Research Article

M. Sabari* and Santhosh George

Modified Minimal Error Method for Nonlinear Ill-Posed Problems

DOI: 10.1515/cmam-2017-0024
Received January 24, 2017; revised June 12, 2017; accepted June 29, 2017

Abstract

An error estimate for the minimal error method for nonlinear ill-posed problems under general a Hölder-type source condition is not known. We consider a modified minimal error method for nonlinear ill-posed problems. Using a Hölder-type source condition, we obtain an optimal order error estimate. We also consider the modified minimal error method with noisy data and provide an error estimate.

Keywords: Nonlinear Ill-Posed Problem, Minimal Error Method, Regularization Method, Discrepancy Principle

MSC 2010: 65J15, 65J20, 47H17

1 Introduction

In this paper, we deal with the nonlinear ill-posed operator equation

$$
\begin{equation*}
F(x)=y \tag{1.1}
\end{equation*}
$$

where $F: D(F) \subseteq X \rightarrow Y$ is a nonlinear Fréchet differentiable operator. Here $D(F)$ denotes the domain of F and X, Y are Hilbert spaces with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively, which can be always identified from the context in which they appear. It is assumed that the operator equation (1.1) has a solution \hat{x} for the exact data y. The operator equation (1.1) is ill-posed in the sense that the solution \hat{x} does not depend continuously on the right-hand side data y. Furthermore, it is assumed that we have only approximate data $y^{\delta} \in Y$ with

$$
\left\|y-y^{\delta}\right\| \leq \delta
$$

To approximate the solution \hat{x}, iterative methods and iterative regularization methods are studied in $[1,2,4$, $5,8-10,12-16,19]$. Let $B(x, \rho)$ and $\bar{B}(x, \rho)$ stand, respectively, for the open ball and the closed ball in X, with center $x \in X$ and of radius $\rho>0$. In [14], Neubauer and Scherzer considered the minimal error method defined for $k=1,2, \ldots$ by

$$
x_{k+1}=x_{k}+\alpha_{k} s_{k},
$$

where x_{0} is the initial guess, $s_{k}=-F^{\prime}\left(x_{k}\right)^{*}\left(F\left(x_{k}\right)-y\right)$ is the search direction taken as the negative gradient of the minimization function involved and

$$
\alpha_{k}=\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\|s_{k}\right\|^{2}}
$$

is the descent. Convergence analysis in [14] was based on the following assumption.

[^0]Assumption A. We assume the following:
(A1) F has a Lipschitz continuous Fréchet derivative $F^{\prime}(\cdot)$ in a neighborhood of x_{0}.
(A2) We have $F^{\prime}(x)=R_{x} F^{\prime}(\hat{x}), x \in B\left(x_{0}, \rho\right)$, where $\left\{R_{x}: x \in B\left(x_{0}, \rho\right)\right\}$ is a family of bounded linear operators $R_{X}: Y \rightarrow Y$ with

$$
\left\|R_{X}-I\right\| \leq C\|x-\hat{x}\|
$$

where C is a positive constant.
(A3) We have $x_{0}-\hat{x}=\left(F^{\prime}(\hat{x})^{*} F^{\prime}(\hat{x})\right)^{\frac{1}{2}} v$ for some $v \in X$.
Recently, the authors in [8] studied a modified minimal error method in which, we have taken

$$
s_{k}=-F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right) \quad \text { and } \quad \alpha_{k}=\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\|s_{k}\right\|^{2}}
$$

and the convergence analysis in [8] was based on the following assumptions:
Assumption B. We assume the following:
(B0) $\left\|F^{\prime}(x)\right\| \leq m$ for some $m>0$ and for all $x \in D(F)$.
(B1) We have $F^{\prime}(\hat{x})=F^{\prime}\left(x_{0}\right) G\left(\hat{x}, x_{0}\right)$, where $G\left(\hat{x}, x_{0}\right)$ is a bounded linear operator from $X \rightarrow X$ with

