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a b s t r a c t

In 1990, Acharya and Hegde introduced the concept of strongly k-indexable graphs: A
(p, q)-graph G = (V , E) is said to be strongly k-indexable if its vertices can be assigned
distinct numbers 0, 1, 2, . . . , p − 1 so that the values of the edges, obtained as the sums
of the numbers assigned to their end vertices form an arithmetic progression k, k+ 1, k+
2, . . . , k + (q − 1). When k = 1, a strongly k-indexable graph is simply called a strongly
indexable graph. In this paper, we report some results on strongly k-indexable graphs and
give an application of strongly k-indexable graphs to plane geometry, viz; construction of
polygons of same internal angles and sides of distinct lengths.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

For all terminology and notation in graph theory, we follow Harary [7] and West [12].
Graph labelings, where the vertices and edges are assigned real values or subsets of a set subject to certain conditions,

have often been motivated by their utility in various applied fields and their intrinsic mathematical interest (logico-
mathematical). Graph labelings were first introduced in the mid sixties. In the intervening years, dozens of graph labeling
problems have been studied in over six hundred papers. An enormous body of literature has grown around the subject,
especially in the last forty years or so, and is still getting embellished due to an increasing number of application driven
concepts [6].
Labeled graphs are becoming an increasingly useful family of mathematical models for a broad range of applications.

The qualitative labelings of graph elements have inspired research in diverse fields of human enquiry such as conflict
resolution in social psychology, electrical circuit theoryand energy crisis. Quantitative labelings of graphs have led to quite
intricate fields of applications such as Coding Theory problems, including the design of good radar location codes, synch-set
codes, missile guidance codes and convolution codes with optimal autocorrelation properties. Labeled graphs have also been
applied in determining ambiguities in X-Ray Crystallographic analysis, to design communication network addressing systems,
to determine optimal circuit layouts and radio-astronomy, etc.
In this section, we mention necessary definitions and some important results on additive theme based labelings [1,2,

8–10] etc.
Given a (p, q)-graph G = (V , E), the set N of nonnegative integers, a finite subset A of N and a commutative binary

operation + : N × N → N , every vertex function f : V (G) → A induces an edge function f + : E(G) → N such that
f +(uv) = f (u)+ f (v) ∀ uv ∈ E(G). Such vertex functions are called additive vertex functions [1,2].

Theorem 1.1 ([1]). For any graph G = (V , E) and for any vertex function f : V (G)→ N∑
e∈E(G)

f +(e) =
∑
v∈V (G)

d(v)f (v). (1)
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Fig. 1.1. An indexable graph.

Fig. 1.2. A strongly indexed graph.

Definition 1.2 ([1]). An additive labeling of a graph G is an injective vertex function f such that induced edge function f + is
injective.

For the given (p, q)-graph G = (V , E) define

1. f (G) = {f (u) : u ∈ V (G)}.
2. f +(G) = {f +(e) : e ∈ E(G)}.

Acharya and Hegde have introduced the concept of (k, d)-arithmetic and strongly (k, d)-indexable graphs.

Definition 1.3 ([1]). An additive labeling f of a graph G is said to be a (k, d)-arithmetic labeling (arithmetic labeling) where k
and d are positive integers if f +(G) = {k, k+ d, k+ 2d, . . . , k+ (q− 1)d}. A graph which admits such a labeling for at least
one pair of values of k and d is called (k, d)-arithmetic (or arithmetic) graph.

Definition 1.4 ([1]). An additive labeling f of a graph G is said to be an indexable labeling if f : V (G)→ {0, 1, 2, . . . , p− 1}
such that the values in f +(G) are all distinct. A graph which admits such a labeling is called an indexable graph.

An example of an indexable graph is displayed in Fig. 1.1.

Definition 1.5 ([1,8]). An indexable labeling of a graph G with f +(G) = {k, k + d, . . . , k + (q − 1)d} is called strongly
(k, d)-indexable labeling of G.

