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Abstract: The aim of this article is to present a unified semi-local convergence analysis for a k-step
iterative method containing the inverse of a flexible and frozen linear operator for Banach space
valued operators. Special choices of the linear operator reduce the method to the Newton-type,
Newton’s, or Stirling’s, or Steffensen’s, or other methods. The analysis is based on center, as well as
Lipschitz conditions and our idea of the restricted convergence region. This idea defines an at least as
small region containing the iterates as before and consequently also a tighter convergence analysis.
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1. Introduction

Let X ,Y be Banach spaces and D ⊂ X be a nonempty and open set. By L(X ,Y), we denote
the space of bounded linear operators from X into Y . Let also U(w, d) stand for an open set centered
at w ∈ X and of radius d > 0 and Ū(w, d) stand for its closure.

There is a plethora of problems from diverse disciplines, such as mathematics [1–13],
optimization [3–8], mathematical programming [7,8], chemistry [7], biology [1,2,12], physics [9,13],
economics [8], statistics [13], engineering [1,2,9–13] and other disciplines, that can be reduced to finding
a solution x∗ of the equation:

F(x) = 0, (1)

where F : D −→ Y is a continuous operator. The solution x∗ of Equation (1) should be unique in
a neighborhood about it and in closed form. However, the latter can be achieved only in special
cases. This problem leads researchers to the construction of iterative methods that generate a sequence
converging to x∗.

The most widely-used iterative method is Newton’s, defined for each n = 0, 1, 2, . . . , by:

x0 ∈ D, xn+1 = xn − F′(xn)
−1F(xn). (2)

Newton’s method is a special case of one-point iterative methods without memory defined for
each n = 0, 1, 2, 3 . . . , by:

x0 ∈ D xn+1 = R(xn), (3)

where R : X −→ X has some properties. The order of convergence p ∈ N depends explicitly on
the first p− 1 derivatives of the functions appearing in the method. Moreover, the computational cost
increases in general especially when the convergence order increases, since successive derivatives
must be computed [1–13].
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That is why researchers and practitioners have developed iterative methods that on the one hand
avoid the computation of derivatives and on the other hand achieve a high order of convergence.
In particular, we unify the study of such methods by considering k-step iterative methods with a frozen
linear operator defined for each n = 0, 1, 2, . . . , by:

x0 ∈ D, x(1)n = x(0)n − A−1
n F(x(0)n )

x(2)n = x(1)n − A−1
n F(x(1)n )

· · ·
x(k−1)

n = x(k−2)
n − A−1

n F(x(k−2)
n ) (4)

x(k)n = x(k−1)
n − A−1

n F(x(k−1)
n ),

where An = A(xn), A : D −→ L(X ,Y), xn = x(0)n and xn+1 = x(k)n for each k = 0, 1, 2, . . . . Special
choices of operator A lead to well-known methods. If k = 1 and A(x) = F′(x) for each x ∈ D,
we obtain Newton’s method (2), whereas, if k = 1, 2, . . . and A(x) = F′(x) for each x ∈ D, we obtain
a method whose semi-local convergence was given in [12]. If A(x) = [g1(x), g2(x); F] for each x ∈ D,
k = 1 or k = 1, 2, . . . , where g1 : X −→ X and g2 : X −→ X, we obtain Steffensen-type methods.
Stirling’s and other one-point methods are also special cases of method (4). Based on the above,
it is important to study the semi-local convergence analysis of method (4). It is well known that as
the convergence order increases, the convergence region decreases in general. To avoid this problem
as well, we introduce a center-Lipschitz-type condition that helps us determine an at least as small
region as before containing the iterates {xn}. This way, the resulting Lipschitz constants are at least as
small. A tighter convergence analysis is obtained this way.

The rest of the article is organized as follows: Section 2 contains the conditions to be used in
the semi-local convergence that follows in Section 3. Final remarks are given in the concluding
Section 4.

