
BEHAVIOR-BASED ATTACK GENERATION FOR

DETECTING WEB APPLICATION

VULNERABILITIES

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

G. DEEPA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE - 575 025

June, 2018

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled Behavior-based Attack Gener-

ation for Detecting Web Application Vulnerabilities which is being submitted to the

National Institute of Technology Karnataka, Surathkal in partial fulfilment of the

requirements for the award of the Degree of Doctor of Philosophy in Department of

Computer Science and Engineering is a bonafide report of the research work carried out

by me. The material contained in this Research Thesis has not been submitted to any

University or Institution for the award of any degree.

G. Deepa, CS13F06

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: June 07, 2018

CERTIFICATE

This is to certify that the Research Thesis entitled Behavior-based Attack Genera-

tion for Detecting Web Application Vulnerabilities submitted by G. Deepa (Register

Number: 138032 CS13F06) as the record of the research work carried out by her, is

accepted as the Research Thesis submission in partial fulfilment of the requirements for

the award of degree of Doctor of Philosophy.

Dr. P. Santhi Thilagam

Research Guide

(Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

To my parents Mr. Ganesan (late) & Mrs. Saratha, and my sister Sarala.

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere gratitude to all the people who encouraged

me to finish this dissertation.

First and foremost, I would like to thank my supervisor and Head of the Department,

Dr. P. Santhi Thilagam, for providing me an opportunity to pursue PhD under her

guidance. I appreciate her continuous support, encouragement, and recommendations

in both professional and personal aspects of my life.

I express my sincere thanks to the members of my research progress assessment

committee, Dr. A. Senthil Thilak and Dr. Basavaraj Talawar, for their positive criticism

and insightful comments on my research work. I would also like to thank Dr. Alwyn R.

Pais for his suggestions and support to improve the quality of the work. I also thank the

faculty and staff members of the department for their support.

This work is a part of the Research & Development project supported by the Min-

istry of Electronics and Information Technology (MeiTY), Government of India. The

project provided me the opportunity to pursue my research, and I would like to thank the

team members of the project, Amit Praseed, Nushafreen Palsetia, Furqan Ahmed Khan,

Prabhjeet Kaur and Ramesh Babu, for providing me necessary technical assistance.

Special thanks are due to Bindu, who constantly supported me during the tenure of

my PhD. I would also like to thank Dr. Ganesh K Reddy, Dr. Raghavendra Achari,

Fathima, Shiva Kumar, and Ambikesh for their help extended during the course of

present study.

I am deeply indebted to my parents, sister and brother-in-law for being with me

all through, and encouraging me for the successful completion of the research work.

Thanks to my husband, friends and family members for their support.

G. Deepa

ABSTRACT

Web applications provide a convenient platform to support a wide range of day-to-
day activities such as bill payments, online shopping, banking, and social networking.
However, the accessibility, omnipresence, demand, and ever-growing user-base have
made web applications an attractive target for attackers. The attacks on web applications
occur due to the existence of weaknesses in the applications, which allow the attackers
to exploit and perform adverse actions. These weaknesses are known as vulnerabilities,
and are broadly categorized as Injection vulnerabilities and Logic vulnerabilities, which
are rated as the most potent vulnerabilities by different security consortiums. Hence,
in order to secure web applications from the attacks, it is indispensable to detect these
vulnerabilities. The vulnerabilities in web applications are detected using either white-
box or black-box analysis. While the former analyzes the source code of the application,
the latter penetrates the application with malicious inputs/requests, and observes the
output for exposing the vulnerabilities. The primary challenge during the penetration
lies in producing malicious requests automatically based on the intended behavior of
the application. Therefore, this work aims at developing a behavior-based approach
to generate attack requests through black-box analysis for the detection of logic and
injection vulnerabilities in web applications.

Logic vulnerabilities in web applications allow the malicious users to compromise
the application-specific functionality against the expectations of the stakeholders. These
vulnerabilities are introduced due to missing/incorrect server-side validation, access
checks, and sequence checks, and are known as parameter manipulation, access-control,
and workflow vulnerabilities respectively. Logic vulnerabilities are application-specific,
and hence detection of these vulnerabilities through black-box analysis is extremely
challenging as it requires a clear understanding of the intended behavior of the applica-
tion for generation of attack requests. The intended behavior can be inferred by exam-
ining both the data flow and control flow information of the application. The existing
approaches utilize either the data flow or control flow to infer the intended behavior,
and are capable of detecting only a specific type of logic vulnerability. Hence, there is a
demand for a system that is capable of inferring the intended behavior of the application
in order to generate attack requests for detecting all types of logic vulnerabilities. The
proposed work aims at modeling the intended behavior of the application in the form
of an annotated Finite State Machine (FSM) using both the data flow and control flow
information obtained from web application traces. The constructed model is utilized to

generate attack requests for identifying all types of business logic vulnerabilities. The
constructed model is evaluated on vulnerable benchmark applications, and the experi-
mental results substantiate the effectiveness of the proposed model in comparison with
the recent approaches. In addition, the model helps in detecting logic vulnerabilities
leading to session puzzling attacks, which is not addressed in the existing approaches.

Web applications store data in relational databases traditionally. However, a lot of
web applications in use today are XML-based as they involve exchange of informa-
tion through XML documents, and store these documents in Native XML Databases
(NXDs). NXDs are generally preferred for applications that hold highly diverse in-
formation, involve integration of information from different set of applications, handle
rapidly evolving schemas, and work with a huge set of documents or large-sized doc-
uments (e.g., books, web pages). The existing literature assures the growing demand
towards usage of NXDs. The database of the applications is targeted by attackers to
inject code fragments into user-input which attempt to modify the query submitted to
the database resulting in SQL/XML injections. While SQL injection targets relational
databases, XML injection targets NXDs that utilize XQuery/XPath as the query lan-
guage. The literature available to address XML/XPath/XQuery injections is relatively
less compared to SQL injection, and the existing approaches for vulnerability detec-
tion focus on manual construction of individual attack requests based on known types
of attacks. Therefore, there is a demand for an approach that enables the generation
of attack requests for detection of all types of XQuery injection vulnerabilities speci-
fied by the security consortium-Open Web Application Security Project (OWASP), and
that is extendable enough to generate attack requests leading to unknown types of at-
tacks. Hence, this work formulates an attack grammar for generation of attack requests
to identify XQuery injection vulnerabilities in web applications driven by NXDs. The
strings generated by the attack grammar are injected into the web application for detect-
ing the vulnerabilities. In addition to the different types of attacks listed by OWASP,
three new categories of XQuery injection attacks namely alternate encoding, injec-
tion through evaluation function, and XQuery comment injection attacks are discovered.
These attacks demonstrate the extendability of the proposed attack grammar. The pro-
posed grammar is evaluated on vulnerable benchmark applications from the test suite
of AMNESIA. The experimental results substantiate the effectiveness of the proposed
grammar in detecting all types of XQuery injection vulnerabilities.

Keywords: Web security, Database security, Security testing, Vulnerability discovery,
Penetration testing, Application logic vulnerabilities, Logic attacks, Parameter tamper-
ing, Application flow bypass.

ii

CONTENTS

List of Figures vii

List of Tables ix

List of Algorithms xi

List of Abbreviations xiii

1 Introduction 1

1.1 Web Application Architecture . 1

1.2 Web Application Threats . 3

1.3 Web Application Security . 7

1.4 Motivation . 9

1.5 Thesis Contributions . 11

1.6 Thesis Organization . 12

2 Literature Review 13

2.1 Web Application Vulnerabilities . 13

2.1.1 Injection Vulnerabilities . 15

2.1.2 Business Logic Vulnerabilities 17

2.1.3 Session Management Vulnerabilities 19

2.2 Defensive Mechanisms for Securing Web Applications 19

2.2.1 Injection Defenses . 19

2.2.1.1 SQL Injection . 19

2.2.1.2 XML Injection . 24

2.2.1.3 Cross-Site Scripting 29

2.2.1.4 Research Challenges and Directions 36

2.2.2 Session Management Defenses 41

2.2.3 Business Logic Defenses . 43

iii

2.2.3.1 Parameter Tampering 43

2.2.3.2 Access-Control Violation 46

2.2.3.3 Workflow Violation 51

2.2.3.4 Business Logic Preservation in eCommerce Applica-

tions . 53

2.2.3.5 Research Challenges and Directions 57

2.2.4 Existing Vulnerability Scanners 58

2.3 Research Gaps . 61

2.4 Summary . 62

3 Problem Description 63

4 Attack Generation for Detecting Logic Vulnerabilities 67

4.1 Logic Attacks in Web Applications . 68

4.2 Problem Description . 71

4.3 Proposed Approach . 78

4.3.1 Trace Collection . 79

4.3.2 Model Construction . 80

4.3.3 Intended Behavior Extraction 85

4.3.4 Attack Generation . 93

4.4 Experimental Study and Analysis . 101

4.4.1 Experimental Setup . 101

4.4.2 Test Applications . 104

4.4.3 Experimental Results and Discussions 105

4.4.4 Advantages and Limitations 109

4.5 Summary . 111

5 Attack Generation for Detecting XQuery Injection Vulnerabilities 113

5.1 XQuery Injection in Native XML Database 114

5.2 Problem Description . 118

5.3 Proposed Approach . 118

5.3.1 Identification of Injection Points 119

5.3.2 Attack Generation Based on OWASP Guidelines 119

iv

5.3.3 Identification of XQuery Injection Attacks not Listed in OWASP 123

5.3.3.1 Alternate Encoding Attack 123

5.3.3.2 Injection Through Evaluation Function 125

5.3.3.3 XQuery Comment Injection Attack 127

5.4 Experimental Study and Analysis . 128

5.4.1 Experimental Setup . 128

5.4.2 Test Applications . 130

5.4.3 Experimental Results and Discussions 130

5.4.4 Advantages and Limitations 133

5.5 Summary . 134

6 Conclusions and Future Scope 135

6.1 Summary of the Contributions . 135

6.2 Future Scope . 137

Bibliography 139

Publications 165

v

LIST OF FIGURES

1.1 Web application architecture . 2

1.2 Security mechanisms for protecting web applications 7

2.1 Types of vulnerabilities and attacks . 14

2.2 Research on detection and prevention of XSS vulnerabilities 34

2.3 Research on detection and prevention of XSS attacks 37

2.4 Research on parameter manipulation vulnerabilities 46

2.5 Research on access-control vulnerabilities 52

2.6 Research on workflow vulnerabilities 54

4.1 Web application model . 82

4.2 Annotated finite state machine for application Scarf 86

4.3 Annotated finite state machine for application Wackopicko 87

4.4 Workflow graph . 91

4.5 DetLogic architecture . 102

5.1 XQueryFuzzer architecture . 129

vii

LIST OF TABLES

1.1 Data breaches in the recent years . 4

2.1 Summary of SQL injection prevention/detection approaches 25

2.2 Summary of XML injection prevention/detection approaches 30

2.3 Summary of articles on XSS . 38

2.4 Summary of the literature on logic vulnerabilities 55

2.5 List of commercial and open-source scanners and their capabilities . . . 59

4.1 Symbols and definitions . 71

4.2 Bugs and corrections . 92

4.3 Applications for evaluation . 104

4.4 Parameter manipulation vulnerabilities detected 106

4.5 Number of constraints extracted . 106

4.6 Access-control vulnerabilities detected 106

4.7 Types of access-control vulnerabilities detected 107

4.8 Comparison of the proposed approach with LogicScope 108

4.9 Workflow vulnerabilities detected . 109

5.1 Test application details . 130

5.2 XQuery injection vulnerabilties detected 131

5.3 Number of vulnerabilities existing in test applications and detected by

the proposed approach . 132

5.4 Effectiveness of the proposed approach 132

5.5 Comparison of the proposed approach with ZAP 133

ix

LIST OF ALGORITHMS

4.1 Model construction . 84

4.2 Parameter manipulation attack generation 94

4.3 Authentication bypass attack generation 95

4.4 Vertical privilege escalation attack generation 96

4.5 Horizontal privilege escalation attack generation 98

4.6 Session puzzling attack generation . 99

4.7 Workflow bypass attack generation . 100

xi

LIST OF ABBREVIATIONS

Abbreviations Expansion
ACM Access-Control Mechanism
ACP Access-Control Policy
ACT Access-Control Template
ACV Access-Control Violation
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
ASP Active Server Pages
BP Base Pointer
CSRF Cross-Site Request Forgery
CSS Cascading Style Sheet
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DFA Deterministic Finite Automata
DOM Document Object Model
EAR Execution After Redirection
EFSM Extended Finite State Machine
EHR Electronic Health Record
EJB Enterprise Java Beans
ELET Embedded Language Encapsulation Type
FARM Fuzzy Associative Rule Model
FNR False Negative Rate
FPR False Positive Rate
FSM Finite State Machine
GUI Graphical User Interface
HPP HTTP Parameter Pollution
IDE Integrated Development Environment
IDS Intrusion Detection System
IP Instruction Pointer
JSP Java Server Pages
LDAP Lightweight Directory Access Protocol
LOC Lines Of Code
NDFA Non-Deterministic Finite Automata
NXD Native XML Database

xiii

Abbreviations Expansion

OWASP Open Web Application Security Project
PCI DSS Payment Card Industry Data Security Standard
PHP Hypertext Preprocessor
PM Parameter Manipulation
QR Query Restrictor
RIA Rich Internet Application
SDLC Software Development Life Cycle
SEPTIC SElf-Protecting daTabases preventIng attaCks
SMV Session Management Vulnerability
SOFIA Security Oracle For Injection Attacks
SQL Structured Query Language
SQLIA SQL Injection Attack
SQLIV SQL Injection Vulnerability
SWAP Secure Web Application Proxy
TBRC Tibetan Buddhist Resource Center
TNR True Negative Rate
TPR True Positive Rate
UA User Authenticator
WASC Web Application Security Consortium
WFB Workflow Bypass
WVS Web Vulnerability Scanner
XML Extensible Markup Language
XSS Cross-Site Scripting
ZAP Zed Attack Proxy

xiv

CHAPTER 1

INTRODUCTION

Over the years, web applications have evolved from a simple, static, and read-only

system to a complex, dynamic, and interactive system that provides information and

service to the users. Web application is an application program that resides on a server

and makes use of a browser on the client machine to provide service to the end-user. It

allows the website visitors to interact with the application server through their user in-

terface, and to submit requests for retrieving data to/from the database over the Internet

using their preferred browser. Precisely, the web applications query the database server

to generate web pages dynamically for presenting to the client. With the advancements

in the Internet, network and technology, many organizations are moving their services

from offline to online, which made web applications so popular and an integral part of

the daily life. Hence, web applications play a significant function in mission-critical

areas to perform financial transactions, social communications, online shopping, and

so on, and often handle sensitive user data. The complexity of the web applications

increases with number of features offered owing to emerging technologies.

1.1 WEB APPLICATION ARCHITECTURE

With more than three billion users using the Internet for sensitive operations,1 the tech-

nologies involved in the evolution of web applications have also seen a tremendous

growth.2 The three-tier architecture of the web application, the softwares used at each-

1http://www.internetworldstats.com/stats.htm
2http://www.evolutionoftheweb.com/#/evolution/day

1

h
h

1. Introduction

Component

Software

Data

Processing

Architecture

SQL Query

/ Response HTTP Request

Internet

HTTP Response – Web

Page (HTML)

Web Server Client Application Server Database Server

IIS Windows Server

/ Apache HTTP

Server

Web Browser
IBM WebSphere,

BEA WebLogic

MySQL / Oracle /

BaseX

PHP / JSP / ASP
HTML,

JavaScript

/ VB Script

Relational Tables/

XML Documents
Servlets, EJB

Figure 1.1: Web application architecture

tier and the technology involved in processing the data being transferred is illustrated

in Figure 1.1 and is explained as follows:

Client-side: The client/user triggers an HTTP request to the web application using a

web browser. The web browser loads the HTML web pages formatted using stylesheets

(e.g., CSS) along with the client-side scripts (e.g., JavaScript, VBScript) received from

the web server. The web pages constitute the Graphical User Interface (GUI) of the

application through which the end-user interacts with the application. The client-side

scripts constitute the presentation logic (e.g., input validation), and increase the respon-

siveness of the application.

Server-side: The server-side comprises of the web server and the application server.

The HTTP request from the browser is forwarded to the web server which processes

the request using server-side scripts written in any one of the following: JSP, ASP, PHP,

etc. Apache HTTP Server, IIS Windows Server are few examples of web servers. The

web server serves the content using HTTP/HTTPS protocol. The application server

(IBM WebSphere, etc.) includes the processing logic of the application implemented

in Enterprise Java Beans (EJB), serves content using HTTP/HTTPS as well as other

protocols, and provides support to web services. Web services is a component of the

web application used for exchanging data between different web applications running

in different platforms.

2

1.2. Web Application Threats

The processed request is forwarded to the database server for retrieving/inserting

data from/into the database, where data is stored in the form of relational tables/XML

(Extensible Markup Language) documents. Relational databases such as MySQL/Ora-

cle are used when the data associated with the application follows the relational model,

and native XML databases like BaseX are used when the application deals with rapidly

evolving schema (Bourret 2009). The data retrieved from the database is then sub-

jected to further processing, and is rendered back to the client, which can be viewed in

the browser as an HTML page formatted using CSS and JavaScript for enhancing the

behavior.

1.2 WEB APPLICATION THREATS

Web applications have become a prime target for attackers due to their ease of use,

omnipresence, demand and evergrowing user-base. The security breach reports from

various organizations signify the importance towards securing web applications. Ac-

cording to Symantec Internet Security Threat report (Symantec 2016), one million

attacks were reported on web applications in 2015, and 75% of legitimate applica-

tions had unpatched vulnerabilities. A report from Trustwave (2016) states that 97%

of the applications tested by Trustwave had security vulnerabilities, and a median of 14

number of vulnerabilities is discovered per application. A report by the Identity Theft

Resource Center (ITRC 2015) states that the reported number of breaches increased

by 27.5% in 2014 as compared to the previous year, and most of them targeted busi-

ness, military, banking and medical applications. According to Verizon’s Data Breach

Investigation Report (Verizon 2014), 35% of the security incidents in 2013 were due to

attacks on web applications. Table 1.1 lists the details of the data breaches and types of

web application attacks reported in the recent years.

Web applications are more prone to various attacks due to the advancements in

architecture and technologies that provide sophisticated functionalities and therefore

increase the complexity of the web application. The evolving technologies fail to con-

sider security of the application due to the following factors:

3

1. Introduction

Table 1.1: Data breaches in the recent years

Year Company Data Breach Attack

2017 Gmail (Daitch 2017) Unauthorized access to
accounts of 1 million
Gmail users

Phishing

2016 UN Tourism website (Mur-
dock 2016)

Usernames, email ad-
dresses and hashed pass-
words of 1,300 users

SQL injection

2016 Illinois State Board of Elec-
tions voter database (Sweet
2017)

Personal information of
80,000 users

SQL injection

2015 World Trade Organization
(Paganini 2015)

Personal information of
53,000 users

SQL injection

2014 eBay (Muncaster 2014) Login information of
active users

Cross-site scripting

2012 Domino’s India (Dominos
2012)

Personal information of
37,000 users

SQL injection and Re-
mote file inclusion

2012 Yahoo (Keizer 2012) Login information of
453,000 users

SQL injection

2011 Citi Credit Card (Zetter
2011)

Financial data exposure
of 360,000 customers

Parameter Tampering

2010 AT&T website (Acunetix
2010)

Email addresses of
100,000 Apple customers

Parameter Tampering

i) Availability of business processing logic on the client-side, for reducing the inter-

action between client and server, assists the attacker in gaining more knowledge

about the web application in order to trigger an attack against the end-user.

ii) Limited security support offered by the current widely used application devel-

opment frameworks such as Django, Ruby on Rails, etc. makes them prone to

attacks, even though the frameworks favor easy and quick implementation.

iii) The interoperability and openness of XML used for providing interaction between

heterogeneous web applications make them an easy target for attackers.

iv) Construction of web applications by developers focusing on implementing the

features and functionality of the application rather than the security aspects.

As a result, the existing web applications are more vulnerable to attacks that com-

promise the confidentiality, integrity, and availability of data.

4

1.2. Web Application Threats

As stated already, the data breaches occur due to the propagation of attacks through

the weakness in the application itself rather than the weakness in the network. These

weaknesses are referred to as software security vulnerabilities. A vulnerability is a

weakness in the application arising due to an implementation bug or a design flaw in

the programming language, application development framework, architecture and code

library (i.e., APIs), etc., and allows the attackers to cause damage to the application (Liu

and Cheng 2009). These vulnerabilities could be exploited by injecting malicious code

into input supplied by a user for interacting with the application. The malicious code in

the input propagates through the application due to the existence of the following cod-

ing flaws such as improper input validation, improper authentication and authorization

mechanisms, improper management of session information, and other implementation

bugs compromising the intended functionality of the application (Howard et al. 2009;

Igure and Williams 2008; Meunier 2008; Tsipenyuk et al. 2005).

Precisely, a security flaw/weakness can be defined as a defect in a software appli-

cation or component that can lead to a software vulnerability when combined with the

necessary conditions. A vulnerability can be stated as a set of conditions that allows

violation of an explicit or implicit security policy. The different types of security flaws

and the vulnerabilities arising due to these flaws are explained below.

Improper input validation refers to absence of validation or erroneous validation of

input supplied by a user through user interface of the application. These implementation

flaws allow the attacker to inject malicious commands that violate the syntactic structure

of the SQL/XML query, OS command, etc. and lead to Injection vulnerabilities.

Improper authentication and authorization mechanisms refer to erroneous imple-

mentation of authentication functions and access-control policies (ACPs). The flaws

enable the attacker to access confidential web pages and perform unauthorized actions

in the application. Improper enforcement of sequence of operations refers to logic flaws

that make the application behave in a manner different from the intended one, and

leads to financial loss, information leakage, Quality of Service (QoS) degradation, etc.

The improper input validation at server-side allows injection of input that violates the

semantic restrictions on user-input, and hence allows violation of the business specifi-

5

1. Introduction

cations. The above three implementation flaws lead to Business Logic Vulnerabilities.

A report by Trustwave (2011) describes logic flaws as the second topmost threat, and

these flaws are gaining attention of the researchers in the recent past.

Improper session management pertains to weakness in generation and handling of

session tokens, which are necessary for maintaining the identity of end-user of the ap-

plication and mapping relationship between consecutive requests of the application.

These flaws allow the attacker to compromise the session of a valid user and perform

adversarial actions, and lead to Session Management Vulnerabilities.

Each security flaw or weakness in web applications is assigned a unique number

called Common Weakness Enumeration (CWE)3 for easier tracking and understanding.

CWE is a community-developed dictionary of software weakness types, which provides

a unified and measurable set of software weaknesses. The CWE identifiers associated

with the aforementioned implementation flaws are listed as follows. CWE-20 is related

to improper input validation, and CWE-596 is related to improper semantic validation

of input. CWE-840 is related to business logic errors; CWE-306, CWE-862, CWE-

250, CWE-863, and CWE-732 are related to incorrect implementation of authentication

and authorization mechanisms; and CWE-841 is related to improper enforcement of

intended workflow of the application. CWE-613 and CWE-384 are weaknesses related

to improper session management.

The conventional security measures such as Secure Socket Layer and cryptographic

techniques employed for protecting the web applications ensure the security of online

network traffic and message in transit, and do not protect them against attacks that ex-

ploit vulnerabilities existing in the applications (Sima 2003). Hence, there is a need to

protect the applications from attacks due to exploitation of vulnerabilities at the applica-

tion layer, and organizations such as Open Web Application Security Project (OWASP)

and Web Application Security Consortium (WASC) emphasize on protecting web ap-

plications from attacks due to exploitation of vulnerabilities.

3https://cwe.mitre.org/

6

https://cwe.mitre.org/

1.3. Web Application Security

Considering the impact, severity, frequency of attacks, and the focus of existing re-

search works (Garcia-Alfaro and Navarro-Arribas 2008; Halfond et al. 2006; Hydara

et al. 2015; ITRC 2015; Li and Xue 2014; OWASP 2016; SANS 2011; Scholte

et al. 2012a; Shahriar and Zulkernine 2012b; Symantec 2014; Top10 2013; Trust-

wave 2011, 2014; Verizon 2014; Whitehat 2014), the scope of this work is limited to

Injection and Business Logic Vulnerabilities.

1.3 WEB APPLICATION SECURITY

Web application security is a concept developed for securing web applications from ma-

licious users by preventing attacks. In order to develop proactive web applications that

safeguard from attacks, it is essential for the developers to incorporate several precau-

tionary measures during the construction, testing, and post-deployment (i.e., runtime

protection) of the application as stated in the literature (Antunes and Vieira 2012; Hein

and Saiedian 2009; Microsoft 2015; Win 2014). Figure 1.2 shows a clear picture of

the processes carried out for protecting web applications from attacks, and based on

these processes the state-of-the-art approaches are classified as follows.

(a) Secure Construction/Programming: This technique minimizes the probability of

attacks on web applications by allowing the programmers to follow defensive coding

practices and guidelines during development of the application (OWASP 2017a,b).

The secure coding practices help in preventing critical vulnerabilities in the application.

(b) Vulnerability Detection & Prevention: Even though various defense mechanisms

have been proposed to prevent application attacks, the developers fail to enforce the

Requirements Design Coding Testing

Deployment

Phases of Software Development Life Cycle

Secure

Configuration

Security

Mechanism

s

Secure Coding

practices

Attack

Detection &

Prevention

Vulnerability

Detection &

Prevention

Figure 1.2: Security mechanisms for protecting web applications

7

1. Introduction

security mechanisms during construction due to the lack of knowledge about the secu-

rity (Scholte et al. 2012a). Therefore, it becomes necessary to provide a next layer of

defense to the application security before deployment. Vulnerability detection is one

such mechanism that analyzes the application for uncovering security vulnerabilities

during early stages of deployment (Cova et al. 2007b). The two detection techniques

available for identifying vulnerabilities are static analysis and dynamic analysis, and

are explained below.

Static Analysis/White-Box Analysis: It examines the source code of the web appli-

cation and explores all possible program paths for finding flaws. However, it tends to

generate more number of false positives, and cannot detect flaws that can be discovered

only during execution.

Dynamic Analysis/Black-Box Analysis: It penetrates the web application with mali-

cious inputs with an intention of breaking the application, and identifies vulnerabilities

based on the response of the application. It overcomes the drawback of a large number

of false positives generated in static analysis, as the results are generated based on the

runtime behavior of the application. However, it cannot guarantee the precision and

completeness as it does not explore all possible program paths of the application.

The advantage of vulnerability detection mechanism is the feasibility in employing

the same for analyzing and testing applications which are in the process of develop-

ment as well as legacy applications. The detected vulnerabilities should be eliminated

before deployment to protect the application. Recent research works are inclined to-

wards repairing the source code of the application in an automated fashion to eliminate

vulnerabilities, and this mechanism is referred to as Vulnerability prevention.

(c) Attack Detection & Prevention: Attack detection and prevention systems are the

final step of defenses that can be applied for web applications under operation. These

systems are either placed as proxies intercepting the requests between the client and

server or involved in instrumentation of the application under test for preventing the

attacks. Therefore, these systems degrade the performance of the application.

8

1.4. Motivation

The aforementioned classification of the existing approaches shows that the security

aspects of an application should be considered during the entire period of web applica-

tion development to defend the application against attackers.

1.4 MOTIVATION

The defensive mechanisms suggested for securing web applications have their own

strengths and weaknesses. Secure construction of applications is intended for applica-

tion in the process of development, and hence cannot protect legacy applications from

attacks. The vulnerability detection techniques employing white-box approach demand

the source-code of the application and are technology dependent. These techniques

do not require execution of the application, and hence cannot discover flaws that can

be identified by observing the runtime behavior of the application. Black-box detec-

tion of vulnerabilities requires testing the application with malicious inputs, which is

a crucial phase during identification. The problems with attack prevention techniques

are generation of false positives that block legitimate transactions from being executed,

and instrumentation of the source code for analyzing the HTTP packets. While secure

construction and attack prevention techniques are well-suited for applications under de-

velopment and operation respectively, vulnerability detection techniques are suited for

both applications under construction and legacy applications. Therefore, vulnerability

detection mechanism plays an inevitable role in securing web applications.

Vulnerability detection in web applications has been well-researched in the recent

decade and a multitude of approaches have been proposed. White-box detection of

vulnerabilities analyzes the source code of the application to discover coding flaws,

whereas black-box detection of vulnerabilities requires execution of the application un-

der test. Black-box detection of vulnerabilities generally operates in three phases: (i)

it learns the behavior of the application under normal circumstances, (ii) it penetrates

the application with malicious inputs, and (iii) finally it compares the obtained response

with normal response to discover the flaws. Among the three phases, penetration test-

ing the application with malicious inputs is a crucial phase for effective identification of

vulnerabilities. Penetration testing is devoted to stressing the application with respect to

9

1. Introduction

the security features for detecting vulnerabilities. Hence, this work is inclined towards

appropriate generation of malicious inputs and attack requests/vectors for discovering

vulnerabilities in the application under test.

As web applications get increasingly complex to support sophisticated business

functionalities, logic and injection vulnerabilities have attracted increasing attention in

recent years as stated in Section 1.2. Therefore, this work concentrates on appropriate

generation of attack vectors for detecting logic and injection vulnerabilities. The first

part of this thesis focuses on logic vulnerabilities as logic flaws are most often driven

by financial motives. A report by Trustwave (2016) states that 64% of the tested ap-

plications had session management vulnerabilities, 41% had server-side vulnerabilities,

and 39% of them had authentication and authorization vulnerabilities. This signifies

the importance towards detecting logic vulnerabilities. Unlike injection vulnerabilities,

logic vulnerabilities are often difficult to find and anyone without an understanding of

how the application is supposed to function would be oblivious to their existence and

potential impact. These vulnerabilities cannot be detected through scanning or by using

any type of Intrusion Detection System (IDS) or Firewalls. Even though large body of

work exists for addressing injection vulnerabilities, there exists only limited number of

works addressing logic vulnerabilities as the detection requires a clear picture regarding

the behavior of the application. This motivated us to develop an approach for generation

of attack vectors based on the behavior of the web application for identifying different

types of logic vulnerabilities in the application.

The second part of the thesis focuses on generation of attack vectors for detect-

ing XQuery injection vulnerabilities in applications driven by native XML databases.

According to the Payment Card Industry Data Security Standard (PCI DSS) and Com-

mon Vulnerability Scoring System (CVSS), XQuery and XPath injections are high risk

threats in addition to SQL injection, and hence detection of the vulnerabilities that

could lead to these injection attacks is critically important (Gordeychik 2008). Tra-

ditional web applications generally use relational databases such as SQL, while Exten-

sible Markup Language (XML) came into focus after the rise and growth of the Inter-

net. XML is a data representation that favors integration and interoperability between

10

1.5. Thesis Contributions

heterogeneous web applications. The information exchanged between the applications

in the form of XML documents can be processed efficiently when they are stored ap-

propriately. These documents are stored in either an extended relational DBMS or a

native XML database (NXD) system (Chaudhri et al. 2003; Liu and Murthy 2009).

XQuery/XPath can be used as a query language for retrieving the data from XML doc-

uments. Even though various XML security standards (Hirsch 2002; W3C 2015) such

as XML Encryption, XML Digital Signature, XML access-control markup language

are defined for preserving confidentiality, integrity and access-control mechanisms of

XML documents, when NXDs are used at the backend, any vulnerability in the source

code of the application may allow an adversary to perform unwanted actions result-

ing in extraction/modification of information from/in the documents. XML injection

attacks are more recent compared to SQL injection attacks, as the practice of using

XML database is relatively new. A large amount of work has been done on identifica-

tion of SQL injection vulnerabilities. However, only limited work has been done so far

for the identification of XML injection vulnerabilities which motivated us to develop

an approach for appropriate generation of attack vectors to identify XQuery injection

vulnerabilities in applications driven by NXDs.

1.5 THESIS CONTRIBUTIONS

In this thesis, we investigate the challenges involved in testing web applications for

identifying injection and logic vulnerabilities without using the source-code, and we

develop several testing approaches to handle the identified challenges. Specifically, this

thesis makes the following research contributions:

• We provide an extensive literature review on approaches available for securing

web applications from injection and logic vulnerabilities. Additionally, we ana-

lyze the capabilities of existing vulnerability scanners in discovering the vulner-

abilities.

• We propose a behavior-based approach for generating attack vectors through

black-box analysis for the detection of logic and XQuery injection vulnerabili-

ties in web applications.

11

1. Introduction

• We model the intended behavior of the web application in terms of data flow and

control flow for identifying logic vulnerabilities, and formulate an attack gram-

mar to generate different types of XQuery attack strings for identifying all possi-

ble points of injection leading to XQuery injection attacks in the web application.

• We utilize the proposed approach to capture vulnerabilities leading to session puz-

zling attacks, which is not addressed in the existing literature as per our learning.

In addition, we identify three new categories of XQuery injection attack vectors

namely, alternate encoding, evaluation function, and XQuery comment injection

attacks that are not listed in OWASP.

• We evaluate the proposed approach via extensive experiments on multiple bench-

mark web applications. The experimental results substantiate that the proposed

approach can effectively detect the vulnerabilities existing in web applications.

1.6 THESIS ORGANIZATION

The rest of the thesis is organized as follows: Chapter 2 presents the literature review

on SQL injection, XML injection, Cross-site scripting, and logic vulnerabilities/attacks.

Additionally, this chapter discusses the capabilities of existing vulnerability scanners.

Chapter 3 presents the problem description and objectives of this thesis. Chapters 4

and 5 elaborate the approach proposed for generation of attack vectors to detect logic

and XQuery injection vulnerabilities respectively, and describe the effectiveness of the

proposed approach through proper evaluation of the results. Chapter 6 summarizes the

contributions of this thesis and discusses future research directions.

12

CHAPTER 2

LITERATURE REVIEW

Web application security has attracted much attention from both academia and industry.

In order to protect web applications from malicious users, it is essential to take care of

the security aspects of the application at every phase of the software development life

cycle (SDLC), and also provide a second layer of protection after deploying the appli-

cation. A substantial amount of research efforts has been dedicated in the past to secure

web applications by preventing vulnerabilities and extenuating attacks. The discussions

presented in this chapter are organized in three stages. Firstly, it provides a taxonomy

for the different types of vulnerabilities in web applications and the attacks exploiting

these vulnerabilities. Secondly, it presents a comprehensive review of various state-of-

the-art approaches available for securing the applications from the most notorious risks

like SQL injection, XML injection, cross-site scripting, session management, and logic

attacks. Additionally, it highlights the promising research directions and research chal-

lenges associated with securing web applications. Finally, it discusses the capabilities

of the existing vulnerability scanners, and the challenges faced by them.

2.1 WEB APPLICATION VULNERABILITIES

The attacks on web applications occur due to exploitation of vulnerabilities. The most

common and widely spread vulnerabilities in web applications are: Injection, Business

Logic and Session Management Vulnerabilities (Cova et al. 2007a; Felmetsger et al.

2010; Li and Xue 2013, 2014). Figure 2.1 shows the different types of vulnerabili-

13

2.Literature
R

eview

Types of

vulnerabilities

Attacks

exploiting the

vulnerabilities

Web Application
Vulnerabilities

Injection Vulnerabilities

SQL Injection

XML Injection

XSS

LDAP Injection

Buffer Overflow

Command Injection

HTTP Response
Splitting

Business Logic
Vulnerabilities

Parameter
Manipulation

Access-Control
Vulnerabilities

Authentication
Bypass

Vertical Privilege
Escalation

Horizontal Privilege
Escalation

Workflow
Vulnerabilities

Session Management
Vulnerabilities

Session Hijacking

Session Fixation

CSRF

Clickjacking

Figure 2.1: Types of vulnerabilities and attacks

14

2.1. Web Application Vulnerabilities

ties and the attacks exploiting these vulnerabilities which are discussed in detail in the

following subsections.

2.1.1 Injection Vulnerabilities

Injection vulnerabilities occur when an adversary is able to manipulate value of user-

input parameters used as part of a query, in order to alter the syntax of the query. The

malicious parameters when not validated properly, flow into trusted web pages result-

ing in insecure information flow, and compromise the security of the application. Thus,

the major cause for injection vulnerabilities is insufficient or missing validation of user

controllable data. There are many types of injection vulnerabilities in web applications,

and the types depend on the query, command, or language being injected. These in-

clude SQL queries, HTML responses, Lightweight Directory Access Protocol (LDAP)

statements, OS commands, HTTP headers, and many more.

SQL Injection Vulnerabilities: SQL Injection Vulnerabilities (SQLIVs) are flaws

that enable the attacker to compromise the database of the application resulting in

unwanted extraction/insertion of data from/into the database. The attacks exploiting

SQLIVs are called SQL Injection Attacks (SQLIAs), and the major reasons behind

them are improper user-input validation, cookie tampering and modification of server-

side variables. Halfond et al. (2006) established a classification for SQLIAs as follows:

Tautology attacks, Piggybacked queries, Union queries, Blind injection attacks, Tim-

ing attacks, Alternate encodings, Attacks on stored procedures, etc. All of the above-

mentioned attacks are First-Order SQLIAs. There exists a special type of SQLIA called

Second-Order SQLIA in which the malformed input is stored in the database and used at

a later stage for launching the attack. Examples for these kinds of attacks can be found

in Halfond et al. (2006).

