On clique convergence of graphs

S.M. Hegde *, Suresh Dara
Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, India

Received 11 February 2016; received in revised form 29 June 2016; accepted 7 July 2016
Available online 3 August 2016

Abstract

Let G be a graph and \mathcal{K}_{G} be the set of all cliques of G, then the clique graph of G denoted by $K(G)$ is the graph with vertex set \mathcal{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathcal{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=K\left(K^{n-1}(G)\right)$ for $n>0$. In this paper we prove a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$, give a partial characterization for clique divergence of the join of graphs and prove that if G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$. © 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Maximal clique; Clique graph; Graph operator

1. Introduction

Given a simple graph $G=(V, E)$, not necessarily finite, a clique in G is a maximal complete subgraph in G. Let G be a graph and \mathcal{K}_{G} be the set of all cliques of G, then the clique graph operator is denoted by K and the clique graph of G is denoted by $K(G)$, where $K(G)$ is the graph with vertex set \mathcal{K}_{G} and two elements $Q_{i}, Q_{j} \in \mathcal{K}_{G}$ form an edge if and only if $Q_{i} \cap Q_{j} \neq \emptyset$. Clique graph was introduced by Hamelink in 1968 [1]. Iterated clique graphs are defined by $K^{0}(G)=G$, and $K^{n}(G)=K\left(K^{n-1}(G)\right)$ for $n>0$ (see [2-4]).

Definition 1.1. A graph G is said to be K-periodic if there exists a positive integer n such that $G \cong K^{n}(G)$ and the least such integer is called the K-periodicity of G, denoted K-per (G).

Definition 1.2. A graph G is said to be K-Convergent if $\left\{K^{n}(G): n \in \mathbb{N}\right\}$ is finite, otherwise it is K-Divergent (see [5]).

Definition 1.3. A graph H is said to be K-root of a graph G if $K(H)=G$.
If G is a clique graph then one can observe that, the set of all K-roots of G is either empty or infinite.

[^0]Definition 1.4 ([3]). A graph G is a Clique-Helly Graph if the set of cliques has the Helly-Property. That is, for every family of pairwise intersecting cliques of the graph, the total intersection of all these cliques should be non-empty also.

Definition 1.5. Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ be the two graphs. Then their join $G_{1}+G_{2}$ is obtained by adding all possible edges between the vertices of G_{1} and G_{2}.

Definition 1.6. The Cartesian product of two graphs G and H, denoted $G \square H$, is a graph with vertex set $V(G \square H)=$ $V(G) \times V(H)$, i.e., the set $\{(g, h) \mid g \in G, h \in H\}$. The edge set of $G \square H$ consists of all pairs $\left[\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)\right]$ of vertices with $\left[g_{1}, g_{2}\right] \in E(G)$ and $h_{1}=h_{2}$, or $g_{1}=g_{2}$ and $\left[h_{1}, h_{2}\right] \in E(H)$ (see [6] page no 3).

2. Results

One can observe that the clique graph of a complete graph and star graph are always complete. Let G be a graph with n vertices and having a vertex of degree $n-1$, then the clique graph of G is also complete.

Theorem 2.1. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$, then X is a clique in G_{1} and Y is a clique in G_{2} if and only if $X+Y$ is a clique in $G_{1}+G_{2}$.
Proof. Let $G=G_{1}+G_{2}$ and X be a clique in G_{1} and Y be a clique in G_{2}. Suppose that $X+Y$ is not a maximal complete subgraph in $G_{1}+G_{2}$, then there is a maximal complete subgraph (clique) Q in $G_{1}+G_{2}$ such that $X+Y$ is a proper subgraph of Q. Since $X+Y$ is a proper subgraph of Q, there is a vertex v in Q which is not in $X+Y$ and v is adjacent to every vertex of $X+Y$, then by the definition of $G_{1}+G_{2}, v$ should be in either G_{1} or G_{2}. Suppose v is in G_{1}, then the induced subgraph of $V(X)+\{v\}$ is complete in G_{1}, which is a contradiction as X is maximal. Therefore $X+Y$ is the maximal complete subgraph (clique) in $G_{1}+G_{2}$.

