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a b s t r a c t

The objective in this article is to present a unified convergence analysis of frozen Newton-
like methods under generalized Lipschitz-type conditions for Banach space valued opera-
tors. We also use our new idea of restricted convergence domains, where we find a more
precise location, where the iterates lie leading to at least as tight majorizing functions.
Consequently, the new convergence criteria are weaker than in earlier works resulting to
the expansion of the applicability of thesemethods. The conditions donot necessarily imply
the differentiability of the operator involved. This way our method is suitable for solving
equations and systems of equations. Numerical examples complete the presentation of this
article.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let X and Y be Banach spaces and letD be a subset of X .We denote by L(X ,Y) the space of all bounded linear operators
from X into Y. Let F : D ⊂ X −→ Y be a continuous nonlinear operator. Consider the equation

F (x) = 0. (1.1)

The task of obtaining a locally unique solution p of equation F (x) = 0 is very important. Indeed, using mathematical
modeling [1–3] numerous problems in optimization, control theory, inverse theory, Mathematical physics, Chemistry,
Biology, Economics and also in Engineering, can be made to look like equation F (x) = 0 defined on suitable abstract spaces.
It is desirable to find p in closed form. However, this task can be achieved only in special cases. That explains why most
researchers resort to iterative methods which generate a sequence converging to p under certain conditions.

It is well known [2] that under suitable conditions, Newton’s method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − F ′(xn)−1F (xn), (1.2)

where x0 ∈ D is an initial point provides a quadratically convergent iteration {xn} for solving Eq. (1.1). But, there is a plethora
of problems that for some reasons, Newton’s method cannot apply in its original form. A case of interest occurs when
the derivative is not continuously invertible, as for instance, when dealing with small divisors [4]. That is why numerous
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authors have proposed variants of Newton’s method which converge under Lipschitz-type conditions provided that certain
Kantorovich-type criteria are satisfied.

In this article, we study the unifying class of frozen Newton-like methods defined for each n = 0, 1, 2, . . . by

xn+1 = xn − L(ytn )
−1F (xn), (1.3)

where x0 is an initial point, L(.) : D −→ L(X ,Y), tn is a nondecreasing sequence of integers satisfying the conditions

t0 = 0, tn ≤ n for each n = 0, 1, 2, . . . (1.4)

and ytn is the highest indexed point x0, x1, . . . , xtn for which L(ytn )
−1 exists. Suppose that L(x0)−1

∈ L(Y,X ). It is well known
that from the numerical efficiency point of view, it is not advantageous to change the operator L(ytn )

−1 at each step of the
iterative method. We obtain more efficient iterative methods, if we keep this operator piece wise constant. According to the
dimension of the space optimal methods can be obtained [3]. Many popular methods can be obtained from method (1.3)
with an appropriate choice of the sequence {tn} for each n = 0, 1, 2 . . .:

SINGLE POINT METHODS:
Newton’s method (1.2):

tn = n, L(ytn ) = F ′(xn).

Modified Newton’s method:

xn+1 = xn − F ′(x0)−1F (xn),
tn = 0, L(ytn ) = F ′(x0).

Stirling’s method for the equation G(x) = x,X = Y and F (x) = x − G(x):

xn+1 = xn − F ′(xn)−1F (xn),
tn = n, L(ytn ) = F ′(xn).

Picard’s method [5]:

xn+1 = xn − F (xn),
tn = n, L(ytn ) = I,

where I is the identity operator on X and X = Y.
Traub method: tkm+j = km, j = 0, 1, . . . ,m − 1, k = 0, 1, 2, . . . . Then, method (1.3) reduces to an iterative method

studied by Traub [3]. The parameterm is chosen according to the dimension of the space in order tomaximize the numerical
efficiency of the method [6].

TWO POINT METHODS:
We can write method (1.3) in the form

xn+1 = xn − L(ysn , ytn )
−1F (xn), (1.5)

where L(.) = L(ysn , .) : D −→ L(X ,Y), sn is a nondecreasing sequence of integers satisfying the conditions

s0 = −1, sn ≤ tn ≤ n for each n = 1, 2, . . . . (1.6)

Secant method:

xn+1 = xn − [xn−1, xn; F ]
−1F (xn),

sn = n − 1, tn = n, [., .; F ] : D × D −→ L(X ,Y)

is a consistent approximation of the Fréchet derivative F ′ of F and L(ysn , ytn ) = [xn−1, xn; F ].

Modified secant method:

xn+1 = xn − [x−1, x0; F ]
−1F (xn),

sn = −1, tn = 0, for each n = 0, 1, 2, . . .

and L(ysn , ytn ) = [x−1, x0; F ].

Traub method [3]:
skm+j = km − 1, tkm+j = km, s−1 = s0 = −1, j = 0, 1, 2, . . . ,m − 1, k = 0, 1, 2, . . . . Then, method (1.5) reduces to a

procedure considered by Traub for scalar equations [3].
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MULTI POINT METHODS
Consider the method

xn+1 = xn − L(yt0 , yt1 , . . . , ytn−1 , ytn )
−1F (xn), (1.7)

where L(yt0 , yt1 , . . . , ytn−1 , ytn ) :
D×D...×D
n+1−times −→ L(X ,Y).

The local as well as semi-local convergence analysis of the preceding special cases of method (1.3) has been given in
the aforementioned references (see also [5,7,8]) under Lipschitz-type conditions implying the Fréchet-differentiability of F
although F ′ may not even be appearing in method (1.3). Therefore, these conditions limit the applicability of method (1.3).
Even, if the previously introduced conditions on F ′ are satisfied, the convergence domain is in general small.