XML Injection Vulnerabilities: XML injection vulnerabilities are similar to SQLIVs,

and allow substitution of the malformed input in place of XPath queries/XQueries

(OWASP 2015). The malformed queries on execution inject undesirable content into

the XML documents and compromise the logic of an XML-based application (Stuttard

and Pinto 2011). Based on the query language in which the malicious input is sub-

15

2. Literature Review

stituted, the injection is referred to as XPath/XQuery injection. The different types of

XML injection are described in Section 5.1.

Cross-Site Scripting (XSS): XSS is a type of code injection vulnerability that en-

ables the attacker to execute malicious scripts in the client’s web browser. It occurs

whenever a web application makes use of input supplied by the end-user without proper

sanitization. When the user visits an exploited web page, the browser executes the ma-

licious scripts. This is known as XSS attack, which leads to consequences like session

hijacking, sensitive data leakage, cookie theft, and web content defacement (Stuttard

and Pinto 2011). There are three types of XSS attacks, namely Reflected, Stored and

DOM-based XSS. Reflected XSS attacks occur whenever user-input containing mali-

cious script is referred immediately in the web page response without proper validation.

Stored XSS attacks occur whenever unvalidated user-input containing malicious scripts

is stored in the database of the application. The stored data when accessed in a web

page launches the attack. These two types of attacks occur due to improper validation

of user-input at the server-side. DOM-based XSS attacks occur at the client-side of the

application (Klein 2007). These attacks make the client-side script to behave in an

unpredicted way when the script uses unvalidated information from DOM (Document

Object Model) structure for processing in the application.

Other Injection Vulnerabilities: Command injection and LDAP injection are vul-

nerabilities similar to SQLIV, and substitute the malformed input in place of OS com-

mands and LDAP statements respectively resulting in compromise of the behavior of

the application (Stuttard and Pinto 2011). HTTP response splitting allows the attacker

to manipulate the value of an HTTP header field such that the resulting response stream

is interpreted by the attack target as two responses instead of one. Buffer overflow vul-

nerabilities allow execution of malicious code that overwrites the memory fragments IP

(Instruction Pointer), BP (Base Pointer) and other registers of the process, resulting in

exceptions, segmentation faults, denial of service, and so on.

16

2.1. Web Application Vulnerabilities

2.1.2 Business Logic Vulnerabilities

Business Logic Vulnerabilities are weaknesses that commonly allow attackers to ma-

nipulate the business logic of an application. They are easily exploitable, and the attacks

exploiting logic vulnerabilities are legitimate application transactions used to carry out

an undesirable operation that is not part of normal business practice. For instance, con-

sider a shopping cart application that permits consumers to utilize a coupon for availing

discount on certain items. Ideally, the coupon can be used only once, but a coding crack

in the application may allow the malicious user to apply the coupon an arbitrary num-

ber of times to avail a higher percentage of discount. The most common types of logic

vulnerabilities (Li and Xue 2011) are described below:

Parameter Manipulation: Manipulation of user-input parameters, which play a sig-

nificant role in the enforcement of business logic, allows the attacker to compromise

the behavior of the application. Attacks are caused due to manipulation of user-input

which causes violation of the semantic restrictions on the user-input. The input could

be provided through the user interface, or manipulated in the HTTP request and cook-

ies. The major reasons behind these attacks are the absence or incorrect validation

of the business logic. Improper input validation at server-side enables the attacker to

bypass the client-side validation and modify the value of user-input parameters at the

server resulting in an attack. These types of attacks are known as parameter manipula-

tion/tampering attacks, and the vulnerability exploited is termed as parameter manip-

ulation/tampering vulnerability. For example, in an eCommerce application, failing to

validate the value of credit card numbers at both client-side and server-side allows an

attacker to modify the credit card number of a user in the HTTP request while placing

an order, and therefore allows the attacker to purchase items for free by charging some

other user.

Access-control Vulnerabilities: The privacy of information being shared in web ap-

plication is maintained by providing privileges exclusively to certain users, so that the

users access only the information to which they are authorized. Failing to properly

incorporate the ACPs during implementation, allows the attackers to gain access to a

17

2. Literature Review

restricted resource, which is exclusively intended for a highly privileged user of the

application. These implementation flaws which allow users of the application to vio-

late ACPs are called Access-Control Vulnerabilities. The three types of attacks that are

possible due to the presence of access-control vulnerabilities are authentication bypass,

authorization bypass/vertical privilege escalation, and horizontal privilege escalation

attacks. Accessing web pages intended to be available only to a logged-in user, without

logging in is an example of an authentication bypass attack. If an attacker accesses

a highly privileged resource by directly pointing to the URL of a page containing the

resource, then the attack is referred to as authorization bypass/vertical privilege esca-

lation attack (Li and Xue 2013). If a user accesses the resource meant for another user

in the same privilege level, then the attack is referred to as horizontal privilege esca-

lation attack (Monshizadeh et al. 2014). According to OWASP (Top10 2013) risks

and SANS errors (SANS 2011), four out of the ten risks,1 and five out of the top 25

dangerous errors2 are related to incorrect implementation of access-control checks.

Workflow Vulnerabilities: These vulnerabilities allow the attackers to disturb the in-

tended workflow of the application, consequently breaking the business-specific func-

tionality of the application. Intended workflow is the sequence of steps to be followed

for completing a certain task in the application. For example, an online banking appli-

cation requires the user to select a beneficiary for transferring funds, enter the amount

to be transferred, and then confirm the transfer. If the “transfer amount” web page does

not check whether the user has selected a beneficiary by visiting the “select beneficiary”

web page only, then there is a possibility that the “select beneficiary” web page can be

passed over by the user by just tampering the account number in the request to “transfer

amount” page, resulting in a workflow bypass attack (Cova et al. 2007a; Li and Xue

2011; Skrupsky et al. 2013). This allows the attacker to transfer funds to their own ac-

count. This vulnerability is termed as workflow vulnerability, and the attack is referred

to as workflow bypass/workflow violation attack.

1(1) Broken Authentication and Session Management, (2) Insecure Direct Object References, (3)
Missing Function Level Access-Control, and (4) Unvalidated Redirects and Forwards

2CWE-306, CWE-862, CWE-250, CWE-863, and CWE-732

18

2.2. Defensive Mechanisms for Securing Web Applications

2.1.3 Session Management Vulnerabilities

Session Management Vulnerabilities (SMVs) denote improper management of session

variables, which are essential for maintaining the state of the application. SMVs be-

come an attractive target for an attacker to perceive the session identifier (ID) that helps

in maintaining the identity of a legitimate user. Exploitation of SMVs leads to attacks

like Session hijacking, Session fixation, Cross-Site Request Forgery (CSRF), and Click-

jacking (Braun et al. 2012; Wedman et al. 2013). Session hijacking attack is a type

of attack in which the attacker steals the session token of an authorized user for per-

forming adversary actions. In Session fixation attack, the attacker elevates their session

token to an authorized user’s token for stealing the user’s session. CSRF attack enables

the attacker to submit a malicious request to the application on behalf of a legitimate

user. Clickjacking attack (Huang et al. 2012) tempts a user to click on objects placed

in malicious web pages, which may lead to some unwanted action without the consent

of the user. Session hijacking and session fixation attacks target on the session ID of the

user, whereas CSRF and clickjacking attacks target the browser to submit illegitimate

requests on behalf of the user.

2.2 DEFENSIVE MECHANISMS FOR SECURING WEB APPLICATIONS

This section provides a comprehensive review of various mitigation techniques avail-

able for securing web applications from different types of attacks such as SQL/XML

injection, XSS and business logic attacks. The existing literature is classified based on

the approaches specified in Section 1.3.

2.2.1 Injection Defenses

This section reviews the defensive mechanisms that have been proposed for securing

web applications from injection attacks such as SQL injection, XML injection, and

XSS.

2.2.1.1 SQL Injection

Two major causes for SQLIAs are the ignorance towards sanitizing user-input, and

framing SQL queries dynamically by concatenating SQL code and user-input using

19

2. Literature Review

string data type during runtime. The various approaches defined in the past for address-

ing SQL injection can be classified into three categories: (i) Secure programming, (ii)

Vulnerability detection & prevention, and (iii) Attack detection & prevention. Secure

programming enables the developer to follow secure practices during development of

the application. Vulnerability detection approaches concentrate on identifying vulner-

able injection points through which malformed data enters and propagates through the

application. Attack prevention approaches rely on comparing the structure of the query

generated during normal and attack execution, and prevent the malformed query from

being executed by the database.

(a) Secure Programming: Secure coding practices involve proper sanitization and

encoding of the user-input, checking the data type of the input, parameterizing queries,

using stored procedures, etc. Parameterized queries (OWASP 2017a) refer to query

statements where placeholders (e.g., “?”) are used for referring to user-supplied inputs.

The placeholders treat the SQL code embedded in the attack string as input only and do

not treat them as code thereby avoiding attacks. Stored procedures have the same effect

as that of parameterized queries. Even though intensive care is taken during coding,

SQLIAs are still prevalent in web applications.

(b) Vulnerability Detection: The behavior or the source code of the web application

is analyzed for detecting the weaknesses existing in the application. WebSSARI, a

tool developed by Huang et al. (2004), analyzes the source code of the application

for extracting information flow to identify SQLIVs. While WebSSARI gathers only

the intraprocedural flow of information, Xie and Aiken (2006) proposed a model that

identifies inter and intra-relationship between the procedures for detecting SQLIVs.

Wassermann and Su (2007) proposed a taint analysis based approach that takes into

account the semantics of the validation routines for improving the effectiveness of the

results.

Kosuga et al. (2007) developed a tool Sania to intercept SQL queries, and to com-

pare the parse trees generated during normal and attack execution for detecting SQLIVs.

The input parameters appearing in the SQL queries are identified and substituted with

20

2.2. Defensive Mechanisms for Securing Web Applications

attack strings for identifying vulnerabilities. Sania requires the developer to generate

valid HTTP requests, and employs two proxies: HTTP proxy to capture HTTP packets,

and SQL proxy to capture SQL queries. Usage of two proxies is a overhead in Sania.

Huang et al. (2005) implemented a framework called WAVES for detecting both SQL

injection and XSS vulnerabilities in web applications. WebSSARI (Huang et al. 2004),

a tool developed by the same team employs a white-box approach, while WAVES iden-

tifies vulnerabilities using a black-box approach. WAVES crawls the application for

identifying vulnerable injection points and injects attack vectors for discovering vulner-

abilities. The drawback of WAVES over WebSSARI is the injection of untrusted data

into the application during testing. Ciampa et al. (2010) proposed a heuristic approach

that infers information about tables and fields stored in the database of the application

from pattern matching of the valid output and error messages obtained for legitimate

and malicious test cases. The inferred information is later used for crafting attack-input

that helps in identifying vulnerabilities. Medeiros et al. (2016b) developed DEKANT, a

tool that learns to detect vulnerabilities automatically using machine learning. The tool

operates in two phases: learning and detection. In the learning phase, a corpus is built

and is used for constructing a Hidden Markov Model to train the tool about the vul-

nerabilities. In the detection phase, vulnerabilities are discovered using the constructed

model.

Different from the previous approaches, Ceccato et al. (2016) presented a Security

Oracle For Injection Attacks (SOFIA). A security oracle is a process used for evaluating

the effectiveness of the test cases used for discovering vulnerabilities. The proposed or-

acle (i.e., SOFIA) is capable of detecting new kinds of attacks, and is not dependent on

information about the test-input. Additionally, the oracle does not require access to the

source code of the application under test. SOFIA operates in two phases: training and

testing. During training, SQL statements executed during normal execution are clus-

tered based on edit distance of their parse trees. During testing, the approach ascertains

whether the illegitimate statement could be assigned to the clusters framed during the

training. In case of negative response, a vulnerability is reported.

21

2. Literature Review

(c) Vulnerability Prevention: The vulnerabilities detected in an application need to

be fixed before deployment for preventing the attacks. Thomas and Williams (2007)

identified vulnerable SQL statements in the code to automatically replace them with

secure SQL statements. However, the model identifies and fixes vulnerabilities in Java

applications alone. Scholte et al. (2012b) developed IPAAS, which combines machine-

learning and static analysis for preventing SQL injection and XSS vulnerabilities. The

restrictions on data type and values of the input parameters are extracted from the source

code and HTTP requests. The combined knowledge is used for extracting validation

policies on the input which can be enforced during runtime to prevent attacks.

(d) Vulnerability Prediction: While most of the above works focus on detection of

vulnerabilities, Shar and Tan (2013) developed a prototype PHPMinerI to predict SQL

injection and XSS vulnerabilities in web applications using machine-learning tech-

niques on input sanitization patterns. The source code is analyzed to identify the prop-

agation of user-input to sensitive HTML sinks and SQL sinks. Each sensitive sink

identified is represented with a 21-dimension attribute vector. The attributes specify the

source of the input (e.g., user-input, file), type of sink (e.g., HTML, SQL), the type of

sanitization function employed (e.g., SQL injection sanitization, encoding), and finally,

the classifying variable “Vulnerable” which specifies whether the sink is vulnerable or

not. These attributes defined for each sensitive sink are used for predicting the vulnera-

bilities in web applications.

(e) Attack Detection: Lee et al. (2012) combined both static and dynamic approaches

for detecting SQLIAs. The source code is analyzed, and the structure of the query is

extracted and stored after removing the value of attributes involved in SQL queries (i.e.,

removing values enclosed within quote symbols, or values followed by ‘=’ symbol,

etc.). The attacks are detected during runtime after comparing the syntactic structure of

the queries with predetermined one. The advantage of this approach is the capability

of the algorithm in detecting the attacks at constant time. Kar et al. (2016) developed a

prototype named SQLiGoT for detecting SQLIAs. SQLiGoT models the SQL queries

as a graph of tokens and utilizes Support Vector Machine for classifying the queries

as either genuine or malicious. Different from AMNESIA (Halfond and Orso 2005),

22

2.2. Defensive Mechanisms for Securing Web Applications

CANDID (Bisht et al. 2010b) and SQLProb (Liu et al. 2009), SQLiGoT does not

require building query models during normal execution, and can protect multiple web

applications hosted on the same server.

(f) Attack Prevention: SQLGuard (Buehrer et al. 2005) prevents SQLIAs in Java

web applications, when any discrepancy exists between the parse trees of the SQL state-

ments with and without user-input. AMNESIA (Halfond and Orso 2005) combines

static analysis and runtime monitoring for preventing SQLIAs. During static analy-

sis, the input fields rendering SQL queries are identified and a non-deterministic finite

automata (NDFA) is constructed from the SQL queries. During runtime, attacks are

prevented if there exists any difference between the NDFAs constructed from the attack

string and the input string provided during the learning process. SQLCHECK (Su and

Wassermann 2006) constructs an augmented grammar and employs parsing technique

for preventing SQLIAs. Halfond et al. (2008) used a positive tainting mechanism to

identify and monitor the propagation of trusted data sources into SQL queries. The

syntax of the query strings are then evaluated to prevent execution of malicious queries.

Bisht et al. (2010b) developed a tool CANDID for preventing SQLIAs by mining the

query structure for valid input and comparing them against the structure of query issued

during the attack. SQLProb (Liu et al. 2009) uses a proxy for capturing the queries

which is a overhead at the server-side of the application to prevent SQLIAs. Jang and

Choi (2014) presented an approach to prevent SQLIAs in Java based web applications

with respect to the size of results obtained for any query. The query is prevented from

being executed when there is a variation in the result size of normal query and attack

query statements. Shahriar and Zulkernine (2012a) proposed an information-theoretic

approach for preventing SQLIAs. The entropy for each and every SQL query involved

in the application is calculated based on the probability distribution of tokens in the

query, and stored for future use. During runtime, the entropy value is calculated for

each query being executed and compared with the stored entropy value. A deviation in

the value identifies the query as malicious and prevents it from being executed. This

approach does not detect SQLIAs in stored procedures.

23

2. Literature Review

Boyd and Keromytis (2004) proposed SQLRand, a randomization approach that al-

lows developers to randomize SQL keywords for preventing SQLIAs. The randomized

SQL query is de-randomized before execution using a proxy sitting between the web

server and the database server. As the key used for randomization is not exposed to

the attacker, the user-input with malicious code injected by the attacker is not random-

ized, and hence would be identified by the proxy and prevented from being executed.

This approach suffers from two problems. First, using a proxy imparts an overhead on

the server. Second, the approach could be circumvented if the key used for random-

ization of the SQL queries is exposed to the attacker. While SQLRand requires the

developer to identify and randomize the SQL keywords manually, AutoRand (Perkins

et al. 2016) randomizes the keywords automatically and does not require a proxy for

de-randomization. AutoRand operates on bytecode of Java applications.

Different from the existing approaches, a new form of protection mechanism for

databases is proposed by Medeiros et al. (2016a). The mechanism named SEPTIC

(SElf-Protecting daTabases preventIng attaCks) embeds the protection module within

the database to either detect or prevent SQL injection and stored injection attacks such

as second-order SQL injection, stored XSS, etc. against the database. Table 2.1 sum-

marizes the literature on SQL injection.

2.2.1.2 XML Injection

This section provides insight about the work done so far for identifying/preventing in-

jection vulnerabilities/attacks that target the XML documents involved in the web ap-

plication. With respect to SQL injection, relatively less amount of research has been

done on XML injection vulnerability detection and attack prevention. A detailed classi-

fication of the existing approaches on SQL/XML injection can be found in the literature

(Deepa and Thilagam 2016; Halfond et al. 2006; Li and Xue 2014; Palsetia et al.

2016; Shahriar and Zulkernine 2011b, 2012b). Most of the research works address-

ing XML injection are inclined to prevention of attacks and only a few works exist for

identifying vulnerabilities.

24

2.2.D
efensive

M
echanism

s
for

Securing
W

eb
A

pplications
Table 2.1: Summary of SQL injection prevention/detection approaches

Area of Focus Type of Analysis Approach

Research Article V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ev
en

tio
n

A
tta

ck
D

et
ec

tio
n

A
tta

ck
Pr

ev
en

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ed
ic

tio
n

Se
cu

re
Pr

og
ra

m
m

in
g

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

Pe
ne

tr
at

io
n

Te
st

in
g

O
th

er
s

Si
gn

at
ur

e-
B

as
ed

Q
ue

ry
M

od
el

-B
as

ed

K
no

w
le

dg
e-

B
as

ed

M
ac

hi
ne

L
ea

rn
in

g

In
st

ru
ct

io
n-

se
tR

an
do

m
iz

at
io

n

WebSSARI (Huang et al. 2004) X X
SQLRand (Boyd and Keromytis 2004) X X X
SQLGuard (Buehrer et al. 2005) X X X
AMNESIA (Halfond and Orso 2005) X X X X X
Waves (Huang et al. 2005) X X X X
SQLCheck (Su and Wassermann 2006) X X X
Xie and Aiken (2006) X X
Sania (Kosuga et al. 2007) X X X X
Thomas and Williams (2007) X X X X
Wassermann and Su (2007) X X
WASP (Halfond et al. 2008) X X
SQLProb (Liu et al. 2009) X X X
CANDID (Bisht et al. 2010b) X X X

Continued on next page

25

2.Literature
R

eview
Table 2.1 – Summary of SQL injection prevention/detection approaches (continued from previous page)

Area of Focus Type of Analysis Approach

Research Article V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ev
en

tio
n

A
tta

ck
D

et
ec

tio
n

A
tta

ck
Pr

ev
en

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ed
ic

tio
n

Se
cu

re
Pr

og
ra

m
m

in
g

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

Pe
ne

tr
at

io
n

Te
st

in
g

O
th

er
s

Si
gn

at
ur

e-
B

as
ed

Q
ue

ry
M

od
el

-B
as

ed

K
no

w
le

dg
e-

B
as

ed

M
ac

hi
ne

L
ea

rn
in

g

In
st

ru
ct

io
n-

se
tR

an
do

m
iz

at
io

n

Ciampa et al. (2010) X X
IPAAS (Scholte et al. 2012b) X X X
Lee et al. (2012) X X X
PHPMinerI (Shar and Tan 2013) X X X X
Jang and Choi (2014) X X
DEKANT (Medeiros et al. 2016b) X X X
SQLiGoT (Kar et al. 2016) X X X
AutoRand (Perkins et al. 2016) X X X
SEPTIC (Medeiros et al. 2016a) X X X X
SOFIA (Ceccato et al. 2016) X X X X X

26

2.2. Defensive Mechanisms for Securing Web Applications

(a) Secure Programming: Secure coding practices to prevent injection attacks in-

clude validation of user-supplied input, parameterizing queries, pre-compilation of queries,

escaping the special characters in the input, and embedding grammar of the query lan-

guage into that of the host language (e.g., Java, C#, VB, etc.) (Bravenboer et al. 2010;

Truelove and Svoboda 2011; XPath-Injection 2015). The drawback with this approach

is the overhead imparted on developers to learn and implement the security paradigms

during construction.

(b) Vulnerability Detection: Antunes et al. (2009) identified injection vulnerabilities

in web services using Aspect Oriented Programming that intercept all the calls to API

methods executing SQL commands. The structure of SQL/XPath commands issued in

the presence of attacks to the ones previously learnt when running the workload in the

absence of attacks are compared for identifying the vulnerabilities. Sign-WS (Antunes

and Vieira 2011) employs penetration testing and interface monitoring for detection

of the attack signatures to identify injection vulnerabilities in web services. Laran-

jeiro et al. (2009) proposed a query-model based approach that combines penetration

testing and static code analysis to detect SQL/XPath vulnerabilities and therefore pre-

vent SQL and XPath injection attacks in web services. Jan et al. (2016) developed a

testing framework (SOLMI) for identifying XML injection vulnerabilities in web ser-

vices. It works based on mutation operators defined to manipulate XML messages and

a constraint solver for generation of test cases to provide valid but malicious messages.

The constraint solver generates nested attacks to increase the effectiveness. Jan et al.

(2017) developed a search-based testing approach, an extension of SOLMI, for identi-

fying XML injection vulnerabilities in web services. The approach is automated, and it

utilizes genetic algorithm for identifying test cases that are effective in discovering the

vulnerabilities. While SOLMI defines mutation operators for manipulating XML mes-

sages, this approach concentrates on effective generation of test-inputs that are capable

of delivering malicious XML messages.

(c) Attack Prevention: Huang (2003) discussed detection of intrusions in database

systems through fingerprinting transactions. A broad class of injection attacks is pre-

vented using a signature-based approach in Mitropoulos et al. (2011). During training

27

2. Literature Review

phase, vulnerable code statements are identified and registered using unique signatures

for differentiating normal and abnormal executions. During runtime, the framework

checks the compliance of all statements with the learnt model and blocks code state-

ments containing maliciously injected elements. New unknown attacks cannot be de-

tected using the signature-based approach, even if they have only small variations from

a known payload (Rosa et al. 2013). Groppe and Groppe (2008) identified XPath

queries that do not satisfy the constraints defined in the schema, and forbid the queries

from being executed for preventing attacks. Lampesberger (2013) detected anomalies

in XML documents from grammatical-inference of the documents by constructing a

visibly pushdown automaton. The automaton provides the syntactic structure and data

types of the parameters used in the XML document, which helps in identifying the

anomalies. Asmawi et al. (2012) proposed a query-model based approach similar to

Antunes et al. (2009) for preventing XPath injection attacks in a web services environ-

ment. The problem with query model-based approach is its failure in detecting attacks

where the structure of the query varies dynamically based on conditional input (Bisht

et al. 2010b).

Mitropoulos et al. (2009) developed a methodology that constructs a knowledge-

base during the training phase. During the testing phase, when an XPath query is en-

countered, an identifier is generated. If the identifier does not exist in the knowledge-

base, then the query is considered as malicious. The major drawback of this technique

is that any change in source code requires a new training to reassign the identifiers.

Rosa et al. (2013) presented an XML injection strategy-based detection system for

mitigating zero-day attacks. A machine learning based approach proposed by Valeur

et al. (2005) calculated anomaly scores for each query being executed, and detected

SQLIAs when the anomaly score exceeds the maximum anomaly score obtained during

attack free execution. Anomalies in XML transactions are detected using a framework

called XML-AD (Menahem et al. 2012). The features of the XML documents are ex-

tracted and transformed into attribute vectors, and anomalies are detected using a novel

multi-univariate anomaly detection algorithm, ADIFA. A predictive fuzzy associative

rule model (FARM) (Chan et al. 2013) is developed for identifying attack patterns and

28

2.2. Defensive Mechanisms for Securing Web Applications

anomalies to counter both signature and anomaly-based XML related attacks. The prob-

lem with the machine learning approach is that the number of false positives and false

negatives generated depends on appropriate selection of the training set. The existing

approaches focusing on XML injection are summarized in Table 2.2.

2.2.1.3 Cross-Site Scripting

This subsection deals with various defensive approaches available for protecting the

web applications against XSS attacks. XSS vulnerabilities can be prevented by adopt-

ing secure coding practices, and using secure development frameworks like Django,

Ruby on Rails, CodeIgniter, etc. during development. The existing vulnerability de-

tection approaches focus on identifying missing sanitization routines and analyzing the

effectiveness of sanitization routines, whereas XSS attack prevention approaches help

in identifying and preventing malicious scripts from being executed by the client.

(a) Secure Programming: XSS vulnerabilities can be eliminated by adopting secure

coding practices like sanitization of untrusted input for removing harmful properties.

The sanitization routines involve imposing restrictions on user-input, using escape se-

quences for referencing special characters, and replacement or removal of malicious

characters from the input (OWASP 2017b). The implementation overhead imparted

on developers for writing secure code can be addressed in Java applications by using

the library Stones (Juillerat 2007) that prevents SQL injection and XSS vulnerabilities.

The library enables access to the database using object-oriented programming instead

of SQL statements. The user-input can be passed only through appropriate methods and

is not substituted directly as a string. Thus, the library takes care of the security aspects

on its own, and does not require any additional effort from the developers. The inse-

cure practice of concatenating code and data while framing queries can be discarded by

providing a clear separation between the data and code, and is achieved by Johns et al.

(2010), who introduced Embedded Language Encapsulation Type (ELET) for repre-

senting the syntax of the query. A type system for Java language was developed by

Grabowski et al. (2012) to enforce secure programming guidelines for preventing XSS

attacks.

29

2.Literature
R

eview

Table 2.2: Summary of XML injection prevention/detection approaches

Area of Focus Type of Analysis Approach

Research Article V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ev
en

tio
n

A
tta

ck
D

et
ec

tio
n

A
tta

ck
Pr

ev
en

tio
n

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

Pe
ne

tr
at

io
n

Te
st

in
g

O
th

er
s

Si
gn

at
ur

e-
B

as
ed

Sc
he

m
a-

B
as

ed

Q
ue

ry
M

od
el

-B
as

ed

K
no

w
le

dg
e-

B
as

ed

M
ac

hi
ne

L
ea

rn
in

g

M
ut

at
io

n-
B

as
ed

Se
ar

ch
-B

as
ed

Huang (2003) X X

Groppe and Groppe (2008) X X

Antunes et al. (2009) X X X X

Laranjeiro et al. (2009) X X X X

Mitropoulos et al. (2009) X X X

Antunes and Vieira (2011) X X X

Mitropoulos et al. (2011) X X

Asmawi et al. (2012) X X X

Menahem et al. (2012) X X

Chan et al. (2013) X X

Lampesberger (2013) X X

Rosa et al. (2013) X X X X

Jan et al. (2016) X X X

Jan et al. (2017) X X X

30

2.2. Defensive Mechanisms for Securing Web Applications

(b) Vulnerability Detection: Di Lucca et al. (2004) examined the source code of the

application to construct control flow graphs for identifying vulnerable web pages. Even

though the major cause for XSS attack is incorrect implementation of input sanitization

functions, few web applications fail to include input sanitizers for filtering out malicious

characters. Thus, most of the XSS attacks arise due to the lack of sanitization rather than

incorrect sanitization (Scholte et al. 2012a; Wassermann and Su 2008). Taint analysis

is a mechanism used for detecting vulnerabilities that arise due to absence of input

sanitization. It tracks the flow of user-input and checks if the untrusted input is used

in the HTML output statements (i.e., sensitive sinks) without encountering sanitization.

Jovanovic et al. (2006b,c) developed a open-source, static taint analysis tool called Pixy

for detecting XSS vulnerabilities. The tool identifies the points through which untrusted

user-input enters and propagates through the application to launch an attack. The data

is marked as tainted initially and when it passes through a sanitization routine, it is

marked as untainted. It employs inter-procedural, context-sensitive data flow analysis

for identifying vulnerabilities. Pixy verifies whether the user-input is sanitized or not

before reaching sensitive sink, but cannot guarantee the correctness of sanitization.

Correctness of sanitization routines can be ensured using string taint analysis, which

is employed by Wassermann and Su (2008) and Balzarotti et al. (2008). Wassermann

and Su (2008) analyzed the input string to identify tainted substring values for prevent-

ing any untrusted script from being executed by the JavaScript interpreter. The approach

is unable to detect DOM-based XSS as it requires analysis of the semantics of the web

page. Balzarotti et al. (2008) developed a tool Saner to combine the strengths of both

static and dynamic analysis. It employs static analysis for identifying sanitization rou-

tines, and dynamic analysis for verifying the correctness of the routines. DEKANT

(Medeiros et al. 2016b) discussed in Section 2.2.1.1 detects XSS vulnerabilities in web

applications using machine learning approach.

Kals et al. (2006) developed Secubat, a black-box vulnerability scanner, for identi-

fying SQL and XSS vulnerabilities. Secubat uses a crawler to identify the web pages

in the application, fills the form fields with attack vectors, and then analyzes the output

for detecting vulnerabilities. It is capable of detecting only reflected XSS. A black-box

31

2. Literature Review

fuzzer, KameleonFuzz, developed by Duchene et al. (2014) automates the generation

of malicious inputs using genetic algorithm for detecting XSS vulnerabilities. While,

the previous works (Balzarotti et al. 2008; Di Lucca et al. 2004; Duchene et al. 2014;

Kals et al. 2006; Wassermann and Su 2008) concentrate on detecting vulnerabilities

by injecting malicious input, Shahriar and Zulkernine (2009) took the first step towards

injecting faults into the source code for generating sufficient number of test-cases to

detect XSS vulnerabilities in PHP applications.

Shar and Tan (2012) developed SaferXSS to detect and eliminate XSS vulnera-

bilities in Java-based web applications. The identified vulnerabilities are eliminated

after identifying the appropriate context for escaping special characters in the user-

controllable data, and then employing proper escaping mechanism which prevents the

special characters from invoking the script interpreter. SaferXSS cannot prevent DOM-

based XSS as it does not analyze client-side scripts. Van Acker et al. (2012) developed

FlashOver for discovering XSS vulnerabilities in Flash applications. While the works

discussed so far concentrate on discovering XSS vulnerabilities in traditional web ap-

plications, FlashOver detects vulnerabilities in Rich Internet Applications (RIAs) (Bri-

jesh Deb and Bharti 2007; Ward 2007). RIAs are the applications that are rich in con-

tent (i.e., audio, video, etc.), highly interactive and responsive, and involve technologies

like Flash, Silverlight, Asynchronous JavaScript and XML (AJAX), etc. for rendering

web pages. While most of the aforementioned approaches cannot detect DOM-based

XSS vulnerabilities, Lekies et al. (2013) proposed an approach to detect DOM-based

XSS using a taint-aware JavaScript engine.

(c) Vulnerability Prevention: IPAAS (Scholte et al. 2012b), described in Section

2.2.1.1, enforces validation policies on input parameters during runtime to prevent XSS

vulnerabilities. IPAAS is different from the approaches by Balzarotti et al. (2008); Jo-

vanovic et al. (2006b,c); Wassermann and Su (2008) as it enforces validation of the

input based on their data type rather than sanitizing the output for removal of malicious

scripts. The limitation of the approach is that the validation policies place constraints

on the parameters based on the data type only, and hence cannot assure complete en-

forcement of security constraints. ScriptGard developed by Saxena et al. (2011) detects

32

2.2. Defensive Mechanisms for Securing Web Applications

erroneous placement of sanitization routines and repairs them. Doupé et al. (2013) de-

veloped deDacota, an automated tool that provides a clear separation between code and

data in web pages of legacy ASP.NET web applications to prevent XSS vulnerabilities.

The approach by Johns et al. (2010) is similar to deDacota, and it enables secure con-

struction of new applications, while deDacota ensures security of legacy applications.

(d) Vulnerability Prediction: As already described in Section 2.2.1.1, PHPMinerI

(Shar and Tan 2013) predicts the vulnerabilities based on attributes defined for re-

flecting properties of sanitization routines. Figure 2.2 summarizes the list of articles

focusing on detection and prevention of XSS vulnerabilities.

(e) Attack Detection: XSSDS (Johns et al. 2008) is a proxy based system, which

intercepts and compares the HTTP requests and responses for detecting XSS attacks. It

checks if any input parameters in the request have become a part of the client-side script

in the response page. Shahriar and Zulkernine (2011a) developed a framework that

instruments the application code by injecting boundaries in locations generating con-

tent for the web page dynamically. For instance, <!—t1—> is added before and after

HTML tags generating dynamic content (i.e., <!—t1—><td><%=userid%></td>

<!—t1—>). The content features of benign response are compared with the malicious

response for identifying the attacks. Wurzinger et al. (2009) developed a prototype Se-

cure Web Application Proxy (SWAP), which operates as a reverse proxy, and intercepts

the HTML response before being delivered to the client. The response is analyzed to

identify and prevent, if any malicious script is injected, by comparing with a whitelist

of trusted scripts. Shahriar et al. (2014a,b) developed a proxy-based solution for detect-

ing XSS attacks. The approach calculates an information theoretic measure, Kullback-

Leibler Divergence, for both expected and actual JavaScript code to detect attacks. Both

SQLIAs and XSS attacks are detected in the work by Shahriar et al. (2014b).

(f) Attack Prevention: XSS-Guard (Bisht and Venkatakrishnan 2008) works in a

similar way to XSSDS (Johns et al. 2008), and aims at identifying and removing mali-

cious scripts unintended by the web application. Blueprint (Ter Louw and Venkatakrish-

nan 2009), an extension of XSS-Guard, prevents execution of unauthorized scripts by

33

2.Literature
R

eview

Mitigation Mechansims for Protecting Web Applications from XSS Vulnerability

Detection

Static

Pixy (Jovanovic et al.
2006b,c)

Wassermann and Su
(2008)

MUTEC (Shahriar and
Zulkernine 2009)

Shar and Tan (2012)

DEKANT (Medeiros et
al. 2016b)

Dynamic

Secubat (Kals et al.
2006)

Lekies et al. (2013)

Kameleonfuzz (Duchene
et al. 2014)

Hybrid

Di Lucca et al. (2004)

Saner (Balzarotti et al.
2008)

FlashOver (Van Acker et
al. 2012)

Prevention

Secure
Construction

Juillerat (2007)

Johns et al. (2010)

Static

Scholte et al. (2012b)

ScriptGard (Saxena et
al. 2011)

deDacota (Doupé et al.
2013)

Prediction

Static

Shar and Tan (2013)

Figure 2.2: Research on detection and prevention of XSS vulnerabilities

34

2.2. Defensive Mechanisms for Securing Web Applications

ascertaining safe construction of a parse tree. The parse tree embeds the untrusted user-

input in such a way that it does not get executed, and hence secures the application. The

drawback of Blueprint is the requirement of programmer to annotate statements holding

untrusted contents. Noncespaces (Van Gundy and Chen 2009, 2012) enables the clients

to differentiate malicious from non-malicious contents by randomizing HTML tags and

attributes (i.e., adding a random string to all the HTML tags) before delivering it to the

client. Thus, any malicious script injected through user-input can be identified due to

non-availability of the random token in their tags. While Blueprint provides protection

at the server-side, Noncespaces provides protection at the client-side. Both, Blueprint

and Noncespaces concentrate on preserving the integrity of the HTML content struc-

ture of the web page. POSTER (Cao et al. 2011) prevents all types of XSS attacks by

preventing propagation of malicious scripts in social networking websites.

Chaudhuri and Foster (2010) developed a framework Rubyx for detecting XSS,

CSRF and session manipulation vulnerabilities in Ruby-on-Rails web applications. Script-

Gard developed by Saxena et al. (2011) detects the faults in sanitization routines and

removes them. SessionSafe (Johns 2006) aims at preventing session hijacking attacks

resulting from XSS vulnerabilities. The risk level to which a web application is exposed

due to the presence of SQL injection and XSS vulnerabilities is analyzed using a Fuzzy

Logic system (Shahriar and Haddad 2014). SEPTIC (Medeiros et al. 2016a) protects

the web applications from stored XSS attacks arising due to malicious scripts stored in

the database of the application.

While all of the above-mentioned works (Balzarotti et al. 2008; Bisht and Venkatakr-

ishnan 2008; Di Lucca et al. 2004; Doupé et al. 2013; Duchene et al. 2014; Johns

et al. 2008; Jovanovic et al. 2006b,c; Kals et al. 2006; Saxena et al. 2011; Scholte

et al. 2012b; Shahriar and Zulkernine 2011a; Shar and Tan 2012; Ter Louw and

Venkatakrishnan 2009; Van Acker et al. 2012; Wassermann and Su 2008; Wurzinger

et al. 2009) deploy security mechanisms at the server-side of the application, BEEP

(Jim et al. 2007), Noxes (Kirda et al. 2009, 2006), Noncespaces (Van Gundy and Chen

2009, 2012), Vogt et al. (2007), and Stock et al. (2014) deploy the security mechanisms

at the client-side of the application for mitigating XSS attacks.

