks (BoT) and scientific workflows. Further,

the performance analysis is carried out in terms of Time and Cost QoS parameters

and then compared with existing algorithms including branch and bound based Exact

algorithm.

In Chapter 6, the focus is given to the cloud instance procurement and its us-

age. The details about On-Demand and Spot instances are highlighted. Further,

we predicted the prices of future Spot instances using Neural Network (NN) based

Back Propagation algorithm which utilizes the past history of Spot instance values.

Further, the cost comparison is analyzed using On-Demand and Spot instances.
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In Chapter 7, We validated the scheduling algorithm (MPSO) and resource allo-

cation algorithm (HYBRID (MPSO+MCSO)) using the IBM cloud setup. Further,

the results of IBM cloud setup are compared with those of PySim cloud simulation

setup.

Finally, Chapter 8 summarizes the contributions of the research work and high-

lights possible future research directions of this thesis.

1.5 Summary

In this chapter, we introduced cloud computing, characteristics, service models, de-

ployment models, cloud instances, QoS parameters and other important cloud tech-

nologies. Further, the details of Bio-Inspired computing techniques are elaborated.

Finally, we discussed about the motivation for doing this research work. The next

chapter deals with background and related work in detail.





Chapter 2

Literature Review

In this Chapter, the complete review of existing state-of-the-art techniques related to

scheduling, load balancing and resource allocation & management in the cloud envi-

ronment is done in detail. There are several existing works on scheduling, load balanc-

ing and resource allocation & management in both homogeneous and heterogeneous

cloud computing environments. Cloud receives the clients’ request at a rapid rate

and it has a vast amount of resources which are managed by cloud service providers.

Data center consists of Physical Machines (PMs), Virtual Machines (VMs), Network

Switches, Routers, Load Balancers, Database Servers, Backup Servers, etc. and man-

aging these resources is a challenging issue.

The cloud can be used in many ways, i.e. cloud offers infrastructure, platform and

service to its cloud customers. For any type of request to the cloud, the resources in

the cloud should be managed intelligently. Further, the incoming tasks maybe of BoT

(independent tasks) or Workflows (dependent tasks) and scheduling of these tasks on

the VMs also play an important role. In the cloud, the performance will be degraded

if the servers are either underutilized or overutilized and hence there is a need for

efficient handling of these servers so that, the load on the servers is maintained in a

balanced way. In IaaS based cloud, the managing of the resources (CPU, RAM, PMs

and VMs) is based on the pay-as-you-go model and these resources should be used

in an optimal manner. Migration of resources (VMs) plays an important role in fast

21
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execution of the tasks given to the cloud environment. Hence, we discuss in detail

the state-of-the-the art algorithms and further, we discuss the outcome of literature

review followed by problem statement and the objectives of the research work.

2.1 Task Scheduling and Load Balancing

In this Section, the algorithms related to efficient task scheduling and load balancing

in both homogeneous and heterogeneous cloud environment are discussed in detail.

Al Nuaimi et al. (2012) presented efficient algorithms for assigning the clients’

requests to available nodes in the cloud. Authors investigated different scheduling and

load balancing algorithms which are efficient in terms of QoS parameters (Reliability,

Time and Cost). They focused on enhancing the overall performance of the cloud

data center environment. According to authors, the load balancer should be simple

to implement otherwise they will have negative effect on the performance.

Mondal et al. (2012) presented a soft computing based load balancing algorithm

for cloud environment. Authors presented a Stochastic Hill climbing optimization

algorithm for task allocation to the VMs. Performance of the algorithm is analyzed

in the CloudAnalyst simulator and further, they compared with Round Robin (RR)

and First Come First Serve (FCFS) algorithms in terms of Reliability QoS parameter.

Wickremasinghe et al. (2010) developed a new simulator called CloudAnalyst to

simulate large-scale Cloud applications of scheduling and load balancing. The simu-

lator is very flexible and the users can add their own policy for scheduling approaches

along with the customized machine configurations. Further, performance analysis is

carried out for different load balancing policies. Mahalle et al. (2013) experimented

different load balancing algorithms (Round Robin, Equal Spaced Current Execution

Load, Throttled Load Balancing) in terms of execution time QoS parameter.

Zhang and Zhang (2010) proposed an ant colony based load balancing algorithm

in cloud computing environment. Authors developed a prototype to compare their
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proposed algorithm with SearchMax and SearchMin algorithms for performance eval-

uation. Pandey et al. (2010) proposed a particle swarm optimization (PSO) based

heuristic algorithm to schedule workflows applications in the cloud environment. Au-

thors focused on two QoS parameters (computation cost and data transmission cost)

during experimentation. Further, for performance evaluation, this PSO algorithm is

compared with Best Resource Selection (BRS) algorithm for cost analysis. Results

demonstrate that this PSO approach can achieve 3 times cost savings when compared

to BRS algorithm.

Radojević and Žagar (2011) analyzed the issues of load balancing algorithms at

different Open System Interconnection (OSI) layers of the network i.e. session switch-

ing at the application layer, packet-switching at the network layer. Further, they

proposed the new algorithm that incorporates information from virtualized computer

environments and end user experience (decision making approach). This algorithm

has a capacity to handle critical conditions during load balancing.

Nishant et al. (2012) proposed the modified Ant Colony Optimization (ACO) al-

gorithm for the cloud environment. Authors described a new method to obtain the

local minima from which overloaded and underloaded VMs can be found easily. Fur-

ther, the performance analysis is carried out by finding the shortest path to the VMs.

Indukuri et al. (2012) proposed a novel Johnson’s Workflows Scheduling algorithm in

the cloud computing environment. Further, this algorithm is compared with FCFS

algorithm and the results demonstrated that there is significant influence in terms of

QoS parameters (average waiting time and total elapsed time).

Kliazovich et al. (2013) proposed a communication fabric scheduling solution,

named e-STAB, which extracts communication parameters rather than computa-

tional requirements for job allocation. This algorithm improved the communication

overhead between the packets and also improved the quality of running the cloud ap-

plication. The authors experimented the entire setup in the GreenCloud simulator.
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Suresh and Vijayakarthick (2011) proposed the Improved Backfill Algorithm (IBA)

for job scheduling in the cloud computing environment. Authors tried to improve

the combinational back-fill algorithm (CBA) for optimization. By using the IBA

algorithm, the QoS parameters (Elasticity and Time) can be optimized using balanced

spiral (BS) load balancing method.

Hsiao et al. (2013) presented a fully distributed load re-balancing algorithm to

cope with the load imbalance problem for distributed file system execution in a cloud

computing environment. Usually in the cloud the VMs are upgraded, added or deleted

depending on the load on the servers. The linear increase in the load makes a central

load balancer as a bottleneck. Hence, this load re-balancing algorithm outperformed

the central distributed algorithm in terms of load imbalance factor, movement cost

and algorithmic overhead.

LD and Krishna (2013) proposed Honey Bee Behavior inspired Load Balancing

(HBB-LB) algorithm for maintaining the balanced load on VMs. They considered

balancing the non preemptive independent tasks during scheduling. This HBB-LB al-

gorithm outperformed other state-of-the-art techniques in terms of (average execution

time and average waiting time) QoS parameters.

Domanal and Reddy (2015) proposed a modified throttled algorithm that effi-

ciently schedules the incoming client tasks to the virtual machines. The authors

focused on the response time of the tasks. Later, the same authors proposed another

VM-Assign load balancing algorithm which focuses not only on the response time,

but also on the efficient utilization of VMs present in the cloud. In both algorithms,

scheduling of incoming tasks to the VMs were addressed efficiently, but the authors

did not consider the resources such as CPU and Memory which are inevitably de-

manded by clients tasks across the world. Table 2.1 summarizes the existing works

on scheduling and load balancing.

Thinakaran et al. (2017) proposed a constraint-aware hybrid scheduler named

Pheonix for optimally scheduling the jobs by minimizing the tail latency. Authors
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used a novel constraint resource vector which reorders the jobs from the queue for

efficient scheduling. But, this algorithm is not application specific and tries to utilize

the cloud resources as efficiently as possible. However, this scheduling algorithm

improved the average job response time by 1.9x and 5x times when compared with

hybrid and Hawk schedulers respectively.

de Souza et al. (2017) formulated the online Virtual Infrastructure (VI) allocation

on Software Defined Network (SDN) based cloud data centers as a Mixed Integer

Program (MIP). Authors mainly focused on the resources mapping between SDN

and virtualised infrastructure from the cloud environment. This algorithm achieved

the low latency rate while executing the jobs when compared to other state-of-the-art

approaches.
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Table 2.1: Summary of Existing Works on Scheduling and Load Balancing

Authors Methodology Remarks

Daochao et al. (2014)
Job Scheduling in distributed
cloud using Dominant Re-
source Fairness (DRF)

Efficient scheduling is done
without load balancing of
VMs

Zhou et al. (2016)
Dyna: Workflow-as-a-Service
based Scheduling

Single objective, i.e. cost
optimization

Zhao et al. (2016)
Load Balancing based on
Bayes and Clustering (LB-
BC) methods

Compared only with Dy-
namic Load Balancing
(DLB) algorithm

Wu et al. (2012) Index Name Server (INS)
Complex design and takes
more time for execution of
tasks

Al Nuaimi et al.
(2012)

VM Mapping along with task
scheduling

Did not consider node con-
figurations

Akbari and Rashidi
(2016)

Task Scheduling in Heteroge-
neous Cloud Environment us-
ing Multi-Objective Schedul-
ing Cuckoo Optimization Al-
gorithm (MOSCOA)

Random assignment of
tasks to processors during
scheduling

Mohamed and Al-
Jaroodi (2011)

Dual Direction File Transfer
Protocol (DDFTP)

Algorithm is fast but has
more replication of data

Tsai et al. (2014)
Hyper Heuristics Scheduling
Algorithm for the cloud com-
puting environment

Heterogeneous environ-
ment is not considered for
scheduling

Radojević and Žagar
(2011)

Central Load Balancing Deci-
sion Model (CLDBM)

Single point of failure and
less reliable

Gunarathne et al.
(2010)

Enhanced MapReduce
High processing time and
reduce nodes are overloaded
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2.2 Resource Allocation and Management

As we know, the cloud customers demand for cloud resources at a rapid rate and

hence, efficient utilization of cloud resources is a challenging problem. Many re-

searchers contributed efficient algorithms in managing the cloud resources and the

details are as follows.

Tsai et al. (2014) proposed a hyper-heuristic scheduling algorithm (HHSA) for

the cloud computing environment. HHSA focused on the diversity and improvement

as the two important key operators in finding the local optima. Further, HHSA

dynamically determined the suitable heuristic algorithm to find the better candidate

solution for the given application.

Gonçalves et al. (2012) proposed the Distributed Cloud Resource Allocation Sys-

tem (D-CRAS) resource allocation model. D-CRAS model ensured the automatic

tuning and monitoring of the cloud resources which guarantee the optimal function-

ing of the tasks without the violation of SLA.

Bittencourt and Madeira (2011) proposed the new Heterogeneous Earliest Finish

Time (HEFT) resource allocation algorithm for task execution. This HEFT algorithm

intelligently chose the required resources either from both private and public clouds.

Further, this HEFT is compared with Greedy approach and Min-Min algorithm for

cost comparison.

Zhou et al. (2010) proposed a load balancing scheme based on dynamic resource

allocation policy for virtual machine cluster (VMCTune). Here, several VMs are

running in the PMs for task execution. Further, the VMCTune algorithm kept track

of cloud resources (CPU, RAM) and then migrated the overloaded VM from one PM

to another PM. The algorithm ensured that the task execution will not be paused

during the migration and thus efficiently balanced the load in the cloud data center.

Zuo et al. (2014) proposed Self-Adaptive Learning Particle Swarm Optimization

(SLPSO)-based scheduling approach for executing the tasks. In this approach, if

the resources are not available, then the demanded resources by the tasks can be
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procured from the external clouds and thus maximizing the task execution without

the violation of SLA. Results demonstrated that this SLPSO algorithm outperformed

the basic PSO algorithm in terms of computation time.

Papagianni et al. (2013) focused on providing the unified resource allocation frame-

work for network based clouds by indicating objectives related to cost efficiency and

average execution time along with the resource mapping procedure while abiding the

user requests for QoS-aware virtual resources. Authors assumed that different clouds

are interconnected through network and then adopted a heuristic methodology to

address resource mapping constraints. Their framework was capable of efficiently

utilizing the cloud resources which are deployed in the different regions.

Addis et al. (2013) proposed scalable distributed hierarchical framework based

on a mixed-integer nonlinear optimization of resource management. Further, they

presented different resource allocation policies for virtualized cloud environment that

satisfy the QoS parameters (Performance and Reliability). This framework also min-

imized the energy factor while executing the users’ task.

Wuhib et al. (2012) proposed a Gossip protocol that ensures fair resource allo-

cation among different cloud locations. This Gossip protocol dynamically managed

the resources depending on the load on each cloud site and further resources were

also scaled up in terms of PMs at different cloud locations. Authors evaluated the

performance of Gossip protocol in terms of resources (CPU and Memory) utilization.

Xu and Li (2013) proposed an Anchor, a general resource management architecture

that uses the stable matching framework to map virtual machines to physical servers.

They presented many resource allocation policies in the Anchor framework using

many to one stable matching theory.

Hussain et al. (2013) presented the existing works on resource allocation strategies

in High Performance Computing (HPC) systems in the distributed environment. Au-

thors classified HPC system into cluster, grid and cloud system categories and then

defined the characteristics and requirements of each class by extracting the common
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attributes for choosing suitable resource allocation strategy.

Taneja and Davy (2017) concentrated on efficient utilization of network based

infrastructure and accordingly proposed a module mapping algorithm for deploying

application modules in Fog-Cloud Infrastructure for Internet-of-Things (IoT) based

applications. Authors focused on the computing modules at the fog layer as a mi-

croservices and thus led to quick responses to IoT based applications with no delay.

However, consideration of other cloud resources will result in more optimized mapping

between fog and cloud layers.

Hans et al. (2016) proposed a heuristic based Best-of-Breed approach to allocate

the cloud resources for multimedia applications. Authors mainly focused on the re-

source provisioning from the cloud for live video streaming. Further, they compared

their proposed algorithm with standard tabu search method for selecting the appro-

priate resources for large cloud resource pool.

HoseinyFarahabady et al. (2016) focused on the data center resources utilization

and its overall efficiency by considering the correlation between shared and isolated

resource usage patterns. Further, they proposed contention aware resource allocation

policy which improves the data center resources utilization by 32 % without significant

impact on the QoS enforcement level. Thus, this resource allocation policy reduced

the overall energy consumption by 35 %.

Pahlevan et al. (2017) proposed a hyper heuristic algorithm which integrates mer-

its of both heuristic and machine learning based policies. Authors mainly focused

on the framing the resource reservation frameworks depending on the VMs charac-

teristics. Further, authors focused on energy efficient data center management by

an intelligent machine learning algorithm which is embedded in their proposed hyper

heuristic algorithm. Experimental results demonstrate that, their proposed algorithm

improved the resources utilization of a data center by 24 % when compared to other

conventional algorithms.



Literature Review 30

Leivadeas et al. (2013) presented hierarchical Efficient Resource Mapping Frame-

work in network based cloud environment. In the first phase, a novel request partition-

ing approach that facilitates the cost-efficient splitting of user requests among eligible

cloud service providers. Further, in the second phase actual mapping of requested

virtual to physical resource is performed through intracloud. Authors claimed that

their framework is efficient in mapping cloud resources when compared to other state-

of-the-art techniques. Table 2.2 summarizes the existing works related to resources

allocation and management.

2.3 Allocation of VMs Instances

There are different types of VMs instances (On-demand, Reserved and Spot) which

are offered by different cloud providers. Scheduling and managing these instances

will play an important role in minimizing total cost in executing BoT or scientific

Workflows. There are several approaches in scheduling different VMs instances.

Tang et al. (2014) used Amazon EC2 Spot instances and proposed an optimal

randomized bidding strategy through linear programming. Further, for performance

analysis, they used Markov process and then compared several check-pointing mech-

anisms to optimize the job completion time and cost.

Weinman (2015) and Karunakaran and Sundarraj (2015) presented different static

and dynamic bidding strategies to fetch more Spot instance from Amazon cloud.

Authors focused on different QoS parameters (Reliability, Scalibility and Cost) in

executing Workflows and deadline driven business applications.

Poola et al. (2016) proposed a dynamic bidding strategy to minimize the aver-

age cost of job completion when there is a deadline constraint. They compared the

dynamic bidding strategy with both average and random bidding strategies. Fur-

ther, Poola et al. (2014) proposed bidding strategy based on multifaceted resource
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Table 2.2: Summary of Existing Works on Resource Allocation/Management

Authors Methodology Remarks

Zheng and Wang
(2016)

Resource Allocation and Task
Scheduling using Pareto based
fruit Fly Optimization algo-
rithm (PFOA)

Authors did not con-
sider other heuristic
approaches for perfor-
mance evaluation

Rasti-Barzoki and He-
jazi (2015)

Distributed Scheduling and
Resource Allocation using
Pseudo-Polynomial Dynamic
Programming Algorithm

Authors considered
supply chain man-
agement application.
However, no prior-
itized requests are
considered.

Pillai and Rao (2016)

Resource Allocation mecha-
nism for machines in cloud
based on the uncertainty prin-
ciple of game theory

No comparison with
other state-of-the-art
algorithms

Wang et al. (2010)
Energy-aware Resource Allo-
cation method for workflows
executions

Authors did not con-
sider Resource-aware
scheduling

Wang et al. (2010)
Load Balancing Min-Min
(LBMM) algorithm for the
cloud environment

Task’s execution time
is not considered and
leads to bottleneck for
task scheduling

Cheng et al. (2017)

Self-adaptive task tuning
approach, that automatically
searches the optimal config-
urations for individual tasks
running on different nodes.

Performance analysis
is done on job comple-
tion time

Chunlin et al. (2017)
Optimization policy in re-
sources allocation in both
Cloud and Mobile platforms

Only cost QoS param-
eter is considered for
performance analysis

Xu and Li (2013)

Stable matching framework
based Resource management
for mapping virtual machines
to physical servers

Authors did not
consider dynamic
resources demands
and job scheduling
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provisioning to estimate the future Spot prices. They discussed fault tolerance tech-

niques namely, migration and job duplication so that there will not be any violation

of deadlines.

Yi et al. (2012) discussed how check-pointing and migration mechanisms helps

to minimize the cost and volatility of resource provisioning in heterogeneous cloud

environment. They also proposed a migration policy in case of instance failure so

that monetary cost can be reduced during job completion.

Ribas et al. (2015) presented a Petri net-based Multi Criteria Decision Making

(MCDM) framework to assess the cloud services in heterogeneous cloud environment.

Their framework also consists of different policies to adapt different cloud resources.

Further, they proposed that the business applications (independent jobs) should be

executed on Spot instances to minimize the total cost.

Further, we discuss the state-of-the-art approaches related to cloud survey, VMs

migration, Workflows, power management, etc. in both homogeneous and heteroge-

neous cloud environment.

Aceto et al. (2013) discussed the issues related to monitoring of the cloud environ-

ment in terms of utilization of cloud resources (PMs, VMs, CPU, RAM, etc.). They

also described both commercial and open source cloud platforms and their services.

Finally, they discussed the open issues, main research challenges and future directions

in the field of cloud monitoring.

Bittencourt et al. (2012)focused on scheduling the Workflows applications in hy-

brid clouds. They analyzed communication channels and bandwidth for performance

evaluation. They concluded that Workflows scheduling in hybrid clouds is easy and

efficient when compared to private clouds.

