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We present a local convergence analysis of a multi-point super-Halley-like method in order to
approximate a locally unique solution of an equation in a Banach space setting. The convergence
analysis in earlier works was based on hypotheses reaching up to the third derivative of the oper-
ator. In the present study we expand the applicability of the Super-Halley-like method by using
hypotheses only on the first derivative. We also provide: A computable error on the distances
involved and a uniqueness result based on Lipschitz constants. The convergence order is also
provided for these methods. Numerical examples are also presented in this study.
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1. INTRODUCTION

Let B1 and B2 be Banach spaces and also let Ω be a convex subset of B1. Numerous problems in

computational disciplines can be written as an equation of the form

F (x) = 0, (1.1)

where F : Ω −→ B2 is a Fréchet-differentiable operator using mathematical modeling, [1-3, 5, 10-18,

23, 25-28]. Then, a locally unique solution p is sought in closed form. However, this is attainable only

in special cases. That explains why most solution methods for these equations are usually iterative.

Most of the iterative methods are essentially connected to Newton-like methods [1-28]. There exist
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many studies dealing with the local and semi-local convergence analysis of Newton-like methods

such as [1-28]. In order to obtain a higher order of convergence Newton-like methods have been

studied such as Potra-Ptǎk [23], Chebyshev, Cauchy, Halley [27] and Ostrowski method [28].

We present the local convergence analysis of a multi-point super Halley-type method (MSHTM)

defined by:

yn = xn − αF ′(xn)−1F (xn)

xn+1 = yn − δ

2β
Qn(I + γQn)−1(yn − xn), (1.2)

where x0 is an initial point, α, δ, γ ∈ R, β ∈ (0, 1],

Qn = F ′(un)−1[F ′(xn + β(yn − xn))− F ′(xn)]

and un = xn or un = yn. MSHTM is new and reduces to other popular methods studied in the

literature under various assumptions. Our convergence analysis uses generalized Lipschitz conditions

allowing all these methods and also new methods to be studied in a uniform way.

Newton’s method (Take α = 1, δ = 0):

xn+1 = xn − F ′(xn)−1F (xn). (1.3)

Super-Halley -type [13, 15] method (Take α = δ = 1, γ = 0 and un = yn):

yn = xn − F ′(xn)−1F (xn)

xn+1 = yn − 1
2β

Qn(yn − xn). (1.4)

Other choice of α, β, γ, δ, are possible [2, 5, 6, 22, 24, 26-28]. Method (1.4) was studied in [13,

15] under Lipschitz or Hölder continuity conditions. MSHT avoids the computation of the expensive

in general F ′′(xn) required in the Super-Halley method defined for each n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F (xn)

xn+1 = yn − 1
2
(I + Hn)−1Hn(yn − xn), (1.5)

where Hn = F ′(xn)−1F ′′(xn)(yn − xn). The semi-local convergence of these methods are shown

using hypotheses given in non-affine invariant form by [7, 9, 11, 13-15, 24]

(C1) F : Ω ⊂ B1 → B2 is a thrice continuously differentiable operator;
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(C2) There exists x0 ∈ Ω such that F ′(x0)−1 ∈ L(B2,B1) and ‖F−1(x0)‖ ≤ β; there exist

η ≥ 0, β1 ≥ 0, β2 and β3 ≥ 0 such that

(C3) ‖F ′(x0)−1F ′(x0)‖ ≤ η;

(C4) ‖F ′′(x)‖ ≤ β1 for each x ∈ Ω;

(C5) ‖F ′′′(x)‖ ≤ β2 for each x ∈ Ω;

(C6) ‖F ′′′(x)− F ′′′(y)‖ ≤ β3‖x− y‖ for each x, y ∈ Ω.