Conversely, let Q is a clique in $G_{1}+G_{2}$. Suppose that $Q \neq X+Y$ where X is a clique in G_{1} and Y is a clique in G_{2}. If $Q \cap G_{1}=\emptyset$, then Q is a subgraph of G_{2}. This implies that Q is a clique in G_{2} as Q is a clique in G. Let v be a vertex of G_{1}. Then by the definition of $G_{1}+G_{2}$, one can observe that the induced subgraph of $V(Q) \cup\{v\}$ is complete in G, which is a contradiction as Q is a maximal complete subgraph. Therefore $Q \cap G_{1} \neq \emptyset$. Similarly we can prove that $Q \cap G_{2} \neq \emptyset$. Let X be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{1}\right)$ and Y be the induced subgraph of G with vertex set $V(Q) \cap V\left(G_{2}\right)$, then $Q=X+Y$. Since Q is a maximal complete subgraph of G, X and Y should be maximal complete subgraphs in G_{1} and G_{2} respectively. Otherwise, if X is not a maximal complete subgraph in G_{1} then there is a maximal complete subgraph X^{\prime} in G_{1} such that X is subgraph of X^{\prime}, and this implies that $X+Y$ is a subgraph of $X^{\prime}+Y$ and $X^{\prime}+Y$ is complete, which is a contradiction. Therefore X and Y are maximal complete subgraphs (cliques) in G_{1} and G_{2} respectively.

Corollary 2.2. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If n, m are the number of cliques in G_{1}, G_{2} respectively, then G has nm cliques.

Proof. Let $G=G_{1}+G_{2}, \mathcal{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of all cliques of G_{1} and $\mathcal{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ be the set of all cliques of G_{2}. Then by Theorem 2.1 it follows that $\mathcal{K}_{G}=\left\{X_{i}+Y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is the set of all cliques of G. Since G_{1} has n, G_{2} has m number of cliques, $G_{1}+G_{2}$ has nm number of cliques.

In the following result we give a necessary and sufficient condition for a clique graph $K(G)$ to be complete when $G=G_{1}+G_{2}$.

Theorem 2.3. Let G_{1}, G_{2} be two graphs. If $G=G_{1}+G_{2}$, then $K(G)$ is complete if and only if either $K\left(G_{1}\right)$ is complete or $K\left(G_{2}\right)$ is complete.
Proof. Let $G=G_{1}+G_{2}$ and $K(G)$ be complete. Suppose that neither $K\left(G_{1}\right)$ nor $K\left(G_{2}\right)$ is complete, then there exist two cliques X, X^{\prime} in G_{1} and two cliques Y, Y^{\prime} in G_{2} such that $X \cap X^{\prime}=\emptyset$ and $Y \cap Y^{\prime}=\emptyset$. By Theorem 2.1 it follows that $X+Y, X^{\prime}+Y^{\prime}$ are cliques in G. Since $X \cap X^{\prime}$ and $Y \cap Y^{\prime}$ are empty, it follows that $\{X+Y\} \cap\left\{X^{\prime}+Y^{\prime}\right\}=\emptyset$, which is a contradiction as $K(G)$ is complete.

Conversely, suppose that $K\left(G_{1}\right)$ is complete and $\mathcal{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}, \mathcal{K}_{G_{2}}=\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$. By Corollary 2.2, it follows that G has exactly nm number of cliques. Let $\mathcal{K}_{G}=\left\{Q_{i j}: Q_{i j}=X_{i}+Y_{j}\right.$ for $i=$
$1,2, \ldots, n ; j=1,2, \ldots, m\}$ be the set of all cliques of G. Then Q is the vertex set of $K(G)$. Arranging the elements of \mathcal{K}_{G} in the matrix form $M=\left[m_{i j}\right]$ where $m_{i j}=Q_{i j}$, we have

$$
M=\left(\begin{array}{ccccc}
Q_{11} & Q_{12} & Q_{13} & \ldots & Q_{1 m} \\
Q_{21} & Q_{22} & Q_{23} & \cdots & Q_{2 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Q_{n 1} & Q_{n 2} & Q_{n 3} & \cdots & Q_{n m}
\end{array}\right) .
$$