Zheng et al. (2013) listed the issues in live VMs migration in cloud computing en-

vironment. Further, they proposed a model with in which VMs can be migrated from

one PM to another PM. The model has different options to optimize the migration

parameters and users can also customize the migration policies.
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Gutierrez-Garcia and Ramirez-Nafarrate (2013) proposed policy-based agents for

VMs migration in the cloud data center. Here, there are mainly two agents to mon-

itor the cloud resource utilization (Memory and CPU). Authors also monitored the

heterogeneity of the VM and PM during migration along with inputs given by agents.

Baker et al. (2015) presented the lowest energy consumption model between the

cloud user and the data center. The authors focused on transferring of big data

between the two nodes. As the data size is increased, then proportionate bandwidth

requirement is also increased. Hence, they proposed GreeDi, a network-based routing

algorithm to find the most energy efficient path to the cloud data centre for processing

and storing the big data. Baker et al. (2013) proposed high-end autonomic meta-

director framework route to the green data center. They focused on finding the

shortest path between source and the data center. Performance analysis is carried

out on energy parameter traversing with different paths between the source and data

center. Table 2.3 gives the summary of existing works on VMs instances and cost

analysis. Further, Table 2.4 summarizes the recent works on multimedia and analytics

at the cloud data center.

Table 2.3: Existing Works on VMs Instances and Cost Analysis

Authors Methodology Remarks

Xu et al. (2016b)
On-Demand and Spot in-
stances for in-memory storage
workloads

No performance eval-
uation with state-of-
the-art approaches

Dı́az et al. (2017)

LLOOVIA (Load Level based
Optimization for VIrtual ma-
chine Allocation) technique for
VMs allocation

Authors did not con-
sider other heuristic
approaches for perfor-
mance evaluation

Arabnejad et al.
(2017)

Proportional Deadline Con-
strained (PDC) and Dead-
line Constrained Critical Path
(DCCP) Workflows scheduling

Task prioritization
is considered while
scheduling with single
QoS parameter (cost).
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Table 2.4: Summary of Recent Works on Multimedia and Analytics

Authors Methodology Remarks

Hong et al. (2017)
FairGV: Fair and Fast GPU
Virtualization for computing
mixed workloads

GPU enhanced the
overall performance
but in some cases
there is a performance
degradation due to
VMs migration

Ahmad et al. (2017)
Hybrid controller for process-
ing both interactive and batch
applications

Resources utilization
is efficient but man-
aging non-pre-emptive
and prioritized tasks is
not increased

Wang et al. (2017)

Framework designed for man-
aging big volumes of data in
Multimedia Sensing as a Ser-
vice (MSaaS) domain

Energy efficient data
processing at cloud
and edge nodes how-
ever management of
resources configura-
tion is not dealt

Kryftis et al. (2017)

Network architecture which
exploits resource prediction en-
gine for optimal selection of
multimedia content provision
methods from cloud data cen-
ter

Prediction of future
network traffic de-
mands are effective
when compared to
real time scenario but
other QoS parameters
are not considered

Wei et al. (2017)

Cloud based Online Video
Transcoding (COVT) system
which aims to offer economical
and QoS guaranteed solution
for online large-volume video
transcoding

The system reserves a
minimum number of
resources needed for
the video transcod-
ing and thus efficiently
manages the cloud re-
sources. However,
SLA constraints are
not focused much

Pace et al. (2017)
Scheduling of analytical ap-
plications using heuristic ap-
proach

The framework de-
signed for scheduling
analytical applica-
tions for efficient
utilization of the
resources with bet-
ter response time.
However, other QoS
parameters are not
considered for cost
optimization
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2.4 Outcome of Literature Review

After extensive literature review on the existing scheduling, load balancing, resource

allocation & management techniques, we identified the following open issues and re-

search gaps for further optimization in terms of different QoS parameters (Reliability,

Throughput, Time and Cost) at the cloud data center.

• In most of the existing algorithms on efficient scheduling and load balancing

at the cloud data center are implemented in the homogeneous environment.

Hence, there is a need for efficient scheduling and load balancing techniques for

both homogeneous and heterogeneous cloud environments.

• In most of the existing works on resources allocation and management, au-

thors focused on single parameter optimization (CPU). Hence, we need multi-

objective (CPU, RAM, Storage, etc) and dynamic resources allocation and man-

agement algorithms at the cloud data center.

• Many authors proposed scheduling and resources allocation & management al-

gorithms using Bio-Inspired approaches. However, these algorithms fall under

NP-Hard/NP-Complete complex class and hence, there is a need for hybrid Bio-

Inspired algorithms which can optimize the computation time (BoT and Work-

flows) and thereby efficiently utilizing the cloud resources (CPU and Memory)

at the cloud data center.

• Many existing works on VMs instances scheduling are applied only on limited

business application with short deadlines. Hence, there is a need for techniques

which will optimize several QoS parameters (Reliability, Time and Cost) and

thus utilizing the different types of VMs instances at the cloud data center.

Further, efficient algorithms in predicting the Spot instances are also needed to

efficiently utilize the cloud resources.
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• Recently, many authors proposed novel and innovative frameworks for schedul-

ing and managing multimedia applications using machine learning algorithms.

Further, they focused more on the allocation of cloud resources to the live

streaming of videos using hybrid cloud infrastructure.

• Most of the existing algorithms are simulated in the cloud environment. Hence,

there is a need for validating the proposed algorithms in real time cloud setup

so that the effective utilization of the algorithms can be monitored.

2.5 Problem Statement

The goal of this research work is to design and develop efficient Bio-Inspired QoS

aware algorithms for scheduling, Resources allocation and management at the cloud

data center. Accordingly, the research problem is stated as follows.

”To design and develop optimized QoS aware scheduling and load balancing al-

gorithms for efficient resources allocation and management along with the virtual

machine migration using Bio-Inspired techniques which ensures the task execution

using both On-Demand and Spot instances in cloud data center environment”.

2.6 Research Objectives

The objectives of the research work are as follows:

• To design and develop Bio-Inspired QoS aware load balanced scheduling algo-

rithms for cloud data center environment.

• To design and develop novel Bio-Inspired algorithms for resources allocation

and management in cloud data center environment.
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• To design and develop a cost optimized Bio-Inspired scheduling algorithm for

Bag of Tasks (BoT) and Workflows in the cloud data center environment.

• To design and develop a fault tolerant system with VM migration and cost

optimization method in a cloud data center environment to guarantee task

completion without the violation of SLA using on demand and spot instances.

In order to accomplish the aformentioned research objectives, we designed and de-

veloped load balanced scheduling algorithms (Modified Throttled, VM-Assign, Divide

and Conquer based Throttled and Modified Particle Swarm Optimization (MPSO))

in a cloud data center. Further, we designed and developed Bio-Inpsired algorithms

(MPSO, Modified Cat Swarm Optimization (MCSO) and HYBRID (MPSO+MCSO))

for efficient resource allocation and management. Scheduling of BoT and Workflows

are proposed using Grey Wolf Optimizer (GWO) alogrithm on VMs instances (On-

Demand and Spot). The proposed algorithms in this research are experimented in

both homogeneous and heterogeneous cloud computing environments using Cloud-

Analyst and Python based simulators. Finally, the MPSO and HYBRID algorithms

are validated using real cloud setup.

2.7 Summary

In this chapter, we presented the existing state-of-the-art techniques related to schedul-

ing, load balancing, resource allocation & management algorithms. Further, we dis-

cussed the impact of optimizing the cloud QoS parameters in the efficient utilization

of the cloud resources. We clearly listed the challenging issues based on the outcome

of literature review along with problem definition and research objectives.

In the following chapters, we discuss the issues and the suitable solutions for opti-

mizing the multi objective QoS parameters in both homogeneous and heterogeneous

cloud computing environments.





Chapter 3

Scheduling and Load Balancing at
Cloud Data Center

Scheduling with load balancing is one of the critical components for efficient opera-

tions in the IaaS based cloud computing environment. In recent years, many clients

from all over the world are demanding the various services at a rapid rate. The

load balancing algorithms should be very efficient in allocating the requests and also

ensuring the usage of the resources in an intelligent way so that underutilization of

the resources will not occur in the cloud environment. Cloud consists of enormous

resources in terms of VMs and Servers, these resources are dynamically configured

either physically or virtually. In this chapter, we proposed three different schedul-

ing algorithms for allocating the clients’ requests and thus balanced the load on the

available VMs. The research contributions towards efficient Scheduling and Load

Balancing in a cloud data center are as follows.

• To design and develop an efficient scheduling and load balancing technique

using a Modified Throttled algorithm.

• To design and develop an efficient scheduling and load balancing technique

using VM-Assign algorithm.

• To design and develop an efficient scheduling and load balancing technique

using Hybrid (Divide and Conquer based Throttled) algorithm.

39
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The proposed algorithms follow a systematic approach to schedule the incoming

tasks and efficiently distribute the workload on the available resources of the cloud

data center. The details of the proposed algorithms are given in the following sections.

3.1 Proposed Modified Throttled Algorithm

Many scheduling and load balancing algorithms based on optimizing different QoS

parameters are proposed by different researchers (Radojević and Žagar (2011)). This

research contribution mainly focuses on the optimum allocation of tasks on avail-

able cloud resources (VMs) using the CloudAnalyst tool and our proposed Modified

Throttled algorithm achieves less average response time when compared to Throttled

and Round Robin algorithms.

3.1.1 Basics of Throttled Algorithm

In Throttled algorithm, the load balancer maintains an index, table of virtual ma-

chines as well as their states (Available or Busy). The client/server first makes a

request to the data center to find a suitable virtual machine (VM) to perform the

recommended job. The data center queries the load balancer for allocation of the

VM. The load balancer scans the index table from the top until the first available

VM is found or the index table is scanned fully. If the VM is found, then the VM

id is sent to the data center. The data center communicates the request to the VM

identified by the id. Further, the data center acknowledges the load balancer of the

new allocation and then the data center revises the index table accordingly. While

processing the request of the client, if appropriate VM is not found, then the load

balancer returns =1 to the data center (Wickremasinghe et al. (2010)). When the

VM completes the due task, then a request is acknowledged by the data center.
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Figure 3.1: Flow of the Proposed Modified Throttled Algorithm

3.1.2 Proposed Methodology

The proposed modified throttled algorithm as shown in Figure 3.1 mainly focuses

on the scheduling the incoming tasks on the available VMs in the cloud data center

environment

Here, data center receives the clients’ tasks and the interconnected load balancer

based on our proposed algorithm schedules the tasks on the available cloud resources.

Our proposed algorithm uniformly distributes the load on the available VMs and thus

maintains the stable load on the VMs. Algorithm 3.1 shows the working principle of

the proposed Modified Throttled Load Balancer.
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Algorithm 3.1 Modified Throttled Load Balancer

0: Input : Number of incoming jobs: x1, x2, x3,..., xn
Available VMs: vm0, vm1, vm2,..., vmk

1: Output: All incoming jobs x1, x2, x3,..., xn are allocated one by one to the
available vm0, vm1, vm2,..., vmk

2: Load balancer maintains an index table of VMs and its state
(BUSY/AVAILABLE). Initially, all VMs are available.

3: Data Center Controller receives a new request.
4: Data Center Controller queries the Modified Throttled Load Balancer for the next

task allocation.
5: Load Balancer starts with the VM at first index, then checks for the availability

of the VM.

6: Case 1: If VM is in ”AVAILABLE” state
7: The load balancer returns the VM id to the Data Center Controller
8: The data center controller sends the request to the VM.
9: The data center controller notifies the load balancer for the new allocation.
10: Then the load balancer updates the allocation table accordingly.

11: Case 2: If VM is in ”BUSY” state
12: The Modified Throttled Load Balancer returns -1.

13: When the VM completes the execution, then the data center controller notifies
the load balancer stating that this VM is AVAILABLE.

14: If there are more requests, Data Center Controller repeats step 4 with next index
and the process is repeated until the size of the index table is reached. After
reaching the size of index table, parsing starts with the first index.

15: Goto Step 2.

Our proposed Modified Throttled algorithm maintains an index, table of virtual

machines and also the state of VMs similar to the Throttled algorithm. We have

made an attempt to improve the response time as well to achieve efficient usage of

available virtual machines. The proposed algorithm employs a method of selecting a

VM for processing the clients’ request where a VM at first index is initially selected

depending upon the state of the VM. If the VM is available, then it is assigned to

the request and id of the VM is returned to data center, else -1 is returned. When

the next request arrives, then the VM at index next to previously assigned VM is

chosen depending on the status of the VM. But, in the Throttled algorithm, the
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index table is parsed from the first index every time when the data center receives

the request from the client. Algorithm 3.1 describes the complete working principle

of Modified Throttled load balancer. The proposed algorithm marginally improves

the cloud resource utilization when compared to Throttled algorithm. The details of

the second proposed algorithm are as follows.

3.2 Proposed VM-Assign Algorithm

As we know, the cloud is comprised of many resources in terms of PMs, VMs etc. and

efficient utilization of these resources needs an intelligent algorithm. In this research

contribution, we mainly deal with resource utilization and the focus is on efficient

utilization of VMs which are allocated to perform the clients’ task. Our proposed

VM-Assign algorithm improves the resource utilization when compared to Active

VM load balancer algorithm. The details of the proposed algorithm are as follows.

3.2.1 Basics of Active VM Algorithm

Mahalle et al. (2013) developed Active monitoring load balancer algorithm which

maintains information about each VMs and the number of tasks currently allocated

to each of the VMs. When a new task comes, then it identifies the least loaded VM

from the available cluster. If there are more than one, then the first identified will

be selected for the task allocation. Active VM load balancer returns the VM id to

the data center controller, which allocates the new task for execution. Data center

controller notifies the Active VM load balancer of the new task allocation.
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Figure 3.2: Flow of the Proposed VM-Assign Algorithm

3.2.2 Proposed Methodology

The proposed VM-Assign algorithm mainly focuses on finding out the least loaded

virtual machine and allocating the incoming tasks to the VMs in an efficient manner.

This algorithm also ensures the assigning of the incoming tasks in a balanced way.

Figure 3.2 shows the methodology of our proposed VM-Assign algorithm.

The proposed algorithm employs a method for selecting a VM for processing

clients’ task where, a VM at first index is initially selected depending upon the state

of the VM. If the VM is in ”AVAILABLE” state, then this VM is assigned to the

task and its id is returned to the data center, else -1 is returned. When the next task

arrives, then the VM at index next to previously assigned VM is chosen depending on

the state of the VM and follows the above step. Further, for the upcoming tasks, the

VM is chosen depending on its load. Here, the algorithm mainly focuses on the least

loaded VM and further ensures that the assigned VM in the current iteration has not

participated in the last iteration. Algorithm 3.2 shows the proposed VM-Assign Load
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Balancing algorithm.

Algorithm 3.2 VM-Assign Load Balancer

0: Input : Number of incoming jobs: x1, x2, x3,..., xn
Available VMs: vm0, vm1, vm2,..., vmk

1: Output: All incoming jobs x1, x2, x3,..., xn are allocated one by one to the
available vm0, vm1, vm2,..., vmk

2: Initially, all the VMs have 0 allocations.
3: VM-assign load balancer maintains the index / assign table of VMs which has

number of requests currently allocated to each VM.
4: When requests arrive at the data center then it passes to the load balancer.
5: Index table is parsed and least loaded VM is selected for execution.

6: Case 1: If VM is Found
7: Checks whether the chosen least loaded VM is used in the last iteration.
8: If YES
9: Go to Step 4 to find the next least VM.
10: If NO
11: Least loaded VM is chosen.
12: VM-assign load balancer returns the VM id to the data center.
13: Task is assigned to the VM for execution. Data center controller acknowledges

the load balancer.
14: VM-assign load balancer updates the tasks held by each VM.
15: When the VM finishes the processing the task, data center receives the response.

16: Data center controller notifies the VM-assign load balancer for the VM de-
allocation and accordingly updates the table.

17: Repeat the process from Step 2 for the execution of next task.

The proposed algorithm achieves better VM utilization and maintains a balanced

load when compared to Active VM load balancer algorithm. The details of the third

proposed algorithm are as follows.
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3.3 Proposed Hybrid (Divide and Conquer Based

Throttled) Algorithm

In this research contribution, we applied the hybrid scheduling approach in IaaS based

cloud for efficient usage of resources. Here, we combined the Divide and Conquer and

Throttled approaches and came up with a new hybrid scheduling algorithm referred

to as Divide and Conquer Based Throttled (DCBT) algorithm. The hybrid DCBT

algorithm efficiently utilizes the cloud resources and it also has a better execution

time when compared to Throttled algorithm.

3.3.1 Basics of Divide and Conquer Algorithm

Divide and Conquer approach is an algorithm design paradigm based on multi branch

recursion procedure. It follows top down approach to make a task simpler and then

bottom up approach to get a final solution of a task. In divide and conquer approach,

the given task is divided into smaller sub-tasks and then each task is solved inde-

pendently. When we keep on dividing the sub tasks into even smaller sub-tasks, we

may eventually reach a stage where no more division of task is possible and then each

small sub task is solved. Further, the solutions of all sub tasks are merged together

to get a final solution of the original task from which it is initiated.

3.3.2 Proposed Methodology

The proposed hybrid scheduling and load balancing algorithm combines the method-

ology of Divide and Conquer and Throttled algorithms referred to as DCBT. The

DCBT algorithm plays an important role in distributing the incoming load in an

efficient manner so that it maximizes the resource utilization in a cloud environment.

The main aim of the proposed DCBT is to reduce the total execution time of the

tasks and thereby maximizing the resource utilization. Further, the proposed DCBT

algorithm is analyzed using CloudSim simulator and also in a customized distributed
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Figure 3.3: Flow of the Proposed DCBT Algorithm

environment using Python. Figure 3.3 shows the flow diagram of our proposed DCBT

algorithm.

The proposed DCBT algorithm is implemented in two scenarios. (i) In the

CloudSim simulation environment and (ii) in the customized environment written

in Python which resembles the cloud simulation environment. Results of both plat-

forms are same and encouraging. The details of the platforms and algorithm design

are as follows.

Figure 3.3 shows the complete flow of the proposed DCBT algorithm based on

the combined approaches of different phases namely Pass I and Pass II. Here, Pass I

implements the Divide and Conquer approach and Pass II implements the Throttled

algorithm approach. Further, our proposed DCBT algorithm takes care of priority

tasks, i.e. if the data center comes across any prioritized task then it intimates our

DCBT algorithm for handling it. Further, our proposed DCBT algorithm ensures

that the prioritized task will be executed at the earliest so that it will not lead to

starvation of prioritized tasks. It means that while executing the tasks, if the DCBT

algorithm finds any prioritized task, then it puts that task in the next available
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slot for execution. Thus, the behavior of proposed DCBT algorithm will remain the

same for both the platforms. But, in CloudSim environment tasks are assigned to

VMs whereas in a customized environment tasks are assigned to Request Handlers

(RH). Hence, the usage of VMs and RH are used interchangeably in this research

contribution. Algorithm 3.3 shows the proposed DCBT scheduling algorithm with

two phases, namely: Pass I and Pass II and the details are as follows.

Steps for Pass I Phase of DCBT Algorithm:

Step 1: Find the number of tasks in queue for a period ’t’.

Step 2: Find the number of available RH in a real time distributed system.

Step 3: Tasks are divided continuously by the number of available RH in a real time

distributed system.

Step 4: After the division, check the remainder == number of RH then, assign tasks

to the RH for execution

Step 5: Steps 1 to 4 are iterated continuously in coordination with pass II until it

finishes the execution.

Steps for Pass II Phase of DCBT Algorithm:

Step 1: Initially Load Balancer assigns the tasks to the available Request Handlers

or Virtual Machines.

Step 2: For the next assignment, Load Balancer checks for the availability of RH.