$$
\left\|G\left(\hat{x}, x_{0}\right)-I\right\| \leq C_{0} \rho
$$

where C_{0} is a positive constant and $\rho \geq\left\|x_{0}-\hat{x}\right\|$.
(B2) We have $F^{\prime}(x)=R(x, y) F^{\prime}(y), x, y \in B\left(x_{0}, \rho\right)$, where $\left\{R(x, y): x, y \in B\left(x_{0}, \rho\right)\right\}$ is a family of bounded linear operators $R(x, y): Y \rightarrow Y$ with

$$
\|R(x, y)-I\| \leq C_{1}\|x-y\|
$$

for some positive constant C_{1}.
(B3) We have $x_{0}-\hat{x}=\left(F^{\prime}\left(x_{0}\right)^{*} F^{\prime}\left(x_{0}\right)\right)^{\frac{1}{2}} v$ for some $v \in X$.
Remark 1.1. It is known that [11], condition (B2) is more restrictive than (A2). So, we give an examples from [10, 14] satisfying (B2) (also see [10] for more examples satisfying (B2)).

Example 1.2. Consider the problem of estimating c in

$$
\begin{equation*}
-\Delta u+c u=f \quad \text { in } \Omega, \quad u=g \quad \text { in } \Omega \tag{1.2}
\end{equation*}
$$

where Ω is a bounded domain in \mathbb{R}^{2} or \mathbb{R}^{3} with smooth boundary or with Ω being a parallelepiped, $f \in L^{2}(\Omega)$ and $g \in H^{\frac{3}{2}}(\partial \Omega)$. The nonlinear mapping $F: D(F) \subseteq L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is defined as the parameter to solution mapping

$$
F(c)=u(c)
$$

where $u(c)$ is the solution of (1.2). Then F is well defined on (see [10, 17])

$$
D(F):=\left\{c \in L^{2}:\|c-\bar{c}\| \leq \gamma \text { for some } \gamma>0 \text { and } \bar{c} \geq 0 \text { a.e. }\right\} .
$$

Then the Fréchet derivative of F and its adjoint are given by (see [10, 14, 17])

$$
F^{\prime}(c) h=-A(c)^{-1}(h u(c)), \quad F^{\prime}(c)^{*} w=-u(c) A(c)^{-1} w
$$

with $A(c): H^{2} \cap H_{0}^{1} \rightarrow L^{2}$ defined by

$$
A(c) u=-\Delta u+c u
$$

If $u(c) \geq \kappa, \kappa>0$, for all $c \in B\left(c_{0}, \rho\right),(\rho \leq \gamma)$, then

$$
F^{\prime}(d)=R(d, c) F^{\prime}(c), \quad c, d \in B\left(c_{0}, \rho\right)
$$

with

$$
R(d, c)^{*} w=A(c)\left[\frac{u(d)}{u(c)} A(d)^{-1} w\right]
$$

and

$$
\|R(d, c)-I\| \leq C_{1}\|d-c\|, \quad c, d \in B\left(c_{0}, \rho\right)
$$

where C_{1} is a positive constant independent of c and d. That is F satisfies condition (B2).

The second author and his collaborators studied iterative methods [6, 7, 20, 21] for solving the ill-posed operator equation (1.1) and obtained the error estimate for $\left\|x_{k}^{\delta}-\hat{x}\right\|$ (x_{k}^{δ} is the iterative solution of the method under consideration) under the assumption

$$
\begin{equation*}
x_{0}-\hat{x}=\left(F^{\prime}\left(x_{0}\right)^{*} F^{\prime}\left(x_{0}\right)\right)^{v} v, \quad v \in X . \tag{1.3}
\end{equation*}
$$

For frozen-type regularization methods for ill-posed problems, assumption (1.3) is used (see [6, 11] (also see Seminova [18])), instead of the classical Hölder-type source condition,

$$
\begin{equation*}
x_{0}-\hat{x}=\left(F^{\prime}(\hat{x})^{*} F^{\prime}(\hat{x})\right)^{v} v . \tag{1.4}
\end{equation*}
$$

