On Graceful Trees *

Suresh Manjanath Hegde ${ }^{\dagger}$, Sudhakar Shetty ${ }^{\ddagger}$

Received 30 October 2001

Abstract

A (p, q)-graph $G=(V, E)$ is said to be (k, d)-graceful, where k and d are positive integers, if its p vertices admits an assignment of a labeling of numbers $0,1,2, \ldots, k+(q-1) d$ such that the values on the edges defined as the absolute difference of the labels of their end vertices form the set $\{k, k+d, \ldots, k+(q-1) d\}$. In this paper we prove that a class of trees called T_{P}-trees and subdivision of $T_{P^{-}}$ trees are (k, d)-graceful for all positive integers k and d.

1 INTRODUCTION

For all terminology and notation in graph theory we follow Harary [5].
Graphs labeling, where the vertices are assigned values subject to certain conditions, have often been motivated by practical problems. Labeled graphs serves as useful mathematical models for a broad range of applications such as Coding theory, including the design of good radar type codes, synch-set codes, missile guidance codes and convolution codes with optimal autocorrelation properties. They facilitate the optimal nonstandard encoding of integers. A systematic presentation of diverse applications of graph labelings is presented in [3].

Given a graph $G=(V, E)$, the set N of non-negative integers and a commutative binary operation $*: N \times N \rightarrow N$, every vertex function $f: V(G) \rightarrow N$ induces an edge function $g_{f}: E(G) \rightarrow N$ such that $g_{f}(u v)=f(u) * f(v)$ for all $u v \in E(G)$.

A function f is called a graceful labeling of a (p, q)-graph $G=(V, E)$ if f is an injection from the vertices of G to the set $\{0,1,2, \ldots, q\}$ such that, when each edge $u v$ is assigned the label $|f(u)-f(v)|$, the resulting edge labels are distinct. Rosa [6] introduced this concept in 1967 and also defined a balanced labeling of a graph G is a graceful labeling f of G such that for each edge $u v$ of G either $f(u) \leq c<f(v)$ or $f(v) \leq c<f(u)$ for some integer c, called characteristic of f. The Ringel-Kotzig conjecture that all trees are graceful has been the focus of many papers [4].

Acharya and Hegde [2] generalized graceful labeling to (k, d)-graceful labeling by permitting the vertex labels to belong to $\{0,1,2, \ldots, k+(q-1) d\}$ and requiring the set of edge labels induced by the absolute difference of labels of adjacent vertices to be

[^0]$\{k, k+d,, \ldots, k+(q-1) d\}$, where k and d are positive integers. They also introduce an analog of balanced labeling, a (k, d)-balanced labeling of a graph G is a (k, d) graceful labeling f of G such that for each edge $u v$ of G either $f(u) \leq c<f(v)$ or $f(v) \leq c<f(u)$ for some integer c. One can note that (1,1)-graceful labeling and graceful labeling are identical.

In this paper we prove that a class of trees called T_{P}-trees(transformed trees) and subdivision $S(T)$ of a T_{P}-tree T, obtained by subdividing every edge of T exactly once are (k, d)-graceful for all positive integers k and d.

2 TRANSFORMED TREES (T_{P}-TREES)

Let T be a tree and u_{o} and v_{o} be two adjacent vertices in T. Let there be two pendant vertices u and v in T such that the length of $u_{o}-u$ path is equal to the length of $v_{o}-v$ path. If the edge $u_{o} v_{o}$ is deleted from T and u, v are joined by an edge $u v$, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_{o} v_{o}$ is called a transformable edge (Acharya [1]).

If by a sequence of ept's T can be reduced to a path then T is called a T_{P}-tree (transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$.

A T_{P}-tree and a sequence of two ept's reducing it to a path are illustrated in Fig-1.

Fig-1: A T_{P}-tree and a sequence of two ept's reducing it to a path.
THEOREM 1. Every T_{P}-tree is (k, d)-graceful for all positive integers k and d.

PROOF. Let T be a T_{P}-tree with $n+1$ vertices. By the definition of a T_{P}-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T))=V(T)$ and (ii) $E(P(T))=\left(E(T)-E_{d}\right) \cup E_{P}$, where E_{d} is the set of edges deleted from T and E_{P} is the set of edges newly added through the sequence P $=\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of the epts P used to arrive at the path $P(T)$. Clearly E_{d} and E_{P} have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}$ starting from one pendant vertex of $P(T)$ right up to other. The labeling f defined by

$$
f\left(v_{i}\right)=\left\{\begin{array}{lll}
k+(q-1) d-[(i-1) / 2] d & \text { for odd } i, & 1 \leq i \leq n+1 \\
{[(i / 2)-1] d} & \text { for even } i, & 2 \leq i \leq n+1
\end{array}\right.
$$

where k and d are positive integers and q is the number of edges of T, is a (k, d)-graceful labeling of the path $P(T)$.