Let $Q_{i j}, Q_{k l}$ be any two elements in M. Since $Q_{i j}=X_{i}+Y_{j}, Q_{k l}=X_{k}+Y_{l}$, it follows that X_{i}, X_{k} are cliques in G_{1}. Since $K\left(G_{1}\right)$ is complete, $X_{i} \cap X_{k} \neq \emptyset$ and then $Q_{i j} \cap Q_{k l} \neq \emptyset$. Therefore $Q_{i j}, Q_{k l}$ are adjacent in $K(G)$. Hence $K(G)$ is complete.

Lemma 2.4. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then for every clique in $K\left(G_{1}\right)$ there is a clique in $K(G)$ and for every clique in $K\left(G_{2}\right)$ there is a clique in $K(G)$.

Proof. Let $G=G_{1}+G_{2}$ be a graph such that $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are not complete. Let $V\left(K\left(G_{1}\right)\right)=\left\{X_{i}\right.$: X_{i} is a clique in $\left.G_{1}, 1 \leq i \leq n\right\}$ and $V\left(K\left(G_{2}\right)\right)=\left\{Y_{j}: Y_{j}\right.$ is a clique in $\left.G_{2}, 1 \leq j \leq m\right\}$, then by Theorem 2.1 it follows that $V(K(G))=\left\{X_{i}+Y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. Let Q be a clique of size l in $K\left(G_{1}\right)$ and $V(Q)=$ $\left\{X_{Q_{1}}, X_{Q_{2}}, \ldots, X_{Q_{l}}\right\}$ where $X_{Q_{i}}$ is a clique in G_{1} for $1 \leq i \leq l$. Let $A_{Q}=\left\{X_{Q_{i}}+Y_{j}: 1 \leq i \leq l, 1 \leq j \leq m\right\}$. Then clearly A_{Q} is subset of $V(K(G))$.

Let $X_{Q_{1}}+Y_{1}, X_{Q_{2}}+Y_{2}$ be two elements in A_{Q}. Since $X_{Q_{1}}, X_{Q_{2}}$ are the vertices of the clique Q of $K\left(G_{1}\right)$, we have $X_{Q_{1}} \cap X_{Q_{2}} \neq \emptyset$. Therefore $\left\{X_{Q_{1}}+Y_{1}\right\} \cap\left\{X_{Q_{2}}+Y_{2}\right\} \neq \emptyset$. Hence the intersection of any two elements in A_{Q} is nonempty. Then, it follows that the elements of A_{Q} form a complete subgraph in $K(G)$. Suppose that it is not a maximal complete subgraph in $K(G)$. Then there is a vertex, say $X_{1}+Y_{1}$ in $K(G)$ which is not in A_{Q} and $X_{1}+Y_{1}$ is adjacent with every vertex of A_{Q}. Since $K\left(G_{2}\right)$ is not complete there exists a vertex say Y_{2} in $K\left(G_{2}\right)$ such that Y_{2} is not adjacent to Y_{1} in $K\left(G_{2}\right)$. Since Q is a clique in $K\left(G_{1}\right)$ and $K\left(G_{1}\right)$ is not complete, there is a vertex say $X_{Q_{1}}$ in $V(Q)$ which is not adjacent to X_{1} in $K\left(G_{1}\right)$. By the definition of A_{Q} one can see that $X_{Q_{1}}+Y_{2}$ is an element of A_{Q}. Therefore $\left\{X_{Q_{1}}+Y_{2}\right\} \cap\left\{X_{1}+Y_{1}\right\}=\emptyset$, which is a contradiction. Thus A_{Q} is a maximal complete subgraph in $K(G)$. Hence for every clique in $K\left(G_{1}\right)$ there is a clique in $K(G)$.