2. Convergence Conditions

We shall assume that U(x0, rη) ⊆ D for some r > 1 and η > 0. The semi-local convergence
analysis of Method (4) is based on Condition (A) (see also the Conclusion Section 4):

(a1) F : D −→ Y is a differentiable operator in the sense of Fréchet, A(x) ∈ L(X ,Y), and there exists
x0 ∈ D, β > 0, η > 0 such that A(x0)

−1 ∈ L(Y ,X ),

‖A(x0)
−1‖ ≤ β and ‖A(x0)

−1F(x0)‖ ≤ η.

(a2) There exist L > 0, ` ∈ (0, 1
β ) such that for each x, y ∈ D:

‖A(x)− A(x0)‖ ≤ L‖x− x0‖+ `.

Set D0 = D ∩U(x0, 1−β`
βLη ).

(a3) There exist K > 0, M > 0, µ > 0 such that for each x, y ∈ D0:

‖F′(y)− F′(x)‖ ≤ K‖x− y‖,

‖A(x)− F′(x)‖ ≤ M‖x− x0‖+ µ.

(a4) There exist β̄ > 0 and K0 > 0 such that F′(x0)
−1 ∈ L(Y ,X ), ‖F′(x0)

−1‖ ≤ β̄ and for each
x ∈ D0:

‖F′(x)− F′(x0)‖ ≤ K0‖x− x0‖.

(a5) There exists r∗ ≥ r such that r < 2
β̄K0η

= r0. Set D1 = D ∩ Ū(x0, r∗η).

From now on, we assume Condition (A).
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3. Semi-Local Convergence

We need some auxiliary results to show the semi-local convergence of Method (4).

Lemma 1. Suppose that there exists r > 1 such that x(i)n ∈ U(x0, rη) ⊂ D for each i = 1, 2, . . . k, k ≥ 1,
n ∈ N and for:

β` < 1, r <
1− β`

βLη
. (5)

Then, method (4) is well defined.

Proof. We have that F(x(i)n ) are well defined for each i = 1, 2, . . . , k, k ≥ 1. Using (5), (a1) and (a2),
we have in turn that:

‖A−1
0 (An − A0)‖ ≤ ‖A−1

0 ‖‖An − A0‖
≤ β(L‖xn − x)‖+ `)

≤ β(Lrη + `) < 1. (6)

By (6) and the Banach lemma on invertible operators [3–7,11], we deduce A−1
n ∈ L(Y ,X ) and:

‖A−1
n ‖ ≤

β

1− β(Lrη + `)
. (7)

Let µ1 = max{µ, `}, K1 = max{K, L}, K2 = K1 + M ρn(t) = K2ηnt + µ1 and ρn = ρn(r).
We assume from now on that the previous hypotheses are satisfied. Let n = 0 and i = 1. Then,
we have:

‖x(i)0 − x(0)0 ‖ = ‖A−1
0 F(x(0)0 )‖ ≤ η.

Set:
η0 = η, β0 = β, ρ0 = ρ0(r), h0 = h0(r) = β0ρ0.

By the first step in Method (4), we can write:

F(x(1)0 ) = F(x(1)0 )− F(x(0)0 )− F′(x(0)0 )(x(1)0 − x(0)0 )

+(F′(x(0)0 )− A(x(0)0 ))(x(1)0 − x(0)0 ),

so:

‖F(x(1)0 )‖ ≤ ‖
∫ 1

0
[F′(x(0)0 + θ(x(1)0 − x(0)0 ))− F′(x(0)0 )]dθ(x(1)0 − x(0)0 )‖

+‖F′(x(0)0 )− A(x(0)0 )‖‖x(1)0 − x(0)0 ‖

≤ 1
2

K0η0‖x
(1)
0 − x(0)0 ‖+ (M‖x(1)0 − x(0)0 ‖+ µ)‖x(1)0 − x(0)0 ‖

= (
1
2

K0η0 + µ)‖x(1)0 − x(0)0 ‖

≤ ρ0‖x
(1)
0 − x(0)0 ‖

‖x(2)0 − x(1)0 ‖ = ‖A−1
0 F(x(1)0 )‖

≤ ‖A−1
0 ‖‖F(x(1)0 )‖

≤ β0ρ0‖x
(1)
0 − x(0)0 ‖ = h0‖x

(1)
0 − x(0)0 ‖
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and:

‖x(2)0 − x(0)0 ‖ ≤ ‖x(2)0 − x(1)0 ‖+ ‖x
(1)
0 − x(0)0 ‖

≤ h0‖x
(1)
0 − x(0)0 ‖+ ‖x

(1)
0 − x(0)0 ‖

= (1 + h0)η0.