Definition 1.6 ([1,8,3]). A strongly (k, d)-indexable labeling of a (p, q) graph G with d = 1 is called a strongly k-indexable
labeling. A graph which admits such a labeling for at least one value of k is called strongly k-indexable graph.

Strongly 1-indexable graphs are simply called strongly indexable or strongly indexed graphs. An example of a strongly
indexed graph is given in Fig. 1.2.
Kotzig and Rosa [11] have introduced the concept of edge-magic graphs.

Definition 1.7. A graph G is said to be edge-magic if it admits a bijection f : V ∪ E → {1, 2, . . . , p + q} such that
f (u)+ f (v)+ f (uv) = c(f ), a constant for all uv ∈ E.

Enomoto et al., [4] have introduced the concept of super edge-magic graph.

Definition 1.8. A graph G is said to be super edge-magic if it admits a bijection f : V ∪ E → {1, 2, . . . , p + q} with
f (V ) = {1, 2, . . . , p} and f (E) = {p+ 1, p+ 2, . . . , p+ q} such that f (u)+ f (v)+ f (uv) = c(f ), a constant for all uv ∈ E.

Remark 1.9. From the above definition, one can prove that, if a graph G is strongly k-indexable, then it is super edge magic
with c(f ) = p + q + k + 2. Also it can be proved that if a graph G is super edge magic then it is strongly k-indexable for
k = c(f ) − p − q − 2. One can verify that the cycle C5 is super edge magic with c(f ) = 14 and strongly 2-indexable. But
C5 is not strongly indexable (see Theorem 2, Acharya and Hegde [3]). Thus, it is clear that every strongly k-indexable graph
is super edge magic irrespective of k but every super edge magic graph is not strongly k-indexable for all k especially when
k = 1. So the study of strongly k-indexable graphs is more useful.
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Fig. 2.1. A 2-indexed C2,5 .

Fig. 2.2. A 5-indexed C2,5 .

2. Strongly k-indexable graphs

In this section, we investigate finite strongly k-indexable graphs. The next result gives an idea of how to generate a
strongly k-indexable labeling from a given strongly k-indexable labeling of the graph G.

Theorem 2.1. A (p, q)-graph G = (V , E) is strongly k-indexable if and only if it is strongly [(2p− q− 1)− k]-indexable.

Proof. Let G = (V , E) be a (p, q)-graph which is strongly k-indexable with strongly k-indexable labeling f .
Then define a labeling g : V (G)→ {0, 1, 2, . . . , p− 1} by g(vi) = (p− 1)− f (vi) for all vi ∈ V (G).
Note that

g+(uv) = 2(p− 1)− (f (u)+ f (v)) = 2p− 2− f +(uv).

Therefore clearly g+ is injective. Since f +(G) = {k+ i|0 ≤ i ≤ q− 1}, we get

g+(G) = {2p− 2− (k+ i)|0 ≤ i ≤ q− 1}
= {2p− 2− (k+ (q− 1− j))|0 ≤ j ≤ q− 1}
= {2p− q− 1− k+ j|0 ≤ j ≤ q− 1}.

Hence g is strongly [(2p− q− 1)− k]-indexable labeling of G. Similarly, one can prove the converse. �

Corollary 2.2. If a (p, q)-graph is strongly k-indexable, then 1 ≤ k ≤ 2p− q− 2.

Corollary 2.3. A tree T on p vertices is strongly k-indexable if and only if it is strongly (p − k)-indexable; in particular, if T is
strongly k-indexable, then 1 ≤ k ≤ p− 1.

Definition 2.4 ([6]). A caterpillar is a tree, the deletion of whose pendant vertices results in a path.