On similar lines we can also prove that for every clique in $K\left(G_{2}\right)$, there is a clique in $K(G)$.
Corollary 2.5. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then the number of cliques in $K(G)$ is at least the sum of the number of cliques in $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$.

Theorem 2.6. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If $K\left(G_{1}\right), K\left(G_{2}\right)$ are not complete, then $K^{2}\left(G_{1}\right)+$ $K^{2}\left(G_{2}\right)$ is an induced subgraph of $K^{2}(G)$.

Proof. Let $G=G_{1}+G_{2}$ be a graph such that $K\left(G_{1}\right)$ and $K\left(G_{2}\right)$ are not complete. Let $X_{1}, X_{2}, \ldots, X_{n}$ be the cliques of $K\left(G_{1}\right)$, and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be the cliques of $K\left(G_{2}\right)$. By Lemma 2.4 it follows that for every clique X_{i} of $K\left(G_{1}\right)$ there is a clique X_{i}^{\prime} in $K(G), 1 \leq i \leq n$ and for every clique Y_{j} of $K\left(G_{2}\right)$ there is a clique Y_{j}^{\prime} in $K(G), 1 \leq j \leq m$.

Claim 1: $X_{i} \cap X_{j} \neq \emptyset$ in $K\left(G_{1}\right)$ if and only if $X_{i}^{\prime} \cap X_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $i \neq j$.
Let X_{i}, X_{j} be two cliques in $K\left(G_{1}\right)$ and $X_{i} \cap X_{j} \neq \emptyset$. Let v be a vertex in $X_{i} \cap X_{j}$. By Lemma 2.4 it follows that if v is a vertex in the clique X_{i} in $K\left(G_{1}\right)$, then for any vertex u in $K\left(G_{2}\right), v+u$ is a vertex in the clique X_{i}^{\prime} in $K(G)$ corresponding to the clique X_{i} in $K\left(G_{1}\right)$. Therefore $v+u$ is a vertex in $X_{i}^{\prime} \cap X_{j}^{\prime}$.

Conversely, suppose that $X_{i}^{\prime}, X_{j}^{\prime}$ be two cliques in $K(G)$ and $X_{i}^{\prime} \cap X_{j}^{\prime} \neq \emptyset$. Let w be a vertex in $X_{i}^{\prime} \cap X_{j}^{\prime}$. By Theorem 2.1 it follows that $w=v+u$, where v is a vertex of $K\left(G_{1}\right)$ and u is a vertex of $K\left(G_{2}\right)$. Since $w=v+u$ is a vertex of the clique X_{i}^{\prime} in $K(G)$, it follows that v is a vertex of the clique X_{i} in $K\left(G_{1}\right)$. Similarly v is a vertex of the clique X_{j} in $K\left(G_{1}\right)$. Therefore v is in $X_{i} \cap X_{j}$.

Similarly we can prove that, $Y_{i} \cap Y_{j} \neq \emptyset$ in $K\left(G_{2}\right)$ if and only if $Y_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $i \neq j$.
Claim 2: $X_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$ in $K(G)$ for $1 \leq i \leq n, 1 \leq j \leq m$.
Let $X_{i}^{\prime}, Y_{j}^{\prime}$ be two cliques in $K(G), 1 \leq i \leq n, 1 \leq j \leq m$ and X_{i}, Y_{j} are the cliques in $K\left(G_{1}\right), K\left(G_{2}\right)$ corresponding to the maximal cliques $X_{i}^{\prime}, Y_{j}^{\prime}$ in $K(G)$ respectively. Let v be a vertex in X_{i} and u be a vertex in Y_{j}, then by Lemma $2.4 v+u$ be the vertex in X_{i}^{\prime} as well as in Y_{j}^{\prime}. Therefore $X_{i}^{\prime} \cap Y_{j}^{\prime} \neq \emptyset$.

By claims 1 and 2 it follows that $K^{2}\left(G_{1}\right)+K^{2}\left(G_{2}\right)$ is an induced subgraph of $K^{2}(G)$.

