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Abstract

Social network is now becoming an indispensable part of the society. A large

number of social networks play a vital role in the dissemination of information

regarding various products, services, socioeconomic events etc. In addition, they

influence the products one buys, places one visits; many a times whom one votes,

events one attends etc. The countless ways in which social network affect lives,

makes it important to understand its structure and investigate it further to make

it an effective tool for various useful applications.

This research focuses on the influence maximization problem, which aims to

fetch information propagation initiators, for the vast spread of information.

However, picking the correct propagation initiators may not suffice for an

effective optimal solution. Other aspects such as network structure and influence

among users, have to be investigated.

In this work, a new model to map user’s role during information propagation is

presented. Along with this model, a holistic approach for influence maximization

taking into consideration three aspects of social networks; i) network structure, ii)

influence probability and iii) top influential users, is designed.

The first task is to fetch the sub set of users, who actively take part in the

spread and adoption of information and opinions. This aspect is closely

associated to target selection problem. The exponential and rapid growth of

social networks in terms of users is a major challenge for its analysis. Due to the

huge run time of popular influence maximization solutions, like the Greedy

algorithm, distance, degree etc., it is difficult to evaluate its effectiveness in the

enormous social networks. This research work addresses the scalability issue by

reducing the social networks to smaller key components. This pruned network



comprises of probable adopters and spreaders of information, thus, making

information propagation effective.

User influence plays an important role in social network analysis including

influence maximization. Therefore, second task is to estimate user influence in

social networks. In practice, influence probabilities have significant implications

for applications such as viral marketing, poll prediction, political campaigns,

recommendation system etc. Yet, predicting influence probabilities has not

received significant research attention. In this research, Influx approach is

devised to estimate user influence. This is further used to design a new variant

of the independent cascade model, namely Influx-IC model. This model is used

to predict the spread of information that is initiated by influential users.

The final stage is to fetch the top influential users in the social network, who

can influence a vast population to adopt the information. To achieve this task, a

new centrality metric is proposed. Based on this metric, two new heuristics are

designed. Further, the heuristics employed with the estimated value of influence

is used to predict the information diffusion in the social networks.

In the previous works the solution to influence maximization has been

explored on either models, heuristics or estimating parameters such as influence.

This research sets itself apart from its predecessors by identifying vital aspects

that play an important role in estimating information diffusion. Further, this

research proposes a holistic approach that solves influence maximization by

amalgamating aspects of social network pruning, user influence and fetching top

influential users. The combination of these aspects provide an effective and

viable solution to predict the information diffusion in the social networks in the

real world.

Keywords: social networks, user influence, information diffusion, models,

NP-hard, centrality, graph simplification, estimation, heuristics.
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Chapter 1

Introduction

You cannot teach a man anything; you can only help him discover it in himself.

-Galileo

The role of social network in the information diffusion process is discussed in this

chapter. Further, it discusses various case studies, chosen from diverse domains,

where in social networks has been employed as a medium to spread information

to a vast population. The motivation to study the information diffusion is also

explored. Furthermore, influence maximization is introduced.

1.1 Information diffusion in social networks

The Web 2.0 provides a range of applications that have huge impact on people.

Social network is one such application that plays a very important role in

connecting people across the world. It also plays an important role in the

promotion of information, marketing, polls and has a huge impact on the

economic growth of the country as well. Therefore, in recent years, the social

network and methods of social network analysis have attracted considerable

interest and curiosity among researchers. The term social economics, reflects the

importance of social networks in economic transactions. In the era of cloud

computing, the social media has proved to be more effective in business-related

strategies (Rauch, 2007).

One of the popular rapid growing repository of massive data is the social

1



networks. The ability to store, track and analyze massive amount of data,

depends on the technology. The availability of large scale data, prompts new

research directions, computational frameworks and new opportunities to explore

real world problems. The data in social networks are characterized by five Vs:

velocity, volume, variety, veracity and value. These five characteristics make the

analysis and application of social networks in various applications, a challenge.

To deal with this, computational science is involved in social network analysis.

This merger of social networks to computational science has created social

computing. Social computing is defined as computational facilitation of social

studies and human dynamism, as well as the design and use of information and

communication technologies that consider social context (Surowiecki, 2005).

In decisions related to product adoption, the importance of user influence is

quite evident. In many products or service choices, where some sort of standards

are needed, or where individuals care about the compatibility of their product

choices with those of his/her friend’s, one cannot view the decisions of

individuals in isolation. The term network externalities embodies such

relationships. On one hand, consumers shift to new technology simply because

their friends also have opted to do so. On the other hand, consumers stay in, on

an inferior technology simply because it is pervasive, even when it is clear that

some other technology is superior. Over a period of time, this results in

interesting dynamics in product marketing and is used by firms to sell products.

An early example of the explicit modeling of network structures, with some

perspective on their influence on economic outcomes, came through the works of

Myerson (2003) in the cooperative game theory literature. The game theory

relies on the premise that the users can cooperate only when they are connected.

People who can communicate can cooperate and generally cooperation leads to

higher production. To understand these connections graphs were used. Thus,

graph representations became an important part of game theory and social

network analysis.

In recent years, there has been tremendous interest in the phenomenon of

2



influence exerted by users of a social network on other users and how it

propagates in the network. It is observed that when a user sees his/her online

friend performing an action such as joining some community, playing a game,

bidding on article, sharing photos, writing comments, there is a high probability

that he/she too repeats the same action. This is shown in figure 1.1, where user

A reads an article and writes comments and within few minutes his/her social

contact, user B also reads the same article.

Figure 1.1: Influence in social networks

The users are definitely influenced by the action of the most popular contact.

The most prominent application of such user influence is seen in viral marketing

(Leskovec et al., 2007a). Enterprises use social network as a medium to enable

better sales and promotions of their brands. One of the major decisions in

marketing deals with the allocation of given budget among users who can

influence their peers in such a way that eventually a chain of promotion messages

are passed forward. As the result of this process, a vast sale of the product is

possible in short span of time. This strategy is known as viral marketing, which

targets the most influential users in the network. This activates the

word-of-mouth chain-reaction of information spread, in such a way that, with a

very small marketing cost a very large portion of the network can be reached.
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However, selecting these key users, in a very large social networks is a time

consuming and challenging task.

1.2 Viral marketing in the real world

With billions of users in social network, it has become the most powerful tool

for marketing. User involvement has made viral marketing more dominant than

the traditional marketing approaches. Viral marketing describes a strategy that

encourages individuals to pass the message to others, creating a vast spread of

information and influencing others to adopt it and propagate it further. The brand

awareness is thus created by viral marketing with low cost and is more effective.

The practice of viral marketing in the digital era has been around for more than

a decade. The early adopters of viral marketing strategy are the HotMail, which

grew to 12 million in 18 months and John West’s Salmon Bear advertisement

(Kirby and Marsden, 2006), to name a few. These campaigns were more successful

then were expected to be. The low expenditure on popularizing products, has

always attracted the enterprises towards social networks. In this section three

popular cases across various domains, where viral marketing created a success

story are discussed.

1.2.1 Case study 1: Fiesta ford movement

Ford had made several attempts, without much success, to market small car,

since the discontinuation of their model Aspire in 1997. In 2009, Ford Motors

launched Fiesta Movement campaign (McCracken, 2010) to promote sales. For

six months, Ford gave 100 people a car to use and asked them to write their

experiences on the social media. Consumers used their Fiestas for various

activities including adventure trips. These consumers shared their experiences on

Facebook, Twitter, YouTube and Flickr. The social media audience took great

interest in these blogs and it soon resulted in massive sales of Fiesta.

The Fiesta Movement was the most successful social media marketing
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experiment for the automotive world. The campaign news was all over the social

media with 6.5 million YouTube views alone and 50,000 queries on the car from

new customers. In the first week of the campaign, Ford sold nearly 10,000 cars.

The Fiesta Movement cost the company a small expense as compared to the

typical traditional TV campaign. In 2014, Ford used this strategy to introduce

their latest Fiesta.

1.2.2 Case study 2: Why so serious?

In 2008, Why So Serious? campaign, an Augmented Reality Game (ARG) was

launched to promote the movie, The Dark Knight (Treagus, 2014). Millions of

users took interest in this campaign which was launched 15 months before the

release of the movie. Over 10 million people participated in this campaign. Various

games and rewards were announced all over the social media and participants took

great interest in them. The ARG was thus able to maintain fan interest up to the

release of the movie. Millions of blog/posts were seen on the social media which

resulted in success of the ARG and lead to the success of the film, earning over

US$ 1 billion in box office collections.

The Dark Knight Rises’ promotion also saw a similar campaign. This time

the participants were given graffiti to help the Gotham City Police Department

find Batman. For every piece of graffiti found and tagged on social media, a frame

of the trailer would be released. This marketing strategy, due to the massive fan

interest led to the release of the trailer within few hours.

1.2.3 Case study 3: Ice bucket challenge

In 2014, to promote awareness on Amyotrophic Lateral Sclerosis (ALS), the Ice

bucket challenge campaign was designed (Ganesan, 2016). In this challenge, a

person has to pour a bucket of iced water over the head, film it and upload the

same. A person who does not accept the challenge has to donate to ALS cause

within 24 hours. After this challenge is accepted or a donation is made, it has to

be passed to other three friends.
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This campaign was popular on Facebook and Twitter with over 2.4 million

tagged videos and 2.2 million tweets respectively. Due to this challenge, the views

per month on Facebook grew to from 0.16 million views, to over 2.89 million

views per month, resulting in huge donations to ALS. The ALS fund had received

over $40 million from seven hundred thousand donors within 30 days. The ALS

association had declared that the total donation received was around $100 million.

There are a number of similar successful cases where the social network was

used to effectively promote information for various causes. User involvement in

social networks is the driving force behind these successful campaigns. In the

following sections, viral marketing is presented as an optimization problem and a

solution is presented.

1.3 Motivation

With the advent of Web and Internet, real world off line social network has

rapidly converted to online social networks. The popularity of social network has

a great potential for many applications such as viral marketing, poll

campaigning, recommendation system, crime detection, security flaws detection

and so on. The users in a society are likely to be affected by the decisions of

their friends. Thus, enterprises have invested in social networks for promoting

new products and making profitable strategies.

Moreover, marketers have long known the commercial value of the

influencers. Pushing a new product into the market requires that a circle of trust

is well established in the social space. The potential consumers know that their

influential friend has not shilled him/her for a freebie. Therefore, they are sure

to go ahead with the recommendations. When the influencers promote new

information about the service or product in the social networks, it rapidly

spreads throughout the network. This phenomenon is similar to that of the

epidemic virus spread in the population. Therefore, this marketing strategy is

referred as viral marketing. Viral marketing is studied as an optimization

problem in computer science popularly known as the influence maximization
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problem (Domingos and Richardson, 2001). Although, the main objective of this

research is to solve influence maximization problem, it also incorporates an

effective strategy for information spread in social networks.

Influence maximization is one of the popular research topics of the decade

and various solutions have already been proposed to solve it. However, each of

the prominent approaches focuses on either the heuristics, parameter estimation

or model formulation. These approaches, although theoretically very popular,

often lack viability in the real world. The applicability of these solutions in the

present scenario is questionable. Therefore, there is a need for new approaches

that meet the current circumstances. To bridge the gap between theoretical

formulation and real world applicability, a holistic approach is designed in this

research work.

The major hindrance in implementing any strategy in social networks is its

enormous size. Statistics reveal a huge growth in social network users from 0.97

billion in 2010 to 2.22 billion in 2016. Further, the growth is predicted to reach

2.72 billion by the end 2019 (Statista, 2016). With the rising number of users in

social networks, the content that is generated by them also increases. Thus, the

huge size of the social networks becomes a big challenge in its analysis and

deployment of solutions. Also, the growing privacy concerns among social

network users is a blockade in employing user data for precise outcomes.

Furthermore, the user aspect is a missing component in most of the prior

solutions. A user centric approach will fetch more reliable solution to

information diffusion process.

Information diffusion in social networks has a huge impact on the society as

well as on the enterprises. Therefore, emphasis is on developing a viable solution

to solve it.

1.4 Influence maximization

Social networks plays an important role in the spread of information. One of the

application of social networks is viral marketing. The enterprises have created
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many success stories via viral marketing strategy. The key factor that

contributes to these successful outcomes are those first few users who start the

product campaign in the social networks. These initial users were picked by

enterprises based on various criteria with the aim to create massive sales. Also,

there is a monetary expense involved in picking these initiators, which includes

giving freebies. Therefore, these individuals have to be picked with proper

planing. Picking these individuals is known as influence maximization problem.

The problem was first proposed by Domingos and Richardson (2001) and soon

became the new research direction in the social network domain. The influence

maximization problem is formally defined as follows:

Definition 1.4.1. Influence maximization problem: Given a budget k and

a social network, which is represented as a graph G = (V,E), where users are

represented as nodes and edges indicate their relationships, the goal is to select

a seed set of k users such that by initially targeting them, the expected influence

spread (in terms of expected number of adopted users) can be maximized (Zhang

et al., 2014).

Figure 1.2: Information spread phenomenon in social network

The figure 1.2 shows the phenomenon of information spreading in a online

social network. The propagation begins at a single user and spreads along the links.
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The expected spread of information depends on the propagation, which is captured

by the diffusion models. The solution to influence maximization is computationally

NP-hard, in most of the models. Therefore, heuristics are developed to fetch results

close to optimal value and also to reduce the run time involved in the computation.

1.5 Thesis overview

With the advent of Internet, one can track and predict communications and

information propagation. The thesis aims at identifying and analyzing social

influence in the social network, which is further used to pick a quality seed set of

initial propagators in the network. The research work aims to provide

contribution to influence maximization in the context of viral marketing on three

aspects which are: (i) selecting social network users who contribute in the

information diffusion process, (ii) estimating user influence in the social network

and finally (iii) ranking users, with the aim to fetch the top influential users.

The thesis is organized as follows. Chapter 1 discusses the role of social

network in marketing and discusses the motivation for the research work.

Chapter 2 discusses the concepts and terminologies that are used throughout

the thesis. Literature review and research problem are discussed in Chapter 3.

This chapter is divided into three section, each covering various aspects involved

in solving the influence maximization problem. Also, research gaps, motivation

and objectives are discussed.

A new metric to evaluate users is discussed in Chapter 4. The thesis

presents a new model to map the information spread process in social networks

which is discussed in Chapter 5.

The thesis presents the solution to effective information spread in social

networks in three aspects which are discussed in Chapter 6, 7 and 8.

Specifically, Chapter 6 discuses an approach to prune the social network to

fetch an optimal social network. Such an optimal pruned social network should

have all the properties that enable effective information propagation. In this

chapter, methodology, validation techniques and results of pruning process is
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discussed in detail. Chapter 7 explains the approach to estimate user influence.

Peer influence plays an important role in an effective spread of information. In

majority of the existing works, the computation of influence is largely left

unexplored. In the presented work, an approach to estimate user influence from

interaction count between the pair of connected users is developed.

The third aspect of the solution towards influence maximization is discussed

in Chapter 8. Ranking the social users is the theme of the thesis. Since

fetching top influential users is a computationally expensive problem, various

heuristics are developed. The majority of the heuristics are based on the

topological aspects such as distance, degree and other centrality measures. Often

the behavior aspects are not considered in order to rank users. On the contrary,

in the proposed research work, the behavior aspect is used to rank the users.

This chapter, discusses the new heuristic OutDegree Rank for fetching the top

influential users. Finally, the conclusions and future works are discussed in

Chapter 9.

1.6 Summary

This chapter laid down the foundations for the thesis work. It introduced social

networks and its importance in the spread of the information. Various case

studies discussed in this chapter uncover the real world application of the

problem discussed in this research work. Further, the motivation emphasizes on

the significance of carrying out the research work.

Chapter 2 discusses social network concepts, terminologies, diffusion models

and datasets that has been used in this research work.
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Chapter 2

Preliminaries

Everything must be made as simple as possible. But not simpler.

-Albert Einstein

This chapter explores concepts that are based on the graph theory and various

terminologies that are used, and coined in this research work. The diffusion models

that are used in this research are also explained. The structure of the social

network and also datasets are discussed in this chapter. The chapter also highlights

the difference between celebrity endorsement and influencer.

2.1 Graph theory concepts

Definition 2.1.1. Social graph: It is a graph G(V,E) of the underlying social

network, where V represents the set of users and E represents the set of links.

Definition 2.1.2. Degree: The degree of a node v is the cardinality of the edges

incident on v.

Definition 2.1.3. Average Clustering Coefficient (ACC): Clustering

coefficient is a property of a node in a network. This metric represents the

connectivity of the neighboring nodes. It is also a metric of transitivity of a

graph. A node with a higher value of ACC is connected to the direct neighbors

are more likely to be connected to the node, leading to a community structure in

the graph. ACC is given as in Eq( 2.1.1) and Eq ( 2.1.2).
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Ci =
|ejk : vj, vk ∈ Ni, ejk ∈ E|

ki(ki − 1)
. . . . . . . (2.1.1)

where Ni is the set of immediate connected neighbors of vi and ki is the number

of neighbors of a vertex(Yang et al., 2006).

ACC = C̄ =
1

n
Σn

i=1Ci . . . . . . . . . (2.1.2)

Definition 2.1.4. Diameter: The length of the shortest path between the most

distanced nodes of a graph is the diameter. It is also defined as the maximum

eccentricity among the vertices of graph. Thus the diameter is calculated as in Eq

( 2.1.3).

Diameter(G) = max{e(v) : v ∈ V (G)} . . . . . (2.1.3)

When a graph has higher diameter, the nodes are not tightly linked (Rodrigue

et al., 2009). In such a graph there are numerous outliers.

Definition 2.1.5. Average Path Length(APL): This measures the length of

path between two distant nodes in the graph. It is given as in Eq( 2.1.4).

2

N(N − 1)
Σi,j 6=ilij . . . . . . . . . . (2.1.4)

where lij is the distance from node i to node j (Chun-Ping et al., 2008). When

a graph has smaller APL, the reachability of nodes is less time consuming and

information diffusion is faster.

Definition 2.1.6. Modularity: Modularity measure indicates the partitions in

the network. If a network is divided into many groups, for instance, it could

provide evidence for a modular view of the network’s dynamics, with different

groups of nodes performing different functions with some degree of

independence(Newman, 2006).

