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1 Assuming the shift invariance and linearity of th
where r is the standard deviation.
a b s t r a c t

In this paper a shock coupled fourth-order diffusion filter is proposed for image enhance-
ment. This filter converges at a faster rate while preserving and enhancing edges, ramps
and textures present in the images. The proposed filter diffuses with varying magnitudes
in the directions normal to the level-curve and along it. The magnitude of the directional
diffusion is controlled by a diffusion function, meant to provide a good response in the
direction along the level-curves, than across them. The proposed filter can still preserve
the planar approximation of the image, thereby avoiding the discrepancy caused due to
the staircase effect, as in the second-order counterparts. The anisotropic property of the fil-
ter is thoroughly studied, analyzed and demonstrated with perspective and quantitative
results. The performance of the proposed filter is compared with the state-of-the-art meth-
ods for image enhancement. The quantitative and perspective measures provided endorse
the capability of the method to enhance various kinds of images.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Image reconstruction is an important pre-processing step in majority of the image processing applications. An image
reconstruction is to reconstruct the original image Iðx; yÞ from the observed noisy and blurred image I0ðx; yÞ. An image deg-
radation model is generally formulated as:
I0ðx; yÞ ¼ KIðx; yÞ þ gðx; yÞ; ð1Þ
where I0ðx; yÞ is the observed blurred and noisy image defined on X; X � R2 denotes an open bounded set with a Lipschitz
boundary, Iðx; yÞ is the original image, K : X ! Y is a linear bounded operator,1 where X and Y are normed linear spaces and g
is a Gaussian white noise with mean zero and variance r2. However, the image reconstruction does not belong to a class of well-
posed problems in the sense of Hardmard [1], hence some regularization approaches are to be employed to solve them.

There have been a considerable interest in the field of partial differential equations (PDE) and variational methods for im-
age reconstruction in the last few decades [2–10]. Majority of models proposed in the literature include a prior knowledge
into the scale space evolution, which leads to an image enhancement, denoising while preserving some of semantically
important information like edges, lines etc., present in the images. These methods are widely used in the area of computer
vision and image processing. A detailed survey of these methods can be found in [11,12].

Introduction of shock filters by Rudin and Osher can be considered as a peer-less achievement in the area of image
enhancement, see [13]. These filters can be classified into a set of hyperbolic PDEs, which create strong discontinuities at
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the image edges. However, most of images used commonly are corrupted by noise, in such cases, the shock filter fails to dis-
tinguish the inflection points due to the noise from that due to the edges. Many modifications were suggested in subsequent
works to address this issue, see [14–16]. In [6,14,17], the authors used a Gaussian smoothed image function in the shock
filter, so that the noise gets suppressed to an extend, while the shock is being applied on the edges. However, this method
will smooth-out the noise, at the cost of weakening edges. Another mile-stone in this direction was the introduction of ‘‘dif-
fusion coupled shock filter’’ by Alvarez and Mazorra in [14]. Since then, there were many modifications suggested for the
diffusion term as well as the shock term, see [6,16–18].

All these filters that couple a diffusion term and a shock term, use a variation of mean curvature motion (MCM) in place of
the diffusion term. The MCM was introduced to image processing by Marquiana and Osher in [19]. In the MCM model, each
of the level-curves in the image evolves with the speed proportional to their mean curvature and eventually results in mak-
ing the curved edges more curvy, until it vanishes to a point. In addition to this, all the second-order diffusion methods
including MCM approximates the observed image with piece-wise constant images and the evolution eventually results
in forming constant patches in the filtered image. This is commonly known as block effect or staircase effect and it causes
visual discrepancies in the filtered image.

In this paper, we propose a fourth-order diffusion coupled shock filter to denoise and deblur the images. By combining the
fourth-order diffusion along with the shock term, we can exploit the characteristics inherent in fourth-order diffusion filters
to denoise the images, while enhancing the edge features by the shock term. The experimental results are provided for tex-
tured and non-textured images and the results of the proposed filter are compared qualitatively and quantitatively, with the
most relevant image enhancement methods in the literature.

This paper is organized in five sections. Section 2 gives a mathematical background of the shock filters and explains about
some of the relevant shock and diffusion filters proposed in the literature for image restoration. Section 3 highlights the pro-
posed method and its numerical implementation. Section 4 elaborates on the experimental results and their comparison
with the existing methods for image enhancement. The last section concludes the work.

2. The background of shock and denoising filters

Though, the second-order non-linear anisotropic diffusion methods can enhance the images when they conditionally
evolve towards a negative diffusion, they are highly unstable [7] and hence a unique solution is not guaranteed in such cases
[20]. This issue was address by the introduction of a stable hyperbolic PDE called ‘‘shock’’ filter.

