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ABSTRACT

Object tracking is the process of locating the object throughout the frames of a

video. This thesis explores tracking of an object selected by the user in RGB and

infrared imagery using correlation filters. Also, we investigate illumination invari-

ant tracking in RGB videos using median flow tracker. Additionally, we apply the

correlation filter based tracker for multi object tracking to count the vehicles.

The correlation filters have been widely used in computer vision for matching,

detection, and tracking purposes. The basic principle of correlation filter is to learn

from a set of training data to produce desired target data. The correlation filters

appeal to the researchers due to its properties such as shift invariance, real-time speed,

immunity to noise, and efficiency. In spite of high accuracy, the correlation filter based

tracker has room for further improvements. Also, optical flow based tracker attracted

tracking community recently through median flow tracking. However, there is a scope

for an extension to achieve better accuracy. Thus, in this thesis, few improvements

are suggested to the correlation filters for tracking applications in color and infrared

imagery.

The performance of a visual tracker is always degraded due to several reasons

that include pose, size, appearance, illumination, occlusion, fast motion, blur, moving

camera and so on. However, sudden illumination variation causes the median flow

tracker to drift resulting in tracking failure. Hence, illumination invariant techniques

are studied to expand the median flow tracker for robust visual tracking.

This thesis considers the combination of discriminative and generative techniques

by switching during uncertainty of tracked locations. The proposed technique achieves

outperforming accuracy with a novel feature selection method and adaptive learning

rate for correlation filter based tracker with a conditional switching to the median

flow tracker. Later, the work extends combined complementary (discriminative and

generative) techniques to track an object in thermal infrared imagery. Finally, the pro-

posed techniques are tested on publicly available benchmark datasets for comparative

evaluation.
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The thesis also presents a novel vehicle counting algorithm using an object detector

combined with the correlation filter based multi object tracker. Results of the proposed

algorithm are validated against the manual count.
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Chapter 1

INTRODUCTION

1.1 Introduction

Modern surveillance systems require automated visual analysis such as object and

people recognition, action detection, human computer interaction, traffic monitoring,

vehicle navigation, etc. For these applications, visual object tracking is a popular

problem in computer vision that has been studied by a large community. The pri-

mary goal of visual tracking is to estimate the trajectory of an object throughout the

frames of a video provided its location in the first frame. Several problems arise due

to projection of 3D objects to 2D image space. The common challenges include illumi-

nation changes, background clutter, blur, camera motion, scale changes, partial/full

occlusion, rotation, deformation, etc. In general, main components of a tracker com-

prises of feature extraction, target representation, localization, and track management

(Maggio et al., 2011). Normally, image regions are expressed using features to describe

the appearances of an object. The target region is then localized by optimizing the

cost function. The motion model is required to predict the possible locations based on

current position of the object in every frame. Further, located target region is utilized

to update the appearance model to align with the recent object appearances. The

performance of overall algorithm can be enhanced by using improved object represen-

tations, motion models, and update techniques. Hence, in this thesis, feature selection,

object representation, update techniques, and scale estimation are discussed for color
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and infrared videos in tracking perspective. Also, single object tracking is extended

to multi target tracking to count the vehicles in highway traffic video. Thus, section

1.2 presents challenges of object tracking. Section 1.3 discusses the motivation and

objectives of thesis work followed by the organization in section 1.4.

1.2 Challenges

The detection and tracking are major research areas in computer vision which has been

and presently under an exhaustive study. Both detection and tracking are connected

in various applications, mainly to surveillance. In addition, the improved quality and

resolution of videos have opened diverse applications at lower price. The applications

of video tracking include: video analysis for security, surveillance, robotics, human-

computer interaction, medical, transportation systems, customer behavior and so on.

Although object tracking is a simple task for humans, it is complicated to realize

automated systems. Thus, for an automatic real-time system, the tracking algorithm

has to be robust to many challenges such as scale, pose, rotations, moving camera,

illumination, occlusion, background clutter, etc. Further, an algorithm capable of

keeping track of trajectory record for long-term in real-time would find applications

in surveillance and security.

Typically, an object has freedom to move in 3D world which causes appearance

changes when the object is projected to 2D image space. Such movements include

rotation, deformation, and scale change. Non-rigid objects such as animals or humans

change appearance due to movement of individual parts. The object also changes

its appearance due to relative motion between camera and object resulting in scale

change. In this situation, tracker needs to keep its location updated to the center

of target. In general, an object may move inside or outside environment. Thus, the

variation of illumination is a common problem due to shadows, lighting, etc. It leads

to tracking drift as a result of change in appearance.

Few conditions such as ball flick lead to abrupt motion due to which the tracker

loses track if the search area is limited to small surroundings. Although there is free-

dom for an object to move in the 3D space, its 2D projection causes occlusion problem
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when object moves behind the other object. If the tracker learns from occluded sam-

ples, it forgets the actual target that may lead to tracking failure.

The quality of a video is also an important issue for a tracker to be successful.

For example, low resolution videos typically deficit of texture features, which is the

main component required for tracking. Also, focusing error and relative movement of

camera or object cause blurred video frames. In these cases, tracker fails to capture the

spatial features, which is essential for tracking. In this thesis, the major challenges are

addressed such as sudden illumination change, occlusion, fast motion, scale change,

and deformation.

1.3 Motivation and Research objectives

Object tracking in color and infrared videos are hot research topics that have been

and presently under development. Recent benchmark indicates that no object tracking

algorithm can handle all the challenges at a time. A popular optical flow based tracker

such as median flow tracker Kalal et al. (2010) is being used in real time applications.

The tracker has provided significant improvement in tracking accuracy. However, the

tracker often fails to handle sudden illumination changes in and between the frames.

The thesis focuses to combat the illumination related issues by integrating various

normalization techniques.

In the recent tracking benchmark, kernelized correlation filter Henriques et al.

(2015) tracker has shown significant improvement in terms of speed and accuracy.

The tracker relies upon texture features with fixed learning rate. In addition, tracker

fails to handle texture-less object with deformation, sudden motion etc. These are the

motivations for study which suggest feature selection such as color and/or texture,

switching to complimentary tracker and adaptive learning rate to overcome tracking

drift.

Detection and tracking of objects in thermal imagery have been of interest in

several applications mainly for military purposes. The videos acquired by thermal

cameras are illumination independent, however they lack texture features which are

essential for correlation filter based tracking. Hence, the present work uses efficient
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features with complementary approaches to overcome drifting. Automatic counting of

vehicles is important nowadays due to inefficient handling of data by humans. Also,

these algorithms need to maintain the count of individual vehicles, which help to get

the information of traffic density in particular areas. Majority of studies employed

fixed camera and simple techniques to achieve the goal. Present work combines You

Only Look Once (YOLO) Redmon et al. (2016), recent famous object detector with

the tracker to serve the purpose. Based on the observation, the following objectives

are framed in the thesis:

� To explore the illumination invariant techniques to aid the median flow tracker

to achieve drift free tracking during sudden illumination changes.

� To improve the kernelized correlation filter based tracker by incorporating useful

features and switching techniques to achieve drift free tracking during occlusion

and fast motion.

� To develop an algorithm to track an object in infrared imagery using discrimi-

native and generative approaches.

� To count the vehicles in highway video for traffic management system by com-

bining an object detector and multi target tracking with correlation filters.

1.4 Organization of thesis

In this thesis, improvements of video tracking algorithms in RGB and infrared imagery

are addressed. Additionally, an application of tracking is presented for vehicle counting

in highway traffic videos. The outline of each chapter is prepared as follows.

Chapter 2 highlights the literature survey on standard algorithms in the field of

object tracking in RGB and infrared imagery. Hence, benchmark tracking methods

using generative, discriminative, and correlation filter based trackers are presented in

this chapter. Also, it provides a background work on vehicle counting application.

Further, RGB and thermal infrared benchmark video datasets are reviewed followed

by evaluation metrics employed for comparison purpose in the present work.
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Chapter 3 presents the detail of median flow tracker, its drawback, and suggests

improvements to manage illumination related problems. The focus of this chapter is

to provide the state-of-the-art median flow tracker and its improved version especially

to boost the performance for rapidly changing illumination videos. Therefore, vari-

ous illumination normalization techniques, baseline tracker (Kalal et al., 2010), and

modified median flow tracker are explained in detail. Experiments are conducted on

challenging videos to demonstrate the improved accuracy when compared with the

baseline algorithms.

Chapter 4 provides the correlation filter based tracker and suggests an improve-

ment using conditional switching technique. Thus, state-of-the-art kernelized correla-

tion filter (Henriques et al., 2015) based tracker is presented in this chapter. Typically,

correlation filter based tracker is more sensitive to deformation, occlusion and fast mo-

tion as they learn from spatial features. Hence, a novel feature selection process and

an adaptive learning rate are discussed to improve the baseline tracker. Besides, a

conditional switching technique is addressed to overcome from tracking drift. Exten-

sive experiments are conducted to analyze the proposed method and compared with

the recent trackers.

Chapter 5 exploits the advantages of discriminative and generative approaches to

follow an object in infrared imagery. A weighted combination of gradient and channel

coded features are considered to locate the object in a kernelized correlation filter based

tracker framework (Henriques et al., 2015). In addition, pixel intensities are utilized to

localize the object in every frame using AdaBoost classifier. Finally, target location is

selected based on position refinement using a generative model. Several experimental

results are presented using infrared videos and compared with the existing algorithms.

Tracking finds several applications in traffic management system such as vehicle

counting, congestion detection, vehicle speed monitoring, etc. Hence, use of video

tracking for measuring the density of vehicles is presented in chapter 6. Thus, vehi-

cle counting is achieved for highway video by combining an object detector with an

efficient correlation filter based tracker. Several hand captured highway videos are

utilized for testing the proposed method and results are provided to show its accuracy

against manual count.

Finally, chapter 7 concludes with the contributions, advantages, and drawbacks of
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proposed techniques. Also, possible future directions are indicated.
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Chapter 2

VIDEO TRACKING

APPROACHES

In the past few years, substantial work has been undergone in the field of visual track-

ing. The proposed study targets to address the weakness of existing algorithms and

aims to improve during conditions such as illumination variation, occlusion, and fast

motion. Therefore, this chapter presents theoretical background on video tracking ap-

proaches. In literature, mainly two techniques have been discussed namely generative

and discriminative. Section 2.1 discusses briefly about standard tracking algorithms

using generative techniques. The literature on popular discriminative type trackers is

described concisely in section 2.2. Section 2.3 provides background work on correlation

filter based tracker. A brief review of object tracking in infrared imagery is presented

in section 2.4. Further, state-of-the-art video counting methods are presented briefly

in section 2.5. The datasets used for experimentation are described in section 2.6.

Finally, quantitative metrics adopted in the work are discussed in section 2.7.

2.1 Generative approaches

Generative type of trackers utilize the appearances of an object to build the target

model. The motion of an object is estimated by searching in the confined space for

the best match between local patch and model. These techniques are not aimed to
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serve long-term tracking, however, maintain some features which assist to search the

target.

Figure 2.1: Reference model of generative type trackers

Figure 2.2: Illustration model of generative type trackers

Fig. 2.1 and Fig. 2.2 depict the reference model and illustration of generative track-

ers respectively. The appearance model is constructed using the features of object

samples such as raw pixels (template) (Briechle and Hanebeck, 2001), histogram (Co-

maniciu et al., 2000), eigen images (Ross et al., 2008), distribution fields (Sevilla-Lara

and Learned-Miller, 2012), image patch dictionary (Mei and Ling, 2009). Object is

searched locally or globally based on motion model such as Kalman filter or particle

filter. The target localization is achieved by minimizing the cost function. Generally,

cost function measures the similarity between model and target which include normal-

ized cross correlation (NCC), L1 distance, Euclidean distance, etc. The object model

is updated in every frame to align with the recent object appearances.
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Template matching based trackers express the object appearances in terms of a

template. The displacement of an object in consecutive frames is estimated based

on the similarity between template and region of interest that maximizes the NCC

score (Briechle and Hanebeck, 2001). An exhaustive search in a new frame for the

best match is always time-consuming and produces false alarms. Hence, the search

is limited to the local neighborhood of previous location. This process can increase

the speed, decrease the false alarms but lose target due to large motion of an object.

Also, NCC fails to locate the object when there is an occlusion, clutter and appearance

changes, which limit its application.

The mean shift tracking is the most popular approach used to search an object in

the local neighborhood (Comaniciu et al., 2000). It is a distinct method to avoid an

exhaustive search for the best match. In this method, an object is represented using

color histogram. The back projection image is constructed through probability distri-

bution of each pixel. Mean shift searches the mode of back-projected image to locate

the target. Although color histogram is robust to appearance changes, its distribution

may change due to illumination variation. Mean shift approach poorly handles occlu-

sion and background clutter, also there is a chance of the local basin of convergence

and loss of spatial information. In addition, a single template model cannot handle

partial occlusions. Therefore, fragments based tracker has been proposed by (Adam

et al., 2006), where the template is decomposed into multiple arbitrary number of

patches. The motion of each fragment is estimated to determine the global motion

based on voting statistics. This method can track the object even if two objects of

same color are occluded however fails in complex occlusion. Moreover, this technique

cannot deal with rotational and scale changes.

Baker and Matthews (2004) proposed a gradient-based approach to find the lo-

cation of an object in the new frame. This method exploits the sum of squared

difference between template and the warped target image to iteratively generate the

new set of optimized parameters using the steepest gradient descent algorithm. The

affine parameters can deal with scale, rotation, and translation. However, high timing

complexity limits its application in real-time scenario.

Typically, template matching based trackers suffer due to considerable appearance

variation of an object when the model is not updated. Besides, single template cannot

handle multiple appearances. Hence, an extended model is essential to capture the
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full range of appearances of target in the past. The principal component images of

target appearances are computed on incremental basis over time (Ross et al., 2008).

The candidate windows are sampled around the present location based on particle

filter motion model, which has Gaussian distribution. The confidence score of each

sample is the distance of intensity feature set from candidate window to the target’s

Eigen image subspace. The candidate with minimum distance is chosen as the target.

This method has proved robustness to illumination and appearance changes.

Contrary to template matching, trackers based on bag of visual words use key-point

based strategy to detect the image patches in every frame. Two codebooks using RGB

and Local Binary Pattern (LBP) features of an image patch are constructed to model

the object appearances (Yang et al., 2012). Location of an object is established based

on highest similarity between candidate patches and codebooks.

Based on observation, template-based techniques are found to be more sensitive

to spatial structures, while histogram features do not provide spatial information.

Distribution Field Tracker (DFT) exploits the advantage of template and histogram

based techniques to capture the histogram while preserving the spatial location of

every pixel (Sevilla-Lara and Learned-Miller, 2012). Thus, the combination of tem-

plate and histogram based descriptors are used to model the object appearances. The

target location is identified based on least distance between the object model and

image patches. The proposed method works faster, however, handling occlusion and

illumination is still challenging. DFT is further extended by incorporating channel

representations to withstand lighting variations and appearance changes (Felsberg,

2013). Thus, Enhanced DFT (EDFT) outperforms the baseline in terms of accuracy

and speed.

The limitations of generative trackers are as follows: (i) They consider only appear-

ances of an object to build the model, consequently fails to track due to background

clutter. (ii) The model update cannot handle occlusion effectively. (iii) They perform

poorly during substantial appearance changes.
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2.2 Discriminative approaches

Discriminative type of trackers encode the information of both foreground and back-

ground through online learning process. Given the object location and size, algorithms

generate a set of binary labeled training samples to update the classifier model. A

conventional approach is to treat the tracking as binary classification problem to cat-

egorize the region of interest as an object or background. The reference model and

illustration of discriminative type tracker are displayed in Fig. 2.3 and Fig. 2.4 respec-

tively.

Figure 2.3: Reference model of discriminative type visual tracker

Figure 2.4: Illustration of discriminative type visual tracker
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Collins et al. (2005) discussed the selection of on-line features for tracking. The

system makes use of log-likelihood ratios of class conditional sample densities to dis-

tinguish object pixels from background pixels. The mean shift approach evaluates the

mode of segmented object region. Although the method is robust to illumination and

background clutter, it fails to track during occlusion.

One of the most fundamental discriminative methods integrated off-line Support

Vector Machine (SVM) training with optical flow tracking practice (Avidan, 2004).

SVM uses horizontal and vertical edge features to distinguish vehicles from its sur-

roundings. The object motion is estimated based on peak confidence score. The

shortcoming of this method is that all the appearances of an object have to be cap-

tured before tracking begins, which makes it inapplicable to real-time applications.

Although the pyramid structure is employed to compensate for significant motion, the

method cannot handle partial and complete occlusion of vehicles. Furthermore, there

is no assurance that it will shift in case of adjacent vehicles.

To avoid learning from training data in advance, an adaptive discriminative tracker

has been introduced. The features of training data are collected on-line by extracting

object regions from current tracked location (Avidan, 2007). Thus, each pixel maps

to 11D feature vector with eight bin histogram of gradients and R, G, B value. The

classifier provides confidence map based on classification score. Mean shift is finally

applied to obtain the mode of confidence map to locate the object. However, the

tracker is not designed to handle occlusions and large appearance changes.

Similarly, Grabner et al. (2006) proposed a technique to design online AdaBoost

classifier using Haar-like features, orientation histogram, and local binary pattern as

feature set. However, the problem is formulated as a single class classification, hence

trained using only positive samples. The target in next frame is located based on

maximal confidence score. The suggested algorithm works in real-time and consumes

less memory. A co-training model combines generative and discriminative trackers to

handle the long-term occlusion (Yu et al., 2008). In this approach, generative model

encodes all the appearances while SVM based discriminative tracker uses just recent

observations. Although an improvement has been observed in re-detection capability,

partial occlusions and large appearance changes were not handled well.

The adaptive discriminative tracker updates the appearances of an object and
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background in every frame. The speed of adaptation is crucial in all these systems

which decides the amount that it has to forget the old appearances. If the learning rate

is too slow or fast, it results in drift. Furthermore, the tracker will gradually ignore

the object information due to occlusion. To address this issue, Multiple Instance

Learning (MILTrack) (Babenko et al., 2011) proposed a robust method to update

the appearance model to manage partial occlusions. It exploits multiple instance

learning using training data having a positive bag with at least one positive sample

and negative bag with negative samples. The added spatial information reduces the

drift significantly. However, if the object is completely occluded for a long period of

time or object leaves out of the scene, it starts learning from wrong samples and loses

its track. Moreover, articulated objects cannot be handled with this model efficiently.

It has been shown that the object can be tracked precisely by applying the optical

flow tracking method (Kalal et al., 2010). Further, the detection unit is integrated

to re-initiate the tracking process after occlusion (Kalal et al., 2012). This method

combines Lucas Kanade optical flow tracking with random fern based object detection.

The system demonstrated impressive performance for long-term videos. Besides, the

system was able to determine the extent or to indicate whether the object is present

or absent in the video. Even currently, Tracking Learning and Detection (TLD)

is being used due to its re-detection capability and real-time speed. However, it

does not perform well during out-of-plane rotation and for articulated objects like

humans. Later on, kernelized structured support vector machine has been proposed

to contribute adaptive tracking (Hare et al., 2016). The combination of Haar features,

raw features, and histogram features was used to determine the location of an object

in the structured SVM framework. In spite of significant accuracy, the method was

not capable of handling the scale and occlusion issues.

An efficient algorithm has been suggested based on features extracted from multi-

scale feature space (Zhang et al., 2012). A non-adaptive random projections are

used to preserve the structure of image features. A sparse measurement matrix is

constructed to compress the sample images comprising foreground and background.

The features are used to train a naive Bayes classifier with an on-line update to treat

the tracking as a binary classification problem. This method achieved greater accuracy

with real-time speed.