Similarly, we can write:

F(x(2)0 ) = F(x(2)0 )− F(x(1)0 )− F′(x(0)0 )(x(2)0 − x(1)0 )

+(F′(x(0)0 )− A(x(0)0 ))(x(2)0 − x(1)0 ),

so:

‖F(x(2)0 )‖ ≤ ‖
∫ 1

0
[F′(x(1)0 + θ(x(2)0 − x(1)0 ))− F′(x(0)0 )]dθ(x(2)0 − x(1)0 )‖

+‖F′(x(0)0 )− A(x(0)0 )‖‖x(2)0 − x(1)0 ‖

≤ K0

∫ 1

0
[(1− θ)‖x(1)0 − x(0)0 ‖+ θ‖x(2)0 − x(0)0 ‖]dθ‖x(2)0 − x(1)0 ‖

(M‖x(1)0 − x(0)0 ‖+ µ)‖x(2)0 − x(1)0 ‖

= (K0rη0 + µ)‖x(2)0 − x(1)0 ‖

≤ ρ0‖x
(2)
0 − x(1)0 ‖

‖x(3)0 − x(2)0 ‖ = ‖A−1
0 F(x(2)0 )‖

≤ β0ρ0‖x
(2)
0 − x(1)0 ‖ = h0‖x

(2)
0 − x(1)0 ‖

≤ h2
0‖x

(1)
0 − x(0)0 ‖

and:

‖x(3)0 − x(0)0 ‖ ≤ ‖x(3)0 − x(2)0 ‖+ ‖x
(2)
0 − x(1)0 ‖+ ‖x

(1)
0 − x(0)0 ‖

≤ (1 + h0 + h2
0)η0.

Hence, we arrive at:

Lemma 2. The following assertions hold for n = 0, i = 1, 2, 3, . . . , k− 1 :

‖F(x(i)0 ) ≤ ρ‖x(i)0 − x(i−1)
0 ‖, (8)

‖x(i)0 − x(i−1)
0 ‖ ≤ h0‖x

(i−1)
0 − x(i−2)

0 ‖, (9)

‖x(i)0 − x(0)0 ‖ ≤ (1 + h0 + . . . + hj−1
0 )η0 (10)

and:
‖x(k)0 − x(0)0 ‖ ≤ (1 + h0 + . . . + hk−1

0 )η0. (11)

Proof. We have that for each θ ∈ [0, 1], x(i−1)
0 + θ(x(i)0 − x(i−1)

0 ) ∈ U(x0, rη), since x(i)0 ,

x(i−1)
0 ∈ U(x0, rη) and:

‖x(i−1)
0 − x(0)0 + θ(x(i)0 − x(i−1)

0 )‖

≤ (1− θ)‖x(i−1)
0 − x(0)0 ‖+ θ‖x(i)0 − x(0)0 ‖

≤ (1− θ)rη + θrη = rn.
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Then, as previously, using Method (4), we can write:

F(x(i)0 ) =
∫ 1

0
[F(x(i−1)

0 + θ(x(i)0 − x(i−1)
0 ))− F′(x(0)0 )]dθ(x(i)0 − x(i−1)

0 )

+(F′(x(0)0 )− A(x(0)0 ))(x(i)0 − x(i−1)
0 ),

so:

‖F(x(i)0 )‖ ≤ K0

∫ 1

0
[(1− θ)‖x(i−1)