As far as the authors know, for the minimal error method no error estimate is known under the general Hölder-type source condition (1.3) or (1.4) for $v \neq \frac{1}{2}$. In order to obtain an error estimate under the general source condition (1.3). The main goal of this study is to obtain an error estimate for a modified form of minimal error method defined by

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} s_{k} \quad(k=0,1,2, \ldots), \quad s_{k}=-F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right), \quad \alpha_{k}=\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\|A^{q}\left(F\left(x_{k}\right)-y\right)\right\|^{2}}, \tag{1.5}
\end{equation*}
$$

where $A=F^{\prime}\left(x_{0}\right)^{*} F^{\prime}\left(x_{0}\right)$ and $0<q<\frac{1}{2}$ under the Hölder-type source condition (1.3). Note that for $q=\frac{1}{4}$, we have

$$
\alpha_{k}=\frac{\left\|F\left(x_{k}\right)-y\right\|^{2}}{\left\langle F^{\prime}\left(x_{0}\right)\left(F\left(x_{k}\right)-y\right), F\left(x_{k}\right)-y\right\rangle}
$$

as a special case. We obtain the error estimate $\left\|x_{k}-\hat{x}\right\|=O\left(k^{-v}\right)$ for $0<v<\frac{1}{2}-q$ under assumption (1.3) (see Theorem 2.3). We also considered the method (1.5) with noisy data y^{δ} and obtained error estimate.

Remark 1.3. We make the following remarks.
(a) For $q=\frac{1}{2}$, method (1.5) reduced to the modified minimal error method considered in [8], but the proof in the present paper cannot be applied for the method considered in [8].
(b) Note that for q close to zero, v is close to $\frac{1}{2}$, i.e., we obtain the error estimate $O\left(k^{-v}\right)$ for $0<v<\frac{1}{2}$ (see Theorem 2.3).

The rest of the paper is organized as follows. Convergence analysis of method (1.5) is given in Section 2 and the convergence rate result of method (1.5) with noisy data is given in Section 3.

2 Convergence Analysis of Method (1.5)

To obtain an error estimate for $\left\|x_{k}-\hat{x}\right\|$ under assumption (1.3), we need the result of [9, Lemma 2]. Let $\left\{v_{k}\right\}$ be a sequence in X, and let $v>0$ be some parameter such that

$$
\left\|A^{v} v_{k}\right\|^{2}-\left\|A^{v} v_{k+1}\right\|^{2} \geq \varepsilon_{k}\left\langle A^{v+1} v_{k}, A^{v} v_{k}\right\rangle
$$

for $k=0,1,2, \ldots$, where A is a positive self-adjoint operator and $\varepsilon_{k}>0$. Then

$$
\begin{equation*}
\left\|A^{v} v_{k}\right\| \leq[2(v+1)]^{v}\left\|v_{k}\right\|^{\frac{1}{v+1}}\left[\sum_{i=0}^{k-1} \varepsilon_{i}\left\|v_{i}\right\|^{-\frac{1}{v+1}}\right]^{-v} \tag{2.1}
\end{equation*}
$$

To apply (2.1) with $v_{k}=A^{-v}\left(x_{k}-\hat{x}\right)$, one has to prove that

$$
\left\|x_{k}-\hat{x}\right\|^{2}-\left\|x_{k+1}-\hat{x}\right\|^{2} \geq \varepsilon_{k}\left\langle A\left(x_{k}-\hat{x}\right), x_{k}-\hat{x}\right\rangle
$$

for some $\varepsilon_{k}>0$ and $\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|$ is bounded.
Let

$$
B=\left\|A^{\frac{1}{2}-q}\right\|<\sqrt{2} \quad \text { and } \quad D=\frac{\sqrt{1+4 B^{2}}-\left(B^{2}+1\right)}{B^{2}}
$$