A ‘‘classical’’ shock filter was introduced by Rudin and Osher in [13] for image enhancement. The shocks are developed at
the inflection points (second derivatives), while the local extrema remains unchanged in each evolution, no new local extre-
ma is introduced as a part of evolution and the steady state solution will have discontinuities at the inflection points. These
properties approximate this filter to a deconvolution filter, which can deblur the images.

The idea of shock filter is based on hyperbolic equations theory. For one-dimensional (1D) signals or images,
/ðI;rI;r2IÞ ¼ fIx, where f is a constant, Ix denotes the first derivative along the direction x, rI and r2I denote the gradient
and ‘‘Laplacian’’ of the image I, respectively. For any general image processing problem / denotes the function that repre-
sents the rate of change of the image function (dI

dt). Hence, the solution for the equation dI
dt ¼ /ðI;rI;r2IÞ under the boundary

condition @I
@n̂ ¼ 0; where n̂ is the unit normal and initial condition Iðx; tÞ ¼ I0ðx; tÞ is Iðx; tÞ ¼ I0ðxþ atÞ, where a is the speed of

translation of the solution. The idea behind the shock filter is to make the speed of translation depend on the image structure
Ixx in case of 1D signals and Igg in case of two-dimensional (2D) images. Here g ¼ rI=jrIj denotes the direction along the
gradient rI. Now, replacing the speed of translation a with �signðIggÞ, for 2D images we obtain the expression of the ‘‘clas-
sical’’ shock filter:
It ¼ �signðIggÞkrIk; ð2Þ
where It stands for @I
@t, k:k denotes the Euclidean norm and sign function is defined as:
signðxÞ ¼
�1 if x < 0
0 if x ¼ 0
þ1 if x > 0:

8><>: ð3Þ
All the sign functions used throughout this paper follows the above definition.
One of the major issues with the ‘‘classical’’ shock filter is, it does not discriminate the noise inflection points from that of

the image inflection points (caused by the edges) in a noisy image. Note that, the hyperbolic PDE in (2) obeys the Neumann
boundary condition:
@I
@~n
¼ 0; ð4Þ
where ~n is the outward normal to the level curve, and initial condition:
Iðx; y;0Þ ¼ I0ðx; yÞ; ð5Þ
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where I0 is the initial image. Throughout this paper we assume the boundary condition (4) and the initial condition (5) for all
the PDEs, unless stated otherwise. The hyperbolic PDE in (2) is an anisotropic one, which gives a ‘‘ shock’’ in the direction of
gradient and does not have any effect in the direction of isophotes (level-curves). The major drawback of the filter in (2) is,
along with the edges and finer details the noise features also get enhanced.

2.1. Denoising filters

The second-order non-linear diffusion method proposed by Perona and Malik [7] is a remarkable advancement in the field
of PDE based image processing. This non-linear PDE is forward parabolic in general, and inverse or backward parabolic under
certain conditions. The PDE denoises the images considering the edges and finer details during the forward process and en-
hances the image features during the backward process [7]. Though, enhancement is desirable in many scenarios, the
enhancement as a consequence of inverse diffusion is highly unstable [20]. The energy functional associated with the PDE
is non-convex when the inverse diffusion happens, this non-convex nature of the functional results in a non-unique solution
for the associated gradient descent process.

Another prominent issue with the second-order non-linear diffusion methods is that, they approximate the observed im-
age with piece-wise constant images. Therefore, PDE evolution eventually results in forming piece-wise patches during the
early stages of evolution and finally these patches combine to form a level image. This level image is the only minimum of
the energy functional associated with the second-order PDE. Similarly, during the inverse diffusion any piece-wise constant
image is a global minimum of the energy functional, therefore, the blocks will appear in the early stages of evolution and
they remain without any change during the course of evolution. This results in the staircase effect.

The higher-order PDE’s were introduced in the literature to handle the staircase effect [5,9]. One of such filters was pro-
posed by You and Kaveh in [9]. In this work the authors proposed a fourth-order diffusion filter that can handle the staircase
effect considerably. The energy functional proposed in this work is:
EðIÞ ¼
Z

X
f ðkr2IkÞ dxdy: ð6Þ
Here f ð:Þ is an increasing function of the smoothness of the image measured by r2I (Laplacian of the image). So, the mini-
mization of the energy functional is equivalent to the smoothing of the image. Note that, the Laplacian of the pixels will be
zero in the planar neighborhood. Therefore, this PDE tries to remove the noise while preserving the edges by approximating
the observed image with a piece-wise planar image, which is the only minimum of the energy functional described in (6).
The planar approximation eventually results in a reduced staircase effect and a more natural outlook to the filtered output.
The evolution equation can be straight away formulated as:
@I
@t
¼ �r2 c kr2Ik