If nodes u, v have degrees du, dv then any one of the m edges has probability

2 du
2m
. dv
2m

of connecting u and v. By linearity of expectation, the expected number
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of edges between u and v is then du.dv
2m

. Thus, the modularity of a clustering C is

given as in Eq( 2.1.5).

Q(C) =
1

2m
Σu,v(au,v−

du.dv
2m

).δ(γ(u), γ(v)) . . . . . (2.1.5)

where δ denotes the Kronecker Delta, which is 1 if its arguments are identical

and 0 otherwise and au,v are the entries in the adjacency matrix (Agarwal and

Kempe, 2008). When a network has lower modularity, it will have fewer groups.

This indicates that all nodes are well connected to form a large component and

information spread is easy through the network.

Definition 2.1.7. Strongly connected components(SCC): SCC metric is

related to modularity. Lower SCC implies fewer components, which indicate that

the network is well connected. Tarjan’s algorithm (Tarjan, 1972) is used to find

the SCC.

Definition 2.1.8. Weighted graph: A graph G(V,E,W), where every edge has

a weight associated with it. This weight can mean various things depending on

what the graph represents.

2.2 Terminologies

Following terms are frequently used in the thesis.

Definition 2.2.1. Diffusion: According to Rogers Everett (1995), diffusion is

the process by which an innovation is communicated through certain medium,

over time among the members of a social system.

Definition 2.2.2. Influence: Social influence is defined as change in an

individual’s thoughts, feelings, attitudes, or behaviors that results from

interaction with another individual or a group (Lisa, 2008).

Definition 2.2.3. Probability of influence: It is a value that reflects the chance

that user u influences user v to adopt the information. It has a value in the range

[0,1]. Mathematically it is formulated as follows.
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For a undirected weighted social graph G(V,E, P ), P = {pi,j, 1 ≤ i, j ≤ |V |}

where

(i) e(i, j) ∈ E

(ii) ∀e(i, j) ∈ E, 0 ≤ pi,j ≤ 1

Definition 2.2.4. Contact edge: For a social graph, a contact edge e(vi, vj) ∈ E

is a edge connecting two users vi and vj by the underlying relation defined in the

social network.

Definition 2.2.5. Interaction edge: For a given graph G(V,E), contact edges

which are used for interaction and e(vi, vj) ∈ I ; I ⊆ E.

Definition 2.2.6. Activity: Any action performed by the user in the social

network, for e.g., posts, likes, write blogs, comment, recommend, dig stories, vote

etc.

Definition 2.2.7. Activity log: A log of the form A(user, friend), maintained

and readily available in the social network. An entry in this log indicates an

interaction from user to friend.

Definition 2.2.8. Activity Rate log: A log of the form AR(user, count), where

count indicates the number of interaction of the user with his contacts. This log

is computed from the activity log.

Definition 2.2.9. Metric: The cardinality of the set of users who adopt the

information at the end of the diffusion process, is the metric to determine the

influential rate of the seed set.

Definition 2.2.10. Seed set: In the social graph G(V,E), a seed set is the set

of initial adopters A, such that A ⊂ V , who have the capacity to influence the

population to adopt the information.

Definition 2.2.11. Interaction graph: It is a weighted directed graph of the

social network where the weights on the edges represents the number of

interactions between the pair of users.
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Definition 2.2.12. Influence graph: It is a weighted directed graph of the social

network where the weights on the edges represents the user influence between the

pair of users.

Definition 2.2.13. Contact Degree: In a social network graph, for a node v, its

contact degree is referred to as the number of edges incident on it and is denoted

as Cd(v).

Definition 2.2.14. Interaction degree: In the Interaction Graph, for a node

v, its interaction degree is referred to as, the number of edges incident on it and

is denoted as Id(v).

2.3 Diffusion models

Empirical study of diffusion in social networks began four decades ago with the

works of Granovetter (1978). Currently, there are a variety of diffusion models

arising from the economics and sociology communities. The most popular models

are independent cascade model and linear threshold model, which are widely used

in studying the information diffusion in social networks.

2.3.1 Independent cascade model

Cascading models can be better described with the probability value of a node

u influences node v. This probability is represented as p(u, v). The independent

cascade model (Domingos and Richardson, 2001) is used to understand the process

of information spread. The working of IC model is as follows. Suppose that node

u is influenced (i.e. becomes active) at a time t. Then, u has an opportunity

to influence every one of its neighbors v with probability p(u,v). If u succeeds

in activating v, then v is active from time t+1 onwards. If not, u can never try

influencing v in subsequent attempts. This process continues till no new node

becomes active.
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2.3.2 Linear threshold model

Linear threshold model is one of the models used to study information diffusion in

social networks. In this model, each node v has a threshold θv, and for every u ∈

N(v), (u, v) has a nonnegative weight wu,v such that Σu∈N(v)wu,v ≤ 1. Given the

threshold and an initial set of active nodes, the process unfolds deterministically

in discrete steps. At time t, an inactive node v becomes active if,

Σu∈Na(v)wu,v ≤ θv . . . . . . . . . . (2.3.1)

where Na(v) denotes the set of active neighbors of v. Every activated node

remains active, and the process terminates if no more activations are possible.

The threshold in this model is related to a linear constraint of edge weight.

Given the thresholds in advance, the diffusion process is deterministic. The

threshold θ selected by Kempe et al. are uniformly at random from interval[0,1]

(Zhang et al., 2014).

2.4 Datasets

In this research, eight social network datasets of various sizes and properties are

used. The description of these datasets are as follows:

1. Email

The Email network is based on email data from a large European research

institution for a period from October 2003 to May 2005 (18 months)

generated by Leskovec and Krevl (2014). Given a set of email messages,

each node corresponds to an email address. A directed edge between nodes

i and j is created, if i has sent at least one message to j. This dataset has

265214 nodes and 420045 edges.

2. HEP

The HEP dataset (Chen, 2009) is extensively used in many influence

maximization studies. It is an academic collaboration network from the

High Energy Physics-Theory section of arXiv form 1991 to 2003, where
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nodes represent the authors and each edge in the network represents one

paper co-authored by two nodes. It contains 15233 nodes and 58891

undirected edges.

3. PHY

Arxiv of Physics collaboration network is from the e-print arXiv and covers

scientific collaborations between authors papers submitted to Physics -

Theory category (Chen, 2009). If an author i co-authored a paper with

author j, the graph contains a undirected edge from i to j. If the paper is

co-authored by k authors this generates a completely connected (sub)graph

on k nodes. The data covers papers in the period from January 1993 to

April 2003 (124 months). It begins within a few months of the inception of

the arXiv, and thus represents essentially the complete history. It contains

37154 nodes and 231584 edges.

4. Wikivote

Wikipedia (Leskovec and Krevl, 2014) is a free encyclopedia written

collaboratively by volunteers around the world. Using the latest complete

dump of Wikipedia page edit history (from January, 3, 2008), all

administrator elections and vote history data are extracted. This gave

2,794 elections with 103,663 total votes and 7,066 users participating in the

elections. It contains 8275 nodes and 103689 edges.

5. Twitter

The Higgs dataset (Leskovec and Krevl, 2014) has been built after

monitoring the information spreading processes on Twitter before, during

and after the announcement of the discovery of a new particle with the

features of the elusive Higgs Boson on 4th July 2012. The messages posted

in Twitter about this discovery between 1st and 7th July 2012 are

considered. It contains 456626 nodes and 14855845 edges.
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6. Digg

Digg provides a social bookmarking service to over three million registered

users. Digg2009 data set (Kristina, 2009) contains data about stories

promoted to Digg’s front page over a period of a month in 2009. It has two

files, namely vote file and friend file. For each story, the list of all Digg

users who have voted for the story up to the time of data collection and

the time stamp of each vote are collected. The voters’ friendship links are

also retrieved. The semantics of the friendship links are as follows

user − id→ friend− id means that user-id is watching the activities of (is

a fan of) friend-id. It contains 279392 nodes and 1730381 edges.

7. YouTube

This is the data set crawled on Dec, 2008 from YouTube which is available

at http://socialcomputing.asu.edu (Zafarani and Liu, 2009). YouTube is a

video sharing site where various interactions occur between users. In

particular, 30, 522 user profiles are crawled. For each user, his/her

contacts, subscriptions and favorite videos are crawled. To avoid sample

selection bias, we choose authors of 100 recently uploaded videos as seed

set. This crawling reaches in total 848,003 users and 1,299,642 videos.

However, not all users sharing all kinds of information. After removing

those users, we have 15, 088 active user profiles and 76765 edges.

8. Infectious

The infectious network (Isella et al., 2016), describes the face-to-face

behavior of people during the exhibition INFECTIOUS: STAY AWAY in

2009 at the Science Gallery in Dublin. Nodes represent exhibition visitors;

edges represent face-to-face contacts that were active for at least 20

seconds. Multiple edges between two nodes are possible and denote

multiple contacts. The network contains the data from the day with the

most interactions. It contains 410 nodes and 2765 edges.
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2.5 Celebrity endorsement vs influencer

Marketers have long known the commercial value of influence. Two popular

strategies used for product promotion are celebrity endorsement and influencer.

One needs to differentiate these two strategies in order to understand its

applicability.

Celebrity endorsement attaches the fame of the celebrity to the product.

Seeing the celebrity using the product may result in huge sales (Geppert, 2016).

However, the credibility and celebrity fame can not be viewed as one. There are

many incidents where celebrities have openly refused to attach their credibility to

the products they endorse (eg: Tobacco products). On the other hand, influencer

creates a word-of-mouth advertising using people that are trusted in social space.

Communications with celebrities is a one way process, whereas, influencers

are engaged in continuous communication and interaction, even before a product

comes in the network. In a celebrity endorsement, he/she is a messenger of the

products, produced by owner. The celebrity may or may not have any expertise

on the product. Whereas, an influencer, is an enthusiastic salesman and creator

of brand awareness. Therefore, it lends a certain credibility to the product,

which often lacks in celebrity endorsement. Celebrity endorsement often come

with heavy costs, where as, influencer marketing technique is not expensive.

Influencer marketing dwells on trust factor whereas, celebrity endorsement

achieves expected results till the fame of celebrity remains (ImpulseDigital,

2017).

In this research work, the celebrities are not considered to be influential users

for endorsement of products. Instead, this research work fetches influencers

among the users without accessing and storing their professional profiles. Thus,

the presented approach reduces the memory usage and also computation time.
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2.6 Summary

In this chapter various terminologies and definitions are introduced. Further,

details on the information diffusion models like independent cascade and linear

threshold models are provided. Also, description on the datasets used in this

research work is given. The chapter ends explaining the difference between

celebrity endorsement and influencer.

Chapter 3 unfolds various contributions towards influence maximization. The

research problem is also discussed in chapter 3.
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Chapter 3

Literature review

The more you know about the past; the more you are prepared for the future.

- Theodore Roosevelt

This chapter details various prominent works on influence maximization. It is

divided into three subsections: approximation algorithm and heuristics,

approaches for estimating influence, and strategies for pruning the network. It

also discusses various research gaps, challenges, motivation and introduces the

research problem.

3.1 Approximation algorithms and heuristics

The solution to influence maximization has been attempted in two streams. The

first stream derives approximation guarantees for the solution under which

Greedy algorithm (Domingos and Richardson, 2001), CELF (Leskovec et al.,

2007b), CELF++ (Goyal et al., 2011b) have been proposed. The second stream

of solutions arises from the structural concepts, where reducing the run time is

the main concern. Also, aspects of temporal dynamics and work specifically on

Twitter are also attempted by researchers.

3.1.1 Approximation algorithms

The seminal work on the study of information spread in social networks, with

the perspective on data mining, has been proposed by Domingos and Richardson
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(2001). Further, the same problem has been formalized using discrete

optimization approach and has been classified as NP-hard (Kempe et al., 2003,

2005). Kempe et al. has focused on two fundamental propagation models,

named Linear Threshold Model (LT) and Independent Cascade Model (IC).

Although Kempe et al. proved that fetching influential users is NP-hard, they

were able to derive approximation guarantee for their greedy algorithm which

has been monotone and submodular. The greedy algorithm significantly

outperforms the high degree and distance centrality heuristics giving 66%

optimal spread. An approximation guarantee is also provided for the same.

However, on the downside, the greedy algorithm uses Monte Carlo simulation to

pick the initial seeds. The running time for the worst case of this algorithm is

O(n2(m + n)), resulting as an expensive process in terms of time, making its

usage impractical for large social networks.

To reduce the run time of the greedy algorithm, Cost Effective Lazy

Forwarding (CELF) (Leskovec et al., 2007b) has been proposed. CELF achieves

near optimal placements and is 700 times faster than the simple greedy

algorithm. Regardless of this big improvement over the basic greedy algorithm,

CELF method still faced serious scalability problems. Goyal et al., have

proposed CELF++ (Goyal et al., 2011b), to improve the CELF algorithm.

CELF++ proposes a mechanism to avoid re-computation of the marginal gain

with respect to the already selected nodes. The only concern with CELF++ is

the increase in the memory usage when large social networks are analyzed.

Although these are faster than the greedy algorithm, due to the use of Monte

Carlo simulation, these cannot be implemented on large social networks (Shang

et al., 2017). In the subsequent years, most of the solutions to influence

maximization have been based on heuristics instead of approximation algorithms.

3.1.2 Centrality measures and structural concepts

A user’s location within the social network, accounting to his structural

properties, is the primary aspect in the information diffusion process. Based on
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the network structure properties, the following solutions have been designed to

improve the run time, but in turn have sacrificed the approximation guarantees.

The concept of evaluating users on the centrality scores such as; degree,

betweenness, closeness and Eigenvector, are basically employed to determine

influential users based on the location of the users (Hanneman and Riddle, 2005;

Hinz et al., 2011; Hinz and Spann, 2008; Iyengar et al., 2011). Although some

well-known global metrics such as betweenness centrality and closeness

centrality, can give better results in information diffusion process, due to the

very high computational complexity, they are not used in large social networks.

A method for efficiently estimating all the marginal influence degrees of a

given set of nodes, on the basis of bond percolation and graph theory has been

proposed by Kimura et al. (2009b). Improvements to the original greedy

algorithm has been proposed through Mix greedy and New greedy algorithm

(Chen et al., 2009). Picking seed nodes on degree centrality has been proposed

by Chen et al. (2009) by introducing SingleDiscount and DegreeDiscount

heuristics. These heuristics discount the degree of a node by already activated

neighbors. Unlike Greedy algorithm, DegreeDiscount algorithm has no provable

performance guarantee. In their following work, Maximum Influence Paths

(MIP) has been proposed, which is a scalable heuristic to estimate coverage of a

set under the IC model. Maximum Influence Arborescence (MIA) model and its

extension, the Prefix excluding MIA (PMIA) model (Chen et al., 2010a) have

also been designed to estimate information spread. The running time of PMIA is

very sensitive to the clustering coefficient, the edge density and to the cascade

size (Jung et al., 2011). Moreover, PMIA needs to maintain arborescence for

each node, which consumes a huge amount of memory, making it unscalable on

large social graphs.

Furthermore, various aspects of graph theory, such as community and paths,

have been explored to solve influence maximization. In the LT model, through

construction of Directed Acyclic Graphs (LDAG) (Chen et al., 2010b), a scalable

heuristic for influence maximization has been proposed. However, this is a time
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consuming process. Goyal et al., by proposing SIMPATH approach for LT model

(Goyal et al., 2011c), has suggested that finding the vertex cover and

enumerating all simple paths would solve the LDAG issue. Later, semi local

heuristic has been proposed to pick influential users (Chen et al., 2012a), which

is based on the local centrality. Local centrality is based on the nearest neighbor

and next nearest neighbors of a node. This is unpractical in many real situations.

For example, Zhuang et al. have observed that there are more than three million

following relationships are newly added and three million are removed from

Weibo network every day. In such a scenario, it is difficult to provide a fully

observed network at any moment (Zhuang et al., 2013). Work of Mochalova and

Nanopoulos (2013), has established an interplay between various centrality

measures and the attitude of the network users during the diffusion process.

Wang et al., takes the community detection algorithm a step further, to mine

the top influential users. Wang et al. have extended the near linear time

community detection algorithm (Raghavan et al., 2007) and has proposed

community based greedy algorithm (Wang et al., 2010) to mine top influential

users in each community. Community detection algorithm is also seen in various

works as a preprocessing task to fetch influential users (Chen et al., 2014; Shang

et al., 2017; Zhang et al., 2013).

Heidemann et al. (2010), have proposed PageRank centrality, for fetching top

influential users which is based on the popular PageRank approach (Page et al.,

1999). Based on the similar concept, Lü et al. (2011), has proposed a

random-walk-based algorithm, known as the LeaderRank to identify leaders in

social networks. For LeaderRank to be workable, every individual should have a

strong bidirectional connection in the network. LeaderRank, as well as

PageRank has good performance for directed networks. However, they do not

work well for undirected networks since, it degenerates to degree centrality in

undirected networks.

Jung et al. (2011) has proposed Influence Rank and Influence Estimate

(IRIE), an approach to rank the users and to estimate the user influence.
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Nguyen and Zheng (2012) has designed an algorithm for belief propagation

model on directed acyclic graph. This approach constructs DAG with at least

one topological ordering where edges, going from a node of low rank to one with

high rank, are allowed.

Finding contagious set in the expander graph (Coja-Oghlan et al., 2015) is

another new direction in diffusion literature that could possibly be extended to

find influential users. The prior works on influence maximization, assume the

network to be static. However, Zhuang et al. have designed a solution for

dynamic network and has proposed maximum gap probing (MaxG) (Zhuang

et al., 2013). For this, Degree Weighted Round-Robin Probing (DegRR) has

been designed, to probe each node with frequency proportional to their degrees.

Since, probing is the additional task that has to be carried out before picking

seed nodes, the running time increases. A similar strategy has been devised

which includes a community detection procedure along with probing strategy

(Han et al., 2017). Also, diffusion degree and maximum influence degree for

independent cascade model has been explored by Pal et al. (2014). They design

their algorithm that works on non uniform propagation probabilities, fetched

from normal and uniform distributions.