Asvadi et al. (2013) presented an algorithm based on discriminative 3D RGB his-
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togram to classify object and background pixels. The target is located in every frame

based on mode of mean shift process. To consider the appearance changes of an object,

color learning scheme in adopted. It has been shown that algorithms based on color

histograms easily lose target when similar colored object appear nearby. A Distractor

Aware Tracker (DAT) makes use of track-by-detection approach based on color ap-

pearances (Possegger et al., 2015). A discriminative model is constructed using the

color histograms to differentiate object pixels from its surroundings. In addition, DAT

suppresses similar regions that appear within the visual field to reduce the tracking

drift due to distractor.

Recently, deep learning approaches achieved high accuracy in every field of com-

puter vision. Multi-Domain Convolutional Neural Network (MDNet) tracker (Nam

et al., 2016) trains convolutional neural network using a set of videos and ground-truth

annotations to construct a generic model for any sequence. This model is applied on

new sample around the previous location to identify the target based on maximum

classification score. In spite of high accuracy, MDNet requires huge number of off-line

videos for training and takes more time for processing.

2.3 Correlation filter based approaches

In contrast, correlation filters have been defined using simple mathematics and achieved

high frame rate consuming less memory. The correlation filters are designed to pro-

duce peaks for each trained samples in the scene while presenting a low response to

the background. The correlation filters are very efficient in detecting and locating

the object at faster speed. The widespread applications include object detection, face

detection/recognition (Mahalanobis et al., 1987), image registration, object tracking,

action recognition (Rodriguez et al., 2008) and so on. The illustration of correlation

filter based tracker is depicted in Fig. 2.5.

At first, Minimum Output Sum of Squared Error (MOSSE) filter was introduced

to tracking field (Bolme et al., 2010). In this approach, the training data consists of

warped object regions to produce Gaussian as desired output as shown in Fig. 2.5.

The convolution between filter and area was performed in frequency domain through

Fast Fourier Transform (FFT). The peak value of output response determines the
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location of target. Thus, the proposed technique was robust to lighting, pose, non-

rigid transformation of an object. The increased accuracy and high frame rate of

correlation filter tracker attracted research communities to a great extent.

Figure 2.5: Reference model of correlation filter based trackers

Following the success of correlation filters in the field of object tracking, further

developments have been suggested. The theory of circulant data structure is exploited

to generate a set of positive and negative samples, using which the filter is trained

(Henriques et al., 2012). The learning process involved training of data to produce the

expected target data as Gaussian template of same size using kernelized classifier. The

trained filter template is then convolved with an area cropped from current location in

the frequency domain to determine the location of an object. This process is continued

in frame-by-frame fashion to accomplish tracking.

Initially, raw pixels were adopted in correlation tracking which is then outstretched

to diverse feature space to make it robust. Thus, the histogram of gradient (HoG)

feature is utilized in kernelized correlation filter framework for an efficient tracking

(Henriques et al., 2015). HoG feature extracts edge details, i.e., texture feature of an

object. In contrast, the color name (CN) feature is practiced in the object detection

area and is extended for tracking using kernelized correlation filter (Danelljan et al.,

2014). However, the above mentioned trackers are not able to handle the scale of an

object.
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To estimate the size of an object, detection procedure is implemented at multiple

scales. Accordingly, an efficient scale adaptive tracking has been proposed. A scale

space object template is constructed to find the peak in correlation responses (Li and

Zhu, 2014). The position and scale corresponding to maximum value are identified

as the target. A separate 1D correlation filter has been proposed to tackle the scale

more effectively (Danelljan et al., 2014). The scale filter is trained using variable

size templates. The scale corresponding to peak value of 1D correlation provides the

required scale. Both translational and scale filters are updated with new samples in

every frame. However, the advantages of baseline tracker are lost due to increase in

the computational cost.

Correlation filter based trackers usually suffer from the inaccurate training samples

due to circular correlation. Spatially Regularized Discriminative Correlation Filter

(SRDCF) (Danelljan et al., 2015) introduces spatial regularization to penalize the

filter coefficients lying outside the object region. The spatial regularization function

is selected to optimize the filter coefficients in the Fourier domain through iterative

Gauss-Seidel optimization procedure. A more precise location is estimated through

sub-grid approximation. Different versions of SRDCF use grayscale, HoG, CN and

covolutional neural network (CNN) features.

2.4 Tracking in infrared imagery

The visible spectrum is the only part of electromagnetic spectrum that individuals

can see. All objects in the world has property to reflect, absorb or transmit energy.

Normal visual cameras use reflected light to acquire images for which it expects light

source. In contrast, thermal infrared (TIR) cameras capture images based on temper-

ature of an object that is radiated, hence do not need any lighting source. Infrared

technology was initially employed in the military area and consequently moved to var-

ious fields of industry, scientific and medical areas. Therefore, night vision cameras

are extensively found in applications such as building inspection, gas detection, in-

dustry, medical, veterinary, agricultural, fire detection, surveillance, aerospace, target

acquisition, tracking of humans, vehicles, and animals (Gade and Moeslund, 2014).

The power of thermal cameras to capture images in all climate conditions and dimness

make considerable impact on its applications.
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Infrared (IR) is invisible electromagnetic radiation with longer wavelengths than

that of visible spectrum. Infrared band is divided into different ranges based on

wavelength. The infrared range is divided into various bands that include near infrared

(0.7 µm to 1 µm wavelength), short-wave infrared (1 µm to 3 µm wavelength), mid-

wave infrared (3 µm to 5 µm wavelength) and long-wave infrared (8 µm to 1.4 µm

wavelength). Near infrared or visual cameras capture radiations reflected by objects,

while long-wave or mid-wave infrared cameras capture radiations emitted by objects.

Tracking of an object in infrared imagery is complicated due to following reasons:

� Infrared images appear noisy with low signal to noise ratio (SNR), poor contrast,

and low resolution comprising large number of dead pixels.

� Visual aspect of infrared images is similar to gray-scale images with missing

texture and color features.

� The intensity of object varies with temperature instead of illumination in color

images.

� Occlusion and re-identification of objects in thermal infrared imagery are chal-

lenging task as two objects of comparable size, shape and color look very similar.

Examples include individuals strolling in group, animals of same sort, fowls in

a rush share similar shape and intensity level in thermal imagery.

� The detection and tracking are more challenging for complex background scenes

as the object may blend with surroundings, change size, shape, and intensity.

� Overall, it is difficult to find the unique property of an object in infrared imagery.

Thermal cameras have been originally developed as a night vision tool for surveil-

lance, military, and later extended to a wide variety of applications (Gade and Moes-

lund, 2014). These passive sensors eliminate the illumination related problems arising

in RGB videos. The detection and tracking of objects in infrared imagery find an

important role in several applications such as military, surveillance, and so on. In lit-

erature, many methods have been proposed in thermal infrared tracking, that include

pedestrian or object as target. In the past, tracking algorithms proposed for color

videos have been employed to track an object in thermal infrared imagery (Felsberg
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et al., 2015). Similar to RGB tracking, generative and discriminative type trackers

have been utilized in thermal infrared tracking.

Tracking of pedestrian in infrared videos has been achieved by integrating in-

tensity and edge cues in a particle filter framework using an adaptive integration

scheme (Wang and Tang, 2010). Automatic updating strategy further increases the

performance accuracy. Wang et al. (2012) applied Gaussian Mixture Model (GMM) to

build the efficient background model in order to separate the foreground from back-

ground. Besides, Support Vector Machine (SVM) classifier is trained using shape

features to detect the pedestrians. Following detection, intensity combined with edge

cues under particle filter is utilized to track the pedestrians in infrared videos. Lam-

berti et al. (2011) exploited motion prediction techniques to find possible false alarms

and activates template matching for recovery purpose. Thus, the activation strat-

egy has high impact on improved accuracy. A combination of curve matching with

Kalman filter has been proposed by (Lee et al., 2012) to predict the position of target

in infrared video. An improvement of tracking accuracy has been observed due to

weighted mean of two methods compared to Kalman filter approach.

The detection of small infrared object has been proposed by (Dong et al., 2014a)

using R-means clustering technique to cluster the interest points corresponding to

foreground and background. Dong et al. (2014b) applied Difference of Gaussian

(DoG) filters for enhancement and proportional integral derivative to predict the lo-

cation of object. A combination of detection and filtering approach has been em-

ployed to track the objects (He et al., 2015) which exploits object detection based

on sparse representation and filtering through weighted correlation filter. Terravic

Motion IR Database of Object Tracking and Classification Beyond Visible Spec-

trum (OTCBVS) (http://vcipl-okstate.org/pbvs/bench/) and Video Verifica-

tion of Identity (VIVID) datasets (http://vision.cse.psu.edu/data/vividEval/

datasets/datasets.html) are utilized to validate the proposed method. Subse-

quently, ABCD (4 approaches named as A, B, C, and D) tracker extends EDFT

(Felsberg, 2013) tracker to select the object region adaptively (Berg et al., 2016). In

addition, the background information is exploited to avoid its contamination in the

object model. Moreover, it estimates the scale of object based on probability mass

change.
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2.5 Vehicle counting

A number of algorithms exist to count the vehicles using video data. In this section,

we review the state-of-the-art vehicle counting techniques for videos captured using

still cameras.

Figure 2.6: Reference model of vehicle counting

The process of vehicle counting involves extraction of moving objects, tracking and

counting based on rules as shown in Fig. 2.6. Counting of vehicles in day and night

time has been proposed using spatio-temporal analysis and morphological analysis of

head lights respectively (Cucchiara et al., 2000). Two level architecture comprising of

low level image processing tools to extract the vehicle data and high level module as a

forward chaining production rule to suit for urban traffic. The system was flexible to

count the vehicles in 24 hour video and produced good accuracy. An approach by (Bar-

cellos et al., 2015) uses particle filter to obtain the particles with motion coherence and

spatial adjacency. Later, groups of particles associated with similar motion patterns

are exploited to detect the moving vehicles. However, the particles are sampled based

on foreground mask generated using GMM and motion energy images which provide

the possible vehicle location. Later on, color property is used to measure the simi-

larity of vehicles in adjacent frames. The counting is accomplished in a user-defined

loop and shown improved accuracy. However, heavy occlusions may deteriorate the

counting accuracy. Also, the system fails to count small vehicles and during traffic

flow interruption. Illumination and shading effects create artifacts resulting in false

detection. Also, vehicles are not categorized in this technique. To detect the vehicles

during occlusion, a windshield based hypothesis is developed (Van Pham et al., 2015).

Accordingly, Hough transform is utilized to detect the trapezoidal like structure to
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identify the probable location of vehicles. HoG features of well-collected datasets are

used to train SVM classifier to verify the vehicles at later stage. Tracking is per-

formed using Kalman filter to estimate the trajectory and simple rule-based reasoning

is employed to count the vehicles.

Xia et al. (2016) proposed to fuse expectation maximization (EM) algorithm with

GMM to segment the moving vehicles in a user-defined virtual loop. A restoration

method is used to remove noise and fill gap to extract the vehicle region. The oc-

clusions of vehicles are handled using morphological feature and color histograms.

The algorithm has been tested on videos captured using still camera at the road in-

tersections. An active basis model and symmetry property are employed to detect

the vehicles in a highway video (Kamkar et al., 2016). Additionally, vehicles are

classified by training random forest classifier with time-spatial image and correlation

computed from gray level co-occurrence matrix. A highway vehicle counting in com-

pressed domain is accomplished using hierarchical classification based regression (Liu

et al., 2016). In this, the system extracts low-level features to train two-layer classifier.

The method can categorize the scene into heavy, medium, and light based on traffic

density. In all these methods, it is observed that still/stable cameras have been used

to acquire the video. Besides, the video contains single lane and simple background.

However, vehicle counting process for shaking or hand recorded videos is a tedious

task.

2.6 Datasets

Since the last decade, tracking area has significantly grown due to its widespread ap-

plications. Five years before, tracking algorithms were suffering from insufficient video

data and performance evaluation metrics to assess the advances in field. The several

datasets have been released in the past for RGB videos such as Performance Evaluation

of Tracking and Surveillance (PETS) (www.cvg.reading.ac.uk/PETS2015/), Visual

Object Tracking (VOT) challenges (www.votchallenge.net/) and Object Tracking

benchmark (OTB) (cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html) and

Linkoping Thermal InfraRed (LTIR) (www.cvl.isy.liu.se/en/research/datasets/

ltir/), OTCBVS (http://vcipl-okstate.org/pbvs/bench/) and VIVID datasets
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(http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html) for in-

frared videos. This thesis uses a subset of OTB (Wu et al., 2013) and LTIR datasets

(Berg et al., 2015) for experimental analysis of RGB and infrared target tracking

respectively. The detail of each video is provided in the following subsections briefly.

Table 2.1: Challenges associated with 17 sequences from OTB dataset

Sequence No of
Frames

Target Challenges

Deer 71 deer motion blur, fast motion, rotation, clutter
Bolt 350 person rotation, clutter, deformation, scale
Boy 602 person scale, motion blur, fast motion, rotation
Jogging-1 307 person occlusion, deformation, rotation, scale
Jogging-2 307 person occlusion, deformation, out-of-plane rotation, scale

change
Doll 3872 doll illumination, deformation, rotation
David3 252 person occlusion, deformation, rotation, clutter
Jumping 313 person motion blur, fast motion
Dog1 1350 doll scale, rotation
Lemming 1336 doll illumination, scale, occlusion, fast motion, rotation, out-

of-view
Basketball 725 person clutter, rotation, deformation, occlusion, illumination
Subway 175 person deformation, occlusion, clutter
Tiger1 354 doll occlusion, deformation, motion blur, fast motion, rota-

tion, illumination
Crossing 120 person scale, deformation, clutter
Couple 140 persons scale, deformation, fast motion, rotation
Shaking 365 person rotation, clutter, scale, illumination
Surfer 376 person fast motion, rotation, low resolution, scale

2.6.1 OTB datasets

OTB dataset contains a large number of videos collected from various sources. They

have been annotated manually using attributes based on common challenges in visual

tracking. The challenges include illumination variation, scale changes, deformation,

motion blur, in-plane and out-of-plane rotation, out of view, background clutter, low

resolution, occlusion, etc. Each dataset is associated with challenging aspects, and

ground-truth file with each row representing the bounding box of target in that frame

i.e., (x, y, width, height). In this thesis, a subset of OTB dataset is considered to

compare algorithm’s performance.
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2.6.2 LTIR datasets

LTIR dataset gathers videos from different sources captured by several thermal sen-

sors. The sequences given in the dataset cover indoor and outdoor videos recorded

under different climate conditions. The dataset includes challenges and ground-truth

annotations that provide center coordinates (i.e., (x, y)) of the object bounding box,

and its size, i.e., (x, y, width, height).

Table 2.2: Challenges associated with 17 sequences from LTIR dataset

Sequence No of
Frames

Target Challenges

Birds 270 person moving camera, occlusion, scale change
Boat1 625 boat camera motion, scale change
Boat2 951 boat camera motion, scale change
Crouching 618 person occlusion
Depthwise crossing 851 person scale change
Dog 92 dog camera motion, occlusion, scale change
Garden 676 person camera motion, occlusion, scale change
Hiding 358 person camera motion, occlusion, scale change
Jacket 1451 person occlusion, scale change
Quadrocopter 178 quadrocopter camera motion, motion blur
Ragged 1035 boat camera motion, scale change
Running rhino 763 rhino camera motion
Saturated 218 person camera motion
Soccer 235 person motion change
Selma 775 person scale change
Street 172 person camera motion, scale change
Trees1 665 person camera motion, occlusion

2.7 Evaluation metrics

Tracking evaluation metrics are used to assess the tracking performance. Various

authors prefer different metrics. In this thesis, metrics used by majority of research

groups are considered (Wu et al., 2013). For all experiments, evaluation of tracking

algorithms include three metrics: Average Center Location Error (ACLE), Distance

Precision (DP) score and Overlap Precision score (OP). Center Location Error (CLE)

is defined as Euclidean distance between tracked location and ground-truth location.
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Let (xt, yt) denotes tracked location, (xgt, ygt) represents ground-truth location at

frame t, N is the total number of frames in a video, then average center location error

is obtained as

ACLE =
1

N

N∑
t=1

√
(xt − xgt)2 + (yt − ygt)2. (2.1)

This metric is very popular and works well for point targets. However, the measure

depends on object size, and not consistent with the object shape. It becomes difficult

to define the center for articulated objects like humans. In addition, CLE becomes

significantly large when the tracker drifts off. Thus, to measure the tracking perfor-

mance, successful frames are considered based on CLE. DP is computed to determine

the percentage of number of frames with center location error less than threshold (i.e.

TDP = 20 pixels). Thus, DP is obtained as,

DP =
1

N

N∑
t=1

δ (DPt ≤ TDP ), (2.2)

where, DPt denotes Euclidean distance between tracked location and ground-truth

location at frame number t.

OP is another metric to evaluate the tracker, which is widely used among re-

searchers of tracking community. OP uses bounding box overlap, which is defined as

the overlap between tracked region and ground-truth region as, St = |BBt∩GTt|
|BBt∪GTt| , where

BBt represents tracked bounding box, GTt denotes ground-truth bounding box, ∩
represents the intersection, ∪ denotes the union of two bounding boxes and |.| denotes

the number of pixels in the area bounded by a region. To measure the overlap pre-

cision score of a tracker, percentage of number of successful frames whose overlap St

greater than certain threshold (i.e. TOP = 0.5) is computed as

OP =
1

N

N∑
t=1

δ (St ≥ TOP ), (2.3)

where, St denotes overlap score of frame t.

OTB benchmark quantifies tracking results graphically in the form of precision plot

and success plots. Precision plot is based on CLE, that describes the plot of an average

number of frames having distance precision score within the threshold values chosen
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in the range of 0 to 50 pixels. Similarly, success plot is depicts an average number of

successful frames with bounding box overlap greater than thresholds selected in the

range of 0 to 1. Finally, Area Under Curve (AUC) is utilized in order to rank the

algorithms.

All experiments have been conducted using initial ground-truth location for one

round. Hence, One Pass Evaluation (OPE) method is adopted to compare the pro-

posed method with other trackers.

2.8 Summary

In this chapter, we have presented state-of-the-art tracking methods developed in the

field of visual tracking in RGB videos and thermal infrared videos. Thus, the genera-

tive and discriminative tracking approaches have been discussed. It has been observed

that, there is no single method which provides good accuracy for given set of videos.

Each algorithm is associated with certain advantages and shortcomings. Thus, it fails

to track for a particular video sequence. Similar to RGB videos, thermal videos find

numerous applications in military, surveillance, medical, and industry area. Hence,

many standard algorithms proposed in the field have been briefly reviewed. Video

tracking plays important role in people or vehicle counting applications. Recently,

video based traffic management system has become more popular. Consequently,

well-known vehicle counting methods have been reviewed.

The popular benchmark datasets for object tracking in RGB and infrared videos

have been addressed. In addition, details of image sequences utilized in this thesis have

been presented. The quantitative metrics used to assess the video tracking approaches

have been discussed at the end.
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Chapter 3

ILLUMINATION INVARIANT

OBJECT TRACKING

In this chapter, two approaches are presented to attain illumination invariant tracking.

Although the state-of-the-art tracking technology is rapidly growing, few issues are

still hard such as illumination variation, occlusion, deformation, out-of-view, motion

blur, etc. Among these challenges, sudden illumination variation is more complicated

which is not handled effectively by several trackers. Majority of them, indeed work

under controlled illumination conditions in indoor and outdoor context. However, sud-

den illumination variations affect the performance of tracker. This chapter suggests,

binding a photometric normalization technique with illumination sensitive tracker to

reduce the drift due to unexpected light variation. The tracker under study is median

flow tracker (MFT) (Kalal et al., 2010) which applied optical flow method to track an

object and produced remarkable results in the tracking history. However, the tracker

drifts off due to sudden light variation. To solve this difficulty, pre-processing tech-

nique is incorporated just before tracking. Hence, in this chapter, two methods are

explained. They cover (i) extracting the reflectance component (illumination indepen-

dent) of a video frame and utilize it for tracking (ii) maintain uniform illumination

throughout the video irrespective of light variations. In the first approach, illumi-

nation invariant component is employed for tracking an object. Thus, section 3.1

describes the need for photometric correction techniques in video tracking algorithms.