Lemma 2.1. Let assumption (B2) and (1.3) hold with $0<v<\frac{1}{2}-q$ and let $0<C_{1} \rho<D$. Let x_{k} be as in (1.5). Then $x_{k} \in B\left(x_{0}, 2 \rho\right)$ and

$$
\left\|x_{k+1}-\hat{x}\right\|^{2}+\alpha_{k} \Gamma\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} \leq\left\|x_{k}-\hat{x}\right\|^{2}
$$

with

$$
\begin{equation*}
\Gamma=2-\left(B^{2} C_{1}^{2} \rho^{2}+2\left(B^{2}+1\right) C_{1} \rho+B^{2}\right) \tag{2.2}
\end{equation*}
$$

for all $k=0,1,2, \ldots$ Moreover,

$$
\sum_{k=0}^{\infty} \alpha_{k}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2}<\infty
$$

Proof. We shall prove the result using induction. Note that $x_{0} \in B\left(x_{0}, 2 \rho\right)$ and suppose that $x_{k} \in B\left(x_{0}, 2 \rho\right)$. Then using (1.5), we have

$$
\begin{aligned}
\left\|x_{k+1}-\hat{x}\right\|^{2}-\left\|x_{k}-\hat{x}\right\|^{2}= & -2 \alpha_{k}\left\langle x_{k}-\hat{x}, F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\rangle+\alpha_{k}^{2}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} \\
= & -2 \alpha_{k}\left\langle x_{k}-\hat{x}, F^{\prime}\left(x_{0}\right)^{*}\left[F\left(x_{k}\right)-F(\hat{x})-F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right]\right\rangle \\
& +\alpha_{k}\left[\alpha_{k}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2}-2\left\langle x_{k}-\hat{x}, F^{\prime}\left(x_{0}\right)^{*} F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\rangle\right] \\
= & -2 \alpha_{k}\left\langle F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right), \int_{0}^{1}\left(F^{\prime}\left(\hat{x}+t\left(x_{k}-\hat{x}\right)\right)-F^{\prime}\left(x_{0}\right)\right) d t\left(x_{k}-\hat{x}\right)\right\rangle \\
& +\alpha_{k}\left[\alpha_{k}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2}-2\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2}\right] .
\end{aligned}
$$

So by (B2), we have

$$
\left.\begin{array}{rl}
\left\|x_{k+1}-\hat{x}\right\|^{2}-\left\|x_{k}-\hat{x}\right\|^{2}= & -2 \alpha_{k}
\end{array}\left\langle F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right), \int_{0}^{1}\left[R\left(\hat{x}+t\left(x_{k}-\hat{x}\right), x_{0}\right)-I\right] d t F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\rangle\right)
$$

Note that, by the definition of α_{k}, we have

$$
\begin{align*}
\alpha_{k}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} & =\alpha_{k}\left\|A^{\frac{1}{2}-q} A^{q}\left(F\left(x_{k}\right)-y\right)\right\|^{2} \\
& \leq\left\|A^{\frac{1}{2}-q}\right\|^{2}\left\|F\left(x_{k}\right)-y\right\|^{2} \\
& =B^{2}\left\|\int_{0}^{1} F^{\prime}\left(\hat{x}+t\left(x_{k}-\hat{x}\right)\right) d t\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& =B^{2}\left\|\int_{0}^{1}\left[R\left(\hat{x}+t\left(x_{k}-\hat{x}\right), x_{0}\right)-I+I\right] d t F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& \leq B^{2}\left(C_{1}\left\|\hat{x}+t\left(x_{k}-\hat{x}\right)-x_{0}\right\|+1\right)^{2}\left\|F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& \leq B^{2}\left(C_{1} \rho+1\right)^{2}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} . \tag{2.4}
\end{align*}
$$

Therefore, by (2.3) and (2.4) we have

$$
\left\|x_{k+1}-\hat{x}\right\|^{2}-\left\|x_{k}-\hat{x}\right\|^{2} \leq-\Gamma \alpha_{k}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} .
$$

This completes the proof.

Next, we will prove the boundedness of $\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|$. Let $B_{1}=\left\|A^{\frac{1}{2}-v-q}\right\|, 0<v<\frac{1}{2}-q$ with $0<q<\frac{1}{2}$.
Lemma 2.2. Let assumption (B2) and (1.3) hold with $0<v<\frac{1}{2}-q$ and $0<C_{1} \rho<D$. Let x_{k} be as in (1.5). Then $\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|$ is bounded.

