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Abstract We present a new semi-local convergence analysis for Newton-like meth-
ods in order to approximate a locally unique solution of a nonlinear equation con-
taining a non-differentiable term in a Banach space setting. The new idea uses more
precise convergence domains. This way the new sufficient convergence conditions
are weaker, and the error bounds are tighter than in earlier studies. Applications and
numerical examples, involving a nonlinear integral equation of Chandrasekhar-type,
are also provided in this study.
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1 Introduction

In this study, we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F(x) + G(x) = 0, (1.1)
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where F is a Fréchet-differentiable operator defined on a convex subset � of a
Banach spaceB1 with values in a Banach spaceB2 andG : � −→ B2 is a continuous
operator.

A large number of problems in applied mathematics and also in engineering can be
written like (1.1) using mathematical modelling [5, 7, 8, 11, 13, 15, 17, 29, 34]. The
solution methods for solving (1.1) are iterative, i.e., starting from one or several ini-
tial approximations, a sequence is constructed that converges to a solution of the Eq.
(1.1). Iteration methods, when applied for solving optimization problems, the itera-
tion sequences converge to an optimal solution of the problem under consideration.
Since all these methods have the same recursive structure, they can be introduced and
studied in a general framework.

The Newton-like method(NLM)

xn+1 = xn − A(xn)
−1P(xn) (n ≥ 0),

P (x) = F(x) + G(x), (x ∈ �) (1.2)

has been used by several authors to generate a sequence {xn} approximating x∗ [1,
38]. Here, A(x) ∈ L(B1, B2) is the space of all bounded linear operators from B1 to
B2,and F ′(x) is the Fréchet derivative of operator F(x) [8, 11, 34]. Note that at each
step, the method requires one operator evaluation P(xn) and one inverse A(xn)

−1.

• Case G = 0. Under Kantorovich-type assumptions (see Section 3), Rheinboldt
[35] established a convergence theorem for NLM which includes the Kan-
torovich theorem for the Newton method(A(x) = F ′(x)) as a special case [8–12,
14, 16]. A further generalization was given by Dennis in [16], Deuflhard and
Heindl in [17], Potra in [34].

Miel [30, 31] improved the error bounds given by Rheinboldt in [35]. Using
stronger condition than those of Rheinboldt, Moret in [32] not only obtained
a convergence theorem and error bounds for NLM but also, using a numerical
example showed that his bounds are sharper than those of Miel. However, no
proof was given in [32]. Yamamoto in [36] presented a method for finding error
bounds for NLM under Dennis assumptions and showed that the bounds obtained
improve those of Rheinboldt, Dennis and Miel and reduce to Moret’s bounds if
we replace the assumptions by his strong assumptions. It was also shown that
Moret’s results can be derived from Rheinboldt’s.

• Case G �= 0. If A(x) = F ′(x), (x ∈ �),Zabrejko and Nguen [37] estab-
lished a convergence theorem for the Krasnoselskii-Zincenko-type iteration [38].
Yamamoto and Chen [14] extended the results in [37, 38], when A(x) is not
necessarily equal to F ′(x). Under the same conditions, the results were special-
ized in [28] for Broyden-like methods. Related work can be found in the works
by Amat et al. [1–7], Hernandez et al. [18–26] and Magrenan et al. [29] where
the method of recurrent relations was used. Argyros [8–12] using his technique
method of recurrent functions presented a unified convergence theory for even
more general NLM with the following advantages over the above stated works
under the same computational cost.
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– Semi-local Case. weaker sufficient convergence conditions, tighter
error bounds on the distances ‖xn+1 − xn‖, ‖xn − x∗‖, (n ≥ 0),and an
at least as precise information on the location of the solution.

The above advantages are obtained by using the needed center-
Lipschitz instead of the Lipschitz condition commonly used for the
derivation of the upper bounds on the norms ‖A(xn)

−1A(x0)‖ (n ≥ 0).
This modification leads to more precise majorizing sequences, which in
turn result weaker sufficient convergence conditions in most interesting
cases (see also Section 3).

– Local Case. A larger radius of convergence is also obtained.

In the present paper, we extend the applicability of NLM even further than in the
preceding works using more precise domains containing the iterates xn leading to
smaller Lipschitz conditions which finally lead to a finer convergence analysis for
this method.