Step 3: Next task is allocated to available RH or VM, iff

1. RH or VM should be free.

2. Assigned RH or VM should not be used in the previous assignment.

3. If any prioritized requests, then put them at first location in the queue.

Step 4: Steps 1 to 3 are repeated in coordination with Pass I until all the tasks are

executed completely.
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Algorithm 3.3 Hybrid (DCBT) Task Scheduler for Pass I and II Phases

1: for all total tasks
2: for all available RH from servers
3: divide tasks by RH
4: assign tasks to available RH
5: end for
6: end for
7: return RH for executing the task

Pass II
8: for all total tasks
9: find the available RH from servers
10: if (RH (i )or VM ≤ RH (i+1)) and so on
11: assign RH i
12: else
13: assign RH i+1
14: end for
15: if (RH or VM is used in previous iteration)
16: Search next RH or VM
17: else
18: Assign current RH or VM
19: return RH for executing the task

The proposed algorithm achieves better execution time in both platforms when

compared to a Modified Throttled algorithm and also it efficiently utilizes the cloud

resources i.e. it maintains the balanced load on the VMs. Next, we will discuss about

the performance analysis of our proposed algorithms.

3.4 Performance Evaluation

In this chapter, we proposed three load balancing algorithms (Modified Throttled,

VM-Assign, and Divide and Conquer Based Throttled). The proposed algorithms

are compared with other state-of-the-art algorithms and analysed with different QoS

parameters. Next, we will discuss the experimental setup, results and analysis.
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Figure 3.4: Architecture of CloudAnalyst simulator

3.4.1 Experimental Setup

The proposed algorithms are experimented in CloudAnalyst simulation tool which

inherits the properties of CloudSim tool. The tool completely simulates the IaaS

based cloud computing environment and it is designed by University of Melbourne,

Australia (Wickremasinghe et al. (2010)). The CloudAnalyst simulator gives the

real time scenario with six different geographical locations, i.e. a number of users

from particular locations can be identified by depending on the specific application,

e.g. Facebook users from Asia, Africa, etc. The simulator is very flexible and it

provides data centers, virtual machines, bandwidth and many more QoS parameters

for experimentation. Figure 3.4 shows the snapshot of the CloudAnalyst architecture.

Hypothetical applications like Facebook users, Twitter users, Internet users are

considered for experimentation. Six different geographical locations (six different

continents of the world) are considered (Mondal et al. (2012)). A single time zone is

considered for all user locations. For simplicity, one hundredth of the total users from

each continent is considered and it is assumed that only 5% of total users are online

during peak hours and during off-peak hours, users are one tenth of the peak hours.

For experimentation, internet users from six different continents are considered, i.e.

six user bases and peak and non-peak users are given in Table 3.1.

We considered internet users from different continents from the month of June

2012 (Users (url)). The same data is experimented with three different scheduling

algorithms and response time of each algorithm is considered for performance analysis.

Each data center has a capacity to host a number of virtual machines which are needed
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Table 3.1: Workload Setup for Scheduling

User Base Region

Online
Users dur-
ing peak
hours

Online
Users dur-
ing non-
peak hours

North Amer-
ica

0 135000 13500

South Amer-
ica

1 125000 12500

Europe 2 255000 25500

Asia 3 535000 53500

Africa 4 30000 3000

Oceania 5 10000 1000

for a particular application. Machines have 100 GB of storage space, 4 GB of RAM,

each machine has 4 CPU and a power of 10k MIPS.

For customized setup, we used four nodes having different configurations. The

four nodes are connected together in which one node acts as a load balancer, another

node act as a dynamic task generator and remaining two nodes act as servers which

have many VMs. Here, the task consists of Million Instructions Per Second (MIPS)

which is generated by the client generator.

3.4.2 Results and Analysis

The proposed three algorithms (Modified Throttled, VM-Assign, and Divide and Con-

quer Based Throttled) are compared with state-of-the-art algorithms and evaluated

for QoS parameters (Reliability and Time). The proposed algorithms outperform in

efficient utilization of cloud resources, mainly VMs by maintaining the balanced load

in the data center. The proposed algorithms are efficient in achieving better average

response time and execution time. The detailed analysis of the proposed algorithms

is as follows.
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Table 3.2: Utilization of VMs

Sl.
No.

Throttled
Round
Robin

Modified
Throt-
tled

VM1 1182 254 254

VM2 76 254 254

VM3 8 253 254

VM4 2 253 253

VM5 0 254 253

Results of Modified Throttled Algorithm:

The proposed Modified Throttled algorithm mainly focuses on both QoS parameters

(Reliability and Time), i.e. efficient utilization of VMs and average response time.

The details are as follows.

Efficient Utilization of VMs

The proposed Modified Throttled algorithm will not parse the index table from the

beginning every time. But this is not the case with Throttled algorithm in which the

algorithm always parses the index table from the beginning irrespective of a number

of tasks. In Throttled algorithm, a few VMs are overloaded and remaining VMs

are underutilized and thus resulting in load imbalance on the available VMs. But,

the proposed Modified Throttled algorithm overcomes the problem with the parsing

the index table and hence the VMs are utilized efficiently. Both the algorithms are

compared using five VMs and Table 3.2 gives the information about how many times

each VM is efficiently utilized.

From Table 3.2, it is observed that Round Robin and Modified Throttled algo-

rithms efficiently utilize the available VMs compared to Throttled algorithm. How-

ever, the results of Round Robin and Modified Throttled algorithms seem to be same,

but in the Round Robin, the state of the VM (BUSY/AVAILABLE) is not considered
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Table 3.3: Average Response Time Analysis

Algorithms Average Response Time

Throttled 364.76ms

Round Robin 363.52ms

Modified Throtled 362.67ms

and hence leads to the queuing of the incoming tasks on the server. The modified

Throttled algorithm gives better results by checking the state of the VM and thus

avoiding the queuing at the server. Even though Round Robin and Modified Throt-

tled algorithms give the same result in terms of VMs utilization but the proposed

Modified Throttled algorithm has better average response time when compared to

other benchmark algorithms.

Average Response Time Analysis

The proposed Modified Throttled algorithm along with the other two benchmark

algorithms are experimented for average response time analysis. The experiment is

repeated several times and average response time of Modified Throttled algorithm is

slightly better when compared to Round Robin and Throttled algorithms. Table 3.3

gives the information about the average response time of all three algorithms.

Results of VM-Assign Algorithm:

The proposed VM-Assign algorithm mainly focuses on Reliability QoS parameter, i.e.

efficient utilization cloud resources (VMs).

Efficient Utilization of VMs

The proposed VM-Assign algorithm will not allow the same VM to be assigned to

the new task if it was allocated in its previous step. But this is not the same case

with Active-VM load balancing algorithm in which it assigns the least loaded VM
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Table 3.4: VMs Usage with 5 VMs

Sl.
No.

Active-VM VM-Assign

VM1 1178 258

VM2 78 252

VM3 10 253

VM4 4 251

VM5 2 254

depending on the current load. Active-VM load balancer algorithm will not bother

about VM’s usage. Hence, in Active-VM load balancer algorithm, a few VMs are

overloaded with many tasks to be processed and remaining VMs will handle only a few

tasks. Thus, resulting in underutilization and overutilization of the cloud resources

and this will lead to load imbalance in the cloud data center. But our proposed

VM-Assign load balance algorithm utilizes all available VMs in an efficient manner.

The proposed algorithm proves that there is no underutilization or overutilization of

the VMs in the cloud data center. The algorithm is initially tested with five VMs

and later 25 VMs, the comparative analysis is carried out for proposed VM-Assign

and Active-VM load balancer algorithms. In both cases, our proposed VM-Assign

algorithm balances the load on all available VMs in an efficient way. Hence we can say

that our proposed VM-Assign algorithm will overcome the under- or over-utilization

of resources in the cloud data center. Table 3.4 gives the information about how many

times each VM is efficiently used.

From the Table 3.4, we can observe that VM-Assign load balancer algorithm dis-

tributes the incoming tasks to all VMs in an intelligent way as compared to Active-VM

load balancer algorithm. In the proposed VM-Assign algorithm, utilization of the re-

sources is neither underutilized nor overutilized, whereas in Active-VM load balancer,

VM0 is overutilized and VM4 is used only twice and other VMs are underutilized.

The experiment is repeated for different number of VMs like 25, 50, and 100. Next
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we will analyze the tasks held by 25 VMs using proposed VM-Assign and Active-VM

load balancer algorithms. Table 3.5 shows the usage of 25 VMs.

From Tables 3.4 and 3.5, it is clearly observed that Active-VM load balancing

algorithm is overutilizing the initial VMs and underutilizing the later ones. But

our proposed VM-Assign algorithm distributes the incoming tasks to all VMs in an

intelligent way and hence all the resources are efficiently used. Response time analysis

of both algorithms is also experimented but there is no significant difference in the

response time of both algorithms and hence we considered only VMs usage. Further,

the results for 50 and 100 virtual machines follow the same pattern of allocation as

shown in Tables 3.4 and 3.5 respectively.

Results of DCBT Algorithm:

The proposed DCBT algorithm mainly focuses on both QoS parameters (Reliability

and Time), i.e. efficient utilization of VMs and execution time. The details of efficient

utilization of VMs and execution time are as follows.

Efficient Utilization of VMs

The proposed DCBT algorithm combines the two different approaches and then sched-

ules the incoming tasks on the available VMs in IaaS based cloud environment. Ini-

tially, the tasks from the queue are taken and divided into smaller groups which

follows divide and conquer based approach and then assigned to the VMs. Further,

it follows the Modified Throttled approach to choose the suitable VM for executing

the upcoming task. Initially DCBT assigns the tasks to the available VMs and make

them busy. Later, the tasks are executed on VMs and load on any VM is neither

overloaded nor underloaded. Hence, our proposed DCBT algorithm efficiently utilizes

the available VMs in the given cloud environment. Table 3.6. shows the number of

tasks handled by different configured VMs.

From Table 3.6, it is clearly observed that the proposed DCBT algorithm intelli-

gently distributes the incoming tasks on the available VMs and maintains the balanced
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Table 3.5: VMs Usage with 25 VMs

Sl.
No.

Active-VM VM-Assign

VM1 18609 3693

VM2 20078 4376

VM3 6569 4330

VM4 5845 4312

VM5 4973 4350

VM6 4568 4318

VM7 4164 3818

VM8 4907 4588

VM9 4337 4565

VM10 3886 4610

VM11 3267 4615

VM12 3321 4582

VM13 2966 4065

VM14 3869 4890

VM15 2988 4863

VM16 2948 4828

VM17 2332 4852

VM18 2425 4971

VM19 2047 5053

VM20 2467 4440

VM21 2249 5098

VM22 2564 5278

VM23 1883 5309

VM24 1984 5472

VM25 1648 5618
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Table 3.6: Number of Tasks Executed by VMs

Sl.
No.

Throttled
Algorithm

DCBT Al-
gorithm

VM1 1058 253

VM2 158 253

VM3 34 253

VM4 21 253

VM5 0 253

load. But the Throttled algorithm overutilizes the initial VMs and underutilizes the

later VMs. From Table 3.6, we can clearly observe that VM5 is never assigned any

task by Throttled algorithm where as tasks are assigned to VM4 by proposed DCBT

algorithm. Similarly, VM1 is used many times by Throttled algorithm, but that is

not the same case with our proposed DCBT algorithm. The number of tasks coming

at a batch of ten are processed depending on the VMs availability. The experiment is

repeated for different number of incoming tasks and VMs. Thus, our proposed DCBT

algorithm distributes the load equally and outperforms the Throttled algorithm in all

cases.

Execution Time Analysis

The proposed DCBT algorithm is experimented for execution time analysis and com-

pared with Throttled algorithm. The experiment is repeated for different sets of VMs

and in all cases, our proposed DCBT algorithm has better execution time when com-

pared to Throttled algorithm. Table 3.7 shows the execution time analysis of both

Throttled and DCBT algorithms in seconds.

For the experimentation we considered the both non-prioritized and prioritized

requests. The proposed DCBT algorithm will execute the prioritized requests within

its deadline and in parallel it also manages the non-prioritized tasks in an efficient
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Table 3.7: Execution Time Analysis (in seconds)

Number of
Tasks

Throttled
Algorithm

DCBT Al-
gorithm

20 131 118

100 645 589

1000 6333 57696

manner. In our experimentation, we also considered different BoT with varying inter

arrival time between them. It is observed from Table 3.7 that our proposed DCBT

algorithm improves the efficiency of execution time by 9.972%.

3.5 Summary

In this chapter, we proposed three different scheduling algorithms in the IaaS based

cloud environment. The proposed algorithms outperform benchmark algorithms in

Reliability and Time QoS parameters such as average response time, total execution

time and efficient utilization of cloud resources (VMs). For the experimentation we

used different sets of inputs of VMs and Bag of Tasks (BoT) and in this chapter we

used only independent tasks.

In the proposed DCBT algorithm we used hybrid approach and we considered

both prioritized and non-prioritized tasks. Here, we concentrated on VMs usage as

resource utilization but other resources such as Memory and CPU are not considered

in this chapter. But hot plugging technique of assigning needed resources, motivated

us to consider these resources during scheduling in the cloud environment. Hence, in

the next chapter we discuss in detail about resource allocation management strategies

using Bio-Inspired techniques.



Chapter 4

Resource Allocation and
Management at Cloud Data Center

Resource allocation and management in the cloud environment plays a major role

in the IaaS based cloud environment. Since the clients’ requests are received by

the cloud data centers at a rapid rate, hence the enormous amount of data is bun-

dled together at the cloud data centers. In the previous chapter, we considered only

VMs as a cloud resource, but many clients’ demand for cloud resources in terms of

Memory and Central Processing Unit (CPU). Intelligent handling and assignment of

these resources need a better scheduling and resource allocation approaches. Even

though many researchers contributed towards scheduling and resource allocation ap-

proaches, but still there is a need for optimization as these approaches come under

NP-Hard/NP-Complete complexity classes. Hence, to solve these problems in this

chapter, we proposed Bio-Inspired algorithms for scheduling and resource allocation

as these approaches are best suited for solving the NP-Hard/NP-Complete complex

problems. The research contributions towards efficient Bio-Inspired scheduling, re-

source allocation, and management are as follows.

• To design and develop an efficient Bio-Inspired algorithm for scheduling the

tasks using Modified Particle Swarm Optimization (MPSO) technique.

59
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• To design and develop an efficient dynamic resource allocation and manage-

ment policy using both MPSO and Modified Cat Swarm Optimization (MCSO)

techniques.

• To design and develop an efficient HYBRID (MPSO+MCSO) algorithm for

managing the cloud resources.

• To evaluate the performance of proposed HYBRID approach with benchmark

exact algorithm along with statistical hypothesis analysis.

The proposed Bio-Inspired algorithms follow the standard approaches of cloud

computing for scheduling, resource allocation and management. The proposed algo-

rithms are compared with benchmark algorithms for performance evaluation. Further,

the results of the proposed algorithms are compared with statistical hypothesis anal-

ysis and time complexity of HYBRID (MPSO+MCSO) algorithm is also analyzed.

Our approach follows the process of hot-plugging in which the resource units such as

Memory and CPU will be added and removed from the VMs without interrupting

the current state of the VMs. The details of the proposed Bio-Inspired algorithms

are given in the following sections.

4.1 Basics of MPSO Algorithm

Particle Swarm Optimization (PSO) was developed by (Eberhart and Kennedy (1995))

1995 and it is widely used stochastic optimization technique based on the behavior

of animals and birds. In MPSO, the particle is represented by its position and veloc-

ity; these particles keep track of local best (LB) and global best (GB) values; fitness

function determines the LB and GB values. In the scheduling approach, particles

refer to VMs; LB refers to underloaded VM from each cluster and GB refers to the

minimum value among all LB values. The algorithm iterates continuously to get the

new LB and GB values. In MPSO, GB does not remain the same in each iteration
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when compared to PSO. The position and velocity of a particle are updated based

on the following Equations 4.1.1 and 4.1.2 respectively (Liu and Wang (2012)).

x(t+ 1) = x(t) + v(t) (4.1.1)

x(t+ 1) = v(t) + c1r1(LB − x(t)) + c2r2(GB − x(t)) (4.1.2)

where,

x(t) is current position of particle/Current load of a VM.

LB is least under loaded VM from cluster.

GB is least under loaded VM from all LB values.

c1 and c2 acceleration coefficients, usually c1= c2=2.

r1 and r2 are random numbers between (0,1).

4.2 Basics of MCSO Algorithm

The basic Cat Swarm Optimization (CSO) technique (Bilgaiyan et al. (2014)) deals

with two important phases like seeking mode and tracing mode. In the proposed

Modified Cat Swarm Optimization (MCSO), we mainly concentrate on seeking mode

rather than on tracing mode as it is similar to the MPSO approach. MCSO is used

for resource allocation management based on seeking mode only. However, MCSO

cannot be efficiently used for scheduling if it uses both seeking and tracing modes.

MCSO deals with four different types of memories like Seeking Memory Pool (SMP),

Seeking Range of selected Dimension (SRD), Counts to Dimension Change (CDC)

and Self Position Consideration (SPC). These memory pools play an important role in

assigning the cloud resources to VMs in the current work. The usage details of these

memory pools are given in the following Sections along with the proposed MCSO

algorithm. The main difference between MPSO and MCSO is that the seeking mode



Resource Allocation and Management at Cloud Data Center 62

Figure 4.1: Model for Explaining Our Proposed Work

of MCSO overcomes the limitations of the MPSO by comparing the future resource

demands with excess resources present in the VMs.

4.3 Model for Explaining our Proposed Algorithms

Figure 4.1 shows an example model where the tasks are scheduled on the VMs and

resources such as CPU and Memory are utilized efficiently by our proposed MPSO,

MCSO and HYBRID (MPSO+MCSO) algorithms. Here, we used different types of

VMs on a PM which can communicate with the scheduler for the efficient functioning

of proposed algorithms. The tasks are coming at a batch of ten and their inter arrival

time remains constant. Initially, tasks are scheduled efficiently on VMs and then the

allocation of required resources will take place.

The incoming task demands n number of cloud resources where n = [0,9] and

allocation of n resources are provided by either cloud resource pool or by the VMs.

Each cluster contains different VMs with the best two n resource values represented

as excess res1 and excess res2, respectively and the remaining resources available

with VMs are stored in excess res3[]. During resource allocation, the on demand

resources are compared with excess res1, excess res2 and excess res3[], respectively

by our proposed MPSO, MCSO and HYBRID (MPSO+MCSO) algorithms. The
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excess res1 and excess res2 mappings are used by the MPSO algorithm where as

excess res3[] mapping is used by the MCSO algorithm. On the other hand, HYBRID

(MPSO+MCSO) algorithm uses all the three aforementioned resource mappings. The

details of the proposed MPSO based scheduling algorithm are as follows.

Figure 4.2: Flow Diagram of MPSO based Scheduler

4.4 Proposed MPSO Algorithm for Scheduling

Since the cloud receives tasks at a rapid rate from the outside world, hence assigning

and executing these tasks is a challenging issue. In this thesis contribution, we propose

a MPSO technique for scheduling the incoming tasks against available VMs. Figure

4.2 shows the flow diagram of the proposed MPSO based scheduling algorithm.
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Number of incoming tasks i.e. {x1, x2, x3,....., xn} are to be scheduled on VMs

i.e. {vm0, vm1, vm2,...., vmk}. Here, our proposed MPSO algorithm is deployed for

scheduling the tasks in a balanced way. The MPSO algorithm plays an important role

in assigning the incoming tasks to the VMs as efficiently as possible. We experimented

this work for a private cloud which receives the tasks in a batch of ten (can be

extended) and these tasks are assigned to the VMs. Clustering depends on the number

of VMs taken for experimentation. Algorithm 4.1 gives the complete details of task

scheduling by using MPSO technique.