The hypotheses for the local convergence analysis of these methods are the same but x0 is replaced

by p. Notice however that hypotheses (C5) and (C6) limit the applicability of these methods. As a

motivational example, Let B1 = B2 = C[0, 1]. Let

x(s) =
∫ 1

0
K(s, t)

(
1
2
x(t)

3
2 +

x(t)2

8

)
dt, (1.6)

where the kernel K is the Green’s function defined on the interval [0, 1]× [0, 1] by

K(s, t) =

{
(1− s)t, t ≤ s

s(1− t), s ≤ t.
(1.7)

Define F : C[0, 1] −→ C[0, 1] by

F (x)(s) := x(s)−
∫ 1

0
K(s, t)

(
1
2
x(t)

3
2 +

x(t)2

8

)
dt (1.8)

and consider

F (x)(s) = 0. (1.9)

Notice that F ′′ is not Lipschitz. Hence, the results in [8-17, 22, 24, 26, 28] cannot be used to

solve equation (1.9). But our result can solve equation (1.9) (see Example 3.3).

Notice that, in-particular there is a plethora of iterative methods for approximating solutions of

nonlinear equations defined on B1 [1-28]. These results show that if the initial point x0 is sufficiently

close to the solution p, then the sequence {xn} converges to p. But how close to the solution p the

initial guess x0 should be? These local results give no information on the radius of the convergence

ball for the corresponding method. We address this question for method (1.2) in Section 2. The same

technique can be used to study other methods. In the present study we extend the applicability of

methods (1.2) by using hypotheses up to the first derivative of function F. The results obtained here

are the same, if Qn, (I + γQn)−1 are switched in (1.2). Moreover we avoid Taylor expansions and

hypotheses on the second or higher Fréchet-derivatives (see (C5), (C6)). This way we do not have to

use higher order derivatives to show the convergence of these methods.
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Furthermore, we do compute the order of convergence but without using more smoothness on

operator F as it is traditionally done in these type of studies [1-28]. Indeed, to achieve this and

use only the first Fréchet-derivative we compute the computational order of convergence and the

approximate computational order of convergence (see Remark 2.2 (5) that follows).

The paper is structured as follows. In Section 2 we present the local convergence analysis. We

also provide a radius of convergence, computable error bounds and a uniqueness result. Special cases

and numerical examples are presented in the concluding Section 3.

2. LOCAL CONVERGENCE ANALYSIS

Let α, γ, δ ∈ R and β ∈ (0, 1] be given parameters. It is convenient for us to introduce some scalar

functions needed in the local convergence analysis that follows. Let also w0 : R+ ∪ {0} −→ R be a

continuous nondecreasing function satisfying w0(0) = 0. Let ρ0 be defined by

ρ0 = sup{t ∈ [0,+∞) : w0(t) < 1}.

Let w, v : [0, ρ0) −→ R be continuous and nondecreasing functions with w(0) = 0. Suppose that

|1− α|v(0) < 1. (2.1)

Define functions ϕ1 and ψ1 on [0, ρ0) by

ϕ1(t) =

∫ 1
0 [w((1− θ)t) + |1− α|v(θt)]dθ

1− w0(t)

and

ψ1(t) = ϕ1(t)− 1.

We have by (2.1) that ψ1(0) = |1 − α|v(0) − 1 < 0 and ψ1(t) −→ +∞ as t −→ ρ−0 . Then, the

intermediate value theorem guarantees the existence of at least one solution for equation ψ1(t) = 0.

Denote by ρ1 the smallest solution of equation ψ1(t) = 0 in (0, ρ0). Define functions w̄0, h and h1

on the interval [0, ρ0) by

w̄0(t) =

{
w0(t), un = xn

w0(ϕ1(t)t), un = yn,

h(t)
|γ| =





w(|β|(1+ϕ1(t))t)
1−w̄0(t) , γ 6= 0, un = xn

or
[w0(((1−β)+βϕ1(t))t)+w0(t)]

1−w̄0(t) γ 6= 0, un = yn,
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and h1(t) = h(t)− 1. We have h1(0) = −1 < 0 and h1(t) −→ +∞ as t −→ ρ−0 . Denote by ρh1 the

smallest solution of equation h(t) = 0. Define functions ϕ2 and ψ2 on the interval [0, ρh1) by

ϕ2(t) =





ϕ1(t) + |αδ|h(t)
R 1
0 v(θt)dθ

2β|γ|(1−h(t))(1−w0(t)) , γ 6= 0

ϕ1(t) + |αδ|h(t)
R 1
0 v(θt)dθ

2β|γ|(1−w0(t)) , γ = 0

and

ψ2(t) = ϕ2(t)− 1.