The rest of the paper is organized as follows: Section 2 contains the semi-local
convergence of NLM. Special case and applications are presented in Section 3 to
show that our results can apply to solve equations, where earlier ones cannot.

2 Semi-local convergence analysis of NLM

We will be using the following auxiliary result on majorizing sequences for NLM.

Lemma 2.1 Suppose:

(i) there exist constants K > 0, M > 0, μ ≥ 0, L > 0, � ≥ 0, η > 0 such that

2M < K (2.1)

and
Lη + � < 1. (2.2)

Let

δ0 := Kη + 2μ

1 − Lη − �
(2.3)

and

δ := 2(K − 2M)

K + √
K2 − 8L(2M − K)

. (2.4)

(ii) Quadratic polynomial f̄∞ defined by

f̄∞(s) = (1 − �)s2 − (1 − � − Lη + μ)s + Mη + μ (2.5)

has at least one root in the interval (0, 1). Denote such a root by s∞.

(iii)
δ0 ≤ δ ≤ 2s∞. (2.6)

Then, the scalar sequence {tn} (n ≥ 0) given by

t0 = 0, t1 = η, tn+2 = tn+1+ K(tn+1 − tn) + 2(Mtn + μ)

3(1 − Ltn+1 − �)
(tn+1− tn) (2.7)
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is increasing, bounded from above by

t∗∗ = 2η

2 − δ
, (2.8)

and converges to the unique least upper bound t∗ ∈ [η, t∗∗]. Moreover the
following estimates hold for all n ≥ 1;

0 < tn+1 − tn ≤ δ

2
(tn − tn−1) ≤

(
δ

2

)n

η (2.9)

and

t∗ − tn ≤ 2η

2 − δ

(
δ

2

)n

.

Proof We shall prove using induction on the integer m that:

0 < tm+2 − tm+1 = K(tm+1 − tm) + 2(Mtm + μ)

3(1 − Ltm+1 − �)
(tm+1 − tm) (2.10)

and
� + Ltm+1 < 1. (2.11)

If (2.10) and (2.11) hold, we have that (2.9) holds, and

tm+2 ≤ tm+1 + δ

2
(tm+1 − tm)

≤ tm + δ

2
(tm − tm−1) + δ

2
(tm+1 − tm)

≤ η + + δ

2
η + · · · +

(
δ

2

)m+1

η

= 1 − (
δ
2

)m+2

1 − δ
2

η

<
2η

2 − δ
= t∗∗ (by (2.8)). (2.12)

It will then also follow that sequence {tm} is increasing, bounded from above by t∗∗
and converge to some t∗ ∈ [η, t∗∗].

Estimates (2.10) and (2.11) hold by the initial conditions form = 0. Indeed, (2.10)
and (2.11) become, respectively:

0 < t2 − t1 = K(t1 − t0) + 2(Mt0 + μ)

2(1 − Lt1 − �)
(t1 − t0)

= Kη + 2μ

2(1 − Lη − �)
(t1 − t0)

= δ0

2
(t1 − t0) ≤ δ

2
(t1 − t0)

and
Lη + � < 1,

Author's personal copy



Numer Algor (2017) 75:553–567 557

which are true by the choice of δ0, δ, (2.2), (2.7) and the initial conditions. Suppose
that (2.10)–(2.11) hold for all m ≤ n + 1.

Estimate (2.11) can be re-written as

K(tm−1 − tm) + 2(Mtm + μ) ≤ (1 − Ltm+1 − �)δ

or
K(tm−1 − tm) + 2(Mtm + μ) + Ltm+1δ + �δ − δ ≤ 0

or

K

(
δ

2

)m

η+2

(

M
1 − (

δ
2

)m

1 − δ
2

η + μ

)

+δL

(
1 − (

δ
2

)m+1

1 − δ
2

)

η+δ(�−1) ≤ 0. (2.13)

Replace δ
2 by s and define functions fm on [0, 1)(m ≥ 1) :

fm(s) = Ksmη + 2(M(1 + s + s2 + · · · + sm−1)η + μ)

+2sL(1 + s + s2 + · · · + sm)η + 2s(� − 1). (2.14)

In view of (2.13) and (2.14) estimates (2.10) and (2.11) certainly hold, if

fm(s) ≤ 0 (m ≥ 1). (2.15)

We need to find a relationship between two consecutive functions fm :
fm+1(s) = Ksm+1η + 2(M(1 + s + s2 + · · · + sm−1 + sm)η + μ)