In every iteration, each cluster will identify the least loaded VMs referred to as

the local best (LBz) and the smallest among these VMs referred to as global best

(GB). The next task is allocated to the VM that is associated with GB. If the GB

remains the same in the subsequent iteration, then GB is updated with second least

LBz from the cluster list Cz. The same process is continued until all the tasks are

executed. The time complexity of MPSO algorithm is 0(n.z). Since z is a constant

hence the time complexity of MPSO algorithm will be 0(n) in polynomial time.

Algorithm 4.1 Task Scheduling using MPSO Technique

0: Initialization: {vm0, vm1, vm2,..., vmk} count = 0
Local Best (LBz) = 0
Global Best (GB) = 0
VMs = {vm0, vm1, vm2,..., vmk}
Clusters, Cz = {c1, c2, c3,..., cz}
Cluster size = k/Cz

1: for all incoming requests {x1, x2, x3,..., xn}
2: each cluster Cz = least loaded VM
3: Assign each one of them as LBz from Cz

4: end for
5: Assign GB = least LBz

6: Next task allocated to VM which contains GB
7: if (Next allocation == last used GB) then skip
8: goto Step 2 for next least LBz

9: else
10: goto Step 6
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4.5 Proposed MPSO Algorithm for Resource Al-

location and Management

In this thesis contribution, the MPSO algorithm is designed for allocating and man-

aging the clients’ resource demands. Here, the tasks demand for dynamic resources

at a rapid rate in the cloud environment and satisfying these demands is a challeng-

ing task. To execute the clients’ demand, the VMs must have enough resources and

providing these resources to VMs is managed by the proposed MPSO. For more clar-

ification, let us assume that there is a cloud resource pool (Res pool) which provides

the resources demanded by the tasks and Res pool acts like a resource repository.

Each of the VMs has at least two minimum resources (CPU and Memory) for execut-

ing a task. In the first iteration, for all VMs, resources are given by cloud resource

pool and from the second iteration on-wards it depends on the resources as demanded

by the tasks. Each of the VMs will not use all the resources for execution of tasks

and these unused excess resources which remain with the VMs can be utilized for

the future task demands. Our proposed MPSO algorithm plays an important role

in assigning these unused resources either from the VMs or from the cloud resource

pool.

For resource allocation and management strategy, the tasks are coming from the

clients side with the same inter arrival time. We considered a queue size of ten

tasks and each task demands cloud resources in random fashion. Allocation and

management of these resources is carried out by a load balancer based on our proposed

algorithms. In this work, we assumed CPU and Memory as mandatory resources for

task’s execution and each of the VMs needs at least two resources (i.e. CPU and

Memory) for execution of a task. In the first iteration, resources are taken from the

cloud resource pool which acts as the global hub of resources.

To assign the demanded resources to VMs with better efficiency, let us form the

clusters {c1, c2, c3,..., cz} from the VMs {vm0, vm1, vm2,..., vmk} which operate in

both sequential and parallel modes. For parallel mode execution, we need at least two
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clusters. For subsequent assignment of resources to the VMs, let us take the best two

excess resources, i.e. excess res1 and excess res2 (VMs with unused extra resources)

from each cluster and check for a match with the next resource demands. If the next

resource demand is matching with the best values (unused resources), then VMs start

executing the task immediately, or else the resources are taken from the resource pool

for the task’s execution.

After each iteration, if there are any unmatched/unused resources, then these

resources can be released to the resource pool. Once VMs complete the execution

of a task, then the minimum resources available with VMs can also be released to

the cloud resource pool. The main focus is on utilizing the resources from the VMs

rather than lending the resources from the resource pool. In doing so, we dynamically

exploit the resources and thus communication overhead between the cloud resource

pool and VM is reduced significantly. Algorithm 4.2 describes the resource allocation

and management using the proposed MPSO technique.

Usually in MPSO algorithm, the local and global best may result in minimum

or maximum values but these are application specific. In the Algorithm 4.1, we

took only one best (minimum: load on the VM) value from each cluster; but in the

Algorithm 4.2, our main objective is to choose the best (maximum) two values and

thus resulting in more optimization if it matches the subsequent resource demand for

the tasks. Thus the MPSO algorithm is designed accordingly to suit the requirements

of scheduling and resource allocation and management approaches.

Even though our proposed MPSO algorithm improves the allocation of resources

intelligently, but it has the following limitations.

• excess res1 and excess res2 may not match exactly with the subsequent future

resource demand for task’s execution.

• More communication overhead between VMs and cloud resource pool.
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Algorithm 4.2 Resource Allocation and Management Using MPSO Technique

0: Initialization: Res pool, Needed res, min res=2
sum res= 0
VMs = {vm0, vm1, vm2,...,vmk}
Clusters, Cz = {c1, c2, c3,..., cz}
Cluster size = k/Cz

1: for all incoming requests {x1, x2, x3,..., xn}
2: Res demand ← sum of resources from requests
3: Needed res ← resource demand for each request
4: for all available VMs
5: sum res ← sum res + Res demand
6: end for
7: if (iteration 1)
8: Res pool ← Res pool - sum res
9: end if
10: else
11: for all Cluster size, Cz = {c1, c2, c3,..., cz}
12: excess res1 ← first best of cz
13: excess res2 ← second best of cz
14: end for
15: for all available VMs {vm0, vm1, vm2,..., vmk}
16: for all Cluster size, Cz = {c1, c2, c3,..., cz}
17: if (excess res1 == Needed res[])
18: VM executes using excess res1
19: else
20: Res pool ← Res pool - Needed res[]
21: if (excess res2 == Needed res[])
22: VM executes using excess res2
23: else
24: Res pool ← Res pool - Needed res[]
25: end for
26: end for
27: Res pool ← Res pool + remaining Needed res[]
28: end for
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Next, we will propose the resource allocation and management algorithm using

MCSO and thus overcoming the limitations of the proposed MPSO algorithm.

4.6 Proposed MCSO Algorithm for Resource Al-

location and Management

In this thesis contribution, the proposed MCSO algorithm overcomes the limitations

of the MPSO approach since MCSO algorithm achieves higher number of resource

matching when compared to that of MPSO algorithm. The details of proposed MCSO

algorithm are as follows.

Cats always remain calm and move slowly and this behavior of cats is referred

to as seeking mode. When the presence of prey (resource match happens) is sensed,

then cats chase it with high speed, and this behavior is referred to as the tracing

mode. The tracing mode acts similar to that of MPSO algorithm, but the seeking

mode awaits the opportunity to capture a prey. In the proposed MCSO algorithm,

we mainly concentrate on the seeking mode rather than the tracing mode. In MPSO

algorithm, it matches only with the excess res1 and excess res2 values from each

cluster, but the remaining excessive resources from each cluster are not considered

for the assignment and this issue is addressed in the proposed MCSO algorithm as

shown in Algorithm 4.3.

As we know, the CSO algorithm passes through different types of memory and

in the proposed MCSO these different types of memory play an important role in

the decision making of resource assignment. Thus the seeking mode of MCSO has

four different types of memory. The excess resources available with VMs other than

excess res1 and excess res2 are stored in the seeking memory pool (SMP). Using

SMP, the cats await the opportunity in order to find the exact match with the future

resource demand for the tasks. If there is a match, then status is stored in the

seeking range of selected dimension (SRD). If SRD has a new update, then VMs start

executing the task and this status is referred to as counts to dimension change (CDC).
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Algorithm 4.3 Resource Allocation and Management Using MCSO Technique

0: Initialization: Res pool, Needed res, min res=2
sum res= 0
VMs = {vm0, vm1, vm2,..., vmk}
Clusters, Cz = {c1, c2, c3,..., cz}
Cluster size = k/Cz

1: for all incoming requests {x1, x2, x3,..., xn}
2: Res demand ← sum of resources from requests
3: Needed res[] ← resource demand for each request
4: for all available VMs
5: sum res ← sum res + Res demand
6: end for
7: if (iteration 1)
8: Res pool ← Res pool - sum res
9: end if
10: else
11: for all Cluster size, Cz = {c1, c2, c3,..., cz}
12: excess res3[] ← rest of first and second best from
13: each cluster
14: end for
15: for all available VMs {vm0, vm1, vm2,..., vmk}
16: for all Cluster size, Cz = {c1, c2, c3,..., cz}
17: while (size of(excess res3[])
18: if (excess res3[] == Needed res[])
19: VM executes using excess res3[]
20: else
21: Res pool ← Res pool - Needed res[]
22: end while
23: end for
24: end for
25: Res pool ← Res pool + remaining Needed res[]
26: end for
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The cat’s position is changing in every update of seeking mode of MCSO and it is

stored in self position consideration (SPC). The tracing mode operation is applied to

the outcome of seeking mode and the procedure is same as that of MPSO algorithm.

There might be a situation in which all remaining excessive resources (other than

excess res1 and excess res2 ) may match with future resource demand; hence, time to

lend the resources from the resource pool may be reduced considerably.

The seeking mode matching ratio of MCSO is greater than the best two i.e. ex-

cess res1 and excess res2 matching policies of the MPSO and thus MCSO will im-

prove the dynamic allocation and management of cloud resources. However, the

MCSO algorithm has the following limitations.

• The values of excess res3[] may not (rare case) match with the subsequent re-

source demand for task’s execution.

• If the above condition is true, then the algorithm will be slower and communi-

cation overhead between VM and cloud resource pool will be increased.

The proposed MPSO and MCSO approaches behave intelligently in assigning the

cloud resources as efficiently as possible, but still there is a scope for further im-

provement in allocating the cloud resources. Thus we proposed the hybrid technique

by combining both MPSO and MCSO approaches and hereafter it is referred to as

HYBRID (MPSO+MCSO) algorithm. The details of HYBRID (MPSO+MCSO) al-

gorithm are as follows.

4.7 Proposed HYBRID (MPSO+MCSO) Algorithm

for Resource Allocation and Management

The limitations of the MPSO and MCSO algorithms can be overcome by our pro-

posed HYBRID (MPSO+MCSO) Bio-Inspired algorithm which combines the merits

of both MPSO and MCSO techniques. Thus, HYBRID approach provides better

performance in terms of allocation of resources with reduced total execution time.
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Further, communication overhead between VMs and resource pool is marginally de-

creased.

In MPSO and MCSO, we compare only exact matches of excess res1, excess res2

with the Needed res[] from future resource demand. In the worst-case, HYBRID

approach may not work efficiently and degrades the performance of the resource allo-

cation and thus the system will respond with high delay. To overcome this situation,

we consider the excess res3[] which contains the remaining resources other than ex-

cess res1 and excess res2. The complete flow of HYBRID (MPSO+MCSO) technique

is given in Algorithm 4.4.

Figure 4.3: Overall Flow Diagram of Proposed Algorithms

In the proposed HYBRID approach, we modify the condition by checking the

upper bounds of excess res1, excess res2 and excess res3[] of Algorithms 4.2 and

4.3. In doing so, we can decide how many resources from excess res1, excess res2 and
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Algorithm 4.4 Resource Allocation and Management Using HYBRID
(MPSO+MCSO) Approach

0: Initialization: Res pool, Needed res, min res=2
sum res= 0
VMs = {vm0, vm1, vm2,..., vmk}
Clusters, Cz = {c1, c2, c3,..., cz}
Cluster size = k/Cz

1: for all incoming requests {x1, x2, x3,..., xn}
2: Res demand ← sum of resources from requests
3: Needed res ← resource demand for each request
4: for all available VMs
5: sum res ← sum res + Res demand
6: end for
7: if (iteration 1)
8: Res pool ← Res pool - sum res
9: end if
10: else
11: for all Cluster size, Cz = {c1, c2, c3,..., cz}
12: excess res1 ← first best of cz
13: excess res2 ← second best of cz
14: excess res3[] ← rest of first and second best of cz
15: end for
16: for all available VMs {vm0, vm1, vm2,..., vmk}
17: for all Cluster size, Cz = {c1, c2, c3,..., cz}
18: if (excess res1 ≥ Needed res[])
19: VM executes using excess res1
20: else
21: Res pool ← Res pool - Needed res[]
22: if (excess res2 ≥ Needed res[])
23: VM executes using excess res2
24: else
25: Res pool ← Res pool - Needed res[]
26: while (size 0f(excess res3[]))
27: if (excess res3[] ≥ Needed res[])
28: VM executes using excess res3[]
29: else
30: Res pool ← Res pool - Needed res[]
31: end while
32: end for
33: end for
34: Res pool ← Res pool + remaining Needed res[]
35: end for
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excess res3[] will be allocated to the forthcoming task and the remaining (unmatched)

extra resources can be returned to the cloud Res pool. Thus, our proposed HYBRID

algorithm outperforms MPSO and MCSO algorithms when considered individually.

Algorithm 4.4 behaves intelligently from line numbers 12 to 30 as it combines the

features of both Algorithms 4.2 and 4.3 with optimum modifications. We need to

apply both approaches simultaneously, so that the lines numbered 18-25 and 26-29

will be executed in parallel using Python threads during the execution (applying

both MPSO and MCSO). Hence, the matching possibility of excess res3[] with future

resource demand is more than that of MPSO and MCSO algorithms when taken

separately. The performance evaluation of all proposed algorithms is discussed in

results and analysis section of this chapter. Figure 4.3 gives the overall flow diagram

of MPSO, MCSO and HYBRID (MPSO+MCSO) algorithms.

4.8 Performance Evaluation

In this thesis contribution, we proposed a scheduling and three resource allocation

and management algorithms using Bio-Inspired techniques. The proposed algorithms

are compared with other state-of-the-art techniques, Branch-and-Bound based Exact

algorithm and analyzed with different QoS parameters. Further, we will discuss the

experimental setup, results and analysis in the following subsections.

4.8.1 Experimental Setup

The proposed work is experimented on a simulator which gives the real-time scenario

of cloud environment. The complete simulation scenario is written in Python language

and hereafter it is referred to as Python Simulator, in short, PySim. Figure 4.4

shows the block diagram of PySim, which is used for experimenting the proposed

Bio-Inspired algorithms.
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Figure 4.4: Block Diagram of PySim

The experimental setup consists of four physical machines which are intercon-

nected with different system configurations. The configuration details of customized

simulation setup are given in Table 4.1 and it consists of four different machines in

which one machine acts as a task sender (Client Machine), one machine acts as a load

balancer and other two machines act as servers with several VMs which execute the

incoming tasks.

Here, the task refers to the execution of a job which demands several resources.

We considered CPU and Memory as two types of resources which are needed for

executing a task. Resources are given by the cloud resource pool which has a huge

number of resources. The systems used in the customized setup are with different

system configurations such as the load balancer with i7 processor of 3.40 GHz clock

speed and 8 GB RAM; the server machines with i7 processor of 3.40 GHz clock speed
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Table 4.1: Configuration Details of PySim

Machine GHz RAM(GB) Storage(GB)

Client Machine 2.80 4 100

Load Balancer 3.40 8 100

Server 1 3.40 16 200

Server 2 3.40 16 200

Table 4.2: Configurations of VMs

VM Type MIPS RAM(GB) Storage(GB)

Small 500 0.5 20

Medium 1000 1 30

Large 1 1500 2 40

X. Large 2000 3 50

Extra Large 2500 4 50

and 16 GB RAM and other client machine which generates tasks with a dual core

processor of 2.80 GHz clock speed and 4 GB of RAM.

Experimentation is carried out with different sets of tasks and VMs. The per-

formance evaluation is carried out in terms of efficient utilization of available virtual

machines, average response time and optimum usage of cloud resources. If the re-

sources are not in use, then these unused resources are given back to the cloud resource

pool. We consider Round Trip Time (RTT) of 1 second when the VMs take the re-

sources from cloud resource pool. Clusters are made depending on the number of

VMs and each of the VMs has its own buffer to store the excess resources. Table 4.2

shows the VMs configuration used in the experiment.
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4.8.2 Results and Analysis

The results of our proposed Bio-Inspired algorithms are analyzed with respect to QoS

parameters (Reliability and Time). The proposed algorithms achieve better perfor-

mance in terms of efficient utilization of cloud resources (VMs, Memory and CPU)

and better average response time. Further, the proposed algorithms are compared

with Branch-and-Bound based Exact Algorithm. We also carried out statistical anal-

ysis for null hypothesis using T-Test. Further, the time complexity of the proposed

HYBRID (MPSO+MCSO) algorithm is also analyzed. Next, we will discuss about

the usage of Branch-and-Bound based Exact algorithm with which we evaluate the

performance of our proposed algorithms.

Branch-and-Bound Based Exact Approach

To evaluate the performance, proposed algorithms are compared with bench mark

solution based on Branch-and-Bound based Exact algorithm (Mingozzi et al. (1998)).

Since the exact algorithm gives the global optimum solution for efficient utilization of

cloud resources, hence we compared our proposed algorithms with Exact algorithm,

and the details of the Exact algorithm are as follows. Let ’N’ be the node at level ’l’

of the search tree along with ’lb’ as lower bound and ’ub’ as upper bound. The root

node N0 corresponds to an empty solution and each node at level l ≥ 1 corresponds

to the partial solution. Initially at root level, all VMs are not allocated and the child

node is created by comparing the MIPS of each VMs along with resource demand.

Further, the child node N+ is created only if the following conditions are met.

• MIPS(VMs) ≤ MIPS(task)

• Resources(VMs) ≤ Resource Demand(task)

• Resources(VMs) 6= Resource Demand(task)
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Hence, if the aforementioned conditions are met, then ’lb’ is computed. Later, if

it reaches ’ub’, then the child node is pruned and the best fit VMs are chosen for the

scheduling, resource allocation and thus execution of tasks is carried out.

Evaluation Criteria

In the proposed work, incoming tasks, i.e. {x1, x2, x3,....., xn} are to be scheduled

on the virtual machines, i.e. {vm0, vm1, vm2,..., vmk}. Further, the cloud resources

demanded by these requests are intelligently handled by our proposed algorithms.

Hence, the objectives for evaluating the performance of proposed algorithms are as

follows.

Objective 1: Efficient utilization of VMs.

VM Type(i) = Number of tasks handled by VMs. (4.8.1)

VM Type(i) refers to type of VM used in the experiment. We have used five different

types of VMs (Small, Medium, Large, X-Large, Extra Large) and more details are

given in Table 4.2 of Section 4.8.1.

Objective 2: Minimization of Average Response Time.

Average Response Time (AR Time) is the total amount of time taken for respond-

ing to a task and AR Time is calculated by the following Equation 4.8.2.

AR Time = t2[
n∑

x=1

VM Type(i)]− t1[
n∑

x=1

VM Type(i)] (4.8.2)

FV =
(R)

∑k
vm=0 VM Type(i)∑n

x=1(RD)
(4.8.3)

For resource allocation and management, the fitness value (FV) is given by the

Equation 4.8.3. Here, at each iteration, we find the FV and then choose the suitable
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VMs for assigning the task for the execution. If FV value is feasible then it takes

unused resources from the VMs otherwise it assigns the resources from the cloud re-

source pool as explained in the example. Table 4.3 gives the notations and definitions

used in the proposed methodology.

Table 4.3: Notations and Definitions

Notations Definitions

VMType(i)
Type of VM on which the task is being
executed

RD Number of resources demanded by tasks

R Resources (CPU and Memory)

t1 Time at which task enters the VM

t2
Time at which task completes the execu-
tion

excess res1 First highest resource from the cluster

excess res2 Second highest resource from the cluster

Needed res[]
Number of resource demand from the re-
quest

excess res3[]
Remaining resources other than the best
excess res1 & excess res2

Load Balancing of VMs by MPSO

In this thesis contribution, MPSO algorithm is used for efficient scheduling of tasks

on VMs and this MPSO algorithm will ensure that the allocated VMs are utilized in

a more efficient manner.