0 − x(0)0 ‖+ θ‖x(i)0 − x(0)0 ‖]dθ‖x(i)0 − x(i−1)
0 ‖

+‖F′(x(0)0 )− A(x(0)0 )‖‖x(i)0 − x(i−1)
0 ‖

= (K0rη + µ)‖x(i)0 − xi−1)
0 ‖

≤ ρ‖x(i)0 − x(i−1)
0 ‖,

‖x(i+1)
0 − x(i)0 ‖ = ‖A−1

0 F(x(i)0 )‖

≤ βρ‖x(i)0 − x(i−1)
0 ‖ = h0‖x

(i)
0 − x(i−1)

0 ‖

and:

‖x(i+1)
0 − x(0)0 ‖ ≤ ‖x(i+1)

0 − x(i)0 ‖+ ‖x
(i)
0 − x(1)0 ‖

≤ (1 + h0 + . . . + hi
0)η0,

which show Estimates (8)–(10), respectively. Estimate (11) follows from (10) for i = k.

It follows that x(i)0 for i = 1, 2, . . . , k− 1, x(i)0 = x1 belong in U(x0, rη). Define:

T0(t) =

{
1, if k = 1
1 + h0 + . . . + hk−1

0 , if k = 2, 3, . . . .
(12)

Next, we study Method (4) for n = 1 in an analogous way to n = 0. It follows from Lemma 1 that
A(x1)

−1 ∈ L(Y ,X ) and:

‖A(x)−1‖ ≤ β

1− h0
:= β1. (13)

Hence, x(1)1 = x(0)1 − A(x1)
−1F(x(0)1 ), with x(0)1 = x(k)0 = x1, is well defined,

‖F(x(0)1 )‖ ≤ ρ1‖x
(k)
0 − x(k−1)

0 ‖,

so:

‖x(1)1 − x(0)0 ‖ = ‖A(x1)
−1F(x(0)1 )‖

≤ ‖A(x1)
−1‖‖F(x(0)1 )‖

≤ β1ρ1‖x
(k)
0 − x(k−1)

0 ‖

≤ βρ1

1− h0
hk−1

0 η0

≤
hk

0
1− h0

η0

= h1η0 = η1, (14)
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where:

h1 =
hk

0
1− h0

. (15)

Define as previously,

T1(t) =

{
1, if k = 1
1 + h1 + . . . + hk−1

1 , if k = 2, 3, . . . .

Then, we have again that:

‖A(x1)
−1‖ ≤ ‖F(x(i)1 )‖

≤ ρ1‖x
(i)
1 − x(i−1)

1 ‖

‖x(i+1)
1 − x(i)1 ‖ ≤ h1‖x

(i)
1 − x(i−1)

1 ‖,

‖F(x(k)1 )‖ ≤ ρ1‖x
(k)
1 − x(k−1)

1 ‖,

‖x(k)1 − x(k−1)
1 ‖ = ‖x2 − x(k−1)

1 ‖ ≤ h1‖x
(k−1)
1 − x(k−2)

1 ‖

and:
‖x(k)1 − x(0)1 ‖ = ‖x2 − x1‖ ≤ T1(r)η1.

Next, we continue for n = 2. By Lemma 1, A(x2)
−1 ∈ L(Y ,X ) and:

‖A(x2)
−1‖ ≤ β

1− h0
:= β2. (16)

Notice that β2 = β1. Then, for i = 1 and since x2 = x(0)2 , we get as in (14):

‖x(1)2 − x(0)2 ‖ = ‖A(x2)
−1F(x(0)2 )‖

≤ ‖A(x2)
−1‖‖F(x(0)2 )‖

≤ β2ρ2‖x
(k)
1 − x(k−1)

1 ‖
= h2η1 = η2, (17)

where h2 =
hk

1
1−h0

. Then, as before, we can write:

‖A(x2)
−1‖ ≤ β2,

‖A(x2)
−1F(x2)‖ ≤ η2,

T2(t) =

{
1, if k = 1
1 + h2 + . . . + hk−1

2 , if k = 2, 3, . . . .

so x(i)2 , x3 ∈ U(x2, T2(r)η2) for i = 1, 2, . . . , k− 1. We are motivated by the preceding items to define
recurrent relations:

βn = β1,

ηn =
1

1− h0
hk

n−1ηn−1,

hn = βnρnηn,
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Tn(t) =

{
1, if k = 1
1 + hn + . . . + hk−1

n , if k = 2, 3, . . . .
(18)

Hence, we arrive at:

Lemma 3. Suppose that the hypotheses of Lemma 1 hold. Then, x(i)n , xn+1 ∈ U(xn, Tn(r)ηn) for each
i = 1, 2, . . . , k− 1.