35

2. Literature Review

BEEP (Jim et al. 2007) enhances the browsers with policies that specify the scripts

to be executed from a web page. Noxes (Kirda et al. 2009, 2006) is the first step towards

mitigating XSS at the client-side. Noxes is an application-level firewall that looks for

hyperlinks in web pages which may lead to leakage of information; and prohibits such

links from being followed. The client-side solution by Vogt et al. (2007) tracks the flow

of sensitive information inside the web browser for protecting the application against

XSS attack. Both Noxes and Vogt et al. (2007) attempt to prevent sensitive information

from being transferred to third-party servers, and hence cannot prevent XSS attacks

that execute malicious scripts in the same domain. In other words, it cannot prevent

XSS attacks that do not violate the same-origin policy. Stock et al. (2014) extended

the work by Lekies et al. (2013), and combined the taint-aware JavaScript engine with

taint-aware parsers for preventing DOM-based XSS attacks. Figure 2.3 summarizes the

list of articles focusing on detection and prevention of XSS attacks.

The detailed review on Reflected-XSS and Stored-XSS attacks (Garcia-Alfaro and

Navarro-Arribas 2008, 2009) states that XSS can be prevented by either employing

policies for filtering malicious code or enforcing security policies at the browser-end.

Table 2.3 provides a summary of the literature, and depicts that most of the existing

works focus on detection of XSS vulnerabilities and prevention of XSS attacks. Script-

Gard (Saxena et al. 2011) and the work by Shar and Tan (2012) are the only works

concentrating on the removal of XSS vulnerabilities. Also, only a little amount of work

is done towards preventing DOM-based XSS attack (Klein 2007), a third kind of XSS

attack emerging due to implementation of business logic at the client-side of the appli-

cation.

2.2.1.4 Research Challenges and Directions

SQL Injection: The existing solutions for detecting SQL injection have their own

pros and cons, and they are described as follows. Secure programming imparts overhead

on developers for implementing the security guidelines during development (Braven-

boer et al. 2010). Signature-based approach does not prevent zero-day attacks, and

suffers from false negatives when attack query matches the structure of a legitimate

query (Thomas and Williams 2007). The knowledge-based approach requires new

36

2.2.D
efensive

M
echanism

s
for

Securing
W

eb
A

pplications

Mitigation Mechansims for Protecting Web Applications against
XSS Attacks

Detection

Dynamic

Johns et al. (2008)

Wurzinger et al.
(2009)

Shahriar and
Zulkernine (2011a)

Shahriar et al.
(2014a,b)

SEPTIC (Medeiros et
al. 2016a)

Prevention

Secure
Construction

Grabowski et al.
(2012)

Static

BEEP (Jim et al.
2007)

Chaudhuri and Foster
(2010)

ScriptGard (Saxena et
al. 2011)

deDacota (Doupé et
al. 2013)

Dynamic

Noxes (Kirda et al.
2009,2006)

XSS-Guard (Bisht and
Venkatakrishnan
2008)

Blueprint (Ter Louw
and Venkatakrishnan
2009)

POSTER (Cao et al.
2011)

Noncespaces (Gundy
and Chen 2012,2009)

Wurzinger et al.
(2009)

Stock et al. (2014)

SEPTIC (Medeiros et
al. 2016a)

Hybrid

Vogt et al. (2007)

Figure 2.3: Research on detection and prevention of XSS attacks

37

2.Literature
R

eview
Table 2.3: Summary of articles on XSS

Area of Focus Type of
Analysis Type of XSS

Research Article Year V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ev
en

tio
n

A
tta

ck
D

et
ec

tio
n

A
tta

ck
Pr

ev
en

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ed
ic

tio
n

Se
cu

re
Pr

og
ra

m
m

in
g

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

R
efl

ec
te

d
X

SS

St
or

ed
X

SS

D
O

M
-B

as
ed

X
SS

Di Lucca et al. (2004) 2004 X X X • • •
Pixy (Jovanovic et al. 2006b,c) 2006 X X • • •
Wassermann and Su (2008) 2008 X X X X
MUTEC (Shahriar and Zulkernine 2009) 2009 X X X X X
Shar and Tan (2012) 2012 X X X X
DEKANT (Medeiros et al. 2016b) 2016 X X X • •
Secubat (Kals et al. 2006) 2006 X X X
Saner (Balzarotti et al. 2008) 2008 X X X • • •
FlashOver (Van Acker et al. 2012) 2012 X X X • • •
Lekies et al. (2013) 2013 X X X
Kameleonfuzz (Duchene et al. 2014) 2014 X X X X
Grabowski et al. (2012) 2012 X X • • •
BEEP (Jim et al. 2007) 2007 X X X X
Chaudhuri and Foster (2010) 2010 X X • • •
ScriptGard (Saxena et al. 2011) 2011 X X X • • •
Vogt et al. (2007) 2007 X X X X X X
XSS-Guard (Bisht and Venkatakrishnan 2008) 2008 X X • • •
Noxes (Kirda et al. 2009, 2006) 2009 X X X X
Blueprint (Ter Louw and Venkatakrishnan 2009) 2009 X X X X

Continued on next page

38

2.2.D
efensive

M
echanism

s
for

Securing
W

eb
A

pplications
Table 2.3 – Summary of articles on XSS (continued from previous page)

Area of Focus Type of
Analysis Type of XSS

Research Article Year V
ul

ne
ra

bi
lit

y
D

et
ec

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ev
en

tio
n

A
tta

ck
D

et
ec

tio
n

A
tta

ck
Pr

ev
en

tio
n

V
ul

ne
ra

bi
lit

y
Pr

ed
ic

tio
n

Se
cu

re
Pr

og
ra

m
m

in
g

St
at

ic
A

na
ly

si
s

D
yn

am
ic

A
na

ly
si

s

R
efl

ec
te

d
X

SS

St
or

ed
X

SS

D
O

M
-B

as
ed

X
SS

POSTER (Cao et al. 2011) 2011 X X X X X
Noncespaces (Van Gundy and Chen 2009, 2012) 2012 X X X X
Stock et al. (2014) 2014 X X X
Juillerat (2007) 2007 X X • • •
Johns et al. (2010) 2010 X X • • •
Scholte et al. (2012b) 2012 X X • • •
deDacota (Doupé et al. 2013) 2013 X X X X X
Johns et al. (2008) 2008 X X X X
Wurzinger et al. (2009) 2009 X X X • • •
Shahriar and Zulkernine (2011a) 2011 X X • • •
Shahriar et al. (2014a,b) 2014 X X • • •
SEPTIC (Medeiros et al. 2016a) 2016 X X X X
Shar and Tan (2013) 2013 X X • • •

• - Not specified in the paper.

39

2. Literature Review

training whenever modifications are made to the source code of the application (Huang

et al. 2005). The accuracy of machine learning approach is dependent on appropriate

selection of the training set (Ceccato et al. 2016; Kar et al. 2016; Medeiros et al.

2016b; Scholte et al. 2012b; Shar and Tan 2013).

Even though various mechanisms exist for securing web applications from SQL

injection, most of the proposed solutions fail to address all kinds of SQLIAs. Exist-

ing methods proposed by Bisht et al. (2010b), Halfond and Orso (2005), Buehrer et al.

(2005), and Su and Wassermann (2006) cannot protect against SQLIAs on stored proce-

dures. The existing works focus on detection/prevention of known patterns of SQLIAs,

and hence are unable to identify zero-day attacks. Most of the works address first-order

SQLIAs only, and very little attention is paid towards addressing second-order SQLIAs.

XML Injection: Existing approaches for addressing XML injection concentrate on

detection/prevention of vulnerabilities/attacks in web services only, and cover a certain

type of XML injection attacks only. The existing open-source penetration testing tools

for identification of XML injection vulnerabilities cover only certain types of XML in-

jection attacks. XCat (Forbes 2014) is a tool used to identify blind XPath injection

vulnerabilities in web applications. WebCruiser (2011) is designed to detect XML in-

jection, but it detects only tautology injection attacks and cannot detect other types of

XML injection attacks. The vulnerability scanners such as Acunetix, Wapiti,3 W3af,4

and Arachni (2016) identify XPath injection vulnerabilities in web applications involv-

ing XML documents (van der Loo 2011). Each of the existing tools covers only a

specific type of vulnerability, such as tautology attacks, or focuses on XPath injection.

In addition, none of the existing tools detect XML vulnerabilities in web applications

using NXDs. Therefore, there is a need for an approach that focuses on detection of var-

ious types of XQuery injection vulnerabilities in web applications using NXDs. Hence,

this work focuses on development of an approach to generate attack vectors for the

detection of XQuery injection vulnerabilities in web applications driven by NXDs.

3http://wapiti.sourceforge.net/
4http://w3af.sourceforge.net/

40

2.2. Defensive Mechanisms for Securing Web Applications

Cross-site Scripting: In spite of the large amount of effort spent towards preventing

XSS vulnerabilities and attacks, XSS attacks are still prevalent in web applications.

The defense mechanisms proposed for securing web applications under construction

are error-prone as they depend on the skills of the developer, and are labor intensive due

to the manual interventions involved. A review on web development frameworks by

Weinberger et al. (2011) states that the frameworks cannot guarantee the correctness of

sanitization in terms of context sensitivity, and do not provide protection against DOM-

based XSS attacks. Hence, the usage of secure web development frameworks cannot

assure security of the web applications. Therefore, the development of frameworks

that are sensitive to the context of the applications is an interesting area of research.

Additionally, the research works addressing DOM-based XSS are a very few, and hence

addressing it would be a promising research direction.

The taint-based approaches employed for detection of vulnerabilities cannot han-

dle dynamic and object-oriented code which needs to be addressed. Employing XSS

prevention mechanisms at the server-side of the web application inherits the following

problems: Firstly, it imparts performance overhead since most of them are deployed as

proxies intercepting the HTTP request and response. Secondly, it involves instrument-

ing the source code of the application for preventing attacks. Thirdly, some approaches

require the developers to define security policies. Also, the server-side solutions can-

not assure complete prevention of XSS which can be resolved by deploying prevention

mechanism on the client-side as well. The collaboration between client-side and server-

side solutions is a promising research direction as it provides robust protection against

XSS attacks by enabling the client to clearly distinguish between malicious and non-

malicious scripts. However, the trouble with the client-side solution is the need for

enhancement of the web browsers with security policies for preventing the attacks.

2.2.2 Session Management Defenses

Session management is necessary for keeping track of users accessing the application

and for maintaining the state of the application. Session management attacks are pos-

sible due to the usage of predictable session tokens, elevation of an anonymous session

41

2. Literature Review

token to a logged-in token, absence of or erroneous deletion mechanism for session

tokens, and so on (Wedman et al. 2013). Therefore the secure coding practices for pre-

venting session management attacks involve the generation of session tokens using long

random numbers, the generation of a new token whenever a user logs-in to the applica-

tion rather than elevation of an already created token (Johns et al. 2011), and deploy-

ment of proper timeout mechanisms for destroying the session tokens. In addition to

SMVs, XSS vulnerabilities also pave way for session management attacks (Evans and

Shahriar 2014). Therefore, proper defense mechanisms employed for preventing XSS

vulnerabilities in turn avoid session management attacks as well. SessionSafe (Johns

2006) aims at preventing session hijacking attacks resulting from XSS vulnerabilities.

The mechanisms for securing the applications from CSRF and clickjacking attacks

that target the browser are discussed below. The defense mechanism for protecting the

application against CSRF attacks involves the association of a CSRF token with each

HTTP request (Jovanovic et al. 2006a). The server processes the request only if a valid

token is present in the request. The presence of CSRF token indicates to the server that

the request has originated by an authorized user of the application. Another simplest

CSRF defense technique is the validation of HTTP Referer header. Barth et al. (2008)

proposed to use Origin header as a defense against CSRF attack to overcome the privacy

issues associated with the usage of Referer header, and avoid the need for generation

of CSRF tokens. These defense mechanisms operate at the server-side. Lekies et al.

(2012) proposed a double-submit cookie method which operates at the client-side for

protecting the application against CSRF attacks.

Clickjacking attacks on web application can be prevented by employing mech-

anisms like UI randomization, framebusting, user confirmation, ensuring visual and

temporal integrity of the target element (Huang et al. 2012; Johns and Lekies 2013;

Shahriar and Devendran 2014), and so on. Shahriar et al. (2013) proposed ProClick,

a proxy-level framework for identifying clickjacking attacks. Braun et al. (2012) pro-

posed session imagination, a scheme that shares a secret image for each session with

an authenticated user, which will be used for authenticating the user while performing

critical operations within the application. This aids in preventing all the four types of

42

2.2. Defensive Mechanisms for Securing Web Applications

session management attacks. Since, the session management is crucial for maintaining

identity of users of the application, it requires the developers to follow secure coding

practices for preventing attacks.

2.2.3 Business Logic Defenses

This subsection deals with various defensive approaches available for securing web

applications from business logic attacks. The articles are categorized based on the type

of logic attack addressed and the type of security mechanism employed for mitigating

the attack.

2.2.3.1 Parameter Tampering

This subsection deals with the frameworks that can be used during construction of the

application for preventing parameter tampering, and the related works that target to-

wards identifying parameter tampering vulnerabilities using white-box and black-box

approaches. Most of the existing works focus on identifying input validation functions

which are missing at server-side of the application, since the major cause for parameter

tampering is improper validation of user-input.

(a) Secure Construction of New Web Applications: Swift (Chong et al. 2007a,b) is

a programming model built on the top of Jif language to enable secure construction of

web applications. Swift ensures confidentiality and integrity of information by defining

declarative annotations in the code. The annotations are used to identify the locations

(i.e., client or server) for secure placement of code and data. In Ripley (Vikram et al.

2009), a successor of Swift (Chong et al. 2007a), a copy of computational logic avail-

able in the client-side is placed at the server-side to avoid inconsistencies in the business

logic at both the sides. Ripley ensures integrity of RIAs and avoids the burden of adding

annotations in the code. However, it imposes network and memory overhead as it trans-

fers and places every event in the client to the server, and cannot assure confidentiality

of information. Resin (Yip et al. 2009) is a language runtime for Python and PHP

applications, and allows the programmers to reuse the application’s existing code for

generating assertions that specify the security policies. Resin can prevent a wide range

of problems like SQL injection, XSS, and missing access-control checks.

43

2. Literature Review

The frameworks Swift (Chong et al. 2007a,b), Ripley (Vikram et al. 2009), and

Resin (Yip et al. 2009) enable the software programmers to build web applications

that are made secure during the development phase. These frameworks track the data

flow and control flow of the applications, and implicitly provide necessary remediation

to ensure security of the application; and reduce the responsibility on programmers

with regard to security during implementation. The major drawback is that they can

ensure security of applications in the process of development; but cannot be applied for

legacy applications. In addition, they do not protect applications against attacks during

runtime.

(b) Vulnerability Detection: The major challenge involved in the detection of logic

vulnerabilities is the extraction of business requirements of the application. The existing

white-box approaches for detecting logic vulnerabilities extract the intended behavior

of the application by analyzing the client-side code.

Bisht et al. (2010a, 2011) formulated a systematic approach towards detection of pa-

rameter tampering vulnerabilities by devising two tools, NoTamper (Bisht et al. 2010a)

and WAPTEC (Bisht et al. 2011). The former uses a black-box approach while the lat-

ter uses a white-box approach. These tools analyze the client-side form processing code,

and extract the restrictions on user-supplied input to deduce the intended behavior of the

application. The client-side code is used as a specification of the expected server-side

behavior. The vulnerabilities are detected by observing the response obtained for user-

input violating the checks imposed on them. NoTamper models the application logic

behind form processing and validation from the client-side code. It is able to detect pa-

rameter tampering flaws, but unable to handle authentication bypass, access-control and

workflow bypass flaws. Additionally, it does not take into account the data flow within

the application. WAPTEC is an enhancement of NoTamper, which takes into account

the server-side PHP code together with the database schema expressed in MySQL. It

is the only tool that takes into account all the three tiers of the web application archi-

tecture. Since, it provides reasoning about the user-input throughout the architectural

components of the application, it eliminates false positives and false negatives.

44

2.2. Defensive Mechanisms for Securing Web Applications

Similar to WAPTEC, Alkhalaf et al. (2012) developed a tool named ViewPoints to

discover inconsistency between the input sanitization functions used at client-side and

server-side. Differential string analysis is employed to discover missing or improper

checks on user-input. The input sanitization functions at the client and server are ex-

tracted, mapped and modeled as Deterministic Finite Automata (DFA), and are com-

pared to identify mismatch in the functions. Since DFA is used for modeling the server-

side code, ViewPoints discovers more vulnerabilities compared to WAPTEC wherein

the exploits are generated during dynamic analysis of the server-side code.

WAPTEC and ViewPoints analyze the code bases at different layers of the web ap-

plication architecture and identify inconsistencies existing in each layer. While the

above-mentioned works detect vulnerabilities that stem from user-input restrictions

missing at server-side of the application but exist at client-side after analyzing the

source code, Balduzzi et al. (2011) designed an automated black-box approach to dis-

cover HTTP parameter pollution (HPP) vulnerabilities using the prototype PAPAS. HPP

vulnerabilities allow an attacker to inject a parameter with a value that overrides the ex-

isting value of the parameter (i.e., masking the value of the parameter).

(c) Attack Prevention: Mouelhi et al. (2011) defined a black-box approach for pro-

tecting the web applications against attackers bypassing the client-side validation. The

defense mechanism operates in two phases: online phase which prevents bypass attacks

during runtime; and offline phase that tests the application for identifying security de-

fects and measure the robustness of the application. It discovers input fields available in

web forms and extracts the constraints imposed on them in HTML and JavaScript. Dur-

ing the runtime, the attacks are prevented by placing a reverse-proxy (Bypass-shield)

which intercepts and verifies input from the client against the derived constraints and

the server responses. The drawbacks of this model are as follows: it cannot handle

AJAX applications; it does not take into account form fields whose values are gener-

ated dynamically (e.g., drop-down values retrieved from the database).

TamperProof (Skrupsky et al. 2013) is an online defense deployed between the

client and server, and can be used to safeguard both new and legacy applications that

are vulnerable to parameter tampering attacks. Similar to CSRF prevention (Jovanovic

45

2. Literature Review

et al. 2006a), Tamperproof instruments each web form from the server with an identifier

referred as patchID, which is used for validating whether the submitted requests are

legitimate requests. It does not address applications that dynamically alter the client-

side code of a web form (e.g., web 2.0, web 3.0). Figure 2.4 provides a summary of

research articles addressing parameter manipulation vulnerabilities.

2.2.3.2 Access-Control Violation

The confidentiality of resources available in web applications is ensured by defining

ACPs that specify about the users having access to the resources and actions, which can

be performed on these resources. The existing works devoted to prevention of access-

control violations are described in the following subsections.

(a) Secure Construction of New Web Applications: A large number of program-

ming frameworks is developed for preserving the confidentiality of highly sensitive

information embedded in web applications. Jia et al. (2008) developed an intermediate

programming language Aura that acts as a typechecker and interpreter for supporting

authorization policies of web application. Swamy et al. (2008) imposed a type system

Fable to specify security policies incorporating information flow and access-control for

web applications, and to verify if the policies are properly applied. Corcoran et al.

(2009) developed a programming language SELinks integrating the type system Fable

Mitigation

Mechanisms

Research

Articles

Parameter Tampering

Secure Construction

Swift (Chong et al.
2007a,b)

Ripley (Vikram et
al. 2009)

Resin (Yip et al.
2009)

Vulnerability Analysis

White-Box

WAPTEC (Bisht et al.
2011)

ViewPoints (Alkhalaf
et al. 2012)

Black-Box

NoTamper (Bisht et
al. 2010a)

PAPAS (Balduzzi et
al. 2011)

Attack Prevention

Black-Box

Bypass-Shield
(Mouelhi et al. 2011)

TamperProof
(Skrupsky et al. 2013)

Figure 2.4: Research on parameter manipulation vulnerabilities

46

2.2. Defensive Mechanisms for Securing Web Applications

with the language LINKS for building secure multi-tier web applications. Fable detects

missing authorization checks and SELinks compiles the code pertaining to policy en-

forcement into user-defined functions residing in the database. It cannot ensure security

policies depending on the state of the application, which is overcome by FINE (Swamy

et al. 2010) that provides stateful authorization policies for the application. All the

above-mentioned security typed programming languages allow the software developers

to include and verify security policies describing access-control and information flow

of the applications.

Aglet (Morgenstern and Licata 2010) is a library extending the features of Aura,

FINE, etc. for enforcing the following security policies: authentication, authorization,

type checking and information flow analysis. It embeds security-typed programming

within a dependently typed programming language. Aura and FINE define stateful

ACPs while others do not consider the state of the application. Krishnamurthy et al.

(2010) developed Capsules, a framework built on the top of Java Servlet enabling lim-

ited access to highly secured resources and therefore minimizes the impairment to re-

sources due to attackers.

(b) Vulnerability Detection: Waler (Felmetsger et al. 2010), an extension of Mi-

MoSA (Balzarotti et al. 2007), extracts the behavioral specification of the application

during normal execution. The specification of the application is defined in the form

of invariants that capture the constraints on the value of variables, and the relationship

between variables at different points of program execution. The extracted invariants are

analyzed against the source code to identify violations. Thus, Waler employs dynamic

analysis for identifying the invariants and symbolic model checking to detect violations

of the intended specification. The advantage of Waler over MiMoSA and Swaddler

(Cova et al. 2007a) is the ability to detect a wide range of logic vulnerabilities apart

from workflow violation attacks. The limitation is that the invariants are framed by

considering only the if-conditional checks in the source code, and switch-statements

or regular expressions are ignored. This may leave out few vulnerabilities from being

detected.

47

2. Literature Review

While Waler (Felmetsger et al. 2010) is able to identify a wide range of logic vul-

nerabilities in web applications, Sun et al. (2011) suggested a static analysis approach

to detect access-control vulnerabilities. The analysis is a two-step process, which in-

volves construction of a sitemap for each role involved in the web application for finding

privileged web pages. In the second step, the privileged pages are accessed directly to

identify the existence of access-control vulnerabilities. Sitemap is a map that tells us the

various ways available to a user for navigating through the application. This approach

was able to achieve better coverage compared to Waler (Felmetsger et al. 2010), which

was dependent on the invariants inferred during execution of the application.

Son et al. (2011) developed a prototype RoleCast, which is used for identifying

access-control vulnerabilities originated due to omission of security checks during im-

plementation of the application. The tool examines the source code to identify variables

(e.g., session variables, variables holding user action, etc.) reaching security sensitive

events (e.g., updating or deleting records in a database table), infers roles of the users,

and determines the mapping between the security critical variables and role of the user.

Vulnerabilities are reported if a security sensitive event is performed without checking

critical variables specific to role of the user. However, it is unable to detect authentica-

tion vulnerabilities. Son and Shmatikov (2011) developed another tool called SaferPHP

that employs taint analysis for detecting missing access checks in PHP applications.

FixMeUp (Son et al. 2013), a follow-up work of RoleCast (Son et al. 2011), is

the first tool to eliminate access-control vulnerabilities in web applications. The tool

analyzes the source code for identifying statements incorporating access-control mech-

anism (ACM) and extract access-control templates (ACT). To eliminate flaws, the tool

verifies whether the ACM incorporated during execution of a sensitive operation (e.g.,

inserting data into database) matches the ACT. If ACM is found missing, the tool elim-

inates the repairs by inserting the missing functions. The advantage of using FixMeUp

is that it makes use of existing statements to repair the code and validates the repair

as well. Monshizadeh et al. (2016) developed a prototype named LogicPatcher that

identifies missing and incomplete access checks existing in applications with minimal

guidelines as compared to FixMeUp, and patches them with fixes.

48

2.2. Defensive Mechanisms for Securing Web Applications

MiMoSA (Balzarotti et al. 2007) and Waler (Felmetsger et al. 2010) extract a

model out of the source code and then use a model checker to detect any violation of

invariants, whereas RoleCast, FixMeUp, and the prototype by Sun et al. (2011) identify

contexts of the application (involving execution of database queries, accessing privi-

leged files or pages, etc.) where ACPs are not included. While the other tools (Dalton

et al. 2009; Felmetsger et al. 2010; Son et al. 2011; Sun et al. 2011) focus only on

detection of vulnerabilities, FixMeUp and LogicPatcher patches these vulnerabilities

with fixes.

LogicScope (Li and Xue 2013) models the business logic of the web application

using a finite state machine, and the discrepancies between the intended and imple-

mented finite state machines are identified as logic vulnerabilities. It can only handle

traditional web applications, and cannot handle AJAX web applications. It also has lim-

ited capability in handling complex relationships/constraints within the database during

construction of the input symbols.

Li et al. (2014) implemented another prototype system BATMAN for disclosing

access-control vulnerabilities in web applications. The tool makes use of a crawler to

explore the application, and collects execution traces for inferring role-level policies

and user-level policies. The application is then evaluated by constructing concrete test

inputs that violate the constraints inferred from user-level and role-level policies. Wen

et al. (2016) developed Scout for identifying access-control vulnerabilities in applica-

tions which use MongoDB at the backend. Scout infers the intended ACPs from the

execution traces and develops a access operation model based on the access-control op-

erations with the MongoDB. Later, the application is exploited based on the policies

inferred from the model for discovery of vulnerabilities. LogicScope, BATMAN, and

Scout employ black-box approach for detecting the vulnerabilities.

While the above-mentioned works (Li et al. 2014; Li and Xue 2011; Li et al. 2012)

focus on identifying vulnerabilities wherein a normal user enjoys the privilege of a user

at the next or higher levels in web applications, Monshizadeh et al. (2014) proposed a

framework called MACE that analyzes the source code to identify vulnerabilities where

a user tries to access the resources of another user with the same privilege and these are

49

2. Literature Review

termed as horizontal privilege escalation vulnerabilities. Zhu et al. (2015) developed

a plug-in called ASIDE for the IDEs (Integrated Development Environment) such as

Eclipse to support PHP applications. The plug-in prompts the developer to indicate

security-sensitive components in the code, both to remind them to incorporate access

checks during construction and to annotate application-specific ACPs, and therefore

supports secure programming. The annotations are used during analysis of the source

code for discovering access-control vulnerabilities. The analysis is run as a background

process in the IDE, and is termed as interactive static analysis, as it is performed with

the help of annotations specified by the developer during construction of the application

within the IDE.

(c) Attack Prevention: Li and Xue (2011) proposed BLOCK, a tool deployed as a

proxy between the client and server for observing HTTP conversations to extract a set

of invariants for detecting state violation attacks. A state violation attack targets session

identifiers responsible for maintaining the association between consecutive client-server

interactions of the application. It is an extension of Swaddler (Cova et al. 2007a), and is

capable of detecting attacks launched due to insufficient definition of session variables,

while Swaddler cannot detect such attacks. It follows a black-box approach to detect

state violation attacks, while Swaddler follows a white-box approach.

SENTINEL (Li et al. 2012), a follow-up work of BLOCK, takes into account the

persistent objects in the database responsible for maintaining the state of the applica-

tion. The web application is modeled as an Extended Finite State Machine (EFSM),

which is used for deriving a set of invariants associated with each SQL query. These

invariants specify the application state at which the query has to be issued and the con-

straints that should be satisfied before the query hits the database. Any suspicious query

violating the above two conditions are distinguished as malicious query and blocked by

the tool. The drawback with this approach is the performance overhead imposed due to

interception of each SQL query for evaluation.

Parno et al. (2009) developed a prototype CLAMP for preventing leakage of sensi-

tive data to anonymous and unprivileged users of the application. The system isolates

the code involving authentication logic into a separate module called User Authentica-

50

2.2. Defensive Mechanisms for Securing Web Applications

tor (UA) and bundles the code involving data access control into a module called Query

Restrictor (QR). Each client is assigned to a virtual web server which is nothing but a

webstack instantiated from the master web server, and when a user logs in to the appli-

cation, the UA verifies the credentials and provides an identity (i.e., label) to the virtual

web server. The QR mediates the request to the database based on the label assigned

to the virtual web server, thus preventing access-control violations. The creation of a

virtual web server for each user session degrades the performance of the prototype, but

minimizes the burden on the shoulders of developers to incorporate these changes in

the application code.

Nemesis, proposed by Dalton et al. (2009), prevents authentication and authoriza-

tion attacks in legacy web applications. It combines authentication information of

a user with developer-provided access-control lists and enforces these access-control

rules during runtime so that only privileged users are allowed to access authorized re-

sources. It infers the authentication information of a user using dynamic information

flow tracking and constructs a shadow authentication system which is updated with the

credentials of currently authenticated user. Authentication bypass attacks are detected

and prevented when the shadow authentication information is not matching or not up-

dated with the details of the currently authenticated user in the application. Compared

to CLAMP, this approach does not involve any virtualization, and hence does not im-

part performance overhead. Muthukumaran et al. (2015) developed FlowWatcher, a

proxy-based solution preventing leakage of sensitive data to anonymous and unprivi-

leged users of the application by monitoring the HTTP traffic. FlowWatcher operates

based on the user-data-access policy specified by the application developer, which re-

flects the intended ACP of the application. Figure 2.5 provides a summary of research

articles addressing access-control vulnerabilities.

2.2.3.3 Workflow Violation

Balzarotti et al. (2007) developed a prototype Multi-Module State Analyzer (MiMoSA)

to identify workflow violation attacks in PHP applications. While some of the afore-

mentioned works (Dalton et al. 2009; Li et al. 2014; Li and Xue 2011; Li et al. 2012;

51

2.Literature
R

eview

Access-Control
Vulnerabilities

Secure Construction

SIF (Chong et al.
2007b)

Swift (Chong et al.
2007a)

Aura (Jia et al. 2008)

Fable (Swamy et al.
2008)

Ripley (Vikram et al.
2009)

Resin (Yip et al.
2009)

SELinks (Corcoran et
al. 2009)

FINE (Swamy et al.
2010)

Aglet ((Morgenstern
and Licata 2010)

Capsules
(Krishnamurthy et al.
2010)

Vulnerability Analysis

White-Box

MiMoSa (Balzarotti et
al. 2007)

Swaddler (Cova et al.
2007a)

Waler (Felmetsger et
al. 2010)

Sun et al. (2011)

RoleCast (Son et al.
2011)

SaferPHP (Son and
Shmatikov 2011)

FixMeUp (Son et al.
2013)

MACE (Monshizadeh
et al. 2014)

ASIDE (Zhu et al.
2015)

LogicPatcher
(Monshizadeh et al.
2016)

Black-Box

LogicScope (Li
and Xue 2013)

BATMAN (Li et al.
2014)

Scout (Wen et al.
2016)

Attack Prevention

White-Box

Nemesis (Dalton et
al. 2009)

CLAMP (Parno et
al. 2009)

Black-Box

BLOCK (Li and Xue
2011)

SENITNEL (Li et al.
2012)

FlowWatcher
(Muthukumaran et al.
2015)

Mitigation

Mechanisms

Research

Articles

Figure 2.5: Research on access-control vulnerabilities

52

2.2. Defensive Mechanisms for Securing Web Applications

Monshizadeh et al. 2014; Parno et al. 2009) focus on identifying insecure data flow,

MiMoSA utilizes the source code to characterize the intended workflow of the applica-

tion and variables (e.g., session variables, cookies, etc.) that aid in maintaining the state

of the application.

Swaddler (Cova et al. 2007a) detects attacks by learning the normal behavior of

the application and then monitoring state variables at runtime for identifying deviations

from the normal behavior. It employs anomaly-based approach for detection of viola-

tions of the specified behavior of the application. The two major components involved

are a sensor and an analyzer. The sensor extracts the value of variables responsible for

maintaining the state of the application, and the analyzer generates models to charac-

terize the value of variables and relationship between multiple variables associated with

the state. This is the first tool to detect workflow violations based on the state vari-

ables of the application. Waler (Felmetsger et al. 2010), a follow-up work of Swaddler

(Cova et al. 2007a) is able to identify workflow violations in addition to access-control

vulnerabilities.

LogicScope (Li and Xue 2013) can detect workflow vulnerabilities arising due to

missing sequence checks. It can identify flaws in sequence checks made through session

tokens and not through any other mechanisms such as CSRF tokens. TamperProof

(Skrupsky et al. 2013) blocks workflow violation attacks arising due to failure in

validation of session tokens used for maintaining the sequence of operation. Figure 2.6

provides a taxonomy for research articles addressing workflow vulnerabilities.

2.2.3.4 Business Logic Preservation in eCommerce Applications

The recent research community has started focusing on identification of logic vulner-

abilities in eCommerce applications involving third-party cashier services. Logic vul-

nerabilities in eCommerce applications may allow a malicious user to purchase an item

either for free or for an amount less than the actual price of the item. Since logic attacks

may result in heavy financial loss for the merchants, deployment of defense mecha-

nisms for detection and prevention of logic flaws has become essential in eCommerce

applications (Pellegrino and Balzarotti 2014; Sun et al. 2014; Wang et al. 2011).

53

2. Literature Review

Wang et al. (2011) analyzed the security of the real world shopping cart web appli-

cations which are integrated with third-party vendors for making payments. A study on

web-based single sign-on systems (Wang et al. 2012) uncovers the critical logic flaws

in applications integrating their services with the APIs of Google, Facebook, PayPal,

etc. While the above works (Wang et al. 2012, 2011) analyze security of the appli-

cations, InteGuard (Xing et al. 2013) aims at protecting the applications integrated

with third-party web services. It places a proxy in front of the integrator, and performs

security checks on the HTTP conversations.

Pellegrino and Balzarotti (2014) proposed a technique to identify workflow vulnera-

bilities in eCommerce applications after analyzing the network traces that are generated

manually by users interacting with the application. The traces are used for extracting

the data flow and control flow behavior related to the underlying application logic. Test

cases that break the intended flow of the application are generated to identify the attacks.

Sun et al. (2014) proposed a static approach towards detection of logic vulnerabilities

in eCommerce application by integrating symbolic execution with taint analysis. The

major finding is that secure operation of online shopping can be ensured by verifying

the integrity of the order ID, amount to be paid, supplier ID and the type of the currency.

Table 2.4 presents a summary of the research works addressing logic vulnerabil-

ities, specifies whether the prototype focuses on detection/prevention of attacks, and

highlights the type of coding flaws (discussed in detail in Section 4.1) detected by the

prototype.

Workflow
Vulnerabilities

Vulnerability
Analysis

White-Box

MiMoSa
(Balzarotti
et al. 2007)

Swaddler
(Cova et al.

2007a)

Waler
(Felmetsger et

al. 2010)

Black-Box

LogicScope
(Li and Xue

2013)

Attack
Prevention

Black-Box

TamperProof
(Skrupsky et

al. 2013)

Mitigation

Mechanisms

Research

Articles

Figure 2.6: Research on workflow vulnerabilities

54

2.2.D
efensive

M
echanism

s
for

Securing
W

eb
A

pplications
Table 2.4: Summary of the literature on logic vulnerabilities

Research Article System
Type

Analysis Type of Flaws Remarks
MAC IAC PO MSV SeV StV SO

Swaddler (Cova et al. 2007a) AP B X Involves code instrumentation
Nemesis (Dalton et al. 2009) AP B X X Imparts performance overhead
BLOCK (Li and Xue 2011) AP B X X Offline-learning and runtime pro-

tection, Imparts performance over-
head

SENTINEL (Li et al. 2012) AP B X Offline-learning and uses proxy to
capture queries, Blocks malicious
queries

Bypass-Shield (Mouelhi et al.
2011)

AP B X Detects MSV related to SQL injec-
tion and XSS

TamperProof (Skrupsky et al.
2013)

AP B X X Involves code instrumentation, So-
lution deployed in proxy

Flowwatcher (Muthukumaran et al.
2015)

AP B X X Proxy-based solution

MiMoSA (Balzarotti et al. 2007) VD W X
Waler (Felmetsger et al. 2010) VD W X Uses Symbolic model checking to

identify logic flaws
Sun et al. (2011) VD W X Requires developer to specify set of

roles and their entry points
RoleCast (Son et al. 2011) VD W X
SaferPHP (Son and Shmatikov
2011)

VD W X

WAPTEC (Bisht et al. 2011) VD W X Employs symbolic evaluation
Continued on next page

55

2.Literature
R

eview
Table 2.4 – Summary of the literature on logic vulnerabilities (continued from previous page)

Research Article System
Type

Analysis Type of Flaws Remarks
MAC IAC PO MSV SeV StV SO

ViewPoints (Alkhalaf et al. 2012) VD W X Detects MSV related to SQL injec-
tion and XSS

FixMeUp (Son et al. 2013) VD W X Repairs the access-control flaws
MACE (Monshizadeh et al. 2014) VD W X X Requires annotations from the de-

velopers
ASIDE (Zhu et al. 2015) VD W X X Employs interactive static analysis
LogicPatcher (Monshizadeh et al.
2016)

VD W X X X Repairs the logic flaws

NoTamper (Bisht et al. 2010a) VD B X Given a web page, identifies client-
server inconsistencies

PAPAS (Balduzzi et al. 2011) VD B X Identifies parameter overriding vul-
nerabilities

LogicScope (Li and Xue 2013) VD B X X X Identifies sequence violation due to
missing validation of session vari-
ables

BATMAN (Li et al. 2014) VD B X X Uses HTTP proxy to intercept
HTTP packets and SQL proxy to in-
tercept SQL queries

Scout (Wen et al. 2016) VD B X X Addresses MongoDB applications

AP – Attack Prevention, VD – Vulnerability Detection, W – White-Box, B – Black-Box,
MAC – Missing Access Check, IAC – Incomplete/Improper Access Check, PO – Parameter Overriding,
MSV – Missing Server-Side Validation, SeV – Sequence Violation, StV – State Violation, SO – Session Variable Overloading

56

2.2. Defensive Mechanisms for Securing Web Applications

2.2.3.5 Research Challenges and Directions

In the recent decade, the focus of the security practitioners is shifting towards identi-

fication of business logic vulnerabilities and it still remains as an under-explored area.