Note: Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$. If G is K-divergent, then G_{1}, G_{2} don't need to be K-divergent.
Example 2.7. If H is a graph consisting of just two nonadjacent vertices and we define for every $n>1$ the graph $J_{n}=\underbrace{(((H+H)+H)+\cdots)+H}_{n \text { times }}$, it turns out that $K\left(J_{n}\right)=J_{2^{n-1}}$. Suppose $G_{1}=J_{2}=C_{4}, G_{2}=H$ then $G_{1}+G_{2}=J_{3}$ and $K\left(G_{1}+G_{2}\right)=J_{4}$. Therefore $K^{2}\left(G_{1}+G_{2}\right)=J_{8}$. Which implies that $G_{1}+G_{2}$ is K-divergent. But G_{1} and G_{2} are not K-divergent.

2.1. Observations

Let $G=G_{1}+G_{2}$ be a graph and $\mathcal{K}_{G_{1}}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the set of all cliques of G_{1} and $\mathcal{K}_{G_{2}}=$ $\left\{Y_{1}, Y_{2}, \ldots, Y_{m}\right\}$ be the set of all cliques of G_{2}. By Theorem 2.1, it follows that $\mathcal{K}_{G}=\left\{Q_{i j}=X_{i}+Y_{j}: 1 \leq\right.$ $i \leq n ; 1 \leq j \leq m\}$ is the set of all cliques of G. Let $v_{i j}$ be the vertex of $K(G)$ corresponding to the clique $Q_{i j}$ of G. Arrange the vertices of $K(G)$ as a matrix $M=\left[m_{i j}\right]$, where $m_{i j}=v_{i j}$, i.e.,

$$
M=\left(\begin{array}{ccccc}
v_{11} & v_{12} & v_{13} & \ldots & v_{1 m} \\
v_{21} & v_{22} & v_{23} & \cdots & v_{2 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
v_{n 1} & v_{n 2} & v_{n 3} & \cdots & v_{n m}
\end{array}\right) .
$$

From the above matrix one can observe that the i th row corresponds to the clique X_{i} of G_{1} and j th column corresponds to the clique Y_{j} of $G_{2}, 1 \leq i \leq n, 1 \leq j \leq m$.

Claim 1: Any two elements in the same row or same column in M are adjacent in $K(G)$.
Let $Q_{i j}, Q_{i k}$ be any two elements in the i th row. Since $Q_{i j}=X_{i}+Y_{j}, Q_{i k}=X_{i}+Y_{k}, Q_{i j} \cap Q_{i k}=X_{i} \neq \emptyset$. Therefore $Q_{i j}, Q_{i k}$ are adjacent in $K(G)$. Similarly any two elements in the same column are adjacent.

Claim 2: If $X_{i} \cap X_{j} \neq \emptyset$, then every vertex of i th row is adjacent to every vertex of j th row, $1 \leq i \neq j \leq n$.
Let $X_{i} \cap X_{j} \neq \emptyset$ and $v_{i k}, v_{j l}$ be any two elements of i th and j th rows respectively in M. Since $Q_{i k}=X_{i}+Y_{k}$, $Q_{j l}=X_{j}+Y_{l}$ are the cliques of G corresponding to the vertices $v_{i k}, v_{j l}$ of $K(G)$ and $X_{i} \cap X_{j} \neq \emptyset$, we have $Q_{i k} \cap Q_{j l} \neq \emptyset$. Therefore $v_{i k}, v_{j l}$ are adjacent in $K(G)$.

Similarly if $Y_{i} \cap Y_{j} \neq \emptyset$, then every vertex of i th column is adjacent to every vertex of j th column, $1 \leq i \neq j \leq m$. One can see that the following observations will follow from Claim 1 and Claim 2.