In the present article we address these problems. Hence, the motivation for this article. More precisely, we have the
advantages:

(1) Method (1.3) is always defined, since we can choose ytn = x0 for each n = 0, 1, 2, . . . .
(2) Manymethods are special cases of method (1.3) as already indicated.We study the semi-local convergence of method

(1.3) assuming generalized Lipschitz conditions and only the continuity of operator F (see, e.g., condition (a3)),
whereas the differentiability of F is not necessarily implied. Therefore, method (1.3) is also suitable for solving non-
differentiable equations.

(3) Concerning the new convergence criteria, these are at least as weak as the ones appearing in the special methods.
This is due to two facts: (i) We utilize the center-Lipschitz condition (see (a2)) to find upper bounds on the norms of
the inverses involved instead of the Lipschitz condition used before which leads to less precise upper bounds. (ii) The
introduction of the center-Lipschitz condition helps us define a subset of D containing the iterates leading to tighter
majorant functions than before. At this generality the convergence of method (1.3) is linear. However, if the majorant
functions specialize, the convergence order increases. We refer the reader to Remarks 2.1 and 2.4 for more details
about the importance of method (1.3) as well as to the numerical examples. Similar advantages are obtained in the
local convergence case. Hence, the applicability of method (1.3) as well as its special cases is extended.

These improvements are obtained under the same computational cost, since in practice the computation of the oldmajorant
functions requires the computation of the new majorant functions as special cases.

The rest of the article is structured as follows: Sections 2 and 3 contain the semi-local and local convergence analyses of
method (1.3). Special cases and numerical examples are presented in Section 4 and Section 5 is conclusion.

2. Semi-local convergence analysis

We present the semi-local convergence analysis of method (1.3) using some Lipschitz-type conditions and parameters.
Let

R = sup{t ≥ 0 : Ū(x0, t) ⊆ D}.

The semi-local convergence of method (1.3) is based on the conditions (A):

(a1) Operator F : Ū(x0, R) −→ Y is continuous. There exist x0 ∈ D, such that L(x0)−1
∈ L(Y,X ) and η ≥ 0 such that

∥L(x0)−1F (x0)∥ ≤ η.

(a2) There exists non-decreasing function γ : [0,+∞) −→ [0,+∞) such that for each x ∈ Ū(x0, r), 0 ≤ r ≤ R

∥L(x0)−1(L(x) − L(x0))∥ ≤ γ (∥x − x0∥).

For γ (R) < 1, set β = max{0 ≤ t ≤ R : γ (t) < 1} and define U0 := Ū(x0, r) ∩ U(x0, β).
(a3) There exists non-decreasing function α : [0, β) −→ [0,+∞) such that for each u, v, z ∈ U0

∥L(x0)−1(F (v) − F (z) − L(u)(v − z))∥ ≤ α(r)∥v − z∥.

(a4) Equation(
1 +

g(η)
1 − g(t)

)
η − t = 0

has at least one positive solution. Denote by r0 the smallest such solution, where

g(t) =
α(η)

1 − γ (t)
.

(a5) 0 ≤ g(r0) < 1 and γ (r0) < 1.
(a6) Ū(x0, r0) ⊆ Ū(x0, R). Notice that in view of (a4) and (a5) r0 > η.

(a7) There exists r1 ≥ r0 such that α(r1) + γ (r0) < 1. Set U1 = Ū(x0, r) ∩ Ū(x0, r1).
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Remark 2.1. Let us comment further (see also the introduction) on the motivation for the convergence hypotheses (A) one
at a time before we present the proof of the semi-local convergence of method (1.3).

(a1) Researchers usually assume that F is continuously Fréchet differentiable although F ′ may not even appear in the
method. We only assume that F is continuous. Moreover, in the first two examples operator F is continuous but not
differentiable. The hypothesis on η is needed to show how close to the solution the initial point should be for convergence
and is a standard hypothesis.

(a2) We use the center Lipschitz condition to determine an at least as small function γ as the one used (by others) call
it γ̃ for the Lipschitz condition on Ū(x0, R). Then, γ ≤ γ̃ . This way the upper bound on ∥L(x)−1L(x0)∥ is at least as tight as
before.

(a3) In (a2) we have established U0 where the iterates lie and since U0 ⊆ Ū(x0, r) our Lipschitz-type condition (where
function α depends on γ and U0) is such that α ≤ α̃,where function α̃ depends on Ū(x0, r).

(a4) The equation here is more precise than the usual corresponding one in (a4) using γ̃ , α̃ and g̃, since also g ≤ g̃.
(a5)–(a7) These conditions are also more precise than the ones in (a3) using γ̃ , α̃, g̃ and r̃0.
In view of the above and the estimates given in the proof that follows, we have the additional advantages over using

γ̃ , α̃, g̃ and r̃0:

(i) Larger convergence domain,
(ii) Tighter error bounds on the distances ∥xn+1 − xn∥, ∥xn − p∥. That is fewer iterations are needed to achieve a desired

error tolerance ε > 0.
(iii) An at least as precise information on the location of the solution.

Indeed, the old equation [2] is given by(
1 +

g̃(η)
1 − g̃(t)

)
η − t = 0,

where

g̃(t) =
α̃(η)

1 − γ̃ (t)
.