We get that ψ2(t) = |1−α|v(0)−1 < 0 and ψ2(t) −→ +∞ as t −→ ρ−h1
. Denote by ρ2 the smallest

solution of equation ψ2(t) = 0. Define the radius of convergence ρ by

ρ = min{ρ1, ρ2} (2.2)

Then, we have that for each t ∈ [0, ρ)

0 ≤ ϕ1(t) < 1 (2.3)

0 ≤ ϕ2(t) < 1 (2.4)

and

0 ≤ h(t) < 1. (2.5)

Set B(q, λ) = {x ∈ B1 : ‖x − q‖ < λ}. Denote by B̄ the closure of B. Next, the local

convergence of MSHT is presented where the preceding terminology is used and conditions (A):

(A1) F : Ω ⊂ B1 → B2 is a continuously Fréchet differentiable operator.

(A2) There exists p ∈ Ω such that F (p) = 0 and F ′(p)−1 ∈ L(B2,B1);

(A3) There exists function w0 : R+ ∪ {0} −→ R continuous and nondecreasing with w0(0) = 0

such that for all x ∈ Ω

‖F ′(p)−1(F ′(x)− F ′(p))‖ ≤ w0(‖x− p‖).

Set Ω0 = Ω ∩B(p, ρ0).

(A4) There exists functions w : [0, ρ0) −→ R, v : [0, ρ0) −→ R continuous and nondecreasing with

w(0) = 0 such that for each x, y ∈ Ω0

‖F ′(p)−1(F ′(x)− F ′(y))‖ ≤ w(‖x− y‖)

and

‖F ′(p)−1F ′(x)‖ ≤ v(‖x− p‖).
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(A5) Let α ∈ R. Then, the following holds

|1− α|v(0) < 1.

(A6) B̄(p, ρ) ⊆ Ω, where ρ is given in (2.2).

Theorem 2.1 — Suppose that the conditions (A) hold. Then, the sequence {xn} starting from

x0 ∈ B(p, ρ) − {p} and generated by MSHT exists, stays in B(p, ρ) for all n = 0, 1, 2, .... and

converges to p such that

‖yn − p‖ ≤ ϕ1(‖xn − p‖)‖xn − p‖ < ‖xn − p‖ ≤ ρ (2.6)

and

‖xn+1 − p‖ ≤ ϕ2(‖xn − p‖)‖xn − p‖ < ‖xn − p‖, (2.7)

where the functions ϕ1 and ϕ2 are defined previously. Moreover, if there exists ρ∗ ≥ ρ such that
∫ 1

0
w0(θρ∗)dθ < 1, (2.8)

then, p is the only solution of equation F (x) = 0 in Ω1 = Ω ∩ B̄(p, ρ∗).

PROOF : We shall first show estimates (2.6) and (2.7) hold for n = 0. By hypothesis x0 ∈
B(p, ρ)− {p}, (A3) and x ∈ B(p, ρ) we have that

‖F ′(p)−1(F ′(x)− F ′(p))‖ ≤ w0‖x− p‖ < w0(ρ) < w0(ρ0) = 1. (2.9)

Estimate (2.9) and the Banach perturbation lemma [2, 18, 23] guarantee that F ′(x)−1 ∈ L(B2,B1)

and

‖F ′(x)−1F ′(p)‖ ≤ 1
1− w0(‖x− p‖) . (2.10)

In particular for x = x0, y0 exists by the first sub-step of MSHT for n = 0 and also (2.10) holds