+2sL(1 + s + s2 + · · · + sm−1 + sm)η + 2s(� − 1)

= Ksm+1η − Ksmη + Ksm−1η + 2(M(1 + s + s2 + · · · + sm−1)η + μ)

+2Msmη + 2sL(1+ s+s2+· · ·+sm−1+sm)η+2sLsm+1η+2s(� − 1)

= fm(s) + Ksm+1η − Ksmη + 2Msmη + 2sLsm+1η

= fm(s) + g(s)smη, (2.16)

where
g(s) = 2Ls2 + Ks + 2M − K. (2.17)

Quadratic polynomial g has a positive zero δ given by (2.4). Then, we have that

fm+1(δ) = fm(δ). (2.18)

In view of (2.13)

f∞(s∞) := lim
m−→∞ fm(s∞) = 2

(
M

1 − s∞
η + μ

)
+ 2s∞L

1 − s∞
η+2s∞(�−1), (2.19)

by the choice of s∞. Hence, (2.15) holds by (2.6) and (2.18). The induction is com-
plete. That is, the sequence {tn} is increasing, bounded from above by t∗∗ and as such
it converges to its unique upper bound t∗.

Let x0 ∈ �. Denote by U(v, ρ), Ū(v, ρ) the open and closed balls in B1 with
center v ∈ B1 and of radius ρ > 0. Let R > 0. Define

R0 := sup{t ∈ [0, R] : U(x0, R) ⊂ �}. (2.20)
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Set
S = Ū (x0, R0). (2.21)

We shall show the following semi-local convergence result for NLM.

Theorem 2.2 Let F : S ⊆ B1 −→ B2 be a Fréchet differentiable operator, G :
S −→ B2 be a continuous operator and let A(x) ∈ L(B1, B2). Suppose that there
exist an open convex set S of B1, x0 ∈ S,a bounded inverse A(x0)

−1 of A(x0) and
constants K > 0, M > 0, μ0 ≥ 0, L > 0, � ≥ 0, η > 0,such that for all x ∈ S :

‖A(x0)
−1[F(x0) + G(x0)]‖ ≤ η (2.22)

‖A(x0)
−1[A(x) − A(x0)]‖ ≤ L‖x − x0‖ + � (2.23)

and for each x, u, ∈ U(x0, T ) ∩ S

‖A(x0)
−1[F ′(x) − F ′(y)]‖ ≤ K‖x − y‖ (2.24)

‖A(x0)
−1[F ′(x) − A(x)]‖ ≤ M‖x − x0‖ + μ0 (2.25)

‖A(x0)
−1[G(x) − G(y)]‖ ≤ μ1‖x − y‖ (2.26)

t∗ ≤ R0 or T ≤ R0, (2.27)

the hypotheses of Lemma 2.1 hold with

μ = μ0 + μ1, (2.28)

where t∗ is given in Lemma 2.1 and T = 1−�
L

. Then, the sequence {xn}(n ≥ 0)
generated by NLM is well defined, remains in Ū (x0, t

∗) for all n ≥ 0 and converges
to a solution x∗ of (1.1) in Ū (x0, t

∗). Moreover, the following estimates hold for all
n ≥ 0 :

‖xn+1 − xn‖ ≤ tn+1 − tn (2.29)

and
‖xn − x∗‖ ≤ t∗ − tn, (2.30)

where, sequence {tn}(n ≥ 0) is given in Lemma 2.1. Furthermore, the solution x∗ of
equation (1.1) is unique in Ū (x0, t

∗) provided that:
(

K

2
+ M + L

)
t∗ + μ + � < 1.

Proof We shall show using induction on m > 0 :
‖xm+1 − xm‖ ≤ tm+1 − tm, (2.31)

and
Ū (xm+1, t

∗ − tm+1) ⊆ Ū (xm, t∗ − tm). (2.32)

For every x ∈ Ū (x1, t
∗ − t1),

‖x − x0‖ ≤ ‖x − x1‖ + ‖x1 − x0‖ ≤ t∗ − t1 + t1 − t0 = t∗ − t0,

implies x ∈ Ū (x0, t
∗ − t0). We also have

‖x1 − x0‖ = ‖A(x0)
−1[F(x0) + G(x0)]‖ ≤ η = t1 − t0.

