ON ARITHMETIC GRAPHS

S. M. HEGDE

Department of Mathematics and Computer Sciences, Karnataka Regional Engineering College, Surathkal, Srinivasanagar 574157, Karnataka E-mail: smhegde@krec.ernet.in

AND

SUDHAKAR SHETTY

Department of Mathematics, N.M.A.M.I. of Technology, Nitte 574 110, Karnataka E-mail:sshetty@wowmail.com

(Recieved 23 March 2001; accepted 5 November 2001)

A (p, q)-graph G = (V, E) is said to be (k, d)-arithmetic, where k and d are positive integers if its p vertices admits a labeling of distinct non-negative integers such that the values of the edges obtained as the sums of the labels of their end vertices form the set $\{k, k+d, k+2d, ..., k+(q-1)d\}$. In this paper we prove that for all odd n, the generalized web graph W (t, n) and some cycle related graphs are (k, d)-arithmetic. Also we prove that a class of trees called T_p -trees and subdivision of T_p -trees are (k+q-1) (d, d)-arithmetic for all positive integers k and d.

Key Words: Arithmetic Labelings; Arithmetic Graphs; Trees

1. INTRODUCTION

For all terminology and notation in graph theory we follow⁶.

Graph labelings where the vertices are assigned values subject to certain conditions have been motivated by practical problems. Labeled graphs serves as useful mathematical models for a broad range of applications such as Coding theory, including the design of good radar type codes, synch-set codes, missle guidance codes and convolutional codes with optimal autocorrolation properties. They facilitate the optimal nonstandard encodings of integers.

Labeled graphs have also been applied in determining ambiguities in X-ray crystallographic analysis, to design a communication network addressing system, in determining optimal circuit layouts and radio astronomy problems etc. A systematic presentation of diverse applications of graph labelings is presented in⁴.

Given a graph G = (V, E), the set N of non-negative integers and a commutative binary operation $*: NXN \to N$, every vertex function $f: V(G) \to N$ induces an edge function $f^*: E(G) \to N$ such that $f^*(u, v) = f(u) * f(v)$ for all $uv \in E(G)$.

Acharya and Hegde² have introduced the notion of (k, d)-arithmetic labelings of graphs. For a non-negative integer k and positive integer d, a (p, q)-graph G = (V, E), a (k, d)-arithmetic labeling is an injective mapping $f: V(G) \to N$, where the induced edge function $f^+: E(G) \to \{k, k+d, k+2d, ..., k+(q-1)d\}$ such that $f^+(uv) = f(u) + f(v)$ for all $uv \in E(G)$ is also injective. If a graph G admits such a labeling then the graph G is called (k, d)-arithmetic graph.

We recall the following cycle related graphs.

- 1. The wheel $W_n = C_n + K_1$, where C_n cycle of length n.
- 2. The helm H_n , is the graph obtained from the wheel W_n by attaching a pendant edge at each vertex of the n-cycle.
- 3. The weil graph W(2, n), is the graph obtained by joining the pendant points of a helm H_n to form a cycle and then adding a single pendant edge to each vertex of the outer cycle.
- 4. The generalized web graph W(t, n), is the graph obtained by iterating the process of constructing web graph W(2, n) from the helm H_n , so that the web has t, n-cycles. (Fig. 1) (Yang's definition in⁵).
- 5. The $crown\ C_n\odot\ K_1$, is the graph obtained from a cycle C_n by attaching a pendant edge at each vertex of the cycle.
- 6. The generalized web graph without centre $W_0(t, n)$, is the graph obtained by removing the central vertex of W(t, n).
- 7. We define the graph generalized p-web cone as $W_0(t, n) + \overline{K}_p$ where \overline{K}_p is the complement of complete graph with p vertices.

2. CYCLE RELATED ARITHMETIC GRAPHS

In this section, we prove that for all odd n, the cycle related graphs W_n , H_n , W(2, n), W(t, n), $C_n \odot K_1$, $W_0(t, n)$ and $W_0(t, n) + \overline{K}_p$ are (k, d)-arithmetic for k = [(n - 1)/2]d and for k = [(3n - 1)/2]d.

Theorem 1 — For all positive integer d and odd n, the generalized web graph W(t, n) is (k, d)-arithmetic for k = [(n - 1)/2]d.