Hence, the number of approaches proposed for identifying and preventing them are lim-

ited when compared to SQL injection and XSS attacks. Most of the existing works ad-

dress only a specific type of logic vulnerabilities, such as parameter tampering (Alkhalaf

et al. 2012; Balduzzi et al. 2011; Bisht et al. 2010a, 2011; Mouelhi et al. 2011; Skrup-

sky et al. 2013), and access-control vulnerabilities (Balzarotti et al. 2007; Cova et al.

2007a; Dalton et al. 2009; Felmetsger et al. 2010; Li et al. 2014; Li and Xue 2011;

Li et al. 2012; Monshizadeh et al. 2014; Parno et al. 2009; Son et al. 2011, 2013;

Sun et al. 2011). Therefore, development of approaches that are capable of identifying

all the three types of logic vulnerabilities is an open area of research. Existing works

for ensuring business logic in web applications take into consideration either the data

flow or control flow of the application to identify vulnerabilities and attacks. Therefore,

it would be promising to consider both the flows to increase the precision of the system

for identifying vulnerabilities/attacks.

The absence of intended business logic specification is the major trouble in tackling

logic vulnerabilities. The major contributing reason for the inability of existing vulner-

ability scanners towards detecting logic vulnerabilities is the absence of a general and

automated approach for characterizing the application logic. The recent approaches

proposed for detecting logic vulnerabilities try to extract the intended behavior of the

application in any one of the following ways: (i) allow a tester to navigate through the

web application for extracting the control-flow of the application (Li and Xue 2011; Li

et al. 2012; Pellegrino and Balzarotti 2014), (ii) analyze the client-side and server-side

code to extract the restrictions on parameters and identify data flow within the appli-

cation (Bisht et al. 2010a, 2011; Skrupsky et al. 2013), and (iii) crawl through the

application for exploration of the web pages (Balduzzi et al. 2011; Li et al. 2014).

However, these approaches suffer from the following problems: the tester may not ex-

plore all possible navigation paths, which may result in missing few business specifica-

tions being inferred from the application; inferring business logic from the source code

57

2. Literature Review

of the web application may lead to confusions if there exist inconsistencies between

client-side and server-side code; the crawler may not explore all the web pages of the

application due to its own limitations like failure to incorporate semantic restrictions

on user-input. Therefore, it would be interesting to pursue research in inferring the

business specifications of the web application using a fully-automated approach, and

developing secure frameworks to avoid inconsistencies between client and server-side

validations.

2.2.4 Existing Vulnerability Scanners

A number of black-box testing tools, also referred to as web application scanners, are

available for examining web applications. These scanners offer an automatic way for

identifying vulnerabilities in web applications and avoid the tedious task of performing

a large number of security tests manually for each vulnerability type. They help in de-

tecting the implementation flaws which the developer would not have envisioned while

implementing, and assist in improving the security and quality of the web application.

These scanners can also be used for comparing and evaluating the output of the pro-

totype tools developed by the researchers. A number of commercial and open-source

scanners are available for testing security of web applications (Shura 2010). Acunetix

Web Vulnerability Scanner (WVS), Burp Suite, HailStorm (currently called Trustwave

App Scanner (Trustwave)), HP WebInspect, IBM AppScan, McAfee Secure, MileScan

ParosPro, N-Stalker, NeXpose, NTOSpider (currently acquired by Rapid7 and known

as AppSpider5), and QualysGuard are some of the commercial black-box scanners

available for identifying different types of vulnerabilities existing in web applications.

Wapiti, Skipfish, W3Af, Powerfuzzer, and Grendel-Scan are some of the open-source

scanners available for assessment of the applications. Table 2.5 highlights the capability

of scanners towards detection of SQL injection, XSS and Business Logic Vulnerabil-

ities. The column “Type” in the Table 2.5 specifies the method of deployment of the

tool i.e., whether the tool can be deployed as a standalone desktop application or as a

proxy or as a cloud service (i.e., Software as a Service (SaaS)).

5https://www.rapid7.com/products/appspider/

58

2.2.D
efensive

M
echanism

s
for

Securing
W

eb
A

pplications

Table 2.5: List of commercial and open-source scanners and their capabilities

Company Scanner Type
SQLI XSS Business Logic

FOI SOI R S D PM ACV WF

Commercial Scanners

Acunetix WVS Standalone & SaaS X × X X X X × ×
HP WebInspect Standalone & SaaS X × X X X X × ×
IBM AppScan Standalone X × X X X × × ×
N-Stalker QA Edition Standalone X × X X × X × ×
Qualys QualysGuard SaaS X × X X × × × ×
Cenzic HailStorm Standalone & SaaS X × X X × × X ×
PortSwigger Burp Suite (1.6.18) Proxy X × X X × × X ×
NTObjectives NTOSpider Standalone X × X X X × × ×
MileScan ParasPro Proxy X × X X × X × ×

Powerfuzzer SaaS X × X X × × × ×
NetSparker NetSparker Standalone & SaaS X × X X X × × ×

Open-Source Scanners

Nicolas Surribas Wapiti (2.3.0) Standalone X × X X × × × ×
Michal Zalewski Skipfish Standalone X × X X × × × ×
Andres Riancho W3Af Standalone X × X X × × × ×
Marcin Kozlowski Powerfuzzer Standalone X × X X × × × ×
David Byrne Grendel-Scan Standalone X × X X × × × ×

SQLI – SQL Injection, FOI – First Order SQL Injection, SOI – Second Order SQL Injection
R – Reflected XSS, S – Stored XSS, D – DOM-based XSS
PM – HTTP Parameter Manipulation, ACV – Access-control Vulnerabilities, WF – Workflow Vulnerabilities
X – Capable, × – Incapable

59

2. Literature Review

Table 2.5 shows that the scanners are capable of detecting first-order SQL injec-

tion, reflected and stored XSS vulnerabilities. However, none of the listed scanners are

capable of detecting second-order SQL injection and business logic (workflow) vulner-

abilities. As the focus of the attackers is shifted towards breaking the business logic of

the application, few scanners are working towards detection of parameter manipulation,

access-control, and DOM-based XSS vulnerabilities.

The performance and effectiveness of some of the available scanners are assessed

in the research articles (Bau et al. 2010, 2012; Doupé et al. 2010; Fonseca et al.

2007). These studies reveal that most of the existing vulnerability scanners consist of

three major components: a crawler for navigating through the application, an attack

vector generator for testing the application with malicious inputs, and a detector for

uncovering vulnerabilities. The usage of these components poses several challenges.

The correctness and completeness of the scanner results depend on the maximum code

coverage of application during crawling. However, the crawlers used in most of the

scanners do not consider the semantic restrictions imposed on the form fields identified

in the application, and hence there is a possibility of rejection of test-input, which leaves

the subsequent web pages from being explored. Moreover, they cannot crawl dynamic

technology based web applications due to the inability of handling active contents and

complex multimedia technologies such as Flash, SilverLight and Java Applets. Addi-

tionally, the state of the application is not taken into consideration by the crawler which

results in not crawling all relevant pages of the web application. The incomplete explo-

ration of web pages by the crawler results in a large number of false positives, which in

turn, necessitates manual verification of the scanner results. Most of the scanners gen-

erate known patterns of attack vectors, and hence are not context-aware of the applica-

tions; and they are not able to detect logic flaws, as inferring the business specifications

for different types of applications in an automated fashion is extremely challenging.

60

2.3. Research Gaps

2.3 RESEARCH GAPS

Logic vulnerabilities allow the attackers to compromise the intended behavior of the ap-

plication, and hence logic vulnerability identification requires extraction of the intended

behavior of the application. The intended behavior is utilized for generating malicious

requests that assist in detecting the vulnerabilities. The existing approaches take into

account the parameters flowing to a web page, session variables associated with a web

page, and the session variables used for maintaining the sequence of operations for

modeling the intended behavior of the application to identify parameter manipulation,

access-control, and workflow vulnerabilities respectively. The black-box approaches

for detecting parameter manipulation consider parameters that appear in a request for

a web page and do not take into account the interaction between multiple web pages

(i.e., data flow), and therefore fail to identify few vulnerabilities (Bisht et al. 2010a).

Literature on workflow vulnerabilities identification considers session variables used

for maintaining the sequence of operations, and does not take into account other pa-

rameters such as CSRF tokens (Li and Xue 2013). The sequence of operations within

the application is referred as workflow or control flow. The frameworks that identify

access-control vulnerabilities arising due to inappropriate definition and validation of

session variables, are not flexible enough to identify other types of session related vul-

nerabilities leading to session puzzling and session fixation attacks. The works by Bisht

et al. (2010a), Li and Xue (2013), and Li et al. (2014) are ad-hoc approaches, and hence

are unable to cover a wider range of logic vulnerabilities. Therefore, there is a need for

a system that is capable of detecting a wide range of logic vulnerabilities by taking into

account both the data flow and control flow information.

In the case of injection vulnerabilities, a large body of literature exists for preventing

SQL injection, whereas only a limited number of articles exist for identifying XML in-

jection vulnerabilities. Existing approaches and vulnerability detection tools available

for addressing XML injection concentrate on detection/prevention of vulnerabilities/at-

tacks in web services, and cover certain types of XML injection attacks only (Antunes

et al. 2009; Antunes and Vieira 2011; Asmawi et al. 2012; Mitropoulos et al. 2009).

None of the existing approaches and tools detect XML vulnerabilities in web applica-

61

2. Literature Review

tions using NXDs, and the XML injection vulnerability detection systems utilize attack

vectors which are framed manually after a sound analysis of the literature. Therefore,

there is a need for an approach that is capable of generating different kinds of attack

strings for the detection of different types of XQuery injection vulnerabilities in web

applications driven by NXDs.

2.4 SUMMARY

The omnipresence of web applications makes it imperative to ensure that the appli-

cations are secure, correct and efficient. This chapter has provided a comprehensive

review of recent advances in securing web applications from the injection, business

logic and session management vulnerabilities, and points out the unresolved issues that

need to be addressed. It captures the current state-of-the-art and contributes a body

of knowledge to the field of securing web applications by (i) discussing the various

kinds of vulnerabilities that require major attention, (ii) illustrating the approaches sug-

gested for detecting and preventing vulnerabilities, and countermeasures for detecting

and preventing attacks on the application, (iii) highlighting the research challenges and

future research directions, and (iv) pointing out the capabilities and limitation of the

vulnerability scanners available for evaluating web applications.

62

CHAPTER 3

PROBLEM DESCRIPTION

As web applications get increasingly complex to support sophisticated business func-

tionalities, logic and XML injection vulnerabilities have attracted increasing attention

in recent years. Exploitation of these vulnerabilities in web applications leads to haz-

ardous actions such as economic and privacy losses to the business enterprise and con-

sumer respectively. Therefore, it is essential to proactively identify these vulnerabilities

before attackers can leverage them. Existing literature employs white-box and black-

box approaches for vulnerability detection. While white-box approaches are technol-

ogy dependent and analyze the source code of the application, black-box approaches

are technology independent and penetrate the application with malicious inputs for the

detection. However, the existing black-box approaches on vulnerability detection face

a major challenge in effective generation of malicious inputs/requests based on the be-

havior of the application for simulating attacks. Therefore, this work aims at developing

a behavior-based approach for generation of attack requests and malicious user-inputs

through black-box analysis to identify logic and injection vulnerabilities in web appli-

cations.

The first objective of this work is to develop a behavior-based approach for gen-

eration of attack requests to identify logic vulnerabilities in web applications. Logic

vulnerabilities allow the attackers to compromise the intended behavior of the appli-

cation, and hence generation of attack requests for logic vulnerability identification

requires modeling the intended behavior of the application. The intended behavior of

63

3. Problem Description

the application can be modeled by taking into account the parameters flowing to a web

page, session variables associated with a web page, and the session variables used for

maintaining the sequence of operations. The flow of parameters and session variables

mark the data flow, and the sequence of operations between the web pages mark the

control flow of the application. Existing approaches take into consideration either the

data flow or the control flow to model the behavior of the application, and do not address

detection of all types of logic vulnerabilities. Therefore, by considering the pros and

cons of the state-of-the-art approaches, this work constructs a web application model

reflecting the intended behavior in terms of both the data flow and the control flow. The

model can be subsequently used for generating attack requests/vectors to detect all the

three types of logic vulnerabilities.

The second objective of this work is to develop an approach for generation of at-

tack requests/vectors to identify XQuery injection vulnerabilities in web applications

driven by NXDs. The existing literature and tools identify XML injection flaws in web

services, and there are no mechanisms for detecting XML injection in NXDs. Addition-

ally, the XML injection vulnerability detection systems utilize the attack vectors which

are framed manually after a sound analysis of the literature. Therefore, there is a need

for an automated approach that is capable of generating different kinds of attack vec-

tors for the detection of XQuery injection vulnerabilities in web applications driven by

NXDs. The approach should be independent of the technology used for implementing

the application, the functionality of the application, and should offer flexibility to iden-

tify new kinds of attacks when discovered. Hence, this work focuses on development of

a context-free grammar to generate different kinds of XQuery injection attack vectors

for the detection of XQuery injection vulnerabilities in native XML database-driven

web applications.

To summarize, the primary objective of this work is to propose a behavior-based

approach for generating attack vectors through black-box analysis for the detection of

logic and XQuery injection vulnerabilities in web applications. It is further subdivided

as follows:

64

(i) Constructing a behavioral model that reflects the data flow and control flow of the

web application for generation of attack vectors to identify business logic vulner-

abilities in web applications, and evaluating the effectiveness of the constructed

model.

(ii) Proposing an attack grammar for launching attack vectors to identify different

types of XQuery injection vulnerabilities in native XML database-driven web

applications, and evaluating the effectiveness of the proposed grammar.

65

CHAPTER 4

ATTACK GENERATION FOR DETECTING LOGIC
VULNERABILITIES

Logic vulnerabilities are unique to each custom application, potentially very damaging,

and difficult to identify as the identification requires knowledge on the application be-

havior. These vulnerabilities often arise due to the following coding flaws: server-side

validations, access checks, and sequence checks that are either missing or improperly

implemented within the application. These coding flaws are to be identified for detect-

ing the three types of logic vulnerabilities: parameter manipulation, access-control, and

workflow vulnerabilities. The user-input validation missing at the server-side could be

identified after extraction of the validation available for the same input at the client-side,

and by tracking the parameters flowing between the web pages of the application. The

access and sequence checks incorrectly implemented could be identified by observing

the flow of session variables and sequence of operations within the application. The pa-

rameters and session variables flowing between web pages mark the data flow, and the

sequence of operations mark the control flow. Thus, the logic vulnerability identifica-

tion requires both the data flow and control flow information for learning the behavior

of the application. This work constructs a model reflecting the intended behavior of

the application in terms of data flow and control flow. The data flow and control flow

information are extracted from the execution traces of the web application. The model

is later used for deriving constraints placed on parameters, session variables, and work-

flows, which are violated for generating attack vectors to identify the vulnerabilities.

67

4. Attack Generation for Detecting Logic Vulnerabilities

This work is part of the Research & Development project supported by the Ministry

of Electronics and Information Technology (MeiTY) (formerly known as Ministry of

Communications and Information Technology, MCIT), Government of India, and the

contributions towards this work are listed as follows:

(i) Construction of a model to reflect the intended functionality of the web applica-

tion in terms of data flow and control flow,

(ii) Derivation of constraints from the model and generation of attack vectors that

violate the derived constraints for identification of different types of logic vulner-

abilities, and

(iii) Evaluation of the constructed model on vulnerable benchmark web applications.

The rest of the chapter is organized as follows. Section 4.1 describes the software

defects paving way for logic vulnerabilities and attacks. Section 4.2 presents the prob-

lem description and illustrates the logic vulnerabilities existing in web applications with

a motivating example. Section 4.3 presents the proposed solution. Section 4.4 high-

lights the setup used for testing the proposed solution, and discusses the experimental

results. Section 4.5 summarizes the chapter.

4.1 LOGIC ATTACKS IN WEB APPLICATIONS

Logic vulnerabilities allow malicious users to inject data that induce a web application

software to behave differently and exhibit unforeseen behavior against the intention of

the programmer resulting in attacks. These vulnerabilities originate due to the follow-

ing implementation flaws: (i) missing server-side validation, (ii) missing and incom-

plete access checks, (iii) overloading of session variables, and (iv) missing sequence

checks. These flaws permit the malicious users to circumvent the expected function-

ality of an application, and hence prevention of logic attacks requires identifying logic

vulnerabilities arising due to the aforementioned flaws which are discussed in detail

below.

Missing server-side validation: A web application uses client-side scripting to pro-

cess and validate the user-supplied input for quick processing and for bringing down the

68

4.1. Logic Attacks in Web Applications

server-side loads. However, malicious users can circumvent the client-side validation

either by disabling the JavaScript execution or by submitting malicious requests which

tamper the parameters in such a way that the restrictions placed on the user-input at

the client-side are violated. If the application has enforced the same set of restrictions

at the server-side, then the tampered parameters would be rejected by the application.

Otherwise, the parameters cause the application to behave in a fashion different from

the requirement specification of the application. Thus, failing to enforce user-input val-

idation at the server-side results in parameter manipulation attacks (Bisht et al. 2010a,

2011; Skrupsky et al. 2013).

Missing/Incomplete access check: Web applications use HTTP, a stateless proto-

col, that treats each web request and response in an independent fashion. Hence, to

maintain the state, applications use sessions to denote the logged in status of a user, the

privilege level (say, admin or normal user), the sequence of operations, and a number

of other things. Sessions can be maintained in two ways - purely at the client-side by

means of cookies, or a combination of server and client-side. To maintain sessions, it

is expected that the application performs some checks on the session variables before

permitting access to its privileged resources. For example, a basic access check in an

application verifies whether the session variables are set or not for allowing users to

access the home page of the application only after logging in. However, some pages

may not perform these checks, and consequently a malicious user can gain access to

these pages. Thus, missing access checks lead to authentication/authorization bypass

attacks (Li and Xue 2011; Son et al. 2011, 2013; Sun et al. 2011).

Similarly, for a user to access the application, the session variables should be prop-

erly validated against the role of a user and the HTTP parameters. There may exist

scenarios in which the application verifies whether the session variables or the HTTP

parameters are set or not, but do not validate the values of the session variables against

the role of the user and the HTTP parameters. The improper validation of session

variables against the role and the HTTP parameters is termed as incomplete/improper

access checks that lead to vertical/horizontal privilege escalation attacks (Li and Xue

2011; Monshizadeh et al. 2014).

69

4. Attack Generation for Detecting Logic Vulnerabilities

Overloading session variables: Uncontrolled creation/population of session ob-

jects or usage of identical session variables at various application entry points is called

overloading of session variables, and may lead to session puzzling attacks (Chen 2011).

These attacks do not contain any malicious input. They are legal actions allowed by the

web application, but when performed in a particular order compromise the intended

functionality of the application. While exploiting session puzzles, the creation of ses-

sion objects can be indirectly initiated, and later exploited by accessing a sequence of

entry points (web pages, web services, remote procedure calls, etc.) in a certain order.

Session puzzles enable adversaries to perform a variety of malicious actions such as

bypassing authentication/authorization and elevation of privilege for users, and upset

the normal execution of the application.

Missing sequence check: Web applications use sessions to maintain the sequence

of operations within the application (Li and Xue 2011). In addition to session vari-

ables, CSRF tokens generated at sensitive/critical pages of the application for prevent-

ing CSRF attacks indirectly assist in maintaining the sequence of operations (Jovanovic

et al. 2006a). CSRF tokens are stored either in session or as a cookie, and are validated

against the HTTP parameters to prevent attacks (CSRF). A CSRF token is generated at

the server-side of the application in a critical page, and is either stored in the session or

issued to the client and set as a cookie. The CSRF token stored in the cookie/session is

supposed to be validated against the CSRF parameter in the HTTP request of the web

page that follows the critical page. Thus, CSRF token enables to maintain the sequence

of operations within the application. If a web page that follows the critical page fails

to validate the value of the CSRF token stored in the session/cookie against the HTTP

parameter, then there is a possibility that the critical page can be bypassed by the at-

tacker by directly placing request for the pages following the critical page. Thus, lack

of validation of tokens issued for maintaining the sequence at the server-side results in

workflow bypass attacks.

70

4.2. Problem Description

Table 4.1: Symbols and definitions

Symbol Definition

W Finite State Machine

Q Set of states in W

δ Set of transition functions in W

Σ Set of input symbols associated with a transition t|t ∈ δ
A Set of annotation functions in W

P Set of parameters passed along a request in W

S Set of session variables associated with a transition t|t ∈ δ
R Set of roles inferred from the set S

q0 Initial state in W

F Set of final states in W

qs Source state in a transition t|t ∈ δ
qd Destination state in a transition t|t ∈ δ
G Underlying Directed graph of W

G′ Underlying undirected graph of W

4.2 PROBLEM DESCRIPTION

Given a web application, the objective of this work is to develop a systematic approach

that is capable of generating attack vectors for detecting business logic vulnerabili-

ties prevailing in web applications, independent of the functionality of the application.

Generation of attack vectors demands modeling the intended behavior of the applica-

tion. The model should reflect the data flow and control flow information, which are

inferred as constraints for generation of attack vectors. In the context of this thesis, the

data flow refers to the parameters and session variables flowing between different web

pages, and control flow refers to the sequence of operations between web pages of the

application. The symbols used in this chapter are defined in Table 4.1.

71

4. Attack Generation for Detecting Logic Vulnerabilities

Motivating Example

This section provides a running example to illustrate the various implementation flaws

leading to the logic vulnerabilities in web applications. Listings 4.1 to 4.8 illustrate a

sample web application intended for maintaining medical records of patients registered

with the application. The application has six web pages: Login, Forgot Password, and

Index pages which are common to all the users of the application, and View, Create,

and Delete pages intended for users with specific roles. Three user roles exist in the

application: Patient, Physician, and Administrator. The business requirements of the

application specify the following rules: (i) a patient can view their own record, (ii) a

physician can view records of their own patients, and can create new medical records,

and (iii) administrator can view and delete record of any patient registered within the

application, and can create new records.

The user is first presented with the Login.php page. After the user has provided

valid credentials, the application redirects the user to Index.php page. The Index.php

page is presented with three hyperlinks to View.php, Create.php, and Delete.php de-

pending on the role of the logged-in user retrieved from the database. View.php is avail-

able for all the three roles, Create.php is meant for both Physician and Adminstrator,

and Delete.php is intended for Administrator only. Listing 4.1 is a JavaScript file that

validates the input supplied by the user at Create.php page.

1 f u n c t i o n v a l i d a t e I n p u t () {
2 v a r age = document . ge tE lemen tById ("age") . v a l u e ;
3 i f (document . ge tE lemen tById ("fname") . v a l u e =="") {
4 a l e r t ("User name can not be blank") ;
5 r e t u r n f a l s e ;
6 } e l s e i f (age < 0 | | age > 150) {
7 a l e r t ("Age must be greater than zero and less than 150.") ;
8 r e t u r n f a l s e ;
9 }

10 r e t u r n t r u e ;
11 }

Listing 4.1: Validate.js

72

4.2. Problem Description

1 <?php
2 i f (i s s e t ($ POST [” u s e r i d ”]) && i s s e t ($ POST [” password ”])) {
3 $ l o g i n = v a l i d a t e U s e r ($ POST [” u s e r i d ”] , $ POST [” password ”]) ;
4 i f (! $ l o g i n) {
5 HTTPRedirect (” Login . php ”) ;
6 }
7 $ SESSION [” u s e r i d ”] = $ POST [” u s e r i d ”] ;
8 / / Code t o r e t r i e v e r o l e o f t h e u s e r from t h e d a t a b a s e
9

10 $ SESSION [” r o l e ”] = $ r o l e ;
11 h e a d e r (” L o c a t i o n : i n d e x . php ? u s e r i d =” . $ SESSION [” u s e r i d ”]) ;
12 } e l s e {
13 ?>
14 / / HTML code t o g e t t h e l o g i n c r e d e n t a i l s from t h e u s e r
15
16 <a h r e f =” ForgotPwd . php ”>F o r g o t Password
17 <?
18 }
19 ?>

Listing 4.2: Login.php

1 <?php
2 i f (i s s e t ($ GET [” u s e r i d ”])) {
3 $ u s e r = $ GET [” u s e r i d ”] ;
4 p r i n t (”<a h r e f =View . php ? u s e r i d = . $use r>View Record ”) ;
5 i f ($ SESSION [” u s e r i d ”]== $ u s e r && ($ SESSION [” r o l e ”]== ”

p h y s i c i a n ” | | $ SESSION [” r o l e ”]== ” admin ”)) {
6 p r i n t (”<a h r e f = C r e a t e . php ? u s e r i d = . $use r>C r e a t e Record ”

) ;
7 }
8 i f ($ SESSION [” r o l e ”]== ” admin ”) {
9 p r i n t (”<a h r e f = D e l e t e . php ? u s e r i d = . $use r>D e l e t e Record ”

) ;
10 }
11 } e l s e {
12 d i e (” P l e a s e l o g i n t o t h e a p p l i c a t i o n ”) ;
13 }
14 ?>

Listing 4.3: Index.php

1 <?php
2 i f (i s s e t ($ GET [” u s e r i d ”])) {
3 $ u s e r = $ GET [” u s e r i d ”] ;
4 i f (i s s e t ($ SESSION [” u s e r i d ”]) {

73

4. Attack Generation for Detecting Logic Vulnerabilities

5 i f ($ SESSION [” r o l e ”]== ” p a t i e n t ”) {
6 / / Code t o R e t r i e v e and D i s p l a y Record
7
8 } e l s e i f ($ SESSION [” r o l e ”]== ” p h y s i c i a n ” | | $ SESSION [”

r o l e ”]== ” admin ”) {
9 i f (i s s e t ($ POST [” p a t i e n t i d ”])) {

10 $ p a t i e n t i d = $ POST [” p a t i e n t i d ”] ;
11 / / Code t o R e t r i v e and D i s p l a y Record
12
13 } e l s e {
14 ?>
15 / / HTML Code t o g e t t h e P a t i e n t ID
16
17 <? }
18 }
19 }
20 } e l s e {
21 d i e (” P l e a s e l o g i n t o t h e a p p l i c a t i o n ”) ;
22 }
23 ?>

Listing 4.4: View.php

1 < s c r i p t t y p e = ’ t e x t / j a v a s c r i p t ’ s r c = ’ V a l i d a t e . j s ’>
2 </ s c r i p t >
3 <?php
4 i f (i s s e t ($ GET [” u s e r i d ”])) {
5 $ u s e r = $ GET [” u s e r i d ”] ;
6 i f ($ SESSION [” u s e r i d ”]== $ u s e r) {
7 i f ($ POST [”mode”]== ” i n s e r t ”) {
8 / / Code t o I n s e r t Record
9

10 } e l s e {
11 ?>
12 <form a c t i o n =” C r e a t e . php ? u s e r i d = . $ u s e r ” onsubmi t =”

r e t u r n v a l i d a t e I n p u t () ” method=” p o s t ”>
13 / / HTML code t o g e t i n p u t s from u s e r f o r c r e a t i n g r e c o r d
14
15 < i n p u t t y p e =” h idd en ” name=”mode” v a l u e =” i n s e r t ”>
16 </ form>
17 <? }
18 }
19 } e l s e {
20 d i e (” P l e a s e l o g i n t o t h e a p p l i c a t i o n ”) ;
21 }
22 ?>

Listing 4.5: Create.php

74

4.2. Problem Description

1 <?php
2 i f (i s s e t ($ GET [” u s e r i d ”])) {
3 $ u s e r = $ GET [” u s e r i d ”] ;
4 i f ($ SESSION [” u s e r i d ”]== $ u s e r && $ SESSION [” r o l e ”]== ” admin ”

) {
5 i f (i s s e t ($ POST [” p a t i e n t i d ”])) {
6 HTTPRedirect (” Confirm . php ”) ;
7 } e l s e {
8 i f (! i s s e t ($ COOKIE [” c s r f t o k e n ”])) {
9 $ t ok en = b in2hex (r a n d o m b y t e s (3 2)) ;

10 s e t c o o k i e (” c s r f t o k e n ” , $ t oke n) ;
11 }
12 ?>
13 <form a c t i o n =” D e l e t e . php ? u s e r i d = . $ u s e r ” method=” p o s t ”>
14 / / HTML Code t o Get P a t i e n t ID
15
16 < i n p u t t y p e =” h idd en ” name=” t o k e n ” v a l u e =<?php echo

$ t ok en ?>>
17 </ form>
18 <? }
19 }
20 } e l s e {
21 d i e (” P l e a s e l o g i n t o t h e a p p l i c a t i o n ”) ;
22 }
23 ?>

Listing 4.6: Delete.php

1 <?php
2 i f (i s s e t ($ GET [” u s e r i d ”])) {
3 $ u s e r = $ GET [” u s e r i d ”] ;
4 i f ($ POST [” c o n f i r m ”]== ” yes ”) {
5 i f (i s s e t ($ POST [” t o k e n ”])) {
6 / / Code t o D e l e t e Record
7
8 }
9 } e l s e {

10 ?>
11 / / HTML Code t o Get C o n f i r m a t i o n from u s e r
12
13 <?
14 }
15 } e l s e {
16 d i e (” P l e a s e l o g i n t o t h e a p p l i c a t i o n ”) ;
17 }
18 ?>

Listing 4.7: Confirm.php

75

4. Attack Generation for Detecting Logic Vulnerabilities

1 <?php
2 i f (i s s e t ($ POST [” u s e r i d ”])) {
3 $ SESSION [” u s e r i d ”] = $ POST [” u s e r i d ”] ;
4 h e a d e r (” L o c a t i o n : PwdRecovery . php ? u s e r i d =” . $ SESSION [” u s e r i d

”]) ;
5 } e l s e {
6 ?>
7 <form a c t i o n =” ForgotPwd . php ” i d =”Pwd” method=” p o s t ”>
8 UserID : < i n p u t t y p e =” t e x t ” name=” u s e r i d ”>

9 < i n p u t t y p e =” su bmi t ” v a l u e =” Next ”>

10 </ form>
11 <? } ?>

Listing 4.8: ForgotPwd.php

The web application maintains two session variables role and userid. The variable

role keeps track of the privilege of a user within the application, and the userid variable

keeps track of individual users by means of their user ID. The presented application

inherits several vulnerabilities which are discussed in detail.

Bug 1: Index.php page does not verify whether the session variable userid is set

or not. As a result, any malicious user can access Index.php page without logging into

the application by providing a valid value for the parameter userid in the HTTP request,

and hence, the user would be provided with hyperlink to view the medical record. Thus,

the exploitation of this missing access check results in authentication bypass attack.

Bug 2: V iew.php page checks if $ SESSION [“userid”] is set or not, but do not

validate the value of the parameter userid in the request with the session variable. As

a result, a user can view the medical record of another user by modifying the value of

userid in the request after logging into the application. This improper access check in

the page would result in horizontal privilege escalation attack. The page should have

checked if the user ID passed is the same as the session variable userid which is set.

Bug 3: Create.php page checks whether the userid set in the session and passed in

the request match, but fails to verify the role of the user having access to the web page.

As a result, a user with lower privilege can create medical records by issuing a direct

request toCreate.php page. This incomplete access check in the web page would result

in vertical privilege escalation/authorization bypass attack. This could be eliminated by

76

4.2. Problem Description

checking whether the value of the $ SESSION [“role”] variable is equal to admin or

physician.

Bug 4: Confirm.php page gets the userid from the request, but fails to verify

the role of the user and the value of the session variables. As a consequence, any user

with lower privilege can delete existing medical records by issuing a direct request to

Confirm.php page. This page misses the access check, and hence would result in

vertical privilege escalation/authorization bypass attack.

Bug 5: The application defines a session variable userid when a user logs in. Some

pages in the application check whether the session variable userid is set and is equal

to the userid parameter in the request. Now, there is a password recover facility in the

web application. If a user has forgotten their password, the web application prompts

them for their userid. Once the userid is entered, the application proceeds to display

the subsequent pages, and stores the value of the userid in the session variable userid,

which is the same as the session variable stored after logging in. Setting up the session

variable in the ForgotPwd.php page is a simple mistake, but can have unforeseen con-

sequences. For instance, after entering the userid, the session variable is set. Hence, a

malicious user can instantly browse all the pages in the web application which checks

only for the session variable userid. This is an example for session variable overload-

ing. This error can easily be avoided if session variable names are not duplicated.

Bug 6: Login.php gets input from the user, validates the input, and redirects the

user to Index.php. If the user-input supplied is not valid, then line 5 of Listing 4.2

redirects the end-user to the same page i.e., Login.php, but the server executes the rest

of the code (from line 7) as it is not embedded within the else clause. In other words,

even after supplying invalid credentials, the web page sets the session variables because

of which all the web pages in the application could be accessed. This kind of vulner-

ability is called Execution After Redirection (EAR) vulnerability (Doupé et al. 2011;

Payet et al. 2013). This error can be avoided by properly embedding the source code

in appropriate blocks.

77

4. Attack Generation for Detecting Logic Vulnerabilities

Bug 7: The web page Create.php gets input from the physician or admin to create

medical records. There exist a field Age in the form which confines its value between

0 and 150 using client-side scripting presented in Listing 4.1. A malicious user can

bypass the client-side validation and submit a request for Create.php page, with an

invalid value, say, −5 for the parameter age. The parameter age is not validated at

the server-side before insertion of the value into the database, and hence the intended

behavior of the application is violated. Thus, missing server-side validation is exploited

for launching a parameter manipulation attack.

Bug 8: The web pageConfirm.php validates whether the CSRF token is present in

the HTTP request or not, but fails to verify the value of the CSRF token set in the cookie

against the HTTP parameter token. Even though CSRF token is used for preventing

CSRF attacks, it indirectly helps in maintaining the sequence of operations within the

application. As a consequence, any user can delete existing medical records by issuing

a direct request to Confirm.php page by just appending the parameter token in the

request. Thus, this web page misses the CSRF token validation, and hence would result

in a workflow bypass attack.

4.3 PROPOSED APPROACH

The proposed approach named LogAttackGen (Logic Attack Generator) identifies dif-

ferent types of logic vulnerabilities prevailing in web applications by formulating a

model reflecting the data flow and control flow of the application for generation of at-

tack vectors. The proposed approach involves the following steps: (i) Construction of

a model reflecting the intended behavior of the application from the execution traces.

(ii) Inference of intended behavior of the application in the form of constraints related

to data (i.e., user-input parameters), access-control, and control flow of the application

from the web application model. (iii) Generation of concrete attack vectors that vio-

late the derived constraints for identifying the three types of logic vulnerabilities. The

steps involved in identifying the logic vulnerabilities are elaborated in the following

subsections.

78

4.3. Proposed Approach

4.3.1 Trace Collection

Traces are essential to construct the model for the web application under test. Manual

traces are generated by allowing a tester to navigate through the application in a browser

configured to use a proxy server. The proxy intercepts the HTTP requests/responses,

and stores them for further analysis to construct the model and discover the vulnerabil-

ities. In addition to collection of the web traffic requests, session variables which are

essential for maintaining the state of the application are extracted. In order to achieve

this, the proxy is configured with an extension module that is responsible for extrac-

tion of session information, and the same is discussed in Section 4.4.1. The parameters

flowing between the requests and responses assist in the detection of parameter ma-

nipulation vulnerabilities, and session variables assist in the detection of access-control

vulnerabilities. The sequence of operations within the web application aids in detecting

the workflow vulnerabilities.

The traces can be generated either manually or in an automated fashion using a

crawler. However, in this work user-generated traces are preferred to automated crawl-

ing due to the following reasons:

(i) There is a possibility of inferring false behavior of the application as intended be-

havior by the crawler. For instance, consider a web page in an application which

is vulnerable to vertical privilege escalation attack. In the case of using an au-

tomated crawler for exploration of the application during learning, the crawler is

able to visit the vulnerable page as a normal user itself, and hence would result

in inference of a false condition stating the page can be visited by a normal user

rather than a highly privileged user. As a result of this false learning, the vul-

nerability in the application would be missed from being identified. Thus, if the

application is vulnerable, then the automated crawling would result in inference

of false behavior resulting in false negatives.