The solution to influence maximization has recently come from a new domain

referred to as the compressive sensing, that is predominantly used in sparse

signals. Mahyar et al. design CS-TopCent (Mahyar, 2015), to identify top nodes

when complete knowledge of the network topology is unavailable. The

CS-TopCent approach is based on degree and betweeness centrality. Also, Belák

et al. (2016) has discussed the information diffusion when partial network data is

available, mainly due to privacy issue. Belak et al., referred to the nodes that

were active and have participated in diffusion process, yet were hidden in the

network as hidden nodes. The cascades created by these nodes have been termed

as phantom cascades. Based on these two new terminologies, an approach has

been proposed to study diffusion in hidden paths of the social networks. Their

approach has been based on the degree discount heuristics.
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Improved greedy algorithm (Wang, 2016) has been designed on on connected

graphs for dynamic IC and dynamic LT models. A new type of influential nodes

has been termed as super mediators by Saito et al. (2016). Super mediators are

those nodes which when removed results in decrease of information spread. To

identify super mediators, a new centrality referred to as super mediator degree

has been proposed. Mining approach to solve influence maximization has been

attempted by proposing InFlowMine. This is based on the content centered

model (Subbian et al., 2016), which mines the information flow patterns using

discrete events. These information flow patterns are used to solve influence

maximization. The efficiency of the approach depends on efficiently keeping

track of the frequency of the information flow paths. Content-influence behavior

between different posts has to be determined for this approach. However, keeping

track of streams for a long period of time can be time as well as a memory

consuming process. Recently, He and Kempe (2016) and Chen et al. (2016), have

come up with a new variant for influence maximization, known as robust

influence maximization. He and Kempe, have found the top influential users in

the setting where multiple influence functions have been used for the same model

(He and Kempe, 2016). On the other hand Chen et.al. has discussed the solution

to influence maximization, given an uncertainty in the parameter input. They

have proposed LUGreedy algorithm to improve the existing Greedy algorithm.

This research explores the centrality concept on a different dimension. This

work probes the nodal attribute of the user and design a new centrality measure

to rank social network users.

3.1.3 Activities on Twitter

Twitter social network has been studied in the context of influence

maximization. InfRank finds the influential users in Twitter network using the

retweet activity (Jabeur et al., 2012). Also, InterRank approach that improves

the formerly proposed Pagerank heuristic has been designed on topical similarity

among the Twitter users (Sung et al., 2013). Further, works of Dubois and
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Gaffney (2014) and Rudat and Buder (2015) have been designed on the contents

of the tweets. These approaches have been designed for only Twitter social

network and have been based on only one criteria; re-tweets, content or followers.

The most recent work on twitter social network uses evidence theory and belief

functions to fetch influential users. They claim this to be a working model in the

scenario of uncertainty of data availability (Jendoubi et al., 2017).

The above discussed approaches were specifically used in Twitter networks.

In contrast, this research proposes a strategy that is employable to any social

networks in general.

3.1.4 Temporal dynamics

In the real world, diffusion process is often controlled by the temporal dynamics

and cost. There are recent research contributions in this direction. Distance as

a metric to analyze the social networks has also been proposed by Tang et al.

(2009) with the aim to speed up the information diffusion. In their work, distance

metrics to quantify and compare the delay of information diffusion processes taking

into account the evolution of a network from a local and global view, has been

proposed. The diffusion process has been studied for Latency Aware Independent

Cascade (LAIC) model (Liu et al., 2012), which has incorporated the time latency

to activate a new neighbor node. A similar aspect has been studied to design

a heuristic to pick seed under the time constraint (Chen et al., 2012b). The

work is designed for IC-M and LT-M model by specifically using MIA-M and

LDAG-M heuristics, which are the extensions of previously designed MIA (Chen

et al., 2010a) and LDAG (Chen et al., 2010b) heuristics. However, their work

assumes that the dynamic network is fully observed, which may not be the case

always. While these works were on discrete time, Rodriguez and Schölkopf (2012)

designed the continuous time model. An optimal timing for promotions of products

through incentives in a social network has been studied by Dayama et al. (2012)

by proposing influence-exploit and exploit-influence strategies.

A different optimization problem to minimize time and number of seed nodes
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for effective diffusion, in the context of information diffusion, is introduced by

Goyal et al. Specifically, they have defined MINTSS, as the problem to find the

smallest seed set and, MINTIME which aims to spread information with smallest

propagation time (Goyal et al., 2013). Influence maximization problem has also

been addressed as source selection problem by Saito et al., to select target nodes

instead of source nodes for information diffusion (Saito et al., 2013).

Similar to that of Goyal et al., Minimum Target Set(MTS) problem has been

proposed by Cordasco et al. (2015). Another approach on the constraints of time

and budget has been designed by Cicalese et al. (2015) to fetch the seed set

with minimum cost. This has been referred to as the Maximally Influencing Set

(MIS) problem for a weighted, directed graph, on linear threshold model. Gargano

et al. (2015), revisits the target selection problem and designs an approach to

fetch smallest size seed set that potentially influences the entire network. The

framework has been developed on a combinatorial model of influence spread under

time window constraint. Also, Independent Cascade On Timeliness (ICOT) and

Breadth ICOT (BICOT) models have been proposed by Han et al. (2016) to

consider aspects of time acceptance ratio and breadth of influence spread. An

interesting aspect of optimizing the rewards and cost involved in diffusion process

has been studied by Kandhway and Kuri (2017).

Temporal dynamics of social network is explored in this research on the facet

of user interactions. The time window of user activities are studied to devise a

strategy to estimate user influence in social networks.

3.1.5 Diffusion models

There are also important contributions in the direction of diffusion models to

study information spread. There is a close similarity between the epidemic

spread and information spread in social networks. Therefore, the popular

Susceptible-Infected-Recovered(SIR) (Johnson, 2009; Kermack and McKendrick,

1927), of epidemiology, is adopted to study information spread in social

networks. The popular IC model and the LT model are the variations of SIR
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model.

While SIR model does not allow the nodes (users) to become susceptible

again after being infected, Susceptible Infected Susceptible (SIS) model (Kimura

et al., 2009a), on the contrary, represents the phenomenon where an individual

becomes susceptible multiple times. For predicting the information spread, SIS

model allows nodes to be activated multiple times. Similarly, an approach within

the stochastic framework of SIS model, namely the Continuous Time Susceptible

Infected Susceptible (CTSIS), has been later proposed by Saito et al. (2010).

The CTSIS allows continuous time delay and multiple activation of the same

node. However, in the real world, users may not respond to the same

information they receive the second time. Hence, SIS and its variants may not

accurately model information diffusion in social networks.

A social network mining model namely DIFSoN (Tanbeer et al., 2012),

discovers a group of influential friends from a large volume of social network

data. Dynamic Independent Cascade Model (DICM) has been proposed for

dynamic social networks (Wang, 2016). Models to represent information

diffusion in the presence of negative influence is attempted by Jung et al. (2011),

and has proposed the IC-N model. The Continuous Time Independent Cascade

(CTIC) model (Tang et al., 2015), which is similar to works of Chen et al.

(2012b) and Liu et al. (2012); and is also a variant of IC where a time parameter

is associated with the activation of a node.

Linear threshold with colors (LT-C) (Bhagat et al., 2012) has been proposed

to model the information adoption. LT-C aims at modeling scenarios where user

may not adopt the product, yet may act as a bridge in the diffusion process and

pass the information to his/her peer. The campaigns and the users have been

considered as a bipartite graph in the bipartite influence model (Alon et al.,

2012). A new model to map the diffusion of information in social networks, using

Three Step Cascade Model (TSCM) (Qin et al., 2016) has been proposed to fill

the gaps in IC model.

A new direction in influence maximization domain has also been seen in the
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literature of autonomous agents and multi agent systems. Dhamal et al. (2016)

study the diffusion as a two phase initiator selection process. Further, they also

develop a budget splitting strategy for the same. Also, a real world

implementation of influence maximization for the spreading of information on

HIV disease has been done by Yadav et al. (2017). Also, the works of Yadav

et al. (2016) and Wilder et al. (2017) are the new contributions in this domain.

The HEALER (Hierarchical Ensembling based Agent which pLans for Effective

Reduction in HIV Spread) model (Yadav et al., 2016) designs an adaptive

software agent to pick influence users for spreading of information, where as

DOSIM (Double Oracle for Social Influence Maximization) model(Wilder et al.,

2017) is an algorithmic approach to solve influence maximization under

uncertainty of the parameters of propagation.

Wang et al. (2017) propose stream influence maximization query, to retrieve

top influential users by analyzing their contents. These stream queries are

supported by their novel approach named as influential checkpoints and sparse

influential checkpoints. Also, Pan et al. (2017), has designed dynamic influence

propagation (DIP) model for dynamic social networks. They formulate the

Threshold Activation Problem with Dynamic Influence Propagation problem

(TAP-DIP), which asks for minimizing the seed set size and guaranteeing that

the number of users who are influenced can reach a certain threshold within a

time limit. Inclusion of rate change multiple times may be a concern for the

implementation of TAP-DIP in enormous social networks. A summary of these

prominent works is shown in Table 3.1.

This research work designs RnSIR model to map the information diffusion in

social networks. Further, a new model named Influx-IC is proposed. This new

model is a variant to the existing IC model and has edge weights that are

estimated from user activities.
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Table 3.1: Prominent works in influence maximization

Publication Contribution

Domingos and Richardson (2001) Network value of customers
Kempe et al. (2003) NP hardness proof, ICM, LTM
Kempe et al. (2005) Greedy Algorithm(GA) for DCM
Hanneman and Riddle (2005) Eigen vector centrality
Leskovec et al. (2007b) CELF for ICM
Hinz and Spann (2008) betweeness centrality
Kimura et al. (2009a) improve GA, bond percolation for ICM, LTM
Chen et al. (2009) Mixed greedy, New greedy, DegreeDiscount,

Singlediscount for ICM
(Tang et al., 2009) temporal distance metrics
Saito et al. (2010) CTSIS
Wang et al. (2010) Community based GA for ICM
Heidemann et al. (2010) Pagerank based approach
Chen et al. (2010a) MIA, PMIA
Chen et al. (2010b) LDAG
Hinz et al. (2011) degree centrality
Iyengar et al. (2011) degree centrality
Jung et al. (2011) IRIE for ICM, IC-N
Goyal et al. (2011a) propagation traces for Credit distribution

model
Goyal et al. (2011b) CELF++ ICM
Goyal et al. (2011c) SIMPATH
Jabeur et al. (2012) InfRank for twitter network
Chen et al. (2012a) semi local centrality heuristic
Chen et al. (2012b) IC-M and LT-M models
Nguyen and Zheng (2012) Belief propagation in DAG for ICM
Tanbeer et al. (2012) DIFSoN
Rodriguez and Schölkopf (2012) InfluMax for CTMC
Liu et al. (2012) LAIC-GA
Sung et al. (2013) InterRank for twitter network
Zhang et al. (2013) community detection
Zhuang et al. (2013) dynamic IM, MaxG for ICM
Saito et al. (2013) Target set selection for ICM, LTM
Goyal et al. (2013) MINTSS, MINTIME for ICM, LTM
Coja-Oghlan et al. (2015) d-regular graphs contagion set
Mochalova and Nanopoulos
(2013)

centrality for ICM, LTM

Chen et al. (2014) community detection
Pal et al. (2014) Maximum influence degree for ICM
Dubois and Gaffney (2014) topic based influencer in twitter network
Cordasco et al. (2015) trees, cycles, MTS for LTM
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Table 3.1: Prominent works in influence maximization

Publication Contribution
Mahyar (2015) CS-TopCent
Gargano et al. (2015) Time constraint IM, TWC-TSS for SIR
Rudat and Buder (2015) topic based influencer in twitter network
Cicalese et al. (2015) cost bound MIS for LTM
Belák et al. (2016) Phantom cascade ICM
Subbian et al. (2016) InFLowMine for ICM
Saito et al. (2016) super mediator for ICM
Wang (2016) Improved GA for DICM, DLTM
Qin et al. (2016) Three layer approximation approach, TSCM
Han et al. (2016) ICOT and BICOT
Han et al. (2017) community detection with probing strategy
Kandhway and Kuri (2017) use of centrality measures
He and Kempe (2016) Robust Influence Maximization
Chen et al. (2016) LUGreedy algorithm
Yadav et al. (2016) HEALER model based on software agents
Shang et al. (2017) community detection
Wilder et al. (2017) DOSIM
Wang et al. (2017) Stream influence maximization
Pan et al. (2017) TAP-DIP

3.2 Approaches to estimate user influence

Besides the diffusion models and heuristics, an important aspect in the solution

to influence maximization is the user influence. In most of the prior works, a

general strategy that has been followed to fix the value of user influence is to

assign a constant value such as 0.01, 0.001 so on, as in trivalency model (Kempe

et al., 2003, 2005; Leskovec et al., 2007b). This makes user influence uniform

throughout the network. Yet another strategy, as in weighted cascade model, is

to use the degree of the node to fix influence value i.e.,user influence is assumed

to be 1/degree. This makes influence uniform at every node, but non-uniform

across the network. Thus, a perception is developed that the user influence is

readily available as weight on the edges of the social networks. Therefore, the

solutions to information spread in the initial years has left the estimation of user

influence among users unexplored.
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Nevertheless, attempts were made to estimate the user influence in the later

years. The set of past propagation, to learn the probabilities for the independent

cascade model, has been attempted using expectation maximization (Saito et al.,

2008). An attempt has been made to model relationship strength in online social

networks using user profile information and interaction data (Xiang et al., 2010).

Detailed user profile information is needed to quantify link strength and

unavailability of such information makes the approach infeasible.

Goyal et al. (2010) has proposed three classes of models to estimate user

influence. The first class of model assumes that the influence probabilities are

static and do not change with time. The second class of model assumes that they

are continuous functions of time. In the experiments it turns out that time-aware

models are by far more accurate, but they are very expensive to learn on large

data sets, because they are not incremental. Thus, they propose the third class

named as discrete time model, where the joint influence probabilities can be

computed incrementally based on propagation data. Spread restricted to topics

has also been proposed as an initial stage in picking influential users (Weng

et al., 2010). A new approach, to model global influence, has been proposed in

the work of Yang et al. The linear influence model has been designed to estimate

the user influence by tracking the memes (Yang and Leskovec, 2010). Recent

work on estimating user influence in social network, uses a number of application

dependent assumptions on fixing the edge weights (Wang et al., 2011). An

attempt to measure influence in Twitter using re-tweets, indegree and mention

metrics has been used in the work of Cha et al. (2010). K-shell decomposition

method has also been used to estimate influence by Brown and Feng (2011).

The passivity of users, during the diffusion process, is another aspect that is

explored to get a realistic solution to propagation process. Romero et al. (2011)

developed influence and passivity algorithm which takes into account the state of

a user. Their work is developed in the context of Twitter network.

Influencer-influencee model (Mohite and Narahari, 2011) has considered an

approach to fetch the influence probabilities from the users in the social network.
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Their approach depends on the incentives given to the users to share the

information. An approach has also been attempted where link strength is

quantified by user profile data (Zhao et al., 2012). Estimation of activation

probabilities using latent interaction such as profile visits has also been studied

previously (Jiang et al., 2013). An approach to determine influence probabilities

in the presence of various confounding factors that are generally unobserved has

also been attempted (Fang et al., 2013). They emphasize that these confounding

factors play a significant role in adoption probability predictions.

Many of the prior works have not distinguished between propagation and

adoption of information. This leads to the assumption that every user who

receives information will definitely adopt it. This assumption may cause

erroneous outcome. However, Wang et al. (2013) has observed that all users may

not forward the information and thus their work has distinguished between

influence and propagation probability. A probability based algorithm has been

proposed by Wang et al., to estimate influence which includes the degree as well

as the activity rate of the user. Also, an attempt to approximate propagation

probability has been achieved by processing data streams. This approach is

similar to the one proposed by Goyal et al. (2011a). The streaming algorithms

for Stream learning of Influence Probabilities (STRIP) has been developed by

Kutzkov et al. (2013). This approach is built on probabilistic approximation,

min-wise independent hashing function and streaming sliding windows.

Influence propagation in the context of large scale social network has been

studied by Cordasco et al. (2015) to determine the probability of propagation of

information. Information spread in the context of multiple influencers has been

discussed in the work of Kasthurirathna et al. (2015). The user rationality is

bounded by the availability of information or cognitive capacity. Thus user

rationality is taken into account for estimating the information spread in the

social networks. The interplay between the user interest intensity and dynamic

influence has been explored for effective information diffusion in the work of

Teng et al. (2015). Estimating influence in Twitter using belief functions has
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been attempted in a recent work of Jendoubi et al. (2017). Table 3.2 summarizes

the existing works and their contribution.

The approaches that are discussed here, require large data stream from users.

Storing and processing these large streams may cause extensive resource

consumption. In addition, fetching propagation data has consequential privacy

issues. Therefore, devising methods respectful of the privacy of the social

networks users, is also an important concern. Moreover, approaches based on

in-depth user information may not be practical in the real world, due to the

restrictions on accessing such data. Thus, implementing these approaches on

large social networks remain a practical challenge.

In this research, an approach is designed to estimate user influence from user

activities. This approach neither requires in depth user profiling nor

unreasonable memory space. Thus, the presented approach is applicable across

major social networks.

Table 3.2: Prominent works on estimating user influence

Publication Contribution
Saito et al. (2008) EM for ICM method
Kimura et al. (2009a) SIS model
Xiang et al. (2010) estimate weight on profile similarity
Goyal et al. (2010) propagation traces Discrete time model
Yang and Leskovec (2010) global influence
(Weng et al., 2010) spread on topics
Cha et al. (2010) influence in twitter network using re-

tweets, mention and indegree
Brown and Feng (2011) k-shell decomposition
Wang et al. (2011) application dependent assumptions
Romero et al. (2011) influence-passitivity algorithm(IP)
Zhao et al. (2012) user profile similarity approach
Jiang et al. (2013) latent interaction approach
Fang et al. (2013) confounding factors
Wang et al. (2013) Probability Based algorithm
Kutzkov et al. (2013) STRIP
Cordasco et al. (2015) effort needed to influence
Kasthurirathna et al. (2015) multiple influencers based
Teng et al. (2015) shortest effective sequence(ISES),

Intensity dependence(ID) model
Jendoubi et al. (2017) belief function
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3.3 Approaches to prune the networks

In the real world social networks, scalability is a major concern in the

implementation of influence maximization solutions. Pruning the social network

will eliminate inappropriate components and simplify the network. This also aids

in better visualization and analysis of the social networks. In this context,

various approaches to prune the networks in general, is studied. Early attempts

to prune the network using structural equivalence is carried out by Lorrain and

White (1971). This strategy is used to simplify graphs by means of identifying

sets of node with similar structural properties. Since then, structural equivalence

is used for various applications including analysis of social networks (Breiger

et al., 1975; Burt, 1987, 2009; Everett, 1985; Everett and Borgatti, 1988).