Median flow tracker and its modified versions with experimental details are presented
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in section 3.2.

In the second approach, illumination of a video is kept constant by altering discrete

cosine transform (DCT) coefficients of an image in the logarithmic domain. The slowly

varying illumination component is mainly indicated by low-frequency coefficients of

an image. Accordingly, a fixed number of DCT coefficients is ignored. Furthermore,

DC coefficient is maintained almost fixed all through the video to minimize the ef-

fects of sudden shift in brightness values. Besides, each video frame is enhanced by

employing pixel transformation technique that improves the contrast of dull images

based on probability distribution of pixels. Thus, the work focuses on handling the

gradual and abrupt changes in the illumination. Section 3.3 explains the procedure to

maintain constant brightness of a video with experimental analysis. Finally, section

3.4 summarizes illumination invariant median flow tracker.

3.1 Illumination normalization techniques

Illumination variation is a common concern in real-time situation, where light inten-

sity tends to change due to shadows in an outside environment and flashlights in an

indoor setting. There are two main research paths aimed to tackle illumination re-

lated issues. They involve either appending a pre-processing stage to illumination

sensitive trackers or extracting illumination invariant features needed for tracking.

The tracking algorithms that employ direct pixel values, histogram features, optical

flow, sub-space techniques and dictionary-based approach mainly suffer from drifting

due to sudden illumination changes. Several successful state-of-the-art trackers such

as MFT (Kalal et al., 2010), L1 tracker (Mei and Ling, 2009), CT (Zhang et al., 2014),

DFT (Sevilla-Lara and Learned-Miller, 2012), TLD (Kalal et al., 2012) are enabled

to handle various challenges in video tracking. However, these methods are not ro-

bust to abrupt changes of light. Hence, in this chapter, we consider popular median

flow tracker (Kalal et al., 2010) for all variety of illumination changes and incorporate

illumination normalization techniques to improve the tracking result.

The photometric normalization techniques are being used in the face recognition

systems to offset the appearance variation due to light conditions (Ochoa-Villegas
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et al., 2015),(Han et al., 2013). In object tracking context, illumination variation cre-

ates an enormous variation of appearances. Numerous ways have been introduced in

the past to compensate the illumination consequences that include simple image en-

hancement to denoising techniques. Modified L1 tracker (Nhat et al., 2014) employs a

wavelet-based normalization technique to compensate for light variation, Phadke et al.

(2017) advise to use modified LBP feature in mean shift tracking to manage illumina-

tion challenges. The popularity of these pre-processing methods lies in its simplicity,

processing speed and improved accuracy which helps to incorporate before tracking

more effectively. Numerous works on photometric normalization methods have been

reviewed in the face verification (Han et al., 2013), (Ochoa-Villegas et al., 2015), and

eye gaze tracking (Armato et al., 2013). However, there is need of knowledge to apply

these techniques for object tracking. Therefore, this chapter presents a comparison

of most efficient photometric normalization techniques when used as pre-processing

stage for solving illumination related problems using median flow tracker.

This section describes the principle of image acquisition. The retinex theory (Land

et al., 1971) explains about human visual system, which can distinguish colors from the

reflectance of a scene by discarding illumination. Image of a scene can be represented

as I(x, y) = R(x, y)L(x, y), where I(x, y) denotes an image, R(x, y) indicates the

reflectance and L(x, y) expresses the illumination component of a scene. Reflectance

component characterizes the details of an object, while illumination source decides

the luminance component. In video tracking context, object movement needs to be

reported in continuous frames irrespective of illumination changes. Let It(x, y) and

It+1(x, y) denote video frames at t and t+ 1 respectively. The reflectance component

is stationary for given scene, hence according to retinex theory,

It(x, y) = Rt(x, y)Lt(x, y). (3.1)

Applying logarithmic transform gives,

ln It(x, y) = ln Rt(x, y) + lnLt(x, y) (3.2)

and

ln It+1(x, y) = ln Rt+1(x, y) + lnLt+1(x, y). (3.3)

The reflectance of scene remains constant, i.e., ln Rt(x, y) = ln Rt+1(x, y). Therefore,
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Eq. 3.3 becomes

ln It+1(x, y) = ln Rt(x, y) + lnLt+1(x, y). (3.4)

If the illumination component at frame t and t + 1 differs by ε then Eq. 3.4 can be

written as,

ln It+1(x, y) = ln Rt(x, y) + lnLt(x, y)± ε(x, y), (3.5)

hence,

ln It+1(x, y) = ln It(x, y)± ε(x, y). (3.6)

The next frame It+1 contains pixel values with different illumination. The nor-

malized image is acquired from the original frame by compensating the additive term

ε(x, y) (Phadke et al., 2013). In this context, we extract the reflectance component

of an image which is independent of illumination and it is derived based on some as-

sumptions. They include, illumination corresponds to slowly varying component and

reflectance corresponds to sharp edges of an image. There are numerous techniques

available to smooth the image that includes Gaussian filtering, non-local means filter-

ing, total variation model filters, isotropic, and anisotropic filtering. These methods

determine the illumination component, which is then subtracted from the image in

logarithmic domain to obtain the reflectance component.

Illumination normalization algorithms used in the proposed study are given in

Table 3.1 and briefly explained in the following subsections. To understand the effect

of photometric normalization techniques, we apply on two separate video frames 58th

and 59th of shaking video from OTB dataset with varying illumination component

between adjacent frames. Original images are converted to gray scale and displayed

in Fig. 3.1.
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58 59

Figure 3.1: shaking sequence frames 58 (low illumination) and 59 (large illumination)
which exhibits the flashlight effects in an indoor setting

Table 3.1: List of the photometric normalization methods employed in the proposed
tracker.

Research Paper Normalization Method Used Time(s)
Single Scale Retinex (SSR)
(Jobson et al., 1997)

Subtracts blurred version (using the Gaussian filter) of an
image from the original image in logarithmic domain

0.75

Single scale Self-Quotient
Image(SQI) (Wang et al., 2004)

Divides the image by blurred version of an image 8.29

Wavelet based Normalization
(WN) (Du et al., 2005)

Divides the image into low and high frequency sub-bands us-
ing DWT in logarithmic domain. Histogram equalization is
applied to low frequency component and high frequency com-
ponents are amplified to enhance the edges

1.86

Discrete Cosine Transform
(DCT) (Chen et al., 2006)

The logarithm of an image is converted to frequency domain
using DCT. Low frequency coefficients are discarded to nullify
the illumination effects

1.08

Tan and Triggs (TT) (Tan and
Triggs, 2010)

Uses a series of operations such as gamma correction, dif-
ference of Gaussian filtering, optional masking and contrast
equalization

0.29

Weber Face (WF) (Wang
et al., 2011)

Computes relative gradient, which is the ratio of difference
between current pixel and neighbors to the current pixel

1.21

Retina Model (RM) (Vu and
Caplier, 2009)

Mimics human retina model to implement 3 layers i.e, photo
receptors, outer plexiform layer and inner plexiform layer. It
uses Gaussian low pass filters and DoG filter to normalize the
image

0.11

Difference of Gaussian (DoG)
(Struc, 2012)

A band pass filter is applied to extract the reflectance com-
ponent of an image

0.1

3.1.1 Single Scale Retinex (SSR)

Jobson et al. (1997) proposed a method to separate luminance and reflectance compo-

nent from an image based on retinex theory. In this method, reflectance component

is estimated by subracting the blurred version of an image from original image in the
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logarithmic domain. Therefore, the reflectance component is obtained as

logR(x, y) = log I(x, y)− log(S(x, y) ? I(x, y)), (3.7)

where, ? is a convolution operator, S(x, y) is the center surround system which take

Gaussian function for smoothing as given by

S(x, y) = Ke−
√
x2+y2

c2 , (3.8)

where, c is the bandwidth of Gaussian, K is a constant, and is computed such that∫∫
S(x, y)dxdy = 1. In Eq. (3.7), R(x, y) stands for reflectance component of an image.

Fig. 3.2(a) shows shaking video frames 58 and 59 after applying SSR algorithm. The

scale of Gaussian filter is set at 15.

3.1.2 Single scale Self Quotient Image (SSQ)

According to Lambertian model, the image factors into intrinsic and extrinsic compo-

nents. Self-quotient image (Wang et al., 2004) is the intrinsic factor, derived based on

assumptions like human vision is sensitive to reflectance and insensitive to illumina-

tion. Moreover, human vision reacts to local contrast than global illumination. Similar

to retinex method, self-quotient image is applied for photometric normalization. An

illumination invariant image is obtained as follows:

Q(x, y) =
I(x, y)

Is(x, y)
(3.9)

and

Q(x, y) =
I(x, y)

F ? I(x, y)
, (3.10)

where, Is(x, y) is the smoothed version of I and F is the smoothing mask similar to

SSR. Compared to SSR, structure of smoothing kernel F is modified using the weight

function. Thus, for every convolution region, a filter is formed as F = GW , where W

denotes weight, and G represents Gaussian kernel. A convolution region Ω is separated

into two sub-regions M1 and M2 based on threshold value τ , which is calculated as

the mean of pixel values of convolution region. The weight function is obtained for
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Gaussian smoothing filter as

W (x, y) =

1 if I(x, y) ∈M1

0 if I(x, y) ∈M2,
(3.11)

such that
1

M

∑
Ω

W (x, y)G(x, y) = 1, (3.12)

where M is normalizing factor. The edge region has a large gray value variation in

convolution region and threshold divides convolution region into 2 sections M1 and

M2 as given by

I(x, y) ∈

M1 if I(x, y) ≤ τ

M2 if I(x, y) > τ
. (3.13)

The filter smooths main part of convolution region while preserving discontinuities.

The bandwidth of Gaussian filter is fixed at 1. SSQ based illumination normalized

images are depicted in Fig. 3.2(b) utilizing shaking video frames 58 and 59. It shows

that SSQ technique eliminates illumination effects by highlighting edge features.

3.1.3 Wavelet based illumination normalization techniques

(WN)

Du et al. (2005) proposed a method to improve the contrast of image in the frequency

domain using wavelet transform. In this technique, an image is decomposed into low-

frequency and high-frequency components using 2D wavelet filter. Thus, the image

is split into four sub-bands such as LL, LH, HL, and HH. Wavelet transform can be

further applied in depth to obtain multi-stage components. Subsequently, histogram

equalization is applied to low-frequency coefficients while high-frequency components

are magnified by multiplying with a scalar greater than 1. Finally, normalized image is

acquired via re-construction using inverse discrete wavelet transform (IDWT). Results

of wavelet-based normalization technique are displayed in Fig. 3.2(c) for shaking video

frames 58 and 59.
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3.1.4 DCT based normalization (DCT)

Chen et al. (2006) suggested a method to obtain the reflectance by altering DCT

coefficients. The technique assumes that the illumination changes are gradual as

compared to reflectance part. Accordingly, low-frequency coefficients of an image are

discarded. Initially, logarithm of an image is transformed to frequency domain using

DCT. DC coefficient is replaced by the mean value, and few low-frequency coefficients

are discarded by preserving high-frequency components. The DC coefficient is set to

C(0, 0) = log(µ)
√
MN, (3.14)

whereM andN denote the size of image, µ represents the mean value of image. 25 low-

frequency coefficients (top left corner values) are changed to zero by arranging them in

zig-zag order. Finally, inverse discrete cosine transform (IDCT) is applied to retrieve

reflectance image. The frames 58 and 59 of shaking video using DCT technique are

shown in Fig. 3.2(d). It is observed that DCT technique nullifies illumination impacts

while preserving the main details of image.

3.1.5 Retina Model based normalization (RM)

Retina model mimics the human retina by combining two adaptive non linear functions

and difference of Gaussian filter for normalizing images in face recognition system (Vu

and Caplier, 2009). The first non linear function is computed as

f1(p) = Ii(p) ∗Gσ1 +
Ii
2
, (3.15)

where p represents each pixel, f1(p) is the adaptation factor for pixel p, Ii denotes input

image, ? represents convolution operator, Ii denotes the average value of image and

Gσ1 is 2D Gaussian filter given by Gσ1(x, y) = 1
2πσ2

1
e
−x

2+y2

2σ21 , where σ1 is the standard

deviation. The input image is then processed using the adaptation factor as

I1(p) = (Iimax + f1(p))
Ii(p)

Ii(p) + f1(p)
, (3.16)
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where Iimax denotes maximum value of the image intensity. The second non linear

function is obtained by

f2(p) = I1(p) ∗Gσ2 +
I1

2
(3.17)

and Gσ2(x, y) = 1
2πσ2

2
e
−x

2+y2

2σ22 where σ2 denotes standard deviation of Gaussian function

Gσ2. σ1 = 1 and σ2 = 3 are selected for Gaussian functions Gσ1 and Gσ2 respectively.

The second nonlinear function is applied to get the image I2 as

I2(p) = (I1 max + f2(p))
I1(p)

I1(p) + f2(p)
. (3.18)

It is then convolved with Difference of Gaussian filter (DoG) to obtain Ib = DoG ∗ I2,

where DoG = GσL − GσH , and σL =0.5, σH =4 respectively denote the standard

deviation of Gaussian low pass filters corresponding to photoreceptors and horizontal

cells. The normalized image is then obtained as In(p) =
Ib(p)−µIb

σIb
. The final image is

then enhanced by truncating based on threshold as

If =

max(T, |In(p)|) if In(p) ≥ 0

−max(T, |In(p))| else
. (3.19)

The threshold T is set at 5. The results of applying retina model on shaking

video frames are depicted in Fig. 3.2(e) and shows its ability to remove illumination

component while keeping the texture of an image unchanged.

3.1.6 Tan Triggs normalization technique (TT)

To combat the illumination effects and shadow in an image, a chain of pre-processing

techniques has been (Tan and Triggs, 2010) proposed. A nonlinear (gamma γ) trans-

formation Iγ of each pixel in an image I has been used to enhance the local dynamic

range in dark areas and compress the dynamic range in bright areas. Since gamma

correction does not remove shading effects, band pass filter using Difference of Gaus-

sians (DoG) is applied to retain fine details and remove low-frequency illumination

component. The contrast of image is then improved by rescaling the image intensities
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in two-stage process given by

I(x, y) =
I(x, y)

(mean (|I(x′, y′)|α))
1
α

(3.20)

and it can be written as,

I(x, y) =
I(x, y)

(mean (min (β, |I(x′, y′)|α)))
1
α

. (3.21)

In the above equation, α reduces the effect of large values and β is used to remove

large values after normalization. Finally, non linear mapping is performed to compress

large values and is given by

I(x, y) = β tanh

(
I(x, y)

β

)
. (3.22)

The parameters used for normalization techniques are as follows: γ = 0.2, α = 0.1,

β = 10, σL = 0.5 and σH = 2. Result after applying Tan Triggs method is shown in

Fig. 3.2(f) for shaking video frames 58 and 59. It is observed that bright areas are

removed and main details of an image are enhanced.

3.1.7 Difference of Gaussian (DoG)

Difference of Gaussian filtered image is obtained when band pass filter is applied to

input image in the logarithmic domain (Struc, 2012). Let Gσ1(x, y) represents low

pass Gaussian filter with standard deviation σ1, i.e.,

Gσ1(x, y) =
1

2πσ2
1

e
−x

2+y2

2σ21 . (3.23)

Let Gσ2(x, y) represents low pass Gaussian filter with standard deviation σ2, i.e.,

Gσ2(x, y) =
1

2πσ2
2

e
−x

2+y2

2σ22 . (3.24)

The DoG filtered output is obtained by convolving the input image with Gσ1 − Gσ2.

σ1 = 1 and σ2 = 2 are used to select the range of band pass filter. Result of applying
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DoG filter on shaking video frames is shown in Fig. 3.2(g). DoG filter removes low

frequency illumination while retaining high frequency edge details.

3.1.8 Weber Face normalization technique (WF)

Wang et al. (2011) proposed an illumination normalization technique impressed by

Weber’s law. Initially, Gaussian filter smoothens an image I(x, y), followed by the

application of Weber Local Descriptor (WLD) (Chen et al., 2010). WLD has two

components namely, differential excitation to capture magnitude and orientation di-

rection of intensity variation. According to Lambertian reflectance model, any 2D

image is expressed as I(x, y) = R(x, y)L(x, y), where R(x, y) represents reflectance

component (depends on object properties) and L(x, y) denotes the illumination com-

ponent (depends on lighting source). WLD is applied to image to obtain illumination

insensitive representation of I, which is named as weber face given by

WF (x, y) = tan−1

(
α

1∑
i=−1

1∑
j=−1

I(x, y)− I(x− i∆x, y − i∆y
I(x, y)

)
. (3.25)

Assuming that illumination varies very slowly, above equation leads to

I(x− i∆x, y − i∆y) = R(x− i∆x, y − i∆y)× L(x− i∆x, y − i∆y). (3.26)

But,

L(x− i∆x, y − i∆y) ≈ L(x, y). (3.27)

Thus, Weber Face is written as,

WF (x, y) = tan−1

(
α

1∑
i=−1

1∑
j=−1

R(x, y)−R(x− i∆x, y − i∆y
R(x, y)

)
. (3.28)

The Weber Face depends only on reflectance component R. Hence this model computes

illumination insensitive image which does not depend on illumination factor.
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58 59

(a) Single Scale Retinex

58 59

(b) Single scale Self Quotient

58 59

(c) wavelet based normalization

58 59

(d) Discrete Cosine Transform

58 59

(e) Retina Model

58 59

(f) Tan Trigs

58 59

(g) Difference of Gaussian

58 59

(h) Weber Face

Figure 3.2: shaking frames 58 and 59 after applying photometric normalization tech-
niques
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3.2 Illumination invariant median flow tracker

In this section, we review median flow tracker for tracking an object in RGB imagery.

In addition, we employ illumination invariant techniques to overcome drift during

sudden light changes.

3.2.1 Median Flow Tracker

Median flow tracker (Kalal et al., 2010) has been proposed to track an object based on

point tracking using NCC and Forward-Backward (FB) error measure. The tracker

accepts bounding box around the object and a pair of image frames as inputs. Let

It and It+1 denote a pair of image frames, let Bt denotes bounding box around the

object in frame t, let Bt+1 denotes the bounding box obtained as output from me-

dian flow tracker. A non overlapping grid of 10 × 10 points are initialized inside the

bounding box, and each point is tracked using Lucas-Kanade (LK) optical flow (Baker

and Matthews, 2004) tracker to estimate the motion of object from frame It to It+1.

Each point is assigned with an error that includes NCC and FB error. NCC error is

calculated based on pixel differences, while FB error is obtained based on Euclidean

distance between forward and backward trajectories. LK tracker is utilized to estimate

the forward and backward trajectories, which are the set of tracked points from frames

It to It+k and It+k to It respectively. The motion of object is predicted using the best

points by removing the outliers based on error. To estimate the scale, ratio of point

distance in the present frame and that of previous frame is calculated. The median

of scale change for set of points is used to predict the scale change in every frame.

Thus, median flow tracker achieves greater tracking results in several challenging as-

pects. However, the accuracy of tracker reduces for sudden illumination variation, fast

motion, and occlusion. In this chapter, we address only sudden illumination change

issue in detail. Accordingly, image frames are processed using illumination invariant

techniques before tracking. The modified median flow tracker is depicted in Fig. 3.3
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Figure 3.3: Enhanced median flow tracker

3.2.2 Experimental results and analysis

3.2.2.1 Setup

The proposed algorithm is implemented using OPENCV 3.2 and MATLAB 15a soft-

ware in a machine with intel(R) core i5-5200U, CPU at 2.20GHz processor with 8GB

RAM. We make use of INface toolbox (Struc and Pavesic, 2011) for our implementa-

tion.