PROOF: Label the vertices of W(t, n) as follows:

Denote the vertices of the innermost cycle of W(t, n) successively as $v_{1, 1}, v_{1, 2}, v_{1, 3}, ..., v_{1, n}$. Then denote the vertices adjacent to $v_{1, 1}, v_{1, 2}, ..., v_{1, n}$ on the second cycle as $v_{2, 1}, v_{2, 2}, ..., v_{2, n}$ respectively and the vertices adjacent to $v_{2, 1}, v_{2, 2}, ..., v_{2, n}$ on the 3rd cycle as $v_{3, 1}, v_{3, 2}, ..., v_{3, n}$ and the vertices on the tth cycle as $v_{t, 1}, v_{t, 2}, ..., v_{t, n}$.

Next denote the pendant vertices adjacent to $v_{t,1}, v_{t,2}, ..., v_{t,n}$ as $v_{t+1}, 1, v_{t+1,2}, ..., v_{t+1,n}$ respectively and the centre of the web as $v_{0,0}$.

Define a labeling $f: V(W(t, n)) \to N$ such that

ON ARITHMETIC GRAPHS
$$\begin{cases} \left(\frac{i-1}{2}\right)d + (m-1) nd & m \text{ odd, } i \text{ odd;} \quad 1 \le m \le t+1, \quad 1 \le i \le n \\ \left(\frac{n-1}{2}\right)d + \left(\frac{i}{2}\right)d + (m-1) nd & m \text{ odd, } i \text{ even;} \quad 1 \le m \le t+1, \quad 2 \le i \le n-1 \end{cases}$$

$$f(v_{m,i}) = \begin{cases} \left(\frac{3n-1}{2}\right)d + \left(\frac{i-1}{2}\right)d + (m-2) nd & m \text{ even, } i \text{ odd;} \quad 2 \le m \le t+1, \quad 1 \le i \le n \\ (n-1)d + \left(\frac{i}{2}\right)d + (m-2) nd & m \text{ even, } i \text{ even;} \quad 2 \le m \le t+1, \quad 2 \le i \le n-1 \end{cases}$$

$$\left(\frac{n-1}{2}\right)d + 2t nd & m = i = 0.$$
Because f is injective on every cycle and the maximum vertex value in the m th cycle is less

Because f is injective on every cycle and the maximum vertex value in the mth cycle is less than the minimum vertex value in the $(m + 1)^{th}$ cycle, it is not hard to verify that f defined above is injective.

Similarly one can see that $f^+(W(t, n)) = \{k, k+d, ..., k+[(2t+1) n-1] d\}$ where k = [(n-1)/2]d. Hence W(t, n) is (k, d)-arithmetic for k = [(n-1)/2]d.

For example, (4, 1)-arithmetic labeling of W(4, 9) using Theorem 1 is shown in Fig. 1.

Fig. 1. (4, 1)-arithmetic labeling of W(4, 9)

Remark: For all positive integrs d and odd n, the generalized web graph W(t, n), is (k, d)-arithmetic for k = [(3n - 1)/2]d. (Proof is analogous to Theorem 1). Therefore the value of k is not unique for W(t, n), to be (k, d)-arithmetic.

For example, using k = [(3n - 1) / 2]d, a (13, 1)-arithmetic labeling of W (4, 9) is shown in Fig. 2.

Fig. 2. (13, 1)-arithmetic labeling of W(4, 9)

Corollary 1 — For n odd, the helm H_n and the web graph W(2, n) are (k, d)-arithmetic for $k = \lfloor (n-1)/2 \rfloor d$.

PROOF: By taking t = 1 and t = 2 respectively in (1), the proof is trivial.

Corollary 2 — For n odd, the crown $C_n \odot K_1$ is (k, d)-arithmetic for $k = \lfloor (n-1) / 2 \rfloor d$.

PROOF: Taking t = 1 in (1) and removing the centre of the helm H_n the proof follows.

Strongly k-Indexable Graph

· A (p, q) -graph G = (V, E) is said to be *strongly k-indexable* if there exists a bijective labeling $f: V(G) \to \{0, 1, 2, ..., (p-1)\}$ such that induced edge labeling $f^+: E(G) \to \{k, k+1, k+2, ..., k+(q-1)\}$ is also bijective. (Acharya and Hegde²).