Author's personal copy



Numer Algor (2017) 75:553–567 559

That is (2.31) and (2.32) hold for m = 0. Given they hold for n ≤ m,then

‖xm+1 − xm‖ ≤
m+1∑

i=1

‖xi − xi−1‖

≤
m+1∑

i=1

(ti − ti−1) = tm+1 − t0 = tm+1,

and
‖xm + θ(xm+1 − xm) − x0‖ ≤ tm + θ(tm+1 − tm) ≤ t∗,

for all θ ∈ (0, 1).
Using (2.11), (2.26) and the induction hypotheses, we get

‖A(x0)
−1[A(xm+1) − A(x0)]‖ ≤ L‖xm+1 − x0‖ + �

≤ L(tm+1 − tm) + �

≤ Ltm+1 + � < 1. (2.33)

It follows from (2.33) and the Banach lemma on invertible operators [8, 11, 34] that
A(xm+1) is invertible and

‖A(xm+1)
−1A(x0)‖ ≤ 1

1 − � − Ltm+1
. (2.34)

Using (1.2), we obtain the approximation:

xm+2 − xm+1 = −(F (xm+1) + G(xm+1))

= A(xm+1)
−1A(x0)A(x0)

−1

(∫ 1

0
[F ′(xm+1 + θ(xm − xm+1)) − F ′(xm+1)](xm+1 − xm)dθ

+(F ′(xm) − A(xm))(xm+1 − xm) + G(xm+1) − G(xm))
)

(2.35)

Using (2.5), (2.6), (2.7), (2.34), (2.35) and the induction hypotheses, we obtain in
turn that

‖xm+2 − xm+1‖ ≤ (1 − � − Ltm+1)
−1

(
K

2
‖xm+1 − xm‖2

+(M‖xm − x0‖ + μ0)‖xm+1 − xm‖ + μ1‖xm+1 − xm‖)
≤ (1 − � − Ltm+1)

−1
(

K

2
(tm+1 − tm) + Mtm + μ

)
(tm+1 − tm)

= tm+2 − tm+1, (2.36)

which shows (2.32) for all m ≥ 0. Thus, for every z ∈ Ū (xm+2, t
∗ − tm+2),we have

‖z − xm+1‖ ≤ ‖z − xm+2‖ + ‖xm+2 − xm+1‖
≤ t∗ − tm+2 + tm+2 − tm+1 = t∗ − tm+1,

which shows (2.32) for all m ≥ 0.
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Lemma 2.1 implies that {tn} is a complete sequence. Moreover, it follows from
(2.31) and (2.32) that {xn}(n ≥ 0) is also a complete sequence in a Banach space B1
and as such it converges to some x∗ ∈ Ū (x0, t

∗) (since Ū (x0, t
∗) is a closed set).

In view of (2.36), we have that

‖A(x0)
−1(F (xm+1) + G(xm+1))‖ ≤

(
K

2
(tm+1 − tm) + Mtm + μ

)
(tm+1 − tm).

(2.37)
By letting m −→ ∞ in (2.37), we obtain F(x∗) + G(x∗) = 0. Estimate (2.29) is
obtained from (2.37) by using standard majorizing techniques [8, 11, 34]. To show
the uniqueness part, let y∗ ∈ Ū (x0, t

∗) with F(y∗) + G(y∗) = 0. Then, we have:

‖y∗ − xm+1‖ ≤ ‖A(xm)−1A(x0)‖{(∫ 1

0
‖A(x0)

−1(F ′(xm + θ(y∗ − xm)) − F ′(xm))‖dθ

+‖A(x0)
−1[F ′(xm) − A(xm)]‖

)
‖y∗ − xm‖

+‖A(x0)
−1[G(xm) − G(y∗)]‖

}

≤ (1 − Ltm+1)
−1

(
K

2
‖y∗ − xm‖2

+(M‖xm − x0‖ + μ)‖y∗ − xm‖)

≤ (1 − Ltm+1)
−1

(
K

2
(t∗ − tm) + (Mtm + μ)‖y∗ − xm‖

)

≤ (1 − Ltm+1)
−1

(
K

2
(t∗ − t0) + (Mt∗ + μ)‖x∗ − xm‖

)

< ‖y∗ − xm‖, (2.38)

by the uniqueness hypothesis. It follows by (2.38) that limm−→∞ xm = y∗. But we
showed limm−→∞ xm = x∗. Hence, we deduce that x∗ = y∗.