Then, it follows that if the old equation has a solution, so does the new equation but not necessarily vice versa. Let us provide
an academic example by specializing the functions.

Example 2.2. Choose X = Y = R, D = U(x0, 1 − ξ ), x0 = 1, ξ ∈ (0, 1
2 ) and R = 1 − ξ . Define function F on D by

F (x) = x3 − ξ .

ConsiderNewton’smethod. Then,wehave γ (t) = (3−ξ )t, α(t) = 2
(
1 +

1
3−ξ

)
t, β =

1
3−ξ , γ̃ (t) = (2−ξ )t, α̃(t) = 2(2−ξ )t

and η =
1
3 (1 − ξ ). Notice that for each t ∈ (0, 1

2 )

γ (t) < γ̃ (t),

α(t) < α̃(t)

and

g(t) < g̃(t).

Choose ξ = 0.49. Then r0 = 0.3056, but the old equation with tilde function has no real solution. Hence, there is no
assurance that Newton’s method converges to p =

3√3 under the old approach. However, Newton’s method converges
under our approach.

These advantages are obtained under the same computational cost as if, we were to use γ̃ , α̃, g̃ and r̃0, since in practice
the new functions γ , α, g and parameter r0 are special cases of the aforementioned ones. As an example, we have in the
proof of the theorem that follows

∥xn+1 − xn∥ ≤
α(∥xn − xn−1∥)∥xn − xn−1∥

1 − γ (∥yn − x0∥)
which is tighter than

∥xn+1 − xn∥ ≤
α̃(∥xn − xn−1∥)∥xn − xn−1∥

1 − γ̃ (∥yn − x0∥)

used before, if α < α̃ or γ < γ̃ (see also Example 4.1).

Next, we present the semi-local convergence analysis of method (1.3) under the conditions (A). The technique of proof
can be reduced to the one given in the works by Ezquerro, Hernandex et al. (see, e.g. [2]) in the special case, when the
majorant conditions are the same.
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Theorem 2.3. Assume that the conditions (A) hold. Then, sequence {xn} generated by method (1.3) is well defined in U(x0, r0),
remains in U(x0, r0) for each n = 0, 1, 2, . . . and converges to a solution p of equation F (x) = 0 which is the only solution of this
equation in U1.Moreover, the following error bounds hold

∥x1 − x0∥ ≤ η, (2.1)

∥x2 − x1∥ ≤ g(η)∥x1 − x0∥ ≤ g(η)η, (2.2)

∥xn − x0∥ ≤
1 − g(r0)n−1

1 − g(r0)
∥x2 − x1∥ + η ≤ r0 for each n = 2, 3, . . . , (2.3)

∥x0 − p∥ ≤ (
g(η)

1 − g(r0)
+ 1)η, (2.4)

∥x1 − p∥ ≤
g(η)η

1 − g(r0)
, (2.5)

∥xn+1 − xn∥ ≤ g(r0)n−1
∥x2 − x1∥ for each n = 2, 3, . . . . (2.6)

and

∥xn − p∥ ≤
g(r0)n−1

1 − g(r0)
∥x2 − x1∥ for each n = 2, 3, . . . . (2.7)

Furthermore, p is the only solution of equation F (x) = 0 in U1.

Proof. By conditions (a1) and (a4) we have x1 ∈ U(x0, r0). Let x ∈ U(x0, r0). Then, using (a1) and (a2)

∥L(x0)−1(L(x) − L(x0))∥ ≤ γ (∥x − x0∥) ≤ γ (r0) ≤ γ (R) < 1, (2.8)

by the definition of β. If follows from (2.8) and the Banach lemma on invertible operators [1] that L(x)−1
∈ L(Y,X ) and

∥L(x)−1L(x0)∥ ≤
1

1 − γ (∥x − x0∥)
. (2.9)

In particular, we have for x = x1 that since x1 ∈ U(x0, r0), L(x1)−1
∈ L(Y,X ) and by (a1) and (4.9)

∥L(x1)−1L(x0)∥ ≤
1

1 − γ (η)
. (2.10)

Iterate x2 is well defined since x1 is well defined and y1 = x0 or y1 = x1. Notice that (2.1) holds by method (1.3) for n = 0
and (a1). Suppose that xm+1 and ym exist for allm = 0, 1, 2 . . . , n.We can write by method (1.3)

F (xm+1) = F (xm+1) − F (xm) − L(ym)(xm+1 − xm). (2.11)

In particular form = 0, (a3), (2.10), (a3) and (a4), we get in turn

∥x2 − x1∥ ≤ ∥L(y1)−1L(x0)∥∥L(x0)−1(F (x1) − F (x0)) − L(y0)(x1 − x0)∥

≤
α(∥x1 − x0∥)∥x1 − x0∥

1 − γ (∥x1 − x0∥)

≤
α(η)

1 − γ (η)
∥x1 − x0∥

≤
α(η)η

1 − γ (η)
= g(η)η, (2.12)

which shows (2.2) (∥x2 − x1∥ ≤ ∥x1 − x0∥ by (a5)) and

∥x2 − x0∥ ≤ ∥x2 − x1∥ + ∥x1 − x0∥ ≤ g(η)η + η < r0, (2.13)

so x2 ∈ U(x0, r0) and (2.4) holds for n = 2. Similarly by (2.11) form = 1, y2 = x0 or x1 or x2 (so y2 ∈ U(x0, r0) and (4.9) holds
for x = y2), (a3)-(a5) we have in turn that