(ii) There is a possibility of missing few vulnerable pages from being identified by the

crawler as the crawler may not navigate through the application in a fashion in-

tended by the programmer. For example, consider an eCommerce website which

79

4. Attack Generation for Detecting Logic Vulnerabilities

has the following web pages namely Purchase, Add New Item, Edit Item, Remove

Item, followed by Confirm Order, and Payment pages. Assuming Purchase page

has hyperlinks to Add New Item, Edit Item, and Remove Item pages, if the crawler

visits Edit Item or Remove Item web page with no items in the cart, then there

is a possibility that the subsequent pages Confirm Order and Payment web pages

might not be processed completely. As these web pages are visited during Edit

Item or Remove Item workflows, even when a new item is added through the Add

New Item page, the workflow will not be completed as the crawler marks Confirm

Order and Payment pages as already visited. This may result in false inference of

behavior of the application.

(iii) For identifying workflow vulnerabilities, the major challenge involved is the ex-

traction of all valid workflows in the web application. This is because, the web

applications today change the state not merely due to click action on hyperlinks,

but also due to events that are triggered on elements embedded within the web

pages. It is difficult to crawl such applications as a crawler cannot initiate a

JavaScript event. Therefore, this work makes use of traces generated manually.

The HTTP requests/responses extracted from the execution traces are fed as input

for constructing the model to discover the vulnerabilities. In order to achieve better

coverage, the traces should be generated for each role of the application.

4.3.2 Model Construction

As already described in Chapter 3, the intended behavior of the web application is to

be modeled for identifying any deviation in the actual behavior to detect the different

types of logic vulnerabilities. This section describes the conceptual model proposed

for reflecting the intended behavior of the application, and the approach followed for

constructing the model.

Conceptual Model: A Finite State Machine (FSM) is utilized for modeling the be-

havior of the application, as FSM is well suited for modeling the behavior of any sys-

tem. The information needed for constructing the FSM are extracted from the execution

80

4.3. Proposed Approach

traces. To identify the three types of logic vulnerabilities, the web application is mod-

eled conceptually as an annotated FSM (W) with hextuple (Q,Σ, A, δ, q0, F), where

• Q denotes a finite non-empty set of states, and the states are represented as DOM

structure of the web pages with unique URL in the application.

• Σ represents a finite non-empty set of inputs. The input symbol which marks the

transition to the next state in the FSM is represented as either the URL of the

hyperlink clicked or the URL of the redirected web page of the application.

• A is a set of annotations, which are used for providing additional conditions that

assist the transition from current state to the next state. An annotation is repre-

sented as a three tuple given by

[R,P, S], where

– R represents the set of roles (i.e., privilege level of users) having access to

the page,

– P represents the set of HTTP parameters and their respective values that get

passed along the request, and

– S represents the set of session variables and their corresponding values

• δ is the transition function, which is defined as a mapping from Q × Σ × A into

Q. For example, δ(qs, i, a) = qd indicates that if the current state is qs with

input symbol i(i ∈ Σ) under the annotation a(a ∈ A), then there will be a

transition from the current state qs to the next state qd. This FSM is referred to as

an annotated FSM.

• q0 marks the initial state, where q0 ∈ Q. Initial state is the home page of the

application from where the navigation starts.

• F represents the set of final states, where F ⊆ Q. Final states refer to the pages

that mark the end of navigation within the application (i.e., usually the logout

page).

81

4. Attack Generation for Detecting Logic Vulnerabilities

The DOM structure of the web page with unique URL in the application is repre-

sented as a state in the annotated FSM. The edges are labeled using the URL, and the

HTTP parameters and session variables that are input/set by the users and application.

The URL on the labeled edge is treated as the input symbol, and the parameters and

session variables are treated as annotation functions. The input symbols and the anno-

tation functions at a particular web page decide the transition to the subsequent web

pages. The parameters labeled as annotations on the edges of the FSM represent the

data flow, the session variables and their values are used for inferring access-control

policies, and the transitions from one state to another state represent the control flow

of the application. The data flow and control flow are used for identifying parameter

manipulation and workflow vulnerabilities respectively, and the session variables are

used for identifying access-control vulnerabilities.

In an ideal scenario, if all the web pages in the application are browsed by the tester

for all the roles and for all the possible workflows, then the motivating example dis-

cussed in Section 4.2 can be modeled as shown in Figure 4.1. The annotated FSM has

URL: / Confirm.php

Roles: Admin

HTTP Params: UserID,

PatientID

Session Params: UserID, Role

URL: /Logout.php

Roles: Admin, Physician

HTTP Params: UserID

Session Params: UserID, Role

URL: /Logout.php

Roles: Patient, Admin, Physician

HTTP Params: UserID

Session Params: UserID, Role

URL: /View.php

Roles: Patient, Admin,

Physician

HTTP Params: UserID

Session Params: UserID, Role

URL: /Create.php

Roles: Admin, Physician

HTTP Params: UserID

Session Params: UserID,

Role

URL: /ForgotPwd.php

Roles: Patient, Admin, Physician

Login.php (1) ForgotPwd.php (3)

Index.php (2)

Delete.php (6) View.php (4) Create.php (5)

LogOut.php (8)

URL: /index.php

Roles: Patient, Admin, Physician

POST Params: UserID, Password

Session Params: UserID, Role

URL: /Delete.php

Roles: Admin

HTTP Params: UserID

Session Params: UserID, Role

Confirm.php (7)

URL: /Logout.php

Roles: Patient, Admin, Physician

HTTP Params: UserID

Session Params: UserID, Role

URL: /Logout.php

Roles: Admin

HTTP Params: UserID

Session Params: UserID, Role

URL: /Login.php

URL: /ForgotPwd.php

Roles: Patient, Admin, Physician

POST Params: UserID

Session Params: UserID

URL: /View.php

Roles: Admin, Physician

POST Params: UserID, Patient ID

Session Params: UserID, Role

URL: /Delete.php

Roles: Admin

POST Params: UserID, PatientID

Session Params: UserID, Role

URL: /Login.php

POST Params: UserID,

Password

URL: /Create.php

Roles: Admin, Physician

POST Params: Name, Age,…

Session Params: UserID, Role

URL: /Login.php

Roles: Patient, Admin, Physician

POST Params: UserID

Session Params: UserID

Figure 4.1: Web application model

82

4.3. Proposed Approach

eight states, and the input symbols represented on the edges in the state diagram mark

the transitions within the application. Login.php and Logout.php mark the initial and

final states of the application, respectively. The model reflects the intended business

behavior of the application. Login, Index, View, ForgotPwd, and Logout pages are ac-

cessible by all users, while Create, and Delete pages are intended for admin, physician,

and admin users, respectively. As seen in Figure 4.1, in web page Index.php, if the

user clicks on the hyperlink for creating new medical records, then a transition to the

next state, Create.php, occurs if the session variables userid and role are set, and the

parameter userid exists in the HTTP request. The input symbol role marked on the

edge represents the role for which Create.php is available to the users.

Algorithm for Constructing the Proposed Model: Algorithm 4.1 presents the pseu-

docode for the construction of the annotated FSM from the execution traces. The al-

gorithm analyzes each of the HTTP requests and the responses which are fed as input.

Whenever a request is encountered, it is added to the input symbol set (Σ). The routine

ExtractParams() retrieves the HTTP parameters from the request and stores them in the

parameter set (P). On receiving a response, the algorithm verifies if the web page has

been already visited. If not visited, then a new state is created and a transition is marked

from the source state with the session variables and parameters associated with the tran-

sition added to the annotation set. The initial state and source state are initialized to null

values before execution of the algorithm. The first state created during execution of the

algorithm is assigned to the variable q0. If the web page is already visited, then the

state corresponding to that web page is retrieved using the function getExistingState(),

and a new transition is created between the source state and existing state. If a transi-

tion already exists between the two states with different session variables, then the new

session values are appended to the corresponding transition function. The new state

created or the current state (i.e., the web page in which the user is currently in) becomes

the source state for the next transition.

The session variables are extracted using the routine ExtractSession() implemented

as part of “Session Extractor” module of the R&D project discussed in Section 4.4.1.

The extracted variables are added to the set of session variables (S) in the annota-

83

4. Attack Generation for Detecting Logic Vulnerabilities

Algorithm 4.1: Model construction
Data: Web Requests and Responses
Result: Model of the Web Application

1 Q,P, S, Σ, δ = []; q0 = null; qs = null; //qs is Source state
2 while Input data is not empty do
3 if request then
4 Add request to Σ;
5 if request contains parameters then
6 P = ExtractParams(request);
7 end
8 else
9 //Code to handle HTTP Response

10 if Web Page has not been visited before then
11 qd = CreateNewState(); //qd is Destination state
12 if q0 is null then
13 q0 = qd; //Initial state of the FSM is initialized
14 end
15 t = CreateNewTransition(qs, qd, S, P , request);
16 Add q0, qd to Q;
17 Add t to δ;
18 else
19 //Web page already visited, get the state from Q
20 qd=getExistingstate(Q);
21 t = CreateNewTransition(qs, qd, S, P , request);
22 if t exists in δ with different Session Values then
23 t[session].add(S); //Add new Session values to existing record;
24 end
25 end
26 qs = qd;
27 S = ExtractSession();
28 end
29 end

tion set (A) of the FSM. The routine identifies the server-side technology before ex-

tracting the session. For PHP applications, session information is usually stored in

/opt/lamp/temp/ folder on a Linux installation, which is serialized and stored in the

session file as variable name-value pairs. This information is deserialized and extracted

for each request-response pair.

Figures 4.2 and 4.3 show the annotated FSM generated for the test applications,

Scarf and Wackopicko respectively. It is not the complete FSM, and it shows only a few

84

4.3. Proposed Approach

pages explored by the tester. The obtained FSM is visualized using Graphviz,1 a graph

visualization software.

4.3.3 Intended Behavior Extraction

The generated web application model (Annotated FSM) is analyzed to extract the in-

tended behavior of the application in the form of constraints. The constraints are ex-

tracted by observing the states of the FSM, transitions, and the input symbol and anno-

tations (i.e., URL, parameters and session variables) that have caused the transitions in

the FSM. Three types of constraints are derived as follows: (i) Parameter constraints:

The parameters causing transition from one state to another state, and the validation

checks placed on the user-input parameters at the client-side are stored as parameter

constraints. The validation checks on the user-input parameters are provided as input

from a client-side analyzer discussed in Section 4.4.1. (ii) Access-control constraints:

The destination state, parameters and session variables and their corresponding values

leading transition to that state are utilized for deriving access-control constraints. (iii)

Workflow constraints: The web pages that should not be skipped while following a

workflow are identified from the control flow of the application, and are stored as work-

flow constraints. The approach adopted for extracting the three types of constraints is

explained as follows.

Parameter Constraints: For the detection of parameter manipulation vulnerabilities,

it is essential to extract constraints placed on the user-supplied input at the client-side so

as to verify whether the same constraints are implemented at the server-side. Each web

request expects a certain number and type of parameters / user-inputs that get passed

with it. Each parameter has a name and a value, and the value may have some specific

constraints it must satisfy. The constraints placed on the value of the parameters at the

client-side are stored as parameter-related constraints. For example, an online banking

application restricts the value of the field amount to be transferred within a range of

500 − 5000. To identify the restrictions imposed on the parameters at the client-side

of the web application, an HTML/JavaScript analyzer is developed as part of the R&D

project. The HTML/JavaScript analyzer analyzes the client-side code of the web page

1 http://www.graphviz.org/

85

4. Attack Generation for Detecting Logic Vulnerabilities

Figure 4.2: Annotated finite state machine for application Scarf

86

4.3.P
roposed

A
pproach

START

login.php

['1'],None

[{'userid': '4'}],{'POST': {'username': 'scanner1', 'password': 'scanner1'}}

home.php

[{'userid': '4'}],None

recent.php

[{'userid': '4'}],None

view.php

[{'userid': '4'}],{'GET': {'userid': '4'}} purchased.php

[{'userid': '4'}],None

logout.php

['1'],None

[{'userid': '4'}],{'GET': {'picid': '15'}}

[{'userid': '4'}],None

preview_comment.php

[{'userid': '4'}],{'POST': {'text': 'dfdsfsds', 'picid': '15'}}

guestbook.php

[{'userid': '4'}],None

add_comment.php

[{'userid': '4'}],{'POST': {'previewid': '21', 'picid': '15'}}

[{'userid': '4'}],{'GET': {'picid': '15'}}

[{'userid': '4'}],None

[{'userid': '4'}],{'POST': {'comment': 'sdgfgsd', 'name': 'dgf'}}

upload.php

[{'userid': '4'}],None

[{'userid': '4'}],None

END

Figure 4.3: Annotated finite state machine for application Wackopicko

87

4. Attack Generation for Detecting Logic Vulnerabilities

to extract constraints imposed (if any) on each field of the web form. The ‘constraints’

provide information about the possible values that a field in the form can hold, form

fields which are mandatory, etc. The JavaScript analyzer provides three different types

of constraints on the parameters flowing between web pages: (i) Data type constraint,

(ii) Value constraint, and (iii) Length constraint. Data type constraint states the type

of value that should be provided as input by the user. Value constraint refers to the

value that an input field can hold. This constraint is represented in the form of a regular

expression against the input field. Length constraint refers to the number of characters

that an input can hold. These constraints are stored in a database for generation of attack

vectors to identify input fields that are vulnerable to parameter manipulation attacks.

The constraints extracted using the JavaScript analyzer are mapped onto the web

application model. For instance, for the parameter age discussed in Listing 4.5, the

value constraint inferred is 0 < age < 150. Similarly, for parameter name, the length

constraint inferred is Length(fname) > 0. The inferred constraints are violated during

attack generation for detection of parameter manipulation vulnerabilities. In case the

response obtained for the attack request is similar to that of the normal request, then

the web page is missing validation for the parameters at the server-side, and hence a

vulnerability would be reported.

Access-control Constraints: For extraction of access-control constraints, the follow-

ing types of web pages are to be identified by navigating through the FSM.

(i) Web pages that can only be accessed after logging in.

(ii) Web pages that are customized for individual users and should not be accessible

to other users with the same privilege.

(iii) Web pages that can only be accessed by certain roles.

The aforementioned types of web pages can be identified from the observation of

session variables and HTTP parameters and their respective values at each state of the

constructed model. The flow of session variables and parameters across the states are

inferred as constraints and are explained as follows. Firstly, the basic constraint inferred

88

4.3. Proposed Approach

at each state from the constructed model is the null check on session variables and pa-

rameters that have caused transition to that state. The second type of constraint inferred

is an equality constraint derived from the session variable and HTTP parameter whose

values are identical. The third constraint derived is based on the role of the user having

access to the state. Some of the constraints derived from Figure 4.1 are as follows:

The constraints inferred at Create.php (Listing 4.5) are:

(i) $ SESSION [userid] 6= null,

(ii) $ POST [userid] 6= null,

(iii) $ SESSION [userid] == $ POST [userid], and

(iv) $ SESSION [role] == Admin || Physician

Similarly, Delete.php (Listing 4.6) infers constraints such as

(i) $ SESSION [userid] 6= null,

(ii) $ POST [userid] 6= null,

(iii) $ SESSION [userid] == $ POST [userid], and

(iv) $ SESSION [role] == Admin

The session variables and the parameters that check for null values (Constraints (i)

& (ii)) help in identifying missing access check vulnerabilities. Constraint (iii) that

checks the value of the session variable against the value of the HTTP parameters is

useful in identifying horizontal privilege escalation vulnerabilities. The session vari-

ables that check their values against the roles (Constraint (iv)) registered with the ap-

plication aid in the identification of authorization bypass vulnerabilities. Attack vectors

are generated by violating each of the extracted constraints to identify vulnerabilities.

To check if Constraint (i) is implemented, the page Create.php is forcefully browsed

with null value for the session variable userid. For Constraint (iii), the value of the

parameter userid in the HTTP request is modified to a value different from the session

variable userid. In the case of Constraint (iv), requests for web pages Create.php,

and Delete.php are submitted with users having lower privileges (i.e., patient). In case

89

4. Attack Generation for Detecting Logic Vulnerabilities

the response obtained for the attack vectors being the same as that of normal requests,

then vulnerability would be reported for these web pages. The details regarding attack

generation are further explained in Section 4.3.4.

Workflow Constraints: With respect to detection of workflow vulnerabilities, the

sensitive pages in the application are to be identified to verify whether they can be

bypassed. In the context of this work, the sensitive/critical pages are defined as the web

pages which are developed with the intention that they should not be skipped while

following a workflow. The critical pages identified are stored as workflow constraints.

The critical web pages can be identified by modeling the web application as a di-

rected graph. To achieve this, an underlying directed graph G is constructed from the

annotated FSM. The states of the FSM (i.e., set of all web pages) represent the vertex

set of G, and the edge set of G is obtained by joining two vertices (i.e., web pages), say

u and v, by an arc if there exists a workflow from the vertex u to vertex v. Through-

out this thesis, the directed graph so obtained is referred to as a control flow/workflow

graph. The critical pages in the workflow graph are identified by identifying vertices

whose removal disconnects the path to one or more vertices from the root node (i.e.,

the initial state of the FSM) of the directed graph. The identified vertices refer to web

pages which disconnects the path to one or more subsequent web pages, when they are

skipped from being visited. This concept may not identify web pages that are actually

critical to the application in real-time. However, the identified non-critical pages are

also tested for vulnerabilities, and hence the proposed approach avoids false negatives.

Additionally, this work identifies pages that are more sensitive to the application by

identifying cut-vertices in the workflow graph. A cut vertex v ofG is a vertex whose re-

moval either increases the number of components ofG or disconnectsG. It also implies

that the vertex v exists in all the paths from the vertex x to vertex y where x 6= v and

y 6= v. Thus, identifying cut-vertices helps in discovering web pages which disconnects

the workflow, when skipped during navigation. It also implies that the web pages exist

in multiple workflows, and hence are more critical to the application. For example, lo-

gin page is a cut-vertex page, which exists in all the workflows in any service-oriented

90

4.3. Proposed Approach

web application. The cut vertices can be identified by obtaining a simple undirected

graph G′ from the workflow graph G by ignoring the directions and self-loops. The

directions are ignored because, the workflow graph is a weakly connected graph. Thus,

a cut vertex of the undirected workflow graph corresponds to the web page developed

with the intention that it should not be skipped while following the workflow. In other

words, skipping that node or web page disconnects/disturbs the workflow of the appli-

cation. Here, the set of cut vertices in the undirected workflow graph is obtained by

performing a depth-first search on the graph.

The web pages corresponding to the aforementioned two conditions are stored as

workflow constraints/critical pages. The workflows involving these critical web pages

are considered for identifying workflow vulnerabilities. The request for the critical web

page is skipped in a workflow to detect whether the critical page can be bypassed. Fig-

ure 4.4 represents the workflow graph obtained from the FSM shown in Figure 4.1. The

critical pages identified from the graph are nodes (1), (2), and (6), which correspond to

Login(1), Index(2), and Delete.php(6) pages in the application. Among these pages,

Login(1) and Index(2) pages are the cut-vertex pages, and are more critical to the

application.

As already described in Section 4.1, the sequence of operations within the applica-

tion is either maintained using sessions or CSRF tokens. Identifying the critical pages

in the application in the aforementioned fashion assists in unveiling pages that fail to

(1)

(2)

(3)

(4) (5) (6)

(7) (8)

Figure 4.4: Workflow graph

91

4. Attack Generation for Detecting Logic Vulnerabilities

Table 4.2: Bugs and corrections

Listing Bug Constraint Location Correction

Listing 4.3 Missing access
check

$ SESSION [userid] 6= null Line 4 Insert the statement
if(isset($ SESSION [“userid”]))

Listing 4.3 Incomplete
access check

$ SESSION [“userid”] ==
$ POST [“userid”]

Line 8 Append the following condition
if($ SESSION [“userid”] ==
$ POST [“userid”])

Listing 4.4 Improper access
check

$ SESSION [“userid”] ==
$ POST [“userid”]

Line 4 Modify the if condition to
if($ SESSION [“userid”] ==
$ POST [“userid”])

Listing 4.5 Incomplete
access check

$ SESSION [“role”] ==
“physician” || “admin”

Line 6 Append the following condition
if($ SESSION [“role”] ==
“physician”||$ SESSION [“role”] ==
“admin”)

Listing 4.5 Missing server-
side validation

age > 0 && age < 150 Line 9 Validate the input before insert-
ing into the database

Listing 4.7 Missing access
check

$ SESSION [“role”] ==
“admin”,
$ SESSION [“userid”] ==
$ POST[“userid”]

Line 4 Insert the following statement
if($ SESSION [“role”] ==
“admin” &&
$ SESSION [“userid”] ==
$ POST [“userid”])

Listing 4.7 Missing se-
quence check

Delete.php (Critical Page) Line 5 Append the following condition
if($ POST [“token”] ==
$ COOKIE[“csrf token”])

Listing 4.8 Session variable
overloading

Line 3 Rename the session variable
userid to tmp userid
$ SESSION [“tmp userid”]

maintain the sequence due to lack of validation of both session variables and CSRF

tokens. While lack of validation of session variables against the HTTP parameter could

be identified using access-control constraints, pages that lack validation of CSRF token

stored in the cookie could be identified only from the discovered critical pages in the

application.

Thus, the annotated FSM is effectively used for extraction of parameter constraints,

access-control constraints and workflow constraints, which are subsequently violated

for discovering parameter manipulation, access-control and workflow vulnerabilities

respectively. Table 4.2 describes the defects existing in the application discussed in

Section 4.2, the inferred constraints and the corrections manually suggested to fix the

flaws.

92

4.3. Proposed Approach

4.3.4 Attack Generation

The web application is penetrated with attack requests for identifying the vulnerabili-

ties. The attack requests are submitted to the web application under test in such a way

that the three types of constraints inferred from the FSM are violated. For example, if

a web page requires session variables to be set, then attack request for the web page is

submitted with null values for the session variables. Later, the response obtained is ob-

served for reporting the different types of logic vulnerabilities. The algorithms used for

generating attack vectors from the different types of constraints inferred are described

in detail in this section.

Parameter Manipulation: The constraints extracted from the HTML/JavaScript an-

alyzer are mapped onto the constructed FSM model and stored in a database. These

constraints are later used for generating attack vectors to identify the vulnerabilities.

The generation of attack vectors for identifying parameter manipulation vulnerabilities

involves two cases: (i) providing values for parameters in such a way that the constraint

imposed on the parameter is contradicted, and (ii) appending parameters which are not

supposed to be present in a request for a web page. Algorithm 4.2 presents the pseu-

docode for generating the two types of attack vectors, and the details are described as

follows:

• Case 1: Contradicting the values of parameters: The constraints against each

form field stored in the database of the prototype serve as input to this algo-

rithm. The constraints provide information regarding the type of constraint and

the value, which are retrieved and violated to generate attack vectors. Each type

of constraints imposed on the input field such as data type constraint, value con-

straint, and length constraint are violated for identifying vulnerabilities. For ex-

ample, consider a form field quantity which is supposed to have an integer value

within a range of 0 − 10. In such cases, attack requests are submitted with the

following malicious inputs: (i) a value less than zero (quantity = −5), and (ii)

a value greater than ten (quantity = 20). Thus, each extracted constraint is

violated for identifying the vulnerabilities.

93

4. Attack Generation for Detecting Logic Vulnerabilities

Algorithm 4.2: Parameter manipulation attack generation
Data: Array of Input Constraints: constraint[]

1 foreach webpage in webpage list do
2 parameter values = “”;
3 new parameter = “”;
4 foreach form in the webpage do

5 //Case 1: Contradicting the values of parameters;
6 foreach input in the form do
7 parameter values.append(negateConstraint(constraint[input]));
8 act response = sendRequest(url, parameter values);
9 learnt response = getValidResponse(url);

10 if act response = learnt response then
11 Report a vulnerability;
12 end
13 end

14 //Case 2: Appending a new parameter;
15 new parameter.append(parameter);
16 act response = sendRequest(url, new parameter);
17 learnt response = getValidResponse(url);
18 if act response = learnt response then
19 Report a vulnerability;
20 end
21 end
22 end

• Case 2: Appending parameters to the HTTP request: The constraints extracted

from the JavaScript analyzer have information regarding the parameters that should

flow from one page to another page, as well as the parameter that goes along a

request only for a user with particular privilege. The constraint is violated by

adding the parameter in the request of a user with lower privilege. From the

motivating example discussed in Section 4.2, the parameter mode with value as

insert in Create.php is supposed to be present only for physicians and adminis-

trator. If the application is vulnerable, then the parameter mode can be included

in the HTTP request by a guest user of the application consequently permitting

the guest user to create new records.

The response obtained during attack generation is stored and compared with the

response obtained during the normal execution of the application. When a success

94

4.3. Proposed Approach

Algorithm 4.3: Authentication bypass attack generation
Data: Q and δ
Result: Vulnerability Report

1 forall t in δ do
2 if t.Session != null then
3 attack response = SendRequest(t.destinationUrl);
4 learnt response = t.destinationUrl.dom;
5 if attack response = learnt response then
6 Report a vulnerability;
7 end
8 end
9 end

response is received for the attack vector, then the form fields submitted with contra-

dicting values are reported as vulnerable injection points.

Access-control Violation: After extraction of access-control constraints from the model,

the next step is to violate the constraints. The attack vectors generated for identifying

access-control vulnerabilities are as follows:

Authentication Bypass: This attack focuses on identifying web pages that need to be

accessed by privileged users, but fail to impose an access check in the source code. The

constraints generated in the previous phase are used for identifying the web pages ac-

cessed by privileged users. Such web pages are accessed as a third-party/non-privileged

user by submitting an HTTP request for the web page without submitting valid creden-

tials. In other words, a web page in an application is accessed by any user without

logging in. This is called authentication bypass attack. The responses obtained for the

attack vectors are used for identifying the vulnerabilities. Algorithm 4.3 explains the

steps followed for generating the authentication bypass attack. The set of states (Q) and

transition functions (δ) are fed as inputs to the algorithm. The state set Q is utilized for

identifying states that are accessed with session variables set in the transition function

leading to that state. Requests are placed for those web pages without defining session

variables, and the responses obtained are stored. The responses obtained for those re-

quests are compared with the responses obtained during normal execution for reporting

vulnerabilities.

95

4. Attack Generation for Detecting Logic Vulnerabilities

Algorithm 4.4: Vertical privilege escalation attack generation
Data: Q and δ
Result: Vulnerability Report

1 //Step 1: Identify web pages and roles not having access to the page;
2 AttackSet=[];
3 forall t in δ with same t.DestinationUrl do
4 AttackRoles = SetofRoles - SetofAccessibleRoles;
5 AttackSet.add(t.DestinationUrl,AttackRoles);
6 end
7 //Step 2: Access web pages with non-accessible roles;
8 forall t in AttackSet do
9 forall role in AttackRoles do

10 Login(role);
11 attack response = SendRequest(destinationUrl);
12 learnt response = destinationUrl.dom;
13 if attack response = learnt response then
14 Report a vulnerability;
15 end
16 end
17 end

For example, considering the application Scarf shown in Figure 4.2, the web pages

addsession.php and useroptions.php can be accessed by users after logging in. The

proposed approach places requests for these web pages without setting proper user cre-

dentials to identify if the page is vulnerable to authentication bypass attack.

Vertical Privilege Escalation: This attack focuses on identifying the web pages with

incomplete access checks. To identify such cases, highly privileged web pages are ac-

cessed by putting forward an HTTP request for the web page with a valid username

in a parameter, but without proper session variables set for the privilege. This type of

attack is called vertical privilege escalation attack. Algorithm 4.4 provides the pseu-

docode for generation of the attack, and it operates in two steps. The first step is to

identify privileged pages and the roles not having access to the respective pages. The

next step is to access the privileged pages with non-accessible roles. The algorithm

is explained in detail as follows. The roles having access to a web page are extracted

from the session variables, and stored in a list named SetofAccessibleRoles. Exclusion

of SetofAccessibleRoles from the total set of roles intended for the application gives the

96

4.3. Proposed Approach

set of non-accessible roles (AttackRoles) for the web page. The list AttackSet is updated

with the URL of the web page and the set of roles not having the access to the page.

The process is repeated until all privileged pages in the application are identified. At the

end of the iteration, the list AttackSet consists of all privileged web pages in the applica-

tion, and the set of roles not having access to the page. After identifying the privileged

pages, attack requests are submitted for those privileged web pages with non-privileged

roles. The responses obtained for those attack requests are compared with the responses

obtained during normal execution for reporting vulnerabilities.

For example, considering the application Scarf shown in Figure 4.2, the web pages

editpaper.php and comments.php can be accessed exclusively by an admin user. The

attack generator module places HTTP requests for these web pages with the parame-

ter username set as a normal user to identify if the pages are vulnerable to vertical

privilege escalation attack.

Horizontal Privilege Escalation: This attack focuses on identifying web pages with

improper access checks. Such kind of vulnerabilities lead to horizontal privilege esca-

lation attacks which mean a web page intended for a particular user can be accessed by

any other user with the same privilege. In such cases, the web pages are accessed with

the username parameter set to any valid user registered with the application with the

same role, and the responses are compared for reporting vulnerabilities. Algorithm 4.5

explains the steps followed for generation of the attack. The first step is to identify tran-

sition functions having identical values for any of the parameters and session variables.

The second step is to place requests for the destination state of those transition functions

with value set for the parameter different from the value of the session variable. The

responses obtained for those attack requests are compared with the responses obtained

during normal execution for reporting vulnerabilities.

For the application Wackopicko (Doupé et al. 2010), the web page view.php in-

tended for user1 is accessed by user2 by modifying the value of the parameter userid

to user2 in the HTTP request. If the response obtained for user2 is the same as the

response received for the user1, then vulnerability will be reported.

97

4. Attack Generation for Detecting Logic Vulnerabilities

Algorithm 4.5: Horizontal privilege escalation attack generation
Data: Q and δ
Result: Vulnerability Report

1 AttackSet=[];
2 forall t in δ do
3 forall p in t.Params do
4 forall s in t.Session do
5 if p.value = s.value then
6 AttackSet.add(t.DestinationUrl, p, s);
7 end
8 end
9 end

10 end
11 forall t in AttackSet do
12 Login(Session);
13 p = ModifyParameter(Params);
14 attack response = SendRequest(destinationUrl,p);
15 learnt response = destinationUrl.dom;
16 if learnt response = attack response then
17 Report a vulnerability;
18 end
19 end

Session Puzzling: In addition to the aforementioned cases, the proposed model iden-

tifies session puzzling (also known as session variable overloading) (Chen 2011), a kind

of attack which targets the vulnerabilities in session variables. To the best of our knowl-

edge, no prior work has been reported to capture the session variable overloading. To

identify session puzzling, the proposed approach identifies transitions where the same

session variables are set along different paths in the constructed FSM. This does not

pose a problem, if the parameters passed to set the session variables are same in each

case. A potential problem arises when the same session variables are set, but lesser

information is applied to define it. Referring to Bug 5 discussed in Section 4.2, the ses-

sion variable username is set at Login page using the user-input parameters username

and password. However, in ForgotPwd page, the same session variable is set by ac-

cepting just the username. Again, this cannot be regarded as a vulnerability. This is

because, other session variables may be set to maintain a state such that the user is not

perceived as fully logged in. If requests are sent to pages where the username param-

98

4.3. Proposed Approach

Algorithm 4.6: Session puzzling attack generation
Data: Q and δ
Result: Vulnerability Report

1 forall t in δ do
2 prevtrans=getPreviousTransition(t);
3 forall s in SessionVariables do
4 if Session is set for t but not for prevtrans then
5 param1=prevtrans.Params;
6 SessionSetList=getSessionSetPoints(s);
7 forall x in SessionSetList do
8 param2=x.params;
9 //Session set with lesser amount of information;

10 if set(param1.keys)<set(param2.keys) then
11 Browse from start state to prevtrans;
12 Select dest which can only be visited when variable s is set;
13 attack response = SendRequest(dest);
14 learnt response = dest.dom;
15 if learnt response = attack response then
16 Report a vulnerability;
17 end
18 end
19 end
20 end
21 end
22 end

eter is necessarily set, and the response obtained is similar to the original responses,

then this becomes a vulnerability. The aforementioned steps are explained through Al-

gorithm 4.6, which presents the pseudocode for generating attack vectors to identify

session puzzling vulnerabilities.

Workflow Bypass: The algorithm for initiating workflow bypass attacks requires the

critical web pages in the application. As already described in Section 4.3.3, the critical

web pages are pages that should not be skipped in a workflow. For each valid work-

flow with critical web pages, HTTP requests are placed sequentially for the pages in

the workflow. However, the algorithm fails to place request for the critical web page

and instead places request for the next web page (i.e., the page that follows the critical

web page). Thus, skipping a web page from a valid workflow is called a workflow by-

99

4. Attack Generation for Detecting Logic Vulnerabilities

Algorithm 4.7: Workflow bypass attack generation
Data: Q and δ
Result: Vulnerability Report

1 workflow list = extractWorkflows(Q, δ);
2 foreach workflow in workflow list do
3 foreach node in workflow do
4 if node not in criticalNodes list then
5 attack response = sendRequest();
6 end
7 end
8 learnt response = getValidResponse(workflow);
9 if learnt response = attack response then

10 Report a vulnerability;
11 end
12 end

pass attack. If the response obtained for the attack is the same as that of the response

obtained during normal execution, then vulnerability is reported. The process is re-

peated for the other identified workflows and vulnerabilities are reported accordingly.

Algorithm 4.7 presents the pseudocode for identifying workflow vulnerabilities. The

list criticalNodes list consists of the critical pages in the application.

For instance, the critical pages identified from Figure 4.4 are the nodes (1), (2), and

(6). The workflows containing these pages in the application are: (1) −→ (2) −→

(4) −→ (8), (1) −→ (2) −→ (5) −→ (8), (1) −→ (2) −→ (6) −→ (7) −→ (8),

(1) −→ (2) −→ (8), and (1) −→ (3) −→ (1). Considering the path (1) −→ (2) −→

(6) −→ (7) −→ (8), node (1) is skipped and request for page (2) is placed. If the

request is successful, then node (2) is vulnerable to workflow bypass attack. The process

is repeated for rest of the workflows to identify vulnerable web pages.

In the applications Scarf and Wackopicko, the critical web pages identified are

Login and Index, and Login,Guestbook, V iew and Preview comment pages re-

spectively. The workflows (i.e., paths) containing these critical web pages are only

considered for launching attacks.

100

4.4. Experimental Study and Analysis

4.4 EXPERIMENTAL STUDY AND ANALYSIS

This section provides details regarding the testbed on top of which the proposed model

is implemented, and the applications used for evaluation. Extensive experiments are

carried out to substantiate the effectiveness of the proposed approach which are dis-

cussed in detail.

4.4.1 Experimental Setup

The proposed approach LogAttackGen, for generation of attack vectors to identify logic

vulnerabilities, is embedded within the prototype called DetLogic developed as part of

the R&D project supported by MeitY, Government of India. DetLogic operates in three

phases: (i) learning phase, (ii) attack generation phase, and (iii) discovery phase. Learn-

ing phase is meant for extraction of the intended behavior of the application. It extracts

constraints imposed on parameters and constructs a model reflecting the intended work-

flow of the application. Attack generation phase is meant for generating concrete attack

vectors that help in identifying the vulnerabilities in the application. In the discovery

phase, the prototype attempts to detect vulnerabilities in the application by comparing

the responses obtained during learning and attack generation phases. Figure 4.5 shows

the high-level system design of DetLogic, and the components of LogAttackGen embed-

ded within DetLogic. LogAttackGen forms the model generator and attack generation

modules of DetLogic. The working principle of DetLogic is elaborated below.

Input: Seed URL and valid user credentials are given as input to identify the points

of injection for parameter manipulation. Manual traces are generated by the tester for

identifying access-control and workflow vulnerabilities.

Output: The output is a vulnerability report that lists the logic vulnerabilities, the

types of attacks which are possible by exploiting the vulnerabilities, and the location of

the vulnerabilities existing in the web application under test.

Trace Collection: Traces are the HTTP requests generated during navigation of the

application under attack-free sessions. These traces can be generated either manually

or automatically. The traces are analyzed for extraction of the intended behavior of the

application. DetLogic makes use of traces generated both manually and automatically.

101

4. Attack Generation for Detecting Logic Vulnerabilities

Attack

Generation

Phase

PM Attack

Generation

ACV Attack

Generation
WFB Attack

Generation

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Crawler
Session

Extractor

(Proxy)

Seed URL

User Credentials HTTP Request

Web Application

Server
Trace

Collection

Learning

Phase

HTML/Java

Script

Analyzer

Model

Generator

HTTP

Response
HTTP

Response

Parameter

Constraints
FSM

Model

Discovery

Phase

HTML

Response

Comparator

Legitimate

HTTP

Response

Vulnerability

Report

Illegitimate HTTP Response

Web Application

Server

Attack Requests Attack Requests

Process Flow for PM

Process Flow for ACV

Process Flow for WFB

Components of LogAttackGen

LogAttackGen

Figure 4.5: DetLogic architecture2

Manual traces are used for inferring the control flow of the application. The HTTP

requests and responses generated during manual trace collection are intercepted and

captured using a proxy. In addition to collection of the web traffic requests, session

variables which are essential for maintaining the state of the application are extracted.

These variables assist in the detection of access-control vulnerabilities. In order to

achieve this, the proxy is configured with an extension module that is responsible for

extraction of session information. Automated traces are used for detecting parameter

2The prototype is developed as part of R&D project supported by MeitY, Government of India.

102

4.4. Experimental Study and Analysis

manipulation vulnerabilities, and are generated using a crawler that explores all the web

pages in the application on a depth-first search basis.