Remark 2.3 Note that t∗ can be replaced by t∗∗ given in closed form by (2.8) in the
uniqueness hypothesis provided that t∗ ≤ R0 or in all the other hypotheses of the
theorem.

3 Special cases and applications

The results in related studies can be improved, by simply noticing that the Lipschitz
conditions in earlier studies are to be satisfied in U(x0, R0) (i.e., in �). However,
using our technique with the exception of the center Lipschitz condition (see (2.4))
the rest of the Lipschitz conditions are to be satisfied in U(x0, t

∗) or U(x0, T ).

Then, since these balls are at least as small and inside U(x0, R0). It follows that
corresponding constants K̄, M̄, μ̄0, μ̄1 are at least as large. That is

K ≤ K̄, M ≤ M̄, μ0 ≤ μ̄0, μ1 ≤ μ̄1 (3.1)
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hold. Then, in case any of the inequalities in (3.1) is strict then our results in [8–
11] using bar constants are improved. Moreover, other famous relevant results can be
improved by repeating their proofs with the above changes.

Next, we list some examples.

• Case 3.1 (Newton-Like method) Let G = 0. Using hypothesis

h̄ = σ̄ η ≤ 1

2
(1 − b̄)2, μ + � < 1 (3.2)

where σ̄ := max{K̄, M̄ +L},with b̄ := μ̄+�,numerous semi-local convergence
theorems were provided in [14, 16, 17, 30–38].

Then, following corresponding proofs using the new technique, the corre-
sponding to (3.2) hypothesis is given by

hA = ση ≤ 1

2
(1 − b)2, (3.3)

where σ := max{K, M + L} ≤ σ̄ and b := μ + � ≤ b̄.

Then, we have that

h ≤ 1

2
(1 − b̄)2 ⇒ hA ≤ 1

2
(1 − b)2, (3.4)

but not necessarily vice versa unless if equality holds in all inequalities in (3.1).
Clearly, corresponding majorizing sequences and the information on the location
of the solution are more precise. Indeed, the corresponding to {tn} majorizing
sequence given before is defined by

u0 = 0, u1 = η, un+2 = un+1 + K̄(un+1 − un) + 2(M̄un + μ̄)

2(1 − L̄un+1 − �)
(un+1 − un).

(3.5)
Then, a simple inductive argument shows that

tn ≤ un, tn+1 − tn ≤ un+1 − un (3.6)

and
t∗ ≤ u∗ = lim

n−→∞ un. (3.7)

Inequalities (3.6) are strict for n > 1, if any of the inequalities in (3.1) is strict.
• Case 3.2 (Newton’s method.) Let G = 0, σ̄ = K̄ and μ̄0 = μ̄1 = � = M̄ = 0.

Then, condition (3.2) reduces to the famous for its simplicity and clarity Newton-
Kantorovich hypothesis for the semi-local convergence of Newton’s method [3,
5, 8–12, 14, 25–27, 30–38].

h̄1 = K̄η ≤ 1

2
. (3.8)

In this case, functions fm(m ≥ 1) are defined by

fm(s) = (Ksm−1 + 2L(1 + s + s2 + · · · + sm))η − 2,

and
fm+1(s) = fm(s) + g(s)sm−1η.
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The conditions corresponding to Lemma 2.1 are for,

s∞ = 1 − Lη, (3.9)

h1A = L̄1η ≤ 1

2
, (3.10)

where,

L̄1 = 1

8
(K + 4L +

√
K2 + 8KL). (3.11)

Our earlier condition [12] is given by

h2A = L̄2η ≤ 1

2
,

where

L̄2 = 1

8
(K̄ + 4L +

√
K̄2 + 8K̄L). (3.12)

Note also that

L ≤ K̄ (3.13)

holds in general, and K̄
L

can be arbitrarily large [8, 11]. In view of (3.8), (3.10)
and (3.12), we get

h1 ≤ 1

2
⇒ h2A ≤ 1

2
⇒ h1A ≤ 1

2
(3.14)

but not necessarily vice versa unless, if L = K = K̄ .

In the next example, we show (3.8) is not satisfied but (3.10) or (3.12) hold.

