
and, by (14) 

Starting, e.g., from zero initial conditions except for x(0 )  = ( x l o ,  x20)T we 
get the Laplace transforms of the distributional control and trajectory 

To get regular controls we use Procedure 2. Solving (16)  we obtain 
(nonuniquely) 

(/I = 
c 2 ( d - 1 )   - 2 ~ d ( d - l )  

2 ed 

u2 = 
c3(d-1) - 2 c 2 d ( d - 1 ) - ~ 2  

- c 2 ( c + 1 )  2 c ( c + l ) d  

e - ' - d - B l ( d 2 + 1 )   e l ( 2 d 3  + 
x2= 0,  

0 , ( - 2 d 2 + 2 d -  

Next, we solve (21), which takes the form 

q l ( l - d ) 2 + q 2 ( e - ' - d ) 2 = 1  

obtaining the following solution (of minimal degree) 

q , = ( e - ' - 1 ) - 3 ( - 2 d + 3 e - h - 1 ) ,  q 2 = ( e - ' -  

!i 

I '  

1 

Performing Steps 5-7 we get formulas for Laplace transforms of regula 
control and trajectory corresponding to given initial conditions. For 
instance, if CJ = 0, \k = 0, and x(0)  = [ I ,  IlT, the  control is given by 
a s )  = [ i , ( s ) ,  i 2 ( S ) l T  

1j , ( , )= (e -h -1 ) -~ (2e -"+e-* -3 ) i , ( s )  

. - ~ ) ( . - h  - e - 5 h ) ( l  -2e-2sh) 

+ i ,(s)( -2+3e-"'  -2e-2s')]  

i 2 ( s )  = (e - ' -  1 ) - ~ ( 2 ~ - ' ~  + e - ' - 3 ) i l ( s )  

. ( e - ' -  e - s ' + 2 i I ( s ) ( -  I +2e-"') 

where 

i , ( s )  = (e - *  - e - s h ) ( s -  I ) - ' .  

The Laplace transform i ( s )  = [X,(S), i 2 ( s ) J T  of the state trajectory is 

where 
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IV. CONCLUSIONS 

and 

Under the assumption of reachability over the polynomial ring R [ d ]  of 
the matrix pair characterizing a linear system with commensurate delays it 
has been shown that the system can be controlled to the origin and stay 
there while the  control also vanishes identically after some time. This 
means that  the full state of the system becomes zero identically after some 
finite time. Two constructive procedures have been presented which allow 
us to calculate easily Laplace transforms of the  control and state trajec- 
tory. 
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On Model Reduction by Modified Cauer Form 
R. PARTHASARATHY, K. N. JAYASIMHA, 

AND s a s u  JOHN 

Abstract -A simple algorithm for obtaining the continued fraction quo- 
tients in the modified Cauer form (MCF) from the given system matrices 
in companion form is presented. In the sequel, the triple of d lower order 
models in companion form is directly obtained. A matrix method of 
obtaining the time-moments and Markov parameters from the MCF quo- 
tients is also outlined. Fillally, it is shown that system reduction by 
matching a set of MCF quotients is equivalent to system reduction by 
matching a set of timemoments and Markov parameters. 

I. INTRODUCTION 

The problem considered by Khatwani et al. [ I ]  is how to obtain  the 
scalar quotients h , ,  k , ,  h Z .  k , ,  . . . in the following modified Cauer  form 
(MCF) representation: 

&!(.I= S (1) 
1 

h , +  
k , +  

1 

h 2 + - S -  
k2 +-  1 

given the system matrices ( A ,  8, C )  in companion form. Chuang [9] 
modified the continued fraction technique for model reduction into this 
form to overcome instability. 
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The procedure proposed in [ I ]  requires the construction of a large 
array. the computation of whose elements involves first the evaluation of 
higher powers of A and - A  - I  and then the matrix products CAkB, 
k = 0 . 1 . 2 ; ~ ~ . a n d C A - " B , k = 1 . 2 ; ~ ~ .  

In this paper, we first formulate a  Routh-type array which is simple to 
construct. We then evaluate the scalar quotients of MCF and use them to 
develop an inversion table from which the triple of all lower order models 
in companion form is directly read off. A matrix method to obtain the 
time-moments and Markov parameters of the system is also presented. 
Finally, we prove that the method of model simplification via the MCF is 
equivalent to model reduction by matching the first k time-moments and 
first k Markov parameters corresponding to the k th order of the reduced 
model. In this respect, the result for the second Cauer form is available in 
[71. PI. 

11. DEVELOPHE~T OF THE ALGORITHM 

Given the system matrices in companion form. v i z .  

- 
0 1 0 ... 0 
0 0 1 . . .  

A =  1 

0 0 0 . . .  I 
- - al.l -'1.2 - a1.3 . ' 

The transfer function can straightaway be written as 

from which, using algorithm [3], we evaluate the MCF quotients by 
formulating the modified Routh  array as follows: 

,a1,1 UI.2 al,"-l 01 ."  1 ... 

I1 - L! 
I - " <  h.1  

bl.1 b1,2 

0 2 . 1  a2.2 

1 
h 

" h.1 

bI."Vl 

a2.n-I 1 

'>kI = b1," 

'">kn = bn.l .  
1 

Once the MCF quotients are evaluated, we formulate the inversion 
table [4]: 

PI.l 
41.1 1 I r1.1 

P2.2 

42.2 

Pn.2 . ' 

4n.2. . 