For example, strongly k-indexable labeling and strongly [(2p− q− 1)− k]-indexable labeling of Caterpillar C2,5 using the
above theorem are displayed in Figs. 2.1 and 2.2, respectively (Note that k = 2).
It is important to note that the sets of labels in the strongly k-indexable labeling and strongly [(2p−q−1)−k]-indexable

labeling need not be distinct. For example, strongly k-indexable labeling and strongly (2p− q− 1− k)-indexable labelings
of Petersen graph using Theorem 2.1, are displayed in Fig. 2.3. (Note that k = (2p − q − 1) − k when k = 2 for Petersen
graph).
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Fig. 2.3. A Strongly 2-indexed and [(2p− q− 1)− 2]-indexed Petersen graph.

Fig. 2.4. Strongly 1-indexed eulerian graph.

Fig. 2.5. Strongly 2-indexed C5 .

The following result gives a necessary condition for an eulerian graph to be strongly k-indexable.

Theorem 2.5. Let G be an eulerian (p, q)-graph that is strongly k-indexable.
1. If k is odd then q ≡ 0, 3(mod 4).
2. If k is even then q ≡ 0, 1(mod 4).

Proof. Let G = (V , E) be a strongly k-indexable (p, q)-eulerian graph with a strongly k-indexable labeling f . From Eq. (1)
we get∑

u∈V

deg(u)f (u) = qk+
q(q− 1)
2

. (2)

Case 1: Let k = 2m+ 1
Since the degree of every vertex of an eulerian graph is even, the left side of the Eq. (2) is even and the right side must be

even. This is possible only when q ≡ 0, 3(mod 4).
Case 2: Let k = 2m
Similarly, to get an even number on the right side of (2) we must have, q ≡ 0, 1(mod 4).

For example, in the cases q ≡ 0(mod 4), q ≡ 1(mod 4) and q ≡ 3(mod 4) respectively, strongly 1-indexable, strongly
2-indexable and strongly 3-indexable labeling of eulerian graphs are displayed in Figs. 2.4–2.6.
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Fig. 2.6. Strongly 3-indexed C7 .

Fig. 2.7. A strongly indexable labeling LJ4,5 .

Definition 2.6. Let u be a vertex of Pa × Pb such that deg(u) = 2. Introduce an edge between every pair of distinct vertices
v, w with deg(v), deg(w) 6= 4 if d(u, v) = d(u, w)where d(u, v) is the distance between u and v. The graph thus obtained
is defined as the level joined planar grid and is denoted by LJa,b.

An example LJ4,5 is illustrated in Fig. 2.7.

Theorem 2.7. The graph LJa,b is strongly indexable for all a, b ≥ 2.

Proof. Denote the vertex at ith row, jth column of Pa× Pb as vi,j. Without loss of generality, we can assume a ≤ b. Construct
the graph LJa,b, as illustrated in Fig. 2.7. Let V be the vertex set of LJa,b with p vertices.
Define a function f : V → {0, 1, 2, . . . , p− 1} such that

f (v1,j) =
j(j+ 1)− 2

2
; 1 ≤ j ≤ a

f (v1,j) =
(a+ 2aj− a2)− 2

2
; a < j ≤ b

f (vi,j) = f (vi−1,j+1)− 1; 2 ≤ i ≤ a, 1 ≤ j ≤ b+ 1− i
f (vi,j) = f (vi−1,j)+ (a+ b+ 1− j− i); 2 ≤ i ≤ a, b+ 1− i < j ≤ b.

One can verify that f thus defined is bijective. Also, one can observe that f is a strongly indexable labeling of LJa,b for all
a, b ≥2. �

For a = 1, b = 2 we get P1× P2 ≡ P2 which is strongly indexable. A strongly indexable labeling of level joined planar grid
LJ4,5 using Theorem 2.7 is exhibited in Fig. 2.7.
Theorem 2.7 motivates us to construct a higher order strongly indexable graph. Let vxi,j denote the vertex vi,j in the xth

copy of LJa,b. For any integer t > 1, construct a graph by joining the vertex vxa−1,b to the vertices v
x+1
1,1 , v

x+1
1,2 , v

x+1
2,1 ; 1 ≤ x < t

and denote the resulting graph as LJ ta,b (See Fig. 2.8.) The following result is the general form of Theorem 2.7.
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Fig. 2.8. A strongly indexable labeling of LJ34,5 .