Proof. By using (1.3), one can prove that $x_{k}-\hat{x} \in R\left(A^{v}\right)$ for all $k=0,1,2, \ldots$ So, we can apply A^{-v} to $x_{k+1}-\hat{x}$ and $x_{k}-\hat{x}$. Then we have

$$
\begin{aligned}
\left\|A^{-v}\left(x_{k+1}-\hat{x}\right)\right\|^{2}-\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|^{2}= & 2\left\langle A^{-v}\left(x_{k}-\hat{x}\right), A^{-v}\left(x_{k+1}-x_{k}\right)\right\rangle+\left\|A^{-v}\left(x_{k+1}-x_{k}\right)\right\|^{2} \\
= & -2 \alpha_{k}\left\langle A^{-v}\left(x_{k}-\hat{x}\right), A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\rangle+\alpha_{k}^{2}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} \\
\leq & 2 \alpha_{k}\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\| \\
& +\alpha_{k}^{2}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} .
\end{aligned}
$$

This implies $\left\|A^{-v}\left(x_{k+1}-\hat{x}\right)\right\|^{2} \leq\left(\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|+\alpha_{k}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|\right)^{2}$, i.e.,

$$
\begin{equation*}
\left\|A^{-v}\left(x_{k+1}-\hat{x}\right)\right\| \leq\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|+\alpha_{k}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\| \tag{2.5}
\end{equation*}
$$

By the definition of α_{k}, we have

$$
\begin{align*}
\alpha_{k}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} & =\alpha_{k}\left\|A^{\frac{1}{2}-v-q} A^{q}\left(F\left(x_{k}\right)-y\right)\right\|^{2} \\
& \leq\left\|A^{\frac{1}{2}-v-q}\right\|^{2}\left\|F\left(x_{k}\right)-y\right\|^{2} \\
& =\left\|A^{\frac{1}{2}-v-q}\right\|^{2}\left\|\int_{0}^{1} F^{\prime}\left(\hat{x}+t\left(x_{k}-\hat{x}\right)\right) d t\left(x_{k}-\hat{x}\right)\right\|^{2} \tag{2.6}
\end{align*}
$$

Using assumption (B2) in (2.6), we get

$$
\begin{aligned}
\alpha_{k}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\|^{2} & =\left\|A^{\frac{1}{2}-v-q}\right\|^{2}\left\|\int_{0}^{1}\left[R\left(\hat{x}+t\left(x_{k}-\hat{x}\right), x_{0}\right)-I+I\right] d t F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& \leq\left\|A^{\frac{1}{2}-v-q}\right\|^{2}\left(C_{1}\left\|\hat{x}+t\left(x_{k}-\hat{x}\right)-x_{0}\right\|+1\right)^{2}\left\|F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& \leq B_{1}^{2}\left(C_{1} \rho+1\right)^{2}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2}
\end{aligned}
$$

so

$$
\begin{equation*}
\sqrt{\alpha_{k}}\left\|A^{-v} F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}\right)-y\right)\right\| \leq B_{1}\left(C_{1} \rho+1\right)\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\| . \tag{2.7}
\end{equation*}
$$

Therefore by (2.7) and (2.5), we have

$$
\begin{equation*}
\left\|A^{-v}\left(x_{k+1}-\hat{x}\right)\right\| \leq\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|+\sqrt{\alpha_{k}} B_{1}\left(C_{1} \rho+1\right)\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\| \tag{2.8}
\end{equation*}
$$

Let $z_{k}=\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|$. Then by (2.8),

$$
z_{k+1} \leq z_{k}+B_{1}\left(C_{1} \rho+1\right) \sqrt{\alpha_{k}}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|
$$

i.e.,

$$
z_{k} \leq z_{0}+B_{1}\left(C_{1} \rho+1\right) \sum_{i=0}^{k-1} \sqrt{\alpha_{i}}\left\|A^{\frac{1}{2}}\left(x_{i}-\hat{x}\right)\right\|
$$

By Lemma 2.1, we have

$$
z_{k} \leq z_{0}+B_{1}\left(C_{1} \rho+1\right) M
$$

where M is such that

$$
\sum_{k=0}^{\infty} \alpha_{k}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} \leq M^{2}
$$

Now since $z_{0}=\left\|A^{-v}\left(x_{0}-\hat{x}\right)\right\|=\left\|A^{-v} A^{v} v\right\|=\|v\|$, we obtain

$$
\begin{equation*}
z_{k} \leq\|v\|+B_{1}\left(C_{1} \rho+1\right) M \tag{2.9}
\end{equation*}
$$

This completes the proof.