Learning: The learning phase is responsible for inferring the intended behavior of

the web application. An HTML/JavaScript analyzer is employed for deriving the con-

straints on the parameters, and a model generator is utilized for extracting the intended

behavior of the application in the form of an annotated FSM. The HTTP responses

generated from the HTTP requests submitted to the application server during trace col-

lection are collected, stored, and fed to the JavaScript analyzer and model generator.

The analyzer and the model generator process the requests and responses, and represent

the restrictions on parameters and navigation within the application in the form of pa-

rameter constraints and an annotated FSM respectively. The annotated FSM provides

data flow and the control flow of the application.

Attack Generation: Three different types of attacks parameter manipulation, access-

control violation and workflow bypass attacks are generated for identifying business

logic vulnerabilities. Attack vectors are generated on injection points by either modify-

ing values of parameters in the HTTP request in such a way that parameter constraints

are violated, or appending parameters which are not supposed to be present in the re-

quest. For launching access-control violation attack, access-control constraints are used

to identify whether highly privileged pages can be accessed by users with low privileges.

To generate workflow bypass attack, the critical web pages in the web application are

identified from the control flow, and are skipped from being visited.

Discovery: HTML response comparator is developed for comparing the response

generated after each attack request against the corresponding response stored in the

database during learning. Vulnerability is reported when the response generated during

an attack is similar to that of the response obtained for a valid request. A report is

finally generated with details of vulnerabilities, the types of attacks that exploited the

vulnerabilities, and the flaws which led to the attacks.

103

4. Attack Generation for Detecting Logic Vulnerabilities

Table 4.3: Applications for evaluation

Application Description Vulnerabilities existing in
the application

References

Customized applications

BookStore Shopping applica-
tion

Parameter manipulation
vulnerabilities (Instru-
mented)

Halfond and Orso
(2005)

Classifieds Online manage-
ment system for
classifieds

Parameter manipulation
vulnerabilities (Instru-
mented)

Halfond and Orso
(2005)

Events Event tracking sys-
tem

Parameter manipulation
vulnerabilities (Instru-
mented)

Halfond and Orso
(2005)

Employee Di-
rectory

Online employee di-
rectory

Parameter manipulation
vulnerabilities (Instru-
mented)

Halfond and Orso
(2005)

Benchmark applications

Scarf Conference manage-
ment system

Authentication bypass,
Privilege escalation Vul-
nerabilities

CVE-2006-5909, Li
et al. (2014); Li and
Xue (2011, 2013);
Li et al. (2012);
Monshizadeh et al.
(2014)

Wackopicko Image management
system

Access-control vulnerabili-
ties

Li et al. (2014);
Li and Xue (2011,
2013); Li et al.
(2012)

OpenIT IT management Access-control vulnerabili-
ties

Bisht et al. (2010a)

Puzzlemall Session variable overload-
ing

Chen (2011)

OsCommerce eCommerce applica-
tion

Workflow vulnerabilities
(Instrumented)

Li and Xue (2011)

4.4.2 Test Applications

Table 4.3 presents the applications used for testing business logic vulnerabilities. The

applications of Halfond and Orso (2005) such as BookStore, Classifieds, Employee Di-

rectory, and Events are instrumented with parameter manipulation vulnerabilities for the

104

4.4. Experimental Study and Analysis

purpose of evaluation. The benchmark applications Scarf, Wackopicko (Doupé et al.

2010), OpenIT, and Puzzlemall (Chen 2011) are utilized for testing access-control

vulnerabilities. The applications Scarf, Wackopicko, OpenIT, and OsCommerce are

utilized for testing workflow vulnerabilities. The application OsCommerce is instru-

mented with a coding flaw in the web page “checkout payment”, which fails to validate

the value of CSRF token set in the cookie against the HTTP parameter. The proposed

approach is implemented in Python, and Redis (a data structure server) is used to store

the information regarding the web application under test for further processing.

4.4.3 Experimental Results and Discussions

The effectiveness of the proposed approach is demonstrated by testing it on the bench-

mark web applications. This section presents a discussion on the results obtained.

Parameter Manipulation Vulnerabilities: Table 4.4 shows the results obtained while

testing the application for parameter manipulation vulnerabilities. The proposed ap-

proach is tested with four open-source web applications available in the test suite of

Halfond and Orso (2005). These applications are instrumented with parameter manip-

ulation vulnerabilities for the purpose of testing. The table gives the total number of

forms existing in the application, the number of forms vulnerable to parameter manipu-

lation vulnerabilities, number of vulnerabilities existing in the application and detected

using the proposed approach. It can be inferred from the table that the proposed ap-

proach did not report any false positives. Table 4.5 gives the different types of con-

straints extracted for the test applications.

Access-control Vulnerabilities: Table 4.6 gives the results obtained while testing the

application for access-control vulnerabilities. The proposed approach is tested with

four open-source web applications. Three of these web applications have been used

extensively in the literature as stated in Table 4.3. The fourth one is a relatively new

open-source web application that exhibits session puzzling. As seen from the results,

the approach works relatively well on most of the web applications. Table 4.7 shows the

different types of access-control vulnerabilities reported using the proposed approach.

105

4. Attack Generation for Detecting Logic Vulnerabilities

Table 4.4: Parameter manipulation vulnerabilities detected

Application #URLs #Forms
#Vulnerable Forms #Vulnerabilities

#FP #FN
Existing Detected Existing Detected

BookStore 477 32 5 5 64 64 0 0
Classifieds 3,465 20 16 16 86 86 0 0
Events 67 12 11 11 39 39 0 0
Employee
Directory

141 9 8 8 42 42 0 0

FP – False Positives, FN – False Negatives

Table 4.5: Number of constraints extracted

Application
#Constraints

#Length #Data #Value #Total

BookStore 16 48 49 113
Classifieds 12 18 14 44
Events 0 12 8 20
Employee
Directory

0 8 16 24

Table 4.6: Access-control vulnerabilities detected

Application #LOC #States
#Attack
Requests

Vulnerabilities
#TP #FP #FN

Existing Detected

Wackopicko 4,037 12 9 4 3 3 0 1
Scarf 1,913 12 27 8 9 8 1 0
OpenIT 26,035 14 2 2 2 2 0 0
Puzzlemall 1,979 19 1 1 1 1 0 0

LOC – Lines of Code, TP – True Positives, FP – False Positives, FN – False
Negatives

106

4.4. Experimental Study and Analysis

Table 4.7: Types of access-control vulnerabilities detected

Application
#Missing
Access
Check

#Incomplete
Access
Check

#Improper
Access
Check

#Session
Variable

Overloading

Wackopicko 2 0 1 0
Scarf 3 4 2 0
OpenIT 0 0 2 0
Puzzlemall 0 0 0 1

Discussion: One of the drawbacks of this approach is that the model is constructed

using only a single trace generated by the user. Even though this is sufficient for identi-

fying some kinds of attacks, this may result in false positives while detecting horizontal

privilege escalation. This is due to the fact that the approach assumes the constraints

based on the available traces. If only one trace is presented, then it can erroneously

assume some constraints that are actually not constraints. This results in false positives

in the case of the application Scarf. As an example, the addsession.php page in Scarf

application uses a parametermonth which is an integer value ranging from 1 to 12. As-

suming the input provided by the tester for the parameter month is 5, and by chance the

user logged in also has a session variable userid set to 5, then the proposed approach

erroneously infers a constraint stating that the value of the parameter month and the

session variable userid should be same. Unfortunately, this is not true. This drawback

can be removed by using multiple traces and stricter constraint extraction.

The proposed approach reports one false negative in Wackopicko. The reason be-

hind this is that highquality.php page in the application allows the attacker to view

high-quality pictures without purchasing them by manipulating the picid parameter in

the request. This relationship between users and pictures is not incorporated as part

of session variables and exists in the database table “own”. As a result, the proposed

approach cannot capture the constraint when constructing the FSM model. Therefore,

no attack vectors will be generated to violate such constraint, and hence is missed from

being identified.

107

4. Attack Generation for Detecting Logic Vulnerabilities

Table 4.8: Comparison of the proposed approach with LogicScope

Proposed Approach LogicScope

Application #
St

at
es

#
A

tta
ck

s

#
V

ul
ne

ra
bi

lit
ie

s
(E

)

#
V

ul
ne

ra
bi

lit
ie

s
(D

)

#
Fa

ls
e

Po
si

tiv
es

#
Fa

ls
e

N
eg

at
iv

es

#
St

at
es

#
A

tta
ck

s

#
V

ul
ne

ra
bi

lit
ie

s
(E

)

#
V

ul
ne

ra
bi

lit
ie

s
(D

)

#
Fa

ls
e

Po
si

tiv
es

#
Fa

ls
e

N
eg

at
iv

es

Wackopicko 12 9 4 3 0 1 2 21 4 2 0 1
Scarf 12 27 8 9 1 0 3 49 8 10 2 0
OpenIT 14 2 2 2 0 0 5 65 2 3 1 0
Puzzlemall 19 1 1 1 0 0 2 NA 1 0 0 0

E – Existing, D – Detected

Comparison with LogicScope: The results are comparable to existing work Log-

icScope (Li and Xue 2013). Table 4.8 gives the comparison of the results obtained

for the proposed approach with the results as stated in LogicScope. Puzzlemall is not

used in LogicScope, and hence the number of attack requests launched is marked as

not applicable (NA). The number of states that would be inferred is two, since it has

only two session variables. LogicScope is incapable of detecting the session puzzling

vulnerability existing in Puzzlemall.

The model generated by LogicScope treats the cartesian product of the session vari-

ables and their values as states, while the proposed model considers the web pages as

states of the FSM. In addition, the model proposed by LogicScope is not flexible enough

to address vulnerabilities leading to session puzzling attack while the proposed model

captures session puzzling. The proposed model is also adaptable to identify other types

of vulnerabilities such as EAR vulnerability, and vulnerabilities arising due to improper

handling of session identifiers.

Workflow Vulnerabilities: Table 4.9 gives the results obtained while testing the ap-

plication for workflow vulnerabilities. The proposed approach is tested with four open-

source web applications. Scarf and Wackopicko have Login pages that can by bypassed

by Comments.php and Generaloptions.php, and V iew.php and Upload.php, respec-

tively. OsCommerce, a commercially used eCommerce application, is instrumented

108

4.4. Experimental Study and Analysis

Table 4.9: Workflow vulnerabilities detected

Application #LOC #States
Vulnerabilities

#FP #FN
Existing Detected

Scarf 1,913 12 2 2 0 0
Wackopicko 4,037 12 2 2 0 0
OpenIT 26,035 14 0 0 0 0
OsCommerce 22,642 31 1 1 0 0

LOC – Lines of Code, FP – False Positives, FN – False Negatives

with a coding flaw in checkout payment page, where the CSRF token set in the cookie

at checkout shipping.php is not validated against the HTTP parameter leading to a

workflow bypass attack. As a result, a user could pay for the purchased items without

inclusion of the shipping charges. The state machine inferred from the application with

the role as customer has 31 states. Thus, the number of states inferred for a real time

application is less than 50 due to consideration of the web page templates.

Discussion: While BLOCK (Li and Xue 2011) and LogicScope (Li and Xue 2013)

detect workflow bypass resulting due to improper session management, the proposed

approach is capable of detecting workflow bypass attacks resulting due to improper

management of CSRF tokens as well. The correctness of results obtained using the

approach depends on the model which is generated using manual traces. Therefore, to

achieve better accuracy the tester need to explore all possible workflows.

Performance Evaluation: The performance of the proposed approach is evaluated

using the following metrics: true positive rate (TPR), false positive rate (FPR), false

negative rate (FNR), precision, and recall. The FPR and FNR of the proposed approach

for both parameter manipulation and workflow vulnerabilities are 0%. With regard to

detection of access-control vulnerabilities, the FPR and FNR are 5% and 6.25% respec-

tively. The precision and recall percentage values are 99.1% and 97.9% respectively.

The overall TPR of the proposed approach is found to be 97.9%.

4.4.4 Advantages and Limitations

The advantages of the proposed approach are as follows:

109

4. Attack Generation for Detecting Logic Vulnerabilities

• The generated FSM represents every aspect of the interactions between the web

application and the user. The annotations on the FSM offer the flexibility to

identify the three different types of logic vulnerabilities.

• The session variables marked on the annotated FSM make the model capable and

adaptable for identifying new types of vulnerabilities related to session manage-

ment as compared to LogicScope (Li and Xue 2013). The adaptability offered by

the model renders a way to generate attack vectors for detecting session puzzling

vulnerabilities. Additionally, vulnerabilities such as improper handling of session

identifiers (e.g., pages that issue session identifiers to users before logging in, but

fail to modify them after logging in) can be identified by mapping the session

identifier onto the model and triggering appropriate attack vectors.

• The FSM model is capable of generating attack vectors to identify workflow vul-

nerabilities arising due to CSRF token validation missing at the server-side which

is not addressed in BLOCK (Li and Xue 2011) and LogicScope.

• The generated model can be used for detection of EAR vulnerabilities as well.

The first type of access-control constraint inferred from the FSM (i.e., web pages

at which session variables are defined and set) can be used for identifying EAR

vulnerabilities. During attack generation, a request for the web page that defines

the session variables is placed with invalid values for the input parameters. If the

application is not vulnerable, then the request will be redirected to an error page.

Consecutively, a second attack request is placed for the web page that follows

the previous web page. If a success response is received, then EAR vulnerability

is reported. Thus, the inferred constraint can be effectively used for identifying

EAR vulnerabilities by placing two attack requests consecutively.

• The model offers flexibility in identifying the severity of vulnerabilities existing

in the application. The cut-vertices identified from the control flow graph of

FSM can be used to identify the severity of vulnerabilities. The out-degree of the

cut-vertex node can be used for ranking the nodes which in turn would help in

marking the severity of web pages in the application.

110

4.5. Summary

• Even though the number of states of the annotated FSM is more as compared to

LogicScope, we tend to minimize the number of states by representing the states

of the FSM using the web page template (i.e., DOM structure) after ignoring the

data content in the web page. For any large application such as an eCommerce

application, the size of the FSM will not increase with the number of web pages

to display millions of products being sold. All these web pages will be treated as

a single page while framing the state of the FSM.

Even though the proposed approach works based on a black-box approach in an

automated fashion, few limitations exist which are listed as follows.

• The approach requires the session information at the server-side of the application

for detection of access-control vulnerabilities.

• The correctness and completeness of the results depend on the model generated

which in turn depends on the user navigating through the web application under

test. When the user does not explore all the possible navigations within the appli-

cation, the vulnerabilities in unvisited pages may be missed from being identified.

However, limitations regarding automated and manual trace collection can be over-

come by using a simulated crawler. The simulated crawler requires a user to navigate

through the application, and fill in all the forms in the application with valid values.

The sequence of operations in the application and the possible values for form fields are

recorded which can be later replayed during the learning phase.

4.5 SUMMARY

This chapter presents an approach for generation of attack vectors to detect three differ-

ent types of logic vulnerabilities existing in web applications. The proposed approach

employs black-box analysis for inferring the intended behavior of the application, and

penetration testing and forceful browsing for assessing the application for vulnerabili-

ties. The proposed approach extracts the data flow and control flow of the application by

analyzing the execution traces. The data flow and control flow information are used for

111

4. Attack Generation for Detecting Logic Vulnerabilities

constructing an annotated FSM. The FSM is subsequently used for deriving parameter-

related, access-related, and workflow constraints which are violated to generate attack

vectors. The attack vectors generated by violating the parameter constraints tamper

the parameters, and thus perform penetration testing to identify parameter manipulation

vulnerabilities. The attack vectors generated by violating the access-control and work-

flow constraints forcefully browse the web pages to identify the potential access-control

and workflow vulnerabilities in the application. In addition to the three types of vulner-

abilities, the proposed approach is capable of detecting vulnerabilities leading to session

puzzling attacks. The proposed approach has been exhaustively tested on benchmark

PHP and Java web applications, and it is found to work effectively with a precision, and

a true positive rate of 99.1% and 97.9%, respectively. Thus, it can become an essential

tool for ensuring the security of applications against logic attacks irrespective of the

technology used for implementing the application.

112

CHAPTER 5

ATTACK GENERATION FOR DETECTING
XQUERY INJECTION VULNERABILITIES

XQuery injection vulnerabilities allow an adversary to inject malicious code as part

of the user-input, which on execution results in extraction/insertion of unwanted in-

formation from/into the XML documents stored in NXDs. The major cause for these

vulnerabilities is insufficient validation of user-input, and hence identification of these

vulnerabilities demands probing the application with malicious inputs to ensure the

availability of validation functions. If the malicious input is processed successfully by

the application, then it implies the absence of validation functions, and hence a vulner-

ability is reported. Therefore, this work proposes an approach for crafting malicious

inputs resulting in attacks for identifying different types of XQuery injection vulner-

abilities in web applications driven by NXDs. The proposed approach formulates a

context free grammar based on different types of attacks specified in OWASP (2015)

guidelines for generating malicious inputs to detect the vulnerabilities. This work is

part of the Research & Development project supported by MeitY, Government of India

and the contributions towards this work are as follows:

(i) Development of an attack grammar to generate different types of XQuery attack

strings so that all possible points of injection in the web application are captured

by the proposed approach.

113

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

(ii) Identification of three new categories of attack vectors, alternate encoding, eval-

uation function, and XQuery comment injection attacks not listed in OWASP.

(iii) Evaluation of the proposed approach by testing on vulnerable, native XML database-

driven web applications.

The rest of the chapter is organized as follows. Section 5.1 describes the impor-

tance of XML-based web applications and illustrates an XQuery injection attack with

an example. Section 5.2 presents the problem description. Section 5.3 describes the

proposed solution and discusses the new categories of XQuery injection attack vectors

identified as part of this work. Section 5.4 presents the prototype on top of which the

proposed solution is implemented, and discusses the experimental results. Section 5.5

summarizes the chapter.

5.1 XQUERY INJECTION IN NATIVE XML DATABASE

A lot of database-driven web applications in use today are XML-based as they involve

exchange of information with multiple applications through XML documents. XML is

a data representation that favors integration and interoperability between heterogeneous

web applications. The information exchanged between the applications in the form of

XML documents can be processed efficiently when they are stored appropriately. These

documents are stored in either an extended relational DBMS or a native XML database

system (Chaudhri et al. 2003; Liu and Murthy 2009). XQuery / XPath can be used as

a query language for retrieving the data from XML documents.

A Native XML database (NXD) has XML document as its fundamental unit of stor-

age, and defines a logical model based on the content in the XML document (Pavlovic-

Lazetic 2007). NXDs are employed in cases where the data involved do not fit the

relational data model, but fit the XML data model. NXDs are generally preferred for

applications that hold highly diverse information, involve integration of information

from different set of applications, and handle rapidly evolving schemas. NXDs are

also preferred for applications that work with a huge set of documents or large-sized

documents (e.g., books, web pages, marketing brochures), and involve management of

long-running transactions like finance, pharmaceuticals, etc. (Bourret 2009). Use of

114

5.1. XQuery Injection in Native XML Database

relational databases and flat file systems for building such applications results in issues

such as scalability and lack of structured queries. These issues can be overcome by

using NXDs with XQuery/XPath as the query language for processing. Some of the

popular NXDs are BaseX, eXistDB, and MarkLogic.

NXDs find applications in a wide variety of domains such as document manage-

ment systems, healthcare systems, financial applications, business-to-business transac-

tion records, catalog data, and corporate information portals (Staken 2001). Real-world

business applications that employ NXDs to manage their content are Elsevier Science

publishers, Las Vegas Sun publishers (Bourret 2009), the Tibetan Buddhist Resource

Center (TBRC) (Siegel and Retter 2014), etc. The Tasmanian government websites

use NXD for helping users to track legislation. NXDs are used to store various other

types of documents such as drug information sheets, contracts, case law, and insurance

claims. Commerzbank and Hewlett Packard use NXD for integration of information

from a variety of sources to handle financial and business transaction data (Bourret

2009). Healthcare applications prefer to store electronic health records (EHR) in NXDs

for efficient storage and retrieval of information from the available medical records (i.e.,

scan reports, prescriptions, etc.) (Al-Hamdani 2010; de la Torre et al. 2011; Lee et al.

2013).

The existing literature reveals that there is a growing demand towards usage of

NXDs in web applications. Even though various XML security standards (Hirsch

2002; W3C 2015) such as XML Encryption, XML Digital Signature, and XML access-

control markup language are defined for preserving confidentiality, integrity and access-

control mechanisms of XML documents, when NXDs are used at the backend, any

vulnerability in the source code of the application may allow an adversary to perform

unwanted actions resulting in extraction/modification of information from/in the docu-

ments through the query language (i.e., XQuery/XPath). As the content of highly sen-

sitive applications like finance, healthcare, etc. are driven by NXDs, security of NXDs

is vitally important to ensure the integrity, privacy and confidentiality, and to make sure

that information is used appropriately (Huang 2003). Hence, this work concentrates on

identifying XQuery injection vulnerabilities in web applications driven by NXDs.

115

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

XQuery Injection

A simple example of an XQuery injection attack is described with the following XML

document, users.xml (Auger 2010):

<?xml version=“1.0”encoding=“ISO-8859-1”?>

<userlist>

<user category=“group1”>

<fname>john</fname>

<status>good</status>

</user>

<user category=“admin”>

<fname>john</fname>

<status>good</status>

</user>

<user category=“group2”>

<fname>mary</fname>

<status>good</status>

</user>

</userlist>

The source code for retrieving the detail of a user from the XML document is given

below.

String strName = (String) request.getParameter(“name”);

String strQuery = “xquery for $x in doc(‘users.xml’)/userlist/user where $x/fname=‘”+

strName + “’ return $x”;

Assuming that the value for the variable strName is obtained from the user input,

the XQuery would return the following, when the input provided by the user is “john”.

116

5.1. XQuery Injection in Native XML Database

<user category=“group1”>

<fname>john</fname>

<status>good</status>

</user>

<user category=“admin”>

<fname>john</fname>

<status>good</status>

</user>

As the input string from the user is not validated properly, an attacker can provide input

in such a way that the query is manipulated for retrieving the complete set of users. By

providing the input string XXX’ or ‘1’=‘1 for the variable strName, the attacker can

make the XQuery to return a node-set of all the users. The malformed XQuery is:

for $x in doc(‘users.xml’)/userlist/user

where $x/fname=‘XXX’ or ‘1’=‘1’ return $x

The XQuery when executed retrieves the whole XML document and presents it to

the attacker. It can be observed that absence of proper validation mechanism for the user

input has resulted in an attack. This security weakness leading to the XQuery injection

attack is referred using CWE-6521 (Improper Neutralization of Data within XQuery

Expressions (‘XQuery injection’)).

Different types of XML injection attacks suggested by OWASP (2015) are listed as

follows:

• Tautology attack: This attack is carried out by appending an expression that al-

ways returns ‘True’ to the user input. E.g., or ‘1’= ‘1, or ‘a’= ‘a. The example

discussed above is a tautology attack.

• Meta Character injection attack: This attack is carried out by inserting an XML

meta character such as ‘,”,〈,〉, or & in the user input. The CWE identifier assigned

for this type of attack is CWE-150.

1https://cwe.mitre.org/data/definitions/652.html

117

https://cwe.mitre.org/data/definitions/652.html

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

• Comment injection attack: This attack is performed by inserting a comment char-

acter sequence 〈!-- in the user input (CWE-151).

• CDATA section injection attack: This attack is carried out using the CDATA sec-

tion (CWE-146). CDATA sections are generally used for escaping blocks of text

which would otherwise be recognized as markup.

• Tag injection attack: This attack is carried out by injecting a tag in the user in-

put causing the structure of the XML to be modified and hence corrupting the

database.

• External entity injection attack: This attack occurs when XML input containing

a reference to an external entity is processed by a weakly configured XML parser

(XXE 2016). The set of valid entities that can be processed by the XML parser

can be extended by defining new entities. If the definition of an entity is a URI, it

is called an external entity. If it is not configured properly, then external entities

force the XML parser to access confidential resource such as a file placed in a

remote system (CWE-611).

5.2 PROBLEM DESCRIPTION

Given a web application, the objective of this work is to develop a systematic approach

that is capable of generating attack vectors for detecting XQuery injection vulnerabil-

ities prevailing in web applications driven by NXDs, independent of the functionality

and technology of the application. The attack vectors should be capable of detecting

all types of XQuery injection attacks specified by the security consortium OWASP. The

proposed approach should also allow extensibility to address new kinds of attacks when

discovered.

5.3 PROPOSED APPROACH

The proposed approach named XiAttackGen (XQuery injection Attack Generator) iden-

tifies vulnerabilities prevailing in web applications by penetrating the application with

different types of malicious input strings. To detect XQuery injection, the malicious

input strings are provided in the form fields available in the web pages of the applica-

118

5.3. Proposed Approach

tion. The form fields are probable points of injection and are identified using a crawler.

The malicious strings are generated using an attack grammar which is constructed by

taking into account the different types of XML injections specified by OWASP, and the

new categories of attack vectors listed in Section 5.3.3. The malicious strings assist

in exposing the vulnerabilities in the applications from the obtained responses. The

vulnerabilities identified assist the developers in fixing the coding defects existing in

the web application so that the application becomes resistant to XML/XQuery injec-

tion attacks. This section elaborates on the approach followed for identifying probable

injection points, and generation of malicious strings for identifying the vulnerabilities.

5.3.1 Identification of Injection Points

The web application under test is crawled starting from the seed URL provided by

the tester. Seed URL is the starting point from which the web application under test

is crawled for discovering the probable points of injection. The crawler developed

as part of the R&D project navigates through the web pages of the application, and

identifies forms and form fields through which the user interacts with the application.

The information related to the forms and form fields are stored in the database for further

processing. These form fields are considered as the possible points of injection. These

injectable points are populated with invalid input strings for identifying vulnerabilities.

5.3.2 Attack Generation Based on OWASP Guidelines

Attack vectors for identifying the vulnerabilities are generated by proposing a context-

free grammar. The attack grammar is framed based on regular expressions representing

each type of injection attack as detailed in Sections 5.1 and 5.3.3. In this work, a

regular expression has been framed to generate malicious strings representing each of

these types of attacks. By combining these regular expressions, the attack grammar has

been formed. Hence, the proposed attack grammar enables the identification of all the

above mentioned types of XML injection attacks. For example, the regular expression

for generating tautology attack strings is: (A-Za-z0-9)+’ or ‘1’= ‘1’ or ‘(A-Za-z0-9)+.

A sample string generated by this regular expression is abc’ or ‘1’= ‘1’ or ‘xyz. The

regular expression for comment injection attack string is: (A-Za-z0-9)+ 〈!--. A sample

119

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

string generated by this regular expression is abc123 〈!--. Similarly, regular expressions

can be formed for each type of attack string. A combination of these regular expressions

is used to form a context free grammar.

The attack grammar is a context free grammar G defined by (N, T, P, S) where N is

the set of non-terminals, T is the set of terminals, P is the set of productions, and S is

the start symbol.

N={S, TAUT, METACHAR, COMMENT, CDATA END, CDATA CHAR, TAG, EXT ENTITY,

W CDATA, ALT ENCODING, EVAL, STRING SC, SPECIAL CHAR, STRING}

T={‘, ’, “, ”, 〈 , 〉 , &, !, [, /, ?, ., -, =, ;, , , :, @, {, }, [,], (,), , a, b, ..., z, A,

B, ..., Z, 0, 1, ..., 9}

Productions P of the grammar G are formed as follows:

S → TAUT | METACHAR | COMMENT | CDATA END | CDATA CHAR |

TAG | EXT ENTITY | ALT ENCODING | EVAL

TAUT→ STRING’ or ‘1’=‘1’ or ‘STRING | STRING’ or ‘a’=‘a’ or ‘STRING | STRING’

or 1=1 or ‘STRING | STRING” or ‘1’=‘1’ or “STRING | STRING” or ‘a’=‘a’ or

“STRING | STRING” or 1=1 or “STRING

METACHAR→ STRING” STRING | STRING“ STRING | STRING‘ STRING | STRING’

STRING | STRING 〈 STRING | STRING 〉 STRING | & STRING COMMENT →

STRING〈!-- | (: STRING :)

CDATA END → STRING]]〉

CDATA CHAR → <![CDATA[W CDATA]]>

120

5.3. Proposed Approach

W CDATA → TAUT | TAG

TAG → <script>STRING</script>

STRING SC → STRING SC | STRING SPECIAL CHAR STRING |ε

SPECIAL CHAR → SPECIAL CHAR | | ; | : |@ | . | , | - | [|] | | | / | ! |ε

ALT ENCODING → {convert:binary-to-string(xs:hexBinary (’NUMBER’))}

EVAL → {eval(’NUMBER OP NUMBER’)}

NUMBER → NUMBER | 0 | 1 | 2 | | 8 | 9 |ε

OP → + | - | * | / | % |ε

STRING→ STRING | a | b |...| z | A | B |...| Z | 0 | 1 |...| 9 | | ε

The possible points of injection (i.e., form fields) identified in the web pages are pop-

ulated with these attack strings, and a request is submitted to the web server. Vulner-

ability would be reported in the case of receiving a successful response from the web

server.

Proof of Consistency and Completeness: The attack grammar framed is a context

free grammar G. Generally the consistency and completeness of a context free gram-

mar is proved using mathematical induction (Gopalakrishnan 2006). However, this

technique is most suitable for grammars containing recursive productions especially in

the start production. As the attack grammar framed in Section 5.3.2 does not contain

recursive productions except to generate alphanumeric strings, the proof of consistency

and completeness for this grammar is trivial. Consistency ensures that all strings gen-

erated by the grammar belong to the language for which the grammar is intended to be

121

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

framed. Completeness ensures that all strings that belong to the language are generated

by the grammar.

Proof of consistency: Let L be the language of XQuery attack strings. The start

production for the grammar G is

S → TAUT | METACHAR | COMMENT | CDATA END | CDATA CHAR |

TAG | EXT ENTITY | ALT ENCODING | EVAL

Consistency of the grammar is ensured when no string generated by S violate the

rules of being in the language L. A detailed explanation on consistency of the grammar

is provided via one of the productions S→ TAUT. Let LT be a subset of L, and repre-

sents the language of tautology attack strings given by,

LT = {(STRING’ | STRING”) (or 1=1 | or ‘a’=‘a’| or ‘1’=‘1’| or “a”=“a”) (or

‘STRING | or “STRING)m, where m ≥ 0},

The non-terminal TAUT can be rewritten as follows:

TAUT → STRING’ or ‘1’=‘1’ TAUT ADD | STRING’ or ‘a’=‘a’ TAUT ADD |

STRING’ or 1=1 TAUT ADD | STRING” or ‘1’=‘1’ TAUT ADD | STRING” or ‘a’=‘a’

TAUT ADD | STRING” or 1=1 TAUT ADD, and

TAUT ADD → or ‘STRING TAUT ADD | or “STRING TAUT ADD |ε

Based on the definition of the language LT , if TAUT generates a string containing

any one of the following expressions ‘1’= ‘1’, “1”=“1”, 1=1, ‘a’= ‘a’, or “a”=“a”,

then consistency is guaranteed for the production S→TAUT.

Let W be a word generated by the TAUT production. Say, S→TAUT generates W.

When TAUT ADD → ε, then the generated word W contains any one of the follow-

ing expressions ‘1’= ‘1’, “1”=“1”, 1=1, ‘a’= ‘a’, or “a”=“a” as substring. The

generated string is an attack string that belong to the language LT under the category

of tautology attacks. By induction hypothesis, if TAUT ADD generates any other ter-

minals other than ε, then the generated word contains any one of the aforementioned

122

5.3. Proposed Approach

expressions. Thus, all the words generated by the production S→TAUT belong to the

language LT . Similarly, consistency can be proved for a word W generated by any of

the other non-terminals on the right-hand-side of S.

Proof of completeness: The proof for completeness should ensure that any string

that belong to the language of attack strings L can be generated by the grammar G. Let

W be a word which belongs to the language of XQuery attack strings L. Say, W also

belongs to the language of tautology attack strings LT , where LT ⊆ L. All the words

produced from the given set of productions TAUT and TAUT ADD, contains ‘1’=‘1’,

“1”=“1”, 1=1, ‘a’=‘a’, or “a”=“a” as substring whenm = 0,m = k, andm = k+1.

Therefore, it is evident that the productions can generate all set of strings that belong to

the language LT . Thus, all tautology attack strings in the language L can be generated

by the grammar G. Similarly, completeness can be proved for all strings that belong

to any category of attacks in L, all strings of which are generated by the corresponding

start production. Therefore, the given grammar is complete enough to generate all the

strings that belong to the language L.

5.3.3 Identification of XQuery Injection Attacks not Listed in OWASP

Apart from the attacks specified in OWASP (2015), new kinds of attacks are always

possible and an adversary can make use of the advancements offered by the query lan-

guage to manipulate the database request for launching attacks. The vulnerabilities in

the test applications are exploited to launch different kinds of XQuery injection attacks

that are not specified in OWASP (2015). The extendability of the proposed attack gram-

mar is evidenced from the three new categories of XQuery injection attacks identified

as part of this work and are discussed in the following subsections.

5.3.3.1 Alternate Encoding Attack

In this attack, the malicious code is injected in encoded form (e.g., ASCII, hexadeci-

mal, etc.) into the query. The malicious code is encoded by the attacker to defeat the

defensive coding practices employed for blocking special characters such as ampersand

(&), single quote (‘), and less than symbol (<) in the user input. A conversion func-

tion such as convert (2016) is included in the user input to decode the encoded attack

123

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

string. This attack is generally used in conjunction with other types of attacks. In other

words, alternate encodings do not provide any unique way to attack an application; it is

an attack that allows malicious users a way to avoid the detection and prevention func-

tions existing in the application, and therefore allows exploitation of vulnerabilities that

might not otherwise be exploitable (Halfond et al. 2006).

Example 1: “xquery let $up: =”+ parameter + “return insert node (<post><from>

User1 </from><data>{$up}</data></post>) as last into doc (‘postsdb/posts.xml’)/

posts all”

Attack String:

parameter = convert : binary − to− string(xs : hexBinary(‘3c212d2d′))

The query generated by the application is:

xquery let $up: = convert:binary-to-string(xs:hexBinary(‘3c212d2d’))

return insert node (<post><from>User1</from><data>{$up}</data></post>)

as last into doc(‘postsdb/posts.xml’)/posts all

The string equivalent of the hexadecimal code ‘3c212d2d’ is <!--, a comment tag in

HTML. Therefore, the query will be evaluated as:

insert node (<post><from>User1</from><data><!--</data></post>) as last into

doc (‘postsdb/posts.xml’)/posts all

When the query is executed, a new record is inserted into the database with the com-

ment tag stored as a string ‘<!-- ’. Whenever a web page makes use of this injected

record, the HTML comment tag gets inserted into the HTML code of the web page, and

the rest of the HTML code is commented out from the point of insertion, and thus an

attack is made successfully.

124

5.3. Proposed Approach

Example 2: Assuming that the application blocks special characters like <, >, etc.

in the user input, the application can still be exploited by using an encoded version of

the characters. For the same query discussed above, a stored XSS attack is possible

with the following attack string.

Attack String:

parameter = convert : binary−to−string(xs : hexBinary(‘3c7363726970743e

616c657274282778737327293c2f7363726970743e′))

The query generated by the application is:

xquery let $up: = convert : binary − to− string(xs : hexBinary(‘3c7363726970

743e616c657274282778737327293c2f7363726970743e′))

return insert node (<post><from>User1</from><data>{$up}</data>

</post>) as last into doc (‘postsdb/posts.xml’)/posts all

The query will be evaluated as:

insert node (<post><from>User1</from><data>

<script>alert(‘xss’) </script>

</data></post>) as last into doc (‘postsdb/posts.xml’)/posts all

Consequently, a new child node gets inserted into the XML document and whenever

a web page makes use of this injected record, a JavaScript alert will be thrown on the

web page. Thus, encoded version of the malicious characters can be used along with

convert function of XQuery for causing attacks.

5.3.3.2 Injection Through Evaluation Function

The absence of proper sanitization mechanisms for validating the user input can be

exploited by an attacker for creating attacks that affect the intended behavior of the

application. The expected behavior can be modified due to execution of malicious ex-

pressions by using eval (2016) function.

125

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

Consider a web page in an application that allows a user to enter a string against the

price of a product. As the input field accepts string values, an adversary can provide in-

put with an arithmetic expression embedded within eval function of XQuery. Suppose,

the application fails to validate the value of price (i.e., fails to check if the value of price

is greater than zero) at the client-side, then the adversary can provide the expression in

such a way that it evaluates to a negative value thus affecting the intended behavior of

the application. In case, client-side validation is done but lacks server-side validation,

then still there is a possibility to inject the eval function for parameter price via the

HTTP request.

Example 3: “xquery let $up: =” + parameter + “return insert node (<prod-

uct><name>Item1</name><price>{$up}</price></product>) as last into doc (‘prod-

ucts.xml’)/products all”

Attack String:

parameter = eval(‘100 ∗ −1′)

The query generated by the application is:

xquery let $up: = eval(‘100*−1’) return insert node (<product><name>Item1</name>

<price>{$up}</price></product>) as last into doc (‘products.xml’) /products all

The function eval evaluates the given expression and the query becomes as follows:

insert node (<product><name>Item1 </name><price>−100</price></product>)

as last into doc(‘products.xml’)/products all

When the query is executed, a new product gets inserted into the database with the price

of the product as −100 and thus an injection is made successfully. The eval function

can also be used to evaluate an XQuery expression.