Example 3.1 Let B1 = B2 = R, x0 = 1, � = {x : |x − x0| ≤ 1 − β}, β ∈
[0, 1

2 ), R0 = 1 − β, T = 1
L
and define function F on � by

F(x) = x3 − β. (3.15)

Using hypotheses of Theorem 2.2, we get:

η = 1

3
(1 − β), L = 3 − β, K̄ = 2(2 − β) and K = 2

(
1 + 1

L

)
.

Notice that we have

L < K̄, K < K̄ and T < R0.

The Newton-Kantorovich condition (3.8) is violated, since

4

3
(1 − β)(2 − β) > 1 and β ∈ [0, 1

2
). (3.16)

Hence, there is no guarantee that Newton’s method (1.2) converges to x∗ =
3
√

β,starting at x0 = 1. However, our old condition (3.12) is true for all β ∈ I =
[0.450339002, 1

2 ) whereas new condition (3.10) holds for IN = [0.433124869, 1
2 ).

Hence, the conclusions of our Theorem 2.2 can apply to solve equation (3.15) for all
β ∈ IN .
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Example 3.2 Let B1 = B2 = C[0, 1] be the space of continuous functions defined
in [0, 1] equipped with the max-norm. Let � = {x ∈ C[0, 1]; ‖x‖ ≤ R}, such that
R > 0 and F is defined on � and given by [13]:

F(x)(s) = x(s) − f (s) − λ

∫ 1

0
G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1],

where f ∈ C[0, 1] is a given function, λ is a real constant and the kernel G is the
Green’s function

G(s, t) =
{

(1 − s)t, t ≤ s,

s(1 − t), s ≤ t.

In this case, for each x ∈ �, F ′(x) is a linear operator defined on � by the following
expression:

[F ′(x)(v)](s) = v(s) − 3λ
∫ 1

0
G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

If we choose x0(s) = f (s) = 1, it follows that ‖I − F ′(x0)‖ ≤ 3|λ|/8. Thus, if
|λ| < 8/3, F ′(x0)−1 is defined and

‖F ′(x0)−1‖ ≤ 8

8 − 3|λ| .
Moreover,

‖F(x0)‖ ≤ |λ|
8

,

so

η = ‖F ′(x0)−1F(x0)‖ ≤ |λ|
8 − 3|λ| .

On the other hand, for x, y ∈ � we have

‖F ′(x) − F ′(y)‖ ≤ ‖x − y‖1 + 3|λ|(‖x + y‖)
8

≤ ‖x − y‖1 + 6R|λ|
8

.

and

‖F ′(x) − F ′(1)‖ ≤ ‖x − 1‖1 + 3|λ|(‖x‖ + 1)

8
≤ ‖x − 1‖1 + 3(1 + R)|λ|

8
.

Choosing λ = 1.175 and R = 2, we have η = 0.26257 . . . , K̄ = 2.76875..., L =
1.8875 . . . , 1

L
= 0.529801 . . . , K = 1.47314 . . . .

Using these values, we obtain that condition (3.8) is not satisfied, since:

h̄1 = 1.02688 . . . > 1,

but condition (3.10) is satisfied:

h1A = 0.986217 . . . < 1,

so we can ensure the convergence of the Newton’s method by Theorem 2.2.

Application 3.3 Let

A(yn) = F ′(yn) + [yn−1, yn; G], (n ≥ 0)
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and consider NLM in the form

yn+1 = yn − (F ′(yn) + [yn−1, yn; G])−1(F (yn) + G(yn)) (n ≥ 0). (3.17)

This method has order 1+√
5

2 (see [8, 11, 25–27])(same as the method of Chord ), but
higher than the order of

zn+1 = zn − F ′(zn)
−1(F (zn) + G(zn)) (n ≥ 0) (3.18)

considered in [36, 37] and the method of Chord

wn+1 = wn − [wn−1, wn; G]−1(F (wn) + G(wn)) (n ≥ 0), (3.19)

where [x, y; G] denotes the divided difference of G at the points x and y considered
in [8, 11].

Now, we shall provide an example for this case.

Example 3.4 Let B1 = B2 = (R2, ‖.‖∞). Consider the system

3x2y + y2 − 1 + |x − 1| = 0

x4 + xy3 − 1 + |y| = 0.