Theorem 2.3. Let assumption (B2) and (1.3) for $0<v<\frac{1}{2}-q$ hold and let $0<C_{1} \rho<D$. Let x_{k} be as in (1.5). Then

$$
\left\|x_{k}-\hat{x}\right\| \leq \tilde{C} k^{-v}
$$

where $\tilde{C}=[2(v+1)]^{v} \varepsilon^{-v}\left(\|v\|+B_{1}\left(C_{1} \rho+1\right) M\right)$.
Proof. Note that

$$
\alpha_{k} \geq\left\|A^{q}\right\|^{-2}
$$

since (B2) and (1.3) for $0<v<\frac{1}{2}-q$ hold and $C_{1} \rho<D$. Set $\varepsilon_{k}:=\varepsilon=\Gamma\left\|A^{q}\right\|^{-2}$, where Γ is as in (2.2). Now Lemma 2.2 implies

$$
\begin{aligned}
\left\|x_{k}-\hat{x}\right\|^{2}-\left\|x_{k+1}-\hat{x}\right\|^{2} & \geq \Gamma \alpha_{k}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& \geq \Gamma\left\|A^{q}\right\|^{-2}\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& =\varepsilon\left\|A^{\frac{1}{2}}\left(x_{k}-\hat{x}\right)\right\|^{2} \\
& =\varepsilon\left\langle F^{\prime}\left(x_{0}\right)^{*} F^{\prime}\left(x_{0}\right)\left(x_{k}-\hat{x}\right), x_{k}-\hat{x}\right\rangle \\
& =\varepsilon\left\langle A\left(x_{k}-\hat{x}\right), x_{k}-\hat{x}\right\rangle .
\end{aligned}
$$

Therefore by (2.1), we have

$$
\begin{align*}
\left\|x_{k}-\hat{x}\right\| & \leq[2(v+1)]^{v}\left\|A^{-v}\left(x_{k}-\hat{x}\right)\right\|^{\frac{1}{v+1}}\left[\sum_{i=0}^{k-1} \varepsilon_{i}\left\|A^{-v}\left(x_{i}-\hat{x}\right)\right\|^{\frac{-1}{v+1}}\right]^{-v} \\
& \leq[2(v+1)]^{v} z_{k}^{\frac{1}{v+1}} \varepsilon^{-v}\left[\sum_{i=0}^{k-1} z_{i}^{-\frac{1}{v+1}}\right]^{-v} \tag{2.10}
\end{align*}
$$

So by (2.9) and (2.10), we have

$$
\left\|x_{k}-\hat{x}\right\| \leq[2(v+1)]^{v} \varepsilon^{-v}\left(\|v\|+B_{1}\left(C_{1} \rho+1\right) M\right) k^{-v} \leq \tilde{C} k^{-v}
$$

as desired.
Remark 2.4. The above result shows that we have obtained the error estimate $\left\|x_{k}-\hat{x}\right\|=O\left(k^{-v}\right)$ for $0<v<\frac{1}{2}$ under the general source condition (1.3) as $q \rightarrow 0$.