126

5.3. Proposed Approach

5.3.3.3 XQuery Comment Injection Attack

In this attack, an attacker injects XQuery comment symbol (‘(:’) into the query so as to

ignore a part of the XQuery expression from being executed which in turn affects the

intended behavior of the application.

Example 4: “xquery for $x in doc(‘users.xml’)/users/user where $x/fname=‘”+

strName + “’ and $x/password =‘”+ strPassword + “’ and $x/year=”+ iYear + “

return $x”

Attack String:

fname = admin′(:

password =abc

year=1975 :)

The query generated by the application is:

xquery for $x in doc(‘users.xml’)/users/user

where $x/fname = ‘admin’ (:’ and $x/password=‘abc’ and $x/year = 1975 :)

return $x

The query will be evaluated as:

xquery for $res in doc(‘users.xml’)/users/user where $x/fname = ‘admin’

return $x

When the query is executed, the attacker gains access to the application with the priv-

ileges of an administrator without submitting valid credentials. Thus, an attacker can

bypass the authentication page using XQuery comment injection.

Example 5: “xquery for $res in doc(‘students.xml’)/students/student where $res/-

total <”+ ulimit + “and $res/total >”+ llimit + “ return (replace value of node with

‘First Class’)”

127

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

Attack String:

ulimit = 20(:

limit = :)

The query generated by the application is:

xquery for $res in doc(‘students.xml’)/students/student

where $res/total <20 (: and $res/total >:)

return (replace value of node with ‘First Class’)

The query will be evaluated as:

xquery for $res in doc(‘students.xml’)/students/student where $res/total <20

return (replace value of node with ‘First Class’)

When the query is executed, the students who have scored marks less than 20 will

be assigned to “First Class”. Thus, an untrusted user can violate the intended behavior

of the application.

5.4 EXPERIMENTAL STUDY AND ANALYSIS

This section provides details regarding the testbed on top of which the proposed ap-

proach is implemented and the applications that are used for evaluation. Extensive

experiments are carried out to substantiate the effectiveness of the proposed approach

which are discussed in detail in this section.

5.4.1 Experimental Setup

The proposed approach XiAttackGen, for generation of attack vectors to identify XQuery

injection vulnerabilities in native XML database-driven web applications, is embedded

within the prototype XQueryFuzzer developed as part of the R&D project supported

by MeitY, Government of India. XQueryFuzzer involves the following phases: Crawl-

ing, Learning, Attack Generation, and Discovery. Figure 5.1 represents the workflow

of the prototype XQueryFuzzer, and the components of XiAttackGen embedded within

XQueryFuzzer. XiAttackGen forms the attack generation module of XQueryFuzzer.

128

5.4. Experimental Study and Analysis

Legitimate

Query Model

Illegitimate

Query Model

Discoverer

Crawler

Learner

Form Fields

XQueryFuzzer

Attack

Generator

Attack

Grammar

Form Fields

Web Application

Server
Database

Server

XQuery

Query

intercepted

during

Learning

Seed URL

Authentication

Information

HTTP

Request

HTTP

Response

HTTP

Request with

Legitimate

Payload

HTTP

Request with

Illegitimate

Payload

Vulnerability

Report

Query

intercepted

during Attack

Generation

Query Result

XiAttackGen

Figure 5.1: XQueryFuzzer architecture2

Crawling: The application under test is crawled starting from the seed URL pro-

vided by the tester. Using the seed URL as a starting point, the prototype scans all

other web pages of the application to identify forms. The forms and form fields through

which the user interacts with the application are identified and stored in the database.

These form fields are considered as the points of injection.

Learning: The form fields identified during crawling phase are populated with valid

inputs, and then the corresponding web form is submitted to the web application server

using an HTTP request. The XQueries generated by the web application server on

processing the request are sent to the XML database server for execution. The queries

executed successfully are intercepted, and utilized for constructing legitimate query

models. The queries are intercepted by modifying the database driver files specific to

the native XML database used by the web application under test.

Attack Generation: The injectable points are populated with attack strings that are

generated based on the attack grammar, and the corresponding web form is submitted to

the application. The queries that are processed successfully by the server on submission

of the attack strings are intercepted, and then used for constructing illegitimate query

models.

2The prototype is developed as part of R&D project supported by MeitY, Government of India.

129

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

Table 5.1: Test application details

Test Application Description Web Technology # Hotspots

BookStore Online bookstore JSP 71
Classifieds Online management system

for classifieds
JSP 34

Employee Directory Online employee directory JSP 23
Events Event tracking system JSP 31

Discovery: The illegitimate query models are compared against their respective le-

gitimate query models for identifying vulnerabilities. Vulnerabilities are reported when

there is a mismatch between the generated query models.

The details regarding construction and comparison of legitimate and illegitimate

query models can be found in Palsetia et al. (2016).

5.4.2 Test Applications

The test suite developed by Halfond and Orso (2005) is used for testing the proposed

approach. The applications BookStore, Classifieds, Employee Directory, and Events

are used for evaluation. These applications use a relational database at the backend for

storing the data. For evaluation of the proposed approach, the database of these appli-

cations is modified to BaseX (NXD), and SQL queries in the application are replaced

with XQueries. The test applications given in Table 5.1 lists the name of the applica-

tion, description, technology involved, and the number of locations that issue XQueries

(hotspots).

5.4.3 Experimental Results and Discussions

The effectiveness of the proposed approach is evaluated along two dimensions: (1)

experimental effectiveness, and (2) comparison with Zed Attack Proxy (ZAP) (ZAP

2016), an open-source vulnerability scanner. The evaluation results are discussed below.

Table 5.2 describes the number of attack requests submitted to the test application,

number of successful attacks, number of forms existing in the application, number of

vulnerable forms existing in the application, and number of vulnerable forms detected

by the prototype. The table shows that for applications BookStore and Classifieds, two

130

5.4. Experimental Study and Analysis

Table 5.2: XQuery injection vulnerabilties detected

Test Application
#Attack
Requests

#Successful
Attacks

#Forms #Vulnerable forms
Existing Detected

BookStore 726 235 32 19 17
Classifieds 528 125 20 14 12
Employee
Directory

286 111 9 7 7

Events 396 157 12 10 10

Total 1936 628 73 50 46

forms are missed from being identified as vulnerable. The forms are missed because of

the validation placed on few parameters on the server-side. As the crawler component

of the prototype is not aware of the context of the application, valid values could not be

placed for the parameters that have restrictions on it, and hence both legitimate and ille-

gitimate requests fail for both the cases. All the existing vulnerable forms are identified

by the prototype for applications Events and Employee Directory.

Table 5.3 lists the number of vulnerabilities existing in the test application, the num-

ber of vulnerabilities detected by the prototype, the number of true positives, false posi-

tives and false negatives. On analyzing the results, it is found that the prototype detects

maximum number of vulnerabilities present in the test applications with few false pos-

itives. The overall true positive rate of the proposed approach is found to be 93.27%.

False Positives and False Negatives: Table 5.4 gives the number of false positives

and false negatives reported by the prototype. The prototype resulted in two false pos-

itives and four false negatives. False positives are reported in applications BookStore

and Employee Directory. The reason behind this is the number of queries executed

during legitimate and illegitimate requests accidentally matches, even though the ille-

gitimate request was not processed successfully. False positives can be eliminated by

comparing the HTTP responses obtained for legitimate and illegitimate requests of the

application. The reason behind false negatives is explained below. In the case of ap-

plication BookStore, web page ShoppingCartRecord.jsp is not visited by the crawler

as the parent page ShoppingCart.jsp did not have any items that provide hyperlinks to

ShoppingCartRecord page during the visit. Vulnerabilities in three other pages namely,

131

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

Table 5.3: Number of vulnerabilities existing in test applications and detected by the
proposed approach

BookStore Classifieds Emp. Directory Events
Type of injection attack E D FP FN E D FP FN E D FP FN E D FP FN

Tautology injection 21 20 1 2 15 13 0 2 7 7 0 0 10 10 0 0
Comment injection 14 15 2 1 9 8 0 1 3 5 2 0 3 3 0 0
Meta character 〉 injection 21 19 0 2 15 13 0 2 7 7 0 0 10 10 0 0
Meta character & injec-
tion

0 3 3 0 0 0 0 0 0 2 2 0 0 0 0 0

Meta character 〈 injection 14 15 2 1 9 8 0 1 3 5 2 0 3 3 0 0
Tag injection with
CDATA

5 5 1 1 2 1 0 1 4 4 0 0 7 7 0 0

CDATA end character se-
quence injection]]〉

16 14 0 2 12 10 0 2 7 7 0 0 10 10 0 0

Tag injection 21 19 0 2 15 13 0 2 7 7 0 0 10 10 0 0
Special character (single/-
double quotes) injection

12 11 1 2 7 5 0 2 8 8 0 0 14 14 0 0

Alternate encoding injec-
tion

16 14 0 2 12 10 0 2 7 7 0 0 10 10 0 0

Evaluation function injec-
tion

16 15 1 2 10 8 0 2 7 7 0 0 10 10 0 0

External entity injection 0 3 3 0 0 0 0 0 0 2 2 0 0 0 0 0

E – Vulnerabilities Existing, D – Vulnerabilities Detected, FP – False Positives, FN – False Negatives

Table 5.4: Effectiveness of the proposed approach

Test Application
#Vulnerablilities

TP # FP # FN
True Positive

Rate(%)Existing Detected

BookStore 156 153 139 14 17 89.10
Classifieds 106 89 89 0 17 83.96
Employee
Directory

60 68 60 8 0 100.00

Events 87 87 87 0 0 100.00

Total 409 397 375 22 34 93.27

TP – True Positives, FP – False Positives, FN – False Negatives

132

5.4. Experimental Study and Analysis

Table 5.5: Comparison of the proposed approach with ZAP

Test Application
#Vulnerable Forms

Detected by Detected by
Existing Prototype ZAP

BookStore 19 17 11
Classifieds 14 12 9
Employee Directory 7 7 6
Events 10 10 6

OrdersRecord.jsp, BookMaint.jsp and BookDetail.jsp, are missed from being identified

since they have constraints on one of the text fields. Similarly, application Classifieds

has one page MyAdRecord.jsp which has a constraint on one of the text fields, and

hence is missed from being identified. The false negatives can be eliminated by using

a context-aware crawler, and false positives can be eliminated by comparing the HTTP

response of the application. Thus, the false positives and false negatives obtained are

due to the crawler and discoverer components of the prototype and are not due to the

proposed grammar.

Comparison with ZAP: Table 5.5 gives the results of the proposed approach as com-

pared to the open-source penetration testing tool ZAP (2016) of OWASP. The table

shows the number of vulnerable parameters identified by the prototype and the pene-

tration testing tool, ZAP. Column 3 lists the number of parameters that are vulnerable

to XQuery injection, whereas column 4 lists the number of parameters that are vulner-

able to SQL injection. Even though ZAP identifies SQLIVs, the parameters that are

placed in the SQL query and XQuery for exploiting the application are the same. From

the table, it can be inferred that the developed prototype identifies more vulnerabilities

compared to ZAP.

5.4.4 Advantages and Limitations

The advantage of the proposed approach is that it identifies known patterns of attacks,

but in case a new attack is to be considered, a regular expression can be framed rep-

resenting the attack and added as a production to the attack grammar. Hence, this

approach is flexible and easily extendable for new attack vectors. The extensions that

133

5. Attack Generation for Detecting XQuery Injection Vulnerabilities

can be made to the proposed approach is updating the attack grammar with additional

productions, when new types of vulnerabilities are discovered.

Other types of vulnerabilities such as those leading to blind XPath injection attack

are not addressed by the proposed attack grammar. Different from other types of XML

injection attacks, blind XPath injection is a special kind of injection which focuses on

extraction of information about data stored in the XML document by asking a series

of true/false questions (i.e., booleanized queries) (Klein 2005). The types of injec-

tion addressed by the proposed approach are straightforward, and either extract a piece

of information or inject untrusted information into the database, whereas blind XPath

injection attack employs two methods such as XPath crawling and booleanization for

inferring information from the XML document. Each injection query extracts a single

bit of information from the XML document, and the whole of the XML document is

inferred from unlimited number of queries, which is conceptually different from the

proposed approach, and hence it is not addressed as part of this work.

5.5 SUMMARY

XML injection has become a critical vulnerability with the increased use of XML

databases by web applications. XML injection vulnerabilities need to be detected and

corrected so that the web application is secure against various types of XQuery injection

attacks. Hence, an approach for launching attack vectors for identification of XQuery

injection vulnerabilities has been developed. The approach generates malicious strings

using an attack grammar, which are filled in the possible points of injection. The at-

tack grammar is capable of generating various types of XML injection strings specified

in OWASP guidelines and the new categories of attack vectors identified as part of this

work. The possible points of injection are identified by comparing the queries generated

during normal and attack executions. The proposed approach has been exhaustively

tested on customized benchmark web applications, and is found to work effectively

with minimum number of false positives and false negatives. Additionally, this chapter

discussed three new categories of attacks identified as part of this work.

134

CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

The security of web applications is affected due to vulnerabilities that are incredibly

prevalent, and these vulnerabilities allow unrestricted access to confidential and sensi-

tive data for malicious users on exploitation. In order to counteract this trend, there is

a growing need to create automated approaches that are capable of finding the security

vulnerabilities in web applications. Black-box approach for detection of vulnerabili-

ties in web applications is a promising avenue that offers the flexibility to identify and

rectify the vulnerabilities irrespective of the functionality and technology of the appli-

cation. The appropriate generation of attack vectors based on the behavior of the ap-

plication during black-box detection assists in effective detection of the vulnerabilities.

Hence, this thesis presents a behavior-based approach to generate attack vectors for the

detection of vulnerabilities in web applications independent of the functionality of the

applications. Logic and XQuery injection vulnerabilities have become critical vulnera-

bilities with the increased use of web applications, and hence the first part of the work

focused on generation of attack vectors to detect logic vulnerabilities, and the second

part was on generation of attack vectors to detect XQuery injection vulnerabilities.

6.1 SUMMARY OF THE CONTRIBUTIONS

The proposed approach for identifying logic vulnerabilities employs black-box analysis

for inferring the intended behavior of the application to launch attack vectors. The pro-

posed approach models the web application as an annotated FSM by using the execution

135

6. Conclusions and Future Scope

traces, and extracts constraints from the model to reflect the behavior of the applica-

tion. The constraints provide information about the user-input parameters that are con-

strained at the client-side, parameters flowing between different web pages, web pages

that require session variables to be defined, web pages accessible by privileged users,

and sequence of operation of the web pages. These constraints reflect the data flow

and control flow of the application. The extracted constraints are violated to generate

attack vectors for the detection of vulnerabilities. The approach has been exhaustively

tested on vulnerable web applications, and it provides promising results. The proposed

approach is also compared with the existing literature, and the results substantiate the

effectiveness of the approach. The proposed FSM model is flexible enough to identify

vulnerabilities leading to a new kind of attack, namely session puzzling. It also offers

the flexibility to identify EAR vulnerabilities. Hence, this systematic approach for iden-

tifying logic vulnerabilities can become an essential component to ensure the security

of the applications against logic attacks.

The approach defined for addressing XQuery injection vulnerabilities proposes an

attack grammar for the generation of attack vectors to detect the vulnerabilities in native

XML database-driven web applications. The proposed grammar is tested on vulnerable

web applications customized for the purpose, and analysis of the results shows that the

approach is capable of identifying most of the vulnerabilities in the web applications.

Three new categories of XQuery injection attack vectors namely alternate encoding,

evaluation function, and XQuery comment injection attacks not listed in OWASP are

discovered as part of this work. Additionally, the consistency and completeness of the

attack grammar is proved to ensure that the grammar is capable of generating all kinds

of attack strings specific to the OWASP guidelines. The grammar assists in identifying

known attacks, and if a new attack is to be considered, a regular expression represent-

ing the attack is to be framed and added as a production to the attack grammar. Thus,

this approach is flexible and easily extendable for new attack vectors. This system-

atic approach for identifying XQuery injection vulnerabilities can become an essential

component for XML database-driven web applications to ensure the security of the ap-

plications against injection attacks.

136

6.2. Future Scope

6.2 FUTURE SCOPE

With emerging technologies, web applications are evolving fast and therefore creates

ever growing opportunities for advanced features in the field of web application security.

This section outlines the future research directions related to the proposed work, and

points out the pioneering work in the domain of securing web applications from attacks.

• Firstly, the correctness and completeness of the results obtained during detection

of logic vulnerabilities are dependent on the user-generated traces of the appli-

cation. As a future work, the manual trace generation involved for modeling the

intended behavior of the application can be automated using a simulated/emu-

lated crawler so that all possible web pages in the application could be explored.

• Secondly, the proposed approach takes only session variables into account for

detecting access-control vulnerabilities. As a consequence, vulnerabilities aris-

ing due to the access-control policies implemented through the database of the

application are missed from being identified. As a future work, it would be inter-

esting to extract the access constraints placed on the database of the application

in addition to the session variables to enhance the detection of access-control

vulnerabilities.

• Thirdly, web applications today are constructed by integrating with third-party

web services, which increases the complexity of the applications. Logic vulner-

abilities arising from the integrating functionalities could be identified by under-

standing the specification of the application under multi-party integration scenar-

ios. As a future direction, it would be interesting and promising to extend the

proposed approach to identify vulnerabilities arising due to integration among

multiple web applications.

• Fourthly, the recent research works addressing injection and logic vulnerabilities

concentrate on fixing the flaws automatically after detection, and alarming the

programmer regarding the possible vulnerabilities during construction of the ap-

plication itself. Hence, it would be helpful to propose an approach for fixing the

discovered flaws.

137

6. Conclusions and Future Scope

• Finally, recent works are pioneering towards detection and prevention of vulner-

abilities and attacks using machine learning approaches. As a future direction, it

would be promising to train the constructed FSM Model using machine learning

algorithms to improve the precision of the system.

To conclude, this work proposed a behavior-based approach for generation of at-

tack vectors to identify three types of logic vulnerabilities. Additionally, a context-

free grammar is proposed for generation of attack vectors to identify different types of

XQuery injection vulnerabilities in web applications driven by NXDs.

138

BIBLIOGRAPHY

Acunetix. “Acunetix Vulnerability Scanner.” https://www.acunetix.com/

vulnerability-scanner/ (June 6, 2015).

Acunetix (2010). “AT&T Website.” https://www.acunetix.com/

blog/articles/analysis-php-attack-apple-information-

disclosure/ (July 26, 2017).

Al-Hamdani, W. A. (2010). “XML security in healthcare web systems.” In 2010 Infor-

mation Security Curriculum Development Conference, InfoSecCD ’10, ACM, New

York, USA, 80–93.

Alkhalaf, M., Choudhary, S. R., Fazzini, M., Bultan, T., Orso, A. and Kruegel, C.

(2012). “Viewpoints: Differential string analysis for discovering client- and server-

side input validation inconsistencies.” In Proceedings of the 2012 International Sym-

posium on Software Testing and Analysis, ISSTA 2012, ACM, New York, USA, 56–

66.

Antunes, N., Laranjeiro, N., Vieira, M. and Madeira, H. (2009). “Effective detection

of SQL/XPath injection vulnerabilities in web services.” In 2009 IEEE International

Conference on Services Computing, Bangalore, India, 260–267.

Antunes, N. and Vieira, M. (2011). “Enhancing penetration testing with attack signa-

tures and interface monitoring for the detection of injection vulnerabilities in web

services.” In 2011 IEEE International Conference on Services Computing, Washing-

ton, USA, 104–111.

Antunes, N. and Vieira, M. (2012). “Defending against web application vulnerabilities.”

Computer, 45(2), 66–72.

139

https://www.acunetix.com/vulnerability-scanner/
https://www.acunetix.com/vulnerability-scanner/
https://www.acunetix.com/blog/articles/analysis-php-attack-apple-information-disclosure/
https://www.acunetix.com/blog/articles/analysis-php-attack-apple-information-disclosure/
https://www.acunetix.com/blog/articles/analysis-php-attack-apple-information-disclosure/

BIBLIOGRAPHY

Arachni (2016). “Arachni - web application security scanner framework.” http://

www.arachni-scanner.com/ (Apr. 5, 2016).

Asmawi, A., Affendey, L. S., Udzir, N. I. and Mahmod, R. (2012). “Model-based

system architecture for preventing XPath injection in database-centric web services

environment.” In 2012 7th International Conference on Computing and Convergence

Technology (ICCCT), Seoul, Rep. of Korea, 621–625.

Auger, R. (2010). “XQuery injection.” http://projects.webappsec.org/w/

page/13247006/XQueryInjection (Apr. 5, 2016).

Balduzzi, M., Gimenez, C. T., Balzarotti, D. and Kirda, E. (2011). “Automated dis-

covery of parameter pollution vulnerabilities in web applications.” In Proceedings of

the 18th Network and Distributed System Security Symposium, NDSS’11, San Diego,

USA.

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C. and

Vigna, G. (2008). “Saner: Composing static and dynamic analysis to validate san-

itization in web applications.” In 2008 IEEE Symposium on Security and Privacy,

Oakland, USA, 387–401.

Balzarotti, D., Cova, M., Felmetsger, V. V. and Vigna, G. (2007). “Multi-module vulner-

ability analysis of web-based applications.” In Proceedings of the 14th ACM Confer-

ence on Computer and Communications Security, CCS ’07, ACM, New York, USA,

25–35.

Barth, A., Jackson, C. and Mitchell, J. C. (2008). “Robust defenses for cross-site request

forgery.” In Proceedings of the 15th ACM Conference on Computer and Communi-

cations Security, CCS ’08, ACM, New York, USA, 75–88.

BaseX. “BaseX-the XML database.” http://basex.org/ (Apr. 5, 2016).

Bau, J., Bursztein, E., Gupta, D. and Mitchell, J. (2010). “State of the art: Automated

black-box web application vulnerability testing.” In 2010 IEEE Symposium on Secu-

rity and Privacy, Oakland, USA, 332–345.

140

http://www.arachni-scanner.com/
http://www.arachni-scanner.com/
http://projects.webappsec.org/w/page/13247006/XQueryInjection
http://projects.webappsec.org/w/page/13247006/XQueryInjection
http://basex.org/

BIBLIOGRAPHY

Bau, J., Wang, F., Bursztein, E., Mutchler, P. and Mitchell, J. C. (2012). “Vulnerabil-

ity factors in new web applications: Audit tools, developer selection & languages.”

Technical report, Stanford University.

Bisht, P., Hinrichs, T., Skrupsky, N., Bobrowicz, R. and Venkatakrishnan, V. N. (2010a).

“Notamper: Automatic blackbox detection of parameter tampering opportunities in

web applications.” In Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, ACM, New York, USA, 607–618.

Bisht, P., Hinrichs, T., Skrupsky, N. and Venkatakrishnan, V. N. (2011). “Waptec:

Whitebox analysis of web applications for parameter tampering exploit construc-

tion.” In Proceedings of the 18th ACM Conference on Computer and Communica-

tions Security, CCS ’11, ACM, New York, USA, 575–586.

Bisht, P., Madhusudan, P. and Venkatakrishnan, V. N. (2010b). “Candid: Dynamic can-

didate evaluations for automatic prevention of SQL injection attacks.” ACM Trans-

actions on Information and System Security, 13(2), 14:1–14:39.

Bisht, P. and Venkatakrishnan, V. (2008). “XSS-GUARD: Precise dynamic prevention

of cross-site scripting attacks.” In Detection of Intrusions and Malware, and Vulner-

ability Assessment, volume 5137 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 23–43.

Bourret, R. (2009). “Going native: Use cases for native XML databases.” http:

//www.rpbourret.com/xml/UseCases.htm (Apr. 5, 2016).

Boyd, S. W. and Keromytis, A. D. (2004). “Sqlrand: Preventing SQL injection attacks.”

In Applied Cryptography and Network Security: Second International Conference,

ACNS 2004, Yellow Mountain, China, June 8-11, 2004. Proceedings, Springer Berlin

Heidelberg, 292–302.

Braun, B., Kucher, S., Johns, M. and Posegga, J. (2012). “A user-level authentication

scheme to mitigate web session-based vulnerabilities.” In Trust, Privacy and Security

in Digital Business, volume 7449 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 17–29.

141

http://www.rpbourret.com/xml/UseCases.htm
http://www.rpbourret.com/xml/UseCases.htm

BIBLIOGRAPHY

Bravenboer, M., Dolstra, E. and Visser, E. (2010). “Preventing injection attacks with

syntax embeddings.” Science of Computer Programming, 75(7), 473–495.

Brijesh Deb, S. G. B. and Bharti, S. (2007). “Rich Internet Applications RIA: Op-

portunities and challenges for enterprises.” http://www.infosys.com/IT-

services/application-services/white-papers/Documents/

rich-internet-applications.pdf).

Buehrer, G., Weide, B. W. and Sivilotti, P. A. G. (2005). “Using parse tree validation to

prevent SQL injection attacks.” In Proceedings of the 5th International Workshop on

Software Engineering and Middleware, SEM ’05, ACM, New York, USA, 106–113.

Cao, Y., Yegneswaran, V., Porras, P. and Chen, Y. (2011). “Poster: A path-cutting

approach to blocking XSS worms in social web networks.” In Proceedings of the

18th ACM Conference on Computer and Communications Security, CCS ’11, ACM,

New York, USA, 745–748.

Ceccato, M., Nguyen, C. D., Appelt, D. and Briand, L. C. (2016). “SOFIA: An auto-

mated security oracle for black-box testing of sql-injection vulnerabilities.” In Pro-

ceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering, ASE 2016, ACM, New York, USA, 167–177.

Chan, G.-Y., Lee, C.-S. and Heng, S.-H. (2013). “Discovering fuzzy association rule

patterns and increasing sensitivity analysis of XML-related attacks.” Journal of Net-

work and Computer Applications, 36(2), 829–842.

Chaudhri, A., Zicari, R. and Rashid, A. (2003). XML Data Management: Native XML

and XML Enabled DataBase Systems, Addison-Wesley Longman Publishing Co.,

Inc., Boston, USA.

Chaudhuri, A. and Foster, J. S. (2010). “Symbolic security analysis of ruby-on-rails

web applications.” In Proceedings of the 17th ACM Conference on Computer and

Communications Security, CCS ’10, ACM, New York, USA, 585–594.

Chen, S. (2011). “Session puzzles - indirect application attack vectors.” Technical re-

port, Ernst & Young.

142

http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf
http://www.infosys.com/IT-services/application-services/white-papers/Documents/rich-internet-applications.pdf

BIBLIOGRAPHY

Chong, S., Liu, J., Myers, A. C., Qi, X., Vikram, K., Zheng, L. and Zheng, X. (2007a).

“Secure web applications via automatic partitioning.” In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, ACM, New

York, USA, 31–44.

Chong, S., Vikram, K. and Myers, A. C. (2007b). “SIF: Enforcing confidentiality and

integrity in web applications.” In Proceedings of the 16th USENIX Security Sympo-

sium, SS’07, USENIX Association, Berkeley, USA, 1:1–1:16.

Ciampa, A., Visaggio, C. A. and Di Penta, M. (2010). “A heuristic-based approach for

detecting SQL-injection vulnerabilities in web applications.” In Proceedings of the

2010 ICSE Workshop on Software Engineering for Secure Systems, SESS ’10, ACM,

New York, USA, 43–49.

convert (2016). “Conversion module.” http://docs.basex.org/wiki/

Conversion_Module (Apr. 5, 2016).

Corcoran, B. J., Swamy, N. and Hicks, M. (2009). “Cross-tier, label-based security

enforcement for web applications.” In Proceedings of the 2009 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’09, ACM, New York,

USA, 269–282.

Cova, M., Balzarotti, D., Felmetsger, V. and Vigna, G. (2007a). “Swaddler: An ap-

proach for the anomaly-based detection of state violations in web applications.” In

Recent Advances in Intrusion Detection, volume 4637 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 63–86.

Cova, M., Felmetsger, V. and Vigna, G. (2007b). “Vulnerability analysis of web-based

applications.” In Test and Analysis of Web Services, Springer Berlin Heidelberg, 363–

394.

CSRF. “Cross-site request forgery (CSRF) prevention cheat sheet.” https:

//www.owasp.org/index.php/Cross-Site_Request_Forgery_

%28CSRF%29_Prevention_Cheat_Sheet (Jan. 29, 2017).

143

http://docs.basex.org/wiki/Conversion_Module
http://docs.basex.org/wiki/Conversion_Module
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

BIBLIOGRAPHY

Daitch, H. (May 3, 2017). “Sophisticated gmail phishing scam targets users.”

https://www.identityforce.com/blog/sophisticated-gmail-

phishing-scam (July 26, 2017).

Dalton, M., Kozyrakis, C. and Zeldovich, N. (2009). “Nemesis: Preventing authen-

tication & access control vulnerabilities in web applications.” In Proceedings of

the 18th USENIX Security Symposium, SSYM’09, USENIX Association, Berkeley,

USA, 267–282.

de la Torre, I., Dı́az, F. J., Antón, M., Dı́ez, J. F., Sainz, B., López, M., Hornero, R. and

López, M. I. (2011). “Choosing the most efficient database for a web-based system

to store and exchange ophthalmologic health records.” Journal of Medical Systems,

35(6), 1455–1464.

Deepa, G. and Thilagam, P. S. (2016). “Securing web applications from injection and

logic vulnerabilities: Approaches and challenges.” Information and Software Tech-

nology, 74, 160–180.

Di Lucca, G., Fasolino, A., Mastoianni, M. and Tramontana, P. (2004). “Identifying

cross site scripting vulnerabilities in web applications.” In Sixth IEEE International

Workshop on Web Site Evolution (WSE’04), Chicago, USA, 71–80.

Dominos (2012). “Dominos’ India website hacked, customer info leaked.”

http://www.rediff.com/business/report/dominos-india-

website-hacked-customer-info-leaked/20120911.htm (July 26,

2017).

Doupé, A., Boe, B., Kruegel, C. and Vigna, G. (2011). “Fear the EAR: Discovering and

mitigating execution after redirect vulnerabilities.” In Proceedings of the 18th ACM

Conference on Computer and Communications Security, CCS ’11, ACM, New York,

USA, 251–262.

Doupé, A., Cova, M. and Vigna, G. (2010). “Why johnny cant pentest: An analysis

of black-box web vulnerability scanners.” In Detection of Intrusions and Malware,

144

https://www.identityforce.com/blog/sophisticated-gmail-phishing-scam
https://www.identityforce.com/blog/sophisticated-gmail-phishing-scam
http://www.rediff.com/business/report/dominos-india-website-hacked-customer-info-leaked/20120911.htm
http://www.rediff.com/business/report/dominos-india-website-hacked-customer-info-leaked/20120911.htm

BIBLIOGRAPHY

and Vulnerability Assessment, volume 6201 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 111–131.

Doupé, A., Cui, W., Jakubowski, M. H., Peinado, M., Kruegel, C. and Vigna, G. (2013).

“dedacota: Toward preventing server-side XSS via automatic code and data separa-

tion.” In Proceedings of the 2013 ACM SIGSAC Conference on Computer &; Com-

munications Security, CCS ’13, ACM, New York, USA, 1205–1216.

Duchene, F., Rawat, S., Richier, J.-L. and Groz, R. (2014). “Kameleonfuzz: Evolution-

ary fuzzing for black-box XSS detection.” In Proceedings of the 4th ACM Conference

on Data and Application Security and Privacy, CODASPY ’14, ACM, New York,

USA, 37–48.

eval (2016). “XQuery module.” http://docs.basex.org/wiki/XQuery_

Module (Apr. 5, 2016).

Evans, Z. and Shahriar, H. (2014). “Web session security: Attack and defense tech-

niques.” Case Studies in Secure Computing: Achievements and Trends, 389.

eXistDB. “eXistDB - the open source native XML database.” http://exist-db.

org/exist/apps/homepage/index.html (Apr. 5, 2016).

Felmetsger, V., Cavedon, L., Kruegel, C. and Vigna, G. (2010). “Toward auto-

mated detection of logic vulnerabilities in web applications.” In Proceedings of the

19th USENIX Conference on Security, USENIX Security’10, USENIX Association,

Berkeley, USA, 10–10.

Fonseca, J., Vieira, M. and Madeira, H. (2007). “Testing and comparing web vulnera-

bility scanning tools for SQL injection and XSS attacks.” In 13th Pacific Rim Inter-

national Symposium on Dependable Computing, PRDC 2007, Melbourne, Australia,

365–372.

Forbes, T. (2014). “Exploiting XPath injection vulnerabilities with

XCat.” http://tomforb.es/exploiting-xpath-injection-

vulnerabilities-with-xcat-1 (Apr. 5, 2016).

145

http://docs.basex.org/wiki/XQuery_Module
http://docs.basex.org/wiki/XQuery_Module
http://exist-db.org/exist/apps/homepage/index.html
http://exist-db.org/exist/apps/homepage/index.html
http://tomforb.es/exploiting-xpath-injection-vulnerabilities-with-xcat-1
http://tomforb.es/exploiting-xpath-injection-vulnerabilities-with-xcat-1

BIBLIOGRAPHY

Garcia-Alfaro, J. and Navarro-Arribas, G. (2008). “A survey on detection techniques

to prevent cross-site scripting attacks on current web applications.” In Critical Infor-

mation Infrastructures Security, volume 5141 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 287–298.

Garcia-Alfaro, J. and Navarro-Arribas, G. (2009). “A survey on cross-site scripting

attacks.” arXiv preprint arXiv:0905.4850.

Gopalakrishnan, G. (2006). Computation Engineering-Applied Automata Theory and

Logic, Springer, USA.

Gordeychik, S. (2008). “Web application security statistics.”

http://projects.webappsec.org/w/page/13246989/

WebApplicationSecurityStatistics (June 6, 2015).

Grabowski, R., Hofmann, M. and Li, K. (2012). “Type-based enforcement of secure

programming guidelines code injection prevention at SAP.” In Formal Aspects of

Security and Trust, volume 7140 of Lecture Notes in Computer Science, Springer

Berlin Heidelberg, 182–197.

Groppe, J. and Groppe, S. (2008). “Filtering unsatisfiable XPath queries.” Data &

Knowledge Engineering, 64(1), 134–169.

Halfond, W., Orso, A. and Manolios, P. (2008). “WASP: Protecting web applications

using positive tainting and syntax-aware evaluation.” IEEE Transactions on Software

Engineering, 34(1), 65–81.

Halfond, W., Viegas, J. and Orso, A. (2006). “A classification of SQL-injection at-

tacks and countermeasures.” In Proceedings of the IEEE International Symposium

on Secure Software Engineering, Washington, USA, 65–81.

Halfond, W. G. J. and Orso, A. (2005). “Amnesia: Analysis and monitoring for neu-

tralizing SQL-injection attacks.” In Proceedings of the 20th IEEE/ACM International

Conference on Automated Software Engineering, ASE ’05, ACM, New York, USA,

174–183.

146

http://projects.webappsec.org/w/page/13246989/Web Application Security Statistics
http://projects.webappsec.org/w/page/13246989/Web Application Security Statistics

BIBLIOGRAPHY

Hein, D. and Saiedian, H. (2009). “Secure software engineering: Learning from the past

to address future challenges.” Information Security Journal: A Global Perspective,

18(1), 8–25.

Hirsch, F. (2002). “Getting started with XML security.” http://www.sitepoint.

com/getting-started-xml-security/ (Apr. 5, 2016).

Howard, M., LeBlanc, D. and Viega, J. (2009). 24 Deadly Sins of Software Security:

Programming Flaws and How to Fix Them, McGraw-Hill, Inc., USA.

Huang, L.-S., Moshchuk, A., Wang, H. J., Schechter, S. and Jackson, C. (2012). “Click-

jacking: Attacks and defenses.” In Proceedings of the 21st USENIX Security Sympo-

sium, Security’12, USENIX Association, Berkeley, USA, 22–22.

Huang, Y. (2003). “Safeguarding a native XML database system.” https:

//www.cs.auckland.ac.nz/courses/compsci725s2c/archive/

termpapers/725huang.pdf (Apr. 5, 2016).

Huang, Y.-W., Tsai, C.-H., Lin, T.-P., Huang, S.-K., Lee, D. and Kuo, S.-Y. (2005).

“A testing framework for web application security assessment.” Computer Networks,

48(5), 739–761.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T. and Kuo, S.-Y. (2004). “Secur-

ing web application code by static analysis and runtime protection.” In Proceedings

of the 13th International Conference on World Wide Web, WWW ’04, ACM, New

York, USA, 40–52.

Hydara, I., Sultan, A. B. M., Zulzalil, H. and Admodisastro, N. (2015). “Current state

of research on cross-site scripting (XSS) a systematic literature review.” Information

and Software Technology, 58, 170–186.

Igure, V. and Williams, R. (2008). “Taxonomies of attacks and vulnerabilities in com-

puter systems.” IEEE Communications Surveys & Tutorials, 10(1), 6–19.