� �
r2I

� �
; ð7Þ
where k:k is the Euclidean norm. The diffusion coefficient cð:Þ is a non-increasing function of the absolute Laplacian of the
image function, defined as:
cðkr2IkÞ ¼ k2

k2 þ kr2Ik
� �2 ; ð8Þ
here k is the contrast parameter.
Even-though, the fourth-order PDE equation in (7) is capable of removing the noise by penalizing less on the edges and

without causing any staircase effect, the convergence rate is very slow for this PDE. Besides, the ramp edges are not well pre-
served in the evolution process, see [21] for details. These two issues of (7) were addressed by Hajiaboli in [21]. In [21], the
author replaces the Laplacian of the image in the diffusion coefficient function with the gradient magnitude of the image. The
diffusion equation considered in [21] is:
@I
@t
¼ �r2 c krIkð Þr2I

� �
; ð9Þ
where cð:Þ is a non-increasing function bounded in (0,1]. Here cð:Þ is defined as:
cðkrIkÞ ¼ 1

1þ ðkrIk=kÞ2
: ð10Þ
The filter in (9) can still support the planar approximation of the image and avoid the staircase effect. The ramp preservation
capacity of the filter can be explained by considering the fact that: @I

@t ! 0 as rI! 0.
The filter given in (9) can also address the slow convergence rate of (7) and preserve the ramp edges. However, the iso-

tropic nature of this filter makes it a second choice, when it comes to the denoising of images with edges and textures. The
edge descriptor (r2I) in this case is the Laplacian operator, which is isotropic in nature and diffuses in all directions equally.
Another improved filter was proposed in the literature by Hajiaboli in [22], which is a fourth-order generalization of a
second-order filter proposed by Carmona and Zhong in [23]. The filter proposed in [22], uses directional derivatives for
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smoothing the images in place of the Laplacian operator. This results in different diffusion magnitudes in different directions
such that, the speed of diffusion is more along the edges than across them. The aforementioned property makes it an aniso-
tropic filter, which can remove the noise effectively in all the regions including the edges, penalizing less on the edge fea-
tures. This modified filter can be formulated as:
@I
@t
¼ �r2c1 c2Igg þ c3Inn

� �
; ð11Þ
where c1, c2 and c3 are the diffusivity functions which control the amount of diffusion in different directions. Here g repre-
sents the direction along the gradient, n the direction along the isophotes and Inn denotes the MCM and is defined as:
Inn ¼ �krIkdiv rI
krIk

� �
; ð12Þ
see [19] for details. The diffusivity functions can be appropriately tuned to get different magnitudes of diffusion in different
directions. In [22], the author has chosen c1 ¼ c2 ¼ cðkrIkÞ and c3 ¼ 1. With these substitutions, (11) can be rewritten as:
@I
@t
¼ �r2 cðkrIkÞ2Igg þ cðkrIkÞInn

� �
; ð13Þ
where cð:Þ is a non-increasing function as in (10) and cðkrIkÞ ¼ 1 when krIk ¼ 0 (in the homogeneous areas). Under this
condition, the diffusion equation can be modified as:
@I
@t
¼ �r2ðIgg þ InnÞ: ð14Þ
From the above equation, one can find that the filter in (13) acts like an isotopic filter in the smooth (homogeneous) areas,
where krIk ¼ 0. When cðkrIkÞ–1 the filter acts like an anisotropic filter with varying diffusion magnitudes in different
directions. Furthermore, it can be easily observed that cðkrIkÞ2 6 cðkrIkÞ because cðkrIkÞ 6 1, hence, the extent of diffusion
will be more in the direction of isophotes as compared to the direction of the gradient.

2.2. Shock coupled diffusion

The denoising alone may not be sufficient for many practical applications where the images are of low contrast, the edges
are not prominently visible or even the imaging system artifacts can cause the images to be blurry. All these facts motivate
one to seek for a method to enhance the images while denoising them. This is the reason for opting a shock filter coupled
with diffusion.

Many improvements were suggested for ‘‘classical’’ shock filter in (2), see [14,15,17]. One of such modifications was sug-
gested by Alvarez et al. in [14]. They proposed to use a curvature based diffusion along with the shock term to suppress the
noise enhancing property of the ‘‘classical’’ shock filter in (2). This filter is formulated as:
It ¼ �signðGr � IggÞkrIk þ kInn; ð15Þ
here k denotes the control parameter, which is a positive scalar value that controls the magnitude of diffusion, Gr � I denotes
the Gaussian (with standard deviation r) convolved version of the image I, g is the direction along the gradient and n is the
direction perpendicular to the gradient. This anisotropic filter will act like, a ‘‘shock’’ filter in the direction of gradient and a
diffusion filter in the direction perpendicular to the gradient. The term Inn denotes MCM as defined in (12), where each of the
level curves in the image moves in the normal direction at a speed proportional to their mean curvature. In fact, all the sec-
ond-order anisotropic diffusion methods evolve towards formation of a level-image (which is the only minimum associated
with the energy functional) causing the staircase effect.