From Table 4.4, we can observe that both Round Robin and proposed MPSO

algorithms efficiently schedule the tasks as compared to Throttled algorithm. But, if

we compare Round Robin and proposed MPSO algorithms, the results are same. But

in Round Robin, we do not check the state of the VM (BUSY/AVAILABLE) and
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Table 4.4: Utilization of VMs

Sl.
No.

Throttled
Round
Robin

ACO
Exact
Algo-
rithm

Proposed
MPSO

VM1 1182 254 356 253 254

VM2 76 254 289 254 254

VM3 8 253 389 254 254

VM4 2 253 180 254 253

VM5 0 254 54 253 253

Table 4.5: Average Response Time Analysis

Algorithms Average Response Time

Throttled 365.52ms

Round Robin 364.85ms

ACO 362.67ms

Exact Algorithm 365.87ms

Proposed MPSO 360.11ms

thus leads to the queuing of the incoming task on the server. The proposed MPSO

algorithm gives better results by checking the state of the VM and it has cluster

based comparison of allocating tasks to a VM and thus avoids the server queuing.

In Ant Colony Optimization (ACO), the tasks can be assigned to VMs which have

less pheromone content. In Exact algorithm, the scheduling of the tasks is similar to

that of proposed MPSO but the Exact algorithm needs more average response time.

The same steps are repeated with different number of clusters when there are same

number of VMs. For the aforementioned experiment, we used two clusters with equal

number of VMs on each cluster and the average response time in milliseconds (ms)

for the same setup is given in Table 4.5.

It is clearly observed from Tables 4.4 and 4.5 that the proposed MPSO algorithm

is not only efficient in balancing the load on the virtual machines but also achieves
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Figure 4.5: Average Utilization of VMs

better average response time. The experiment is repeated for different sets of virtual

machines, tasks and the results obtained are consistent.

Till now performance analysis is carried out using small load (few tasks) on dif-

ferent VMs according to the standards used in Amazon cloud offerings. Next, we will

analyze the utilization of VMs with different combinations of 1000, 2000 and 3000

incoming tasks. Figure 4.5 shows the utilization of VMs using different algorithms

used in the experiment. It is observed from Figure 4.5 that Throttled and ACO al-

gorithms are not consistent in utilizing the VMs when compared to other algorithms.

Even though RR and Exact algorithms utilize the VMs efficiently, but our proposed

MPSO algorithm is more efficient in utilizing the VMs with less Average Response

time. As MCSO algorithm uses two modes (seeking and tracing mode) then during

scheduling seeking mode takes more time when compared to that of the tracing mode.

Hence, we did not consider proposed MCSO for scheduling approach. Similarly, our

proposed HYBRID (MPSO+MCSO) is also not considered for scheduling since it

combines both MPSO and MCSO.
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Resource Utilization by MPSO, MCSO and HYBRID (MPSO+MCSO)

The incoming tasks enter the cloud with different resource requests and VMs facilitate

the resources as demanded by the tasks which are managed by the proposed techniques

of this chapter. Proposed algorithms are experimented with different number of VMs

and tasks. In the first iteration, VMs take resources from cloud resource pool and

from the second iteration onwards the proposed algorithms such as MPSO, MCSO

and HYBRID (MPSO+MCSO) allocate the resources either from cloud resource pool

or from the unused resources of VMs. We experimented the proposed algorithms with

two clusters which have equal number of VMs. Here, the inter arrival time between

the tasks remains same and the tasks are served in a batch of ten. Once the tasks

are served by the VMs, then the excess resources are stored in the individual buffers

of VMs. Further, these resources are used for serving the upcoming task demand.

As discussed earlier, initially VMs start executing the tasks by lending the resources

from the cloud resource pool. Experiments are conducted for evaluating the Average

Response Time in both sequential and parallel modes; and the corresponding results

are shown in Figures 4.6 and 4.7, respectively.

In Figure 4.6a, we used 10 and 20 VMs in two clusters with 60 incoming tasks.

In Figure 4.6b, we used 10 and 50 VMs in two clusters with 300 incoming tasks. In

MPSO, for the best match (GB) case approach, the two best VMs from each cluster

are taken for resources matching with the upcoming demands. For example, excess

res1 and excess res2 from each cluster are compared with resource demand. Further,

the remaining VMs will follow the MCSO approach. For example, excess res3[] from

each cluster is compared with the upcoming demand. Our HYBRID (MPSO+MCSO)

approach combines the merits of both MPSO and MCSO and thus the HYBRID

approach achieves superior performance for the best match case scenario.

In Figure 4.7a, we used 10 and 20 VMs in two clusters with 60 incoming tasks and

in Figure 4.7b, we used 10 and 50 VMs in two clusters with 300 incoming tasks. It

is clearly observed from Figure 4.7 that the parallel mode execution will reduce the
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average response time as compared to sequential mode.
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Figure 4.6: Sequential Analysis
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Figure 4.7: Parallel Analysis

Figures 4.6 and 4.7 illustrate that MPSO, MCSO and HYBRID (MPSO+MCSO)

algorithms give feasible solutions with respect to average response time when com-

pared to Branch-and-Bound based Exact algorithm and further our HYBRID algo-

rithm takes less time when compared to other state-of-the-art the algorithms.
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Figure 4.8: Execution Time Analysis of Proposed Algorithms

Further, we will analyze the execution time analysis for different cases (Best,

Average and Worst) of our proposed algorithms along with benchmark algorithms.

We experimented with different combinations of tasks and varied numbers of VMs

using the proposed and state-of-the-art benchmark algorithms. It is observed from

Figure 4.8 that, the worst-case execution time for all the proposed algorithms is a

rare case in which the matching never happens with excess resources present in the

buffer with the future resource demand. Since RR takes the resources from the cloud

resource pool for most of the time, hence the execution time of the RR will remain

the same for all the cases. In ACO, the resources match with the VMs which have

the highest pheromone content. Since there will not be any perfect resource match

for most of the time due to high pheromone evaporation rate and hence ACO takes

same execution time in all cases. The Exact algorithm tries to match with all possible

combinations and then allocates resources with possible solutions. Hence the Exact

algorithm also takes same execution time in all cases.
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The worst-case execution time of MPSO, MCSO and HYBRID (MPSO+MCSO)

approaches are continuously increasing because of the delay in the mismatch of re-

sources from the VMs buffer to the future resources demand. In the MPSO, the

best-case is considered when the best two values from each cluster match with the

upcoming resource demand. In the average-case, resources match is varied so that

MPSO can work efficiently when compared to RR and ACO. In MCSO, the best-case

is considered when the rest of the values (other than excess res1 and excess res2 ) are

matched with excess resources from the VMs buffer to the future resource demand.

Thus, in MCSO, more resources got matched when compared to MPSO and hence,

MCSO outperforms MPSO, ACO and RR algorithms.

Further, HYBRID approach takes less execution time in both best and average-

cases. And if all the resource mappings are true in the HYBRID approach, then

HYBRID algorithm outperforms both MPSO and MCSO when considered separately.

Hence, HYBRID (MPSO+MCSO) approach is more efficient in terms of resource

allocation and management in the cloud environment.

As mentioned earlier, resources are either taken from the cloud resource pool or

unused resources of the respective VMs from the clusters. Accordingly, the proposed

algorithms are analyzed with respect to resource utilization factor. Figures 4.9a,

4.9b and 4.9c show the resource utilization with 1000, 2000 and 3000 tasks respec-

tively. In all three cases, RR takes maximum resources from the cloud resource pool.

ACO takes an almost equal amount of resources from both cloud resource pool and

unused resources from VMs. Our proposed MCSO provides better resource utiliza-

tion as compared to proposed MPSO. On the other hand, the proposed HYBRID

(MPSO+MCSO) algorithm is more efficient in utilizing the unused resources from

clusters rather than taking it from the cloud resource pool.
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Figure 4.9: Average Resource Utilization Analysis
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All the proposed algorithms are compared with the benchmark Exact algorithm.

It is clearly observed from Figure 4.9 that our proposed HYBRID (MPSO+MCSO)

algorithm achieves high resource utilization efficiency when compared to all other

state-of-the-art methods considered for performance evaluation. The performance

analysis is carried out on the proposed Bio-Inspired algorithms on two different QoS

parameters, i.e. efficient utilization of VMs and complete utilization of cloud re-

sources. Next, we will analyze the time complexity of the HYBRID algorithm and

followed by the statistical hypothesis on proposed algorithms.

Statistical Analysis on Workloads

In the cloud environment workloads will vary depending on the applications. The

real time applications need resources with no delay and cognitive applications need

more number of VMs with dedicated cores in them. So as the workload varies, the

algorithm should behave consistently without affecting the performance during the

execution. Hence, Table 4.6 gives the complete statistical analysis on the workloads

used in the performance analysis of the proposed algorithms. For statistical analysis,

Table 4.6 gives the Variance, the Standard Deviation (SD), the Confidence Level (CL)

and the Accuracy of the Workloads (1K, 2K and 3K) taken for the experimentation.

Our results show that, irrespective of changes in the Variance, the Standard Deviation

and the Confidence Level, the Accuracy results will not deviate and thus achieving

the consistent performance.

Workloads are categorized as Small scale (MIPS varies from 500 to 1000), Medium

scale (MIPS varies from 1000 to 5000) and Large scale (MIPS varies from 5000 to

10000). All the proposed algorithms are evaluated with these categories for 1000,

2000 and 3000 tasks respectively. Every time, the experiments are repeated in each

scale and the average results are taken for performance analysis.
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Table 4.6: Statistical Analysis on Workloads

Workloads Range Variance SD CL Accuracy

Small Scale (1K) 500 to 1000 20991.14 144.88 713.66 to 799.87 95.42%

Medium Scale (1K) 1000 to 5000 1208899.86 1099.49 2854.34 to 3472.04 96.72%

Large Scale (1K) 5000 to 10000 2007141.43 1416.73 7150.48 to 7718.67 96.05%

Small Scale (2K) 500 to 1000 18062.27 134.39 702.36 to 785.68 96.84%

Medium Scale (2K) 1000 to 5000 1333937.04 1154.96 2965.45 to 3499.58 96.47%

Large Scale (2K) 5000 to 10000 2095914.77 1447.72 7111.58 to 7789.36 95.98%

Small Scale (3K) 500 to 1000 22252.45 149.17 725.56 to 820.48 96.40%

Medium Scale (3K) 1000 to 5000 1422554.74 1192.70 2992.58 to 3548.22 96.12%

Large Scale (3K) 5000 to 10000 2141372.20 1463.34 7211.25 to 7799.87 96.57%

Time Complexity Analysis

Our proposed HYBRID algorithm is based on MPSO and MCSO techniques. In this

experiment, n number of tasks which are scheduled on heterogeneous VMs hosted on

Cz clusters (fixed number of clusters). Therefore, the time complexity of our proposed

HYBRID (MPSO+MCSO) algorithm is [O(number of tasks) * O(number of clusters)

*O(number of m iterations)] * [O(MPSO) + O(MCSO)] i.e. [O(n) * O(Cz) * O(m)]

* [O(vmk,Cz) + O(vmk,Cz)]. It is reduced to O(n * Cz * m * vmk ), since Cz and m

are constants. Finally, the time complexity of proposed HYBRID algorithm is O(n *

vmk), which is O(n) < O(n * vmk) < O(n2).
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Table 4.7: Results of T-TEST Analysis

Algorithms P-values

RR-HYBRID 0.005

ACO-HYBRID 0.0035

MPSO-HYBRID 0.0015

MCSO-HYBRID 0.001

EXACT-HYBRID 0.0045

Statistical Hypothesis Analysis

In the statistical hypothesis, two entities are evaluated about a given workload or pop-

ulation so that we can determine the best supported entity for different cases. Hence,

we made statistical analysis by evaluating the proposed HYBRID (MPSO+MCSO)

algorithm with state-of-the-art benchmark algorithms. For statistical hypothesis, we

used T-Test analysis for resource allocation and management. The results of T-

Test analysis are shown in Table 4.7. For the null hypothesis analysis, Threshold

value of P or Significance Level of α are considered. In this experiment, we con-

sidered α = 0.05 which is the standard cutoff for null hypothesis. The P-value of

HYBRID (MPSO+MCSO) algorithm in comparison with other algorithms is less

than α = 0.05 and thus it rejects the null-hypothesis. Hence, our proposed HYBRID

(MPSO+MCSO) algorithm is more efficient when compared to all other algorithms

considered for Resource Allocation and Management.

4.9 Summary

In this chapter, we proposed a Bio-Inspired (MPSO) scheduling algorithm and three

(MPSO, MCSO and HYBRID) algorithms for resource allocation and management

of the IaaS based cloud environment. The proposed Bio-Inspired algorithms out-

perform the state-of-the-art and benchmark algorithms in terms of QoS parameters
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such as average response time, total execution time and utilization of cloud resources

mainly memory and CPU. The proposed algorithms provide the statistical hypothe-

sis analysis and has better time complexity when compared to other state-of-the-art

algorithms. Both MPSO and MCSO algorithms are efficient in utilizing the cloud

resources from VMs, but HYBRID approach outperforms both MPSO and MCSO

algorithms in terms of better execution time. Further, statistical analysis on work-

loads shows that, irrespective of changes in the Variance, the Standard Deviation and

the Confidence Level, the Accuracy results will not deviate and thus achieving the

consistent performance.

In the next chapter, we propose another Bio-Inspired approach for optimizing

the QoS parameters (Execution Time and Cost) and how it is useful in the cloud

environment. Further, we will also analyze how this Bio-Inspired approach handles

both dependent and independent workloads.



Chapter 5

Bag-of-Tasks and Workflows
Scheduling at Cloud Data Center

There are several existing works on the Bag-of-Tasks and Workflows scheduling but

still, there is a scope for further improvement of resources allocation while minimizing

the execution cost since these algorithms come under NP-Hard/NP-Complete com-

plex class. Furthermore, the existing works fail to meet users’ expectation with respect

to Service Level Agreement (SLA) in heterogeneous cloud computing environment.

In the previous chapters (Chapters 3 and 4), we proposed a few scheduling algo-

rithms with better performance in terms of QoS parameters (Reliability and Time)

when compared to other state-of-the-art approaches. In this thesis contribution, we

mainly focus on developing a novel Bio-Inspired scheduling algorithm with cost op-

timization. Hence, we propose an application of Grey Wolf Optimization (GWO)

technique which aims to minimize the Workflows execution cost and thereby maxi-

mizing the BoT execution speed while efficiently utilizing the cloud resources (VMs)

in the Infrastructure as a Service (IaaS) based cloud computing environment. The

key contributions of this chapter are as follows.

• To design and develop an efficient scheduling of BoT with minimal execution

time using GWO based Bio-Inspired approach.
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• To design and develop an efficient scheduling of workflow tasks on the critical

path with minimal execution cost using the proposed GWO technique.

• Statistical analysis of proposed algorithms using T-Test for null-hypothesis and

the performance evaluation of proposed algorithms in terms of QoS parameters

(Cost, Reliability and Time).

Our proposed scheduling algorithms are evaluated using various scientific work-

flows and experimental results demonstrate that our proposed heuristic-based schedul-

ing algorithms outperform peer research and benchmark algorithms in terms of effi-

cient utilization of resources (VMs), minimal execution time and reduced cost. The

details of proposed GWO based scheduling algorithms are as follows.

5.1 Proposed GWO based Scheduling Algorithms

In this contribution, we consider BoT and workflow as an input to the cloud environ-

ment and then proposed GWO based Bio-Inspired algorithms are used for efficient

scheduling. The details of BoT and Workflows are as follows.

5.1.1 Basics of BoT

A BoT application can be modeled as B = (T), where T ={t1, t2, ...., tn} is the set of

tasks which are independent of each other and these tasks should be scheduled in an

efficient manner. Since the tasks in the BoT are independent, hence these tasks can

be scheduled as and when they arrive in the job queue. Figure 5.1 shows the sample

BoT in which each task has some job to be executed on the assigned VM from the

scheduler.
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Figure 5.1: Sample BoT with Independent Tasks

Figure 5.2: Sample Workflows Application with Dependent Nodes

5.1.2 Basics of Workflows

Application workflows can be modeled by a Directed Acyclic Graph (DAG) which is

defined as G = (T, E) where G is the graph of Workflows, T ={t1, t2, ...., tn} is the

set of tasks or nodes in the Workflows and E is the set of direct edges between the

tasks. A data dependency exists if there is an edge between two nodes behaving like

a parent and child nodes. The child node cannot be executed unless the parent node

completes the execution. Figure 5.2 shows the sample workflows application in which

each task has a deadline associated with it and it has to execute within a given time

limit in the workflows.

5.1.3 Example for Explaining Our Proposed Work

In this proposed work, tasks are scheduled on the suitable VMs by our proposed GWO

algorithm. BoT and Workflows are used as a workload during the experimentation of

proposed GWO. Figure 5.3 shows an example for explaining our proposed work. The

incoming tasks may be of two kinds i.e. BoT or Workflows. In BoT, the GWO based

scheduler must choose the suitable VM from different clusters. For Workflows, GWO

based scheduler checks for the critical path, then chooses the suitable VM from the

clusters. The details about choosing the VM from clusters and finding the critical

path are given in the following sections.
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Figure 5.3: Example for Explaining Our Proposed Work

5.1.4 Proposed Methodology

In Chapter 4, we proposed MPSO, MCSO and HYBRID heuristic approaches for

different objectives in the IaaS based cloud environment. In this work, we proposed

a GWO based meta heuristic Bio-Inspired algorithm. The details of Grey Wolf Op-

timization technique are as follows.

Grey wolf belongs to the Canidae family and these are referred to as apex preda-

tors, indicating that they are considered to be on top of the food chain in a biological

system and always roam in a group with varying sizes (Mirjalili et al. (2014)). GWO

mimics the leadership hierarchy and the hunting mechanism of grey wolves from na-

ture. As GWO is a Bio-Inspired algorithm, this can be applied to solve NP-Hard/NP-

Complete complex problems. Thus, the proposed GWO based scheduling algorithm

mimics the leadership hierarchy and the hunting mechanism of the grey wolves.

Figure 5.4: Hierarchy of Grey Wolves (Mirjalili et al. (2014))
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Here, the hunting refers to the choosing the right VM to execute a given task

from the BoT or from the Workflows. There are four types of grey wolves (alpha,

beta, delta and omega) and these helps in three main steps of hunting like, searching

the prey, encircling the prey and catching the prey. Figure 5.4 shows the hierarchy

of Grey wolves. The first level of hierarchy is alpha wolves which are the strongest,

decision makers and dominate the entire pack.

The second level of hierarchy is beta wolves which are subordinates to the alpha

wolves and dominate the lower levels in the pack. In case if alpha passes away, then,

beta will take place on alpha and rules the entire pack. The third level of hierarchy is

delta wolves which are obeying both the alpha and beta wolves, but the delta wolves

dominate the omega wolves (the lowest level of hierarchy). These omega wolves are

just followers of the pack and helps in finishing the food. They are large in number

and help the pack to move forward towards catching a prey, i.e. choosing the suitable

VM from the clusters.

In this proposed work, we deploy the GWO based scheduler for efficient utilization

of resources (VMs) of IaaS based heterogeneous cloud platform. We concentrate

mainly on the scheduling of the BoT and Workflows to minimize the overall execution

time and cost respectively. The mathematical model for the scheduling is as follows.