∥x3 − x2∥ ≤ ∥L(y2)−1L(x0)∥∥L(x0)−1(F (x2) − F (x1)) − L(y1)(x2 − x1)∥

≤
α(∥x2 − x1∥)∥x2 − x1∥

1 − γ (∥y2 − x0∥)

≤
α(η)

1 − γ (r0)
∥x2 − x1∥

= g(r0)∥x2 − x1∥ < ∥x2 − x1∥, (2.14)
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which shows (2.3) for n = 2 and

∥x3 − x0∥ ≤ ∥x3 − x2∥ + ∥x2 − x1∥ + ∥x1 − x0∥
≤ g(r0)∥x2 − x1∥ + ∥x2 − x1∥ + ∥x1 − x0∥

≤
1 − g(r0)2

1 − g(r0)
∥x2 − x1∥ + ∥x1 − x0∥

<

(
g(η)

1 − g(r0)
+ 1

)
η = r0,

so x3 ∈ U(x0, r0) and (2.4) holds for n = 3. Similarly, we obtain

∥x4 − x3∥ ≤
α(∥x3 − x2∥)∥x3 − x2∥

1 − γ (∥y3 − y0∥)
(2.15)

≤
α(η)

1 − γ (r0)
∥x3 − x2∥ = g(r0)∥x3 − x2∥

< ∥x3 − x2∥ < ∥x2 − x1∥,
∥x4 − x3∥ ≤ g(r0)2∥x2 − x1∥

...

∥xm+1 − xm∥ ≤ g(r0)∥xm − xm−1∥ < ∥xm − xm−1∥

< ∥x2 − x1∥ (2.16)

∥xm+1 − xm∥ ≤ g(r0)m−1
∥x2 − x1∥ (2.17)

and

∥xm+1 − x0∥ ≤ ∥xm+1 − xm∥ + · · · + ∥x2 − x1∥ + ∥x1 − x0∥ (2.18)

≤
1 − g(r0)m

1 − g(r0)
∥x2 − x1∥ + η

≤

(
g(η)

1 − g(r0)
+ 1

)
η = r0, (2.19)

which complete the induction for (2.3) and (2.4). We can also have

∥xm+i − xm∥ ≤ ∥xm+i − xm+i−1∥ + · · · + ∥xm+1 − xm∥

≤ (g(r0)m+i−2
+ · · · + g(r0)m−1)∥x2 − x1∥

= g(r0)m−1 1 − g(r0)i

1 − g(r0)
∥x2 − x1∥. (2.20)

It follows from (2.20) that sequence {xm} is complete in a Banach space X and as such it converges to some p ∈ Ū(x0, r0)
(since Ū(x0, r0) is a closed set). By letting i −→ +∞ in (2.20), we obtain (2.7) form = n.We also get

∥p − x0∥ ≤ ∥p − x2∥ + ∥x2 − x0∥ (2.21)

≤
g(r0)

1 − g(r0)
∥x2 − x1∥ + (g(η) + 1)η

≤

(
g(r0)

1 − g(r0)
g(η) + g(η) + 1

)
η

≤

(
g(η)

1 − g(r0)
+ 1

)
η = r0

and

∥p − x1∥ ≤ ∥p − x2∥ + ∥x2 − x1∥ (2.22)

≤
g(r0)

1 − g(r0)
g(η)η + g(η)η

≤

(
g(r0)

1 − g(r0)
+ 1

)
g(η)η =

g(η)η
1 − g(r0)

.

which show (2.4) and (2.6), respectively.
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Next from (2.11), (a5) the estimate

∥L(x0)−1F (xm+1)∥ ≤ α(η)∥xm+1 − xm∥ (2.23)

and by letting m −→ ∞ in (2.23), we get F (p) = 0. To show the uniqueness part, let p∗ ∈ U1 such that F (p∗) = 0. Then, we
have from (4.9) for x = ym, (a4), (a5) and (a7) that

∥xm+1 − p∗∥ = ∥L(ym)−1
[F (xm) − F (p∗) − L(ym)(xm − p∗)]∥

≤
α(r1)∥xm − p∗∥

1 − γ (∥ym − x0∥)

≤
α(r1)

1 − γ (r0)
∥xm − p∗∥

= c∥xm − p∗∥ ≤ · · · ≤ cm+1
∥x0 − p∗∥ ≤ cm+1r1, (2.24)

where c =
α(r1)

1−γ (r0)
∈ [0, 1). By lettingm −→ +∞ in (2.23) we get limm−→+∞xm = p∗ and since we showed limm−→+∞xm =

p,we conclude that p∗ = p. □

Remark 2.4.