(for x = x0). We can write by (A2) that

F (x) = F (x)− F (p) =
∫ 1

0
F ′(p + θ(x− p))(x− p)dθ. (2.11)

Note that ‖p + θ(x− p)− p‖ = θ‖x− p‖ < ρ for all θ ∈ [0, 1]. Then, using (A4) and (2.11), we

get that

‖F ′(p)−1F (x)‖ = ‖
∫ 1

0
F ′(p)−1F ′(p+θ(x−p))(x−p)dθ‖ ≤

∫ 1

0
v(θ‖x−p‖)dθ‖x−p‖. (2.12)



MULTI-POINT SUPER HALLEY-TYPE METHODS 7

Using the first substep of method MSHT for n = 0, (2.3), (A4), (2.10) and (2.12), we obtain in

turn that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)−1F (x0) + (1− α)F ′(x0)−1F (x0)‖

≤ ‖F ′(x0)−1F ′(p)‖‖
∫ 1

0
F ′(p)−1(F ′(p + θ(x0 − p))− F ′(x0))(x0 − p)dθ‖

+ |1− α|‖F ′(x0)−1F ′(p)‖‖F ′(p)−1F (x0)‖ (2.13)

≤
∫ 1
0 w((1− θ)‖x0 − p‖)dθ‖x0 − p‖

1− w0(‖x0 − p‖) +
|1− α| ∫ 1

0 v(θ‖x0 − p‖)‖x0 − p‖
1− w0(‖x0 − p‖)

= ϕ1(‖x0 − p‖)‖x0 − p‖ < ‖x0 − p‖ < ρ, (2.14)

so (2.6) holds for n = 0 and y0 ∈ B(p, ρ). Next, we shall show that (I + γQ0)−1 ∈ L(B2,B1). Let

u0 = x0. Then, using (A4), (2.10) and (2.14), we get in turn that

‖γQ0‖ ≤ |γ|‖F ′(x0)−1F ′(p)‖
‖F ′(p)−1(F ′(x0 + θ(y0 − x0))− F ′(x0))‖

≤ |γ|w(β‖(x0 − p) + (p− y0)‖)
1− w0(‖x0 − p‖)

≤ |γ|w(β(1 + ϕ1(‖x0 − p‖)‖p− y0‖))
1− w0(‖x0 − p‖) (2.15)

and similarly for u0 = y0

‖γQ0‖ ≤ |γ|‖F ′(y0)−1F ′(p)‖
[‖F ′(p)−1(F ′(x0 + θ(y0 − x0))− F ′(x0))‖
+‖F ′(p)−1(F ′(x0)− F ′(p))‖]

≤ |γ| [w0(((1− β) + β‖x0 − p‖)‖x0 − p‖) + w0(‖x0 − p‖)]
1− w0(ϕ1(‖x0 − p‖)‖x0 − p‖)

≤ |γ| [w0((1− β) + βϕ1(‖x0 − p‖)‖x0 − p‖) + w0(‖x0 − p‖)]
1− w0(ϕ1(‖x0 − p‖)‖x0 − p‖) (2.16)

In either case (2.15) or (2.16), we have that

‖γQ0‖ ≤ h(‖x0 − p‖) ≤ h(ρ) < 1, (2.17)

so (I + γQ0)−1 ∈ L(B2,B1) and

‖(I + γQ0)−1‖ ≤ 1
1− h(‖x0 − p‖) . (2.18)
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Moreover, x1 is well defined by the second sub-step of MSHT for n = 0. Furthermore, using

second substep of MSHT for n = 0, (2.4), (2.10), (2.12), (2.14) and (2.18), we have in turn that

‖x1 − p‖ ≤ ‖y0 − p‖+
|δ|
2β
‖Q0‖

‖(I + γQ0)−1‖|α|‖F ′(x0)−1F (p)‖‖F ′(p)−1F (x0)‖

≤
[
ϕ1(‖x0 − p‖) +

|αδ|
2β|γ|

h(‖x0 − p‖) ∫ 1
0 v(θ‖x0 − p‖dθ)