3. Proposed method

All the facts discussed above motivated us to use a fourth-order diffusion term in (13) along with the shock term to
enhance images. This shock coupled diffusion filter can denoise the images anisotropically, while preserving the edges
(including ramp edges), without causing any staircase effect and will converge at a faster rate. Hence, we propose to fit
the fourth-order diffusion term in (13) along with a modified version of the shock term proposed in [14]. The proposed filter
can be modeled as:
It ¼ �
2
p

arctan ðGr � Igg � pðtÞÞkrIk � kr2 cðkrIkÞ2Igg þ cðkrIkÞInn

� �
; ð16Þ
where Gr � Igg is the Gaussian convolved (with the spread of the Gaussian kernel r) version of Igg and p : Rþ ! ð0;1�, (R is
the real space) is a non-decreasing function of time defined as:
pðtÞ ¼
n� Dt if n� Dt < 0:5
1 otherwise;

�



Fig. 1. Image ‘‘Phantom’’: (A) Original figure. (B) Blur and noisy image (out of focus blur: SNR 8 dB). (C) After applying second-order shock proposed by
Alveraz et al. [14]. (D) After applying fourth-order method proposed by You and Kaveh [9]. (E) After applying fourth-order method proposed by Tai et al. [5].
(F) After applying method by Hajiaboli [22]. (G) After applying the proposed method.
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where n ¼ 1;2;3 . . . is the iteration number and Dt is the time step. The arctan function is a ‘‘soft sign function’’, which pro-
vides a more natural outlook to the enhanced image [16], therefore, we use this function instead of the sign function in (15).
The sign function (3) is a discontinuous function whereas the arctan function is a continuously varying function in the open
interval (�p=2,þp=2) for the real input values. Therefore, the arctan function behaves smoothly for the input quantity
Gr � Igg � pðtÞ, which is real. As one can notice, the filter in (16) has two terms a shock term (the first term), which provides
a shock at the inflection points (second derivatives) and a diffusion term (the second term), which suppresses the noise fea-
tures. The parameter k is a positive scalar value, which controls the magnitude of shock and diffusion. The function cð:Þ is a
non-increasing function as defined in (10). The terms Igg and Inn are the second-order directional derivatives along the gra-
dient and the isophotes, respectively. The other notations are as in (15). The function pðtÞ inside the arctan function controls
the effect of shock during the early stages of evolution, because during the initial phases of evolution the noise will be dom-
inating the image, hence, the effect of shock filter only helps to enhance the noise features. Incorporating a function of time
with the shock term can reduces the effect of shock during the initial stages of evolution. The function pð:Þ returns small val-
ues much less than 1 during the initial stages of evolution (iteration), making magnitude of the shock very less, therefore, the
filter acts like a normal anisotropic diffusion filter. After a finite number of iterations the function pð:Þ always returns ’1’.
Thereafter, the filter acts like a shock coupled diffusion filter regularized by the control parameter k.
3.1. Numerical implementation

We use the explicit Euler numerical schemes for solving the PDEs given in (16). Since the shock filters are hyperbolic PDEs,
the usual central difference schemes may not help in getting proper results. This scheme will be highly unstable and may not



Fig. 2. Image ‘‘Lena’’: (A) Original figure. (B) Blur and noisy image (out of focus blur: SNR 8 dB). (C) After applying second-order shock proposed by Alveraz
et al. [14]. (D) After applying fourth-order method proposed by You and Kaveh [9]. (E) After applying fourth-order method proposed by Tai et al. [5]. (F)
After applying method by Hajiaboli [22]. (G) After applying the proposed method.
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converge. So we use the upwind scheme proposed in [24]. The scale space parameter h is assumed to be 1 and Dt is the time
step. Using the upwind for solving krIk in the shock term of (16) will result in the following expressions.
krIk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
; ð17Þ
where Dx ¼ minmodðIþx ðx; yÞ; I
�
x ðx; yÞÞ, Dy ¼ minmodðIþy ðx; yÞ; I

�
y ðx; yÞÞ the minmod operator is defined as:
minmodðx; yÞ ¼
minðjxj; jyjÞ if xy > 0
0 otherwise;

�

where
Iþx ðx; yÞ ¼ Iðxþ 1; yÞ � Iðx; yÞ;
I�x ðx; yÞ ¼ Iðx; yÞ � Iðx� 1; yÞ;
Ixðx; yÞ ¼ ðIþx þ I�x Þ=2;