D = [C ∗Xp(t)X(t)] (5.1.1)

X(t+ 1) = Xp(t)A ∗D (5.1.2)

A = 2a ∗ r1a (5.1.3)

C = 2 ∗ r2 (5.1.4)
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Where,

X is the current position of VM

Xp is the VM given by the hierarchy / pack

t is the current iteration

r1 and r2 are random numbers between 0 and 1

a is load of VM and is decreased from higher to lower

In this work, the hierarchy of grey wolves is represented by α, β, δ and ω respec-

tively. In addition to this, we added super α as a supreme wolf who takes a final

decision regarding which VM is selected for the current task scheduling. The analysis

is carried out in two different aspects, i.e. scheduling of BoT for fast execution so

that the total execution time should be as minimum as possible along with efficient

utilization of VMs. Further, by considering the Workflows dependency and dead-

lines, we can minimize the total cost incurred for the execution by applying proposed

GWO scheduling technique. Next, we discuss the scheduling of BoT using the GWO

technique and the details are as follows.

Algorithm 5.1 Scheduling of BoT on VMs Using GWO Technique

0: Initialization : {vm0, vm1, vm2,..., vmk} α, β, δ, ω and super α
VMs = {vm0, vm1, vm2,..., vmk}
earch search space Sz = {s1,s2,s3}
search space size, k/Sz

1: for all incoming BoT requests {x1, x2, x3,..., xn}
2: α = Suitable VM from s1
3: β = Suitable VM from s2
4: δ = Suitable VM from s3
5: ω = Listing busy VMs
6: end for
7: Assign super α = VMs from α, β, δ search spaces
8: Next task allocated to VM which chosen from Super α
9: if (Next allocations == last used GB) then skip
10: goto Step 1 for suitable VM
11: else
12: goto Step 8
13: Makespan = (Finish time of current task - Start time of current task) on a VM
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The Algorithm 5.1 shows the scheduling of BoT on IaaS based heterogeneous cloud

platform. Incoming tasks in the BoT {x1, x2, x3,..., xn} are to be scheduled on the

available VMs {vm0, vm1, vm2,..., vmk} efficiently to balance the load on each VM.

Here, the tasks are independent and scheduling of these tasks takes place depending

on their arrival time in a job queue. The entire search space of the platform is divided

into three regions and it is managed by α, β, δ respectively.

Each region contains heterogeneous VMs with varying configurations. Each search

space gives a suitable VM, depending on its load, status and usage. Then the super

α decides the suitable VM for the current allocation of the task which depends on

the machine status, configuration and also it takes care of the parameter which is

to be optimized. In this BoT scheduling, we concentrate on Time QoS parameter

i.e. to get minimal execution time for the execution of tasks. Next, we discuss how

the proposed GWO algorithm helps to optimize the cost in scheduling the scientific

workflows and the details are shown in Algorithm 5.2.

Algorithm 5.2 focuses on optimizing the cost while efficiently scheduling the work-

flows without missing the deadlines. As workflows contain the combinations of many

dependent and independent tasks and therefore the execution of workflows has a cer-

tain pattern with critical paths. Each of workflows has a certain structure and jobs

are usually depending on one or more tasks at different hierarchy. Super α plays a

vital role in deciding which tasks are to be executed in the current execution and find-

ing the critical path for the dependent tasks. Further, super α decides the optimum

VM for the current allocation by considering its cost, status, speed etc. Performance

analysis of proposed algorithms are as follows.
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Algorithm 5.2 Scheduling of Scientific Workflows on VMs Using GWO Technique

0: Initialization : {vm0, vm1, vm2,..., vmk} α, β, δ, ω and super α
VMs = {vm0, vm1, vm2,..., vmk}
earch search space Sz = {s1,s2,s3}
search space size, k/Sz

1: for all incoming workflow requests {x1, x2, x3,..., xn}
2: Set 1 = Find independent tasks
3: Set 2 = Find dependent tasks and critical path
4: end for
5: for all Set 1 and Set 2
6: α = Suitable VM from s1
7: β = Suitable VM from s2
8: δ = Suitable VM from s3
9: ω = Listing busy VMs
10: end for
11: Assign super α = VMs from α, β, δ search spaces
12: Super α = Choose optimum VM w.r.t. cost
13: Task allocated = VM chosen from super α
14: if (Next allocations 6= Optimum VM) then skip
15: goto Step 1 for next suitable VM
16: else
17: goto Step 12

5.2 Performance Evaluation

In this Chapter, we proposed GWO based algorithms to schedule the BoT and Work-

flows. Next, we will discuss the experimental setup and objective functions which

influence our proposed algorithms to perform better than the state-of-the-art tech-

niques. Further, we will discuss how the QoS parameters of BoT and Workflows are

optimized using our proposed GWO based scheduling algorithms.
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Table 5.1: Amazon EC2 Units

Name
EC2
Units

Processing
Capacity
(MFLOPS)

m1.small 1 4400

m1.medium 2 8800

m1.large 3 17600

m1.xLarge 8 35200

m1.xLarge 13 57200

m3.doubleXLarge 26 114400

5.2.1 Experimental Setup

The research contributions in this Chapter are experimented on the customized sim-

ulation environment implemented in Python language. The complete details of the

experimental setup are given in Section 4.8 of Chapter 4. Further, we will discuss the

types of Bot, Workflows and VMs used in the experiment.

In this work, we considered the Amazon EC2 instances as VMs for the perfor-

mance evaluation. These Amazon EC2 instances are heterogeneous in nature and our

proposed GWO algorithms play a vital role in choosing the suitable instance from

the clusters. In our work, the VMs are distributed in different clusters with different

configurations. Table 5.1 shows the Amazon EC2 instances (Rodriguez and Buyya

(2014)) which are used by both BoT and Workflows for different case studies during

the experiment. The results of these case studies are as follows.

The proposed algorithms mainly concentrate on QoS parameters (Reliability, Time

and Cost), i.e. fast execution of BoT and cost optimization of Workflows respectively.

Algorithm 5.1 is experimented for scheduling the BoT and analyzed with fast execu-

tion along with the maintaining the balanced load on the system. Algorithm 5.2 is

experimented for scheduling the Workflows and analyzed with cost optimization by

choosing the suitable VM from the IaaS based cloud environment.
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As explained above, for the experimentation we used BoT and Workflows as input

for the proposed Algorithms 5.1 and 5.2 respectively. BoT is generated using the

random process and different ranges of tasks are considered for the experimentation.

We considered different categories of BoT as small, medium and large, further each

of the categories contains million floating point instructions per second (MFLOPS)

with different ranges generated by the random process. The same set of BoT is

experimented with state-of-the-art algorithms for time analysis.

Algorithm 5.2 is experimented for Workflows scheduling and later compared with

state-of-the-art algorithms for cost optimization. In the experimentation, we consid-

ered two types of workflows i.e. Cybershake and Montage with a different number of

tasks or nodes at different levels. The details of Cybershake and Montage workflows

are as follows.

The CyberShake Workflows (Yu et al. (2005)) is used by the Southern California

Earthquake Center (SCEC) to characterize the earthquake hazards using the Proba-

bilistic Seismic Hazard Analysis (PSHA) technique. Figure 5.5 shows the basic flow

diagram of Cybershake workflows. Strain Green Tensor (SGT) data generated from

finite simulations is maintained in the form of large master SGT files for x and y

dimensions. In addition to SGT data, there is a collection of estimated future fault

ruptures with variations. These datasets are combined to estimate the seismic hazard

at the particular site. The ExtractSGT jobs in the workflow extract SGTs pertain-

ing to a given rupture from the master SGT files for the specific site and these are

considered as data partitioning jobs. With this example, we constructed a workflow

of 29 data intensive tasks or nodes which require large memory and CPU (Maechling

et al. (2007)). The same workflow is experimented using Amazon EC2 instances in a

heterogeneous cloud environment.
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Figure 5.5: Workflows in Cybershake Application (Mirjalili et al. (2014))

 

Figure 5.6: Workflows in Montage Application (Mirjalili et al. (2014))

The Montage workflow is an astronomical application used to construct the custom

mosaics of the sky based on the number of high definition input images. Figure 5.6

shows the flow diagram of Montage workflows application (Yu et al. (2005)). These

workflow tasks are CPU intensive and need more time to process. We experimented

Montage workflow with minimum 25 tasks or nodes. Both Montage and Cybershake

workflows are scheduled on the IaaS heterogeneous cloud platform. The proposed

Algorithm 5.2 is experimented on these two workflows for better utilization of EC2
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instances along with the reduced overall cost. The results of BoT and Workflows

scheduling are as follows.

5.2.2 Results and Analysis

The proposed work is evaluated on BoT and Workflows with respect to two parameters

such as execution time in terms of makespan and execution cost in terms of dollars.

For the performance evaluation, the proposed algorithms are compared with Branch-

and-Bound based Exact algorithm along with other state-of-the-art techniques. We

also carried out statistical analysis for null hypothesis using T-Test. Further, the time

complexity of the proposed GWO algorithm is also analyzed. Further, we discuss the

evaluation criteria which influences our proposed GWO algorithm in optimizing the

different QoS parameters.

Evaluation Criteria

For evaluation, we need to find out the makespan and critical path. Makespan gives

the total time spent by the BoT during the experimentation and critical path gives

the priority to execute the nodes from the Workflows. The details about makespan

and critical path are given below.

Makespan: Makespan (MS) is referred to as total elapsed time required to exe-

cute the entire BoT or Workflows. Deadline (DL) is considered as a constraint mea-

sured relative to the Workflows or BoT Submission Time (St). Further, the makespan

should not be more than deadline, i.e. (MS ≤ DL). Thus, makespan of the BoT or

Workflows is computed by the Equation 5.2.1.

MP = Ft − St (5.2.1)
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Critical Path: Critical Path (CP) is referred to as the longest path from the

start node to the exit node of the workflow. Critical path execution is used only in

the Workflows execution as tasks are dependent in nature. The critical paths are

separated depending on the deadline of the respective tasks in the Workflows and

then execution of CP is carried out. In this work, we are not merging all CPs into

a single CP instead these are evaluated separately. Thus, CP is calculated by the

Equations 5.2.2 and 5.2.3 respectively.

DL = Nc/TaskLengthofeachTask(x) (5.2.2)

EFTofCP =
n∑

X=1

[DL
n∑

X=1

Task(x)] (5.2.3)

Table 5.2: Notations and Definitions

Notations Definitions

VMType(i)
Type of VM on which the task is being
executed

Nc Node / VM capacity

Ft Execution Finish Time of Task

St Execution Start Time of Task

Task (i) Current Task being scheduled

CP Critical Path

MS Makespan

EFT Earliest Finish Time

DL Deadline

In the proposed work, incoming tasks, i.e. {x1, x2, x3,..., xn} are to be scheduled

on the virtual machines such as {vm0, vm1, vm2,..., vmk}. Further, cloud resources

(VMs) are intelligently handled by our proposed algorithm. Table 5.2 gives the no-

tations and its definitions used in this research contribution. The objectives of this
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research work are as follows.

Objective 1: To Reduce the makespan of BoT.

Total Makespan =
n∑

X=1

Ft −
n∑

X=1

St (5.2.4)

VM Type(i) =
n∑

X=1

k∑
vm=0

[Nc(vm)/Task Length(x)] (5.2.5)

Total makespan is calculated by using Equation 5.2.4 and the suitable VM instance

type for assigning the task is given by the Equation 5.2.5. This objective mainly

concentrates on BoT scheduling and the motto is to optimize the execution time.

Objective 2: To Reduce the execution cost of Workflows.

Total Cost =
n∑

X=1

Cycles of Task(x) ∗ cost of Nc (5.2.6)

Total cost spent for the execution of Workflows is calculated by the Equation

5.2.6. This objective mainly concentrates on Workflows cost optimization along with

balanced load on the VMs. Next, we will study the performance of the proposed

algorithms on different QoS parameters.

Execution Time Analysis

The proposed Algorithm 5.1 efficiently schedules the BoT by our proposed GWO

algorithm for different cases in which the task length varies from small, medium and

large categories. Tasks are generated in terms of MFLOPS and will be scheduled

on the VMs of heterogeneous cloud in an efficient manner. We analyzed the total

execution time of state-of-the-art algorithms in comparison with our proposed GWO

approach. Figures 5.7, 5.8 and 5.9 show the total execution time of state-of-the-art

algorithms in comparison with the proposed GWO based heuristic algorithm.



Bag-of-Tasks and Workflows Scheduling at Cloud Data Center 105

ICPCP SCS PSO CSO GWO EXACT

Algorithms

260

270

280

290

300

310

320

Ex
ec

ut
io

n 
Ti

m
e 

in
 s

ec
on

ds

Small Scale

Figure 5.7: Total Execution Time with Small Scale
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Figure 5.8: Total Execution Time with Medium Scale

From Figures 5.7, 5.8 and 5.9, it is clear that the proposed GWO algorithm

takes less execution time to execute a given BoT when compared to state-of-the-art

algorithms. In all categories, IaaS Cloud Partial Critical Path (ICPCP) takes much

time as compared to other algorithms and it does not consider machines MFLOPS

and hence the waiting time increases. Particle Swarm Optimization (PSO) algorithm

takes less time when compared to ICPCP as it chooses the VM from each cluster

and allocates to the first-best machine. Compared to PSO, Cat Swarm Optimization

(CSO) algorithm overcomes the limitations of PSO as discussed in Chapter 4. In



Bag-of-Tasks and Workflows Scheduling at Cloud Data Center 106

ICPCP SCS PSO CSO GWO EXACT

Algorithms

1300

1310

1320

1330

1340

1350

1360

Ex
ec

ut
io

n 
Ti

m
e 

in
 s

ec
on

ds

Large Scale

Figure 5.9: Total Execution Time with Large Scale

GWO, we introduced a new term called super α which has a capacity to choose a

suitable VM depending on the various factors. Hence, the performance of the GWO is

better than the state-of-the-art algorithms considered for the performance evaluation.

Cost Optimization Analysis

In this thesis contribution, we concentrated on scheduling the two workflows i.e. Cy-

bershake and Montage by using our proposed GWO algorithm for cost optimization.

Each of Workflows is experimented with different cases in which a number of nodes

or tasks are varied and the results are analyzed for average makespan of Montage and

Cybershake Workflows, respectively.

As we know that, Workflows have dependent tasks and deadlines to accomplish

the execution. Hence, we considered the deadline management while deploying our

proposed algorithm. We grouped four machines, i.e. Slow, Medium, Fast and Super-

Fast (Chosen from Amazon EC2 units from Table 5.1) and found the scheduling time

to fix the deadline. Figure 5.10 shows the deadline criteria of Montage and Cybershake

Workflows along with the other algorithms. It is clearly observed from Figure 5.10

that, except ICPCP, all other algorithms fulfill the deadline criteria. Next, we analyze

the makespan of Montage and Cybershake Workflows, respectively.
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Figure 5.10: Algorithm Deadlines with Workflows

Figure 5.11: Algorithm Deadlines with Workflows

From Figures 5.11 and 5.12, it is clear that all the algorithms have different

makespan w.r.t., different interval and deadline. In both Figures 5.11 and 5.12, the

horizontal solid line indicates the deadline for that specific workflow. In Montage

Workflow, ICPCP algorithm falls above the deadline and hence it fails to meet the

deadline criteria and other algorithms lie below the deadline with different makespan.

ICPCP starts executing the critical path from exit nodes, i.e. the node which

has no children. Then it immediately assigns with the available VM instance. This

causes the delay in meeting deadlines and execution becomes slower for that node.

SCS algorithm maps the one-to-one dependency and bundles into a single one, then

starts executing the critical path. It chooses the earliest deadline first from the critical

path and then starts executing. From the Cybershake Workflow, all the algorithms
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Figure 5.12: Average Makespan of Montage
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Figure 5.13: Montage and Cybershake Execution Cost Graph

lie below the deadline with varying makespan. The makespan varies because of the

dynamic nature of CPU speed, resource utilization etc.

The proposed GWO algorithm executes a series of steps like finding the depen-

dency, critical path, earliest deadline, and the load on each VM instance, last used

VM instance from each search space. Then super alpha plays a vital role in schedul-

ing and choosing the right VM for current allocation. Hence, our proposed algorithm

never goes beyond the deadline with efficient resource utilization in heterogeneous

IaaS cloud platform as compared with other conventional algorithms. Next, we will

analyze the cost incurred during the Workflows execution from our proposed GWO

and other state-of-the-art algorithms.
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For the cost optimization, we considered Amazon EC2 instance pricing model i.e.

in dollars. From Figure 5.13, it is clear that even though ICPCP algorithm did not

meet the deadline criteria as shown in Figure 5.10 and also it takes the maximum cost

for the execution of both Montage and Cybershake workflows. All other algorithms

execute the workflow within its given deadline interval and also tries to minimize the

execution cost. Scaling Consolidation Scheduling (SCS) is much better than ICPCP

and executes in a feasible amount of time. The other Bio-Inspired heuristic algorithms

such as PSO, CSO and proposed GWO execute in an optimized way w.r.t. makespan

and cost. There is no significant difference between the performance of PSO and CSO

w.r.t cost optimization.

The Exact algorithm tries to follow the best critical path (By considering deadline

and machine capability) and hence takes more cost when compared to proposed GWO.

Further, our proposed algorithm may take slightly high time in computation, but

chooses the optimized VM instance for execution. Hence, the proposed algorithm

outperforms the other conventional and Bio-Inspired heuristic algorithms with respect

to the fast execution and cost optimization.

Statistical Analysis on Workloads

In the cloud environment workloads will vary depending on the applications. The real

time applications need resources with no delay and cognitive applications need more

number of VMs with dedicated cores in them. Here, for the performance analysis of

the proposed algorithms, we followed the same statistical analysis on the workloads

as we did in Section 4.8.2 of Chapter 4. We followed the Table 4.6 of Chapter 4, which

gives the Variance, the Standard Deviation (SD), the Confidence Level (CL) and the

Accuracy of the Workloads (1K, 2K and 3K) taken for the experimentation. Our

results show that, irrespective of changes in the Variance, the Standard Deviation

and the Confidence Level, the Accuracy results will not deviate and thus achieving

the consistent performance.
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Table 5.3: Results of T-Test Analysis

Algorithms
P-Values
(Montage)

P-Values
(Cyber-
shake)

ICPCP - GWO 0.0001 0.0001

SCS - GWO 0.01 0.001

PSO - GWO 0.007 0.0001

CSO - GWO 0.007 0.0001

Exact- GWO 0.00069 0.0001

Statistical Hypothesis Analysis

In this Chapter, we followed the same statistical hypothesis approach as we did in Sec-

tion 4.8 of Chapter 4. Here, we made statistical analysis by evaluating the proposed

GWO algorithm in comparison with state-of-the-art and bench-mark algorithms. For

statistical hypothesis, we used T-Test analysis for scheduling and cost optimization.

The results of the T-Test analysis for both Montage and Cybershake Workflows are

shown in Table 5.3.

In the null hypothesis analysis, the threshold value of the P or Significance Level of

is considered. In this experiment, we considered α = 0.05 which is the standard cutoff

for the null hypothesis. The P-value of proposed GWO algorithm in comparison with

other algorithms is less than α = 0.05 and thus it rejects the null-hypothesis. Hence,

our proposed GWO algorithm is more efficient when compared to all other algorithms

considered for cost analysis.

Time Complexity Analysis

In both algorithms (Algorithms 5.1 and 5.2), we considered the heterogeneous VMs

hosted in the Sz clusters with n number of tasks arriving into the cloud. The proposed

GWO algorithms schedule the incoming tasks in an efficient way on the heterogeneous
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VMs and execute them by optimizing the cost. Hence, the time complexity of the pro-

posed GWO Algorithm 5.1 is O(n.Sz) since Sz is a constant and hence the complexity

of Algorithm 5.1 will be O(n). In Algorithm 5.2, the minimum time complexity will

be O(n2.Sz) as the algorithm iterates for critical path scheduling of the dependent

tasks in the Workflows scheduling. Since Sz is a constant and hence, the final time

complexity of Algorithm 5.2 is O(n2).