(a) Researchers prefer to leave equations like the one in (a4) as uncluttered as possible [2,6,7]. This equation specifies the
smallness of η (or the accuracy of the initial point x0 to assure convergence of themethod). The same equation provides
the radius of convergence r0. Such conditions on η and r0 are not immediate by just looking at the equation. We can
use some stronger conditions that imply the solvability of the equation. As an example, suppose that

0 ≤ 2g(η) < 1. (2.25)

Then, by (2.25) there exist r0 ≥ η and λ ∈ (0, 1) such that

g(η)
1 − g(r)

≤ λ < 1. (2.26)

Therefore, by the equation in (a4) and (2.26), we must have that

(1 + λ)η ≤ r0

or

η ≤
1

1 + λ
r0. (2.27)

In practice, we choose λ ∈ (0, 1) and solve equation

g(η)
1 − g(t)

= λ. (2.28)

By (2.26) and the intermediate value theorem equation g(η)
1−g(t) −λ = 0 has positive solutions. Denote by r0 the smallest

such solution. Then, the sufficient convergence criteria replacing (a4) and (a5) are given by (2.25) and (2.27).
(b) We can do even better using the set U1

0 := Ū(x0, r) ∩ U(x1, β − ∥x1 − x0∥) provided that ∥x1 − x0∥ < β. Notice that
U1
0 ⊆ U0, since for x ∈ U(x1, β − ∥x1 − x0∥),we have

∥x − x1∥ < β − ∥x1 − x0∥ H⇒ ∥x − x1∥ + ∥x1 − x0∥ < β

H⇒ ∥x − x0∥ < β H⇒ x ∈ U1
0 .

Moreover, if ∥x1−x0∥ <
β

2 , then x0 ∈ U(x1, β−∥x1−x0∥), so x0 ∈ U1
0 , since x0 ∈ Ū(x0, r). Clearly,U1

0 can then replace
U0 in Theorem 2.3 leading to a tighter function α̃ than α which in turn results an even finer convergence analysis.

(c) The results of Theorem 2.3 extend in the more general setting of inexact frozen Newton-like methods defined for each
n = 0, 1, 2, . . . by

xn+1 = xn − L(ytn )
−1F1(xn), (2.29)

where F1(x) = F (x) + q(x) and q : D −→ X is the residual operator and qn = q(xn) is a null residual sequence. If we
simply replace F by F1 in the hypotheses of Theorem 2.3, then the conclusions of this theorem hold for method (2.29)
with the exception of the uniqueness part. The uniqueness part also holds, if we further assume that q(p) = 0 (see
(2.24)). If q(x) = 0 method (2.29) reduces to method (1.3). It is well known that method (2.29) contains the so called
multi-step methods [6,7].
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3. Local convergence analysis

Let p ∈ D be a solution of equation F (x) = 0. Define R̄ = sup{t ≥ 0 : Ū(p, t) ⊆ D}.We base the local convergence of
method (1.3) on the conditions (B):

(b1) Operator F : Ū(p, R̄) −→ Y is continuous and L(p)−1
∈ L(Y,X ).

(b2) There exists non-decreasing function γ̄ : [0,+∞) −→ [0,+∞) such that for each x ∈ Ū(p, r), 0 ≤ r ≤ R̄

∥L(p)−1(L(x) − L(p))∥ ≤ γ̄ (∥x − p∥).

For γ̄ (R̄) < 1, set β̄ = max{0 ≤ t ≤ R̄ : γ̄ (t) < 1} and define V0 = Ū(p, r) ∩ U(p, β̄).
(b3) There exists non-decreasing function ᾱ : [0, β̄) −→ [0,+∞) such that for each u, v ∈ V0

∥L(p)−1(F (v) − F (p) − L(u)(v − p))∥ ≤ ᾱ(r)∥v − p∥.

(b4) Equation

ᾱ(t) + γ̄ (t) = 1 (3.1)

has positive solutions. Denote by r̄0 the smallest such solution.
(b5) Ū(p, r̄0) ⊆ Ū(p, R̄) and γ̄ (r̄0)r̄0 < 1.
(b6) There exists r̄1 ≥ r̄0 such that ᾱ(r̄1) + γ̄ (r̄0)r̄0 < 1. Set V1 = Ū(p, r) ∩ Ū(p, r̄).

Remark 3.1. Comments similar to the ones given in Remark 2.1 for the semi-local case can be given for the local case. Let
us present an example in the case of Newton’s method. Let us present an example in the case of Newton’s method.

Example 3.2. Let X = Y = R3,D = Ū(0, 1), p = (0, 0, 0)T . Define function F on D for w = (x, y, z)T by

F (w) = (ex − 1,
e − 1
2

y2 + y, z)T .

Then, the Fréchet-derivative is defined by

F ′(v) =

[ex 0 0
0 (e − 1)y + 1 0
0 0 1

]
.

Then, we have γ̄ (t) = (e − 1)t, ᾱ(t) =
1
2 e

1
e−1 t, β̄ =

1
e−1 and r̄0 = 0.38269191223238574472. The functions used

by Traub [3] in (b2) and (b3) are ¯̄γ (t) = et, ¯̄α(t) =
1
2 et, whereas the corresponding to (3.1) equation gives ¯̄r0 =

0.245252960780961482001. Notice that

γ̄ (t) < ¯̄γ (t)

and

ᾱ(t) < ¯̄α(t),

so the new error bounds are also tighter. Hence, the applicability of Newton’s method is extended.

Next, we present the local convergence analysis of method (1.3) under the (B) conditions.

Theorem 3.3. Assume that the conditions (B) hold. Then, sequence {xn} generated for x0 ∈ U(p, r0)−{p} by method (1.3) is well
defined in U(p, r0), remains in Ū(p, r̄0) for each n = 0, 1, 2, . . . and converges to p, so that

∥xn+1 − p∥ ≤ cn∥xn − p∥,

where

cn =
ᾱ(r̄1)

1 − γ̄ (∥xn − p∥)
≤ c̄ :=

ᾱ(r̄1)
1 − γ̄ (r̄0)

∈ [0, 1).

Moreover, the point p is the only solution of equation F (x) = 0 in V1.