Proof. As in the cases n = 1, 2, we get for each n = 1, 2, 3, . . . :

F(x(i)n )‖ ≤ ρn(r)‖x(i)n − x(i−1)
n ‖, i = 1, 2, . . . , k

and for i = 1, 2, . . . , k− 1,

‖x(i+1)
n − x(i)n ‖ ≤ hn‖x(i)n − x(i−1)

n ‖ ≤ hi
n‖x

(i)
n − x(i−1)

n ‖,

‖x(i+1)
n − x(0)n ‖ ≤ (1 + hn + h2

n + . . . + hi
n)ηn.

That is, we obtain:
‖F(x(k−1)

n )‖ ≤ ρn(r)‖x(k−1)
n − x(k−2)

n ‖,

‖x(k)n − x(k−1)
n ‖ = ‖xn+1 − x(k−1)

n ‖ ≤ hn‖x(k−1)
n − x(k−2)

n ‖ ≤ hk−1
n ‖x(1)n − x(0)n ‖

and:
‖x(k)n − x(0)n ‖ = ‖xn+1 − x(0)n ‖ ≤ (1 + hn + h2

n + . . . hk−1
n )ηn.

Define function ϕ on the interval [0, 1] by:

ϕ(t) = tk−1 + t− 1, k = 1, 2, . . . . (19)

We have that ϕ(0) = −1 and ϕ(1) = 1 > 0. It then follows from the intermediate value theorem
that equation ϕ(t) = 0 has at least one solution in (0, 1). Denote by s the smallest such solution.
Notice that for:

r <
s− µ1

K2η
, η 6= 0 and µ1 < s, (20)

a simple inductive argument shows that:

hn+1 < h0 ≤ s for each n = 1, 2, . . . . (21)

and:
Tn(r) < Tn−1(r). (22)

Hence, we arrive at:

Lemma 4. Suppose that (20) holds. Then, sequences {hn} and {Tn(r)} are decreasing.

Proof. It follows immediately from (19).

Taking into account x(i)n ∈ U(x0, rηn) and (20)–(22), we can obtain in turn the estimate:
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‖x(i)n − x0‖ ≤ ‖x(i)n − x(0)n ‖+
n−1

∑
i=0
‖xn−i − xn−i−1‖

≤
n

∑
i=0

Ti(r)ηi ≤ T0(r)
n

∑
i=0

ηi

= T0(r)[η + η1 + η2 + . . .]

≤ T0(r)[1 +
1

1− h0
hk

0 + (
1

1− h0
)2h2k

0 + . . . + (
1

1− h0
)nhnk

0 + . . .]η

= T0(r)[1 +
1

1− h0
hk

0(1 + (
1

1− h0
)hk

0 + . . . + (
1

1− h0
)n−1h(n−1)k

0 + . . .)]η

= T0(r)[1 +
hk

0
1− h0

1

1− hk
0

1−h0

]η

= T0(r)
1− h0

1− h0 − hk
0

η, (23)

where we also used that:

ηn =
1

1− h0
hk

n−1ηn−1

≤ 1
1− h0

hk
0

1
1− h0

hk
0ηn−2

· · ·
≤ (

1
1− h0

)nhnk
0 η. (24)

Then, we can show:

Theorem 1. Suppose Condition (A) is satisfied and for each fixed number of steps k, equation:

T0(t)[
1− h0

1− h0 − hk
0
]η = t (25)

has at least one positive solution. Denote by r the smallest such solution. Moreover, suppose that (20) is satisfied
and U(x0, rη) ⊆ D. Then, sequence {xn} generated by Method (4) is well defined, remains in Ū(x0, rη) for each
n = 0, 1, 2, . . . , i = 1, 2, . . . , k and converges to a solution x∗ ∈ Ū(x0, rη) of equation F(x) = 0. The solution
x∗ is unique in D1.

