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Abstract--In this paper the problem of pole assignment 
using constant gain output feedback is studied for MIMO 
system with system order n > m + l - 1, where m and I are 
the number of inputs and outputs, respectively. A new 
procedure is presented to design a constant gain output 
feedback matrix which assigns (m + l -  2) poles exactly to 
the desired locations and shifts all the unassigned poles to 
suitable locations using root locus techniques. 

1. Introduction 
IT XS well known (Munro and Novin Hirbod, 1979) that for 
linear multivariable systems with m-inputs and /-outputs, a 
maximum of (m + l - 1) poles can be arbitrarily assigned by 
constant gain output feedback. When (m + l - 1) is less than 
the order of the system n, the remaining ( n - m -  l + 1) 
unassigned poles may move to undesirable locations. In 
order to ensure satisfactory performance of the closed-loop 
system, the unassigned poles should be shifted to the stable 
region. 

Recently Paplinski and Gibbard (1985) and Rajagopalan 
and Appukuttan (1988) have proposed methods for finding 
the most suitable locations of unassigned poles for 
single-input multi-output (SIMO) systems. Subsequently 
Chen et al. (1988) reported a method of finding the most 
suitable locations of the unassigned poles for MIMO systems. 
In this method, as one of the vectors in the dyadic feedback 
matrix is prespecified, the approach is essentially similar to 
the one reported for SIMO system by Rajagopalan and 
Appukuttan (1988). 

In this paper, a new procedure for pole assignment using 
constant gain output feedback applicable to MIMO systems 
is presented. Here, (m + l - 2) poles are arbitrarily assigned 
and the remaining design freedom is utilized to shift the 
unassigned poles to the best possible locations using the root 
locus method. Also, the procedure to obtain the polynomial 
with the set of unassigned poles in one degree of freedom is 
different from the procedure reported in other papers. 

2. Design procedure 
Consider a controllable and observable system described 

by 

k = A x  + Bu; y = C x  (1) 

where x • R" is the state vector; u • R '~ is the input and 
y • A t is the output. Without loss of generality it is assumed 
that 1 > m. The objective is to design a feedback control law 
u = - K y  so that (m + l - 2 )  poles are assigned arbitrarily 
and the remaining unassigned poles are shifted to suitable 
locations. 
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The procedure consists of finding the feedback control law 
u = - ( K t + K 2 ) y  in two stages. In the first stage, the 
feedback matrix K1 is determined to assign ( m -  1) poles, 
n a m e l y ,  fit  . . . . .  J~m t using unity rank design (Seraji, 1979) 
or full rank design (Munro and Hirbod, 1979). Let the 
closed-loop system matrix at the end of stage one be 

A 1 = A - BKIC ,  K 1 e ~m×t. (2) 

In the second stage, the feedback matrix K 2 is written as 

K2 = k z f ~ ,  K2 • Rm×l, k2 • Rm, f2 • El" (3) 

The closed-loop characteristic polynomial of the system 
with K2 is given by 

Hz(s) = det (sl - A t  + B k 2 f x c )  = Ht(s) + f~Wt(s )k2  (4) 

where H a ( s ) = d e t ( s l - A 1 )  and W t ( s ) = C  a d j ( s l - A t ) B .  
The vector k2 is determined to preserve the ( m -  1) poles 
assigned in the first stage (Munro and Hirbod, 1979). Then, 
the closed-loop characteristic polynomial (4) can be written 
as 

H2(s) = [f'~ 1]Nps*+ t (5) 

where Np = [ ~ Ntk ] hTJ  is the ( t + l )  x ( n + l )  coefficient 

matrix, N t k • R  t×" is the coefficient matrix of Wt(s)kz,  
Ha(s) = s" + hTs * and s* = [s " - t  . . . . .  s 1] v. 

T The vector f2 is computed to assign (l - 1) additional poles 
and to shift the unassigned poles to the stable locations. 

Let n~ ,n~  . . . . .  nT+ t be the 1 × (n + 1) row vectors of N v. 
Let ft,, be one of the additional poles to be assigned in the 
second stage. Substituting s = ft,, in (5) we get 

[f~ 116 = [fz, . . . . .  At  116 = 0 (6) 

where 6 = [ 6 1  . . . . .  6t+1] r and 6is  are the constants 
obtained as the inner product of the row vector ~'r and the 
vector (fl,,)*+l. Using (6), any one parameter of rE (say, fzi) 
can be expressed in terms of the other parameters. The first 
parameter fzl can be written as 

f21 = -[/22 . . . . .  JEt 1]o: (7) 

where 

o:=[o: 2 . . . . .  o:t+t] T and o : i=6i /6 t ,  i = 2  . . . . .  l + l .  