Corollary 3 — For n odd, the generalized web without centre $W_0(t, n)$, is strongly k-indexable for k = (n - 1) / 2.

Corollary 4 — For n odd, the generalized p-web cone $W_0(t, n) + \overline{K}_p$ is (k, d)-arithmetic for $k = \lfloor (n-1)/2 \rfloor d$.

We have examples for arithmetic wheels W_n and arithmetic helms H_n when n is even (Fig. 3). But whether the generalized web W(t, n) is (k, d)-arithmetic or not when n even is an open problem.

Fig. 3. (3, 1)-arithmetic labeling of W_4 and H_4

3. A CLASS OF ARITHMETIC TREES

In this section we prove that a class of trees called T_p -trees (transformed trees) are (k+(q-1)d,d)-arithmetic for all positive integers k and d. Also we prove that the subdivision S(T) of a T_p -tree T, obtained by subdividing every edge of T exactly once is (k+(q-l)d,d)-arithmetic for all positive integers k and d. (Note that q is the number of edges of T and that the subdivision S(T) of a T_p -tree T is not necessarily a T_p -tree)

Transformed Tres $(T_p$ -trees)

Let T be a tree and u_0 and v_0 be two adjacent vertices in T. Let there be two pendant vertices u and v in T such that the length of u_0 -u path is equal to the length of $v_0 - v$ path. If the edge $u_0 v_0$ is deleted from T and u and v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge $u_0 v_0$ is called a transformable edge. (Acharya¹).

If by a sequence of ept's T can be reduced to a path then T is called a T_p -tree (transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by P, is called a parallel transformation of T. The path, the image of T under P, is denoted as P (T).

A T_p -tree and a sequence of two ept's reducing it to a path are illustrated in Fig. 4.

Theorem 2 — Every T_p -tree T is (k + (q - 1)d, d)-arithmetic for all positive integers k and d.

PROOF: Let T be a T_p -tree with n+1 vertices. By the definition of a T_p -tree there exists a parallel transformation P of T such that for the path P(T), we have

FIG. 4.

(i)
$$V(P(T)) = V(T)$$

(ii)
$$E(P(T)) = (E(T) - E_d) \cup E_p$$

where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the ept's P_i used to arrive at the path P(T). Clearly E_d and E_p have the same number of edges.

Then denote the vertices of P(T) successively as $v_1, v_2, ..., v_p$ starting from one pendant vertex of P(T) right up to other.

Define $f: V(P(T)) \rightarrow N$ by

$$f(v_i) = \begin{cases} [(i-1)/2] d & \text{for odd } i, \quad 1 \le i \le n+1 \\ k + (q-1) d + [(i-2)/2] d & \text{for even } i, 2 \le i \le n+1 \end{cases}$$

where k and d are positive integers and q is the number of edges of T. Clearly f is a (k + (q - 1) d, d)-arithmetic labeling of P(T).

Let $v_i v_j$ be an edge in T for some indices i and j, $1 < i < j \le n+1$ and let P_1 be the *ept* obtained by deleting this edge and adding the edge $v_{i+t} v_{j-t}$ where t is the distance of v_i from v_{i+t} and the distance of v_j from v_{j-t} . Let P be a parallel transformation of T that contains P_1 as one of the constituent ept's. Since $v_{i+t} v_{j-t}$ is an edge in the path P(T) it follows that $i+t+1=j-t \Rightarrow j=i+2t+1$. Therefore i and j are of opposite parity.

The value of the edge $v_i v_j$ is $f^+(v_i v_j) = f^+(v_i v_{i+2t+1})$

$$= f(v_i) + f(v_{i+2t+1})$$
 ... (2)

If i is odd and $1 \le i \le n$, then

$$f(v_i) + f(v_{i+2t+1}) = [(i-1)/2] d + k + (q-1)d + [(i+2t+1-2)/2] d$$

$$= k + (q-1) d + (i+t-1) d. \qquad ... (3)$$

If i is even and $2 \le i \le n$, then

$$f(v_i) + f(v_{i+2t+1}) = k + (q-1) d + [(i-2)/2] d$$

$$+ [(i+2t+1-1)/2] d$$

$$= k + (q-1) d + (i+t-1) d \qquad ... (4)$$

Therefore, from (2), (3), (4), we get

$$f^+(v_i, v_i) = k + (q - 1) d + (i + t - 1) d$$
. for all $i, 1 \le i \le n$... (5)