Table 1 Comparison Table 1
n z

(1)
n z

(2)
n ‖zn − zn−1‖

0 1 0

1 1 0.333333333333333 3.333E-1

2 0.906550218340611 0.354002911208151 9.344E-2

3 0.885328400663412 0.338027276361322 2.122E-2

4 0.891329556832800 0.326613976593566 1.141E-2

5 0.895238815463844 0.326406852843625 3.909E-3

6 0.895154671372635 0.327730334045043 1.323E-3

7 0.894673743471137 0.327979154372032 4.809E-4

8 0.894598908977448 0.327865059348755 1.140E-4

9 0.894643228355865 0.327815039208286 5.002E-5

10 0.894659993615645 0.327819889264891 1.676E-5

11 0.894657640195329 0.327826728208560 6.838E-6

12 0.894655219565091 0.327827351826856 2.420E-6

13 0.894655074977661 0.327826643198819 7.086E-7

. . .

39 0.894655373334687 0.327826521746298 5.149E-19

Author's personal copy



Numer Algor (2017) 75:553–567 565

Table 2 Comparison Table 2
n w

(1)
n w

(2)
n ‖wn − wn−1‖

−1 5 5

0 1 0 5.000E+00

1 0.989800874210782 0.012627489072365 1.262E-02

2 0.921814765493287 0.307939916152262 2.953E-01

3 0.900073765669214 0.325927010697792 2.174E-02

4 0.894939851625105 0.327725437396226 5.133E-03

5 0.894658420586013 0.327825363500783 2.814E-04

6 0.894655375077418 0.327826521051833 3.045E-04

7 0.894655373334698 0.327826521746293 1.742E-09

8 0.894655373334687 0.327826521746298 1.076E-14

9 0.894655373334687 0.327826521746298 5.421E-20

Set ‖x‖∞ = ‖(x1, x2)‖∞ = max{|x1|, |x2|}, F = (F1, F2), G = (G1, G2). For x =
(x1, x2) ∈ R

2,we choose F1(x1, x2) = 3x2
1x2 + x2

2 − 1, F2(x1, x2) = x4
1 + x1x

3
2 − 1,

G1(x1, x2) = |x1 − 1|, G2(x1, x2) = |x2|. We shall take [x, y; G] ∈ M2×2(R) as

[x, y; G]i,1 = G1(y1, y2) − Gi(x1, y2)

y1 − x1
,

[x, y; G]i,2 = G1(x1, y2) − Gi(x1, x2)

y2 − x2
, i = 1, 2,

provided that y1 �= x1 and y2 �= x2. Otherwise define [x, y; G] to be the zero matrix
in M2×2(R). Moreover, using method (3.18) with z0 = (1, 0) we obtain Comparison
Table 1. Furthermore, using the method of Chord (3.19) with w−1 = (1, 0) and
w0 = (5, 5),we obtain Comparison Table 2.

Finally, using our method (3.17) with y−1 = (1, 0), y0 = (5, 5),we obtain
Comparison Table 3.

The solution is

x∗ = (0.894655373334687, 0.327826521746298)

Table 3 Comparison Table 3
n y

(1)
n y

(2)
n ‖yn − yn−1‖

−1 5 5

0 1 0 5

1 0.909090909090909 0.363636363636364 3.636E-01

2 0.894886945874111 0.329098638203090 3.453E-02

3 0.894655531991499 0.327827544745569 1.271E-03

4 0.894655373334793 0.327826521746906 1.022E-06

5 0.894655373334687 0.327826521746298 6.089E-13

6 0.894655373334687 0.327826521746298 2.710E-20
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chosen from the lists of the tables displayed above. Hence, method (3.17) converges
faster than (3.18), suggested in Chen and Yamamoto [36], Zabrejko and Nguen [37]
in this case, and the method of chord [25–27].

4 Conclusion

We presented a semi-local convergence analysis for NLM in order to approximate
a locally unique solution of an equation in a Banach space. Using our new idea
of restricted convergence domains, recurrent functions, a combination of Lipschitz
and centerLipschitz conditions, instead of only Lipschitz conditions, we provided an
analysis with the following advantages over the works in [3, 8–12, 14, 16, 17, 28–
38]: weaker sufficient convergence conditions, tighter error bounds on the distances
‖xn+1 − xn‖, ‖xn − x∗‖,at least as precise information on the location of the solu-
tion x∗ and a larger convergence domain. Note that these advantages are obtained
under the same computational cost, since, in practice, the computation of the Lips-
chitz constants K̄ requires the computation of L and K. Numerical examples further
validating the results are also provided in this study.
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