3.2.2.2 Datasets

The modified tracker is evaluated using 5 image sequences chosen from OTB dataset

(Wu et al., 2013) possessing sudden illumination variation as a challenging aspect.

Since, the enhanced median flow tracker is designed to solve sudden changes in illu-

mination precisely, and it does not affect the performance of baseline tracker in other

challenging aspects. Thus, we have selected five challenging videos that have sudden

illumination variation at several frames. The videos include shaking, singer2, trellis,

car24 and man. Table 3.2 provides the details of video sequences used for experiments.
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Table 3.2: The challenges associated with video sequences from Object Tracking
Benchmark dataset.

Sequence Frame Size No of frames illumination details environment
shaking 352 ×624 365 flash light effects within and between frames indoor flash light
singer2 352 ×624 366 flash light effects between frames indoor flash light
man 193 ×241 134 light change between frames indoor lights
trellis 240 ×320 569 light change within frame indoor shadow
car24 240 ×320 3059 light change between frames outdoor shadow

3.2.2.3 Qualitative analysis

In Fig. 3.4(a), man video is presented, in which a person walks inside the dark room

and is suddenly lighted. MFT slightly drifts off due to abrupt changes in illumi-

nation. However, modified MFT is more robust for light changes and tracks the

person all through the image sequences. In the proposed tracker, light variation is

compensated using photometric normalization techniques. Thus, retina model based

MFT (MFT RM) produces high precision and success rate compared to other tech-

niques. Also, recent famous trackers such as DFT, EDFT, and corrected background

weighted histogram (CBWH) fail to track the complete sequence. Fig. 3.4(b) depicts

shaking video, which shows a person (target) singing in a music concert program.

The video has flashlight effects causing sudden local/global intensity variation. Thus,

local illumination change around the target area confuses tracker due to uneven light

scattering. MFT uses optical flow method to find the location of object, which is sen-

sitive to rapid intensity variation. In the proposed work, modified tracker MFT RM

is committed to reject the illumination effects. Consequently, modified tracker tracks

singer in shaking sequence until last frame. Global illumination change is observed

during transition from 58th to 59th frame due to flashlight effects. Such changes are en-

countered frequently, which makes MFT and other well-known trackers to lose track.

However, modified MFT is competent to handle sudden light changes. Among the

selected trackers, circulant structure kernel (CSK) tracker can track whole sequence,

while rest of the trackers fail during light changes.

In Fig. 3.4(c), singer2 video frames are displayed, which has back-light effects due

to which many trackers cannot track. However, the proposed tracker do not fail due

to an unexpected change in illumination, however misses the target due to heavy pose

variation.
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In Fig. 3.4(d), car24 sequence is illustrated, baseline MFT tracker loses the target

when car moves from shadow region to sunlight area. But, the proposed tracker tracks

the sequence till end. Some trackers such as DAT, EDFT also perform satisfactorily

in this video. TLD also shows promising results in car24 video due to the presence of

re-detection unit. It can re-detect the object even when tracker misses the target due

to illumination changes.

In Fig. 3.4(e), trellis sequence, a person walks under a trellis, and affected by the

local illumination variation due to shadows. As a result, MFT tracker slowly drifts

away from the target. However, photometric normalization technique is able to remove

illumination related problems. Hence, enhanced MFT improves the base tracker to a

large extent by effectively handling local and global illumination changes.

The center location error plots are shown in Fig. 3.5. The graph corresponding to

modified median flow tracker is close to x -axis.

3.2.2.4 Quantitative analysis

To evaluate the trackers, distance precision score and overlap precision score are uti-

lized. In addition, precision plot and success plots are employed to rank the trackers

pictorially as a part of quantitative assessment.

Even though all the illumination normalization techniques are intended to solve

sudden/gradual and local/global illumination challenges, majority of them are not

acceptable for visual tracking experiments. The practical reasons include (i) they fail

to attain the speed required for processing (ii) they are not effective to derive the

reflectance part. For video tracking application, illumination component needs to be

removed or maintained consistent all over the frames.
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(a) man

(b) shaking

(c) singer2
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(d) car24

(e) trellis

Figure 3.4: Qualitative analysis of the modified tracker and state-of-the-art trackers
on image sequences man, shaking, singer2, car24, and trellis.
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(a) car24 (b) shaking

(c) man (d) singer2

Figure 3.5: Center location error plots of state-of-the-art trackers on image sequences
posing rapid illumination change as a challenging aspect.
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Figure 3.6: Precision plot and success plots of median flow tracker and its modified
versions on five sudden illumination changing videos
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Figure 3.7: Precision plot and success plots of the modified median flow tracker
(MFT RM) and state-of-the-art trackers tested on five illumination challenging se-
quences
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Table 3.3: Distance precision score of median flow tracker (MFT) and modified median
flow tracker on five challenging video sequences with abrupt light changes. The best
results are displayed in boldface

MFT MFT DCT MFT DOG MFT RM MFT SSQ MFT SSR MFT TT MFT WF MFT WN
shaking 15.61 89.31 49.86 100 98.90 15.89 100 41.91 99.72
singer2 10.92 10.10 16.66 48.63 42.07 23.49 44.80 19.12 25.40
man 100 100 100 100 100 100 100 100 100
trellis 70.82 68.89 88.22 87.34 83.47 10.19 91.03 95.07 75.57
car24 54.82 81.75 16.31 100 57.82 16.54 28.44 58.25 67.40
mean 50.43 70.01 54.21 87.19 76.45 33.22 72.85 62.87 73.62

Table 3.4: Overlap precision score of median flow tracker (MFT) and improved median
flow tracker on five challenging video sequences with abrupt light changes. The best
score is displayed in boldface.

MFT MFT DCT MFT DOG MFT RM MFT SSQ MFT SSR MFT TT MFT WF MFT WN
shaking 15.61 50.41 29.31 81.36 48.49 15.89 88.21 22.46 78.63
singer2 10.92 9.01 14.75 41.25 38.52 25.13 39.34 17.48 23.49
man 36.56 100 100 100 100 100 100 100 100
trellis 58.52 48.50 65.55 65.55 64.67 4.92 67.13 65.90 63.62
car24 17.26 17.22 12.71 17.26 17.26 10.62 17.26 11.96 17.26
mean 27.77 45.03 44.46 61.08 53.79 31.31 62.39 43.56 56.60

Table 3.5: Distance precision score of the state-of-the-art trackers tested on video
sequences with sudden illumination change as a challenge. The modified median flow
tracker shows improved average distance precision score as compared to the baseline
tracker.

CBWH CSK CT DAT DFT EDFT IDCT TLD MFT RM MFT
shaking 2.73 76.98 4.38 3.28 83.01 16.71 1.36 43.28 100 15.61
singer2 0.27 4.09 0.81 1.63 62.84 56.01 28.68 13.66 48.63 10.92
man 29.10 100 22.38 100 23.13 23.13 25.37 100 100 100
trellis 73.63 86.29 45.16 92.44 52.72 47.62 91.21 49.73 87.34 70.82
car24 17.48 90.35 54.88 100 15.92 100 56.03 84.89 100 54.82
mean 24.64 71.54 25.52 59.47 47.52 48.69 40.53 58.31 87.19 50.43

Table 3.6: Overlap precision score of the state-of-the-art trackers tested on video
sequences with sudden illumination change as a challenge. The modified median flow
tracker (MFT RM) shows improved mean overlap precision score when compared to the
baseline tracker.

CBWH CSK CT DAT DFT EDFT IDCT TLD MFT RM MFT
shaking 1.64 58.08 4.10 3.01 82.46 16.16 1.09 39.45 81.36 15.61
singer2 0.27 3.55 1.36 1.36 69.67 59.56 25.95 13.38 41.25 10.92
man 20.89 100 0.74 47.01 22.38 22.38 23.13 95.52 100 36.56
trellis 55.36 59.05 27.06 71.00 51.84 47.62 68.71 42.00 65.55 58.52
car24 15.39 17.26 13.40 16.44 7.19 17.26 17.26 73.78 17.26 17.26
mean 18.71 47.58 9.33 27.76 46.71 32.60 27.23 52.82 61.08 27.77
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We provide the performance comparison of modified median flow tracker (a com-

bination of different illumination normalization techniques and median flow tracker)

with the baseline median flow tracker through the precision score and overlap score

performance metrics. Thus, Table 3.3 and Table 3.4 respectively tabulates DP and

OP scores of modified median flow tracker. It is observed from experiments that

MFT RM, Tan Triggs (MFT TT) and Single scale Self Quotient image (MFT SSQ)

are found to be more efficient for tracking of an object in a video which has global

and local illumination variations. However, single scale retinex (MFT SSR) performs

poorly on videos with unexpected illumination changes. The modified median flow

tracker is intended to overcome drift due to variations of illumination related prob-

lems. However, many causes such as pose variation, rotation, blur, scale, etc. are not

discussed in this part of the work.

MFT RM performs best among other normalization techniques in real-time, hence

it is used to compare with the recent state-of-the-art trackers. The compared trackers

include CBWH (Ning et al., 2012), CSK (Henriques et al., 2012), CT (Zhang et al.,

2012), DAT (Possegger et al., 2015), DFT (Sevilla-Lara and Learned-Miller, 2012),

EDFT (Felsberg, 2013), IDCT (Asvadi et al., 2013), TLD (Kalal et al., 2012) and

baseline MFT (Kalal et al., 2010). On an average, MFT RM outperforms the com-

pared trackers in terms of average precision score and success scores as tabulated in

Table 3.5 and Table 3.6 respectively. In addition, Fig. 3.7(a) and Fig. 3.7(b) depict the

precision plots and success plots for one pass evaluation.

3.3 Illumination consistent median flow tracker

In this approach, illumination is maintained constant throughout the video irrespective

of light variations.

3.3.1 Illumination constancy using DCT

Section 3.1 explained the acquisition of an image based on retinex theory. In the

previous work, several photometric normalization techniques have been studied to
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nullify the illumination induced problems. In this section, we alter discrete cosine

transform (DCT) coefficients to maintain constant illumination. Thus, from Eq. (3.6),

illumination difference is obtained as;

ε = ln It+1(x, y)− ln It(x, y) (3.29)

Therefore, the difference between two images provide desired change in illumination

which needs to be adjusted to maintain constant intensity over video frames.

3.3.1.1 Modification of DCT coefficients

DCT is used in signal processing area for several applications such as compression

due to its high energy compaction property. In the proposed work, we exploit DCT

domain to compensate illumination variations by adding or subtracting the addi-

tive term ε in the logarithmic domain. The illumination is considered to be slowly

varying component in an image compared to the reflectance component. Thus, the

low-frequency coefficients of DCT domain are directly related to illumination compo-

nent. In addition, DC coefficient of DCT domain decides the average illumination of

image. Therefore, the expected uniform illumination can be attained by fixing the

DC coefficient to uniform value in every frame. To achieve this, running weighted

sum of frames is computed with an adaptation rate η = 0.01. However, very low and

highly illuminated (poor contrast in both cases) video frames are omitted from an

average calculation. We utilize entropy property of an image to estimate its contrast.

Typically, entropy value falls down for less contrast image frames (which is the result

of low illumination or high illumination). Entropy of an image is calculated as

E = −
∑
k

p(k) log2 p(k), (3.30)

where p(k) denotes probability density function of image pixels. Hence, current frame

is used to determine the average image only if the normalized entropy difference be-

tween present and previous frame differs by a threshold of θ, i.e.

|E(f)− E(f − 1)| < θ (3.31)
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where f denotes the frame number. In the proposed scheme, θ is set at 5. Therefore,

an average image which provides global illumination is calculated using,

s(x, y) = s(x, y) + η If (x, y) (3.32)

Mean value of the average image in logarithmic domain is calculated as,

meanS =
1

M ∗N
∑
x

∑
y

ln s(x, y) (3.33)

Therefore, the desired uniform illumination can be realized by fixing DC coefficient

of every frame to meanS ×
√

(M ×N), where (M, N) denotes the size of each frame.

The low-frequency DCT coefficients are highly associated with illumination and need

to be discarded to compensate for illumination differences. Thus, upper left corner of

DCT image denotes low-frequency coefficients which are set to zero by ordering the

coefficients in a zig-zag fashion. If less number of coefficients are discarded, then the

effect of illumination is still present in the image. Similarly, neglecting large number

of coefficients results in removal of features. Hence, 25 coefficients are replaced by

zero to eliminate the light changes and retain texture features. Also, DC coefficient

in DCT domain is replaced by meanS ×
√

(M ×N) as given by Eq. (3.33), which

helps to sustain the consistent illumination. Finally, inverse DCT is applied to get the

normalized image frame with constant intensity throughout the video. The entropy of

DCT normalized image remains almost uniform compared to that of original image as

depicted in Fig. 3.8. Fig. 3.9 details about how illumination effects are nullified using

the proposed method.

3.3.1.2 Video enhancement

After normalizing each frame, contrast of an image is increased using adaptive gamma

enhancement technique (Huang et al., 2013). Let x denote the pixel value of a normal-

ized image. The adaptive gamma correction uses FX(x) (cumulative density function)

as an adaptive parameter to compute gamma. Point transformation of each pixel value

is defined as,

T (x) = xmax

(
x

xmax

)γ
, (3.34)
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where xmax denotes maximum value of x . Weighting distribution function is calculated

to modify the histogram fX(x) of an image as follows:

fX(x) = fX
max(x)

(
fX(x)− fXmin(x)

fX
max(x)− fXmin(x)

)α
, (3.35)

where the parameter α is empirically fixed at 0.6, as it provides the better contrast

of an image in the proposed tracking method. fX(x) represents the histogram of an

image with maximum of fX
max(x) and minimum of fX

min(x) . Cumulative density

function FX(x) is obtained as given below,

FX(x) =
255∑
x=0

 fX(x)
255∑
0

fX(x)

, (3.36)

Adaptive parameter γ is computed using FX(x) to enhance the video frame according

to Eq. 3.34. i.e.,

γ = 1− FX(x) (3.37)

The image contrast enhancement helps to improve the tracking accuracy. This process

is repeated for every frame before tracking process. Thus, the proposed algorithm

for tracking using DCT based illumination normalization, gamma enhancement, and

median flow tracker is summarized in Algorithm 1.

Figure 3.8: The entropy modification using DCT based illumination normalization
technique.
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(a)

(b)

(c)

Figure 3.9: a) original 58th and 59th frames of shaking video b) gray scale images
of 58th and 59th frames (c) illumination normalized images after modifying the DCT
coefficients of 58th and 59th frames.
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Algorithm 1 Proposed illumination constancy algorithm for median flow tracker

Require: Image frames I1, I2, ....In, ground-truth bounding box B1 = [x, y, w, h] of
the object in the first frame I1.
Return: Bounding box B2, B3....Bn

for f = 1 to n do
if f > 1 then

calculate entropy E(f) as in Eq. (3.30)
if |E(f)− E(f − 1)| < θ then
s(x, y) = s(x, y) + η If (x, y)
meanS = 1

M∗N
∑
x

∑
y

ln s(x, y)

end if
find Cf (u, v) = dct2(If (x, y))
Set Cf (0, 0) = meanS ×

√
M ∗N

Arrange Cf (u, v) in a zig-zag fashion and make first 25 elements zero except
DC coefficient.
Find If (x, y) = idct2(Cf (u, v)).
Apply adaptive gamma enhancement algorithm on If (x, y).
Find bounding box Bf using median flow tracker as given in section 3.2.

end if
end for

3.3.1.3 Experimental results and analysis

In this section, we provide the details of videos, quantitative and qualitative analysis

to demonstrate the effectiveness of the proposed tracker. The proposed tracker has

been implemented and evaluated on five challenging videos. We have selected the

videos from OTB dataset which poses sudden illumination change at many places.

The videos are shaking, singer2, trellis, car24, and man.

Table 3.7: Distance Precision (DP) score and Overlap Precision (OP) score of state-
of-the-art trackers.

CBWH CSK CT DAT DFT EDFT IDCT TLD IVMFT MFT
DP 24.65 71.55 25.47 59.47 47.53 48.70 40.54 58.31 77.43 50.44
OP 18.71 47.59 9.12 27.77 46.71 32.60 27.23 52.82 53.13 27.78
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Table 3.8: Comparison of distance precision score of the proposed tracker (IVMFT)
with recent trackers

CBWH CSK CT DAT DFT EDFT IDCT TLD IVMFT MFT
shaking 2.74 76.99 4.11 3.29 83.01 16.71 1.37 43.28 100.00 15.62
singer2 0.27 4.10 0.82 1.64 62.84 56.01 28.69 13.66 21.58 10.93
man 29.10 100.00 22.39 100.00 23.13 23.13 25.37 100.00 100.00 100.00
trellis 73.64 86.29 45.17 92.44 52.72 47.63 91.21 49.74 65.55 70.83
car24 17.49 90.36 54.89 100.00 15.92 100.00 56.03 84.90 100.00 54.82

Table 3.9: Comparison of overlap precision score of the proposed tracker (IVMFT)
with recent trackers

CBWH CSK CT DAT DFT EDFT IDCT TLD IVMFT MFT
shaking 1.64 58.08 3.01 3.01 82.47 16.16 1.10 39.45 82.47 15.62
singer2 0.27 3.55 1.37 1.37 69.67 59.56 25.96 13.39 20.22 10.93
man 20.90 100.00 0.75 47.01 22.39 22.39 23.13 95.52 100.00 36.57
trellis 55.36 59.05 27.07 71.00 51.85 47.63 68.72 42.00 45.69 58.52
car24 15.40 17.26 13.40 16.44 7.19 17.26 17.26 73.78 17.26 17.26

The proposed illumination invariant median flow tracker is named as IVMFT and is

compared with the recent tracking methods which are more popular in video tracking

field like CBWH (Ning et al., 2012), DAT (Possegger et al., 2015), CT (Zhang et al.,

2012), IDCT (Asvadi et al., 2013), EDFT (Felsberg, 2013), TLD (Kalal et al., 2012),

DFT (Sevilla-Lara and Learned-Miller, 2012), CSK (Henriques et al., 2012). From

experimental analysis, IVMFT performs best compared to existing trackers in terms

of distance precision score and overlap precision score as shown in Table 3.7 and 3.8.

Furthermore, precision plots and success plots of state-of-the art trackers are depicted

in Fig. 3.12.

3.3.1.4 Qualitative analysis

In Fig. 3.11(a). man video is presented, in which a person moves in a dark room and

is suddenly illuminated. IVMFT is successful in tracking the object throughout the

sequence irrespective of illumination changes. MFT loses track due to sudden changes

in light, whereas the proposed tracker is made illumination independent to track all

the way through sequences. However, recent trackers such as DFT, EDFT, CBWH

fail to track complete sequence.
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(a) car24 (b) shaking

(c) man (d) singer2

Figure 3.10: Center location error plots of state-of-the-art trackers on image sequences
posing heavy illumination change as a challenging aspect.

Fig. 3.11(b) depicts shaking video, which shows a person (target) singing in a music

program with flash light effects. It can be observed that the light changes are very

sudden. Since the base tracker is designed using optical flow technique, it is sensitive

to intensity variations. Hence, the modified tracker IVMFT is designed to maintain

constant illumination to track the person in shaking sequence till video completion.

Flash light effects are observed in many frames such as 59th and 60th, where median

flow tracker fails to track, however, the proposed tracker is very robust in handling

such problems. Also, CSK tracker is able to track the complete sequence, whereas

rest of the trackers fail due to illumination changes.

In Fig. 3.11(c). singer2 video frames are presented, which has more backlight
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effects due to which many trackers cannot track successfully. However, the proposed

tracker do not fail due to an unexpected change in illumination, but it misses the

target due to heavy pose variation

(a) man (b) shaking

(c) singer2

Figure 3.11: Qualitative evaluation of IVMFT with state-of-the-art tracker for man ,
shaking , and singer2 sequences.