The value of the edge v_{i+t} v_{i-t} is

$$f^{+}(v_{i+t}, v_{j-t}) = f(v_{i+t}) + f(v_{j-t})$$

$$= f(v_{i+t}) + f(v_{i+t+1}) \qquad \dots (6)$$

If i + t is odd, then

$$f(v_{i+t}) + f(v_{i+t+1}) = [(i+t-1)/2] d + k + (q-1) d$$

$$+ [(i+t+1-2)/2] d$$

$$= k + (q-1) d + (i+t-1) d \qquad ... (7)$$

If i + t is even, then

$$f(v_{i+t} + f(v_{i+t+1}) = [(i+t+1-1)/2] d + k + (q-1) d + [(i+t-2)/2] d$$

$$= k + (q-1) d + (i+t-1) d \qquad ... (8)$$

Therefore, from (6), (7), (8), we get

$$f^{+}(v_{i+t}v_{j-t}) = k + (q-1)d + (i+t-1)d \qquad ... (9)$$

From (5) and (9), $f^+(v_i v_j) = f^+(v_{i+1} v_{i-1})$.

Hence, f is a (k + (q - 1)d, d) - arithmetic labeling of T.

For example, a (14, 1)-arithmetic labeling of a T_p -tree, using theorem 2 is shown in Fig. 5.

Theorem 3 — If T is a T_p -tree with q edges then the subdivision tree S(T) is (k + (q - 1)d, d)-arithmetic for all positive integers k and d.

PROOF: Let T be a T_p -tree with n vertices and q edges. By the definition of a T_p -tree there exists a parallel transformation P of T so that we get P(T). Denote the succession vertices of P(T)

Fig. 5. (14, 1)-arithmetic labeling of a T_p -tree

as $v_1, v_2, ..., v_n$ starting from one pendant vertex of P(T) right up to other and preserve the same for T.

Now construct the subdivision tree S(T) of T by introducing exactly one vertex between every edge $v_i v_j$ of T and denote the vertex as $v_{i,j}$. Let $v_m x v_h x, x = 1, 2, ..., z$ be the z transformable edges of T with $m^x < m^x + 1$ for all x. Let t_x be the path length from the vertex $v_m x$ to the corresponding pendant vertex decided by the transformable edge $v_m x v_h x$ of T.

Fig. 6. (14, 1)-arithmetic labeling of subdivision of a T_p -tree

Define a labeling $f: V(S(T)) \to N$ by

$$f(v_i) = k + (q-1) d + (i-1) d$$
 if $i = 1, 2, ..., n$.

$$f(v_{i,j}) = (i-1) d \text{ if } j \neq i+1.$$

$$f(v_{i,j}) = i d$$
 if $j = i + 1$ and $i = m^c, m^c + 1, ..., m^c + t_c - 1, c = 1, 2, ..., z$
 $f(v_{ij}) = +(i-1) d$ if $j = i + 1$ and $i \neq m^c, m^c + 1, ..., m^c + t_c - 1, c = 1, 2, ..., z$

where k and d are positive integers and 2q is the number of edges of S(T). Clearly f is a (k + (q - 1)d, d)-arithmetic labeling of S(T).

For example a (14, 1)-arithmetic labeling of subdivision of a T_P -tree, using Theorem 3 is shown in Fig. 6.

ACKNOWLEDGMENT

The authors wish to thank the referee for many helpful and valuable suggestions.

REFERENCES

- 1. B. D. Acharya, Personal Communication.
- 2. B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3), (1990) 275-299.
- 3. B. D. Acharya and S. M. Hegde, Indian J. Pure appl Math., 22(7): (1991) 553-60.
- 4. G. S. Bloom and S. W. Golomb, Proc. of the IEEE; 165(4), (1977) 562-70.
- 5. J. A. Gallian, Electron. J. Combinatorics, 5 (2000) DS6 (1-79).
- 6. F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- 7. S. M. Hegde, Nat. Acad. Sci. Letters, 12(11) (1989) 387-90.