(1− h(‖x0 − p‖))(1− w0(‖x0 − p‖))

]
‖x0 − p‖

= ϕ2(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < ρ, (2.19)

so (2.7) holds for n = 0 and x1 ∈ B(p, ρ). The induction for (2.6) and (2.7) is completed by using

xk, yk, uk, xk+1 for x0, y0, u0, x1 in the preceding estimates. It then, follows from the estimate

‖xk+1 − p‖ ≤ c‖xk − p‖ < ρ, c = ϕ2(‖x0 − p‖) ∈ [0, 1)

that limk→∞ xk = p and xk+1 ∈ B(p, ρ). The uniqueness part is shown by using T =
∫ 1
0 F ′(p +

θ(p∗ − p))dθ for some p∗ ∈ Ω1 with F (p∗) = 0. Using (A3) and (2.8) we get that

‖F ′(p)−1(T − F ′(p))‖ ≤
∫ 1

0
w0(θ‖p− p∗‖dθ)

≤
∫ 1

0
w0(θp∗)dθ < 1,

so T−1 ∈ L(B2,B1). Then, from the identity 0 = F (p∗) − F (p) = T (p∗ − p), we deduce that

p∗ = p. 2

Remark 2.2 : 1. In view of the estimate

‖F ′(p)−1F ′(x)‖ = ‖F ′(p)−1(F ′(x)− F ′(p)) + I‖
≤ 1 + ‖F ′(p)−1(F ′(x)− F ′(p))‖ ≤ 1 + w0(‖x− p‖),

we can set

v(t) = 1 + w0(t)

or v(t) = 2.

2. The results obtained here can be used for operators F satisfying autonomous differential equa-

tions [2, 5, 18] of the form

F ′(x) = G(F (x))

where G : R −→ R is a continuous operator. Then, since F ′(x∗) = G(F (p)) = G(0), we can

apply the results without actually knowing p. For example, let F (x) = ex − 1. Then, we can

choose: G(x) = x + 1.
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3. The local results obtained here can be used for projection methods such as the Arnoldi’s

method, the generalized minimum residual method (GMRES), the generalized conjugate method

(GCR) for combined Newton/finite projection methods and in connection to the mesh inde-

pendence principle can be used to develop the cheapest and most efficient mesh refinement

strategies in discretization studies [2, 5].

4. If w0(t) = L0t and w(t) = Lt, then, the parameter rA = 2
2L0+L was shown by us to be the

convergence radius of Newton’s method [3, 6]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.20)

under the conditions (A1)–(A4). It follows from the definitions of radii r that the convergence

radius r of these preceding methods cannot be larger than the convergence radius rA of the

second order Newton’s method (2.20). As already noted in [2, 5] rA is at least as large as the

convergence ball given by Rheinboldt [25]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < rA

and
rR

rA
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rheinboldt’s. The same value

for rR was given by Traub [27].

5. It is worth noticing that the studied methods are not changing when we use the conditions of the

preceding Theorems instead of the stronger conditions used in [8-19, 22, 24, 26-28]. Moreover,

the preceding Theorems we can compute the computational order of convergence (COC) [28]

defined by

ξ = ln
(‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

( ‖xn − x∗‖
‖xn−1 − x∗‖

)

or the approximate computational order of convergence

ξ1 = ln
(‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence without resorting to the computation

of higher order derivatives appearing in the method or in the sufficient convergence criteria

usually appearing in the Taylor expansions for the proofs of those results.
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3. NUMERICAL EXAMPLES

We present numerical examples in this section. In the first two examples, we show that the radii are

larger than the ones in old approaches, whereas in the last example results from old approaches cannot

be used.