Let $v_{i} v_{j}$ be an edge in T for some indices i and $j, 1 \leq i<j \leq n+1$ and let P_{1} be the ept that deletes this edge and adds the edge $v_{i+t} v_{j-t}$ where t is the distance of v_{i} from v_{i+t} as also the distance of v_{j} from v_{j-t}. Let P be a parallel transformation of T that contains P_{1} as one of the constituent epts.

Since $v_{i+t} v_{j-t}$ is an edge in the path $P(T)$ it follows that $i+t+1=j-t$ which implies $j=i+2 t+1$. Therefore i and j are of opposite parity, i.e., i is odd and j is even or vice-versa.

The value of the edge $v_{i} v_{j}$ is given by,

$$
\begin{equation*}
g_{f}\left(v_{i} v_{j}\right)=g_{f}\left(v_{i} v_{i+2 t+1}\right)=\left|f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right)\right| \tag{1}
\end{equation*}
$$

If i is odd and $1 \leq i \leq n$, then

$$
\begin{align*}
f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right) & =k+(q-1) d-[(i-1) / 2] d-[((i+2 t+1) / 2)-1] d \\
& =k+(q-1) d-(i+t-1) d \tag{2}
\end{align*}
$$

If i is even and $2 \leq i \leq n$, then

$$
\begin{align*}
f\left(v_{i}\right)-f\left(v_{i+2 t+1}\right) & =[(i / 2)-1] d-[k+(q-1) d]+[(i+2 t+1-1) / 2] d \\
& =(i+t-1) d-[k+(q-1) d] \tag{3}
\end{align*}
$$

Therefore from (1), (2) and (3),

$$
\begin{equation*}
g_{f}\left(v_{i} v_{j}\right)=|k+(q-1) d-(i+t-1) d|, 1 \leq i \leq n \tag{4}
\end{equation*}
$$

Now

$$
\begin{align*}
g_{f}\left(v_{i+t} v_{j-t}\right) & =g_{f}\left(v_{i+t} v_{i+t+1}\right)=\left|f\left(v_{i+t}\right)-f\left(v_{i+t+1}\right)\right| \\
& =|k+(q-1) d-(i+t-1) d|, 1 \leq i \leq n \tag{5}
\end{align*}
$$

Therefore from (4) and (5)

$$
g_{f}\left(v_{i} v_{j}\right)=g_{f}\left(v_{i+t} v_{j-t}\right)
$$

Hence f is a (k, d)-graceful labeling of T_{P}-tree T. The proof is complete.
For example, a $(1,1)$-graceful labeling of a T_{P}-tree T using Theorem 1, is shown in Fig-2.

Fig-2: A graceful labeling of a T_{P}-tree using theorem 1.
REMARK. We shall show further that f is indeed a (k, d)-balanced labeling of T. Since i and j are of opposite parity, without loss of generality, we may assume that i is odd and j is even.

Case 1: n is even (i.e. q is even)
Since $i \leq n+1$, we get

$$
\begin{aligned}
f\left(v_{i}\right) & =k+(q-1) d-((i-1) / 2) d \\
& \geq k+(q-1) d-((q+1-1) / 2) d \\
& =k+((q / 2)-1) d \\
& >((q / 2)-1) d \\
& =\lceil(q-1) / 2\rceil d
\end{aligned}
$$

where \lceil.$\rceil denote the greatest integer functions. The second last inequality holds since$ $k \geq 1$ and the last equality holds since q is even. Also,

$$
f\left(v_{j}\right)=((j / 2)-1) d \leq((q / 2)-1) d=\lceil(q-1) / 2\rceil d .
$$

Thus we get

$$
f\left(v_{j}\right) \leq\lceil(q-1) / 2\rceil d<f\left(v_{i}\right)
$$

Case 2: n is odd
By means of aruguments similar to those in Case 1,

$$
f\left(v_{j}\right) \leq\lceil(q-1) / 2\rceil d<f\left(v_{i}\right)
$$

As i and j are arbitrarily chosen so that $v_{i} v_{j}$ is an edge in T, it follows that f is also a (k, d)-balanced labeling of T with characteristic $\lceil(q-1) / 2\rceil d$.

THEOREM 2. If T is a T_{P}-tree with q edges then the subdivision tree $S(T)$ is (k, d)-graceful for all positive integers k and d.