3 Convergence Rate Result of Method (1.5) with Noisy Data

In this section we study the modified form of minimal error method (1.5) for noisy data y^{δ} instead of exact data y. We assume that $\left\|y-y^{\delta}\right\| \leq \delta$ as stated in the introduction. The minimal error method (1.5) with noisy data takes the form

$$
\begin{equation*}
x_{k+1}^{\delta}=x_{k}^{\delta}+\alpha_{k}^{\delta} s_{k}^{\delta} \quad(k=0,1,2, \ldots), \quad s_{k}^{\delta}=-F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right), \quad \alpha_{k}^{\delta}=\frac{\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}}{\left\|A^{q}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}} \tag{3.1}
\end{equation*}
$$

As in [8], we assume:
(B4) F satisfies the local property

$$
\left\|F(u)-F(v)-F^{\prime}\left(x_{0}\right)(u-v)\right\| \leq \eta\|F(u)-F(v)\|
$$

for all $u, v \in B\left(x_{0}, \rho\right)$ with $\max \left\{\frac{1-B^{2}}{3}, 1-\frac{B^{2}}{2}-\frac{\left\|A^{q}\right\|^{2}}{2 m^{2}}, 0\right\}<\eta<1-\frac{B^{2}}{2}$.
Throughout this section we assume that $B\left(x_{0}, 2 \rho\right) \subset D(F)$.
Due to the instability of (1.5) for the noisy data, it is not possible to use an a priori regularization strategy as a stopping rule. So we need an a posteriori strategy as a stopping rule (i.e., discrepancy principle). In [14], Neubauer and Scherzer noticed that no convergence rate result has been proven for the minimal error method with noisy data. But the authors in [8] proved the convergence rate by proposing a modified discrepancy principle. Using the idea from [8], we can prove a convergence rate result for method (3.1).

3.1 Discrepancy Principle

Proposition 3.1. Let assumption (B4) holds and let x_{k}^{δ} be as in (3.1). Then $x_{k}^{\delta} \in B\left(x_{0}, 2 \rho\right) \subset D(F)$ for all $k=0,1,2, \ldots$, and if

$$
\begin{equation*}
\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \geq \tau \delta \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau>2 \frac{(1+\eta)}{2-2 \eta-B^{2}}>2 \tag{3.3}
\end{equation*}
$$

then, for all $0 \leq k<k_{*}$ with τ as in (3.3), we have

$$
k_{*}(\tau \delta)^{2} \leq \sum_{k=0}^{k_{*}-1}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \leq \frac{\tau\left\|F^{\prime}\left(x_{0}\right)\right\|^{2}}{\left(2-2 \eta-B^{2}\right) \tau-2(1+\eta)}\left\|x_{0}-\hat{x}\right\|^{2}
$$

Proof. Note that $x_{0} \in B\left(x_{0}, 2 \rho\right)$. Suppose that $x_{k}^{\delta} \in B\left(x_{0}, 2 \rho\right)$. Using (3.1), we have

$$
\begin{align*}
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2}-\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}= & -2 \alpha_{k}^{\delta}\left\langle x_{k}^{\delta}-\hat{x}, F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\rangle+\alpha_{k}^{\delta^{2}}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2} \\
= & 2 \alpha_{k}^{\delta}\langle
\end{aligned} \begin{aligned}
& \left.\left(x_{k}^{\delta}\right)-y^{\delta}-F^{\prime}\left(x_{0}\right)\left(x_{k}^{\delta}-\hat{x}\right), F\left(x_{k}^{\delta}\right)-y^{\delta}\right\rangle \\
& +\alpha_{k}^{\delta}\left[\alpha_{k}^{\delta}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}-2\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}\right] \\
\leq & 2 \alpha_{k}^{\delta} \|
\end{aligned} \begin{aligned}
& F\left(x_{k}^{\delta}\right)-F(\hat{x})+y-y^{\delta}-F^{\prime}\left(x_{0}\right)\left(x_{k}^{\delta}-\hat{x}\right)\| \| F\left(x_{k}^{\delta}\right)-y^{\delta} \| \\
& +\alpha_{k}^{\delta}\left[\alpha_{k}^{\delta}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}-2\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}\right] . \tag{3.4}
\end{align*}
$$