3.3.1.5 Quantitative analysis

The proposed IVMFT is compared quantitatively with other trackers in terms of

distance precision score and overlap precision score. Table 3.7 shows mean DP and OP

score of state-of-the-art trackers. IVMFT performs best among other selected trackers
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for five challenging video sequences. Fig. 3.12 depicts precision plot and success plots

and proposed tracker tops among all.

(a) precision plot (b) success plot

Figure 3.12: The comparison of precision plot and success plots of IVMFT (enhanced
MFT) with recent trackers

3.4 Summary

Illumination pre-processing is the most effective method to handle rapid and gradual

light changes to mitigate tracking drift for videos with sudden illumination prob-

lems. This chapter provided an insight into eight illumination invariant techniques

and embedded with well-known median flow tracker. The proposed approach has been

evaluated on videos with rapidly varying illumination. The tested image sequences

contain indoor and outdoor videos with flash light effects and shadow casting. The

proposed modified median flow tracker has been compared with recent trackers, and

experimental results show that MFT RM outperforms favorably on suddenly varying

illumination videos. Also, MFT TT equally performed well in terms of accuracy and

speed. The execution time plays crucial stage in real-time tracking which is satisfied

by the retina model.

In addition, an efficient approach has been presented to maintain a constant il-

lumination within and between frames of a video. To undertake this issue, DCT

coefficients were tailored to eliminate the effect of illumination changes. The contrast
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of an image has been improved through adaptive gamma correction technique. Several

video sequences with sudden changing illumination have been considered to test the

tracker. The experimental results clearly demonstrated that the proposed algorithm

improves the median flow tracker for slow/abrupt changes in the illumination.
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Chapter 4

TRACKING WITH

CONDITIONAL SWITCHING

In this chapter, we address selection of features, adaptive learning rate and switching

techniques to minimize tracking drift using kernelized correlation filter based tracker.

The correlation filters have been extensively used in object tracking due to its ro-

bustness and attractive computational speed. But, the correlation filters are more

sensitive to occlusion, fast motion and object deformation because they are trained

using spatial features. Besides, updating the filter template with slightly drifted or

occluded samples increase the probability of tracking failure. In contrast, the me-

dian flow tracker is complementary to correlation techniques and is fast, robust to

occlusion and deformation, but sensitive to illumination variation. In this chapter,

we utilize the advantage of correlation and optical flow based trackers to achieve drift

free tracking. In this work, we apply the correlation filter based tracker to track an

object and switch to the modified median flow tracker during drift conditions. The

combined model is optimized to cope up with fast appearance changes and overcome

from drifting. In addition, we present an adaptive feature selection process to select

the most discriminative feature/features among color name and histogram of oriented

gradient features based on object separation from background in intensity and color

channels. The proposed tracker updates the filter template dynamically, depending on

appearance of an object using adaptive learning rate to track the target irrespective

of occlusion, motion blur, and deformation. The scale of object is estimated using Lu-
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cas Kanade homography method. The experiments are carried out using challenging

video sequences from a standard OTB dataset and show the best performance among

baseline trackers.

This chapter is organized as follows. The section 4.1 reviews the famous KCF

tracker. Section 4.2 presents the proposed switching technique and section 4.3 sum-

marizes the work.

4.1 Background

4.1.1 KCF tracker

The prime focus of this work is to improve KCF (Henriques et al., 2015) tracker; it is

hence presented in this section. KCF is a kernelized version of correlation filter that

uses dense periodic sampling to generate the set of positive and negative samples.

Thus, the model exploits circulant structure of the sample image. The feature space

is constructed for an image patch xi of size P ×Q in a given frame. All circular shifts

of the input sample are used to train the correlation filter to produce the output y

of same size. The desired response y is considered to have Gaussian shape with the

maximum value at the center. A patch size of 1.5 times the object is cropped to avoid

spectrum aliasing due to circular convolution. The sharp boundaries are smoothed by

multiplying the patch with cosine window. Thus, the training problem is formulated

to learn a filter to minimize the error between circular shifts of kernel mapped training

sample xi and the desired output y as follows:

argmin
w

∑
(〈φ(xi),w〉 − y)2 + λ‖w‖2, (4.1)

where, w is the filter template in the spatial domain, λ represents regularization term

and φ(xi) maps the input sample xi into Gaussian kernel space. In expanded form,

Gaussian kernel space is given by

κ(xl,xj) = exp

(
− 1

σ2
g

(∥∥x2
l

∥∥+
∥∥x2

j

∥∥− 2=−1
(∑ ∧

xl�
∧
xj

∗)))
(4.2)
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where σg is the variance of Gaussian kernel function, � denotes element-wise mul-

tiplication, ∗ denotes complex conjugate of a variable, the symbol = denotes Dis-

crete Fourier Transform (DFT) and =−1 represents Inverse Discrete Fourier Transform

(IDFT). The filter template, w can also be expressed as a linear combination of input

data samples as

w =
∑

βiφ(xi), (4.3)

where βi is solved as

βi = =−1

(
=(y)

=(κ(xi,xi)) + λ

)
(4.4)

In order to consider appearance changes over time, the template is updated with new

samples in the frequency domain using a fixed learning rate η as

x̂t = (1− η) x̂t−1 + η=(xi), (4.5)

α̂t = (1− η) α̂t−1 + η=(βi), (4.6)

where, x̂t denotes the learned template in the frequency domain, α̂t denotes the filter

template in the frequency domain, =(xi) denotes the training sample in the frequency

domain. In the first frame, x̂t = =(x1) and α̂t = =(β1).

The object is detected in the next frame by applying the filter to a search region

cropped from the present frame at a previously obtained location. Thus, for the test

sample z, which is cropped from the present frame, feature is extracted and then the

kernel function is applied to get κ(xt, z) using Eq. (4.2). Finally, the output response

o is obtained via convolution between the test sample z and filter template α̂t as

o = =−1(α̂t �=(κ(xt, z))). (4.7)

The difference between present and previous object position is observed to locate the

target in present frame as (xc, yc) = arg max
(xc,yc)

(o).

4.2 Tracking with conditional switching

The general strategy in multi-approach tracking (Santner et al., 2010) is to run the

trackers in parallel and combine the individual outputs, either changing between them

59



or fusing them with probabilistic weights. In parallel approach, the final response of

tracker is determined either by selection or combination method (Bertinetto et al.,

2016), and in series approach, other trackers are assessed when the first tracker gives

less certainty about tracked location. The multi-approach tracking also suggests com-

bining tracking techniques (Samuel et al., 2017) efficiently. The proposed approach

is depicted in Fig. 4.1. It uses cascade approach by utilizing KCF as the base tracker

with a weighted confidence of color name and HoG features to locate the object. The

weights are computed to select the best features among color or texture feature. The

selection of feature relies on how well the target is separable from its surroundings in

intensity and color channels. The peak to sidelobe ratio (PSR) is observed in every

frame to change over to modified median flow tracker based on pre-defined condi-

tion. Also, we employ dynamic learning rate to update the filter model of kernelized

correlation filter to adapt for the appearance variations and occlusions.

Figure 4.1: General block diagram of the proposed approach
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4.2.1 Feature selection

Van et al. (2009) discussed the mapping of RGB values to color names for the real-

world applications. The colors are extracted from a set of basic colors known as

linguistic color labels. The English language has 11 primary colors; they are black,

blue, brown, gray, green, orange, pink, purple, red, white and yellow. The color name

feature (CN) of an image is a 3D vector that contains the probability of color names

for each pixel in an image (Khan et al., 2012) and is represented as

CN= {p(cn1 |I ),....p(cn11 |I )} (4.8)

with

p(cni|I) =
1

N

∑
l∈I

p(cni|f(l)), (4.9)

where cni denotes ith color name, l represents the spatial coordinates, N denotes the

total number of pixels in an image I, and f represents L ∗ a ∗ b values. Thus, p(cni|f)

is obtained using Bayes law by assuming equal priory to all the color names. The

color name feature is robust to motion blur, and hence it is used as one of the feature

channels to represent the color of an object. HoG features have been introduced in

the field of object detection (Dalal et al., 2005), and its variant known as fHoG is

used to extract the texture features of an object (Felzenszwalb et al., 2010). A cell-

based feature map is calculated by using nine contrast-insensitive orientations and

18 contrast-sensitive orientations. Thus, HoG feature is invariant to illumination and

deformation, hence the proposed method makes use of 27 HoG feature channels to

represent the texture features of an object.

Feature selection is an active area in pattern recognition for two reasons. Some fea-

tures introduce noise while training, which leads to mis-classification. Moreover, the

additional features increase the computational complexity without much gain in clas-

sification accuracy. Therefore, we propose a feature selection method to find weights

based on color separability of an object using image patch in the first frame. These

weights can be determined in every frame, but the weights computed in the initial

frame is sufficient for short-term videos where background do not change. The region

of interest around the target is cropped from the initial frame. Since the color name

features are obtained from L ∗ a ∗ b color space, the color image is transformed into
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L ∗ a ∗ b color space. The L channel represents the lightness and two color chan-

nels, a and b represent red/green opponent colors and yellow/blue opponent colors,

respectively.

Collins et al. (2005) used variance ratio to determine whether the foreground is

separable from its surrounding background efficiently. In the proposed feature selec-

tion process, we make use of variance ratio to find whether color features are useful in

separating the object from background using a and b channels of L ∗ a ∗ b color space.

A set of pixels covering the object and collection of surrounding pixels comprising the

background are chosen as shown in Fig. 4.2.

Figure 4.2: L∗a∗b channels of image patch and corresponding object and background
histograms.

Let hobj(i) denotes the histogram of object pixels and hbg(i) represents the his-

togram of background pixels with 64 bins. The log-likelihood ratio of pixel i is ob-

tained from the histogram feature as follows:

L(i) = log
max(hobj(i), 0.001)

max(hbg(i), 0.001)
. (4.10)
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The nonlinear log-likelihood maps object pixels to positive value and background

pixels to negative values. In order to determine the separability of object from back-

ground using L(i), the variance ratio is utilized. Variance of L(i) with respect to class

distribution h(i) is given by

V ar(L;h) =
∑
i

[h(i)L2(i)]− (
∑
i

h(i)[L(i)])2. (4.11)

Let V ar(L;hobj) and V ar(L;hbg) represent variance of object and background class

respectively. The variance ratio is given by

V R =
V ar(L; (hobj + hbg)/2)

{V ar(L;hobj) + V ar(L;hbg)}
. (4.12)

The variance ratio indicates how well object pixels can be isolated from background

pixels. Hence, it is used to find the discriminative power of color channels with respect

to separability of the object from background. Let V Ra denotes variance ratio of color

channel a, V Rb denotes variance ratio of color channel b and V RL denotes variance

ratio of lightness channel L. Variance ratio of the color channel is obtained by taking

an average of V Ra and V Rb and is denoted as V Rcolor. Variance ratio of intensity

channel is denoted as V RL and is indicated as V Rgray. From observation, HoG features

are more discriminative if the grayscale image is of good contrast. Hence, V Rgray is

used for the selection of HoG features. The weights are derived based on variance

ratio as follows:


w1 = 0.5, w2 = 0.5, if | VRcolor − VRgray | < 0.1

w1 = 1, w2 = 0, else if V Rcolor > V Rgray

w1 = 0, w2 = 1, else if VRcolor < VRgray

. (4.13)

Thus, w1 = 1 and w2 = 0 select the color name feature as the most discriminative

feature than HoG features, w1 = 0 and w2 = 1 select HoG features as the most dis-

criminative feature than the color name feature, whereas w1 = 0.5 and w2 = 0.5 select

both features. Thereafter, the correlation filters are trained separately using the color

name features and HoG texture features under KCF framework to obtain the filter

template H1 and H2 respectively as given by Eq. (4.6). Their individual responses,

ocn and ohog, for cropped image region in the present frame around the previous lo-

63



cation are obtained by using Eq. (4.7). The individual responses are combined using

weights w1 and w2 to get the overall response as

o = w1ocn + w2ohog. (4.14)

The position of object in the present frame is obtained as (xcf , ycf ) = arg max
(x,y)

(o),

where, (xcf , ycf ) represents the location obtained through CF based tracker. In the

proposed method, our objective is to find the tracking drift and switch to a modified

median flow tracker by constantly observing the tracking confidence.

Figure 4.3: The proposed video tracking method: correlation filter based tracker
switching to modified median flow tracker based on PSR and peak value of the output
response.

In CF based trackers, the confidence of tracking is indicated by peak to side lobe

ratio (PSR) (Bolme et al., 2010). Accordingly, PSR of the correlation output response

o is computed using the peak value op, mean µo and variance σo of the region by

excluding 11× 11 area around the peak value. Thus, the PSR is given by

PSR =
op − µo
σo

. (4.15)

In tracking experiments, a very low PSR indicates the possibility of occlusion or

drift/tracking failure. The drifting possibilities are also observed when peak(o) < τpeak

and PSR(o) < τPSR. The system switches to complementary tracker in order to es-

timate the object bounding box in the next frame, by taking bounding box of the
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object in present frame. τpeak and τPSR denote thresholds for peak and PSR respec-

tively. The color/grayscale histogram of the obtained bounding box is matched with

color/grayscale histogram of first ground-truth bounding box using Bhattacharyya

distance metric to validate the target. The block diagram of the proposed work is

depicted in Fig. 4.3.

4.2.2 Learning rate

Learning rate is used in the correlation filter based trackers to reflect the speed at

which new templates are added to update the filter template. The update step is

essential when new sample arrives with varying appearances. A fixed learning rate

has been used in the baseline tracker. Alternately we propose to use a dynamically

varying learning rate which is obtained empirically as given by

η =
dist√(

1 +
(

18
PSR+1

)5
) . (4.16)

A very low value of PSR indicates the result of large appearance change, occlusion

or drifting. Hence, the filter template is updated with low weights on new samples.

Similarly, a high value of PSR indicates correctly classified sample; hence the filter

template is updated with high weights on such samples. Variable dist in Eq. 4.16

specifies the Euclidean distance between previous and present locations. Moreover,

dist indicates the moving speed of object and appearance change. Accordingly, the

filter is updated based on dist and PSR to handle the fast moving objects, occlusion

and appearance variations. The PSR values, peak values, and learning rate for all

frames of couple sequence are displayed in Fig. 4.5.

4.2.3 Modified median flow tracker

In the proposed method, modified median flow tracker is used to recover from drifting.

Even though, the median flow tracker is robust to illumination changes, it fails during

fast changing illumination. In order to compensate for sudden/gradual illumination
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changes, pre-processing of input frames has been performed by applying photomet-

ric normalization technique. The block diagram of photometric normalization using

wavelet transform is shown in Fig. 4.4. In wavelet based normalization technique (Du

et al., 2005), an image is decomposed into four subbands LL, LH, HL and HH using

2D discrete wavelet transform. A normalized image is obtained by equalizing the his-

togram of low frequency coefficients. An edge enhancement is performed by enlarging

the amplitude of high frequency components. Finally, illumination normalized image

is obtained through reconstruction using inverse discrete wavelet transform.

Figure 4.4: Wavelet based illumination normalization technique (Du et al., 2005)

The median flow tracker is fast and accurately locates the object even when ap-

pearance changes. It may drop off tracking when there is considerable illumination

change. However, it is compensated using photometric normalization technique. If

the tracker misses target, then automatic tracking is hard to initialize. Hence, optical

flow based tracker often requires corrections to avoid drifting. Moreover, it is unsafe

to use optical flow based tracker when the bounding box in frame It does not contain

an object. Incorrect location always results in tracking the background throughout

image sequences. Since median flow tracker is not integrated with memory to learn

past outputs, it entirely depends on object bounding box in the present frame. It is

taken care to ensure that, the bounding box contains the valid object in current frame

before switching to disjoint tracker.

To estimate the scale of object, we perform image alignment between object from

the previous frame and detected object from the current frame using Lucas-Kanade

method (Baker and Matthews, 2004). The thresholding is done on scale parameters to

avoid abnormal increase or decrease in scale (Asha et al., 2017). We make use of Piotr

image and video processing toolbox (Dollár, 2009) to implement the Lucas-Kanade

alignment algorithm.
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4.2.4 Experimental results and discussion

4.2.5 Datasets

For experimental analysis, we consider 17 videos from OTB dataset (Wu et al., 2013)

with fast motion, occlusion and illumination variation as challenges. Table 2.1 provides

the details of dataset used for experiments.

4.2.6 Setup

The proposed algorithm is implemented using MATLAB 15a in a machine having

Intel(R) Core i5-5200U, CPU at the 2.20GHz processor with 8GB RAM. The initial

location of target is obtained from the ground-truth annotation associated with the

dataset. The Gaussian kernel with σg = 0.02 is used for mapping the input features.

The regularization parameter λ = 0.001 is fixed to avoid over-fitting. The value of

learning rate is computed in each frame based on PSR value and Euclidean distance

between present and previous location of the object. The size of search area is fixed to

twice the size of cropped image. For images, ten channel color name features and 27

channel HoG features are extracted depending on weights. The color name features

and HoG features are derived from the region of interest and the weights w1 and w2

are computed according to Eq. (4.13). From experiments, we found that HoG features

are more discriminative in videos like subway. Similarly, sequences like bolt is more

discriminative using the color features, whereas the combination of color and HoG

features perform well in sequences like couple. Thus, the feature selection process

helps to find the discriminative features by minimizing the extraction of redundant

features.

Hanning window is then applied to the search region to reduce the effect of sharp

boundaries. The color and HoG feature channels of cropped image are used to train

the correlation filter separately. Target by detection is implemented in the successive

frames using KCF framework as described in section 4.1.1. PSR of the output response

is assessed in every frame using Eq. (4.15) to decide switching. If the PSR and peak

value of the output response drops below a certain threshold, tracker ignores the

location obtained by CF based tracker. Thus, to find the new position, it switches
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to modified median flow tracker to obtain the bounding box BBf+1. In order to

validate the result, the color histogram of BBf+1 is compared with that of initial

template using Bhattacharya distance metric. The location obtained is accepted if

the matching score is higher than 0.75. Once the tracker locates object, it continues

to track using CF based tracker.

In the proposed work, switching to a tracker is an important stage, which switches

when PSR and peak of the output response falls below a certain threshold. The

threshold for PSR ranges between 0.35 × PSRmax to 0.65 × PSRmax and threshold

for peak ranges between 0.35 × peakmax to 0.65 × peakmax. PSRmax and peakmax

are considered to be PSR and peak in the second frame respectively. However, the

selection of good threshold is also an important step to increase the robustness of a

tracker. To make it uniform to all our experiments, we set τPSR to be 0.65×PSRmax

and τpeak to be 0.65× peakmax for evaluating over 17 sequences.

Figure 4.5: PSR (in blue) and peak (in red), learning rate (in black) for couple se-
quence. The low values of PSR plot and peak plot indicates the frame numbers where
switching from CF to modified median flow tracker takes place. Learning rate plot shows
the dynamic learning rate used in the proposed method
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Figure 4.6: The illustration of proposed tracking method on couple sequence. Row1:
couple sequence at frame number 15, 46, 90, 99. Row2: drifting illustration using CF
based tracker at frame number 16, 47, 91, 100. Row3: drifting correction by switching
to modified median flow tracker at frame number 16, 47, 91, 100

The proposed approach is illustrated with the help of couple sequence. In Fig. 4.6,

the first row shows the result of CF tracker at frame number 15, 46, 90, 99. CF tracker

fails to locate the object in successive frames, and is indicated by sudden drop of PSR

and peak in Fig. 4.5. 2nd row shows drifting of CF tracker at frame numbers 16, 47,

91, 100 where switching takes place. The tracker switches to modified median flow

tracker to obtain the bounding box in the next frame i.e 16, 47, 91, 100 as shown in

the 3rd row.