PROOF. Let T be a T_{P}-tree with n vertices and q edges. By the definition of a T_{P}-tree there exists a parallel transformation P of T so that we get $P(T)$. Denote the vertices of $P(T)$ successively as $v_{1}, v_{2}, \ldots, v_{n}$ starting from one pendant vertex of $P(T)$ right up to other and preserve the same for T.

Construct the subdivision tree $S(T)$ of T by introducing exactly one vertex between every edge $v_{i} v_{j}$ with $i<j$ of T and denote the vertex as $v_{i, j}$. Let $v_{m^{x}} v_{h^{x}}, x=1,2, \ldots, z$ be the z transformable edges of T with $m^{x}<m^{x}+1$ for all x. Let t_{x} be the path length from the vertex $v_{m^{x}}$ to the corresponding pendant vertex decided by the transformable edge $v_{m^{x}} v_{h^{x}}$ of T.

Define a labeling $f: V(S(T)) \rightarrow\{0,1,2, \ldots, k+(2 q-1) d\}$ by $f\left(v_{i}\right)=k+(2 q-$ $1) d-(i-1) d$ for $i=1,2, \ldots, n$ and

$$
\begin{array}{ll}
f\left(v_{i, j}\right)=(i-1) d, & j \neq i+1 \\
f\left(v_{i, j}\right)=i d, & j=i+1 ; i=m^{c}, m^{c}+1, \ldots, m^{c}+t_{c}-1 ; c=1,2, \ldots, z, \\
f\left(v_{i, j}\right)=(i-1) d, & j=i+1 ; i \neq m^{c}, m^{c}+1, \ldots, m^{c}+t_{c}-1 ; c=1,2, \ldots, z
\end{array}
$$

where k and d are positive integers and $2 q$ is the number of edges of $S(T)$.
Let

$$
A=\left\{v: v \in V(S(T)) \text { with } v=v_{i}, i=1,2, \ldots, n\right\}
$$

and

$$
B=\left\{v: v \in V(S(T)) \text { with } v=v_{i, j}, i=1,2, \ldots, n-1 ; j=2,3, \ldots, n\right\}
$$

Then by the definition of f above, the least value $k+(q-1) d$ on the set $f(A)$ is greater than the greatest value $(q-1) d$ on the set $f(B)$. Clearly f is injective from A to $f(A)$. Also f assigns values to the members $v_{i, j}$ of B with $j=i+1, i=1,2, \ldots, n-1$, in strictly increasing order and the increasing order gets uniformity due to values on the members $v_{i, j}$ of B with $j \neq i+1$. Therefore f is injective.

Now by the definition of induced edge function g_{f} for graceful labeling f, we get, the greatest and least values on the edges as follows:

$$
g_{f}\left(v_{1} v_{1,2}\right)=\left|f\left(v_{1}\right)-f\left(v_{1,2}\right)\right|=k+(2 q-1) d
$$

and

$$
\begin{aligned}
g_{f}\left(v_{n-1, n} v_{n}\right) & =g_{f}\left(v_{q, q+1} v_{q+1}\right) \\
& =\left|f\left(v_{q, q+1}\right)-f\left(v_{q+1}\right)\right| \\
& =|(q-1) d-k-(q-1) d|=k
\end{aligned}
$$

As we have uniform increasing order of values on the vertices due to f and there are $2 q$ edges in $S(T)$, clearly g_{f} is injective with edge values forms the set $\{k, k+d, \ldots, k+$ $(2 q-1) d\}$. Hence f is a (k, d)-graceful labeling of $S(T)$. The proof is complete.

For example, a (1,1)-graceful labeling of subdivision of a T_{P}-tree using theorem 2 , is shown in Fig-3.

Fig-3: A graceful labeling of subdivision of a T_{P}-tree using theorem 2.

References

[1] B. D. Acharya, Personal communication.
[2] B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275-299.
[3] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proceedings of the IEE, 165(4)(1977), 562-570.
[4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of combinatorics, 5(1)(1998), Dynamic Survey 6, 43 pp.
[5] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
[6] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (Internat. Symp, Rome, July 1966), Gordan and Breach, N.Y and Paris, 1967, 349-355.

[^0]: *Mathematics Subject Classifications: 05C78
 \dagger Department of Mathematical and Computational Sciences, Karnataka Regional Engineering College, Surathkal, Srinivasanagar, 574157, Karnataka, India
 ${ }^{\ddagger}$ Department of Mathematics, N. M. A. M. Institute Of Technology, Nitte 574110, Karnataka, India