Summary

In this Chapter, we proposed GWO based algorithms for scheduling the BoT and

Workflows. Two QoS parameters considered in this thesis contribution are mainly

Time and Cost. Even though our proposed GWO takes slightly high computation

time in some cases, but always provides the cost-effective solution. Hence, the pro-

posed GWO based scheduling algorithms outperform all other algorithms considered

in terms of better execution time and cost. Further, statistical analysis on work-

loads shows that, irrespective of changes in the Variance, the Standard Deviation and

the Confidence Level, the Accuracy results will not deviate and thus achieving the

consistent performance.

In the next Chapter, we propose cost optimized scheduling of the tasks by choos-

ing the VM instances using machine learning techniques (On-Demand and Spot in-

stances). The main focus will be on choosing different types of instances for cost

optimization.





Chapter 6

Cost Optimized Scheduling of Spot
Instances at Cloud Data Center

VM instances play an important role in executing the tasks in the cloud environment.

There are many types of instances offered by different cloud vendors in the market.

These VM instances are procured by the clients in many ways to accomplish the tasks

which are submitted to the cloud environment. In this thesis contribution, we mainly

focused on cost optimization by using the VM instances as efficiently as possible using

machine learning techniques.

Here, we considered two types of instances, i.e. On-Demand and Spot instances

from the Amazon cloud market. Basically, we need to schedule the tasks on given

instances so that we can execute them in a given deadline and we consider MPSO

based scheduler which is described in detail in Chapter 4. Further, we use Neural

Network (NN) technique to predict the future Spot values so that we can use Spot

instances rather than On-Demand instances. Hence, the key contributions of this

chapter towards cost optimized scheduling of Spot instances are as follows:

• Prediction of future values of Spot instances by Neural Network based Back

Propagation algorithm which utilizes the past Spot pricing history data.

• Migration of VMs from one PM (overloaded) to another PM (underloaded)

depending on the cloud resource requirements in terms of CPU and MEMORY.
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• Performance analysis of proposed cost optimized scheduling for Spot instances

in heterogeneous cloud environment using Spearman’s Rho test.

Here, we follow the proposed MPSO task scheduling approach on VMs instances

which is described in Chapter 4. The type of instances play a major role is scheduling

and as well as cost optimization. We used a NN technique to train the past Spot

values so that the next VM instance can be bought at a lesser price. The details of

the VM instances and training are discussed in the following sections.

6.1 Proposed Methodology

We used our proposed efficient task scheduling algorithm using Modified Particle

Swarm Optimization Technique on VMs instances (Mainly Spot and On-Demand).

Further, we used Neural Network based back propagation algorithm for predicting the

Spot-instance values for overall cost optimization in comparison with On-Demand in-

stances in the heterogeneous cloud environment. Hence, we will be discussing more on

Spot instance prediction and cost optimization rather than scheduling using MPSO.

6.1.1 Types of Instances

In this work, we adapt two types of instances with variable price structure from the

Amazon cloud model. The details of two pricing models are as follows.

A. On-Demand Instances: In this type of instance, the user has to pay hourly

based on the instance type. Here, the prices for different instances are fixed and the

same has to be paid by the client (user) and the price will not vary once the instance

starts executing the task. All the instances follow hourly pricing model, i.e. once the

instance is given, the user has to pay for one complete hour even though users use

the cloud resources even for a minute (On-Demand (url)).
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B. Spot Instances: In this type of instance, the users bid for a particular

instance and it is made available as long as their bid is higher than the Spot price.

Spot prices are fixed by the cloud service provider which is dependent on the instance

type and its demand. Spot instances can change during the instance runtime and

change dynamically (Javadi et al. (2011)). The Spot price of an instance varies with

time and it is different for different instance types. The price also varies between

regions and available zones. Here, the user has to participate in bidding (auction) to

get the Spot instance and the user can bid for the maximum price that can be paid

by the user. Number of bidders also vary depending on the time and region.

The user is provided the resource/instance, whenever the bid is higher than or

equal to the Spot price (Cloud (2011)). The demerit of the Spot instance is that

whenever the Spot price becomes higher than the current user bid, then Amazon

terminates the Spot instance resource and assigns it to the new user who has the

highest bid value. When the Spot instances are given back to the cloud provider,

then the user has to pay the Spot price that is applicable during the start time.

Further, the user will not be charged if the service is terminated by the cloud service

provider. However, the user has to pay for a full hour if the Spot instances are

abruptly terminated by the user (Yi et al. (2010)).

6.1.2 Proposed Work

In this thesis contribution, we used MPSO technique for scheduling the tasks on the

VM instances. Both Spot and On-Demand instances are used during the scheduling.

Further, with the NN training model we used Spot instances and later these predicted

instances are replaced by On-Demand instances for the purpose of cost optimization.

Figure 6.1 shows the overall flow diagram of proposed work.
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Figure 6.1: Overall Flow Diagram of Proposed Work.

Here, we implemented a scheduling algorithm using On-Demand and Spot in-

stances. The main motto is to utilize the cloud resources in an efficient and intel-

ligent manner. Further, the cost analysis for executing the BoT is evaluated using

both On-Demand and Spot instances. It is observed from Figure 6.1 that the tasks

in the BoT are coming from cloud users and these are received by cloud Data Center.

Further, Load Balancer will choose the suitable Scheduler (using MPSO) for assigning

the incoming tasks of BoT to the suitable VM instances (On-Demand and Spot).

Spot instance values are chosen from the past history of a specific region and

then these values are used by the Back Propagation algorithm of NN for predicting

the future Spot values. New Spot values are compared with current Spot values
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for validation. Next, total number of VM instances used for executing the BoT

are considered in cost analysis. Then, cost comparison between On-Demand and

predicted Spot instances are carried out for performance analysis on cost. Hence, the

objectives of the proposed work are as follows.

Objective 1: Efficient Utilization of VMs.

VM Type(i) = Number of tasks handled by VMs. (6.1.1)

VM Type(i) refers to a type of VM used in the experiment. We used six different

instances of VMs (T1.micro, M3.large, M3.xlarge, M1.small, M3.2xlarge, M4.4xlarge)

and more details are given in Table 6.1.

Objective 2: Minimizing the Execution Cost of BoT.

Each Spot and On-Demand instances has its own price depending on the com-

pute capacity (configuration of VM instance). On-Demand instance prices are static

whereas Spot instance prices are dynamic. For cost analysis, we took the number of

machine cycles of tasks along with VM instance price at that time interval. The total

execution cost of BoT is defined as

TotalCost = [
n∑

x=1

Cycles of Tasks(x) ∗ cost of VM Instance] (6.1.2)

6.1.3 Spot Instance Training and Prediction

In this work, the main focus is on utilizing more Spot instances rather than On-

Demand instances. To schedule these instances, we consider proposed MPSO schedul-

ing technique. Spot Instance values change dynamically and on the other hand, On-

Demand instance values are static for a particular interval of time. Hence, we use

the Neural Network based Back Propagation algorithm for predicting the future Spot
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instance values based on the past history of Spot instance values over a period of

time. Figure 6.2 shows the complete flow diagram of Spot instances training using a

NN Back Propagation algorithm (Wong and Nandi (2004)) for cost optimization.

Figure 6.2: Block Diagram of Spot Instance Training and Cost Analysis

Cloud Spot Market: Different cloud vendors offer many types of Spot instances

for the clients. Spot Market generally consists of different instances. In this thesis,

we consider Spot and On-Demand instances from the Amazon cloud market.

EC2 Spot Instances: These are the Spot instances offered by Amazon cloud

and these instances price change dynamically.

Dynamic Pricing Model: On-Demand instance values are fixed and they do

not change suddenly. On the other hand, Spot instance values are dynamic in nature

and its value depends on the user bid.

Heterogeneous Systems: In this thesis, we consider the experimental setup in

a heterogeneous fashion. The systems have different configurations and we also use

hot plugging technique to add required resources.

Analysis and Training Using NN: Spot instance values for the past 60 days are

considered from a specific region and fed as input to NN training model. The predicted

Spot instance values are tested for future Spot instance values. Our proposed NN
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model works efficiently in predicting the Spot values.

Predicted Spot Values: After training, the predicted Spot values are compared

with present Spot market values for validation.

Cost Optimization: Predicted Spot instance values are compared with On-

Demand instance values and our proposed model insists to use more Spot instances

so that the cost can be reduced considerably.

These predicted Spot instance values are validated with future Spot values and

then we can easily bid for the Spot instances. In our model, BoT is considered

for scheduling on VM instances, i.e. On-Demand and Spot. Further, with our pre-

diction model, we can use Spot instances for executing the tasks rather than using

On-Demand instances. Using the Spot instances, we can reduce the execution cost

considerably in comparison with On-Demand instances. The details of performance

evaluation in terms of experimental setup and results are as follows.

6.2 Performance Evaluation

In this Chapter, the tasks from the BoT are scheduled on the VMs instances (On-

Demand and Spot) using Bio-Inspired MPSO scheduling algorithm. Further, we

proposed NN based algorithm for predicting the future Spot instances. We conducted

the experiment for performance evaluation and the details of experimental setup are

as follows.

6.2.1 Experimental Setup

In this work, we used two Physical Machines (PMs) for experimentation. As we

discussed in the previous chapters, BoT acts as an input to the cloud data center,

and these tasks are to be scheduled on Amazon VM instances (On-Demand and Spot).

The tasks in the BoT are categorized into different classes as Small scale, Medium
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Table 6.1: Spot Instance Characteristics with US East N. Virginia Region

Instance V-CPU Mean Standard Deviation Max Min

T1.micro 1 0.0075 0.00636 0.012 0.003

M3.large 2 0.0215 0.00354 0.024 0.019

M3.xlarge 4 0.0685 0.04455 0.100 0.037

M1.small 1 0.0075 0.00071 0.008 0.007

M3.2xlarge 8 0.309 0.31537 0.532 0.086

M4.4xlarge 16 0.537 0.59538 0.958 0.116

scale and Large scale. Each scale has tasks with different MIPS (Million Instructions

Per Second). On a small scale, MIPS varies from 500 to 1000. With Medium scale,

MIPS varies from 1000 to 5000. In Large scale, MIPS is above 5000. We considered

different combinations of tasks so that efficient scheduling of these tasks can be done

on the suitable VM instances.

As said earlier, we considered two PMs and the performance analysis is carried

out in terms of Central Processing Unit (CPU) and Random Access Memory (RAM)

utilization of both PMs. Along with the efficient utilization of the cloud resources

we ensure that load on both PMs is in a balanced manner. For balanced load, we

migrate tasks from overloaded PM to underloaded PMs. We used simple migration

policy, i.e. tasks from overloaded PM are migrated to underloaded PM. Migration

takes a feasible amount of time, but our main goal is to find the efficient utilization

of CPU and RAM from both PMs even after migration of tasks.

The proposed work is experimented on the customized simulation environment

written in Python language and also in CloudAnalyst tool from ClouSim. The com-

plete details of the setup are given in Section 4.8 of Chapter 4. Further, we will

discuss the types of Spot instances used from Amazon cloud and the details are given

in Table 6.1 (Spot (url)).
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We considered 6 different mixtures of VM instance types and their respective Spot

values for 60 days from US East N. Virginia Region. Table 6.1 gives the details of

Spot instance types, values of CPU, mean, Standard Deviation (SD), Minimum and

Maximum Spot value of each VM instance considered during the experiment.

6.2.2 Results and Analysis

The proposed work is evaluated using On-Demand and Spot Instances on BoT with

respect to four parameters such as average response time, execution time, execution

cost and cloud resource utilization (CPU and RAM) with and without VM migration

in heterogeneous cloud environment. In this work, we also predict the future Spot

values so that efficient, cost management can be achieved. The details of performance

analysis of proposed work in terms of QoS parameters are as follows.

Bag-of-Task Scheduling Analysis

As discussed earlier, the tasks in the BoT are scheduled on VM instances using our

proposed MPSO algorithm. In this chapter, we focus on the performance analysis of

the MPSO algorithm on two parameters, i.e. average response time and execution

time. The MPSO algorithm is proposed in Chapter 4 but here it is analysed on

different combinations of BoT. Here, the tasks in the BoT are categorized into Small,

Medium and Large levels of tasks with different MIPS.

Figure 6.3 shows the average response time and Figure 6.4 shows the execution

time analysis of the proposed algorithm in comparison with peer research algorithms.

Both Throttled and Round Robin algorithms take almost the same execution time

since MIPS values are smaller in Small scale and hence there is no significant dif-

ference. In ACO, the choosing of VM instances depends on the pheromone content.

Usually in ACO, the initially considered VM instances are reused as they accumulate

the pheromone content rather than other VM instances. Further, if the MIPS value
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Figure 6.3: Average Response Time Analysis

is more and capacity of VM instance is less, then the attached VM instance takes

more time when compared to other high capacity VM instances. Hence, in all three

cases (Small, Medium and Large), ACO takes more execution time when compared

to peer research algorithms. Modified Throttled algorithm is efficient when compared

to Throttled algorithm as it does not start from the first index during scheduling of

VM instances and our proposed MPSO chooses the efficient VM instance from each

cluster with less execution time and thus outperforms all peer research algorithms

considered for performance evaluation.

The proposed MPSO algorithm gives better results by checking the state of the

VM and it has cluster based comparison of allocating tasks to a VM and thus avoids

the server queuing. Cat Swarm Optimization (CSO) takes more time when compared

to the proposed MPSO as CSO combines two modes (Seeking and Tracing mode) and

hence more time is consumed in tracing mode, hence CSO is not considered for task

scheduling. Genetic Algorithm (GA) takes more time during chromosome crossover

and mutation operations and hence we did not consider both CSO and GA in our

performance evaluation.



Cost Optimized Scheduling of Spot Instances at Cloud Data Center 123

Throttled Round Robin ACO Modified Throttled Modified PSO

Algorithms

370

380

390

400

410

420

Ex
ec

ut
io

n 
T
im

e 
in

 s
ec

on
ds

Small Scale

(a) Execution Time Analysis of Small Scale BoT
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(b) Execution Time Analysis of Medium Scale BoT
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(c) Execution Time Analysis of Large Scale BoT

Figure 6.4: Execution Time Analysis
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Utilization of Cloud Resources (CPU and RAM)

In the proposed work, the analysis is done on efficient utilization of cloud resources,

accordingly we evaluate the CPU and RAM utilization on two PMs. Next, we analyze

each PM’s average CPU and RAM utilization along with the VM migration. The VM

will be migrated from the one PM (overloaded) to another PM (underloaded). Then

the VM stops executing the task and migrate it to another VM and it starts executing

from the beginning at another PM (underloaded). Further, if the assigned VM in a

PM (overloaded) does not start its execution in 30 seconds, then it starts to migrate

to another PM (underloaded) for execution. Next, we will analyse the CPU and RAM

utilization of PM1 and PM2 respectively.

Figures 6.5a and 6.5b show the average (small scale, medium scale and large scale)

CPU utilization of PM1 and PM2 without and with VM migration respectively. From

Figure 6.5a, it is clear that almost all scheduling algorithms utilize the CPU in an

efficient manner. Our proposed MPSO also utilizes the available CPU in an efficient

manner. But ACO underutilizes the CPU as it spends more time in assigning the

task to VM and thus causes the delay in executing a request. Usually when compared

to ideal scenario, the CPU utilization is more and this is because of tasks belonging

to the Large Scale category with high MIPS values. From Figure 6.5b, it is clear that

the utilization of PM2 is slightly more than PM1. During execution of BoT, more

VMs are migrated from PM1 to PM2 and hence PM2 is more utilized.
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(a) CPU Utilization of PM1 and PM2 without Migration
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Figure 6.5: CPU Utilization of PM1 and PM2
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(a) RAM Utilization of PM1 and PM2 without Migration
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Figure 6.6: RAM Utilization of PM1 and PM2

Figure 6.6a and 6.6b show the average (small scale, medium scale and large scale)

RAM utilization of PM1 and PM2 without and with VM migration respectively.

From Figure 6.6a, it is clear that proposed MPSO utilized almost same amount of

RAM of both PM1 and PM2. But when compared to Figure 6.6b, RAM utilization is

increased due to VM migration from PM1 to PM2. When a VM is about to migrate

then its state will be stored in the temporary storage and thus the RAM will be more

occupied than usual scenario. Hence, RAM utilization of both PM1 and PM2 is more.
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Table 6.2: Predicted and Actual Spot Instance Values

VM Instance Type Predicted Spot Value Exact Spot Value

T1.micro 0.055 0.06

M3.large 0.0175 0.018

M3.xlarge 0.0568 0.058

M1.small 0.0085 0.007

M3.2xlarge 0.201 0.23

M4.4xlarge 0.175 0.198

However, RAM utilization of PM2 is more than that of PM1 as more number of VMs

are migrated from PM1 to PM2.

Execution Cost Analysis using On-Demand and Spot Instances

Here, the analysis is done on the execution cost using On-Demand and Spot instances

using our proposed MPSO based scheduling algorithm on Small, Medium and Large

Scale BoT. As explained, we used Neural Network back propagation algorithm to

predict the future Spot instance values and accordingly we chose the suitable Spot

instances rather than On-Demand instances to reduce the total cost.

Table 6.2 shows the predicted Spot values using Neural Network algorithm and

these are compared with exact Spot values for accuracy. From Table 6.2, it is clear

that for all types of instances, the predicted Spot value is almost similar to the exact

Spot value. Hence, there is a high chance of getting the Spot instances, if we bid just

above the predicted Spot values. By doing this we are able to get the Spot instances

for the execution of the BoT and thus cost can be reduced. Further, we analyzed how

cost is reduced if we use only Spot instances rather than On-Demand instances for

the execution of different categories of the BoT.
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Figure 6.7: Cost Analysis of On-Demand and Spot Instances

Figure 6.7 shows the cost analysis of Small, Medium and Large Scale categories

of BoT when these are executed on On-Demand and Spot instances. For the cost

analysis, we have considered Predicted Spot values by assuming that these are avail-

able until the execution of assigned tasks from the BoT is completed. As mentioned

earlier, tasks from different categories of BoT consist of variable MIPS for the ex-

ecution. From Figure 6.7, it is clear that for different categories of BoT, the cost

of On-Demand instances is more when compared to that of Spot instances. Before

prediction of Spot values, we are supposed to consider mixing of On-Demand and

Spot instances and we are not sure whether Spot instance remains unchanged until

the execution of tasks on the BoT is completed or not. After predicting the Spot val-

ues, we are able to use Spot instances rather than On-Demand instances by bidding

them at higher value than the predicted value and thus we ensure that Spot instance

does not rollback until it completes the execution of a task. It is clear that if we use

Spot instances rather than On-Demand instances, we can reduce the cost by 38.23%

during execution. Hence, our proposed scheduling algorithm and prediction model

not only utilizes the cloud resources (CPU and RAM) efficiently but also reduces the

cost considerably.
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Further, we carried out statistical analysis on predicted and actual Spot instances

using Spearman’s Rho test. Since the results obtained are in the form of ordinal and

hence, we used Spearman’s Rho test (Tayyab et al. (2016)).

Statistical Analysis

In the statistical analysis, two entities are evaluated about a given workload or popu-

lation so that we can determine the best supported entity for different cases. Further,

Spearman’s Rho test based statistical analysis is carried out between the predicted

and actual Spot prices. The Spearman’s Rho is a non-parametric test used to measure

the strength of association between two entities, where the value of R = 1 means a

perfect positive correlation and the value of R = -1 means a perfect negative correla-

tion. In this experiment, the R value is 0.94286, i.e. the actual and predicted values

are perfectly correlated with the error rate of 5.714 %.