Iþy ðx; yÞ ¼ Iðx; yþ 1Þ � Iðx; yÞ;
I�y ðx; yÞ ¼ Iðx; yÞ � Iðx; y� 1Þ
and Iyðx; yÞ ¼ ðIþy þ I�y Þ=2:
The explicit Euler equation with finite central difference scheme is used for the rest of the terms in differential Eq. (16):



Fig. 3. Image ‘‘Woman’’: (A) Original figure. (B) Blur and noisy image (out of focus blur: SNR 8 dB). (C) After applying second-order shock proposed by
Alveraz et al. [14]. (D) After applying fourth-order method proposed by You and Kaveh [9]. (E) After applying fourth-order method proposed by Tai et al. [5].
(F) After applying method by Hajiaboli [22]. (G) After applying the proposed method.
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Igg ¼
IxxjIxj2 þ 2IxyIxIy þ IyyjIyj2

1þ jIxj2 þ jIyj2
; ð18Þ

Inn ¼
IxxjIyj2 � 2IxyIxIy þ IyyjIxj2

1þ jIxj2 þ jIyj2
; ð19Þ

Ixx ¼ Iðxþ 1; yÞ � 2Iðx; yÞ þ Iðx� 1; yÞ;
Iyy ¼ Iðx; yþ 1Þ � 2Iðx; yÞ þ Iðx; y� 1Þ;
Ixy ¼ ðIxðxþ 1; yÞ � Ixðx; y� 1ÞÞ=2: ð20Þ
Let
gðkrIkÞ ¼ cðkrIkÞ2Igg þ cðkrIkÞInn: ð21Þ
Then
r2gn
x;y ¼ gn

xþ1;y þ gn
x�1;y þ gn

x;yþ1 þ gn
x;y�1 � 4gn

x;y: ð22Þ
With the help of above discretization equations one can write the full discretization for the filter in (16).

4. Experimental results and discussions

We used a synthetic image ‘‘Phantom’’ (a constant intensity image), a natural image ‘‘Lena’’ (a partially textured image)
and two partially textured natural images ‘‘Woman’’ and ‘‘Boat’’ to test the performance of our algorithm. In all the



Fig. 4. Image ‘‘Boat’’: (A) Original figure. (B) Blur and noisy image (out of focus blur: SNR 8 dB). (C) After applying second-order shock proposed by Alveraz
et al. [14]. (D) After applying fourth-order method proposed by You and Kaveh [9]. (E) After applying fourth-order method proposed by Tai et al. [5]. (F)
After applying method by Hajiaboli [22]. (G) After applying the proposed method.
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experiments the intensity values of the images are normalized to the range [0–1]. Though, the quality of the filtered output
can be visually compared, we provide quantitative measurements for the performance of various methods cited in this work
along with the proposed one. We use three different image quality metrics signal-to-noise ratio (SNR), Pratt’s figure of merit
(P-FOM) [25] and structural similarity index metric (SSIM) [26] to compare the performance of our method to the other rel-
evant methods in the literature.

4.1. Image quality measures

The SNR [27] is a commonly used measure to quantify the denoising capability of a filter. The SNR is defined as:
SNR ¼ 10log10 r2
f =r

2
n

� �
; ð23Þ
where r2
f is the variance of the noise free image and r2

n is the variance of the noise. A larger SNR value indicates a better im-
age-denoising capacity.

The efficiency of any enhancement method is measured in terms of its capability to retain the edges while removing the
noise. The edge preservation capability of various enhancement methods are compared using Pratt’s figure of merit (P-FOM)
[25] defined as:
FOM ¼ 1

maxfbN ;Nidealg
PbN
i¼1

1

1þ d2
i a
; ð24Þ
where bN and Nideal are the number of detected and ideal edge pixels, respectively, di is the Euclidean distance between the ith
detected edge pixel and the nearest ideal edge pixel, and a is a constant typically set to 1/9. FOM ranges between 0 and 1,



Fig. 5. Filtered results at different noise levels: (A), (A1) and (A2). The blur-noisy image with SNR 6, 7 and 9 dB, respectively (B), (B1) and (B2). After
applying second-order shock proposed by Alveraz et al. [14] (C), (C1) and (C2). After applying fourth-order method proposed by You and Kaveh [9] (D), (D1)
and (D2). After applying fourth-order method proposed by Tai et al. [5] (E), (E1) and (E2). After applying method by Hajiaboli [22] (F), (F1) and F(2). After
applying the proposed method.
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with unity for ideal edge detection. We apply the Canny edge detector [28] for locating the edges. The standard deviation of
the Gaussian kernel in the Canny detector is chosen as r ¼ 0:1.