Proof. It follows from the previous results that x(i)n and x(k)n = xn belong in U(x0, rη). We must show
that sequence {xn} is complete:

‖xn+j − xn‖ ≤
j

∑
i=1
‖xn+i − xni−1‖

≤
j

∑
i=1

Tn+i−1(r)ηn+i−1

≤ T0(r)
j

∑
i=1

ηn+i−1 ≤ T0(r)
j−1

∑
i=0

ηn+i

≤ T0(r)
j−1

∑
i=0

(
hk

0
1− h0

)n+iη

≤ T0(r)
(

hk
0

1−h0
)− (

hk
0

1−h0
)n+j

1− hk
0

1−h0

η, (26)



Mathematics 2018, 6, 233 9 of 10

(
hk

0
1−h0

< 1), so {xn} is complete in a Banach space X, and as such, it converges to some x∗ ∈ Ū(x0, rη),
since Ū(x0, rη) is a closed set. Moreover, we have:

‖F(xn)‖ = ‖F(x(k)n−1)‖ ≤ ρn−1(r)‖x
(k)
n−1 − x(k−1)

n−1 ‖

≤ ρn−1(r)hk−1
n−1‖x

(1)
n − x(0)n ‖

≤ hk−1
n ‖x(1)n − x(0)n ‖ ≤ hk−1

n ηn

≤ hk−1
n (

hk
0

1− h0
)n ≤ hk−1

0 (
hk

0
1− h0

)n

≤ (
hk

0
1− h0

)n −→ 0 as n −→ ∞,

so F(x∗) = 0. Furthermore, to show the uniqueness part, let y∗ ∈ D1 with F(y∗) = 0. Set Q =∫ 1
0 F′(x∗ + θ(y∗ − x∗))dθ. By (a4) and (a6), we get in turn that:

‖F′(x0)
−1‖‖Q− F(x0)‖ ≤ β̄

∫ 1

0
[K0‖x∗ + θ(y∗ − x∗)− x0‖]dθ

≤ β[
‖x∗ − x0‖+ ‖y∗ − x0‖

2
]

≤ β[
K0(r + r∗)η

2
] < 1 (27)

by (27), so Q−1 ∈ L(Y ,X ). Then, from the identity 0 = F(y∗)− F(x∗) = Q(y∗ − x∗), we conclude that
x∗ = y∗.

Remark 1. As noted in the Introduction, even if specialized to A(x) = F′(x), Theorem 1 can give better results,
since K0 ≤ K. As an example, consider the uniqueness result in [12], where:

r <
2

β̄Kη
= r1,

but r0 < r1 for K0 < K.

4. Conclusions

We presented a semi-local convergence analysis for a k-steps iterative method with a flexible and
frozen linear operator. The results obtained in this article reduce to the ones given in [1,2,12], if we
choose A(x) = F′(x) for each x ∈ D. On top of that, in the special case, our results have the following
advantages over these works:

(1) Larger convergence region, leading to more initial points;
(2) Tighter upper bound estimates on ‖xn+1 − xn‖, as well as ‖xn − x∗‖, which means that fewer

iterations are needed to arrive at a desired error tolerance.
(3) The information on the location of the solution is at least as precise.

These advantages are obtained, since we locate a ball inside the old ball containing the iterates.
Then, the Lipschitz constants depend on the smallest ball and that is why these constants are at least
as small as the old ones. It is also worth noticing that these advantages are attained, because the new
constants are special cases of the old ones. That is no additional effort is required to compute the new
constants. A plethora of numerical examples where the new constants are strictly smaller than the old
ones can be found in [3–8]. Finally, other choices of operator A lead to methods not studied before.
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