4.2.7 Qualitative analysis

The qualitative results of state-of-the-art trackers are presented in Fig. 4.7. Occlusion

is a common issue in real-time scenario, and it can be partial/full or short/long term
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occlusions. Most of the trackers function properly when the object is partially oc-

cluded. However, these trackers tend to fail during full occlusion. The sequences like

jogging-1, jogging-2, lemming contain partial/full occlusions. The proposed method

plays well during occlusion due to varying learning rate, while KCF tracker fails to

track the complete sequence. The target in jogging-1 and jogging-2 undergoes heavy

occlusion from the pole completely, and the proposed tracker could handle efficiently.

However, TLD performs well due to re-detection unit and locates the object even after

occlusion. In lemming sequence, target disappears for short duration, trackers lose

the target, and they start learning from occluded samples. However, the proposed

method has a mechanism to update the filter template with low weights on occluded

samples and hence successful in detecting the target when it reappears. Similarly, in

david3 sequence, the target is occluded completely by a tree two times, and TLD fails

to track, while the proposed tracker tracks the person till end.

Blur is another common issue in videos that occur due to out of focus and camera

or object motion. Many trackers fail to track the object in jumping sequence due to

motion blur, whereas the proposed tracker and TLD track it completely. Illumination

variation is one of the challenging cases in real-time videos, and some trackers are

sensitive to light. In shaking sequence, the sudden variation of light is observed in

many frames. The proposed tracker tracks the face, irrespective of light changes and

in-plane rotations. In couple sequence, the object undergoes pose changes, many

trackers like KCF, EDFT, DAT fail to track. However, the proposed tracker is able

to follow it until the end.
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Jogging-1 Jogging-2

Jumping Lemming

Shaking Couple

Figure 4.7: Qualitative analysis of state-of-the-art trackers on challenging sequences
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4.2.8 Quantitative analysis

The proposed method is named as SWKCF and compared with 8 benchmark baseline

algorithms. The center location error (CLE) graph, distance precision score, and

overlap precision score are used for quantitative analysis. We conducted one pass

evaluation (OPE) test in order to evaluate the proposed method with baseline trackers.

The distance precision score and overlap precision scores of trackers are presented in

the Table 4.1 and Table 4.2 respectively.

(a) Precision Plot (b) Success PLot

Figure 4.8: Comparison of precision plot and success plots of individual properties on
17 challenging sequences of OTB dataset

(a) Precision Plot (b) Success Plot

Figure 4.9: Comparison of precision plot and success plots of proposed method with
state-of-the-art trackers on 17 challenging sequences from OTB dataset
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The proposed method outperforms other trackers on given test video sequences.

To understand the strength and weakness of each technique used, we further eval-

uated the proposed method with only color features (CFKCF), only HOG features

(HOGKCF), both color and HOG features with fixed learning rate (FLKCF), both

color and HOG features with adaptive learning rate (SWKCF). The individual results

are tabulated in the Table 4.3. On videos with motion blur, fast motion, background

clutter, SWKCF outperforms other individual techniques. The results indicate that

the proposed learning rate has a positive impact on fast motion, occlusion and motion

blur. The proposed method takes advantage of HoG features that is more robust

to illumination variation and deformation and color feature that is more robust for

motion blur. Furthermore, learning from high PSR patches makes the system more

robust. The precision plot and success plots of state-of-the-art trackers evaluated on

17 sequences are shown in Fig. 4.8.

Table 4.1: Distance precision score of state-of-the-art trackers on 17 challenging se-
quences

SWKCF CBWH CT DAT DFT EDFT IDCT TLD KCF
deer 100.00 94.37 2.82 15.49 30.99 33.80 23.94 28.17 83.10
bolt 100.00 44.29 4.29 98.86 4.57 100.00 64.29 32.29 99.71
boy 100.00 100.00 66.78 100.00 48.50 100.00 95.18 100.00 100.00
jogging-1 97.72 23.45 23.13 19.54 23.45 23.13 99.02 97.39 25.08
jogging-2 100.00 100.00 16.29 20.20 34.53 16.29 16.29 96.74 16.61
doll 99.33 97.26 93.72 48.68 42.92 61.05 36.91 98.50 97.80
david3 100.00 44.44 37.30 94.84 75.00 75.00 70.63 37.30 100.00
jumping 100.00 13.42 9.90 7.67 12.78 27.80 89.14 96.81 41.53
dog1 88.74 82.30 83.56 16.74 62.37 100.00 75.93 96.44 100.00
lemming 88.70 92.37 26.27 72.68 54.42 56.89 74.55 29.72 55.76
basketball 99.59 87.31 37.38 89.93 89.52 100.00 99.72 53.24 95.86
subway 100.00 78.29 99.43 100.00 100.00 100.00 81.71 100.00 100.00
tiger1 72.78 51.00 5.73 16.62 76.50 31.52 65.04 34.67 87.97
crossing 100.00 100.00 100.00 100.00 68.33 100.00 100.00 60.00 100.00
couple 100.00 67.14 40.71 66.43 10.71 11.43 54.29 32.14 27.86
shaking 96.44 2.74 4.11 3.29 83.01 16.71 1.37 43.29 4.11
surfer 98.40 85.64 0.80 100.00 3.72 100.00 23.67 99.73 92.02
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Table 4.2: Overlap precision score of the state-of-the-art trackers on 17 challenging
sequences

SWKCF CBWH CT DAT DFT EDFT IDCT TLD KCF
deer 100.00 90.14 2.82 9.86 30.99 33.80 23.94 28.17 81.69
bolt 90.00 41.71 0.57 96.00 4.00 99.43 54.86 17.71 94.29
boy 99.17 98.84 59.97 96.35 48.34 98.34 89.87 84.72 99.17
jogging-1 96.74 22.48 21.50 18.89 21.50 22.15 96.09 96.42 22.48
jogging-2 100.00 97.72 2.61 19.54 15.64 15.31 14.98 95.44 15.96
doll 68.85 72.13 56.46 18.31 35.02 49.35 13.43 42.79 55.22
david3 95.63 93.65 26.98 100.00 74.21 71.43 96.43 31.75 99.21
jumping 99.36 10.22 0.96 5.43 11.82 14.38 53.67 92.33 28.12
dog1 59.85 62.96 62.30 6.52 52.15 65.04 49.48 72.00 65.11
lemming 83.31 88.17 25.45 74.40 47.38 48.20 69.99 21.71 44.24
basketball 97.93 86.21 5.93 89.52 71.59 89.93 99.03 35.86 89.79
subway 100.00 64.57 47.43 90.86 99.43 99.43 79.43 97.14 100.00
tiger1 64.18 44.99 1.72 14.33 67.91 29.23 56.73 32.95 85.67
crossing 94.17 82.50 87.50 97.50 64.17 98.33 82.50 45.83 95.00
couple 67.14 38.57 30.71 63.57 8.57 10.71 34.29 22.86 24.29
shaking 86.30 1.64 3.01 3.01 82.47 16.16 1.10 39.45 1.37
surfer 35.90 46.01 0.27 22.34 3.72 45.48 11.17 85.64 39.89

Table 4.3: Distance precision and overlap precision scores of individual methods of the
proposed method

Distance Precision Overlap Precision
CFKCF HOGKCF FLKCF SWKCF CFKCF HOGKCF FLKCF SWKCF

deer 15.49 2.81 100 100 12.67 2.81 100 100
bolt 31.71 2.28 100 100 28.57 1.14 98.85 90
boy 97.67 100 100 100 95.68 99.16 99.16 99.16
jogging-1 97.06 23.45 24.42 97.71 89.57 22.47 22.47 96.74
jogging-2 89.57 16.28 16.61 100 88.59 14.98 15.30 100
doll 99.32 98.26 99.17 99.32 68.85 69.49 69.13 68.85
david3 17.85 100 100 100 15.47 93.65 92.06 95.63
jumping 69.00 100 100 100 37.69 99.36 99.68 99.36
dog1 86.37 88.74 100 88.74 62.88 59.85 63.18 59.85
lemming 4.11 39.44 45.35 88.69 3.89 38.99 40.71 83.30
basketball 99.58 4.27 31.86 99.58 97.51 2.06 28 97.93
subway 24 100 100 100 18.28 100 100 100
tiger1 72.77 98.28 72.77 72.77 64.18 97.13 64.18 64.18
crossing 57.5 100 65 100 35.83 94.16 52.5 94.16
couple 10.71 11.42 65 100 7.85 10 57.14 67.14
shaking 7.39 6.02 98.90 96.43 5.75 4.10 89.31 86.30
surfer 32.18 100 100 98.40 17.55 41.48 39.09 35.90
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4.2.9 Timing complexity

The overall complexity of the proposed tracker is based on that of KCF tracker and

modified median flow tracker. The timing complexity of KCF tracker is decided upon

area of region selected and is given by O(nlogn). In this, n denotes the number of

pixels present in the area. Similarly, timing complexity of LK tracker is O(n2N +n3),

where n is 2 for 2D optical flow tracking and N is the number of pixels in a template.

The timing complexity of the proposed tracker is same as KCF tracker with extra

overhead due to switching to median flow tracker.

4.3 Summary

In this chapter, an improved version of kernelized correlation filter based tracker has

been proposed by switching to modified median flow tracker to achieve drift free track-

ing. The proposed method learns discriminative correlation filter using weighted color

and HoG feature channels. The weights have been derived based on color separability

of foreground from background of a patch in a particular video. It also incorporates

Lucas Kanade method to estimate the scale parameters effectively. We further pro-

posed an adaptive learning rate to adjust with changing appearance of an object and

occlusion, which is computed using PSR of the output response. Overall, the proposed

method showed comparatively better performance on challenging sequences against

most recent state-of-the-art baseline trackers. In addition, the switching technique is

faster, hence it can be used for real-time application. However, selection of number of

trackers, the order of evaluation and optimum value of threshold for switching need

further investigation.
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Chapter 5

INFRARED TARGET

TRACKING

Designing an efficient tracker to obtain the trajectory of an object in thermal infrared

video is a tedious task due to textureless and colorless properties of an object. In

this chapter, a combination of discriminative and generative approaches is realized to

improve the accuracy of a tracker. In discriminative approach, kernelized correlation

filter with spatial features and AdaBoost classifier with intensity features are com-

bined. The object locations are gathered using above approaches by running them

in parallel. Further, these locations are fine-tuned using the generative technique to

acquire best target location based on linear search method. Finally, the scale of tar-

get is determined by applying Lucas-Kanade homography estimation algorithm. The

proposed technique is tested using 17 challenging infrared videos selected from LTIR

dataset. Besides, quantitative and qualitative assessment of the proposed approach is

compared with the state-of-the-art trackers. Thus, section 5.1 presents the proposed

approach for tracking, section 5.2 provides details of experimental analysis followed

by summary in section 5.3.
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5.1 Combined approach for tracking

Track-by-detect approach considers tracking as a classification task to obtain the po-

sition of target in every frame. In general, peak classification score corresponds to

the best location of target, however, this hypothesis sometimes makes the tracker to

predict wrong location. Hence, two approaches are employed in parallel based on

complementary features, i.e, spatial structure and pixel intensity values to determine

the object location. The main steps of the proposed method are as follows:

Step 1: Initially, gradient and channel coded feature maps of the patch are derived

to train KCF filters separately. The trained filter is then correlated with correspond-

ing features of the region around present location. The output responses obtained

from individual filter are fused adaptively to locate the target based on peak value.

Similarly, a patch comprising object pixels and background pixels are trained using

AdaBoost classifier to segment the object in every frame. Later, the mean-shift algo-

rithm is applied to the segmented object region to determine the position of target.

This step is depicted in Fig. 5.1 and Fig. 5.2.

Figure 5.1: Block diagram of training phase using KCF and AdaBoost classifier

Step 2: The object locations retrieved in the step 1 denote possible positions of

the object. The best location is determined based on maximum NCC score between
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the area around that location and object model. The object model, filter template,

and classifier model are updated in every frame based on confidence score.

Figure 5.2: Localization of object using kernelized correlation filter and AdaBoost
classifier

Step 3: The scale of object is determined in every frame based on Lucas-Kanade

homography estimation method.

The above steps are repeated until the last frame. The following subsections

provide further details of the proposed approach.
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5.1.1 KCF tracker

Correlation filter based tracker considers tracking as a problem related to template

matching through convolution operation to produce sharp peak for the desired target.

Thus, the greatest value of output probability map indicates the position of object.

KCF tracker using a single feature has been reviewed in the section 4.1.1. In the

proposed approach, KCF is extended utilizing two set of features separately and is

discussed in the following subsection.

5.1.1.1 Feature sets

Selection of best features is important in tracking experiments as thermal images lack

texture and color attributes. In this work, the gradient feature furnish edge details

while channel coded feature maps provide the details of intensity distributions to

describe an object. The gradient feature is observed to be robust for temperature and

contrast changes. Hence, the integral gradient is used as one of the feature channels as

shown in Fig. 5.3(a). The edge image Ig =
√
I2
x + I2

y is formed by computing gradients

Ix and Iy in x and y orientations respectively.

The channel representations (CR) are biologically inspired data representations

which is widely applied in machine vision and tracking applications (Felsberg, 2013),

(Jonsson, 2008). Fig. 5.3(b) depicts the channel coded features (Jonsson, 2008). A

channel vector c is constructed from scalar y using a nonlinear transformation and is

obtained as

c = [K(y − y1), K(y − y2).......K(y − yn)]T , (5.1)

where K{.} represents a symmetric non negative basis function with y1, y2,..yn as

channel centers or bin centers. Thus, CRs are generated from a scalar using kernel

functions K{.} such as cos2 for binning the data to get a smooth histogram. In this, n

samples of data xi with each sample representing a pixel value of an image is encoded.

Finally, the coefficients of CRs are obtained from data xi and bin centers r with a

spacing of h as:

cr =
1

nh

n∑
i=1

K
(xi
h
− r
)
. (5.2)
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The spacing parameter h = 22 is chosen for better representations of data (Felsberg,

2013). The dynamic range of pixels in infrared images is small when compared to

RGB images, hence the number of channels in CRs are obtained as
[
xmax−xmin

h

]
+ 2

and encoding interval is chosen as I = [xmin xmax], where xmax and xmin represents the

maximum and minimum value of x respectively. The basis function K{.} is chosen as

cos2 to generate the soft histogram with overlapping bins and samples are weighted

relative to the distance from center.

(a) gra-
dient

(b) channel coded feature maps

Figure 5.3: Gradient and channel coded feature maps used in the proposed method

5.1.1.2 Multi-feature KCF tracker

The need for working with multi-features rather than single feature is to distinguish

both shape and intensity features efficiently. Therefore, the gradient and channel

coded intensity features are employed in the work. Each channel is multiplied by

cosine window to eliminate the effects of sharp boundaries due to circular convolution.

Initially, KCF is trained separately using gradient and channel coded feature maps

to obtain filters H1 and H2 respectively as depicted in Fig. 5.1. The gradient feature

promotes edge information to build a stable appearance model, while channel coded

intensity maps give the details of intensity distribution. The filter responses corre-

sponding to the gradient (og) and channel coded features (oc) are combined in every

frame, as shown in Fig. 5.2. The adaptive weights are computed based on PSR to

combine the individual output response maps. As mentioned earlier, PSR is a mea-

sure used to decide the strength of peak in output response map, where each pixel in

confidence map indicates the probability of a pixel location belonging to the object.
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The weights are computed as follows:

w1 =
PSRg

PSRc + PSRg

(5.3)

and

w2 =
PSRc

PSRc + PSRg

, (5.4)

where PSRg represents PSR of gradient response and PSRc denotes PSR of channel

coded feature response.

The confidence maps are combined to generate the fused map o using weights w1

and w2 as o = w1og + w2oc. The advantage of using adaptive weights is that the

gradient feature performs superior to channel coded features in some sequences and a

large weight is assigned to gradient feature than channel coded features to improve the

tracking performance. Similarly, large weight is assigned to channel coded features for

some sequences where intensity distribution feature dominates edge features. Finally,

the location of object is obtained corresponding to the maximum value of output

response o and is denoted as (xa, ya) or lcf .

5.1.1.3 Template update step

The filter needs to be updated in every frame to accommodate recent object appear-

ances. Baseline tracker (KCF) uses fixed learning rate to update the filter template

in every frame as given by Eq. (4.5) and Eq. (4.6) to control the speed of tracker.

However, the correlation filter is very sensitive to deformation, occlusion and large

appearance changes. The probability of drift increases when the filter template is

updated with occluded samples. In the proposed work, the filter template is updated

depending on PSR value. Consequently, Eq. (4.5) and Eq. (4.6) are used with the

normal value when PSR of output response is above a pre-defined threshold. During

substantial appearance changes and occlusion, the learning rate is reduced to a small

value. The above-mentioned procedure minimizes the drift to a large extent.

82



5.1.2 Pixel based target segmentation

The correlation filter model learns using the spatial structure which is sensitive to

deformation and occlusion. In contrary, model based on pixel classification is robust

to shape changes but sensitive to contrast. To avail the advantages of these approaches,

this work suggests combining the two techniques running in parallel to increase the

accuracy. AdaBoost classifier is used in literature to distinguish object pixels from

surrounding pixels (Avidan, 2006) for color images. In the proposed method, we used

AdaBoost classifier to classify the object pixels from the background pixels in infrared

imagery. The region of interest with 1.5 times size of the object is cropped from current

location. The training samples include a set of 8 × 8 patches around the object and

background pixels to serve as positive and negative examples respectively.

Algorithm 2 Adaboost classifier for foreground segmentation

input: Object and background region
output: Object likelihood map.

Training Stage
generate Object and background patches of size 8x8 around each pixel. i.e.
{xi, yi}

∣∣N
i=1 , yi = 1 for foreground and yi = 2 for background.

Set the weight for each sample i.e. w1(i) = 1
N

for t = 1 to T do
Apply decision stump Dt to classify each sample
Compute the error (number of misclassification over target set size) εt

Determine the weak classifier weight αt = 1
2

log
(

1−εt
εt

)
Update the sample weights wt+1(i) = wt(i) exp(−αtyiDt(xi))

N∑
i=1

wt(i)

end for

Combine weak classifiers to get strong classifier as D = sign

(
T∑
t=1

αtDt

)
Testing Stage
Generate patches of size 8x8 around each pixel. {xi, yi}

∣∣N
i=1

Categorize each patch as foreground or background using the classifier D

The trained model is applied to classify unlabeled pixels as outlined in Algorithm

2. The model updation is done in every frame based on tracking confidence. Two

measures are utilized; they include PSR and aggregate of weight map. Aggregate

(sum) of weight map is the algebraic addition of pixel values in the likelihood map
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obtained from the classifier, likely to reduce during occlusion and increase due to

background clutter. If both measures are above a pre-defined threshold, the classifier

is updated with the present target region.

The location of target in the present frame acts as starting position for the mean-

shift algorithm. The location of object in the next frame is obtained using the shift of

centroid in the object likelihood map. In every iteration, the new position of object

is moved to the centroid of object till mean-shift converges. The center of an object

located using mean shift is expressed as (xb, yb) or lab.

5.1.3 Template matching using NCC

The generative method is utilized to get the actual target location from the posi-

tions obtained through discriminative techniques. Two locations namely (xa, ya) and

(xb, yb) are obtained by correlation filter and AdaBoost classifier based approaches

respectively. The generative technique such as normalized cross correlation is applied

on probable target patches to select the best target. The lcf or (xa, ya) denotes the

location obtained by KCF tracker and lab or (xb, yb) represents the location obtained

by AdaBoost classifier approach. The probable object position is given by

lf = wllcf + (1− wl)lab, (5.5)

where weight wl takes values from 0 to 1. A patch of size P × Q is cropped from

the location lf and is denoted as Tlf . The template matching is accomplished in two

steps. The initial step is carried out by comparing the probable target with previously

obtained target tn−1. Thus, similarity between probable target Tlf and previously

detected target tn−1 is represented as S(Tlf ,tn−1) using NCC score. Thereafter, the

probable target is compared with the multi-frame template. Similarly, similarity be-

tween Tlf and multi-frame template Tmt−1 using NCC score is denoted as S(Tlf ,Tmt−1).