Breiger et al. (1975) uses structural equivalence to cluster data hierarchically

whereas, Everett et al. (1985, 1988), have proposed a new measure of structural

complexity based on role similarity. Burt discusses the role of structural

equivalence in the diffusion of technological innovation (Burt, 1987, 2009).

Lossy network simplification approach to simplify the graph by removing

edges resulting in loss of connectivity has also been attempted (Zhou et al.,

2010). A trade-off between simplicity and connectivity has to be made in this

approach. Further, pruning strategy to maintain connectivity to retain

important edges without losing connectivity (Zhou et al., 2012b), has also been

developed. This work defines the best path function and based on this, edges are

given priority. This approach is applicable to probabilistic graph, flow graph and

distance graph.

For the flow network to reduce the computation time, source to link flow

strategy (Misiolek and Chen, 2006) has been proposed. Triangular inequality

strategy (Quirin et al., 2008a) has been used to reduce computation time of

pathfinder algorithm. In their subsequent work, MST-Pathfinder (Quirin et al.,

2008b) has been developed to retain edges on the minimum spanning tree, in

various networks including social networks. Modularity concept (Arenas et al.,

2007) has been proposed to reduce graph to core components with the constraint
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of maintaining modularity. The cut sparsifier (Fung et al., 2011), based on

connectivity concept for undirected graph, has also been proposed to understand

the strength of connectivity of the graph. Serrano et al. (2009) and Foti et al.

(2011), have focused on weighted networks and have selected edges that

represent statistically significant deviations with respect to a null model. An

application of pruning the graph on connectivity constraint has also been

designed by Mathioudakis et al. (2011).

Pruning approaches are also applied to databases and relational schema. An

interesting application of pruning has also been seen in the domain of relational

schema for multiple databases (Guo et al., 2007). Collective inference technique

(Shawndra Hill, 2007) produces networks of smaller size that facilitates improved

performance through collective inference. Similarly, pruning method proposed by

Singh (2005), is developed on the structural and descriptive concept. For the

case of structural pruning, sub graph is pruned keeping all the hubs and/or

brokers. In the case of descriptive pruning, authors have considered employee

dataset and picked position of employee, tenure and age as attribute values to

prune the graph. Nonavailability of such micro details about the social network

users makes this approach infeasible in practice. Hence, this approach cannot be

used in general scenario. The NTree approach, primarily used for subgraph

query, also simplifies the graphs to obtain its core pattern. This is further used

to analyze and reconstruct the tree (Lin and Bei, 2014). The summary of various

pruning approaches is available in Table 3.3.

This section discussed prominent works, that are available on network

simplification concept. In most of the cases, prior works use the structural

properties of the graph during pruning process without understanding whether a

link is used for communication or not. These methods cannot be used to simplify

social networks, since social networks comprise of users, who not only have

structural value but also nodal attributes. In social networks, the nodes play an

important role and edges only serve as a medium of communication. Removing a

connection edge from social graph may lead to the disturbance or loss of its

37



structural properties which may render the sub-graph unsuitable for specific

application. Also, since accuracy declines with increasing erroneous removal of

nodes and edges (Borgatti et al., 2006), care should be taken, such that, any

application that uses the simplified network should not produce uncertain

outcome. Moreover, any effective sparsification approach must retain and reflect

the important structure in the network (Foti et al., 2011). These properties or

structure that one aims to preserve, depends on the application of interest. In

the case of information propagation process, the aim is to reduce the social

network while improving the small world properties which facilitates information

propagation.

This research presents an innovative approach to prune the social networks.

The presented approach is based on the nodal attribute, which sets it apart from

other techniques discussed earlier in this section.

Table 3.3: Prominent works on network pruning

Publication Contribution

Lorrain and White (1971) Structural equivalence
Singh (2005) database pruning on description
Misiolek and Chen (2006) Source to link flow
Arenas et al. (2007) Modularity constraint
Guo et al. (2007) database schema pruning
Shawndra Hill (2007) database pruning on collective

inference
Quirin et al. (2008a) Triangular inequality
Quirin et al. (2008b) MST pathfinder
Serrano et al. (2009) weighted network pruning
Heidemann et al. (2010) interactions to prune network
Zhou et al. (2010) Lossy connectivity
Fung et al. (2011) cut sparsifier
Foti et al. (2011) weighted network pruning
Mathioudakis et al. (2011) social network pruning
Zhou et al. (2012b) connectivity based pruning
Lin and Bei (2014) NTree
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3.4 Research gaps

1. In the previous works, the entire network is assumed to participate in the

diffusion process. However, in the real world only about 1% of the network

users are involved in the diffusion process. Considering the entire network,

results in huge run time, making the solution unscalable.

2. In previous works probability of influence is assigned either as (i) uniform

constant value (ii) inverse of the in-degree of the node or (iii) random value.

Thus estimating user influence needs further investigation.

3. The heuristics developed in the previous works are based on the topology of

the social network. User attributes are often ignored while developing user

ranking algorithm.

4. Although aspects of network structure, user influence and fetching key

influential users are correlated, there has been no previous evidence for

considering these in combination.

5. In prior works, information diffusion is measured in reachability. However,

in real world, the metric to measure diffusion should be adoption. The aim

should be to have effective spread of information which will end in adoption

of information.

3.5 Research challenges

Various contributions in the directions of heuristics, algorithm, model

formulation and approaches for estimating user influence are available to solve

influence maximization. However, there are few concerns that need attention.

The challenges addressed in this research work are summarized as follows. The

size of social network has to be reduced to identify the probable spreaders from

unlikely spreaders. Previous solutions developed to predict the information

spread in the social network involves the entire set of users. However, studies

39



reveal that not all users actively participate in the spread of information (Jakob,

2012; Romero et al., 2011). For this reason, it is required to prune the social

network to fetch those users who participate in the information spread and are

probable adopters. Fetching the core component of the social network which

facilitates in the spread of information has immediate implications. By

segregating actual spreaders from unlikely spreaders, the large social network is

reduced to manageable size for analysis. The resulting set of users are most

probable in adopting the information(products), thus closely achieving market

targets of the firm. Thus, the scalability issue can be solved.

Most of the prior works evaluate users on the number of connections or

friends. For information propagation to be effective, user intrinsic attributes may

play an important role. Finding an alternative metric to evaluate users is one of

the aims of the research work.

The popular existing information propagation model such as SIR model, do

not map the users transition through various phases during information

propagation. There is a need to formulate this process for understanding

information propagation in the real world.

Yet another concern is quantifying the user influence. The existing

approaches assume a value to user influence. There are two drawbacks on using

an assumed value in the solution. First, assuming uniform influence along all

social ties can lead to overestimation of information dissemination as well as lead

to selection of influential users that may not be optimal (Wilson et al., 2012). As

such, an assumed value will only bias the outcome. Second, influence is a

behavioral attribute that changes over time. Hence, this parameter should not

be made constant. In addition, interaction intensities among users and also

user’s inclination in adopting information is important to predict influence

probabilities. Also, there could exist additional factors such as structural

features that help in information spread. These factors have to be considered

while deriving at the solution for predicting spread in social networks.

This directs the research on developing approaches to estimate user influence.
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Also, since estimating influence and fetching top influential users are not

separate issues, use of realistic influence value can get results close to reality. The

several attempts which are made in this direction is often resource expensive.

Finally, most of the heuristics to fetch the top influential users, are based on

concept that are deeply rooted in graph theory and is based on the structural

properties of the network. The nodal properties are often ignored while ranking

users. For information diffusion process to be successful involvement of users is

highly appreciated. In this regard, an approach to model information diffusion

on the perspective of user is needed. Keeping these concerns in mind, this

research develops a user centric approach to solve influence maximization.

3.6 Research motivation

Influence maximization problem that has been defined by Kempe et al. (2003)

and its applicability to solve relevant real world problems has created a great

enthusiasm among researchers. Social networks such as Google+, Friendster,

Flickr, Facebook, Yahoo, Twitter so on, have served as a popular medium for

fast and vast spread of information. However, these popular social networking

sites, have grown from few users to billions of users. Statistics reveal a huge

growth in social network users from 0.97 billion in 2010 to 2.22 billion in 2016.

Further, the growth is predicted to reach 2.72 billion by the end 2019 (Statista,

2016). These numbers are sure to rise in the coming days clearly showing

evidence to the fact that social networks are growing rapidly. With this rapid

growth, comes the gigantic amount of data in various forms, posing a big

challenge to data analysis. Further, it also makes the implementation of

influence maximization algorithm infeasible and resource exhaustive. Therefore,

there is a need to simplify the social networks. Moreover, it is often the case that

only a small fraction of the network users actively participate in the information

spread (Jakob, 2012; Romero et al., 2011). Fetching these users is a challenge.

When the network is reduced to manageable size of active users, solution to

influence maximization becomes scalable.
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Further, prior works use a pre determined value of user influence. Assuming

uniform information spread along all social ties can lead to overestimation of

information dissemination as well as selection of non optimal influential users

(Wilson et al., 2012). As such, an assumed value will only bias the outcome. In

addition to this, user influence should reflect the changes that occur in the social

network (AlFalahi et al., 2014). Thus, for a more realistic outcome, user

influence should be estimated. Approaches discussed in this chapter have

attempted to estimate the user influence. However, these approaches are

infeasible under the constraints of resources availability and consequential

privacy issues.

Since the social network is represented as a graph, the existing solutions for

ranking users are also based on concept of graph theory. Most of the earlier

solutions are based on the structural properties of the social network and the

nodal properties are often ignored while ranking users. Information diffusion

process depends not only on the structure of the network but, also on the user

attitude towards propagation. When nodal properties are not involved in the

solutions, in a practical scenario, the outcome may not be realistic. To make

influence maximization realistic, the structure of the social network, seeding

strategy, together with user influence have to be considered in entirety. In this

work, amalgamation of these concepts is proposed as a contribution to influence

maximization. The following sections discuss the research problem and

objectives in detail.

3.7 Research problem

Given a directed unweighted social graph G(V,E), a constant k and an activity

log A(useri, activitycounti) of users, compute the probability of influence P =

{pij, 1 ≤ i, j ≤ |V |} such that 0 < pij ≤ 1 and develop a user centric model to

fetch the seed set I, where |I| = k, that maximizes the spread σ(I) in the social

network.
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This is mathematically formulated as:

σ(I) = E [|ϕ(p, I)|] . . . . . . . . . . (3.7.1)

where,

ϕ(p, I) is the function for computing the spread of seed set I

|ϕ(p, I)| is the active nodes at the end of propagation.

E is a function that fetches the maximum value.

σ(I) is the expected spread under the selected seed set I.

3.7.1 Research objectives

The objectives are as follows:

1. Analyze the role of users in a social network and find a suitable metric to

evaluate them.

2. Develop a user centric model to represent the role of users in the information

diffusion process in a social network.

3. Estimate information diffusion by,

(a) Developing a method to prune the social network graph and show that

the pruned graph thus obtained is an ideal substitute to the original

social graph.

(b) Developing a method to estimate the influence probability of a user.

(c) Developing a seed selection algorithm and analyze the information

spread.

3.7.2 Solution framework

This research identifies that the spread of information depends on the three factors:

(i) network structure (ii) user influence and iii) seeding strategy. This research

work addresses issues like scalability, parameter estimation and ranking users on

new metric. The framework to solve influence maximization is developed in three

stages as shown in figure 3.1.
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Figure 3.1: Proposed framework for influence maximization
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3.8 Scope of the research work

This research work is in the context of picking the top influential users in social

networks. The entire research work is on the premise of user activities which

renders it a user centric approach. The user centric approach relies on the

assumption that the amount of users’ activities in the network determines their

role in the network. However, due to the privacy concerns, detailed profiles are

not available for real world applications. In this regard, an approach that uses

minimum user data and yet is able to come up with a nearly accurate solution, is

required. In this research, only activity logs are used which lists the activity as

an event, without details on its type such as likes, posts, recommendations and

so on. The focus is to know whether a pair of connected users interact well

enough to influence each other. This research presents a method to determine

the participation level of social network users.

In certain scenarios, availability of hardware resources may be one of the

hurdles for implementing algorithms associated with social network. Therefore in

this context, this research attempts to design a scalable solution to the influence

maximization problem. The contributions made in this research work can be

used in any environment, including the one where hardware is a major

constraint.

This work further assumes that the content of the information is not altered

by the forwarders of information. Thus, the aim of diffusion, which is

maximizing the adoption, is not altered.

3.9 Research contributions

The contributions of this research are:

1. A new metric referred to as interaction count is introduced to estimate

influence and rank users.

2. To closely depict the user’s role in the diffusion process in social networks,

a novel RnSIR model, is designed.
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3. The social networks are significantly pruned, that in turn addresses the

scalability issue.

4. Influx, a new data driven approach to estimate user influence in social

networks is devised.

5. A new diffusion model namely Influx-IC, is designed to predict the spread

of information in the social networks.

6. A novel centrality referred to as Outdegree Rank is presented in this

research. Further, the Outdegree Rank employs estimated influence to

form Outdegree Rank with Influence Estimated(ORIE) heuristic and is

also extended to include discount concept (Chen et al., 2009) to form

ORIE-Discount heuristic. These are used to fetch the top influential users

for information diffusion.

7. This research presents the combination of the aspects of network structure,

parameter estimation and heuristics, as a contribution to influence

maximization solution.

3.10 Summary

This chapter details an investigative survey on various approaches towards solving

influence maximization. The aspects of heuristic, approximation algorithms, user

influence estimation and also pruning approaches to reduce the networks in general

are also discussed. The chapter highlights the research gaps that are investigated

further in this research work. This chapter also presented the research problem and

the objectives, that will be addressed to solve influence maximization. The scope

of this research work is also discussed. The chapter ends listing the contributions

made towards the influence maximization.

Chapter 4 explores in detail the need to develop a new metric to evaluate and

rank users in the social networks. The social networks of various sizes are analyzed

to find the new metric.
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Chapter 4

Analysis of user’s role in social
network

True genius resides in the capacity for evaluation of uncertain, hazardous and

conflicting information. -Winston Churchill

This chapter discusses the need to have a new metric to evaluate users for

information diffusion. A brief discussion on various existing centrality measures

are presented. Further, interaction count as a new metric to evaluate users in the

social networks, for information diffusion is presented. Interaction count is used

in the research at various stages, leading to the solution for influence

maximization.

4.1 Background

Effective information initiators play an important role in information diffusion

process. To select initiators, users are often evaluated on their structural

properties. These structural properties are based on their position in the network

and are termed as centrality. Centrality, measures the importance of a node/user

in the network. In this section various centrality measures are discussed.

Robert (2008) has used centrality measures, such as degree centrality,

closeness centrality and betweeness centrality, to quantify the importance of a

node in social networks. The degree centrality assumes that, a node which has

many direct connections, is at the center of the network and plays a very
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important role in the information diffusion process. The second measure; namely

the closeness centrality, focuses on how close a node is to all other nodes in the

network. The betweeness centrality assumes that if a node is more often in the

shortest paths between other nodes, it is more central to the network.

Eigenvector centrality (Freeman, 1978) is yet another metric for measuring a

node’s popularity in a network. A node’s eigenvector centrality is proportional to

the sum of eigenvector centralities of all nodes directly connected to it. There

are other metrics such as, PageRank (Brin and Page, 1998) and

Hyperlink-Induced Topic Search (HITS) (Kleinberg, 1999), that rank the nodes

individually based on their importance. In their basic form, PageRank and

HITS, value a node according to the graph topology (Zhou et al., 2012a).

Hub in general terms is considered to be a center point in any activity.

Concept of hub is prevalent in identifying key users in the network. Users who

are in a hub position are characterized by a great potential for communication

and interaction within network (Heidemann et al., 2010). Hub as a centrality

measure, indicates the importance of certain key users in the network. However,

in real world networks, users who are connected to large portion of the network,

may not be very actively involved in the network. Also, previous study reveals

that Twitter users who have the most number of followers are not the most

influential users in the diffusion process (Yang and Leskovec, 2010). Here the

concept of the hub fails to understand the structure of the social system. Hubs

and brokers have been used for pruning the social network (Lisa, 2008). These

approaches are considered as a structural pruning techniques, where all users

who are hubs and/or brokers are retained in the sub-graph. However, such a

sub-graph may not guarantee the diffusion and adoption of information.

Similar to identifying hubs, gatekeeper centrality approach (Narayanam

et al., 2014) evaluates node on Shapley value (Shapley, 1953). Nodes that have

the capability to disconnect graph are identified in this approach. In contrast,

the approach designed in this research work aims at identifying nodes that are

actively involved in network, thus facilitating information diffusion. Therefore,
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gatekeeper strategy is not suitable for information diffusion application.

Everett and Borgatti (1999) have introduced the concept of group centrality

measure and have used graph fragmentation to define it. White and Smyth

(2003) have introduced personalization concept to understand a user’s

importance to a given subset in a social network. Further, Estrada and

Rodŕıguez-Velázquez (2005) have introduced sub graph centrality that

characterizes the participation of a node in all sub graph based on the spectral

feature. Also, core centrality measure has been coined by Everett and Borgatti

(2005) to evaluate the extent to which a social network revolves around a

sub-network.

Role of user interactions in accurately evaluating socially enabled

applications cannot be overlooked (Wilson et al., 2009, 2012). Therefore, a new

metric to evaluate users is necessary. Traditional metrics have focused on

topological characteristics of the social graph which are the underlying structures

that capture explicit relationships between users. To better understand the true

nature of relationships between users, recent works have shifted focus to measure

observable social interactions. By examining records of interaction events across

different links, the work has distinguished active relationships from dormant ones

and has derived a more accurate predictive model for social behavior (Jiang

et al., 2013).