Proof. Simply follow the proof of (2.24) with p, ᾱ, γ̄ , r̄0, r̄1 replacing x0, α, γ , r0, r1, respectively. □

Remark 3.4.

(a) As in Remark 2.4 assume that ∥x0 − p∥ ≤ β̄. Define the set V 1
0 = Ū(p, r) ∩ U(x0, β̄ − ∥x0 − p∥). Then, again we have

V 1
0 ⊆ V0 and V 1

0 can replace V0 in Theorem 3.3.
(b) The local results extend in the case ofmethod (2.29), if againwe replace F by F1 in the conditions (B) (see Remark 2.4(c)).
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4. Special cases and numerical examples

We first present two numerical examples involving systems defined on R3 and R2, respectively. In the first example, we
show, how to compute themajorant functions appearing in Theorems 2.3 and 3.3.Moreover, we show that the newmajorant
functions α, γ are tighter than ᾱ and γ̄ which are tighter than ᾱold, γ̄old used in [2]. Notice that the results in [2] improved the
results in [9,10]. The emphasis in the second example is to show convergence ofmethod (1.3), present some error bounds and
the solution p without necessarily verifying the convergence conditions introduced in the previous sections. Furthermore,
we provide an example involving a boundary value problem also reduced to solving a system of equations. Finally, in the
fourth example, we solve a nonlinear integral equation of Hammerstein type in cases not covered before.

The most widely used conditions for Newton-like methods are [8]:

∥L(x0)−1(F ′(x) − F ′(y))∥ ≤ ψ(r)∥x − y∥ (4.1)

∥L(x0)−1(L(x) − L(x0))∥ ≤ ψ0(r) (4.2)

∥L(x0)−1(F ′(x) − L(x))∥ ≤ ψ1(∥x − x0∥) + δ (4.3)

for each x, y ∈ U(x0, r), where ψ,ψ0, ψ1 : [0,+∞) −→ [0,+∞) are continuous and nondecreasing functions and δ ≥ 0.
Let us connect the conditions of Theorem 2.3 with the conditions (4.1)–(4.3) in the special case, where tn = n for each
n = 0, 1, 2 . . . . Using again (2.11), we get

F (xn+1) = F (xn+1) − F (xn) − L(xn)(xn+1 − xn)

=

∫ 1

0
[F ′(xn + θ (xn+1 − xn)) − L(xn)](xn+1 − xn)dθ

=

∫ 1

0
[F ′(xn + θ (xn+1 − xn)) − F ′(xn)](xn+1 − xn)dθ

+(F ′(xn) − L(xn))(xn+1 − xn). (4.4)

Then, using (4.1)–(4.4), we get

∥L(x0)−1F (xn+1)∥ ≤
1
2
ψ(r)∥xn+1 − xn∥2

+ (ψ1(r) + δ)∥xn+1 − xn∥. (4.5)

Therefore, we must choose

α1(t) =
1
2
ψ(t)t + ψ1(t) + δ (4.6)

and

γ 1(t) = ψ0(t). (4.7)

Notice that

α(t) ≤ α1(t) and γ (t) ≤ γ 1(t), (4.8)

since U0 ⊆ Ū(x0, r). However, if we use our technique of restricted convergence domains and suppose together with (4.2)
that

∥L(x0)−1(F ′(x) − F ′(y))∥ ≤ ψ̄(r)∥x − y∥ (4.1)′

and

∥L(x0)−1(F ′(x) − L(x))∥ ≤ ψ̄1(∥x − x0∥) + δ (4.3)′

for each x, y ∈ U0 and ψ̄, ψ̄1 : [0, β) −→ [0,+∞) continuous, nondecreasing and δ̄ ≥ 0, then we can choose

α(t) = α0(t) =
1
2
ψ̄(t)t + ψ̄1(t) + δ̄

and

γ (t) = γ 0(t) = γ 1(t).

Then, again we have that (4.8) holds, since

ψ̄(t) ≤ ψ(t), ψ̄1(t) ≤ ψ1(t) and δ̄ ≤ δ. (4.9)

Therefore, the new results extend the old ones in view of (4.8) and (4.12).
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Let X = Y = Rk in the rest of the section, where k is a positive integer. In what follows we shall use the definition of the
standard divided difference [a, b; F ] := ([a, b; F ]ij)ki,j=1 ∈ L(Rk,Rk) defined for F = (F1, F2, . . . , Fk)T , a = (a1, a2, . . . , ak)T ,
b = (b1, b2, . . . , bk)T , 1 ≤ i, j ≤ k by

[a, b; F ]i.j =
Fi(a1, . . . , aj, bj+1, . . . , bk) − Fi(a1, . . . , aj−1, bj, bj+1, . . . , bk)

aj − bj
. (4.10)

The formula defines a bounded linear operator which satisfies [b, a; F ](b − a) = F (b) − F (a) for each a ̸= b, a, b ∈ Rk.

Example 4.1 ([2,9,10]). Let k = 3,D = U(0, 1) and for h = (h1, h2, h3)T define mapping F on D by

F (h) = (h1 + 0.0125|h1|, h2
2 + h2 + 0.0125|h2|, eh3 − 1)T . (4.11)

Clearly, a solution of equation F (h) = 0 is given by p = (0, 0, 0)T .
Let F : D ⊆ R3

−→ R3, we use the divided differences of first order given by [u, v; F ] = ([u, v; F ])4i,j=1 ∈ L(R3,R3),
where

[u, v; F ]i1 =

{Fi(u1, v2, v3) − Fi(v1, v2, v3)
u1 − v1

, if u1 ̸= v1

0, if u1 = v1

[u, v; F ]i2 =

{Fi(u1, u2, v3) − Fi(u1, v2, v3)
u2 − v2

, if u2 ̸= v2

0, if u2 = v2

and

[u, v; F ]i3 =

{Fi(u1, u2, u3) − Fi(u1, u2, v3)
u3 − v3

, if u3 ̸= v3

0, if u3 = v3.