The multi-frame template is constructed by computing the running average of targets

detected in the previous frames as given by Eq. (5.6). The multi-frame template is

calculated as

Tmt = λtTmt−1 + (1− λt)tn−1. (5.6)
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The multi-frame template is updated with the learning rate of λt = 0.05 to include

recent appearances. The weighted combination of S(Tlf ,tn−1) and S(Tlf ,TTmt−1
) is maxi-

mized with respect to wl. The optimum weight wl is used to decide the final location

of target i.e.,

arg max
wl

(θS(Tlf ,tn−1) + (1− θ)S(Tlf ,TTmt−1
)). (5.7)

NCC template matching has been extensively used in tracking and detection literature

for several years. NCC score between 2 vectors x and y is pixel by pixel comparison and

mean value is subtracted to eliminate the effect of intensity variation. The correlation

value is normalized to produce the score in the range 0 to 1. 0 represents a strong

mismatch, while 1 denotes a strong match between two vectors x and y. The NCC

(Briechle and Hanebeck, 2001) score is given by

NCCx,y =

N∑
i=1

((xi − µx) (yi − µy))√
N∑
i=1

(xi − µx)2
N∑
i=1

(yi − µy)2

. (5.8)

5.1.4 Scale estimation

Lucas Kanade method is very popular to estimate the affine parameters of warped

image Baker and Matthews (2004). In the proposed scale estimation problem, we

consider matching of template in the previous frame and current frame to find the

scale parameters. The objective of Lucas Kanade method is to generate the set of

parameters that minimizes the sum of squared error between reference image T (target

template obtained in the previous frames) and the warped image I (target template

obtained in the current frame). In general, minimization problem is treated as follows:∑
x

(I (W(x; p))− T (x))2 (5.9)

where W(x; p) denotes set the warps based on parameters p = (p1, p2, p3, p4, p5, p6)T .

Thus, W(x; p) takes the pixel x in the coordinate frame of the template and maps it

to the sub-pixel location W(x; p) in the coordinate frame of the image I. The sub-pixel
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locations are computed as

W(x; p) =

(
1 + p1 p3 p5

p2 1 + p4 p6

)xy
1

 (5.10)

In the proposed approach, we considered scale parameters only. Hence, W(x; p)

changes to,

W(x; sc) =

(
sc(1) 0 0

0 sc(2) 0

)xy
1

 . (5.11)

Lucas Kanade algorithm assumes the value of p and iteratively solves for increments

to obtain the parameters ∆p. Hence, the following expression is minimized with

respect to ∆p. ∑
x

(I (W(x; p + ∆p))− T (x))2 (5.12)

Thereafter, p is changed to

p← p + ∆p (5.13)

The above two steps are iterated until p converges.

Algorithm 3 presents the proposed scale estimation algorithm based on Lucas-

Kanade homography estimation method. The objective of Lucas-Kanade technique

is to minimize sum of squared difference (SSD) error between two patches. An image

patch is warped using scale parameters [sc(1) sc(2)]. The optimum scale factor is com-

puted through an iterative process using gradient descent algorithm. Lucas-Kanade

algorithm assumes initial scale parameters and solves for the best value till conver-

gence is attained. In the proposed method, object template of previous frame and

target obtained in the current frame are employed to estimate the scale parameters.

The scale limiting thresholds are considered to avoid abnormal increase or decrease in

scale. The target size and position are updated based on scale factor obtained.
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Algorithm 3 Proposed scale estimation algorithm

input: current target size, target pos and current scale factor, object region at frame
number t− 1 and t
output: updated target size, target pos and current scale factor.

perform image alignment between object region at frame number t− 1 and object
region at frame number t using Lucas-Kanade method (Baker and Matthews, 2004)
to estimate scale parameters [sc(1) sc(2)]
if sc(1) ≥ tup then sc(1)← tup end if
if sc(1) ≤ tdn then sc(1)← tdn end if
if sc(2) ≥ tup then sc(2)← tdn end if
if sc(2) ≤ tdn then sc(2)← tdn end if
current scale factor= 2

sc(1)+sc(2)

target size = target size*current scale factor
target pos = target pos*current scale factor

5.2 Experimental analysis

5.2.1 Setup

The proposed algorithm is implemented using MATLAB 15a software in a machine

with intel(R) core i5-5200U, CPU with 2.20GHz processor and 8GB RAM. The pro-

posed approach is evaluated using 17 challenging sequences from LTIR dataset as listed

in Table 2.2. The challenges include pose change, occlusion, scale variation, tempera-

ture changes and so on. The ground-truth annotation provides the location of object

in the first frame to start tracking. The proposed method comprises 3 approaches.

First approach involves KCF tracker using gradient and channel coded features. The

parameters used in the KCF tracker are as follows: The size of patch is 1.5 times that

of the object. The feature channels are multiplied by cosine window to smooth the

boundaries. The input features map to Gaussian kernel space with σg = 0.02. The

regularization parameter λ = 0.001 is set to avoid over-fitting. The learning rate is

kept at 0.025 for high confident frames and reduced to 0.001 for low confident frames.

Two confidence measures include PSR and aggregate of object likelihood map. In

the proposed experiments, a threshold for PSR is chosen to be 0.5 × PSRmax and

threshold for aggregate of weight map is selected as S ≤ 2 × Wp & S ≥ 0.5 × Wp
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to update the filter template, where Wp indicates the sum of weight map of starting

frame.

Further, AdaBoost classifier is employed to classify the pixels into object and

background classes. The location of object is detected by performing the mean-shift

operation on likelihood map. Ultimately, NCC based template matching refines the

object locations retrieved using discriminative approaches. To find probable locations,

weight wl is varied from 0 to 1 in steps of 0.5. The object region is cropped and

compared with previous template tn−1, also with multi-frame template Tmt−1. To

incorporate changes in object appearances, multi-frame template Tmt is calculated

as running average of targets obtained from starting frame with the learning rate of

λt = 0.05. The weight wl and corresponding location of an object is attained by

maximizing the weighted combination of NCC scores. The weight θ is fixed to give

more importance to the multi-frame template than previously detected target. In the

proposed method, θ is fixed at 0.1 throughout the experiments. The scale parameters

are estimated using Lucas-Kanade scale homography estimation. The scale limiting

thresholds are used to avoid unexpected increase/decrease in the scale. The tup = 1.02

and tdn = 0.98 are used to maintain the stability. Piotr image and video processing

toolbox (Dollár, 2009) has been used to realize the fast version of AdaBoost classifier

and Lucas-Kanade algorithm.

5.2.2 Qualitative analysis

In this section, the proposed tracking method is evaluated with five baseline state-of-

the-art trackers. The five trackers FCT (Zhang et al., 2014), EDFT (Felsberg, 2013),

DSST (Danelljan et al., 2014), KCF (Henriques et al., 2015), and DAT (Possegger

et al., 2015) are used for both visual and thermal infrared target tracking. For com-

parison purpose, source code provided by authors is used with tuned parameters as

mentioned in the respective papers.
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(a) trees1

(b) crouching

(c) hiding

(d) depthwise crossing

(e)

Figure 5.4: Tracking of a person in trees1, crouching, hiding, depthwise crossing image
sequences.
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(a) boat1

(b) street

(c) boat2

(d) ragged

(e)

Figure 5.5: Tracking of a boat in boat1, street, boat2, ragged image sequences.
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(a) running rhino

(b) quadrocopter

(c) jacket

(d) birds

(e)

Figure 5.6: Tracking of a rhino in running rhino, a quadrocopter in quadrocopter, a
person in jacket, birds image sequences.

A set of experiments have been carried to analyze the proposed method, and sam-

ple frames are illustrated in Fig. 5.4, Fig. 5.5, and Fig. 5.6. In trees1 image sequence
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as shown in Fig. 5.4(a), the person walks in an area surrounded by trees gets occluded

several times behind the trees. Besides, there are many people walking in the same

scene. The objects appear as a bright spot (at a higher temperature than the sur-

roundings) when compared with background. The proposed tracker, DAT, and FCT

successfully track the person irrespective of occlusion and background clutter. In

Fig. 5.4(b), crouching sequence has less resolution and poor contrast due to compa-

rable pixel intensities of the object and background. Further, the person appears in

walking and sitting poses. In addition, the object is occluded in the frames 333 up to

579 by a similar object. The proposed tracker achieves good results as compared to

other trackers. In Fig. 5.4(c), hiding sequence portrays the indoor environment with

a person moving around and hiding behind another bigger object completely. The

full occlusion happens at frame number 135 to 288. Moreover, the object experiences

substantial scale changes due to moving camera, which makes tracking task more chal-

lenging. DAT, DSST, and KCF lose target due to occlusion and also fail to re-detect

the object when it re-enters. The possible reason may be learning from inaccurate

samples due to total occlusion. FCT and EDFT can re-detect the object when it re

enters but fails to locate it properly. The proposed method is the only tracker to follow

the object with proper scale estimation and able to re-detect after occlusion. But the

proposed method fails to estimate the scale accurately after occlusion. In depth-wise

crossing sequence depicted in Fig. 5.4(d), the target is at a lower temperature than the

surroundings, hence appears darker compared to background. The proposed tracker

and DSST outperform other investigated trackers.

The target in boat1 sequence as illustrated in Fig. 5.5(a) contains a boat as the

moving object over the surface of water. The images are captured using a fixed camera,

but the target has changing appearance and scale. The street sequence shown in

Fig. 5.5(b), depicts group of people walking in the street. Tracking a person is very

challenging due to constant movements, sharing similar shapes and intensity values.

Furthermore, the object gets occluded by another object of similar class in frame

numbers ranging between 6 to 54 and 146 to 165. Trackers like FCT, EDFT easily lose

or shift track as they search in the local area but work well when target appearances

change slowly. The proposed method and DSST show least drifting error and are very

effective in localizing the target in every frame. In boat2 sequence shown in Fig. 5.5(c),

initially the target boat is very small, but gradually enlarges as it moves close to

the proximity of camera. The proposed tracker can track till the end of sequence
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irrespective of change in the object size and appearance. The ragged in Fig. 5.5(d)

is another video containing a boat as target in which the object moves swiftly with

disappearance and appearance from camera view several times. The state-of-the-art

trackers like DAT, DSST, EDFT, FCT fail to track during first occlusion itself and

cannot re-detect the object. Only the proposed tracker is able to monitor the sequence

completely while effectively handling scale variation.

The running rhino sequence in Fig. 5.6(a), contains a rhinoceros as a moving object

in an area containing many trees and other animals belonging to the same class.

Although the sequence has many similar objects moving around which makes it prone

to drift, the proposed tracker is able to render the sequence completely without shifting

to nearby objects. The sequence quadrocopter in Fig. 5.6(b) contains many challenges

like fast motion, motion blur, camera motion and appearance changes. It is observed

that FCT, DSST, EDFT, KCF, DAT trackers lose the target when quadrocopter moves

sideways, but the proposed method achieves good tracking results due to combined

approaches. Also, it can be observed that the gradient feature produces better results

than channel coded representations and classifier based approach, thereby outweighing

the gradient feature than other features. In Fig. 5.6(c), walking person is the target

in jacket sequence which includes challenges like scale variation and low contrast. For

this sequence, DSST and proposed tracker are proven to be more efficient compared to

other algorithms. The birds sequence in Fig. 5.6(d) video include two people walking

in the area surrounded by trees as background. The target moves suddenly when

a flock of birds passes nearby and other trackers fail due to sudden pose changes.

However, the proposed tracker can track the complete sequence irrespective of changes

in appearance and background clutter.

5.2.3 Quantitative analysis

The comparison of proposed method with well known state-of-the-art algorithms has

been illustrated on the basis of three criteria (Wu et al., 2013): they include Average

Center Location Error (ACLE), Distance Precision (DP) and Overlap Precision (OP).

Deviation of a tracker from the ground truth location is depicted through the center

location error graph as shown in Fig. 5.7. The ideal plot is expected to be closer to
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the x -axis, indicating zero center location error. The proposed tracker produces CLE

graph closer to the x -axis as compared to state-of-the-art trackers.

(a) depthwise crossing (b) hiding (c) quadrocopter

(d) ragged (e) selma (f) trees1

(g) boat1 (h) boat2 (i) crouching

Figure 5.7: Center Location Error plots of the proposed tracker against recent state-of-
the-art trackers using challenging sequences like depthwise crossing, hiding, quadrocopter,
ragged, selma, trees1, boat1, boat2 and crouching image sequences.

94



Table 5.1: The tracking results of proposed tracker with five state-of-the-art methods
using 17 infrared image sequences from LTIR dataset. The values are represented in
triplet form: i.e. {distance precision score, PASCAL overlap score, average center lo-
cation error}. The proposed method outperforms the compared algorithms in terms of
overlap precision score, distance precision score, average center location error and are
highlighted in bold.

Sequence FCT EDFT DAT KCF(HOG) DSST Proposed
birds {44,73.7,21.2} {21.8,31.4,56.4} {38.1,54.0,37.8} {24.4,43.7,35.2} {55.9,55.5,28.6} {65.9,87.0,15.9}
boat1 {99.2,60,6.5} {4.8,4.8,329.2} {97.2,53.1,8.3} {18,16.4,136.3} {99,59.2,5.3} {100,44.8,6.3}
boat2 {96.3,42.1,7.0} {90.4,58.6,16.9} {97.7,51.7,6.2} {99,58.7,5.3} {98.9,45.7,5.7} {97.5,38.8,4.2}
crouching {3.8,21.0,48.2} {62.7,59.2,25.7} {36.7,39.8,30.6} {33.9,29.7,49.3} {63.7,60.8,24.9} {60.8,60.3,24.7}
depthwise-crossing {13.0,11.1,114.5} {3.2,3.5,161.9} {13.5,13.5,91.3} {49,34,29.4} {75.6,75.4,18.6} {100,100,4.4}
dog {2.1,0,123.3} {75.9,10.8,13.0} {54.3,8.6,21.6} {100,19.5,5.5} {100,26.0,5.3} {100,15.2,5.3}
garden {15.0,7.6,102.6} {13.4,11.6,175.0} {2.0,0.1,134.8} {4.2,2.6,192.2} {29.8,22.1,71.2} {100,89.2,5.8}
hiding {67.0,66.7,18.3} {55.3,54.1,16.0} {45.8,46.6,36.2} {50.5,46,35.2} {54.1,46.0,30.8} {78.2,48.0,14.2}
jacket {6.9,7.2,149.4} {5.5,6.3,158.3} {51.0,53.4,30.1} {6.2,2.6,176} {43.9,37.2,91.6} {40.1,18.3,107.0}
quadrocopter {6.1, 7.8,158.4} {10.1,10.6,176.7} {0.5,0.5,215} {8.9,7.3,224.7} {5.6,6.1,222.1} {89.3,78.0,16.1}
ragged {12.0,11.2,262.0} {28.4,28.0,110.8} {0.4,0.2,286} {25.2,25.2,77.39} {33.2,30.3,71.6} {94.1,36.8,10.5}
running rhino {100,35.6,9.9} {100,13.8,9.9} {100,77.7,5.5} {100,85.5,4.5} {100,90.1,2.7} {98.2,48.3,8.4}
saturated {96.3,94.4,6.5} {100,100,10.8} {98.6,96.7,6.2} {100,100,8.9} {100,100,5.4} {94.0,90.8,7.8}
selma {2.5,0,113.6} {50.6,48.9,60.8} {28.5,4.2,77.9} {77.4,71.0,9.6} {49.7,45.9,62.9} {100,23.8,8.7}
soccer {52,27.7,18.9} {88.1,68.3,8.9} {88.5,63.6,12.4} {85.8,40.1,12.9} {86.7,34.5,13.4} {87.7,68.1,10.2}
street {27.9,5.8,45.7} {16.8,12.2,120.6} {16.8,4.0,121.6} {100,81.3,3.4} {100,70.9,3.9} {100,88.9,5.0}
trees1 {100,96.9,4.3} {38.4,36.8,78.9} {100,99.5,3.7} {12.7,11.1,186.4} {13.0,11.1,184.4} {100,75.3,4.7}

(a) Precision plot (b) Success plot

Figure 5.8: Quantitative analysis of the proposed tracker and top 5 state-of-the-art
trackers on 17 sequences of LTIR dataset. The plots are generated for one pass evaluation
(OPE) running it once for given starting location. The proposed method achieves greater
success rate as compared to the other investigated trackers.

To quantify the tracking methods graphically, precision and success plots are em-

ployed as shown in Fig. 5.8(a) and Fig. 5.8(b) respectively. It is evident from Fig. 5.8

and Table 5.1 that, the proposed tracker outperforms rest of the trackers in terms of
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average center location error, precision score and overlap score. However, the proposed

method runs at average of 6 frames per second.

5.3 Summary

In this chapter, a detection based tracking method has been presented that combines

discriminative and generative approaches. The gradient feature and channel coded

feature maps under kernelized correlation filter framework have been adaptively com-

bined to get the object location. In parallel, AdaBoost classifier has been trained with

object and background patches to classify pixels in every frame. The object has been

localized in successive frames by performing mean shift procedure on the detected

region. The optimum target location has been chosen that maximizes NCC score

between the target and past history object model. Furthermore, the scale of target

has been estimated in every frame using Lucas-Kanade optimization procedure. The

combined approach takes advantage of individual techniques to make the proposed

algorithm more resistant to drift. The proposed algorithm has been evaluated using

17 challenging videos from LTIR datasets and shown outstanding performance among

state-of-the-art techniques. The drawback of proposed method is the timing com-

plexity, which needs to be overcome by optimized hardware. In addition, there are

certain disadvantages of thermal cameras which can be overcome by combining visual

camera output with the thermal camera output for tracking applications. Tracking

using combined imaging mode may resolve day time and night time tracking issues.
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Chapter 6

VEHICLE COUNTING

Traffic control has become an essential part of the intelligent transport system due to

ever growing society, number of roads and vehicles. Several types of research have been

conducted for traffic management applications based on image and video processing

approaches. They include detection/recognition of vehicles, analysis of vehicle speed,

generating trajectory of vehicles, counting the vehicles, analysis of traffic congestion

in real-time and automatic detection of accidents, and so on. Recently, video based

traffic management system has become popular due to availability of low-cost cameras

and low-cost embedded devices.

Real-time videos pose several challenges for automated traffic analysis system. The

difficulties encountered by computerized system include the presence of shadows, il-

lumination changes, occlusion of vehicles, environmental variations such as rain, fog,

cloudy, dust, etc., which frequently deteriorate the performance. Despite many ded-

icated efforts, an accurate method for vehicle counting under complex environment

is still far from being achieved. Due to the extensive utilization of cameras in urban

transport systems, the surveillance video has become one of the central data sources.

Also, real-time traffic management system has become popular recently due to the

availability of handheld/mobile cameras. In this work, we present a video-based vehi-

cle counting process using highway traffic videos captured using hand-held cameras.

The processing of a video is achieved in three stages such as object detection using

YOLO (You Only Look Once), tracking with correlation filter, and rule-based count-

ing. YOLO produced a remarkable result in the object detection area, and correlation
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filters achieved greater accuracy with competitive speed in tracking. In this chapter,

we develop multiple object tracking with correlation filters using the bounding boxes

generated by YOLO framework. Experimental analysis using real video sequences

reveals that the proposed technique can detect, track and count vehicles precisely.

In this chapter, we discuss the vehicle counting application for highway videos. Sec-

tion 6.1 details about the object detection steps, tracking algorithm and the proposed

technique to count the vehicles. Experimental analysis and discussion are provided in

section 6.2 followed by summary in section 6.3.