Realizing the importance of interactions in social networks for information

diffusion process, this research work emphasizes the need to evaluate the social

network users on their nodal properties.

4.2 New metric to evaluate users

Majority of the user interactions are latent and information diffusion also takes

place through these. Previous studies also reveal that users with high number of

friends are not correlated to popularity (Jiang et al., 2013). The degree concept

is the most prevalent metric to identify the influential users. Traditionally, it is

assumed that, higher the number of contacts a user has, the more the chance
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he/she will get to influence the contact, in product adoption, information

acceptance, information diffusion etc. However, weak ties may play a more

prominent role in the dissemination of information in social networks (Bakshy

et al., 2012). This gives a hint that it is not the number of contact links that

make a user influential. Table 4.1 gives the description of the eight datasets that

are analyzed to verify this claim. The interactions for the datasets are available

in the standard repositories, with the exception of PHY and HEP datasets. For

HEP and PHY datasets, interactions are developed on the power law

distribution pattern (Clauset et al., 2009), as majority of the social networks

exhibits this pattern.

Table 4.1: Dataset description

Sl.no. Name No. of nodes No. of edges No. of interactions

1 Email 265214 420045 4220430

2 Wikivote 8275 103689 1036890

3 HEP 15233 58891 588136

4 PHY 37154 231584 2315840

5 Digg 279392 1730381 3017020

6 Infectious 410 2765 17298

7 YouTube 15088 76765 2239440

8 Twitter 456626 14855845 563069

In this research work the following two terms: degree count and interaction

count are defined and used.

Definition 4.2.1. Degree count: It is the number of edges incident on the node

or in simple terms, it is the degree of the node.

Definition 4.2.2. Interaction count: It is the number of edges incident on the

node which are used for interactions.

All the chosen eight datasets are analyzed to obtain on interaction count and

their degree count. Since the datasets have a large number of users, only a part

of this analysis is shown in figure 4.1 to figure 4.8.
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Figure 4.1: Interaction and Degree count of users in HEP dataset

Figure 4.2: Interaction and degree count of users in PHY dataset
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Figure 4.3: Interaction and degree count of users in Email dataset

Figure 4.4: Interaction and degree count of users in WikiVote dataset
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Figure 4.5: Interaction and degree count of users in Digg dataset

Figure 4.6: Interaction and degree count of users in Infectious dataset
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Figure 4.7: Interaction and degree count of users in YouTube dataset

Figure 4.8: Interaction and degree count of users in Twitter dataset
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From the study of the chosen datasets, one can infer that in most of the cases,

the users who have high degree count, maintained interactions with only a small

subset of their contacts. On the other hand, users who have a small degree count,

had noticeably very high interactions with almost all their contacts.

Observation 4.2.1. In most of the cases, users with high degree count do not

have high interaction count. Where as, users with low degree count have high

interaction count.

Therefore, it is appropriate to evaluate a user in social network by his/her

interaction count and bypass the use of the traditional approach of degree count.

This research work concludes that, to evaluate users for information diffusion

application, interaction count of users is a more suitable metric, when compared

to the degree count.

4.3 Summary

This chapter has clarified that the traditional approach of picking users with high

degree count may not lead to accurate results. It is observed that users with high

degree count are not necessarily highly interactive. For information diffusion it is

vital to pick users who are interactive rather than the ones with high number of

friends. One of the findings of this research work is that, the interaction count is

considered as a valid and appropriate metric to evaluate users.

Chapter 5 explains the limitations of the existing model, that is used to map

the various stages of a user, during the information diffusion process. Also, it

details the new model developed in this research work.
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Chapter 5

User centric model of information
diffusion

An equation means nothing to me unless it expresses a thought of God.

- Srinivasa Ramanujan

As identified in this research work, there is a need to develop a new model that

represents the information diffusion process among users in social networks. The

new model for representing information diffusion in social networks is presented

here. This chapter also includes discussions on the existing models for information

diffusion and the hindrance in using them for social networks analysis.

5.1 Background

The seminal work on spread of epidemic diseases is formalized through the

Susceptible-Infected-Recovered (SIR) model (Kermack and McKendrick, 1927).

In this model, the entire population has been divided into three groups;

susceptible, infectious and recovered. This model has been successful in

predicting the casualties of an epidemic outbreak. The SIR model provided a

pedestal for understanding the dynamics of epidemic spread. Since then, various

contributions to SIR are seen in epidemiology (Ganesh et al., 2005; Moore and

Newman, 2000; Newman, 2006; Pastor-Satorras and Vespignani, 2001). SIR

model has also been used to understand the computer virus in the network

(Kephart and White, 1993).
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Analysis of spread of information has also been investigated in the variants of

SIR model such as Susceptible-Infected-Recovered-Susceptible (SIRS) (Gruhl

et al., 2004), Susceptible-Infected-Recovered-Vaccinated(SIRV) (Wang et al.,

2016), Susceptible-Accepted-Immunized-Disseminated(SAID) (Zhu et al., 2016)

and the Independent Cascade Model(ICM) (Kempe et al., 2003; Saito et al.,

2012). Since there is a close reassemble of epidemic spread to the information

diffusion process in the social networks, the epidemic models have been used in

social computing as well. However, the majority of models do not explore the

aspect of user dynamics such as their inclination and interest to adopt

information. Aspects associated with the user characteristics are often

overlooked and are not appropriately modeled. Due to this, when these models

are used, there is a gap between theoretical and observed results.

5.2 Susceptible infected recovered model

The SIR model, has been formalized to understand the epidemic outbreak in the

population. It is a closed model and has three classes; Susceptible(S),

Infected(I) and Recovered(R). It is assumed that initially, the entire

population(N), before the outbreak of a epidemic virus is in susceptible state S.

When an epidemic outbreaks, members in S class, who are susceptible to

infection, get exposed to it, through their contacts and they enter the infected

state I. In this state, they infect members of susceptible group. There is a

sudden increase in the number of people who are infected. After a certain time

elapse, the infected population gets healed and no longer spread infection. Thus

the population recovers from the epidemic affect and it is in recovered state R.

The only way a person can leave the susceptible group is to become infected,

which may not hold true always. The only way a person can leave the infected

group is to recover from the disease. Once a person has recovered, the person is

no longer susceptible to the same disease.

The SIR model has been based on two assumptions. Firstly, SIR assumes

homogeneous mixing of population, due to this, an individual is equally likely to
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be infected by others. Hence, the infection probability parameter has been

uniform and constant. In the information diffusion model, this parameter is

referred to as the user influence. However, the degree of sparsity in interactions

among the users will invalidate the homogeneous mixing concept. Secondly, it is

assumed that, there is no inherited immunity and the entire population is in

susceptible state, i.e., S = N . Due to this assumption, every individual is

considered to be infected if contacted by an infectious person. In the context of

information spread, it leads to the assumption that every user readily adopts and

spreads the information. In social networks, these assumptions fail. Not all

individuals are susceptible and majority of the social network users will restrain

themselves from activities such as commenting, postings, forwarding, and so on.

Also, the entire population do not mix with each other equally.

In this research work, Restrained-Susceptible-Infected-Recovered (RnSIR)

model is developed to fill the gap seen in SIR model. The proposed model is able

to make a clear distinction between the restrained and susceptible users in the

network. This new model is able to represent the information diffusion in social

networks, more accurately.

Observation 5.2.1. The SIR model is not suitable to accurately represent

information spread in social networks.

5.3 Restrained-Susceptible-Infected-Recovered

Model

In this research, to address aforementioned issues a new model named as RnSIR

is designed. The RnSIR model is an extension to SIR model and represents the

role of users during information diffusion in the social networks, as shown in figure

5.1. In addition to the three classes (S, I and R), present in the SIR model, the

new model has a new class Rn, to represent the users who restrain themselves

from network activities.
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Figure 5.1: The RnSIR model

The RnSIR model is a discrete time probabilistic model, where α, β and γ are

probabilistic variables and Rn, S, I and R are random variables. The parameters

in this model are defined as follows:

Rn: number of individuals who restrain from activities at a given time

S: number of individuals who are susceptible to be infected at a given time.

I: number of individuals who are infected at a given time.

R: number of individuals who have recovered at a given time.

α: Interaction rate of an individual.

β: Influence of an individual.

γ: Recovery rate of an individual.

To understand the network dynamics, the rate of change, from one state to

another, is given by the ordinary differential equations (ODE), as in Eq ( 5.3.1)

to Eq( 5.3.5) and are explained as follows: When the network is newly formed,

all individuals are strangers to each other and remain in Rn state for certain

time period (usually more than one time step). Therefore, initially the entire

population is in Restrained state, i.e., Rn = N . As time progresses, individuals

make new contacts and interact among these contacts and in the process

generate contents in the network. As the number of interactions increases,

individuals become open to others’ ideas, likes and dislikes. The parameter α

captures the interaction rate of individual, that would make a user susceptible.

At a certain time step, α is high and at this stage, subset of individuals in state
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Rn, enter state S. This is represented as in Eq( 5.3.1).

dRn

dt
= −αRn (5.3.1)

Once susceptible, an individual remains there for one time step. When there

is outbreak of new information, an individual becomes ready to receive and act

upon the information. Depending on the parameter β, at this point, influential

users (part of state I) influence individuals in state S to adopt information. Thus,

a subset of S i.e., I ⊂ S, adopts information. This quantity is represented as βSI

in Eq( 5.3.2).

dS

dt
= αRn − βSI (5.3.2)

Again, as time progresses, an individual recovers at certain rate γ and enters

state R and does not spread the information further. This is represented as in

Eq( 5.3.3) and Eq( 5.3.4) .
dI

dt
= βSI − γI (5.3.3)

dR

dt
= γI (5.3.4)

Since N = Rn + S + I +R,

dRn

dt
+
dS

dt
+
dI

dt
+
dI

dt
= 0 (5.3.5)

The RnSIR model, thus represents how a user moves from one state to another

during the information diffusion process.

A similar explanation as the one available in (Shapiro and Delgado-Eckert,

2012) is used to explain the various stages of a user in the diffusion process under

the RnSIR model. For a social network represented as G(V,E), where V is a set

of users, E is a set of edges, a state δ, for a user u ∈ V is given by

δ(V ) = {ϕ|ϕ : V → {Rn, S, I, R}}

Under the following constraints,

1. δ = ϕ1(u) = Rn, then ϕ2(u) = S
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2. δ = ϕ1(u) = S, then ϕ2(u) = I

3. δ = ϕ1(u) = I, then ϕ2(u) = R

4. δ = ϕ1(u) = R, then ϕ2(u) = R

where, ϕ2 follows ϕ1. Thus, the states are considered to be a Cartesian product

of V × {Rn, S, I, R}.

5.4 Complexity of the model

The complexity of RnSIR model, in the context of information spread is discussed

in the following theorems and corollary.

Theorem 5.4.1. Finding probability of user influence, β, under RnSIR model is

NP-hard.

Proof: Finding the infection probability under SIR model is NP-hard (Shapiro

and Delgado-Eckert, 2012). The parameter, infection probability is also referred

to as the probability of user influence in RnSIR model. Using the reducibility

principle, it may be argued, that the SIR model is a special case of RnSIR,

where Rn = φ. Therefore, finding the probability of user influence represented

by parameter β, under RnSIR model is NP-hard as well.

Theorem 5.4.2. Finding the number of activated nodes(a.k.a spread),

represented as σ, at the end of diffusion process under RnSIR model is NP-hard.

Proof: The number of activated nodes at the end of diffusion process, initiated

by the set I, is computed as given in Eq( 5.4.1).

σ(I) := RnSIR(I, β) (5.4.1)

where σ(I) represents the number of activated nodes at the end of the diffusion

process. The σ(I) solely depends on the parameter, probability of user influence

represented as β and constant I. With reference to Theorem 5.4.1, finding the

probability user influence, β, under RnSIR model is proved to be NP-hard. When
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probability of user influence cannot be determined in polynomial time, finding the

number of nodes activated in the process is equally hard as well. Thus, finding the

number of activated nodes, initiated by I, represented as σ(I), is NP-hard under

RnSIR model.

Corollary 5.4.1. Computing the spread under RnSIR model is #P-Hard.

Proof: It is already proved in Theorem 5.4.2, that finding the number of

activated nodes, also known as spread, under RnSIR model is NP-hard. It in

turn asks, whether the number of such solutions are countable. Since the

problem is NP-hard, the number of such solutions cannot be counted. Therefore,

computing the spread under RnSIR model is #P-Hard.

Observation 5.4.1. With the results of Theorem 5.4.1 and Theorem 5.4.2, one

can conclude that probability of user influence and the spread of information can

only be estimated.

5.5 Summary

This chapter discussed the limitations of SIR model in understanding the

information diffusion in social networks. To fill the gaps seen in SIR model, this

research presents a new model namely the RnSIR model. To this end, the RnSIR

model distinguishes between restrained and susceptible users. Thus, the new

model is more appropriate in representing the information spread in the social

network. With this new modeling formalism, it is clear that the information

diffusion process is able to distinguish between the probable spreaders from rest

of the social network users. In a social network, it is these users, who participate

in the diffusion process and should be employed for information diffusion

applications.

Chapter 6 details the approach to solve the scalability issue, the methodology

and verification of the proposed approach.
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Chapter 6

Pruning the social network

Structure is more important than the content in the transmission of information.

-Abbie Hoffman

The time complexity of influence maximization increases drastically with the

increase in the size of social network. Therefore, the scalability issue can be

addressed by pruning the social network. This in turn, fetches the real

contributors for diffusion. In this context, this chapter presents a method to

prune the social network graph, the results and validation.

6.1 Background

An extensive study in information diffusion in Twitter reveals that the majority

of users act as passive consumers of information and do not actively participate

in the information diffusion. For eg., on an average, one in 318 tweets are re-

tweeted. Passive participation is a major issue in diffusion process (Romero et al.,

2011). Jakob (2012) observes that all large-scale, multi-user communities and

online social networks that rely on users to contribute content or build services

share one characteristic; most users do not participate in any of the network

activities. Most of the contents come from very small percentage, usually only 1%

of the network users. This discrepancy is referred to as ‘participation inequality’

and it typically follows a 90-9-1 rule in which users fall into one of three categories:

lurkers, intermittent contributors and heavy contributors. This indicates that
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almost 90% of the social network users fall under the category of lurkers. These

users often lurk in background by browsing through web pages of other users. They

do not contribute to the activities in the network. Due to this, one cannot be sure

if these users propagate or use any information that has reached them. The next

category of users is the intermittent contributors who form 9% of the population.

These users occasionally participate in the network. There is a chance that these

users propagate information. In the last category, who form 1% of the population

of users are the heavy contributors. These users are involved in developing and

propagating the contents or information in the network. They contribute to 99% of

the total information in the network. Figure 6.1 shows the participation inequality

that is seen in almost any social network. For effective information diffusion, it

is important to identify the heavy and intermittent contributors, who participate

in the diffusion process. This will reduce the size of the social network, which in

turn results in better utilization of resources and lesser processing time.

Figure 6.1: Participation inequality in social networks (Jakob, 2012)

A common practice followed during social network analysis is to view the social

network as a graph. Once social network is represented as a graph G(V,E), its

properties are described using graph theory concepts. In such a graph G(V,E), V

is the set of users and E is the set of edges that define the underlying relationship.

Link formed between a pair of users, indicate that two users are well connected in
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terms of similar interest and ideas. It is observed that few of these links are more

often used than others and these are the links that keep two individuals strongly

connected. Also, these individuals have greater than average potential to influence

each other when compared to any two randomly selected users. For this reason,

identifying these links is important and the solution for this is attempted in this

work.

6.2 Problem description

In social networks, the users play an important role. In most of the prior works,

the structural properties of the graph are used to simplify it. However, randomly

removing a connection edge from social graph may lead to disturbance or loss of

its structural properties which may render the sub-graph unsuitable for specific

application.

This work addresses the problem of pruning the social networks. The final

outcome fetches a reduced social network that has active users, those who

participate in the information diffusion process. The problem is defined as

follows:

Problem 6.2.1. Given a social graph G(V,E), an interaction threshold α and an

activity log A(vi, activitycountvi), find the contributor graph Gc(Vc, Ec) ⊆ G(V,E)

such that

(i) vi ∈ Vc if vi(activitycountvi) > α, where α is the minimum activity rate.

(ii) e(vi, vj) ∈ Ec if vi and vj ∈ Vc and e(vi, vj) ∈ E.

(iii) maximize(S), where S is the small world properties.

The solution to this problem includes a sub-problem to fetch the threshold

value that is used to identify a link as interactive. The sub-problem is defined as

follows:

Subproblem 6.2.2. Given an activity log A(user, friend), of users of the

underlying social network graph G(V,E), find the threshold value α, based on the

distribution pattern of interactions.
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This research work uses the nodal property for pruning social networks. The

figure 6.2, shows how the new approach reduces the gigantic social network to a

manageable size. On the left side of the figure 6.2, the original social graph is

seen. The social network is labeled with the weights on its edges. This weight is

the number of interactions between any pair of users (u, v). Specifically, the edges

are labeled with two weights, one for each direction i.e., (u, v) and (v, u). The

figure 6.2, also has a pruning threshold. On the right side of figure 6.2 is the

pruned graph.

Figure 6.2: Social network and the sub graph of the social network

Figure 6.3 shows (a) a large social network and (b) its pruned social network

of active users. The pruned network aids better analysis and visualization.
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(a) (b)

Figure 6.3: (a) Original social network and (b)pruned social network

6.3 Proposed methodology

This section determines the threshold on the interaction count of users. Once the

threshold is determined, it is used as a pruning parameter. The latter sections of

this chapter detail the pruning approach and its applicability on social networks.

6.3.1 Computing the threshold

The interaction pattern of eight datasets namely Email, Wikivote, HEP, PHY,

Digg, YouTube, Twitter and Infectious are shown in figure 6.4 to figure 6.11.