In addition to the above two measures, the structure similarity (SSIM) index is used to compare the luminance, contrast
and structure of two different images [26]. SSIM is formulated as:
SSIMðx; yÞ ¼
ð2lxly þ C1Þ � ð2rxy þ C2Þ
ðl2

x þ l2
y þ C1Þðr2

x þ r2
y þ C2Þ ; ð25Þ
where x and y denotes the content of local windows in original and reconstructed images, respectively, rxy is the covariance
of x and y, r2

x and r2
y denotes the variance of x and y, respectively and C1 ¼ ðk1LÞ2;C2 ¼ ðk2LÞ2, where L is the dynamic range of

pixels values, k1 ¼ 0:01 and k2 ¼ 0:03 are constants. The measure is applied for non-overlapping windows in both the images
(original and reconstructed). In this work we measure mean-SSIM (MSSIM) which is an index to evaluate the overall image
quality. It is defined as:
MSSIMðX;YÞ ¼ 1
M
PM
j¼1

SSIMðxj; yjÞ; ð26Þ
where X and Y are the original and reconstructed images, respectively; xj and yj denotes the content of the jth local window
in reference and distorted images, respectively and M is the number of local windows in the image.

4.2. Experimental set-up

The test images are corrupted by Gaussian noise making the SNR of the noisy image 8 dB (decibel) and we have chosen a
value 5 for the standard deviation r in the Gaussian smoothing function G in the expression (16). A blurred image (out-of-
focus blur) is generated using a Gaussian smoothing function with standard deviation r ¼ 4. The scale space parameter
h ¼ 1. The time step Dt ¼ 0:01 for all the fourth-order methods except the fourth-order regularization method in [5]. For this
method the time step is chosen as Dt ¼ 0:002, because the method is highly sensitive to the time step.

In each experiment, the performance of the proposed method was compared to that of other filters like: forth-order deno-
ising by You and Kaveh [9], regularized fourth-order denoising technique by Tai et al. [5], the modified fourth-order method
proposed by Hajiaboli in [21,22] and the shock filter proposed by Alvarez et al. in [14]. The performance of each method is



Fig. 6. The enlarged portions of the images ‘‘Lena’’, ‘‘Woman’’ and ‘‘Boat’’, filtered with different methods: A, A1, A2 and A3. Noisy image, B, B1, B2 and B3.
Alvarez model C, C1, C2 and C3. You–Kaveh method D, D1, D2 and D3. Tai’s method E, E1, E2 and E3. Hajiaboli method F, F1, F2 and F3. The proposed
method.
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quantified in terms of different quality measures defined above. The performance of each method is demonstrated and com-
pared in the subsequent sections.
4.3. Results and analysis

The visual results of applying different enhancement techniques on the image: ‘‘Phantom’’ are shown in Fig. 1C–G. This
image is a non-textured image with constant intensity regions. The ‘‘Phantom’’ image consists of regions with different con-
trast and geometric shapes. We choose the value 0:06 for the parameter k in our experiments. The blurred and noisy image
(shown in Fig. 1B) is used as an input to different image enhancement methods in the literature along with the one proposed
in this paper. The output results shown are quite in favor of the claim that, the proposed method enhances the edges and
denoises the images better than the other methods shown in the results.

The results of different methods in the literature along with the proposed method when applied to a partially textured
natural image ‘‘Lena’’ is shown in Fig. 2C–G. The results of various methods including the proposed method applied on
the natural images ‘‘Woman’’ and ‘‘Boat’’ are shown in Figs. 3 and 4, respectively. One can visualize from the figures; Figs.
1–4 that the proposed method performs better (in terms of enhancement) than the other methods.

The experiments are conducted for various noise levels. Fig. 5 shows the perspective results of various filters applied to
the image ‘‘Phantom’’ corrupted by three different noise-levels. The filtered results are shown for the input noise level 6, 7
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Fig. 7. The signal-to-noise ration (SNR) plotted in each iterations for the image ‘‘Phantom’’: SNR of the initial noisy image 8 dB.

Table 1
The optimal number of iterations for different methods for various noise levels (SNR in dB) for the image: ‘‘Phantom’’.

Methods SNR = 6 dB SNR = 7 dB SNR = 8 dB SNR = 9 dB SNR = 10 dB

You–Kaveh 150 140 135 130 126
Tai et al. 11 9 8 7 5
Hajiaboli 120 111 104 96 90
Proposed method 61 52 43 36 31
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and 9 dB (SNR), respectively. The noisy image is shown in the first column of Fig. 5 and consecutive columns show the results
of various methods in the literature. The last column [(F), (F1) and (F2)] shows the result of the proposed method. The pro-
posed filter performs better compared to the other methods, in all the different input noise levels.