Example 3.1 : Let us consider a system of differential equations governing the motion of an object

and given by

F ′
1(x) = ex, F ′

2(y) = (e− 1)y + 1, F3(z) = 1

with initial conditions F1(0) = F2(0) = F3(0) = 0. Let F = (F1, F2, F3). Let B1 = B2 = R3, D =

Ū(0, 1), p = (0, 0, 0)T . Define function F on ω for w = (x, y, z)T by

F (w) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is defined by

F ′(v) =




ex 0 0

0 (e− 1)y + 1 0

0 0 1


 .

Notice that using the (A) conditions, we get w0(t) = (e − 1)t, w(t) = e
1

e−1 t, v(t) = e
1

e−1 . The

radii for α = 1− 1
2L , β = γ = δ = 0.5 are

ρ1 = 0.1913 = ρ, ρ2 = 0.2375.

Using old approaches we must set w0(t) = w(t) = et and v(t) = e. Then, the radii are

ρ̃1 = 0.1226 = ρ̃, ρ̃2 = 0.1493.

Example 3.2 : Let B1 = B2 = C[0, 1], the space of continuous functions defined on [0, 1] be

equipped with the max norm. Let ω = U(0, 1). Define function F on ω by

F (ϕ)(x) = ϕ(x)− 5
∫ 1

0
xθϕ(θ)3dθ. (3.1)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ ω.

Then, we get that p = 0, so w0(t) = 7.5t, w(t) = 15t and v(t) = 2. Then the radii for α =

1− 1
2L , β = γ = δ = 0.5 are

ρ1 = 0.0333 = ρ, ρ2 = 0.0374.
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Using old approaches we must set w0(t) = w(t) = 15t and v(t) = 2. Then, the radii are

ρ̃1 = 0.0222 = ρ̃, ρ̃2 = 0.0262.

Example 3.3 : Returning back to the motivational example at the introduction of this study, we

have that

F ′(x)µ(s) = µ(s)−
∫ 1

0
K(s, t)(

3
4
x(t)

1
2 +

x(t)
4

)µ(t)dt.

Notice that p(s) = 0 is a solution of (1.9). Using (1.7), we obtain

‖
∫ 1

0
K(s, t)dt‖ ≤ 1

8
. (3.2)

Then, by (1.7) and (3.2), we have that

‖F ′(x)− F ′(y)‖ ≤ 1
32

(3‖x− y‖ 1
2 + ‖x− y‖). (3.3)

We have w0(t) = w(t) = 1
32(3t1/2 + t) and v(t) = 1 + w0(t). Then the radii for α = β = γ =

δ = 0.5 are

ρ1 = 3.1973, ρ2 = 0.0190 = ρ.

In view of (3.3) earlier results requiring hypotheses on the second Fréchet derivative or higher

(see the (C) conditions) cannot be used to solve equation (1.9).
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22. M. S. Petkovic, B. Neta, L. Petkovic, and J. Džunič, Multipoint methods for solving nonlinear equations,
Elsevier, 2013.



MULTI-POINT SUPER HALLEY-TYPE METHODS 13

23. F. A. Potra and V. Pták, Nondiscrete induction and iterative processes, In: Research Notes in Mathemat-
ics, 103, Pitman, Boston, 1984.

24. H. Ren and Q. Wu, Convergence ball and error analysis of a family of iterative methods with cubic
convergence, Appl. Math. Comput., 209 (2009), 369-378.

25. W. C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, In:
Mathematical models and numerical methods, (A. N. Tikhonov et al. eds.) pub. 3, (1977), 129-142
Banach Center, Warsaw Poland.

26. J. R. Sharma, P. K. Guha, and R. Sharma, An efficient fourth order weighted-Newton method for systems
of nonlinear equations, Numerical Algorithms, 62(2) (2013), 307-323.

27. J. F. Traub, Iterative methods for the solution of equations, AMS Chelsea Publishing, 1982.

28. S. Weerakoon and T. G. I. Fernando, A variant of Newton’s method with accelerated third-order conver-
gence, Appl. Math. Lett., 13 (2000), 87-93.