1. If $G=G_{1}+G_{2}$, then $K(G)$ is Hamiltonian.
2. If $G=G_{1}+G_{2}$, then $K(G)$ is planar if it satisfies one of the following:
(i) The number of cliques in G_{1} and G_{2} is less than 3 .
(ii) If the number of cliques in G_{1} is 3 , then either G_{2} is a complete graph or G_{2} has exactly two cliques and $K\left(G_{1}\right)=\overline{K_{3}}, K\left(G_{2}\right)=\overline{K_{2}}$.
(iii) If the number of cliques in G_{1} is 4 , then G_{2} is a complete graph.
3. If $G=G_{1}+G_{2}$ and n, m are the number of cliques in G_{1}, G_{2}, then the degree of any vertex in $K(G)$ is $(n+m-2)+k(n-1)+l(m-1)-k l, 0 \leq k<m$ and $0 \leq l<n$.
4. Let G_{1}, G_{2} be two graphs and $G=G_{1}+G_{2}$,
(i) If both G_{1} and G_{2} have odd number of cliques, then $K(G)$ is Eulerian if one of $K\left(G_{1}\right)$ or $K\left(G_{2}\right)$ is Eulerian.
(ii) If both G_{1} and G_{2} have even number of cliques, then $K(G)$ is Eulerian if $K\left(G_{1}\right), K\left(G_{2}\right)$ are Eulerian.
(iii) If G_{1} has even number of cliques and G_{2} has odd number of cliques, then $K(G)$ is Eulerian if degree of each vertex in $K\left(G_{2}\right)$ is odd and $K\left(G_{1}\right)$ is Eulerian.

3. Cartesian product of graphs

In this section we are considering G_{1}, G_{2} be connected graphs only.
Theorem 3.1. If G_{1}, G_{2} are Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$, then $K^{2}(G)=G$.
Proof. Let G_{1}, G_{2} be Clique-Helly graphs different from K_{1} and $G=G_{1} \square G_{2}$. Let $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n_{1}}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n_{2}}\right\}$, then by the definition of $G_{1} \square G_{2}$, it follows that $V(G)=\left\{V_{i j}: V_{i j}=\left(v_{i}, u_{j}\right)\right.$ where $1 \leq$ $\left.i \leq n_{1}, 1 \leq j \leq n_{2}\right\},|V(G)|=n_{1} n_{2}$. Also, G has n_{2} copies of G_{1} (say, $G_{1}^{1}, G_{1}^{2}, \ldots, G_{1}^{n_{2}}$) which are vertex
disjoint induced subgraphs and n_{1} copies of G_{2} (say, $G_{2}^{1}, G_{2}^{2}, \ldots, G_{2}^{n_{1}}$) which are vertex disjoint induced subgraphs. Clearly one can observe that $V\left(G_{2}^{i}\right) \cap V\left(G_{1}^{j}\right)=V_{i j}, V_{i j}$ is not in $V\left(G_{2}^{n}\right)$ and $V\left(G_{1}^{m}\right)$ for $n \neq i, m \neq j$ for all $1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. As $G=G_{1} \square G_{2}$, we can see that every clique in G_{1} and G_{2} are cliques in G. Let $\mathcal{K}_{G_{1}}=\left\{Q_{1}, Q_{2}, \ldots, Q_{l_{1}}\right\}$ and $\mathcal{K}_{G_{2}}=\left\{P_{1}, P_{2}, \ldots, P_{l_{2}}\right\}$, then
$\mathcal{K}_{G}=\left\{Q_{1}^{1}, Q_{2}^{1}, \ldots, Q_{l_{1}}^{1}, Q_{1}^{2}, Q_{2}^{2}, \ldots, Q_{l_{1}}^{2}, \ldots, Q_{1}^{n_{2}}, Q_{2}^{n_{2}}, \ldots, Q_{l_{1}}^{n_{2}}, P_{1}^{1}, P_{2}^{1}, \ldots, P_{l_{2}}^{1}, P_{1}^{2}, P_{2}^{2}, \ldots, P_{l_{2}}^{2}, \ldots, P_{1}^{n_{1}}\right.$, $\left.P_{2}^{n_{1}}, \ldots, P_{l_{2}}^{n_{1}}\right\}$.