Fig. 6 shows enlarged portions (textured and homogeneous regions) of the image ‘‘Lena’’, ‘‘Woman’’ and ‘‘Boat’’ after
applying various enhancement methods. Two portions from the image ‘‘Lena’’ and one portion each from image ‘‘Woman’’
and ‘‘Boat’’ are enlarged for a better visibility. The first row shows a highly textured region taken from the image ‘‘Lena’’ and
the second one shows a smooth gray level portion from the same image. The third and fourth rows display smooth and par-
tially textured portions of images ‘‘Woman’’ and ‘‘Boat’’, respectively. The first column in Fig. 6, shows the portions of the
distorted input image and subsequent columns show the image (portions) after applying various filtering methods. The sec-
ond column in this figure is the results of applying Alvarez model [14]. In this particular output image; shown in the second
column of Fig. 6, one can notice that even though the edges are enhanced the noise features are still present in the filtered
output. The reason is; in Alvarez model the shock component will be active right from the initial stages of the filtering pro-
cess and this will result in enhancing the noise components along with the edges. The third to fifth columns in Fig. 6 are the
results of the methods You–Kaveh [9], TAI [5] and Hajiaboli [22], respectively. In all these results one fact is evident: the
images are denoised at the cost of weakening the edges. In the proposed method (the output is shown in the last column
of Fig. 6) the noise features are considerably removed, because the time dependent function inside the shock term sup-
presses the effect of shock in the earlier stages of evolution; consequently the noise features gets only diffused during the
early stages of evolution process. The edges are enhanced well and noise features are removed considerably in the proposed
method.
Table 2
The optimal number of iterations for different methods for various noise levels (SNR in dB) for the image: ‘‘Lena’’.

Methods SNR = 6 dB SNR = 7 dB SNR = 8 dB SNR = 9 dB SNR = 10 dB

You–Kaveh 250 235 208 200 190
Tai et al. 22 14 10 8 6
Hajiaboli 220 205 190 178 170
Proposed method 120 110 102 89 80



Table 3
The optimal number of iterations for different methods for various noise levels (SNR in dB) for the image: ‘‘Woman’’.

Methods SNR = 6 dB SNR = 7 dB SNR = 8 dB SNR = 9 dB SNR = 10 dB

You–Kaveh 230 225 200 190 178
Tai et al. 19 12 12 9 9
Hajiaboli 210 200 191 180 168
Proposed method 109 100 92 81 70

Table 4
The optimal number of iterations for different methods for various noise levels (SNR in dB) for the image: ‘‘Boat’’.

Methods SNR = 6 dB SNR = 7 dB SNR = 8 dB SNR = 9 dB SNR = 10 dB

You–Kaveh 240 235 220 201 188
Tai et al. 24 17 16 12 10
Hajiaboli 221 202 185 176 168
Proposed method 119 107 96 88 79
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The optimal number of iterations n2 for each method at a given noise level (here we have chosen the SNR of initial noisy
image as 8 dB) is decided based on the SNR values. The iteration number corresponding to the optimal SNR value is taken as the
optimal iteration number. The graph in Fig. 7 shows a plot of SNR against the number of iterations for the image ‘‘Phantom’’, the
change in SNR with the number of iterations follow the same characteristics for other input images as well. Hence, we only tab-
ulate the optimal number of iterations corresponding to each SNR value for different input images. The optimal iteration num-
bers obtained based on the SNR values are shown in Tables 1–4, for the input test images ‘‘Phantom’’, ‘‘Lena’’, ‘‘Woman’’ and
‘‘Boat’’, respectively. All the images shown in Figs. 1–4 are taken after the corresponding optimal number of iterations.

The normalized relative root mean square error (NRRMSE) is a measure to indicate the root mean square error in each
iteration for a particular method. The NRRMSE keeps on decreasing in each iteration during the diffusion process as the fil-
tered image approaches the original one. NRRMSE is defines as:
2 The
NRRMSE ¼ jRMSEi � RMSEiþ1j=RMSEiþ1; ð27Þ
where RMSEi denotes the root mean square error in the ith iteration. RMSE for a M � N image is defined as:
RMSEi ¼
1

N �M
PN
i¼1

PM
j¼1
ðIi

oði; jÞ � Iði; jÞÞ2
 !1=2

; ð28Þ
where Ii
o is the observed image at ith iteration and I is the actual image. When the noise gets smoothed out the reconstructed

image gets closer to the original one. From Fig. 8 one can observe that, the NRRMSE corresponding to the proposed method is
decreasing initially and then it is increasing after some iterations, whereas, for Alvarez model NRRMSE first increases and
then it decreases, this effect is due to the shock component present in the filter. In the proposed method the shock will
not have significant contribution during the initial stages of evolution therefore, only diffusion will happen, this causes
iteration number chosen to get optimal performance.
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the NRRMSE to decrease considerably during the initial stages of evolution whereas, in Alvarez model the shock will be dom-
inant even during the initial stages of evolution. This causes the NRRMSE to increase for first few iterations and then de-
crease, thereafter.