Theorem 2.8. The graph LJ ta,b is strongly indexable for all integers a, b ≥ 2 and t ≥ 1.

Proof. Denote the vertex of the graph LJ ta,b as illustrated. One can observe that number of vertices of LJ
t
a,b is equal to abt and

the number of edges is equal to 2abt − 3. That is, p = abt and q = 2abt − 3.
Define a function f : V (LJ ta,b)→ {0, 1, 3, . . . , abt − 1} for 1 ≤ x ≤ t , by

f (vx1,j) =
j(j+ 1)− 2

2
+ ab(x− 1); 1 ≤ j ≤ a

f (vx1,j) =
(a+ 2aj− a2)− 2

2
+ ab(x− 1); a < j ≤ b

f (vxi,j) = f (v
x
i−1,j+1)− 1; 2 ≤ i ≤ a, 1 ≤ j ≤ b+ 1− i

f (vxi,j) = f (v
x
i−1,j)+ (a+ b+ 1− j− i); 2 ≤ i ≤ a, b+ 1− i < j ≤ b.

Then one can verify that f thus defined is a strongly indexable labeling of the graph LJ ta,b for all a, b ≥ 2 and t ≥ 1. Hence
the graph LJ ta,b is strongly indexable for all integers a, b ≥ 2 and t ≥ 1. �

For example, a strongly indexable labeling of LJ ta,b when a = 4, b = 5, t = 3 using Theorem 2.8, is illustrated in Fig. 2.8.

3. Applications of strongly k-indexable graphs

In this section, we give a construction of a polygon having same internal angles and distinct sides using the strongly
k-indexable labelings of a cycle.
Figueroa-Centenoa et al., [5] have introduced the concept of super edge-magic deficiency of graphs.
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Definition 3.1. Super edge-magic deficiency of a graph G is the minimum number of isolated vertices added to G so that the
resulting graph is super edge-magic and is denoted by µs(G).

Since a graph is super edge-magic if and only if it is strongly k-indexable for some k, super edge-magic deficiency is the
minimum number of isolated vertices added to a graph G so that the resulting graph is strongly k-indexable for some k. One
can observe that the results on super edge-magic deficiency of graphs can be proved in a simpler way using the concept of
strongly k-indexable labeling. Hence, for the sake of convenience, we call this parameter vertex dependent characteristic and
denote it by dc(G).
As there are many graphs which are not strongly k-indexable (see Acharya and Hegde [3,8]), it is interesting to study

vertex dependent characteristics of graphs.
Figueroa-Centenoa et al., [5] have proved that

Theorem 3.2. The vertex dependent characteristic of Cn is

dc(Cn) =

{1 if n ≡ 0(mod 4)
0 if n is odd
∞ if n ≡ 2(mod 4).

Theorem 3.3. The vertex dependent characteristic of the complete bipartite graph Km,n is at most (m− 1)(n− 1).

They conjectured that

Conjecture 3.4. The vertex dependent characteristic of the complete bipartite graph Km,n is equal to (m− 1)(n− 1).

Theorem 3.3 can equivalently be stated as:
If the polynomial f (x) = xm+xm+1+xm+2+· · ·+xm+mn−1 (or f (x) = xn+xn+1+xn+2+· · ·+xn+mn−1) can be expressed

as a product of two polynomials p(x) and q(x) having m and n terms respectively, such that no given power of x contained
in both p(x) and q(x) then dc(Km,n) ≤ (m− 1)(n− 1).
For example, consider K4,6 and the polynomial f (x) = x6+ x7+ x8+ · · ·+ x29. One can see that f (x) can be expressed as