Claim 1: For every vertex $V_{i j}$ in G there is a clique in $K(G)$.
Let $V_{i j}$ be a vertex in G for some $i, j, 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. Define $A_{i j}=\left\{Q: V_{i j} \in Q\right\} \subseteq \mathcal{K}_{G}$. Clearly intersection of any two cliques in $A_{i j}$ is non empty. Therefore the vertices corresponding to these cliques in $K(G)$ form a complete subgraph in $K(G)$. Suppose it is not a maximal complete subgraph in $K(G)$, then there exists a vertex V in $K(G)$ such that V is adjacent to all the vertices of $A_{i j}$. Let Q_{V} be the clique in G corresponding to the vertex V in $K(G)$. Clearly $V_{i j}$ is not in Q_{V}. Since every clique in G is either a clique in G_{1} or a clique in G_{2}, assume that Q_{V} is a clique in G_{1}^{j}. Let Q be a clique in G_{2}^{i} having the vertex $V_{i j}$, then Q is in $A_{i j}$. Since $V\left(G_{2}^{i}\right) \cap V\left(G_{1}^{j}\right)=V_{i j}, Q$ is a clique in G_{2}^{i} and $V_{i j} \in V(Q)$ and $V(Q) \cap V\left(G_{1}^{j}\right)=V_{i j}$. Which implies that $V(Q) \cap\left(V\left(G_{1}^{j}\right) \backslash\left\{V_{i j}\right\}\right)=\emptyset$. Since $V_{i j}$ is not in Q_{V} and Q_{V} is a clique in $G_{1}^{j}, V\left(Q_{V}\right) \subseteq\left(V\left(G_{1}^{j}\right) \backslash V_{i j}\right)$. Therefore $V(Q) \cap V\left(Q_{V}\right)=\emptyset$, a contradiction to the fact that Q_{V} is adjacent to all the vertices of $A_{i j}$ in $K(G)$. Hence the elements of $A_{i j}$ form a clique in $K(G)$.

Claim 2: For any clique Q in $K(G)$, intersection of all the cliques of G corresponding to the vertices of Q is non empty and a singleton.

Let Q be a clique in $K(G)$ and $V(Q)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Suppose all x_{k} 's are cliques in G_{1}^{j} for some j, $1 \leq j \leq n_{2}$, then the intersection of all x_{k} 's is non empty in G, where $x_{k} \in V(Q)$, as G_{1}^{j} satisfies Clique-Helly property. Let $V \in \cap_{x_{k} \in Q} x_{k}$, then V is in G_{2}^{i} for some $i, 1 \leq i \leq n_{1}$. Let P be any clique in G_{2}^{i} having a vertex V, then P intersects with every element of $V(Q)$. Therefore $V(Q) \cup\{P\}$ forms a complete graph in $K(G)$, a contradiction to the assumption that Q is maximal complete subgraph. Thus the elements of Q are the cliques of G_{1} and cliques of G_{2}. Since G_{1}^{j} 's are vertex disjoint and G_{2}^{i} 's are vertex disjoint, any element of Q is either a clique of G_{1}^{j} or a clique of G_{2}^{i} for fixed $i, j, 1 \leq i \leq n_{1}, 1 \leq j \leq n_{2}$. Let $x_{1}, x_{2}, \ldots, x_{l}$ be the cliques of G_{1}^{j} and $x_{l+1}, x_{l+2}, \ldots, x_{n}$ be the cliques of G_{2}^{i}. Since $V\left(G_{1}^{j}\right) \cap V\left(G_{2}^{i}\right)=V_{i j}, x_{l_{1}}$ is a clique of $G_{1}^{j}, x_{l_{2}}$ is a clique of G_{2}^{i} and $V\left(x_{l_{1}}\right) \cap V\left(x_{l_{2}}\right) \neq \emptyset$, $1 \leq l_{1} \leq l, l+1 \leq l_{2} \leq n, V\left(x_{l_{1}}\right) \cap V\left(x_{l_{2}}\right)=V_{i j}$. Which implies that $V_{i j}$ belongs to every x_{k} in Q. Therefore $\cap_{x_{k} \in Q} x_{k}=V_{i j}$.