1 

P". n 

4 n .  n 

n e  first &o rows are built out of the e l e m e n t ~ p ~ . ~  = hl,  q1.1= hlkl, 

q , , 2  = I .  I,,, = 1 ,  and r l , l  = k , .  The subsequent rows are evaluated for 
i = 2- 3. . . . , n by the  recursive relations 

These are obtained in the form defined in (21, by reading off from (5) 
the values a l ,  I, aI ,z .  . . . and bl,  I, b1.?. . . . as per the relations 

Etialualion of Time- Momem  and Markm- Parameters 

From the entries of the inversion table in (5).  the weighted time- 
moments C, (viz. C, = {(- l)i/(i!)}m,, where m ,  is the ith time-moment of 
the system) and Markov parameters D, are determined by the following 
matrix relations [2]: 

42.2  42.1 
q3.3  q3.2  93.1 0 

and 

r1.1 

r2.2 
r3.3 

The Q-matrices composed of q;., elements as shown in (8) and (9) are 
formed, respectively, out of the elements in ( 5 )  as defined by 

qR,,-,. i = 1 , 2 . - - ~ , n . j = O . 1 : - ~ . i - 1  

q , . j .  i=1 ,2 ; . . . n , j=2 .3 : . . , i+ l  . ( 10) 

111. EQUIVALENCE OF m MCF TECHNIQUE 
W I ~  MIXED METHOD 

In the MCF approach  to system reduction, the model parameters for 
the lower order model are obtained by solving the set of equations 

hi = h, 
k: = ki i = 1.2,. 

while in the  mixed method [5]. the model parameters are obtained by 
sohing the equations 

We  now prove that matching in (1 1) is equivalent to matching in (12). 
ProoJ From the recursive relations in (6) ,  we observe that 

r l , l  = r2,2 = r3.3 = . . . = rn," = k, .  (13) 

From(6).(8),and(9),hl=q,.  I/kl,Co=rl.l/ql~,=kl/ql~l,andDI= 
r l ~ l .  Thus. h ,  = l/Co and k ,  = Dl. Matching h i  = h ,  and k ;  = k,, we 
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and 

Since Ci = C0 and D; = D,,  it follows that 

C;  s CI, D; = D, 

and so on. 

IV. EXAMPLE 

Consider the same example treated earlier in [ I ]  for which lower order 
models are required: 

The corresponding transfer function is 

15+5s+sz+(1/6)s3 
g(s)= 90+60s+24s2+5s3+s4’  

MCF Quorzents: By forming the table in (4). we obtain 

h , = 6 , k , = 1 / 6 . h z = 3 , k , = I / 3 , h , = 2 , k , = l ,  

h ,  = 1/5, and k ,  = 5. 

The inversion table is as follows 

6 
1 1  
9 3  

k 2  = l/3 < 
3 2 1  

k 3 = l <  
15 7 2 

15 10 4 1 

18 9 14/5 1/5 

90  60  24 5 1 
k , = 5 <  

1/2 1/6 

5/2 1/3 

5/2  5/6  1/6 

3 1/2 1/30 

>h3 = 2 

>h4  = 1/5 

15 5 1 1/6. (21) 

Lower Order Models: From (7). 

a s =   ( - a 1 , ,  - a 1 . ,  ( -15  -10 -4) 

c3= i6I.l 61.2 b, . , l=  [5/2 5/6  1/61  (22) 

c2 = [ 4 . 1  h , I =  [1/2 1/61. 

a 2 = ( - a l . I  - a 1 . 2 ) = ( - 3 ,  -2). 

Weighted Time- Moments and Markoc Parameters: From (8) and (9), 

Co = 1/6. CI - 1/18. C, 1/270, C3 = 2/405 

Dl = l/6, D2 = l/6,D3 l/6.D4 = l/6. (23) 

V. CONCLUSION 

A computationally efficient procedure which  involves constructing only 
a simple modified Routh array is presented to evaluate the  continued 
fraction quotients from the given system matrices in companion form. 
The saving in computation over the earlier method of Khatwani et al. [ I ]  
is obvious: the proposed method does not require any matrix inversion or 
multiplication of the system matrices. The canonical realizations of all 
lower order models are directly read off from the inversion table. 

A matrix method is presented to determine the time moments and 
Markov parameters from the knowledge of the MCF quotients. Further- 
more, it is shown that system reduction by MCF is equivalent to system 
reduction by matching a se t  of time-moments and Markov parameters. 
These results find application in many practical problems, as the canoni- 
cal realization possesses distinct advantages for simulation studies and for 
system design [6]. 

The steps in the algorithm are oriented for easy and direct program- 
ming. The relationship between the original state vector and the state 
vector of the model obtained through MCF quotients has been investi- 
gated and has been reported elsewhere [3]. 
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A Note on the Model Reduction Problem 

ANTONIO LEPSCHY AND UMBERTO VIARO 

Abstract -A mixed method of model  reduction is proposed; it is based 
on the differentiation method suggested by Gutman et al. 111 and on the 
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