a product of p(x) = 1+x+x4+x5 and q(x) = x6+x8+x14+x16+x22+x24. Assign the indices of x from p(x) and q(x) to the
four and six vertices of K4,6 respectively in a one-to-onemanner. Then one can see that the numbers from 6 to 29will appear
on the edges of K4,6. In all, there are 25 numbers from 0 to 24, and 10 numbers are assigned to the vertices. By introducing 15
isolated vertices and assigning the remaining 15 numbers in a one-to-one manner, one can see that K4,6 is embedded as an
induced subgraph of a strongly 6-indexable graph. This also shows that the vertex dependent characteristic of the complete
bipartite graph K4,6 is less than or equal to 15. We strongly believe that, using the above technique, Theorem 3.3 can be
proved.
Construction of polygon P4n+2 with 4n+ 2 sides such that all the internal angles are equal and lengths of the sides are distinct.
We know that C2n+1 is strongly k-indexable for k = n. Consider a regular polygonP2n+1 where the lengths of all sides are

equal. Let f be a strongly k-indexable labeling of C2n+1 ≡ P2n+1. The construcion ofP4n+2 with 4n+2 sides such that all the
internal angles are equal and lengths of the sides are distinct for all positive integer n using strongly k-indexable labeling of
cycle graph C2n+1 is as follows.

1. Step I: Replace f (u) by f (u)+ 1 for each u ∈ V (P2n+1) and then denote the vertex u of P2n+1 with label i as vi.
2. Step II: Divide each side of P2n+1 into 4n+ k+ 4 equal parts.
3. Step III: Denote the point which is at i parts distance from the vertex vi as vij if vj is adjacent to vi. Since vi is adjacent to
two vertices, we get the points vij, vik on the edges vivj and vivk. Join vij to vik so that vijvik is an edge of P4n+2.

4. Step IV: Apply Step III to every vertex of P2n+1
From the above steps, we get P4n+2 and clearly each internal angle of P4n+2 so constructed is equal to ( 2n

2n+1 )π .
Also, lengths of the sides of P4n+2 are of the form
(i) 4n+ k+ 4− (i+ j) if the side of P4n+2 is the portion of the edge vivj of C2n+1 or of the form

(ii)
√
i2 + i2 − 2i2 cos[( 2n−12n+1 )π ] if the side of P4n+2 is the join of vij and vik. That is of the form it where t =√

2(1− cos[( 2n−12n+1 )π ]) and t is unique for every n.
From (i) and (ii) one can prove that lengths of the sides of P4n+2 are distinct.
Polygons P6 and P10 constructed from the strongly k-indexable graphs C3 and C5 using above method are displayed in

Figs. 3.1 and 3.2.
From Theorem 3.2 we know that C4n ∪ K1 is strongly k-indexable. Therefore the same method can be used in the

construction of polygonsP8n from C4n such that all the internal angles are the same and lengths of the sides are distinct. An
example is displayed in Fig. 3.3.
Note that C4n+2 is not strongly k-indexable and dc(C4n+2) = ∞. Therefore, another natural question is ‘‘What is the

minimum number of isolated edges that need to be added to a graph G so that the resulting graph is strongly k-indexable?’’.
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Fig. 3.1. Polygon P6 constructed form C3 .

Fig. 3.2. Polygon P10 constructed form C5 (note that t = 1.618033989).

Fig. 3.3. Polygon P8 constructed form C4(t =
√
2).

Definition 3.5. The minimum number of isolated edges added to a graph G so that the resulting disconnected graph which
is strongly k-indexable is called the edge dependent characteristic and is denoted by ec(G). If a graph G is not strongly
k-indexable by adding any number of isolated edges then ec(G) = ∞ and if G is strongly k-indexable then ec(G) = 0.

For example, ec(C6) = 1 (see Fig. 3.4) (Note that dc(C6) = ∞ by Theorem 3.2)
An example for polygon P12 obtained from C6 is displayed in Fig. 3.5.
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Fig. 3.4. A strongly 4-indexable C6 ∪ 1K2 .

Fig. 3.5. Polygon P12 constructed from C6(t =
√
3).
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