Substituting (7) in (5) 

Hz(s) = [f22 . . . . .  lEt llNvls.*+t (8) 

where the row reduced coefficient matrix 

Npl = [n 2 . . . . .  nt+l] T -  o:nf, Npl • ~ t x ( n + l ) .  (9)  

Thus the closed-loop characteristic polynomial H2(s ) has only 
(l - 1) free design parameters. This procedure is repeated to 
assign additional ( l - 2 )  poles. At the end of the 
computation, the closed-loop characteristic polynomial can 
be expressed as 

H2(s ) = (s - f l O ' "  " (s - J~m+l 2)H2. w,+t-z)(s) (10) 
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where 
t T 

n ' = n - m - l + 2 a n d t e R " '  a n d g e R  n'. 
The variation of the unassigned poles as a function of f~ 

can be obtained by finding the roots of the equation 
H2.(,,,+t 2)(s)= 0. This equation is rearranged to plot the 
root locus as 

¢ T , 
+S J2tt Sn =0. (11) 1 + gVs* 

From the root locus plot of (11), the value of fzt 
corresponding to the best possible location of the unassigned 
poles can be obtained. Once fzt is known, other constants fzi 
can be computed from the relation similar to (7) obtained in 
each step of the additional pole placement procedure. The 
final feedback matrix is K = K t + K 2. 

3. Numerical example 
Consider the MIMO system described by (1). Let 

0 1 B =  C =  0 0 
A =  0 0 1 0 " 

0 0 

Here, n = 4 ,  m = 2  and 1=2.  The design procedure 
explained in the paper is used to assign two poles at - 2  and 
- 3  and shift the other two poles to the best possible 
locations. In the first stage, the pole, - 2 ,  is assigned using 

K I = [ ~  ~]. In the second stage, to preserve the assigned 

pole at s = -2 ,  k2 = [1 -4]  T. 
Assigning the additional pole at s = - 3 ,  (7) and (10) 

become 

f2t = - 1.9f22 + 0.9 

and 

_09 _14 . 
H z ( s ) = ( s + 2 ) ( s + 3 ) [ f 2 2  1] -0.1 -0.6J s3" 

Therefore, the equation for plotting the root locus as 
function of f22 is written as 

(-0.9)f22(s + 1.556) 
1 + (s - 0.825)(s + 0.725) - 0. 

The root locus plot is shown in Fig. 1. From the plot the 
best location for both the unassigned poles is -2.96 which 
occurs for f22 = -6.69. Therefore the feedback matrix 

[17.61 -6 .69]  
K = 1_54.4 26.76/ 

gives the closed-loop poles - 2 ,  - 3 ,  -2 .96 and -2.96. 
On the other hand, if the method given by Chen et al. 

(1988) is applied to this example, only one pole can be 

I m 

J o , m -2.96 
f22 = -6.69 ~ 

o &25 

-I 

Re 

FIG. 1. Root locus plot. 

assigned exactly. After assigning the pole at s = -2 ,  from the 
root locus plot it can be noted that the remaining three 
unassigned poles cannot be shifted using their method to the 
left of the line a = -0 .5  in the s-plane. The corresponding 
pole locations may be unacceptable in most cases. Therefore 
for this design example the present method gives much better 
results than the method given by Chen et al. (1988). 

4. Conclusion 
A new procedure for pole placement using constant gain 

output feedback applicable to MIMO systems has been 
presented. Using this procedure, (m + l - 2 )  poles are 
assigned exactly and a reduced-order polynomial cor- 
responding to the unassigned poles as a function of the free 
parameter of the feedback gain is obtained. From the root 
locus plot the free parameter is selected corresponding to the 
best possible location of the unassigned poles and then the 
feedback gain matrix is computed. The method is simple and 
can be easily programmed on a digital computer. Also, for a 
general MIMO system, as the number of unassigned poles in 
the present method is always less than that in the method 
proposed by Chert et al. (1988) the present method may 
always result in better locations for the unassigned poles. 
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