All the chosen datasets exhibit power law distribution pattern (Clauset et al.,

2009) in their interaction count. The power law distribution is a mathematical

relation between two variables and is used to model data where frequency of an

event varies with respect to another associated variable of that event. Since the

presence of power law distribution is seen in major social networks (Muchnik

et al., 2013), the proposed approach is applicable on social networks. For the

HEP and PHY datasets, interactions were not available and were synthesized1

on powerlaw distribution pattern which can be produced using Algorithm1 or

matlab tools.

1http://tuvalu.santafe.edu/ aaronc/powerlaws
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Figure 6.4: Interaction pattern of Email dataset

Figure 6.5: Interaction pattern of Infectious dataset

Figure 6.6: Interaction pattern of Wikivote dataset
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Figure 6.7: Interaction pattern of Digg dataset

Figure 6.8: Interaction pattern of HEP dataset

Figure 6.9: Interaction pattern of YouTube dataset
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Figure 6.10: Interaction pattern of PHY dataset

Figure 6.11: Interaction pattern of Twitter dataset

Observation 6.3.1. Social networks exhibit powerlaw distribution on interaction

pattern of the users.

In a power law distribution pattern, mean is much larger than median and

mode, i.e., mean > median > mode. Hence, the mean cannot be used as a

measure of dispersion. For such a distribution a robust dispersion measure would

be Median Absolute Deviation (MAD) (Pham-Gia and Hung, 2001). The median

absolute deviation is more resilient to the outliers in the data than the standard

deviation. In computing the median absolute deviation, a small number of outliers

are irrelevant and will not skew the results, whereas, the standard deviation will

be affected by outliers. Therefore, using the median absolute deviation method

will avoid the need to subjectively eliminate outliers from datasets.

72



The median absolute deviation is computed by first determining the median

for the given population. In the second step, the absolute value of the difference

between each separate observation and the median is computed. The median

absolute deviation is then determined by computing the median of the values

computed in the second step. More precisely, for a univariate data X1, X2, ..., Xn,

the MAD is defined as the median of the absolute deviations from the data median

and is given as in Eq( 6.3.1)

MAD = M(|xi −M(xj)|) (6.3.1)

where M(xi) is the median of original observations, xi where i=1 to n, is the

original observation.

In Email dataset, there are 1,94,115 users who have performed 1 interaction.

In statistical term, the frequency of 1 is 1,94,115. All datasets used in this research

have such grouped data, where same values are repeated. Therefore, Eq( 6.3.1) is

rewritten as Eq( 6.3.2) and used to find the threshold value α.

MAD = M(fi ∗ (|xi −M(xi)|)) (6.3.2)

where xi is the original observation of interactions, M is the median and fi is the

frequency of each original observation.

Using Eq( 6.3.2) on the social network activity log, the threshold value α is

determined. This is the parameter α, seen in RnSIR model, via which the user

makes a transition from state Rn to state S. This threshold is the ideal count of

interactions that is used to identify a user as a contributor from the rest of the

network. Thus, the threshold value becomes the pruning parameter in the

proposed pruning approach. As far as the distribution pattern matches the

power law distribution, the decision of choosing median absolute deviation to

determine the threshold on the interaction count is justified.

Furthermore, in this research work, the interaction count of the users are

analyzed for a specific time period N , say from t1 to t2. For the next analysis,

one can take the interaction count between the interval t2 and tcurrent. Thus,

users who may have high interaction count in this particular time period is
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included in the pruned graph. Thus, the approach presented here reflects the

dynamic nature of the social network. Also, one can get a close look at the

activity pattern in social network by varying the granularity of the time period.

6.3.2 Algorithm and data structures

This section details the algorithm and pseudocode for the methods discussed in

the previous section. Algorithm 1 is the pseudocode for synthesizing data that

follows the powerlaw.

The input to Algorithm 1 is the social graph G(V,E). The function

randpower(1, n) generates n random numbers on powerlaw distribution. The list

named as powerlist is available as the output. This list follows the powerlaw

distribution.

Input: Social graph G(V,E)

Output: List powerlist

1 Initialize power = ∅, powerlist = ∅;

2 create random number list power as in step 3

3 power{} = randpower(1,n)// where |V | = n

4 Add each e(u, v) ∈ E to edgelist

5 Repeat step 6 for each number r in power

6 powerlist = powerlist ∪ edgelist[r]

Algorithm 1: Synthesize interactions from social network data
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The steps for computing the threshold on the interaction count, from the

activity log and further pruning the social network is shown in Algorithm 2. The

inputs to Algorithm 2 are the social network G(V,E) which is maintained as an

edgeset file, pre computed threshold value α and an activity log of the form

A(user, friend).

Input: G(V,E), threshold value α, Activity log A(user, friend)

Output: Contributor graph Gc(Ec, Vc)

1 Initialize count=0, Gc(Ec, Vc) = φ

2 For each user in activity log A(user, friend)

3 increment count

4 For each edge e(u, v) ∈ E

5 if count of both the end vertices, u and v, is greater than α

6 Add e(u,v) to Gc(Ec, Vc)

Algorithm 2: Pruning the social network

In Algorithm 2, steps 2 and 3 compute the interaction count of users. In

steps 4 to 6, given the threshold value α as input, original social network is

parsed. In this process, all those edges which have both their end vertices’s

activity count greater or equal to the threshold value are added to the pruned

graph known as the contributor graph Gc(Vc, Ec).

Thus, Algorithm 2 serves its intended purpose of creating pruned graph

Gc(Vc, Ec) of the original social network graph G(V,E), having all those users

who have activity count above the threshold value. As in step 6, by adding the

edges to the pruned graph, which is also maintained as an edgeset file, the end

vertices are implicitly added.

Complexity analysis: Steps 2 and 3 compute the number of activities of each

user. For a activity log of k rows, this would take O(k). Next, steps 4 to 6, add

edges from the original social network to the pruned graph. If there are n edges

in G(V,E), then this would take O(n). Thus, the complexity of the Algorithm 2

is O(k + n), which is linear.
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6.4 Results and analyses

This section details the results of the proposed approach. Further, the proposed

approach is validated to prove its applicability to the information diffusion process

in the social networks.

6.4.1 Pruning the social network graph

The datasets described in Table 4.1 are pruned, resulting to G(V,E)→ Gc(Vc, Ec)

as shown in the Table 6.1. The number of nodes, edges and the threshold value

are in the columns Gc(Vc), Gc(Ec) and α respectively in Table 6.1.

Table 6.1: Value of alpha, Vc and Ec of pruned graph

Sl.no. Dataset G(V) G(E) α Gc(Vc) Gc(Ec)

1 Email 265214 420045 209 163 5305

2 Wikivote 8275 103689 660 410 11726

3 HEP 15233 58891 403 205 405

4 PHY 37154 231584 637 310 2934

5 Digg 279392 1730381 704 303 14243

6 YouTube 15088 76765 1544 545 4846

7 Twitter 456626 14855845 102 32 128

8 Infectious 410 2765 75 82 290

6.4.2 Verification of small world properties

In this section, the contributor graph is compared to the other representation of the

social network, in terms of information propagation properties. These properties

that are also termed as small world properties (Deyasi et al., 2014), are considered

essential for information diffusion and are listed below.

1. Higher average clustering coefficient.

2. Lower diameter
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3. Lower average path length

4. Fewer number of connected components to enable reachability and adoption

of information.

5. Lower modularity

These properties are used to evaluate graphs. For eg., the average clustering

coefficient as given in definition 2.1.3 is

ACC = C̄ =
1

n
Σn

i=1Ci . . . . . . . . . (6.4.1)

Using Eq( 6.4.1), the original Twitter graph’s ACC is 0.016 and its contributor

graph has ACC 0.303. Thus, when graph properties are reduced to a rational

number, it becomes convenient for comparing them. The following results

discusses the outcome.

6.4.2.1 Outcome and discussion

The datasets are pruned and examined for the presence of small world properties.

The results are shown in figure 6.12 to figure 6.18. The small world properties

of the contributor graph are compared to the following representation of social

network graphs.

1. The original social network graph.

2. Shortest Path Pruned (SPP) graph: Generated by pruning edges under

constraint to keep edges on the shortest path which uses Dijkstra algorithm

(Cormen et al., 2001).

3. MeanAlpha: The social network graph obtained using the mean of the

activity count, as threshold to simplify it.

4. MST-Pathfinder: The pruned graph obtained by MST-Pathfinder

approach (Quirin et al., 2008b).

5. Contributor graph (CGA): The proposed approach of using median

absolute deviation to determine the threshold.
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Figure 6.12: Comparison on number of nodes

Figure 6.13: Comparison on number of edges

78



Figure 6.14: Comparison on average clustering coefficient

Figure 6.15: Comparison on diameter
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Figure 6.16: Comparison on average path length

Figure 6.17: Comparison on number of components
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Figure 6.18: Comparison on modularity value

The analyses of the outcome are as follows:

• The small world properties of the original social networks were far more

deviated from the expected values as compared to the pruned networks

fetched by all the listed approaches.

• Pruning process would ideally want to retain the shortest paths to all

nodes, thus resulting in the spread of information in less time. In the SPP

method, only those edges which are part of the shortest path from every

node to every other node are retained. It is basically an edge pruning

method that uses Dijsktra’s algorithm (Cormen et al., 2001). Once the

original social network graph is pruned on the shortest path approach, it is

verified for the presence of small world properties. Experimental results

shown in figure 6.12 to figure 6.18, demonstrate that the SPP graph,

although ideally an alternative to the original social network, does not

improve propagation properties as compared to the contributor graph

developed by the new approach.

• The effect of a different pruning parameter is investigated. In this case, the

mean value of the interactions is selected as the pruning parameter and the
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social network is pruned. Further, the pruned graph referred to as

MeanAlpha, is investigated for the presence of small world properties.

The results in figure 6.12 to figure 6.18 show that there is no significant

gain in the small world properties in MeanAlpha approach, when

compared to the new approach.

• The MST-Pathfinder approach (Quirin et al., 2008b), which prunes

weighted undirected graphs is also implemented to verify the effectiveness

of the new approach. For implementing MST-pathfinder, interaction count

is employed as weight on the edges. The results are close to that obtained

by the proposed approach. The MST-Pathfinder approach results in a

pruned graph that has desirable values across average path length.

However, it also results in lower average clustering coefficient and highly

modular structure across all the social networks used in this research.

Therefore, the MST-Pathfinder approach is also not suitable for fetching

the subgraph which will be further used for information diffusion process.

• The contributor graph of the social network fetched from the new approach

stands good in terms of small world properties in most of the cases.

Observation 6.4.1. In the presence of power law distribution pattern, median

absolute deviation approach for determining the threshold is viable.

The experimental results support the claim that the proposed approach not

only prunes the network but also improves the information propagation properties.

Thus, the pruned graph is an ideal substitute to the original social graph for

applications that are expensive in terms of resource usage. The graph size in

terms of edges and nodes is drastically reduced. Yet, the properties of contributor

graph are more desirable than the original social network and therefore can be used

in its place for various applications where information propagation is involved.
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6.4.3 Pruned social graph for information diffusion

Pruning is a data reduction operation with many applications. To demonstrate

the effectiveness of the new strategy, the pruned graph is used in information

spread process. In a social network context, information spread is associated with

the influence maximization. Due to the complexity of the influence maximization

algorithms, the run time increases enormously as the size of network increases.

Due to this, the performance of these algorithms cannot be thoroughly evaluated

in a large, real world social network. The effectiveness of these algorithms can be

studied when the pruned graph is used.

6.4.3.1 Outcome and discussion

To show the effectiveness of using the presented approach, various pruning

approaches and seeding strategies are analyzed in terms of percentage of

information diffusion on IC and LT models (Kempe et al., 2003). The

information diffusion under these two models are observed for three cases, (i) the

original social network (ii) SPP and (iii) the contributor graph(CGA). The

following seeding strategies are used for picking seeds, which are used in both the

propagation models.

1. Degree: A simple heuristic that selects the k vertices with the largest degrees

(Domingos and Richardson, 2001), to fetch the seed set S.

2. SingleDiscount: A simple degree discount heuristic where each neighbor of

a newly selected seed discounts its degree by one (Chen et al., 2009).

3. DegreeDiscount: The degree discount heuristic for the IC model proposed

by Chen et al. (2009), discounts the degree of a node by number of incident

nodes already in seed set.

4. CELF: Cost Effective Lazy Forwarding has been developed by Leskovec et al.

(2007b) to improve the Greedy algorithm(Kempe et al., 2003).

5. Distance: A simple heuristic that selects the k vertices with the smallest

average shortest-path distances (Domingos and Richardson, 2001) to all
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other vertices. The distance of two disconnected vertices is set to the

number of vertices in the graph.

The results in figure 6.19 to figure 6.26 show the information diffusion in

independent cascade model on the selected seeding strategies.

These results for independent cascade model are summarized as follows:

• For HEP, the proposed pruning approach diffuses information to 25.6%

under DegreeDiscount heuristic, 25.5% under SingleDiscount, 25% under

Degree heuristic, 25.52% under CELF and 24.9% under Distance heuristic.

• For PHY, the diffusion of 20.7% under DegreeDiscount, 20.4% under

SingleDiscount, 17.6% under Degree heuristic, 29.8% under CELF and

17.9% under Distance heuristic is achieved.

• For Email, the percentage of diffusion is as much as 50% under

DegreeDiscount, 48% under SingleDiscount, 46% under Degree heuristic,

50.23% under CELF and 47.7% under Distance heuristic.

• For Wikivote, the proposed pruning approach results in diffusion reaching

29% under DegreeDiscount, 28.7% under SingleDiscount, 28.4% under

Degree heuristic, 28.9% under CELF and 28.4% under Distance.

• For Digg, the diffusion reached 45.58% under DegreeDiscount, 45% under

SingleDiscount, 44% under Degree heuristics, 52% under CELF and 40.43%

under Distance heuristic.

• Similarly, in YouTube, the diffusion reached 13.83% under DegreeDiscount,

13.8% under SingleDiscount, 13.6% under Degree heuristics, 13.2% under

CELF and 13.3% under Distance heuristic.

• For Twitter, the diffusion reached 33.7% under DegreeDiscount, 33.4%

under SingleDiscount, 32.9% under Degree heuristics, 33.8% under CELF

and 31.3% under Distance heuristic.

• For Infectious, the diffusion reached 24.75% under DegreeDiscount, 24.6%

under SingleDiscount, 24.5% under Degree heuristics, 24.6% under CELF

and 24.4% under Distance heuristic.
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Figure 6.19: Percentage of spread in HEP under Independent Cascade Model

Figure 6.20: Percentage of spread in PHY under Independent Cascade Model
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Figure 6.21: Percentage of spread in Wikivote under Independent Cascade Model

Figure 6.22: Percentage of spread in Email under Independent Cascade Model
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Figure 6.23: Percentage of spread in YouTube under Independent Cascade Model

Figure 6.24: Percentage of spread in Digg under Independent Cascade Model
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Figure 6.25: Percentage of spread in Twitter under Independent Cascade Model

Figure 6.26: Percentage of spread in Infectious under Independent Cascade Model
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The presented approach is also evaluated on the linear threshold model as

shown in figure 6.27 to figure 6.34. The results are summarized as follows:

• For HEP, the proposed pruning approach produces diffusion reaching 79.9%

on DegreeDiscount, 76.6% on SingleDiscount, 61.5% on Degree heuristic ,

80.7% in CELF and 60.55% in Distance heuristic.

• For PHY, the proposed pruning approach produces diffusion reaching

64.78% on DegreeDiscount, 58.9% on Single Discount, 34.98% on Degree

heuristics, 54.8% in CELF and 32.4% in Distance heuristic.

• For Email, the proposed pruning approach produces diffusion reaching

92.3% on DegreeDiscount, 91.9% on Single Discount, 91% on Degree

heuristics, 87.3% in CELF and 85.5% in Distance heuristic.

• For Wikivote, the proposed pruning approach produces diffusion reaching

94% on DegreeDiscount, 93.4% on Single Discount, 93% on Degree heuristics,

87.3% in CELF and 79.4% in Distance heuristic.

• For Digg, the proposed pruning approach produces diffusion reaching

82.47% on DegreeDiscount, 81.7% on Single Discount, 80.5% on Degree

heuristics, 65.34% in CELF and 64.77% in Distance heuristic.

• For Youtube the proposed pruning approach produces diffusion reaching

80.3% on DegreeDiscount, 79.4% on Single Discount, 78.7% on Degree

heuristics, 73.8% in CELF and 74.3% in Distance heuristic.

• For Twitter the proposed pruning approach produces diffusion reaching

77.6% on DegreeDiscount, 75.6% on Single Discount, 71.8% on Degree

heuristics, 73.9% in CELF and 69.3% in Distance heuristic.

• For Infectious the proposed pruning approach produces diffusion reaching

31.4% on DegreeDiscount, 30.36% on Single Discount, 24.39% on Degree

heuristics, 28.65% in CELF and 25% in Distance heuristic.
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Figure 6.27: Percentage of spread in HEP under Linear Threshold Model

Figure 6.28: Percentage of spread in PHY under Linear Threshold Model
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Figure 6.29: Percentage of spread in Email under Linear Threshold Model

Figure 6.30: Percentage of spread in Wikivote under Linear Threshold Model

91



Figure 6.31: Percentage of spread in Digg under Linear Threshold Model

Figure 6.32: Percentage of spread in YouTube under Linear Threshold Model
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Figure 6.33: Percentage of spread in Twitter under Linear Threshold Model

Figure 6.34: Percentage of spread in Infectious under Linear Threshold Model
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Observation 6.4.2. The novel pruning approach developed in this research work

improves the diffusion process in the independent cascade and linear threshold

models.

This research presents an approach which examines the nodal attribute of the

social network user and develops a criterion to retain a subset of users to form a

pruned graph of the social network. Thus, a large social network is reduced to an

optimal social network. The results demonstrate the effectiveness of the new

approach. The contributor graph exhibits the presence of small world properties

significantly better, when compared to original graph and graphs pruned on

other approaches. The efficacy of the new approach is demonstrated in the

diffusion process under independent cascade and linear threshold models on

various seeding strategies. The results support the claim that small world

properties play a significant role in information diffusion process. Although, this

research discusses pruning of enormous social network in the context of

information diffusion, this approach can be tried on any applications where

propagation of information plays a vital role. Thus, this research explores a new

strategy to deal with the enormous and rapid growth of the data in social

networks.