6.1 Object detection and tracking

Figure 6.1: General block diagram of vehicle counting

Fig. 6.1 portrays the block diagram of vehicle counting process that include object de-

tection, multi-object tracking and rule based counting. The real-time object detection

is an active area in the computer vision field, and abundant researches have been pro-

posed in the literature. At first, Haar features based cascaded Adaboost classifier has

been proposed for face detection (Viola et al., 2001). Later, Dalal et al. (2005) pro-

posed Histogram of Gradient (HoG) based Support Vector Machine classifier to detect

the pedestrians. Deformable Parts Model (DPM) has become attractive to identify

the object using HoG and part based techniques (Felzenszwalb et al., 2010). Recently,

deep learning based approaches have been widely used due to availability of Graphical

Processing Units (GPUs) and a huge amount of datasets. The techniques proposed by

(Ren et al., 2015) (Girshick et al., 2015) respectively use CNN features with a sliding

window or selective search method which is a time-consuming process. However, a

robust method YOLO (Redmon et al., 2016) treats the object detection as a regres-

sion problem to map pixels into bounding boxes with class probabilities. Moreover, it

computes everything in a single evaluation, as a result, it runs in real-time.
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6.1.1 Object detection

Motivated by the generalization property, performance accuracy, and speed of YOLO

(Redmon et al., 2016), we accommodate in the proposed work to serve the detection

purpose. The main steps of YOLO are explained as follows:

� The input image divides into M x M grids, and that cell is responsible for an

object if the center of an object falls into that cell.

� Each grid predicts B bounding boxes along with confidence scores. The score

reflects how confident that the box contains an object.

� Each bounding box is represented using 5 predictions. i.e., [x, y, w, h, confi-

dence score], where (x, y) denotes the center of box relative to the border of cell,

(w, h) represents width and height relative to the image, confidence score repre-

sents intersection over union (IOU) between predicted box with the ground-truth

boxes.

� YOLO has been trained using PASCAL VOC dataset and can predict 20 classes

such as bicycle, boat, car, bus, person, motorbike, etc. Ultimately, the confidence

score of bounding box and the class probabilities are multiplied to get final score

that predicts the probability that bounding box has a particular object in it.

Thus, each grid cell outputs class probabilities C.

� The network has 24 convolution layers followed by two fully connected layers.

� For 13 × 13 grid cells, each cell predicting 5 bounding boxes with 20 classes

produce 845 boxes. Finally, boxes with more than 30% score is retained to

estimate the objects in whole image. The flow of YOLO is given in Fig. 6.2.

Figure 6.2: YOLO object detection process (Redmon et al., 2016).
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6.1.2 Vehicle tracking

In this context, tracking is the process of obtaining the location of moving vehicles

in every frame of a video. The tracker generates trajectory of a vehicle starting from

the given bounding box. For tracking experiments, the bounding box can be either

user-specified or output of the object detector. The proposed work acquires initial

bounding box using an object detector which requires vehicles on road as the desired

object. Additionally, it exploits CF-based tracker (Danelljan et al., 2014) to follow

the vehicles. The successfulness of CF tracker to track multiple objects (Yang et al.,

2016) in real-time has motivated to use in the proposed method. Moreover, scale

estimation is a crucial part of vehicle tracking system due to significant variation of

vehicle’s size which is accomplished by CF tracker. The block diagram of CF tracker

is presented in Fig. 6.3. CF is trained using HoG features of vehicle data collected

online using Gaussian template as the desired output. Thus, for each input sample

and corresponding Gaussian output, the problem is formulated to create the filter

template to obtain least error as:

argmin
hl

∥∥∥∥∥
k∑
l=1

hl ∗ xl − y

∥∥∥∥∥
2

+ λ
k∑
l=1

∥∥hl
∥∥2
, (6.1)

where h is the filter template in the spatial domain, λ is the regularization param-

eter, ? denotes the convolution operation. The solution to Eq. (6.1) is obtained in the

frequency domain as

Hl =
Y �Xl

k∑
l=1

Xl �Xl + λ

, (6.2)

where Y represents Discrete Fourier Transform of y, X denotes Discrete Fourier

Transform of x, � refers element-wise multiplication. In order to adjust to recent

appearances, the filter template is updated in every frame. Accordingly, the numerator

Nl
t and denominator Dt of Eq. (6.2) are updated respectively as

Nl
t = (1− η)Nl

t−1 + ηYtXt
l, (6.3)
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Dt = (1− η)Dt−1 + η
k∑
l=1

Xl
tX

l
t, (6.4)

where η is learning rate fixed at 0.025. In subsequent frame, a rectangular patch z (Z

in the frequency domain) is cropped from the current location and convolved with the

filter template in the frequency domain to generate the correlation output as

o = =−1


d∑
l=1

Nl
t � Z

Dt + λ

 . (6.5)

The peak value of o determines the location of target in the present frame. The

size of target is estimated in every frame using 1-D correlation filter, which is trained

using 33 different scaled versions of the object. The size of target in the current frame

is found by searching a window with maximum correlation score among generated

scaled patches. I-D scale filter is updated in every frame with learning parameter

β = 0.02.

Figure 6.3: Block diagram of correlation filter based tracking
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6.1.3 Vehicle counting

The proposed work combines the object detection unit with correlation filter based

tracker to count the traffic data. The flowchart of proposed method is given in Fig. 6.4.

In existing methods, background subtraction (BS) and blob tracking approaches have

been utilized to detect the moving vehicles, and achieve good accuracy for fixed cam-

eras and simple background only. However, BS methods produce strange results for

unbalanced/shaking hand-held cameras. Hence, we utilize the state-of-the-art YOLO

object detection framework to recognize the vehicles in video frames, followed by track-

ing using correlation filter. The sample frames of four different scenes are displayed

in Fig. 6.5, where the videos have been recorded.

A part of the road area is cropped from the first frame and this region is considered

as the entry window for all vehicles. The borders of image frame act as an exit line

for every vehicle. Fig. 6.6(a) depicts a sample frame and manually selected entry

window. The cropped area is termed as entry window and is displayed in Fig. 6.6(b).

YOLO object detection algorithm is applied on entry window, and each detection

is used to begin new track by assigning to a correlation filter after validating the

object. All detections except car, bus, motorbike, bicycle are discarded from the

detection process. The detection outputs are displayed in Fig. 6.6(c), and each object

is denoted as OBt
j. Thus, OBt

j denotes the jth object detected in the tth frame using

YOLO framework. Let t, t − 1, and t + 1 denote the present, previous, and next

frame respectively. Let CFt
i denotes ith vehicle being tracked by the correlation filter

in the tth frame. The overlap between two bounding boxes is defined as the ratio of

intersection over union (IOU) and is given by

O =
OB ∩ CF
OB ∪ CF

, (6.6)

where OB denotes the object bounding box and CF symbolizes the tracked bounding

box. The overlap factor O defines how well two bounding boxes overlap each other

with 0 being no overlap and 1 indicates complete overlap. Initial step is to detect the

new vehicles on the road and assigning to independent trackers. In addition, already

detected vehicles are discarded by assigning to multiple trackers. Each tracker tracks

the assigned vehicles till it reaches the other end of the frame. Finally, count is

incremented (total vehicle count and individual count) based on pre-defined rules.
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The flowchart depicted in Fig. 6.4 explains the various steps involved in the counting

process. Accordingly, the following states are identified:

� Track: The object detected in a frame may correspond to one or more tracked

bounding boxes. If the overlap between OBt
j and CFt

i is higher than the pre-

defined threshold τ (in this work, τ = 0.3), then the corresponding object bound-

ing box is already assigned to a CF tracker and condition of the jth vehicle is

identified as track state. The size of vehicle progressively increases in every

frame due to movement towards the camera; hence scale adaptation is very es-

sential. Thus, the correlation filter locates each vehicle precisely due to its high

efficiency and scale adaptation property. The tracker locates the vehicle in every

frame and belong to active trackers. The correlation filters stop updating when

the vehicle disappears from camera view. Subsequently, they are added to the

list of passive trackers after removing from that of active trackers.

� Detection: If the overlap between OBt
j and CFt

i is less than the predefined

threshold τ (in this paper, τ = 0.3), then OBt
j is considered to be a distinct

object which is detected in the frame t. In this condition, the tracked object

is isolated from the detected object by an adequate distance. This state is

identified as detection state. Further, the detected object is assigned to a new

correlation filter based tracker to initiate the tracking process.

� Termination: If the coordinates of tracker corresponding to each vehicle reaches

the border of frame, this state is named as termination. If the object is oc-

cluded, it reappears in the scene after a short period. However, the object

disappears completely as a result of vehicle moving out of camera view. Conse-

quently, the vehicle count is incremented. The corresponding tracker is removed

from the list of active trackers and added to passive trackers. The vehicle count

for each category is also incremented independently based on entity type.

� Target Lost: The tracking accuracy is proved to be high using correlation

filter (Danelljan et al., 2014). However, it may lose target when the smaller

vehicle is occluded by larger vehicle. This state is referred as target lost.

The failure of tracking is detected, when the bounding box does not move in

any direction or moves in abnormal direction. To resolve this problem, the

following assumptions are considered in the proposed work. They include (i)
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all the vehicles are assumed to move in single direction (ii) if the tracking of a

vehicle is lost due to occlusion or fast motion, then the corresponding vehicle

will reach the boundary. Accordingly, the corresponding tracker is terminated,

and the vehicle count is incremented.

input frame

is frame==1?

Yes

crop ROI
manually

No

crop ROI

is detected object in
tracked state?

detect objects
using YOLO

No assign object to
a new tracker

Yes

discard the
object

is tracked trajectory
reached border?

Yes

terminate the target
and increment
vehicle count

No

Detection

Termination

Track

Figure 6.4: Flowchart of the proposed vehicle counting process.

6.2 Experimental analysis and discussion

6.2.1 Setup

The proposed algorithm is implemented using OpenCV 3.2 and PYTHON in

a machine with Intel(R) Core i5-5200U, CPU of 2.20GHz processor and 8GB
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RAM.

6.2.2 Datasets

For vehicle counting experiments, we prepared the video datasets using a mobile

device with 13MP camera. These videos are acquired from the over-bridge in a

highway using camera facing downwards with different illumination conditions

and shadow effects. The videos are not stable since they have been captured by

hand (not fixed). All videos have 1920 x 1080 resolution in RGB .mp4 format.

Additionally, the videos contain complex background such as shaking plants,

crossing pedestrians, surrounding buildings, trees, birds, and waving flags.

To initiate the counting process, a small road section is manually cropped in

the first frame. For our dataset, a simple background subtraction algorithm

often fails to extract the moving vehicles accurately. In addition, shadows and

variations of illumination degrade the performance of background subtraction

algorithm. Therefore, we employed a robust object detector, YOLO to detect

and classify the moving vehicles in the entry window. Thus, the cropped region

acts as an entry window where the tracking trajectory is initiated. Whereas, the

border of frame acts as an exit line for all vehicles where tracking trajectory is

terminated by incrementing the count. The processing time of YOLO for the

image shown in Fig. 6.6(c) using the above mentioned CPU based machine is 1.5

sec. Also, that of the correlation filter based tracker is 0.013 sec for two objects.

In spite of high detection rate, YOLO takes high processing time. Hence, to

reduce the time, we execute YOLO after every M frames. (in this work M=5,

depends on traffic density)

6.2.3 Quantitative and qualitative analysis

The experimental analysis includes comparison of vehicle count obtained using

the proposed method with the manual count. For quantitative analysis, precision

and recall evaluation metrics are considered (Wolf et al., 2006). The precision

(P) and recall (R) are defined as follows:

P =
No of correctly detected bounding box

No of groundtruth bounding box
(6.7)
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and

R =
No of correctly detected bounding box

No of detected bounding box
. (6.8)

Thus, precision tells about false alarms while recall gives the information about

how many of detected bounding boxes are correct. High value, close to 1 is

expected for ideal systems. The vehicle is said to be detected if the overlap

of detected bounding box and ground-truth bounding box is greater than 0.5.

F-score measures harmonic mean of precision and recall as

F =
2PR

P + R
. (6.9)

Figure 6.5: Sample locations of video used for vehicle counting. The videos are ac-
quired using the hand-held mobile camera taken from the over-bridge. Four different
locations are chosen to test the accuracy of the proposed method.

Similarly, counting accuracy is computed as

Accuracy =
No of correct detections

No of groundtruth detections
. (6.10)
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Table 6.1 provides the details of videos, precision, recall, F-measure, ground-

truth count and vehicle count obtained using the proposed method. To test

the efficiency of the proposed method, seven videos have been considered with

low, medium and high traffic conditions. From Table 6.1, it is clear that the

proposed method achieves 95.9% counting accuracy. Fig. 6.7(a) depicts 575th

frame of video 2.mp4. The vehicles currently in track state are shown in red.

In this method, traffic density of small, medium and large vehicle categories

are also provided. A sample frame is displayed in Fig. 6.7(b) with the count of

different classes.

(a) Manually selected region of interest
(ROI)

(b) Cropped ROI

(c) Object detection using YOLO frame-
work on entry window (ROI)

(d) Object detection using YOLO frame-
work on frame

Figure 6.6: Illustration of the proposed vehicle counting process.
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Table 6.1: Vehicle count of obtained using the proposed method and manual count for
hand recorded highway videos

Video
Se-
quence

No of
Frames

Total No.
of Vehicles
in the
ground-
truth

Total No
of Vehicles
detected
using the
proposed
method

Missing or
Multiple
detection
or error

Precision
(%)

Recall
(%)

F-
score
(%)

Counting
accu-
racy
(%)

1.mp4 899 10 10 0/0/0 100 100 100 100
2.mp4 715 16 15 1/0/1 93.7 100 96.7 93.7
3.mp4 845 17 18 0/1/1 100 94.4 97.1 94.4
4.mp4 3598 58 55 3/0/3 94.8 100 97.3 94.8
5.mp4 2100 25 23 2/0/2 92 100 95.8 92.0
6.mp4 5528 67 67 1/1/2 98.5 98.5 98.5 97.0
7.mp4 2999 28 28 0/0/0 100 100 100 100

(a) 575th frame of video 2.mp4. Total no of
vehicles passed are displayed at the top cor-
ner. Vehicles under tracked state are shown
using red bounding box.

(b) 860th frame of video 1.mp4. Total no
of vehicles passed are displayed at the top
corner. Traffic count is also classified as
small (LOWCOUNT), medium (MEDIUM-
COUNT) and large (HIGHCOUNT) cate-
gories. Vehicles in the tracked state are
shown using red bounding box.

Figure 6.7: Sample frames of vehicle counting algorithm.

6.3 Summary

In this chapter, counting of vehicles in a mixed traffic condition has been pro-

posed. We exploited YOLO framework to detect the vehicles and correlation
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filters to track precisely. The traffic density of selected videos varies from low to

high, and the proposed method counted the vehicles accurately. The advantage

of proposed method is that it can be generalized to any kind of road videos cap-

tured using the hand-held mobile camera. Moreover, YOLO can also distinguish

the vehicle classes, hence counting is also accomplished for different categories

to analyze the count of each vehicle type in a traffic video.
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Chapter 7

CONCLUSIONS AND

FUTURE WORK

This chapter summarizes the contributions of thesis, and suggests potential di-

rections for future research. Section 7.1 presents the contributions of thesis

in tracking area, and conclusions are given in 7.2 followed by possible future

research directions in section 7.3.

7.1 Contributions

In this thesis, we have suggested an improved tracking technique for illumination

invariant drift free tracking of given object in RGB videos, tracking of an object

in thermal infrared videos and an application of tracking for counting vehicles.

The proposed approaches have been illustrated using challenging videos and

presented better accuracy compared to baseline trackers. The contributions of

thesis are listed below.

In chapter 3, we reviewed the well known median flow tracker for tracking an

object using optical flow technique. We found that MFT is based on frame-

to-frame tracking method, depends on pixel values in the successive frames for

efficient tracking. However, it is realized that MFT slips during abrupt illu-

mination variation which prompts the tracker to drift. Hence, we suggested

prefixing a photometric normalization method before tracking begins. Several
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effective normalization techniques have been discussed to handle illumination

caused problems by either extracting the reflectance component or maintaining

the uniform light conditions.

In chapter 4, we studied the recent correlation filter based tracker and suggested

enhancements to improve the accuracy. The correlation filters learn from spatial

features which makes tracker to drift due to occlusion, fast motion and object de-

formation. Hence, the proposed study incorporates two complementary trackers

(i.e., discriminative and generative) to obtain the location of the object in every

frame. In addition, the dynamic learning rate has been used to overcome occlu-

sion. Finally, we tested the proposed method using challenging video sequences

and have shown better accuracy compared with the baseline trackers.

In chapter 5, we extended the correlation filter based tracker to track an ob-

ject in infrared imagery. The proposed approach combines spatial features with

intensity features in a correlation filter and AdaBoost classifier framework re-

spectively to retrieve probable locations. Ultimately, the actual position has

been determined by applying a generative technique. A novel scale estimation is

proposed to track scale in every frame. The combined approach has been tested

on several challenging infrared videos to show considerable improved accuracy

among the state-of-the-art trackers.

In chapter 6, we presented a novel technique to count the vehicles in a highway

traffic video. This method exploits recent YOLO framework to detect the ve-

hicle classes and correlation filter for multi-object tracking purpose. Finally, a

simple rule-based technique is employed to estimate the vehicle count. Also, we

generated video datasets for counting vehicles on highway videos. The count is

then compared with the manual count to show its accuracy.

7.2 Conclusions

In this thesis, video tracking algorithms have been analyzed by providing an

outline of state-of-the-art as well as the proposed techniques. Each chapter

described the possible extensions to state-of-the-art trackers. Thus, median

flow tracker (generative approach) and kernelized correlation filter based tracker

(discriminative method) have been selected as baseline trackers. An illumination
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invariant median flow tracker has been suggested by incorporating photometric

normalization techniques. The experimental analysis showed that the modified

tracker outperforms the base tracker, also some of the recent state-of-the-art

trackers in terms of robustness and accuracy.

Moreover, an approach to deal with occlusion, fast motion, and illumination

variations has been presented. This is accomplished using kernelized correlation

filter as a base tracker with novel feature selection criteria and adaptive learn-

ing rate scheme. Further, switching to a complementary tracker based on pre-

defined rules has increased the accuracy. Similarly, a robust tracking achieved

in thermal infrared videos using complementary trackers in parallel. The com-

bined approach has been optimized to obtain the best solution. The experiments

revealed that the proposed method is accurate in locating the target.

Finally, an application of video tracking has been discussed to count the ve-

hicles in highway traffic. The combination of object detector and correlation

filter tracker has numbered vehicles close to human accuracy. Comprehensive

experimental evaluation has been conducted to test the algorithms mentioned.

7.3 Future work

A significant progress has been achieved in the field of tracking in the last decade.

However, there is a need of single system that works for real time situation. The

thesis has discussed illumination invariant techniques for median flow tracker.

However, several other recent trackers fail during sudden illumination changes.

Thus, the proposed methods can be easily extended to the illumination sensitive

trackers. Also, the reflectance estimation or illumination constancy algorithms

have utilized grayscale images. Instead, the color images can be used to provide

better accuracy.

A number of generative and discriminative techniques are available in the liter-

ature. Thus, the various combinations can be tested to provide better accuracy

with fewer computations in both RGB and infrared videos.

Highway traffic video in developing countries is always challenging due to fol-

lowing reasons: (i) the videos contain unexpected movements or crossings of

humans in the roads (ii) variety of vehicle types are observed which leads to
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multiple detections of vehicles (iii) although, the lane is meant for single direc-

tions, vehicles are observed moving in the other direction also. Hence, all these

problems need to be discussed in the future work. In addition, the single lane

has been considered to count the vehicles in literature, which can be extended to

multi paths without increasing the computational complexity. Also, an accurate

count of individual vehicle type helps to understand the vehicle density in roads.

However, recently vehicle number has been increased to the large extent result-

ing in traffic congestion, accidents, etc. Hence, an intelligent system is needed

to understand the traffic condition in the future.
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