As the cliques of $K(G)$ are the vertices of $K^{2}(G)$, by Claims 1 and 2 one can see that there is a one to one correspondence between the vertices of G and $K^{2}(G)$.

Claim 3: Let U, V be any two adjacent vertices in G. Then the intersection of the cliques in $K(G)$ corresponding to these vertices is non empty.

Let U, V be any two adjacent vertices in G and Q_{U}, Q_{V} be the cliques in $K(G)$ corresponding to the vertices U, V in G respectively. Since there is an edge between U, V in G, there exists a clique Q in G such that the vertices U, V are in Q. By Claims 1 and 2 it follows that the vertices of Q_{U} in $K(G)$ are the cliques of G having the vertex U in G, it is in common. Therefore Q is in $V\left(Q_{U}\right)$. Similarly Q is in $V\left(Q_{V}\right)$. Which implies that $Q_{U} \cap Q_{V} \neq \emptyset$. Since cliques of $K(G)$ are the vertices of $K^{2}(G)$, the vertices corresponding to the cliques Q_{U} and Q_{V} of $K(G)$ are adjacent in $K^{2}(G)$.

Claim 4: Let P, Q be any two cliques in $K(G)$. If the intersection of P and Q is non empty, then the vertices in G corresponding to these two cliques are adjacent.

Let P, Q be any two cliques in $K(G), P \cap Q \neq \emptyset$ and U, V be the vertices in G corresponding to the cliques P, Q of $K(G)$ respectively. Since $P \cap Q \neq \emptyset$, there exists a vertex Q_{1} belonging to $V(P) \cap V(Q)$. By Claims 1 and 2 , one can observe that Q_{1} is a clique in G and $\cap_{P_{i} \in V(P)} P_{i}=U, \cap_{Q_{i} \in V(Q)} Q_{i}=V$. Thus U, V belongs to $V\left(Q_{1}\right)$ in G. Therefore U, V are adjacent in G.

By Claims 3 and 4 it follows that, two vertices are adjacent in G if and only if the corresponding vertices are adjacent $K^{2}(G)$.

Therefore $K^{2}(G)$ is the same as G, if $G=G_{1} \square G_{2}$ and G_{1}, G_{2} are Clique-Helly graphs such that G_{1}, G_{2} are different from K_{1}.

Corollary 3.2. Let G_{1}, G_{2} be two graphs and $G=G_{1} \square G_{2}$. If G_{1}, G_{2} are Clique-Helly graphs different from K_{1}, then
i G is a Clique-Helly graph.
ii G is K-periodic.
iii G is K-convergent.

References

[1] Ronald C. Hamelink, A partial characterization of clique graphs, J. Combin. Theory 5 (1968) 192-197.
[2] S.T. Hedetniemi, P.J. Slater, Line graphs of triangleless graphs and iterated clique graphs, in: Graph Theory and Applications, Springer, 1972, pp. 139-147.
[3] Erich Prisner, Graph Dynamics, Vol. 338, CRC Press, 1995.
[4] Jayme L. Szwarcfiter, A survey on clique graphs, in: Recent Advances in Algorithms and Combinatorics, Springer, 2003 , pp. $109-136$.
[5] Victor Neumann-Lara, On clique-divergent graphs, Problems Combinatoires et Théorie des Graphes, Colloques internationaux du CNRS, Paris 260 (1978) 313-315.
[6] Wilfried Imrich, Sandi Klavzar, Douglas F. Rall, Topics in Graph Theory: Graphs and their Cartesian Product, AK Peters Ltd., 2008.

[^0]: Peer review under responsibility of Kalasalingam University.

 * Corresponding author.

 E-mail addresses: smhegde@nitk.ac.in (S.M. Hegde), suresh.dara@ gmail.com (S. Dara).