6.5 Summary

This chapter presented an approach to prune the social network which in turn

addresses the scalability issue seen in large social networks. The approach

presented in this research, not only retains but also improves its information

propagation properties. The new approach is evaluated on various metrics and

compared with other approaches. The results show that use of the contributor

graph results in better diffusion in the social network.

Chapter 7 discusses the user influence in the context of information diffusion

in the social networks.
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Chapter 7

Estimating user influence in
social networks

The theory of probabilities is at bottom nothing but common sense reduced to

calculus -Pierre Laplace

This chapter addresses the problem of estimating the user influence in the social

networks. It also discusses the motivation to develop such an approach. The novel

method named as Influx, along with the methodology and algorithm are discussed

here. Further, the approach is substantiated through lemma and theorem. The

results are also discussed in the later sections of this chapter.

7.1 Background

The popularity of social networks have resulted in many interesting applications

such as viral marketing, recommendation systems and so on. In these

applications, user influence also known as influence probability, plays an

important role. In social networks, influence probability is defined as the

probability a user can influence his/her friends to adopt an information

immediately or in foreseeable future. Such probabilities are central to

fundamental issues in social network analysis including influence maximization.

In practice, influence probabilities have significant implications for applications

such as target marketing, poll prediction, political campaigns and so on. Yet,

predicting influence probabilities has not received sufficient research attention.
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The solution to the influence maximization problem starts with the weighted

undirected social graph G(V,E) where V is the set of users and E represents the

set of edges. The weight on the edge represents the influence probability. In

reality, the social graph is readily available, whereas, the edge weight i.e.,

influence probability is not. This has lead to the use of a pre assigned value for

user influence in the solution to influence maximization, which may not reflect

the real world scenario. There are two reasons why the use of such an assumed

value may not be an ideal setup in the solution. First, assuming uniform

information spread along all social ties can lead to overestimation of information

dissemination as well as lead to selection of influential users who may not be

optimal (Wilson et al., 2012). As such, an assumed value will only bias the

outcome. Second, influence is a behavioral attribute that changes over time.

Hence, this parameter should not be made constant. In addition, interaction

intensities among users and also users’ inclination in adopting information is

important to predict influence probabilities. These factors have to be considered

while deriving a solution for predicting information spread in social networks.

There are several attempts made to estimate user influence (Fang et al., 2013;

Goyal et al., 2010; Jiang et al., 2013; Kasthurirathna et al., 2015; Kimura et al.,

2009a; Kutzkov et al., 2013; Mathioudakis et al., 2011; Romero et al., 2011; Saito

et al., 2010, 2008; Teng et al., 2015; Wang et al., 2013; Xiang et al., 2010; Yang

and Leskovec, 2010) which are discussed in Chapter 3. However, these

approaches are resource expensive. Moreover, they require accurate and in-depth

user profile details, which in most of the cases are unavailable. Hence, there is a

need to design an approach to estimate user influence without bypassing user

privacy. This research presents a new approach to estimate user influence,

keeping in mind the restrictions on the availability of social network data. The

new approach uses data related to user activities which are readily available in

the action log repositories. By quantifying the influence among users via their

interaction count, the outcome is made realistic.
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7.2 Preliminaries

In this section, a case study of using various values of influence is discussed.

Further the properties of influence as a relation are explored.

7.2.1 Case study

Most of the literature assumes that influence probability is readily available as

weights on the edges of the social graph. For this reason computation of influence

probability is largely left unexplored. The HEP dataset is studied under five values

of influence, to analyze the impact of an assumed value of influence on the outcome.

The values considered in each of these cases are: (i) 0.01, (ii) 0.05, (iii) 0.1, (iv)

0.5 and (v) 0.9. These different values of influence, in a similar experimental

setup with the initial seed set obtained from Degree, Distance, Singlediscount and

Degreediscount heuristics (Chen et al., 2009), are used.

Figure 7.1 shows that there is an increase in the spread of information when

a higher value of user influence is chosen. Also, from the existing works, it is not

evident why a particular value of influence is preferred over the other values. To

accurately predict the spread, it is important to take into consideration both the

seed set, as well as, influence among users. Moreover, with an assumed value of

influence, the outcome may deviate. This is the motivation to develop an approach

to estimate the user influence.

Figure 7.1: Information spread with various value of user influence
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7.2.2 Properties of influence relation

User influence is considered as a relation between two connected users in the social

network. Such a relation has the following properties.

1. Reflexivity: (a,a) relation holds true. It is a trivial case when a node

influences itself to perform an action.

2. Symmetry:(a, b) → (b, a) does not hold true. Node A can influence B, but

node B may not influence node A to perform an action.

3. Transitivity: (a, b) and (b, c) → (a, c) holds true. Influence propagates in

the network.

7.3 Problem description

Since the seminal work of Saito et al. (2008), various contributions were done

towards estimating influence. To accurately predict information spread and

evaluate performance of seed selection algorithms, it is important to estimate the

user influence. In this section a novel approach named as Influx, developed to

estimate user influence is discussed.

One can establish a relation between the influence probability P , seed set I

and the information spread initiated by I represented as σ(I) as follows:

σ(I) := diffusionmodel(P,I) (7.3.1)

To rephrase, the spread of information is considered as a function of probability

of influence and the seed set I. It is reasonable to believe that a user can only

influence his/her friends to the extent he/she maintains interactions with them.

On this surmise, user influence is estimated.

Problem 7.3.1. For an interaction graph GI(VI , EI), representing the underlying

social network and an activity log A of users, find

P = {puv,∀u, v ∈ VI , e(u, v) ∈ EI}
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under the following constraints

(i) puv ∈ P iff e(u, v) ∈ EI

(ii) 0 < puv ≤ 1

such that for a seed set I, σ(I) = Max [|ϕ(I, P )|].

The constraint (ii) eliminates the influence value 0. Thus, instead of using a

randomly assumed constant, the proposed approach estimates the value for the

set P of m values, one for each of the m edges in the social network graph.

7.4 Proposed methodology: Influx

Consider a scenario where a user A has five contacts B, C, D, E and F. For

illustration, let us assume the number of interactions of A with B, C, D, E and

F are 30, 40, 50, 60 and 30 respectively. Since the number of interactions of

A with his/her neighbors are different, the probability that A influences each of

his/her neighbors is different. Therefore, it is more appropriate to use interaction

intensities while estimating user influence.

In this research the problem of estimating influence is addressed as follows:

The strength of an edge reflects the intensity of the interactions through the edge.

The strength of the edge is represented as yij, which is the number of interactions

from vi to vj. Since the interactions on either sides are not in equal proportions

i.e., yij 6= yji the probability of influence is also not symmetrical i.e., pij 6= pji.

Thus, in this research, user influence is quantified by using the interaction

count of a user as follows.

pu,v =
yu,v

Σs={n∈N}yu,s
(7.4.1)

where, N is the set of nodes incident on node u and yu,s is the number of

interactions of the node u to the incident node n. The normalization process,

sets the value of p in the range (0,1], according to the definition of probability.

Since the input to the solution of the problem is the interaction graph, having

only edges which are used for communication, number of interactions between

any users cannot be 0, hence p 6= 0.
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Using Eq( 7.4.1), each edge now has estimated non uniform probability of

influence as its weight instead of an assumed value. Thus the interaction graph is

converted to a weighted graph where edge weights represents the user influence.

This new graph is referred to as Influence graph and this approach is named as

the Influx. With this approach, in the given example, pA,B is 0.147. Weights on

other edges are similarly calculated. This scenario is shown in figure 7.2.

Figure 7.2: Social network with influence probability on the edges

7.4.1 Algorithm and proof of the concept

Algorithm 3 details the steps to estimate the user influence. The input to

algorithm 3 is a directed interaction graph GI(VI , EI) of the given social

network, and the activity log of the users A(u, v, yuv) which contains the number

of interaction of the node u with its neighbor v represented as yuv. The output is

the set P = {puv for ∀e(u, v) ∈ EI} representing user influence on each edge.

Complexity: The execution time of algorithm 3 depends on the number of

edges in the input graph. If m is the number of edges and q the size of

neighbourset, then the time complexity of algorithm 3 is O(m̄.q), which is linear.

The proof for the correctness of the Influx approach is given via Lemma

7.4.1 and Theorem 7.4.2.
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Input: GI(VI , EI) and activity log A(v,u, yu,v)

Output: GI(VI , EI , P ) where P = {puv for ∀e(u, v) ∈ EI}

1 Initialize Γu,s = 0

2 For each e(u, v) ∈ EI repeat steps 3 to 6

3 Compute N=neighbourset(u)

4 For each s ∈ N

5 Compute total number of interactions Γu,s as in step 6

6 Γu,s+ = yu,s

7 p(u, v) = yu,v
Γu,s

Algorithm 3: Influx algorithm

Lemma 7.4.1. As the number of interactions between a pair of nodes u and v

increase, the probability of influence puv on the edge e(u,v) also increases.

Proof: From Eq.( 7.4.1), assume yu,v → n, where n is the total number of

interactions of the node u; which is represented by Σk
s=1yu,s. This happens when

almost all the interactions of a user u is with user v. Then puv → 1. Hence the

proof.

Theorem 7.4.2. Given a diffusion model M and social network represented as a

weighted directed graph GI(VI , EI , P ), the spread under the seed set I of k nodes

for P = {pi = 0.01,∀e(u, v) ∈ EI} is σ(I). The spread with estimated influence

probability ph under the same model M and seed set S for P = {p1, p2, p3, ..., pm}

(estimated values)is σ(I∗). Then, σ(I∗) ≥ σ(I) when there is high interactions

among the users.

Proof: For the information to spread in the network there should exist a path

from seed nodes si ∈ I to the target nodes v ∈ V − S. This is path(si, u). The

expected spread under a given propagation model M with an uniform influence

probability pi is given in Eq( 7.4.2).

σ(I) = Σu∈V−I pi . path(si, u) (7.4.2)
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where path(si, u) is 1 if there is a path or 0. If l represents the number of

path(si, u) = 1, Eq( 7.4.2) is rewritten as in Eq( 7.4.3).

σ(I) = Σu∈V−I pi . l (7.4.3)

Furthermore, the spread under the same propagation model M and seed set I,

taking into consideration the estimated influence probability ph is σ(I∗). Let us

assume that of the previous l paths available from I to u, where u ∈ V − I; l − 1

paths have pi(set to 0.01 or 0.001 or 0.001) and one path has ph. Eq ( 7.4.3) is

re-written as in Eq( 7.4.4).

σ(I∗) = Σu∈V−I pi . (l − 1) + ph . 1 (7.4.4)

As the nodes on this path are highly interactive, using lemma 1, ph → 1 on

this path. Therefore ph ≥ pi, when users are highly interactive. Thus it follows

σ(I∗) ≥ σ(I). Hence the proof.

7.5 The Influx-IC diffusion model

This research designs a variant of IC model, namely Influx-IC model. This new

model uses non uniform probability of influence estimated through Influx approach

to predict the information spread in the social network. In the traditional IC

model, all nodes are influenced by a uniform probability usually p = 0.1 or 0.01.

In contrast, the Influx-IC model assigns every connected edge with an estimated

value of probability of influence. Similar to the IC model, nodes in Influx-IC has a

single chance to influence its neighbor. Once influenced, the nodes remain active,

till the end of diffusion process. The diffusion process ends when there are no

more nodes to be influenced. The diffusion process in Influx-IC is demonstrated

in figure 7.3 to figure 7.4.
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Figure 7.3: Diffusion at time t1 to t3
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Figure 7.4: Diffusion at time t4 to t7

104



7.5.1 Results and analyses

7.5.1.1 Experimental setup

The Influx-IC model is used for predicting information spread in the chosen

datasets. To evaluate its performance, the following influence models are used.

1. RNUDp-IC: The influence probabilities, generated from an uniform

distribution, are randomly assigned to all edges of the graph.

2. RNNDp-IC: The influence probabilities, generated from a normal

distribution, are randomly assigned to all edges of the graph, .

3. Trivalency model (TVM): The influence probability value of 0.01 is

assigned to all edges of the graph.

The first two approaches assign non uniform user influence and the TVM assigns

a constant uniform weight on all the edges.

The standard seed selection algorithms such as: degree, distance,

degreediscount and single discount, for various seed set size k, are investigated to

understand the impact of the Influx on the estimation of information spread.

7.5.1.2 Outcome

The diffusion process is evaluated in the chosen diffusion models, with 1000

iterations and various budget constraint k, i.e., number of seeds. The results are

shown in figure 7.5 to figure 7.11 and performance gain is available in table 7.1

to table 7.7.

Overall, the information spread predicted by the Influx-IC is higher than

RNNDp-IC, RNUDp-IC and TVM, for each of the standard algorithms such as

degree, distance, singlediscount and degreediscount. These results show that the

Influx approach developed to estimate influence, yields better outcome since, it

reflects the interactive nature of the users. Where as the existing approach,

predicts the spread not accounting to the user inclination.
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Table 7.1: HEP- Influx-IC Performance gain( in %)

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 20 15 27.4 30

RNUDp 18 14 24.75 26.8

TVM 20 15.6 28.5 30

Table 7.2: PHY- Influx-IC Performance gain( in %)

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 8.9 14 18.43 23.17

RNUDp 4.8 8.9 9.8 12.6

TVM 8.6 14 20 25.53

Table 7.3: Wikivote- Influx-IC Performance gain( in % )

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 15 13.15 13.2 15.11

RNUDp 40.4 35.52 39.7 40.6

TVM 34.47 28 33.26 35.8

Table 7.4: Infectious- Influx-IC Performance gain ( in % )

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 29.8 29.6 28 27.7

RNUDp 29.7 29.6 27.9 27.7

TVM 29.36 30 29.39 32

Table 7.5: YouTube- Influx-IC Performance gain( in % )

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 9.6 15.7 10.5 10.6

RNUDp 3.15 6.3 6.3 6.1

TVM 19 24.21 22.1 19.6
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Figure 7.5: Comparison of Influx-IC to other models in HEP for (a)Degree (b)
Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.6: Comparison of Influx-IC to other models in PHY for (a)Degree (b)
Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.7: Comparison of Influx-IC to other models in Wikivote for (a)Degree
(b) Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.8: Comparison of Influx-IC to other models in Youtube for (a)Degree (b)
Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.9: Comparison of Influx-IC to other models in Infectious for (a)Degree
(b) Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.10: Comparison of Influx-IC to other models in Twitter for (a)Degree
(b) Distance (c) DegreeDiscount and (d) SingleDiscount heuristics
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Figure 7.11: Comparison of Influx-IC to other models in Email for (a)Degree (b)
Distance (c) DegreeDiscount and (d) SingleDiscount heuristics

113



Table 7.6: Twitter- Influx-IC Performance gain( in % )

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 4.6 7.8 4.5 16.5

RNUDp 7.3 6.95 6.36 13.38

TVM 3.7 7.9 2.7 15.6

Table 7.7: Email- Influx-IC Performance gain( in % )

- Degree Distance SingleDiscount DegreeDiscount

RNNDp 30.4 35.64 38.148 39.75

RNUDp 30.1 35.89 37.03 39.6

TVM 30.05 35.5 37.67 39.39

There is an increase of up to 40.6% information spread when Influx is employed

(as in Table 7.3) as compared to RNNDp, RNUDp and TVM, for each of the chosen

standard heuristics. It is clear that the Influx approach yields better outcome since

it reflects the interactive nature of the users. When the social network has highly

interactive users, the influence they exert on each other is also high. Therefore,

high influence has resulted in vast spread of information. In contrast, the existing

approach of using the TVM which includes a constant value to represent influence,

although the network had high levels of interactions. Due to this, TVM failed to

reflect the dynamism of spread.
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7.5.2 Efficacy of Influx-IC in dynamic scenario

In this section the effectiveness of the new approach in the case of dynamic

changing interaction intensities among users is investigated. Most of the work

predicting information spread, often considers the social network to be static.

Therefore, the changes occurring in the network is not reflected in the outcome.

However, in real world, users vary their interaction intensities among friends. At

some point of time two connected users may be interacting more often and at

some later point of time there may be few interactions. When the number of

interaction are few over a certain time space, the influence also decreases. Also,

when interactions increase, the influence increases. This scenario is shown in

Figure 7.12. The time is divided into three slots T1, T2 and T3. In each of

these time slots, the interactions of few of the connected pair of users vary. The

impact of this scenario is investigated in this section.

Figure 7.12: Changing interaction rates among the contacts
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7.5.2.1 Results and discussions

To this end, the HEP and PHY datasets are analyzed for different activity logs

representing small and large number of interactions among the users. The Influx-

IC model runs 1000 iterations and 10 initial seeds are chosen. The results are as

shown in figure 7.13.
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Figure 7.13: Efficacy of Influx-IC in (a)HEP and(b) PHY dataset

It is conclusive from the results that the increased interactions among the

connected users, help in the wider spread of information in the network. The

implication of using the Influx approach in predicting the spread in social networks

is direct. When a constant uniform probability of influence is used, the standard

algorithms such as degree, distance, degreediscount, singlediscount etc., fetches

the same outcome irrespective of the changes within the social network. Hence,

these algorithms show no response to the interaction dynamics among the users

in the network. Thus, for these algorithms results are unaffected by the increase

or the decrease in the interactions of the users in the network. The worst effect of

such an approach would be to have an expected result at hand, even in the case

when there is no interactions among the users. However the Influx-IC model, on

the contrary, reflects the changes within the social network. Thus the new model

predicts information spread better.
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7.6 Summary

In this chapter, the solution to the effective information spread is presented by

estimating the user influence. For this purpose, a novel approach named Influx is

designed. The role of a realistic value of user influence is emphasized in the

research work. The results show that using novel Influx-IC model based on the

Influx approach, predicts higher information spread when compared to other

models such as: TVM, RNNDp-IC and RNUDp-IC. The Influx-IC model also

responds to the changes within the social network such as increased or decreased

activities between the pair of users. In the dynamically changing scenario of

addition and deduction of friends as well as the interactions among them within

the social network, the traditional approaches and models are silent, where as

the Influx-IC responds to these changes.

The next chapter discusses a new centrality approach to evaluate users.