147

http://www.sitepoint.com/getting-started-xml-security/
http://www.sitepoint.com/getting-started-xml-security/
https://www.cs.auckland.ac.nz/courses/compsci725s2c/ archive/termpapers/725huang.pdf
https://www.cs.auckland.ac.nz/courses/compsci725s2c/ archive/termpapers/725huang.pdf
https://www.cs.auckland.ac.nz/courses/compsci725s2c/ archive/termpapers/725huang.pdf

BIBLIOGRAPHY

ITRC (2015). “Identity theft resource center breach report hits record high

in 2014.” http://www.idtheftcenter.org/ITRC-Surveys-

Studies/2014databreaches.html (June 6, 2015).

Jan, S., Nguyen, C. D., Arcuri, A. and Briand, L. (2017). “A search-based testing ap-

proach for XML injection vulnerabilities in web applications.” In 2017 IEEE Inter-

national Conference on Software Testing, Verification and Validation (ICST), Tokyo,

Japan, 356–366.

Jan, S., Nguyen, C. D. and Briand, L. C. (2016). “Automated and effective testing of

web services for XML injection attacks.” In Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, ACM, New York, USA,

12–23.

Jang, Y.-S. and Choi, J.-Y. (2014). “Detecting SQL injection attacks using query result

size.” Computers & Security, 44, 104–118.

Jia, L., Vaughan, J. A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J. and Zdancewic, S.

(2008). “Aura: A programming language for authorization and audit.” In Proceedings

of the 13th ACM SIGPLAN International Conference on Functional Programming,

ICFP ’08, ACM, New York, USA, 27–38.

Jim, T., Swamy, N. and Hicks, M. (2007). “Defeating script injection attacks with

browser-enforced embedded policies.” In Proceedings of the 16th International Con-

ference on World Wide Web, WWW ’07, ACM, New York, USA, 601–610.

Johns, M. (2006). “Sessionsafe: Implementing XSS immune session handling.” In

Computer Security ESORICS 2006, volume 4189 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 444–460.

Johns, M., Beyerlein, C., Giesecke, R. and Posegga, J. (2010). “Secure code generation

for web applications.” In Engineering Secure Software and Systems, volume 5965 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 96–113.

148

http://www.idtheftcenter.org/ITRC-Surveys-Studies/2014databreaches.html
http://www.idtheftcenter.org/ITRC-Surveys-Studies/2014databreaches.html

BIBLIOGRAPHY

Johns, M., Braun, B., Schrank, M. and Posegga, J. (2011). “Reliable protection against

session fixation attacks.” In Proceedings of the 2011 ACM Symposium on Applied

Computing, SAC ’11, ACM, New York, USA, 1531–1537.

Johns, M., Engelmann, B. and Posegga, J. (2008). “XSSDS: Server-side detection of

cross-site scripting attacks.” In Annual Computer Security Applications Conference,

ACSAC 2008, Anaheim, USA, 335–344.

Johns, M. and Lekies, S. (2013). “Tamper-resistant likejacking protection.” In Research

in Attacks, Intrusions, and Defenses, volume 8145 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, 265–285.

Jovanovic, N., Kirda, E. and Kruegel, C. (2006a). “Preventing cross site request forgery

attacks.” In Securecomm and Workshops, 1–10.

Jovanovic, N., Kruegel, C. and Kirda, E. (2006b). “Pixy: a static analysis tool for

detecting web application vulnerabilities.” In 2006 IEEE Symposium on Security and

Privacy, Oakland, USA, 6 pp.–263.

Jovanovic, N., Kruegel, C. and Kirda, E. (2006c). “Precise alias analysis for static

detection of web application vulnerabilities.” In Proceedings of the 2006 Workshop

on Programming Languages and Analysis for Security, PLAS ’06, ACM, New York,

USA, 27–36.

Juillerat, N. (2007). “Enforcing code security in database web applications using

libraries and object models.” In Proceedings of the 2007 Symposium on Library-

Centric Software Design, LCSD ’07, ACM, New York, USA, 31–41.

Kals, S., Kirda, E., Kruegel, C. and Jovanovic, N. (2006). “Secubat: A web vulnera-

bility scanner.” In Proceedings of the 15th International Conference on World Wide

Web, WWW ’06, ACM, New York, USA, 247–256.

Kar, D., Panigrahi, S. and Sundararajan, S. (2016). “Sqligot: Detecting SQL injection

attacks using graph of tokens and SVM.” Computers & Security, 60, 206–225.

149

BIBLIOGRAPHY

Keizer, G. (2012). “Yahoo fixes password-pilfering bug, explains who’s at risk.”

http://www.computerworld.com/article/2505836/cybercrime-

hacking/yahoo-fixes-password-pilfering-bug--explains-

who-s-at-risk.html (July 26, 2017).

Kirda, E., Jovanovic, N., Kruegel, C. and Vigna, G. (2009). “Client-side cross-site

scripting protection.” Computers & Security, 28(7), 592–604.

Kirda, E., Kruegel, C., Vigna, G. and Jovanovic, N. (2006). “Noxes: A client-side

solution for mitigating cross-site scripting attacks.” In Proceedings of the 2006 ACM

Symposium on Applied Computing, SAC ’06, ACM, New York, USA, 330–337.

Klein, A. (2005). “Blind XPath injection.” Technical report, Watchfire Corporation,

Waltham, USA.

Klein, A. (2007). “DOM based cross site scripting or XSS of the third kind.” http:

//www.webappsec.org/projects/articles/071105.shtml).

Kosuga, Y., Kernel, K., Hanaoka, M., Hishiyama, M. and Takahama, Y. (2007). “Sa-

nia: Syntactic and semantic analysis for automated testing against SQL injection.”

In Twenty-Third Annual Computer Security Applications Conference, ACSAC 2007,

Florida, USA, 107–117.

Krishnamurthy, A., Mettler, A. and Wagner, D. (2010). “Fine-grained privilege sepa-

ration for web applications.” In Proceedings of the 19th International Conference on

World Wide Web, WWW ’10, ACM, New York, USA, 551–560.

Lampesberger, H. (2013). “A grammatical inference approach to language-based

anomaly detection in XML.” In 2013 International Conference on Availability, Reli-

ability and Security, Regensburg, Germany, 685–693.

Laranjeiro, N., Vieira, M. and Madeira, H. (2009). “Protecting database centric web ser-

vices against SQL/XPath injection attacks.” In Proceedings of the 20th International

Conference on Database and Expert Systems Applications, DEXA 2009, Springer

Berlin Heidelberg, 271–278.

150

http://www.computerworld.com/article/2505836/cybercrime-hacking/yahoo-fixes-password-pilfering-bug--explains-who-s-at-risk.html
http://www.computerworld.com/article/2505836/cybercrime-hacking/yahoo-fixes-password-pilfering-bug--explains-who-s-at-risk.html
http://www.computerworld.com/article/2505836/cybercrime-hacking/yahoo-fixes-password-pilfering-bug--explains-who-s-at-risk.html
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml

BIBLIOGRAPHY

Lee, I., Jeong, S., Yeo, S. and Moon, J. (2012). “A novel method for SQL injection

attack detection based on removing SQL query attribute values.” Mathematical and

Computer Modelling, 55(12), 58–68.

Lee, K. K.-Y., Tang, W.-C. and Choi, K.-S. (2013). “Alternatives to relational database:

Comparison of NoSQL and XML approaches for clinical data storage.” Computer

Methods and Programs in Biomedicine, 110(1), 99–109.

Lekies, S., Stock, B. and Johns, M. (2013). “25 million flows later: Large-scale de-

tection of DOM-based XSS.” In Proceedings of the 2013 ACM SIGSAC Conference

on Computer & Communications Security, CCS ’13, ACM, New York, USA, 1193–

1204.

Lekies, S., Tighzert, W. and Johns, M. (2012). “Towards stateless, client-side driven

cross-site request forgery protection for web applications.” In Sicherheit 2012, Lec-

ture Notes in Informatics.

Li, X., Si, X. and Xue, Y. (2014). “Automated black-box detection of access control

vulnerabilities in web applications.” In Proceedings of the 4th ACM Conference on

Data and Application Security and Privacy, CODASPY ’14, ACM, New York, USA,

49–60.

Li, X. and Xue, Y. (2011). “Block: A black-box approach for detection of state viola-

tion attacks towards web applications.” In Proceedings of the 27th Annual Computer

Security Applications Conference, ACSAC ’11, ACM, New York, USA, 247–256.

Li, X. and Xue, Y. (2013). “Logicscope: Automatic discovery of logic vulnerabilities

within web applications.” In Proceedings of the 8th ACM SIGSAC Symposium on

Information, Computer and Communications Security, ASIA CCS ’13, ACM, New

York, USA, 481–486.

Li, X. and Xue, Y. (2014). “A survey on server-side approaches to securing web appli-

cations.” ACM Computing Surveys, 46(4), 54:1–54:29.

151

BIBLIOGRAPHY

Li, X., Yan, W. and Xue, Y. (2012). “Sentinel: Securing database from logic flaws

in web applications.” In Proceedings of the Second ACM Conference on Data and

Application Security and Privacy, CODASPY ’12, ACM, New York, USA, 25–36.

Liu, A., Yuan, Y., Wijesekera, D. and Stavrou, A. (2009). “SQLProb: A proxy-based

architecture towards preventing SQL injection attacks.” In Proceedings of the 2009

ACM Symposium on Applied Computing, SAC ’09, ACM, New York, USA, 2054–

2061.

Liu, S. and Cheng, B. (2009). “Cyberattacks: Why, what, who, and how.” IT Profes-

sional Magazine, 11(3), 14–21.

Liu, Z. H. and Murthy, R. (2009). “A decade of XML data management: An indus-

trial experience report from oracle.” In IEEE 25th International Conference on Data

Engineering, 2009. ICDE ’09., Shanghai, China, 1351–1362.

MarkLogic. “MarkLogic: Enterprise NoSQL database.” http://www.

marklogic.com/ (Apr. 5, 2016).

Medeiros, I., Beatriz, M., Neves, N. and Correia, M. (2016a). “Hacking the DBMS to

prevent injection attacks.” In Proceedings of the Sixth ACM Conference on Data and

Application Security and Privacy, CODASPY ’16, ACM, New York, USA, 295–306.

Medeiros, I., Neves, N. and Correia, M. (2016b). “DEKANT: A static analysis tool that

learns to detect web application vulnerabilities.” In Proceedings of the 25th Interna-

tional Symposium on Software Testing and Analysis, ISSTA 2016, ACM, New York,

USA, 1–11.

Menahem, E., Schclar, A., Rokach, L. and Elovici, Y. (2012). “Securing your

transactions: Detecting anomalous patterns in XML documents.” arXiv preprint

arXiv:1209.1797.

Meunier, P. (2008). “Classes of vulnerabilities and attacks.” Wiley Handbook of Science

and Technology for Homeland Security.

152

http://www.marklogic.com/
http://www.marklogic.com/

BIBLIOGRAPHY

Microsoft (2015). “Security development lifecycle.” https://www.microsoft.

com/en-us/sdl/process/training.aspx (Aug. 17, 2015).

Mitropoulos, D., Karakoidas, V., Louridas, P. and Spinellis, D. (2011). “Countering

code injection attacks: a unified approach.” Information Management & Computer

Security, 19(3), 177–194.

Mitropoulos, D., Karakoidas, V. and Spinellis, D. (2009). “Fortifying applications

against XPath injection attacks.” In MCIS 2009: 4th Mediterranean Conference on

Information Systems, Athens, Greece, 1169–1179.

Monshizadeh, M., Naldurg, P. and Venkatakrishnan, V. (2016). “Patching logic vulner-

abilities for web applications using LogicPatcher.” In Proceedings of the Sixth ACM

Conference on Data and Application Security and Privacy, CODASPY ’16, ACM,

New York, USA, 73–84.

Monshizadeh, M., Naldurg, P. and Venkatakrishnan, V. N. (2014). “Mace: Detecting

privilege escalation vulnerabilities in web applications.” In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, CCS ’14,

ACM, New York, USA, 690–701.

Morgenstern, J. and Licata, D. R. (2010). “Security-typed programming within de-

pendently typed programming.” In Proceedings of the 15th ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP ’10, ACM, New York, USA,

169–180.

Mouelhi, T., Le Traon, Y., Abgrall, E., Baudry, B. and Gombault, S. (2011). “Tailored

shielding and bypass testing of web applications.” In 2011 IEEE Fourth International

Conference on Software Testing, Verification and Validation (ICST), Berlin, Germany,

210–219.

Muncaster, P. (2014). “Ebay under fire after cross site scripting attack.”

https://www.infosecurity-magazine.com/news/ebay-under-

fire-after-cross-site/ (July 26, 2017).

153

https://www.microsoft.com/en-us/sdl/process/training.aspx
https://www.microsoft.com/en-us/sdl/process/training.aspx
https://www.infosecurity-magazine.com/news/ebay-under-fire-after-cross-site/
https://www.infosecurity-magazine.com/news/ebay-under-fire-after-cross-site/

BIBLIOGRAPHY

Murdock, J. (2016). “UN tourism website breached and defaced by ’TeamPoison’ hack-

ing collective.” http://www.ibtimes.co.uk/un-tourism-website-

breached-defaced-by-teampoison-hacking-collective-

1545903 (July 26, 2017).

Muthukumaran, D., O’Keeffe, D., Priebe, C., Eyers, D., Shand, B. and Pietzuch, P.

(2015). “FlowWatcher: defending against data disclosure vulnerabilities in web ap-

plications.” In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, CCS ’15, ACM, New York, USA, 603–615.

OWASP (2015). “Testing for XML injection.” https://www.owasp.org/

index.php/Testing_for_XML_Injection_(OTG-INPVAL-009) (June

6, 2015).

OWASP (2016). “Owasp testing guide version 4.” https://www.owasp.org/

images/5/52/OWASP_Testing_Guide_v4.pdf (Sep. 5, 2017).

OWASP (2017a). “SQL injection prevention cheat sheet.” https://www.owasp.

org/index.php/SQL_Injection_Prevention_Cheat_Sheet (Sep. 5,

2017a).

OWASP (2017b). “XSS (cross site scripting) prevention cheat sheet.” https:

//www.owasp.org/index.php/XSS_(Cross_Site_Scripting)

_Prevention_Cheat_Sheet (Sep. 5, 2017b).

Paganini, P. (2015). “Anonymous hacker breached wto database and leaked data

of internal staff.” http://securityaffairs.co/wordpress/36528/

hacking/anonymous-breached-wto-db.html (July 26, 2017).

Palsetia, N., Deepa, G., Khan, F. A., Thilagam, P. S. and Pais, A. R. (2016). “Securing

native XML database-driven web applications from XQuery injection vulnerabili-

ties.” Journal of Systems and Software, 122, 93 – 109.

Parno, B., McCune, J., Wendlandt, D., Andersen, D. and Perrig, A. (2009). “Clamp:

Practical prevention of large-scale data leaks.” In 2009 30th IEEE Symposium on

Security and Privacy, Oakland, USA, 154–169.

154

http://www.ibtimes.co.uk/un-tourism-website-breached-defaced-by-teampoison-hacking-collective-1545903
http://www.ibtimes.co.uk/un-tourism-website-breached-defaced-by-teampoison-hacking-collective-1545903
http://www.ibtimes.co.uk/un-tourism-website-breached-defaced-by-teampoison-hacking-collective-1545903
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-009)
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-009)
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
 http://securityaffairs.co/wordpress/36528/hacking/anonymous-breached-wto-db.html
 http://securityaffairs.co/wordpress/36528/hacking/anonymous-breached-wto-db.html

BIBLIOGRAPHY

Pavlovic-Lazetic, G. (2007). “Native XML databases vs. relational databases in dealing

with XML documents.” Kragujevac Journal of Mathematics, 30, 181–199.

Payet, P., Doupé, A., Kruegel, C. and Vigna, G. (2013). “EARs in the wild: Large-

scale analysis of execution after redirect vulnerabilities.” In Proceedings of the 28th

Annual ACM Symposium on Applied Computing, SAC ’13, ACM, New York, USA,

1792–1799.

Pellegrino, G. and Balzarotti, D. (2014). “Toward black-box detection of logic flaws in

web applications.” In Proceedings of 21st Network and Distributed System Security

Symposium, NDSS’14, San Diego, USA.

Perkins, J., Eikenberry, J., Coglio, A., Willenson, D., Sidiroglou-Douskos, S. and Ri-

nard, M. (2016). “Autorand: Automatic keyword randomization to prevent injection

attacks.” In Detection of Intrusions and Malware, and Vulnerability Assessment: 13th

International Conference, DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Pro-

ceedings, Springer International Publishing, Cham, Switzerland, 37–57.

Rosa, T. M., Santin, A. O. and Malucelli, A. (2013). “Mitigating XML injection 0-day

attacks through strategy-based detection systems.” IEEE Security & Privacy, 11(4),

46–53.

SANS (2011). “CWE/SANS top 25 most dangerous software errors.” http://www.

sans.org/top25-software-errors/ (Nov. 8, 2016).

Saxena, P., Molnar, D. and Livshits, B. (2011). “Scriptgard: Automatic context-

sensitive sanitization for large-scale legacy web applications.” In Proceedings of the

18th ACM Conference on Computer and Communications Security, CCS ’11, ACM,

New York, USA, 601–614.

Scholte, T., Balzarotti, D. and Kirda, E. (2012a). “Have things changed now? An

empirical study on input validation vulnerabilities in web applications.” Computers

& Security, 31(3), 344–356.

Scholte, T., Robertson, W., Balzarotti, D. and Kirda, E. (2012b). “Preventing input val-

idation vulnerabilities in web applications through automated type analysis.” In 2012

155

http://www.sans.org/top25-software-errors/
http://www.sans.org/top25-software-errors/

BIBLIOGRAPHY

IEEE 36th Annual Computer Software and Applications Conference (COMPSAC),

Izmir, Turkey, 233–243.

Shahriar, H. and Devendran, V. K. (2014). “Classification of clickjacking attacks and

detection techniques.” Information Security Journal: A Global Perspective, 23(4-6),

137–147.

Shahriar, H., Devendran, V. K. and Haddad, H. (2013). “Proclick: A framework for

testing clickjacking attacks in web applications.” In Proceedings of the 6th Interna-

tional Conference on Security of Information and Networks, SIN ’13, ACM, New

York, USA, 144–151.

Shahriar, H. and Haddad, H. (2014). “Risk assessment of code injection vulnerabilities

using fuzzy logic-based system.” In Proceedings of the 29th Annual ACM Symposium

on Applied Computing, SAC ’14, ACM, New York, USA, 1164–1170.

Shahriar, H., North, S., Chen, W.-C. and Mawangi, E. (2014a). “Information theoretic

XSS attack detection in web applications.” International Journal of Secure Software

Engineering, 5(3), 1–15.

Shahriar, H., North, S. M., Lee, Y. and Hu, R. (2014b). “Server-side code injection at-

tack detection based on Kullback-Leibler distance.” International Journal of Internet

Technology and Secured Transactions, 5(3), 240–261.

Shahriar, H. and Zulkernine, M. (2009). “Mutec: Mutation-based testing of cross site

scripting.” In ICSE Workshop on Software Engineering for Secure Systems, SESS ’09,

Vancouver, Canada, 47–53.

Shahriar, H. and Zulkernine, M. (2011a). “S2XS2: A server side approach to automati-

cally detect XSS attacks.” In 2011 IEEE Ninth International Conference on Depend-

able, Autonomic and Secure Computing (DASC), Sydney, Australia, 7–14.

Shahriar, H. and Zulkernine, M. (2011b). “Taxonomy and classification of automatic

monitoring of program security vulnerability exploitations.” Journal of Systems and

Software, 84(2), 250–269.

156

BIBLIOGRAPHY

Shahriar, H. and Zulkernine, M. (2012a). “Information-theoretic detection of SQL in-

jection attacks.” In 2012 IEEE 14th International Symposium on High-Assurance

Systems Engineering (HASE), Omaha, USA, 40–47.

Shahriar, H. and Zulkernine, M. (2012b). “Mitigating program security vulnerabilities:

Approaches and challenges.” ACM Computing Surveys, 44(3), 11:1–11:46.

Shar, L. K. and Tan, H. B. K. (2012). “Automated removal of cross site scripting

vulnerabilities in web applications.” Information and Software Technology, 54(5),

467–478.

Shar, L. K. and Tan, H. B. K. (2013). “Predicting SQL injection and cross site scripting

vulnerabilities through mining input sanitization patterns.” Information and Software

Technology, 55(10), 1767–1780.

Shura, B. (2010). “Web application security scanner list.” http://projects.

webappsec.org/w/page/13246988/Web%20Application%

20Security%20Scanner%20List (June 6, 2015).

Siegel, E. and Retter, A. (2014). eXist, O’Reilly Media, USA.

Sima, C. (2003). “Security at the next level: Are your web applications vulnerable?.”

SPI Labs.

Skrupsky, N., Bisht, P., Hinrichs, T., Venkatakrishnan, V. N. and Zuck, L. (2013).

“Tamperproof: A server-agnostic defense for parameter tampering attacks on web

applications.” In Proceedings of the Third ACM Conference on Data and Application

Security and Privacy, CODASPY ’13, ACM, New York, USA, 129–140.

Son, S., McKinley, K. S. and Shmatikov, V. (2011). “Rolecast: Finding missing security

checks when you do not know what checks are.” In Proceedings of the 2011 ACM

International Conference on Object Oriented Programming Systems Languages and

Applications, OOPSLA ’11, ACM, New York, USA, 1069–1084.

157

http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List
http://projects.webappsec.org/w/page/13246988/Web%20Application%20Security%20Scanner%20List

BIBLIOGRAPHY

Son, S., McKinley, K. S. and Shmatikov, V. (2013). “Fix me up: Repairing access-

control bugs in web applications.” In Proceedings of 20th Annual Network and Dis-

tributed System Security Symposium, NDSS’13, San Diego, USA.

Son, S. and Shmatikov, V. (2011). “SAFERPHP: Finding semantic vulnerabilities in

PHP applications.” In Proceedings of the ACM SIGPLAN 6th Workshop on Program-

ming Languages and Analysis for Security, PLAS ’11, ACM, New York, USA, 8:1–

8:13.

Staken, K. (2001). “Introduction to native XML databases.” http://www.xml.

com/pub/a/2001/10/31/nativexmldb.html (Apr. 5, 2016).

Stock, B., Lekies, S., Mueller, T., Spiegel, P. and Johns, M. (2014). “Precise client-

side protection against DOM-based cross-site scripting.” In Proceedings of the 23rd

USENIX security symposium, USENIX Association, San Diego, USA, 655–670.

Stuttard, D. and Pinto, M. (2011). The Web Application Hacker’s Handbook: Finding

and Exploiting Security Flaws, John Wiley & Sons, USA.

Su, Z. and Wassermann, G. (2006). “The essence of command injection attacks in web

applications.” In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’06, ACM, New York, USA, 372–

382.

Sun, F., Xu, L. and Su, Z. (2011). “Static detection of access control vulnerabilities

in web applications.” In Proceedings of the 20th USENIX Conference on Security,

SEC’11, USENIX Association, Berkeley, USA, 11–11.

Sun, F., Xu, L. and Su, Z. (2014). “Detecting logic vulnerabilities in e-commerce

applications.” In Proceedings of 21st Network and Distributed System Security Sym-

posium, NDSS’14, San Diego, USA.

Swamy, N., Chen, J. and Chugh, R. (2010). “Enforcing stateful authorization and infor-

mation flow policies in fine.” In Programming Languages and Systems, volume 6012

of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 529–549.

158

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

BIBLIOGRAPHY

Swamy, N., Corcoran, B. and Hicks, M. (2008). “Fable: A language for enforcing

user-defined security policies.” In 2008 IEEE Symposium on Security and Privacy,

Oakland, USA, 369–383.

Sweet, L. (2017). “Illinois’ chapter in the Russian hacking saga.” http:

//chicago.suntimes.com/news/illinois-chapter-in-the-

russian-hacking-saga/ (July 26, 2017).

Symantec (April 2014). “Symantec Internet Security Threat Report.” Technical report,

Symantec Inc.

Symantec (April 2016). “Symantec Internet Security Threat Report.” Technical report,

Symantec Inc.

Ter Louw, M. and Venkatakrishnan, V. (2009). “Blueprint: Robust prevention of cross-

site scripting attacks for existing browsers.” In 2009 30th IEEE Symposium on Secu-

rity and Privacy, Oakland, USA, 331–346.

Thomas, S. and Williams, L. (2007). “Using automated fix generation to secure SQL

statements.” In Third International Workshop on Software Engineering for Secure

Systems. SESS ’07: ICSE Workshops 2007, Minneapolis, USA, 9–9.

Top10 (2013). “OWASP Top Ten 2013.” Technical report, OWASP Foundation.

Truelove, J. and Svoboda, D. (2011). “IDS09-J. Prevent XPath injection.”

https://www.securecoding.cert.org/confluence/pages/

viewpage.action?pageId=61407250 (Apr. 5, 2016).

Trustwave. “Trustwave app scanner.” https://www.trustwave.com/

Products/Application-Security/App-Scanner-Family/ (June 6,

2015).

Trustwave (2011). “2011 Trustwave global security report.” Technical report, Trust-

wave.

Trustwave (2014). “2014 Trustwave global security report.” Technical report, Trust-

wave.

159

http://chicago.suntimes.com/news/illinois-chapter-in-the-russian-hacking-saga/
http://chicago.suntimes.com/news/illinois-chapter-in-the-russian-hacking-saga/
http://chicago.suntimes.com/news/illinois-chapter-in-the-russian-hacking-saga/
 https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=61407250
 https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=61407250
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/

BIBLIOGRAPHY

Trustwave (2016). “2016 Trustwave global security report.” Technical report, Trust-

wave.

Tsipenyuk, K., Chess, B. and McGraw, G. (2005). “Seven pernicious kingdoms: a

taxonomy of software security errors.” IEEE Security & Privacy, 3(6), 81–84.

Valeur, F., Mutz, D. and Vigna, G. (2005). “A learning-based approach to the detection

of SQL attacks.” In Proceedings of the Second International Conference on Detec-

tion of Intrusions and Malware, and Vulnerability Assessment, DIMVA’05, Springer-

Verlag, Berlin, Heidelberg, 123–140.

Van Acker, S., Nikiforakis, N., Desmet, L., Joosen, W. and Piessens, F. (2012).

“Flashover: Automated discovery of cross-site scripting vulnerabilities in rich inter-

net applications.” In Proceedings of the 7th ACM Symposium on Information, Com-

puter and Communications Security, ASIACCS ’12, ACM, New York, USA, 12–13.

van der Loo, F. (2011). “Comparison of penetration testing tools for

web applications.” Master’s thesis, Radboud University Nijmegen.

http://www.ru.nl/publish/pages/769526/frank van der loo scriptie.pdf.

Van Gundy, M. and Chen, H. (2009). “Noncespaces: Using randomization to enforce

information flow tracking and thwart cross-site scripting attacks.” In Proceedings of

16th Network and Distributed System Security Symposium, NDSS’09, San Diego,

USA.

Van Gundy, M. and Chen, H. (2012). “Noncespaces: Using randomization to defeat

cross-site scripting attacks.” Computers & Security, 31(4), 612–628.

Verizon (2014). “Data breach investigations report.” Technical report, Verizon.

Vikram, K., Prateek, A. and Livshits, B. (2009). “Ripley: Automatically securing web

2.0 applications through replicated execution.” In Proceedings of the 16th ACM Con-

ference on Computer and Communications Security, CCS ’09, ACM, New York,

USA, 173–186.

160

BIBLIOGRAPHY

Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C. and Vigna, G. (2007).

“Cross site scripting prevention with dynamic data tainting and static analysis.”

In Proceedings of the 14th Network and Distributed System Security Symposium,

NDSS’07, San Diego, USA.

W3C (2015). “XML security.” https://www.w3.org/standards/xml/

security (Apr. 5, 2016).

Wang, R., Chen, S. and Wang, X. (2012). “Signing me onto your accounts through face-

book and google: A traffic-guided security study of commercially deployed single-

sign-on web services.” In 2012 IEEE Symposium on Security and Privacy, San Fran-

cisco, USA, 365–379.

Wang, R., Chen, S., Wang, X. and Qadeer, S. (2011). “How to shop for free online –

security analysis of cashier-as-a-service based web stores.” In 2011 IEEE Symposium

on Security and Privacy, Oakland, USA, 465–480.

Ward, J. (2007). “What is a rich internet application?.” http://www.jamesward.

com/2007/10/17/what-is-a-rich-internet-application/).

Wassermann, G. and Su, Z. (2007). “Sound and precise analysis of web applications for

injection vulnerabilities.” In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’07, ACM, New York,

USA, 32–41.

Wassermann, G. and Su, Z. (2008). “Static detection of cross-site scripting vulnerabili-

ties.” In Proceedings of the 30th International Conference on Software Engineering,

ICSE ’08, ACM, New York, USA, 171–180.

WebCruiser (2011). “Webcruiser-web vulnerability scanner.” http://www.

ehacking.net/2011/07/webcruiser-web-vulnerability-

scanner.html (Apr. 5, 2016).

Wedman, S., Tetmeyer, A. and Saiedian, H. (2013). “An analytical study of web appli-

cation session management mechanisms and HTTP session hijacking attacks.” Infor-

mation Security Journal: A Global Perspective, 22(2), 55–67.

161

https://www.w3.org/standards/xml/security
https://www.w3.org/standards/xml/security
http://www.jamesward.com/2007/10/17/what-is-a-rich-internet-application/
http://www.jamesward.com/2007/10/17/what-is-a-rich-internet-application/
http://www.ehacking.net/2011/07/webcruiser-web-vulnerability-scanner.html
http://www.ehacking.net/2011/07/webcruiser-web-vulnerability-scanner.html
http://www.ehacking.net/2011/07/webcruiser-web-vulnerability-scanner.html

BIBLIOGRAPHY

Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R. and Song, D. (2011).

“A systematic analysis of XSS sanitization in web application frameworks.” In Com-

puter Security ESORICS 2011, volume 6879 of Lecture Notes in Computer Science,

Springer Berlin Heidelberg, 150–171.

Wen, S., Xue, Y., Xu, J., Yang, H., Li, X., Song, W. and Si, G. (2016). “Toward exploit-

ing access control vulnerabilities within MongoDB backend web applications.” In

2016 IEEE 40th Annual Computer Software and Applications Conference (COMP-

SAC), volume 1, Atlanta, USA, 143–153.

Whitehat (2014). “2014 Website Security Statistics Report.” Technical report, WhiteHat

Security Inc.

Win, B. D. (2014). “Secure development lifecycles (SDLC).” http://secappdev.

org/handouts/2014/Bart%20De%20Win/SDLC%20v1.0.pdf (Aug. 17,

2015).

Wurzinger, P., Platzer, C., Ludl, C., Kirda, E. and Kruegel, C. (2009). “SWAP: Mitigat-

ing XSS attacks using a reverse proxy.” In ICSE Workshop on Software Engineering

for Secure Systems, SESS ’09, Vancouver, Canada, 33–39.

Xie, Y. and Aiken, A. (2006). “Static detection of security vulnerabilities in scripting

languages.” In Proceedings of the 15th USENIX Security Symposium - Volume 15,

USENIX-SS’06, USENIX Association, Berkeley, USA.

Xing, L., Chen, Y., Wang, X. and Chen, S. (2013). “Integuard: Toward automatic

protection of third-party web service integrations.” In Proceedings of 20th Annual

Network and Distributed System Security Symposium, NDSS’13, San Diego, USA.

XPath-Injection (2015). “XPath injection.” https://www.owasp.org/index.

php/XPATH_Injection (Apr. 5, 2016).

XXE (2016). “XML external entity (XXE) processing.” https://www.owasp.

org/index.php/XML_External_Entity_(XXE)_Processing (Apr. 5,

2016).

162

http://secappdev.org/handouts/2014/Bart%20De%20Win/SDLC%20v1.0.pdf
http://secappdev.org/handouts/2014/Bart%20De%20Win/SDLC%20v1.0.pdf
https://www.owasp.org/index.php/XPATH_Injection
https://www.owasp.org/index.php/XPATH_Injection
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing

BIBLIOGRAPHY

Yip, A., Wang, X., Zeldovich, N. and Kaashoek, M. F. (2009). “Improving applica-

tion security with data flow assertions.” In Proceedings of the ACM SIGOPS 22nd

Symposium on Operating Systems Principles, SOSP ’09, ACM, New York, USA,

291–304.

ZAP (2016). “OWASP zed attack proxy project.” https://www.owasp.org/

index.php/OWASP_Zed_Attack_Proxy_Project (Apr. 5, 2016).

Zetter, K. (2011). “Citi credit card hack bigger than originally disclosed.” https:

//www.wired.com/2011/06/citibank-hacked/ (July 26, 2017).

Zhu, J., Chu, B., Lipford, H. and Thomas, T. (2015). “Mitigating access control vulner-

abilities through interactive static analysis.” In Proceedings of the 20th ACM Sympo-

sium on Access Control Models and Technologies, SACMAT ’15, ACM, New York,

USA, 199–209.

163

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.wired.com/2011/06/citibank-hacked/
https://www.wired.com/2011/06/citibank-hacked/

PUBLICATIONS

1. Deepa, G. and Thilagam, P. S. (2016). “Securing web applications from injection

and logic vulnerabilities: Approaches and challenges.” Information and Software

Technology, Elsevier, 74, 160–180.

URL: http://dx.doi.org/10.1016/j.infsof.2016.02.00

2. Palsetia, N., Deepa, G., Khan, F. A., Thilagam, P. S. and Pais, A. R. (2016).

“Securing native XML database-driven web applications from XQuery injection

vulnerabilities.” Journal of Systems and Software, Elsevier, 122, 93–109.

URL: http://doi.org/10.1016/j.jss.2016.08.094

3. Deepa, G., Thilagam, P. S., Khan, F. A., Praseed, A., Pais, A. R. and Palsetia, N.

(2018). “Black-box detection of XQuery injection and parameter tampering vul-

nerabilities in web applications.” International Journal of Information Security,

Springer, 17(1), pages 105–120.

URL: http://dx.doi.org/10.1007/s10207-016-0359-4

4. Deepa, G., Thilagam, P. S., Praseed, A. and Pais, A. R. (2018). “DetLogic: A

black-box approach for detecting logic vulnerabilities in web applications.” Jour-

nal of Network and Computer Applications, Elsevier, 109, 89–109.

URL: https://doi.org/10.1016/j.jnca.2018.01.008

http://dx.doi.org/10.1016/j.infsof.2016.02.00
http://doi.org/10.1016/j.jss.2016.08.094
http://dx.doi.org/10.1007/s10207-016-0359-4
https://doi.org/10.1016/j.jnca.2018.01.008

Bio-Data

Personal Data

Name: G Deepa
Date of Birth: 21 October 1984

Sex: Female
Marital Status: Married
Father’s Name: K Ganesan
Mother’s Name: G Saratha

Address: AP-3 NITK Quarters, NITK Surathkal, Mangaluru, Karnataka, India - 575 025.
Phone: +91 8951261510
email: gdeepabalu@gmail.com

Education

2012 Master of Engineering, Anna University, Chennai, Tamil Nadu
Specialization: Computer Science and Engineering
CGPA: 8.86

2006 Bachelor of Engineering, Anna University, Chennai, Tamil Nadu
Specialization: Electrical and Electronics Engineering
CGPA: 9.3

Professional Experience

June 2013 - Oct 2013 Assitant Professor at Shivani Engineering College, Trichy
Aug 2006 - Aug 2012 IT Analyst at Tata Consultancy Services, Chennai

Awards and Honors

2012 University Rank Holder (7th Rank in M.E.)
2006 University Gold Medalist (B.E.)
2002 School topper in Higher Secondary Examination

Scored Centum in Mathematics and Physics in Higher Secondary Examination

Areas of Interest

Web Application Security, Software Testing, Data Mining

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Web Application Architecture
	Web Application Threats
	Web Application Security
	Motivation
	Thesis Contributions
	Thesis Organization

	Literature Review
	Web Application Vulnerabilities
	Injection Vulnerabilities
	Business Logic Vulnerabilities
	Session Management Vulnerabilities

	Defensive Mechanisms for Securing Web Applications
	Injection Defenses
	SQL Injection
	XML Injection
	Cross-Site Scripting
	Research Challenges and Directions

	Session Management Defenses
	Business Logic Defenses
	Parameter Tampering
	Access-Control Violation
	Workflow Violation
	Business Logic Preservation in eCommerce Applications
	Research Challenges and Directions

	Existing Vulnerability Scanners

	Research Gaps
	Summary

	Problem Description
	Attack Generation for Detecting Logic Vulnerabilities
	Logic Attacks in Web Applications
	Problem Description
	Proposed Approach
	Trace Collection
	Model Construction
	Intended Behavior Extraction
	Attack Generation

	Experimental Study and Analysis
	Experimental Setup
	Test Applications
	Experimental Results and Discussions
	Advantages and Limitations

	Summary

	Attack Generation for Detecting XQuery Injection Vulnerabilities
	XQuery Injection in Native XML Database
	Problem Description
	Proposed Approach
	Identification of Injection Points
	Attack Generation Based on OWASP Guidelines
	Identification of XQuery Injection Attacks not Listed in OWASP
	Alternate Encoding Attack
	Injection Through Evaluation Function
	XQuery Comment Injection Attack

	Experimental Study and Analysis
	Experimental Setup
	Test Applications
	Experimental Results and Discussions
	Advantages and Limitations

	Summary

	Conclusions and Future Scope
	Summary of the Contributions
	Future Scope

	Bibliography
	Publications