It is easy to see that [x, y; F ] = F (x)− F (y) with x and y having some different component. If the three components coincide
for two terms xn = xn+1, then no more iterations are needed and xn = xn+1 = p.

Local case

∥[z̃, p; F ]
−1([x, y; F ] − [u, v; F ])∥ ≤ d[

e
2
(∥x − u∥ + ∥y − v∥) + 0.025]

for each x, y, u, v ∈ D
∥[z̃, p; F ]

−1([z̃, x; F ] − [z̃, p; F ])∥ ≤ d[∥x − z̃∥ + 0.025]
for each x, y ∈ D

and

∥[z̃, p; F ]
−1([x, y; F ] − [u, v; F ])∥ ≤ d[

eρ0

2
(∥x − u∥ + ∥y − v∥) + 0.025]

for each x, y, u, v ∈ V0

where d = ∥[p, z̃; F ]
−1

∥. Therefore, we can define , R̄ = 1,

ᾱold = d(et + 0.025),

γ̄ (t) = γ̄old = d(2t + 0.025)

and

ᾱ(t) = d(eρ̄ t + 0.025),

where ρ̄ = min{1, β̄}. Then, we have that

ᾱ(t) < ᾱold(t)

and

γ (t) ≤ ᾱold(t) (4.12)

for each t > 0. Then, in [2,9,10] using the secant method (1.4) for z̃ = (0.01, 0.01, 0.01)T , we obtain for: d = 1.7206 by
solving equation ᾱold(t) + γ̄old(t) = 1 that r̄old = 0.1126.

In the case of Theorem3.3 (i.e., usingmethod (1.3)), we have β̄ =
1
d −0.025 so ρ̄ = ρ0 and (4.2) holds as a strict inequality.

Moreover, we have by solving equation ᾱ(t) + γ̄ (t) = 1 that

r̄0 = 0.1419. (4.13)
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It follows from the above that for the secant method, the new results improve the ones in [2,9,10], since

r̄old < r̄0. (4.14)

Semi-local case [2,9,10]
We also obtain for R = 1,

γ (t) = γold(t) = d0(2t + 0.025),

αold(t) = d0(et + 0.025)

and

α(t) = d0(er
∗

t + 0.025) (4.15)

where d0 = ∥[x−1, x0; F ]
−1

∥, β = 0.5562, r∗
= min{1, β} = 0.5562 and γold, αold are as γ , α respectively but defined on D

(see also [2,9,10] and (2.20)). Then, again we have that

α(t) < αold(t) (4.16)

and

γ (t) < αold(t) (4.17)

Choose x0 = (0.1, 0.1, 0.01)T , and x−1 = (0.11, 0.11, 0.02)T . Then, we get that η = ∥x1 − x0∥ = 0.1123, d0 = 0.8180.
Then, by solving equation [2,9,10][

1 +
gold(η)

1 − gold(t)

]
η − t = 0,

where gold(t) =
αold(η)

1−γold(t)
,we get rold = 0.1747. If we use the secant method, we must solve the equation [2,9,10] (see (a4))[

1 +
g(η)

1 − g(t)

]
η − t = 0, (4.18)

to obtain r0 = 0.1890, so the uniqueness of the solution is established in a larger ball than in [2,9,10].

Example 4.2. Let us consider the system for h = (h1, h2)T

f1(h) = 3h2
1h2 + h2

2 − 1 + |h1 − 1| = 0 (4.19)

f2(h) = h4
1 + h1h3

2 − 1 + |h2| = 0 (4.20)

which can be written as F (h) = 0, where F = (f1, f2)T . Using the analog to the divided difference given in Example 4.1,
([a, b; F ]ij)2i,j=1 ∈ L(R2,R2), for x−1 = (1, 0)T , x0 = (5, 5)T ,we obtain by (1.3).

n x(1)n x(2)n ∥xn − xn−1∥

0 5 5 5
1 1 0 5
2 0.909090909090909 0.363636363636364 3.0636E−01
3 0.894886945874111 0.329098638203090 3.453E−02
4 0.894655531991499 0.327827544745569 1.271E−03
5 0.894655373334793 0.327826521746906 1.022E−06
6 0.8946655373334687 0.327826521746298 6.089E−13
7 0.8946655373334687 0.327826421746298 2.710E−20

Hence, the solution p is given by p = (0.894655373334687, 0.3278626421746298)T . Notice that mapping F is not
differentiable, so the earlier results mentioned in the introduction of this study cannot be used.

Example 4.3. We consider the boundary value problem appearing in many studies of applied sciences [2] given by

ϕ′′
+ ϕ1+µ

+ ϕ2
= 0, µ ∈ [0, 1] (4.21)

ϕ(0) = ϕ(1) = 0.