The Pratt’s figure of merit (P-FOM) for the images ‘‘Phantom’’ and ‘‘Lena’’ filtered using different filters (including the pro-
posed one), for various SNR values of the input noisy image are plotted in the graph given in Figs. 9 and 10, respectively. The
number of iterations for each method (at various SNR values) for the images ‘‘Phantom’’ and ‘‘Lena’’ are selected based on
Tables 1 and 2, respectively. From these graphs one can observe that the edge preserving capacity of the proposed method
is better compared to the other methods. The results of applying the Canny edge detector (with r ¼ 0:1) on images filtered
using various method are shown in Fig. 11. Fig. 11A shows the result of edge detection method applied on the original image.
Fig. 11B shows the result for blurred and noisy image. Fig. 11C–F shows the results of the edge detection method applied on
the filtered outputs of various methods. The edges detected for the image filtered using the proposed method (shown in
Fig. 11G) are more robust than that of the other methods (shown in Fig. 11C–F).

MSSIM measured for the images ‘‘Phantom’’ and ‘‘Lena’’ filtered using different methods (including the proposed one), for
various SNR values of the input noisy image are plotted in the graph given in Figs. 12 and 13, respectively. The number of
iterations for each method (at various SNR values) are selected based on Tables 1 and 2 for images ‘‘Phantom’’ and ‘‘Lena’’,
respectively. From these figures it could be easily verified that the proposed method has good contrast, illumination and the
structure preserving capabilities as compared to the other methods.

From all the measures described above we have experimentally (both visually and quantitatively) demonstrated that the
proposed method enhances the contrast, texture and edge features present in the image, while removing the noise effec-
tively. The figures shown in favor of the proposed method especially the one that enlarged the constant intensity portion



Fig. 11. Result of canny edge detector applied on ‘‘Phantom’’ after filtering with various methods. (A) Original figure. (B) Blur and noisy image (out of focus
blur: SNR 8 dB). (C) Alveraz model [14]. (D) You and Kaveh method [9]. (E) Tai model [5]. (F) Hajiaboli model [22]. (G) The proposed model.
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Fig. 12. Mean-structural similarity index (MSSIM) plotted for various methods at different SNR values (in dB) of the input: noisy image (image: ‘‘Phantom’’).
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gives a clear understanding that the propose method does not contaminate the constant intensity regions with small inten-
sity patches (that causes a visual discrepancy).

Please note that, the quality measures are not provided explicitly for the images ‘‘Woman’’ and ‘‘Boat’’ for the reason that,
the measures are similar in characteristic to the image ‘‘Lena’’ (all these images fall into the category of partially textured
natural image).

5. Concluding remarks

In this paper we have proposed a fourth-order anisotropic diffusion cum shock filter. The proposed method enhances the
semantic features like edges, finer details and textures, while denoising the images as evident from the demonstrated results.
The denoising and enhancing capacity of the proposed filter is controlled using a positive scalar regularization parameter.
The anisotropic nature of the proposed filter is governed by a diffusion coefficient function, defined using an absolute value
of the gradient image. The diffusion coefficient function in our method (driven by the absolute gradient image), has been
shown to catalyze the diffusion process. Thus, our method results in a faster process convergence as compared to many other
prominent fourth-order methods in the literature. Unlike the second-order methods that use piece-wise constant approxi-
mation, our filter adopts a planar approximation, thereby considerably reducing the staircase effect. The filtered outputs
shown in favor of our proposed method clearly demonstrate the reduced staircase effect.

We have introduced a time-dependent function inside the shock term of the proposed filter. This function helps in pro-
viding a controlled shock during the initial stages of evolution. We have presented the controlled shock and diffusion aspects
of our method with the help of a graph in the result section. Compared to other shock coupled diffusion methods, the pro-
posed method robustly handles the noise and blur at various stages of the evolution process.

The iteration process of our method is controlled using the SNR values in each iteration. The evolution proceeds as long as
the SNR increases monotonically and stops at the point when it decreases. Since the iteration process is controlled dynam-
ically in the proposed filter, optimal results are ensured.

We have compared our method with all the relevant image enhancement methods in the literature using the visual re-
sults and widely used statistical qualitative measures like SNR, Pratt’s FOM and MSSIM. The pictorial and tabulated measures
are highly in favor of the proposed method. The proposed method is tested for both textured and non-textured images
(including artificial and natural images) at various noise variances. The experimental results provided substantially show
the efficiency and effectiveness of the proposed method.
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