Further, two new heuristics are proposed to fetch top influential users.
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Chapter 8

Finding the top influential users

Truth is ever to be found in the simplicity, and not in the multiplicity and

confusion of things. -Isaac Newton

This chapter addresses the problem of finding the influential users in the social

networks. A novel centrality measure is introduced here. This is further used to

rank users and fetch top influential users. This chapter presents the methodology

and the outcomes to substantiate the new approach.

8.1 Background

The runtime concerns with the Greedy approach, paved the way for various

alternatives such as: CELF (Leskovec et al., 2007b), CELF++ (Goyal et al.,

2011b), Mix Greedy and New Greedy (Chen et al., 2009), which aimed to reduce

the execution time. However, several improvements to the original Greedy

approach that has been proposed for influence maximization, which were

developed to reduce runtime, have not yet been proved efficient. Therefore, there

has been a need to look for heuristics to tackle the efficiency issue in influence

maximization. In this context, various heuristics have been proposed to reduce

the run time of influence maximization and to fetch optimal seed set. Out of

these heuristics, degree centrality heuristic is proved to be efficient and close to

optimal solution (Chen et al., 2010a).

The degree concept fetches users with the highest degree (a.k.a. contacts),

with the belief that, such users will trigger a vast outbreak of information.
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However, in real world, a user will interact only with a small percentage of

his/her contacts, raising suspicion on the viability of degree heuristic. Also,

various variations of degree heuristic raise similar concerns.

8.2 Problem description

The aim of the work, discussed in this section, is to fetch the set of top influential

users in the social network such that they are capable of influencing their peers to

adopt and spread the information further. This is formulated as problem 8.2.1

Problem 8.2.1. Given a directed weighted social graph G(V,E), a constant k,

fetch the seed set I, where |I| = k, that maximizes the spread σ(I) in the social

network.

8.3 Proposed methodology

In this section a new centrality approach namely the Outdegree Rank is proposed.

Further, two new heuristics to fetch the top influential users are discussed.

8.3.1 Outdegree rank centrality

To make the degree concept viable in real world, the Outdegree Rank centrality

is proposed for evaluating users in the social networks. Unlike existing works,

Outdegree Rank heuristic considers the user attribute i.e., the interaction count,

for fetching top influential users. Before getting into the details of Outdegree

Rank, the following two terms are mentioned again.

Contact degree: In a social network graph, for a node v, its contact degree is

referred to as the number of edges incident on it and is denoted as Cd(v).

Interaction degree: In an interaction graph, for a node v, its interaction

degree is the number of edges incident on it and is denoted as Id(v).

A user may have a large number of contacts (Cd(v)), but may have

interactions with only few of them. In such a scenario, we have Id(v) � Cd(v).
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Therefore, in this case, the degree centrality approach which uses Cd(v) to fetch

influential users, may not fetch optimal seed set.

The Outdegree centrality is developed on the interaction graph of a social

network. The Id(v) of a node in the graph is further specified in terms of

Indegree and Outdegree centrality. The indegree(v) represents the popularity

index and outdegree(v) represents the participation index. The concept of

indegree is explored in the popular PageRank heuristic for finding popular web

pages (Page et al., 1999) and identifying key users in social networks (Heidemann

et al., 2010). Figure 8.1 shows the indegree(v) and outdegree(v) of node v.

(a) (b)

Figure 8.1: (a) Indegree and (b) Outdegree of a node v in the interaction graph

The various combinations of indegree and outdegree with comparison to

Cd(v) is considered as a cartesian product of

{Indegree(v), Outdegree(v)} × {�,→}× {Cd(v)}.

At this point, the four cases with reference to the Outdegree and Indegree of node

v are as follows:

i. Outdegree(v)� Cd(v)⇒ node(v) is less interactive.

ii. Outdegree(v)→ Cd(v)⇒ node(v) is highly interactive.

iii. Indegree(v)→ Cd(v)⇒ node(v) is highly popular.

iv. Outdegree(v) → Cd(v) & Indegree(v) → Cd(v) ⇒ node(v) is highly

interactive as well as popular.
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In the research work, the Outdegree(v) centrality is further explored to find solution

to influence maximization.

8.3.2 Outdegree Rank heuristic for fetching influential

users

Among the cases discussed above, case(ii) is further discussed. For any node v, if

Outdegree(v) → Cd(v), it shows that node v maintains communications and

interaction with almost all of his/her contacts. Such a node has more potential

to spread information in the network, when compared to other nodes. Based on

this surmise, the Outdegree(v) is used to rank the nodes in the network. This is

the Outdegree Rank (OR) heuristic. Algorithm 4 details steps to fetch the seed

set I.

Input: Directed graph GI(VI , EI) and k

Output: Seed set I of k users

1 Initialize I = φ;

2 Compute the outdegree outv for each vertex v ∈ VI
3 Repeat k times steps 4 and 5

4 u = argmaxv{outv|v ∈ VI − I}

5 I= I ∪ u

6 Output I

Algorithm 4: Outdegree Rank to fetch seed set I

The input to algorithm 4 is the interaction graph, GI(VI , EI) and a constant

k. In algorithm 4, step 2 computes the outdegree of each node v. Steps 4 and 5,

picks k nodes with highest outdegree and adds them to the set I.

Complexity: When the number of nodes in GI is m̄, step 2 takes O(m̄). This is

followed by the k times execution of steps 4 and 5. Thus, the complexity of

algorithm 4 is O(m̄+ k).
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8.3.3 Applying the discount concept on OutDegree Rank

The discount concept proposed by Chen et al. (2009) on the degree centrality is

also applicable to Outdegree Rank centrality. Let v be a neighbor node of u. If u is

already in the seed set, then while considering the inclusion of node v into seed set

on its Outdegree Rank, the edge e(u, v) towards its degree should not be counted.

Thus v’s degree is discounted by the count of all its neighbors which are already

in the seed set. With reference to the case presented by Chen et al. (2009), for a

vertex v with ηv neighbors already in the seed set, v′s degree is discounted as in

Eq( 8.3.1). This heuristic is named as Outdegree Rank Discount.

2ηv − (Cdv − ηv)ηvp (8.3.1)

where Cdv is the degree of the node v.

Algorithm 5 details steps in Outdegree Rank Discount heuristic. The input to

Algorithm 5 are size of seed set k, the contributor graph i.e. Gc(Vc, Ec) and the

interaction graph of the same, represented as GI(VI , EI). Step 2 computes the

outdegree i.e. outv, from the interaction graph and degree of the node. The top

k influential nodes are fetched from steps 5 to 10. In steps 8 and 9, the degree

count of selected influential nodes are discounted as in Eq 8.3.1.
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Input: Gc(Vc, Ec), GI(VI , EI) and k

Output: Seed set I of k users

1 Initialize I = φ;

2 For each vertex v ∈ VI , compute the outdegree outv, degree Cdv and

initialize tv = 0

3 Repeat k times steps 4 to 6

4 u = argmaxv{outv|v ∈ Vc − S}

5 I= I ∪ u

6 Repeat steps 7 and 8 for each neighbour v of u and v ∈ Vc − I

7 tv = tv + 1

8 Cdv = Cdv − 2tv − (Cdv − tv)tvp)

9 Output I

Algorithm 5: Outdegree Rank Discount to fetch seed set I

Complexity of algorithm 5:The step 2 computes the outdegree and degree

of each node. For an interaction graph of m̄ nodes, it takes O(m̄). The top k

influential nodes are fetched from steps 4 to 9. In steps 7 and 8, the degree count

of selected influential nodes are discounted as in Eq( 8.3.1). Thus, the

complexity of algorithm 5 is O(m̄+ k.m̄).

Unlike the Degree heuristic, in which the Cd(v) is almost static, the

Outdegree(v) is frequently varying according to the changes in the interaction

rate of the user. In this way, the OutDegree Rank reflects the dynamic changes

occurring in the social network. Thus, Outdegree Rank is a viable solution in the

real world.

8.4 Results and analyses

In this section the performance gain of the Outdegree Rank and the Outdegree Rank

Discount heuristics in the Influx-IC model are highlighted. The performance of

these heuristics are evaluated for two scenarios. In the first scenario the new

heuristics are evaluated in Influx-IC model and other heuristics are evaluated
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in the original setup in IC model. In the second scenario all the heuristics are

employed in the Influx-IC model. The highestdegree (a.k.a degree), distance,

singlediscount and degreediscount heuristics are used to fetch the influential users.

These are used to predict the information diffusion and their outcomes compared

to the proposed approaches.

8.4.1 Performance of the new heuristics

This section discusses the first scenario where on one hand the standard

heuristics, i.e., highestDegree, distance, degreediscount and singlediscount, are

employed in the independent cascade model which uses an uniform influence

value to estimate information diffusion. On the other hand, the Outdegree Rank

as well as, the Outdegree Rank Discount heuristics are employed in the Influx-IC

model which uses estimated influence to predict the information diffusion.

Therefore, the heuristics are designated as Outdegree Rank with Influence

Estimate (ORIE ) and to Outdegree Rank with Influence Estimate- Discount

(ORIE-Discount). The outcome of this first case is shown in figure 8.2 to figure

8.8. The performance gain of ORIE and ORIE-Discount, when compared to

other state-of-the-art approaches, is shown in Table 8.1.

Table 8.1: ORIE and ORIE Discount Performance gain( in %)

HighestDegree SingleDiscount DegreeDiscount Distance

Compared
to →

ORIE ORIE
Disc

ORIE ORIE
Disc

ORIE ORIE
Disc

ORIE ORIE
Disc

HEP 40.73 40.78 39.47 39.87 39.2 39.6 40.8 41.25

PHY 32.6 35.37 21.9 25.13 20.5 23.71 31.47 34.27

YouTube 31.7 32.36 31.2 31.9 30.8 31.5 33.1 33.72

Infectious 56.3 57 56.1 56.86 55.9 56.7 56.4 57.14

Twitter 22.2 24.1 20.7 23 20.5 22.87 22 24.5

Email 40.04 41.41 39.9 41.3 39.6 40.9 40.02 41.37

Wikivote 33.68 29.5 33.2 28.9 33.46 29.2 33.8 29.6
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Figure 8.2: Performance of ORIE and ORIE-Discount in HEP dataset
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Figure 8.3: Performance of ORIE and ORIE-Discount in PHY dataset
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Figure 8.4: Performance of ORIE and ORIE-Discount in Email dataset
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Figure 8.5: Performance of ORIE and ORIE-Discount in YouTube dataset
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Figure 8.6: Performance of ORIE and ORIE-Discount in Infectious dataset
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Figure 8.7: Performance of ORIE and ORIE-Discount in Twitter dataset
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Figure 8.8: Performance of ORIE and ORIE-Discount in Wikivote dataset
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With ORIE and ORIE-Discount, there is a gain in the prediction of the spread

of information in the range of 20.5% - 57%, when compared to other state-of-the-

art approaches. Specifically, in HEP there is up to 41.25% increase in information

diffusion.In PHY, there is 35% increase, in YouTube up to 33%, in Infectious 57%,

in Twitter up to 24%, in Email up to 41% and in Wikivote up to 33% increase in

information spread when compared to the proposed approach is seen. This gain

in the spread is possible, since the Influx-IC model is based on the approach that

estimated user influence from the user interaction. This outcome is primarily for

the reason that both, the heuristics, as well as, the influence estimates approach

are designed on the interaction rate of the users. The use of the contributor graph

ensured that only highly interactive users were available for the application. These

highly interactive users resulted in higher influence among them, which finally

led to the vast outcome of spread. Conclusively, the ORIE and ORIE-Discount

outperforms standard approaches that are based on the degree centrality.
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8.4.2 State of Art heuristics in Influx-IC

In the latter case, Influx is employed to standard heuristics. To distinguish these

heuristics from their original setup, they are named as HighestDegree-IE,

DegreeDiscount-IE, SingleDiscount-IE, Distance-IE. The predicted information

spread under these heuristics are compared to ORIE and ORIE Discount

heuristics. The outcomes are as shown in Figure 8.9 to Figure 8.15.
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Figure 8.9: Influx employed to various heuristics on Wikivote dataset
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Figure 8.10: Influx employed to various heuristics on HEP dataset
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Figure 8.11: Influx employed to various heuristics on PHY dataset
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Figure 8.12: Influx employed to various heuristics on Email dataset
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Figure 8.13: Influx employed to various heuristics on YouTube dataset
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Figure 8.14: Influx employed to various heuristics on Infectious dataset
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Figure 8.15: Influx employed to various heuristics on Twitter dataset
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The performance gain of ORIE and ORIE-Discount when compared to the

chosen heuristics is shown in Table 8.2.

Table 8.2: Standard heuristics in Influx-IC model

HighestDegree-
IE

SingleDiscount-
IE

DegreeDiscount-
IE

Distance-
IE

Compared
to →

ORIE ORIE
Disc

ORIE ORIE
Disc

ORIE ORIE
Disc

ORIE ORIE
Disc

HEP 24.4 25.62 14.9 16.33 12 13.6 29.5 30.68

PHY 26 29.25 2.5 6.13 -1.7 1.12 21 23.37

YouTube 15.6 16.45 12.8 13.63 13.76 14.5 12.8 13.63

Infectious 38.17 39.23 36.65 37.73 37.09 38.16 37.5 38.6

Twitter 20 22.3 18.5 21.4 6 8.6 14.8 17.2

Email 14.2 16.2 3.57 5.8 1.19 3.48 7.14 9.3

Wikivote -1.2 -7 1 -6 -3 -10 8 2.5

There is an increase in information diffusion of 30% in HEP, up to 29% in

PHY, up to16% in YouTube, up to 38.6% in Infectious, up to 22% in Twitter, up

to 16% in Email and upto 8% in Wikivote. The information spread did not see

gain in Wikivote dataset for degree, degree discount and single discount

heuristics. However, the ORIE and the ORIE-Discount heuristics performed

better than the Distance heuristic. Moreover, for other datasets, there is a gain

in the range of 6%- 38.6% in the spread of information when ORIE and

ORIE-Discount is employed. The degree centrality fetched the seed set, that

only have high degree but are not interactive in the network. As a result, the

influence they exerted on their peers was not high to propagate information. The

outcome of Distance-IE heuristic emphasizes that, users who are in close

proximity need not influence each other. The SingleDiscount-IE and

DegreeDiscount-IE heuristics fetches seeds close to ORIE and ORIE-Discount,

due to the fact that already those nodes induced in the seed set are discounted

from the degree value. The result of PHY dataset shows a reduction in the

spread. This is the case where the users with high degree maintain high levels of
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interaction. Such a scenario in real world networks is rare, as observed by Jakob

(2012). The outcome emphasizes that even in a scenario when standard

heuristics employ Influx method, the proposed OR and OR Discount heuristics

perform better. Thus, assuredly, Outdegree Rank and Outdegree Rank Discount

are effective viable solutions and are contributions towards influence

maximization.

8.5 Summary

In this chapter, two heuristics for the influence maximization problem are

proposed. The aim of proposing the Outdegree Rank heuristic is to emphasize

the role of users in information spread. The degree centrality, which is a popular

metric in picking influential users will fail; adhering to the fact that users do not

interact with all of their contacts. In such a scenario, the Outdegree Rank metric

provides a realistic solution. This heuristic is extended to include the discount

concept to design another heuristic named as Outdegree Rank Discount. Both

these heuristics are employed in the Influx-IC model. The outcome shows that

the new heuristics are able to spread information to a major portion of the

network when compared to other approaches.

In this research work, the influence maximization problem is solved in three

stages. In the first stage the network is pruned to pick probable candidates of

information diffusion. In the second stage influence among the users is estimated

with the aim that when the third stage fetches the influential users, it can be

evaluated with a realistic influence value. Thus, in the third stage influential

users are picked. At this stage, the diffusion model has information propagators

and realistic influence value to predict the diffusion on the social networks that is

initiated by the influential users. The solution proposed in this research is an

amalgamation of three aspects; i.e. network pruning, estimating user influence

and influential users, that efficiently predicted the diffusion.
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Chapter 9

Conclusion and future work

I may not have gone where I intended to go, but I think I have ended up where I

intended to be. -Douglas Adams.

With the increased popularity and pervasiveness of social networks, more and

more applications are tailor-made for it. Predicting close to accurate spread of

information is central to viral marketing applications. Making the solution to

influence maximization viable in the real world is the aim of the research work.

Influence maximization and information diffusion are like two faces of the same

coin, and have to be studied in each other’s context.

In this research, various contributions are made towards influence

maximization. The research presents a new model to depict the role of users

during the information propagation process. Along with this model, the solution

to influence maximization is attempted in three phases. Although, various

approaches are earlier proposed to solve influence maximization problem and for

better information spread, there are still a few concerns to be addressed. These

issues are discussed in this research and in that aspect a holistic approach is

proposed.

This research work presents a better solution to influence maximization

problem in three phases; 1) find the contributors, 2) estimate influence and 3)

fetch initiators. The proposed approach is more scalable when compared to the

existing approaches. This work finds contributors who are most likely to spread

and also adopt the information in the network, thereby meeting the desired final
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outcome. Influence estimation is largely being previously unexplored and is

addressed in this research. A new diffusion model named as Influx-IC model is

also designed to predict information diffusion. This research also designs new

heuristics namely the Outdegree Rank and OutDegree Rank Discount. These

heuristics give a new dimension to fetch initiators by considering the activity

rate of users. Overall, the amalgamation of these phases makes the solution user

centric. Thus, a new dimension to influence maximization problem is explored.

The simulations support the claim and provide a new milestone to the solution

to influence maximization problem.

In future, the aspects of network structure, user influence and influential users,

can be dealt in detail by using more user data. When the constraints on privacy

of user data for applications is flexible, more user features can be used in each of

the phases to provide a better working model. Yet another direction is verifying

the validity of the proposed approaches on other diffusion models. The temporal

dynamics of the social networks is not explored in depth, which can be dealt in the

future. A scenario where campaigns of similar products but from rival enterprises

are pushed in a same social networks is not studied in this research. This case of

multiple competitors can also be considered as an extension to this work. Negative

influence (Jung et al., 2011) can inhibit the diffusion of information. In this work

positive influence is considered. The presented model can be extended to reflect

negative influence. Dynamic influence maximization (Pan et al., 2017) is the

newest trend. The proposed model could be extended to include the temporal

dynamics for a better perspective.
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