Let h =
1
l , where l is a natural integer and set si = ih, i = 1, 2, . . . , l − 1. The boundary conditions are then given by

ϕ0 = ϕn = 0.We shall replace the second derivative ϕ′′ by the popular divided difference

ϕ′′(t) ≈
[ϕ(t + h) − 2ϕ(t) + ϕ(t − h)]

h2 (4.22)

ϕ′′(si) =
ϕi+1 − 2ϕi + ϕi−1

h2 , i = 1, 2, . . . , l − 1.
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Using (4.21) and (4.22), we obtain the system of equations defined by

2ϕ1 − h2ϕ
1+µ
1 − h2ϕ2

1 − ϕ2 = 0

− ϕi−1 + 2ϕi − h2ϕ
1+µ
i − h2ϕ2

i − ϕi+1 = 0 (4.23)

− ϕl−2 + 2ϕl−1 − h2ϕ
1+µ
l−1 − h2ϕ2

l−1 = 0.

Define operator F : Rl−1
−→ Rl−1 by

F (ϕ) = M(x) − h2f (ϕ), (4.24)

where

M =

⎡⎢⎢⎣
2 −1 0 . . . 0

−1 2 −1 . . . 0
...

...
...

...
...

0 0 0 . . . 2

⎤⎥⎥⎦
and

f (ϕ) = [ϕ
1+µ
1 + ϕ2

1 , ϕ
1+µ
2 + ϕ2, . . . , ϕ

1+µ
l−1 + ϕ2

l−1]
T .

Then, the Fréchet-derivative F ′ of operator F is given by

F ′(ϕ) = M − (1 + µ)h2

⎡⎢⎢⎣
ϕ
µ

1 0 0 . . . 0
0 ϕ

µ

2 0 . . . 0
...

...
...

...
...

0 0 0 . . . ϕ
µ

l−1

⎤⎥⎥⎦

−2h2

⎡⎢⎢⎣
ϕ1 0 0 . . . 0
0 ϕ2 0 . . . 0
...

...
...

...
...

0 0 0 . . . ϕl−1

⎤⎥⎥⎦ . (4.25)

We shall use a special case of method (1.3) given by

ψ (1)
n = ψn − F ′(ψn)−1F (ψn)

ψ (2)
n = ψ (1)

n − F ′(ψn)−1F (ψ (1)
n )

...

ψ (k)
n = ψ (k−1)

n − F ′(ψn)−1F (ψ (k−1)
n ) (4.26)

ψn+1 = ψ (k)
n .

Let µ =
1
2 , k = 3 and l = 10. This way we obtain a 9 × 9 system. A good initial approximation is 10 sinπ t, since a solution

of (4.21) vanishes at the end points and is positive at the interior. This approximation gives the vector

ξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0901699423
5.877852523
8.090169944
9.510565163

10
9.510565163
8.090169944
5.877852523
3.090169923

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
leading using (4.26) to

ψ0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.396257294
4.698040582
6.677432200
8.038726637
8.526409945
8.038726637
6.6774432200
4.698040582
2.396257294

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Using vector ψ0 as the initial vector in (4.26), we get the solution ψ∗ given by

ψ∗
= ψ6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.394640795
4.694882371
6.672977547
8.033409359
8.520791424
8.033409359
6.672977547
4.694882371
2.394640795

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Notice that operator F ′ given in (4.25) is not Lipschitz.

Example 4.4. Let X = Y = C[0, 1], be the space of continuous functions on [0, 1] equipped with the max-norm. Let
D = {x ∈ C[0, 1] : ∥x∥ ≤ R}, R > 0. Define F on D by

F (x)(s) = x(s) − f (s) − d
∫ 1

0
P(s, t)x(t)3dt, c ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, d is a real constant and the kernel P is the Green’s function. In this case, for each x ∈ D,
the Fréchet-derivative F ′ is a linear operator defined by

[F ′(x)(v)](s) = v(s) − 3s
∫ 1

0
P(s, t)x(t)2v(t)dt, v ∈ C[0, 1], s ∈ [0, 1].

Choose x0(s) = f (s) = 1, to obtain ∥I − F ′(x0)∥ ≤
3|d|
8 . Hence, |d| <

8
3 , F

′(x0)−1 is defined and

∥F ′(x0)−1
∥ ≤

8
8 − 3|d|

, ∥F (x0)∥ ≤
|d|
9
, η = ∥F ′(x0)−1F (x0)∥ ≤

|d|
8 − 3|d|

.

Consider the case of Newton’s method. Choosing d = 1.0 and R = 3, we have η = 0.2, γ (t) = 2.6t, α(t) = 2.28t and
γ̃ (t) = 3.8t, α̃(t) = 3.8t. Then, the old equation given in Remark 2.1 has no positive solution, but using the equation in (a4)
of Theorem 2.3, we see that r0 = 0.01. Hence, the conclusions of Theorem 2.3 hold in this case.

5. Conclusion

We presented a local as well as a semi-local convergence analysis of frozen Newton-like methods for generating a
sequence approximating Banach space valued equations. This method specializes to many popular methods. If the starting
inverse exists, then the method is always well defined. Using our idea of the restricted convergence domain, we provide
a more precise domain where the iterates lie. Hence, the majorant functions involved are at least as tight as in previous
studies. This way, the convergence criteria are at least as weak; the convergence domain is enlarged; the error bounds on
the distances ∥xn − p∥, ∥xn+1 − xn∥ are tighter and the information on the location of the solution is at least as precise.
The results reduce to earlier ones, if only one majorant condition is used. Moreover, the differentiability of operator F is not
assumed or implied as in previous works, making method (1.3) suitable for solving systems of equations.
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