6.3 Summary

In this thesis contribution, the tasks of BoT are scheduled using MPSO algorithm on

different VM instances offered by Amazon. The main focus is on using Spot instances

rather than On-Demand instances for cost optimization. We proposed a NN based

model for predicting the Spot instances, which utilizes the past history from a specific

region. Further, statistical analysis on workloads shows that, irrespective of changes

in the Variance, the Standard Deviation and the Confidence Level, the Accuracy

results will not deviate and thus achieving the consistent performance on different

QoS parameters. Our predicted Spot values are compared with future Spot values

for performance evaluation. Hence, if we use Spot instances rather than On-Demand

then we can significantly reduce the cost incurred during the execution of tasks.





Chapter 7

Testing and Validation

In this chapter, the main focus is on testing and validation of our proposed schedul-

ing, resource allocation and management algorithms using the real cloud platform.

In Chapter 3 and 4, we proposed scheduling, resource allocation and management

algorithms which were tested on both CloudSim and PySim customized simulators.

Further, the simulation results demonstrate that the proposed algorithms outperform

the state-of-the-art algorithms. Now, our proposed algorithms are validated using the

IBM cloud setup. Hence, the main contributions of this chapter are as follows.

• Testing of the proposed algorithms such as MPSO, MCSO and HYBRID

(MPSO+MCSO) on customized cloud setup called PySim.

• Further, validation of aforementioned algorithms (MPSO, MCSO and HYBRID

(MPSO+MCSO)) using the IBM cloud setup.

The proposed algorithms are already explained in detail in the Chapters 3 and 4.

Here, the results of the proposed algorithms are tested and validated using the IBM

cloud setup and thus demonstrated that these algorithms play an important role in

efficient scheduling, resource allocation and management of cloud resources.
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7.1 Validation of Proposed Algorithms

As mentioned above, the proposed algorithms are tested and validated using IBM

cloud data center environment. During validation, our algorithms faced few chal-

lenges, i.e. comparison between simulation environment and a real cloud setup is

a complex process. Next, the proposed algorithms are briefly discussed along with

validation challenges followed by results and analysis.

7.1.1 Modified Particle Swarm Optimization

The proposed MPSO algorithm is used to schedule the incoming tasks on the VMs in

a heterogeneous cloud environment. For the scheduling, we used different categories

of BoT with varied number of MIPS. The algorithm gives better efficiency in the

customized cloud environment using PySim and then the results are validated with

IBM cloud setup.

In the IBM cloud, we followed the same setup with the same process which we im-

plemented in customized cloud setup and there are a few challenging issues (network

connectivity and synchronization). Then, we successfully fixed these issues and found

that the proposed MPSO algorithm worked efficiently in a real cloud environment.

Further, we will study an example for explaining our IBM cloud setup and then we

will explain another algorithm, i.e. HYBRID (MPSO+PCSO) which is also tested

and validated on the IBM cloud setup.

7.1.2 Real Cloud Setup

Figure 7.1 shows the complete flow of the proposed algorithms along with the experi-

mental setup using the IBM cloud. Figure 7.1 has two PMs which can host a number

of VMs and the cloud also supports auto scaling which is an important property of

dynamic cloud. The block diagram contains scheduler in which we embedded our
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Figure 7.1: Block Diagram of Real Cloud Setup

proposed algorithms. The control management gives the load, i.e. BoT are fed into

the cloud which is in turn received and managed by the scheduler for processing. As

discussed earlier, different categories of BoT are taken for the validation. The top

right block does the analysis part in which we keep track of resource utilization as

well as average response time of BoT. The results of this experiment are compared

with the simulated results from PySim for validation. The complete details are given

in the following Section.

There is no much deviation in the results obtained by IBM machines when com-

pared to the simulation results of the PySim based cloud setup. Table 7.1 gives the

configuration details of the IBM cloud setup used for the experiment. The servers

used in the IBM cloud setup are of different configurations such as one server has 3067

MIPS with 2 cores and storage capacity of 250 Giga Bytes (GB) along with 8 GB

RAM. Similarly, another server has 4025 MIPS with 4 cores and 500 GB of storage

along with 16 GB RAM. Both servers can host several VMs of different configurations

in the given cloud setup.
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Table 7.1: Configuration Details of IBM Cloud Setup

Machine Type CPU CORES MIPS RAM Storage(GB)

x3100M3E5540 2 3067 8 250

x3400M2EX5570 4 4025 16 500

Figure 7.2: Model for Explaining Our Proposed Work

7.1.3 Resource Allocation and Management Using HYBRID
(MPSO+MCSO) Bio-Inspired Algorithm

The proposed HYBRID (MPSO+MSCSO) algorithm combines the approaches of

MPSO and MCSO and applies them parallel in the hybrid approach. As discussed

in Chapter 4, the proposed HYBRID algorithm is more efficient than MPSO, MCSO

and outperforms the other state-of-the-art algorithms. Now, we will quickly recap the

proposed HYBRID algorithm along with a small example for better understanding of

its overall flow.

Figure 7.2 shows an example for explaining our proposed work. The incoming task

demands n number of cloud resources where n = [0,9] and allocation of ’n’ resources

are provided by either cloud resource pool or by the VMs. Each cluster contains

different VMs with the best two n resource values represented as eexcess res1 and

excess res2, respectively, and the remaining resources available with VMs are stored in

excess res3[]. During resource allocation, the on-demand resources are compared with
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excess res1 and excess res2 and excess res3[], respectively by our proposed MPSO,

MCSO and HYBRID (MPSO+MCSO) algorithms. The excess res1 and excess res2

mappings are used by the MPSO algorithm where as excess res3[] mapping is used

by the MCSO algorithm. On the other hand, HYBRID (MPSO+MCSO) algorithm

uses all the three aforementioned resource mappings[].

7.1.4 Cloud Orchestration

Cloud orchestration is the use of programming technology (even scripting) to manage

the interconnections and interactions among workloads on public and private cloud

infrastructure. It connects the incoming tasks into a cohesive workflow to accomplish

a goal, without violating the service level agreements.

Cloud orchestration is typically used to provision, deploy or start servers; acquire

and assign the storage capacity; manage the networking; create the VMs; and gain

access to the specific software or task on the cloud services. Every job execution in the

cloud orchestration is accomplished by three main entities namely: service, workload

and resource modules from the orchestration framework. An orchestration platform

can integrate the permission checks for security and compliance.

Cloud orchestration technology must work with heterogeneous systems, poten-

tially servicing a global cloud deployment in different geographical locations and with

different providers. Many cloud orchestrator users run public cloud and private de-

ployments.

Two major components of cloud orchestration are:

Software Components: These mainly deal with the core part of the task. The

complete code of the task (written in high level language or scripting) to be executed

should be embedded in this block. One complete workflow can have many independent

software components.
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Templates: Templates can be defined as ready to serve blueprints which can be

provisioned on any hypervisors which are connected to the cloud orchestrator.

Once the job execution flow is fixed then complete steps are written as a software

components. Further, these software components are combined and finally made as

a executable templates.

As we mentioned in the previous sections, the complete flow of both MPSO and

HYBRID (MPSO+MCSO) algorithms are written as software components. Each

software component defines the complete flow of the algorithm along with dependen-

cies. Further, these software components are attached to the specific template for the

deployment. We created two templates for both the algorithms and then provisioned

these cloud enabled templates on to the physical server. These templates are generic

and can be provisioned on any type of hypervisor. For the experimentation, the tem-

plates are provisioned on the VMware cloud orchestrator and results are discussed in

the next section.

7.1.5 Results and Analysis

Results are analyzed for two different cases. First case w.r.t PySim cloud setup and

the second case w.r.t. IBM cloud setup. Different parameters are considered for

evaluation such as utilization of cloud resources and average response time, and the

results of proposed MPSO based scheduling algorithm in comparison with state-of-

the-art algorithms are given in Tables 7.2 and 7.3, respectively.

From Tables 7.2 and 7.3, we can observe that proposed MPSO algorithm is tested

and validated on both PySim and IBM cloud platforms. It is clearly observed from

Tables 7.2 and 7.3 that the proposed MPSO does not deviate from the PySim results.

From Table 7.2 it is clear that in both real and simulated cloud platforms the proposed

MPSO uses an almost equal number of VMs. But in IBM cloud setup the VMs

utilization is not exactly same as that of the PySim setup, but they are in a balanced
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Table 7.2: Utilization of VMs

SL. No
PySim Cloud Setup Results IBM Cloud Setup

Throttled Round Robin ACO Exact Proposed MPSO Proposed MPSO

VM1 1182 254 356 253 254 234

VM2 76 254 289 254 254 264

VM3 8 253 389 254 254 249

VM4 2 253 180 254 253 263

VM5 0 254 54 253 253 258

Table 7.3: Average Response Time Analysis (in ms)

PlatForm Algorithm Average Response Time

Pysim Cloud Setup

Throttled 365.52

Round Robin 364.85

ACO 362.67

Exact 365.87

Proposed MPSO 360.11

IBM Cloud Proposed MPSO 370.58
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way. Further, the proposed algorithm is tested and validated on both cloud platforms

(IBM and PySim) for average response time analysis and the results are shown in

Table 7.3. The average response time of MPSO on IBM cloud platform is more when

compared to PySim platform and this is because of some practical difficulties in real

cloud platforms (network connectivity and synchronization). The experiment was

conducted on PySim platform by making some assumptions (same inter arrival time

and RTT remains same). But in IBM cloud platform, there were some challenges

(varied inter arrival time between tasks and network delay from cloud resource pool)

by which the results are not exactly same as that of the customized simulation setup.

Next, we will analyze the validation of HYBRID (MPSO+MCSO) resources allocation

and management algorithm.

The HYBRID (MPSO+MCSO) resource allocation and management algorithm is

experimented on both cloud platforms (IBM and PySim). This HYBRID algorithm

is capable of combining the merits of both MPSO and MCSO and gives the better

efficiency in utilizing the cloud resources. In customized cloud setup (PySim), our

proposed HYBRID algorithm is efficient in utilizing the cloud resources from the

VMs buffer rather than the cloud resource pool. Figures 7.3a, 7.3b and 7.3c show

the resource utilization for 1000, 2000 and 3000 BoT on both platforms. It is clearly

observed from Figure 7.3 that there is a less reuse of the resources from the VMs in the

case of IBM cloud platform. On the other hand, the reuse of cloud resources is more

in the case of PySim platform. There is some delay in fetching the resources from

the resource pool when testing the proposed HYBRID algorithm in real cloud setup.

However, our proposed HYBRID resources allocation and management algorithm

achieves 76% accuracy when validated with IBM cloud setup.
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Figure 7.3: Average Resource Utilization Analysis



Testing and Validation 140

7.2 Summary

In this contribution, testing and validation is done using customized PySim and IBM

cloud setup. Two algorithms mainly MPSO and HYBRID (MPSO+MCSO) are ex-

perimented on IBM cloud setup to validate our results. Both the algorithms are

converted into templates using software components and provisioned on the VMware

cloud orchestrator. The validation on the VMware hypervior is consistent and the

templates can be provisioned on the other suitable hypervisors. Further, the perfor-

mance analysis on QoS parameters (Reliability and Time), i.e. utilization of cloud

resources and average response time is carried out using different workloads. Our

proposed algorithms outperform state-of-the-art algorithms and thus achieve overall

efficiency of 85% in real IBM cloud setup.



Chapter 8

Conclusion and Future Directions

The efficient scheduling, load balancing and resource utilization (VMs, CPU, RAM,

etc.) at the cloud data center is an important and challenging problem in the cloud

computing environment. Cloud receives clients’ requests at a rapid rate, and schedul-

ing algorithms allocate these tasks to the VMs and thus maintains a balanced load on

the PMs. Further, the type of the input (BoT or Workflows) should be handled in an

intelligent manner while scheduling at the cloud data center. Since, these algorithms

fall under NP-Hard/NP-Complete complex class and hence, there is a scope for further

improvement. Therefore, the algorithms should be multi-objective and also should

be capable of optimizing QoS parameters (Reliability, Time, Throughput, Cost, etc.)

including hot plugging techniques.

Scheduling plays a major role in the cloud data center as it consists of large pool of

resources. In our work, we proposed a few scheduling algorithms based on optimizing

the specific QoS parameter. Once the scheduling is done, the proper utilization of

the cloud resources is a challenging task and this is handled by our proposed resource

allocation and management algorithms. Along with resource management, choosing

of right VMs instance will affect the optimization of the cost QoS parameter.

Further, many VMs instances (On-Demand, Reserved and Spot) are offered by

the cloud service providers and utilization of these VMs instances also play a major

role at the cloud data center. The choosing of suitable VMs instance is application

141
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specific and further proper scheduling and prediction (Spot) of these VMs instances

will help in reducing the total cost.

Hence, the research work in this thesis is directed towards the design and develop-

ment of task scheduling (BoT and Workflows), load balancing and resource utilization

algorithms in both homogeneous and heterogeneous cloud computing environments.

Further, thesis contributes to the design and development of a fault tolerant system

with VMs migration to guarantee the task completion without the violation of SLA

using On-Demand and Spot instances.

The first set of contributions of this thesis address the scheduling of independent

tasks (BoT) in the cloud computing environment which optimizes the QoS param-

eters (Reliability, Time, Throughput). Here, three scheduling algorithms (Modified

Throttled, VM-Assign and DCBT) are proposed for efficient scheduling of tasks and

further optimal utilization of cloud resources is taken care. The proposed algorithms

outperform other state-of-the-art techniques (Throttled, Round Robin, Active-VM)

with better execution time, average response time and thus efficiently utilize the VMs

(above 88%) at the cloud data center. Here, only VMs are considered as cloud re-

sources for performance analysis. Algorithms work efficiently on independent tasks

and further can be improved to handle dependent tasks which are complex in nature.

Apart from VMs, the cloud data center has many resources which are demanded by

the incoming tasks and managing these resources (mainly CPU and MEMORY) is a

challenging problem.

The second set of contributions of this thesis address the Bio-Inspired schedul-

ing of independent (BoT) tasks along with the efficient utilization of cloud resources

(CPU, VMs and Memory) in the heterogeneous cloud environment. The proposed

MPSO scheduling algorithm outperforms the state-of-the-art techniques (Throttled,

Round Robin, ACO, Exact Algorithm) in terms of VMs utilization and improved

average response time. Further, MPSO, MCSO and HYBRID (MPSO+MCSO) al-

gorithms are proposed for efficient utilization of cloud resources using hot plugging
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technique. The proposed MPSO resource allocation and management algorithm ef-

ficiently utilizes the cloud resources from the VMs buffer rather than taking it from

the cloud resource pool. However, MPSO has some limitation in (unmatched re-

source) and this is addressed by the proposed MCSO algorithm. Further, the pro-

posed HYBRID (MPSO+MCSO) algorithm outperforms the state-of-the-art tech-

niques (MPSO, MCSO, RR, ACO, Exact) in utilizing the cloud resources. The pro-

posed algorithms are analyzed using both sequential and parallel approaches while

assigning the resources during the task execution (1000, 2000 and 3000 tasks are

considered for performance analysis). Our proposed algorithms achieve 84% in uti-

lizing the resources from the cloud resource pool. Further, the proposed HYBRID

(MPSO+MCSO) algorithm is validated with statistical analysis (T-Test) for null hy-

pothesis by comparing with other algorithms. Many applications are hosted on the

cloud data center and fetching / execution of these applications is a complex pro-

cess. The resources must be prioritized and should be reliable at any point of time.

Nowadays multimedia applications are high in demand and need to be served with no

delay. So combinations of different applications must be considered for robust algo-

rithmic framework to work in the cloud environment. Here, BoT (independent tasks)

are considered as an input to the cloud environment and in the next contribution we

consider both BoT and Workflows (dependent tasks).

The third set of contributions of this thesis address the scheduling of BoT and

Workflows using Bio-Inspired GWO techniques to optimize both the execution time

and execution cost (without the violation of the SLA). Here, we used Amazon VMs

instances during execution and results demonstrate that the proposed algorithms

outperform the state-of-the-art techniques (ICPCP, SCS, PSO, CSO, Exact) with

better execution time (for BoT) and reduced cost (for Workflows). The proposed

GWO algorithm efficiently utilizes the VMs instances during execution of tasks from

the Workflows and hence cost of executing the Scientific Workflows (Montage and

Cybershake) is reduced considerably (by 11%). Here, we simulated the environment
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by considering the reserved VMs instances from Amazon. However, different VMs

instances from different cloud vendors must be considered for more accurate results.

Sudden change in the resource requirements affects the cloud data center performance

and hence always there should be a reserved resource pool. Nowadays many real time

applications are hosted on the cloud environment so apart from BoT and Workflows

as a input, the dynamic workloads must be considered. Next, we consider different

types of instances (On-Demand and Spot) and further, we focus on predicting the

Spot instances to optimize the cost QoS parameter.

The fourth set of contributions of this thesis address the efficient utilization of

cloud resources by VMs migration and also optimize the total execution cost by

using more Spot instances rather than On-Demand instances. Here, we used ANN

based back propagation algorithm for predicting the future Spot instance values and

further these predicted Spot values are compared with actual values. During VMs

migration, the role of hypervisor plays an important role and migration between

different hypervisors is a challenging problem for further improvement. Apart from

On-Demand and Spot instances, the other instances can be explored which suits for

dynamic workloads for real time cloud applications. Further, we use Spearman’s Rho

test for statistical validation and our predicted values correlate with actual values by

94.28%. Further, we compared the cost analysis of On-Demand and Spot instances

while executing different ranges of BoT (Small, Medium and Large) and the results

demonstrate that the Spot instances can reduce the cost by 38.23%.

The proposed algorithms in this thesis are experimented on both CloudAnalyst

(CloudSim based) and customized PySim (Python based) simulators. The experimen-

tal results demonstrate that the proposed algorithms outperform the state-of-the-art

approaches in terms of optimizing QoS parameters (Reliability, Time, Throughput,

Cost, etc.). Hence, the fifth contribution of this thesis is to test and validate the

MPSO (scheduling) and HYBRID (MPSO+MCSO) (resource allocation and man-

agement) algorithms on the real cloud setup (IBM cloud platform). The experiments
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are conducted on cloud orchestrator with the help of software components and tem-

plates. The experimentation is carried out in the VMware orchestrator with ESXi

hypervisor. There can be generic templates which can be provisioned on any end

point hypervisors. Further, the same experiment can be conducted on the different

cloud orchestrators for performance analysis and a few more software components can

be added to handle the different conditions during the deployment. The validation

on the VMware hypervior is consistent and the templates cab be provisioned on the

other suitable hypervisors. Further, the experimental results demonstrate that the

proposed MPSO and HYBRID (MPSO+MCSO) algorithms achieve overall efficiency

of 85% in terms of scheduling and resource allocation management when compared

to the results of simulation setup.

In summary, we proposed algorithms for scheduling, load balancing and resource

allocation and management in the cloud computing environment using BoT (inde-

pendent tasks) and Workflow (dependent tasks) as workloads. Experimental results

demonstrate that our proposed algorithms outperform the state-of-the-art techniques.

However, further improvement of the proposed algorithms can be considered with the

following future research directions.

• To validate our proposed Bio-Inspired scheduling and load balancing algorithms

in different real cloud setups and workflow engines.

• To design and develop efficient resource allocation and management policy for

the federated cloud environments. Further, a framework can be designed for

handling real time cloud application in which the resource demands change

dynamically.

• Procuring of suitable VMs instances from the different cloud vendors can be

automated using the artificial intelligence techniques. A generic framework

can be designed using the machine learning approach to choose the suitable

algorithm for a specific workload.
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• Building cognitive based smart frameworks/templates for executing different

platform applications in the hybrid cloud environments and also in the different

cloud orchestrators.

• Using cognitive approaches (mainly using the deep neural networks), the data

center can be trained to make its own decision in choosing, reserving the ap-

propriate cloud resources at a given time. For the real time cloud applications,

the availability of desired resources are mandatory and should be served with

no delay.



References

Aceto, G., Botta, A., De Donato, W., and Pescapè, A. (2013). Cloud monitoring: A
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