So by (B4) and (3.4), we have

$$
\begin{aligned}
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2}-\left\|x_{k}^{\delta}-\hat{x}\right\|^{2} \leq & 2 \alpha_{k}^{\delta}\left(\eta\left\|F\left(x_{k}^{\delta}\right)-F(\hat{x})\right\|+\delta\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \\
& \quad+\alpha_{k}^{\delta}\left[\alpha_{k}^{\delta}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}-2\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}\right] \\
\leq & 2 \alpha_{k}^{\delta}\left[\eta\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|+(1+\eta) \delta\right]\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \\
& \quad+\alpha_{k}^{\delta}\left[\alpha_{k}^{\delta}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}-2\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}\right] \\
= & \alpha_{k}^{\delta}(2 \eta-2)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+\alpha_{k}^{\delta} 2(1+\eta) \delta\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|+\left(\alpha_{k}^{\delta}\right)^{2}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}
\end{aligned}
$$

Note that

$$
\alpha_{k}^{\delta}\left\|F^{\prime}\left(x_{0}\right)^{*}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2}=\alpha_{k}^{\delta}\left\|A^{\frac{1}{2}}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2} \leq \alpha_{k}^{\delta}\left\|A^{\frac{1}{2}-q}\right\|^{2}\left\|A^{q}\left(F\left(x_{k}^{\delta}\right)-y^{\delta}\right)\right\|^{2} \leq B^{2}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}
$$

Therefore we have

$$
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2}-\left\|x_{k}^{\delta}-\hat{x}\right\|^{2} \leq \alpha_{k}^{\delta}\left[\left(2 \eta+B^{2}-2\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}+2(1+\eta) \delta\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|\right]
$$

so by (3.2),

$$
\begin{equation*}
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2}-\left\|x_{k}^{\delta}-\hat{x}\right\|^{2} \leq \alpha_{k}^{\delta}\left(\left(2 \eta+B^{2}-2\right)+2 \frac{(1+\eta)}{\tau}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2}<0 \tag{3.5}
\end{equation*}
$$

This implies $\left\|x_{k+1}^{\delta}-\hat{x}\right\|<\left\|x_{k}^{\delta}-\hat{x}\right\|<\left\|x_{0}-\hat{x}\right\|<\rho$. Thus we obtain $\left\|x_{k+1}^{\delta}-x_{0}\right\| \leq\left\|x_{k+1}^{\delta}-\hat{x}\right\|+\left\|x_{0}-\hat{x}\right\|<2 \rho$, i.e., $x_{k+1}^{\delta} \in B\left(x_{0}, 2 \rho\right) \subset D(F)$ for all $k=0,1,2, \ldots$ Now since $\alpha_{k}^{\delta} \geq\left\|A^{q}\right\|^{-2}$, we have by (3.5)

$$
\begin{equation*}
\left\|A^{q}\right\|^{-2}\left(\left(2-2 \eta-B^{2}\right)-2 \frac{(1+\eta)}{\tau}\right)\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \leq\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}-\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2} \tag{3.6}
\end{equation*}
$$

Adding inequality (3.6) for k from 0 through $k_{*}-1$, we obtain

$$
\begin{equation*}
\left\|A^{q}\right\|^{-2}\left(\left(2-2 \eta-B^{2}\right)-2 \frac{(1+\eta)}{\tau}\right) \sum_{k=0}^{k_{*}-1}\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \leq\left\|x_{0}-\hat{x}\right\|^{2}-\left\|x_{k_{*}}^{\delta}-\hat{x}\right\|^{2} \tag{3.7}
\end{equation*}
$$

This completes the proof.

Remark 3.2. Note that (3.7) implies that, for $y^{\delta} \neq y$, there must be a unique index k_{*} such that (3.2) holds for all $k<k_{*}$ but is violated at $k=k_{*}$ (see also [3, p. 282]).

Let $\Omega:=\left\|A^{q}\right\|^{-2}\left(\left(2-2 \eta-B^{2}\right)-2 \frac{(1+\eta)}{\tau}\right)$ and

$$
q=1-\Omega\left(\frac{m}{\tau-1}\right)^{2} .
$$

Now, we shall prove that $q<1$ for $\tau>2$. Note that, to prove $q<1$, it is enough to prove that

$$
\Omega\left(\frac{m}{\tau-1}\right)^{2}=\left\|A^{q}\right\|^{-2}\left(\left(2-2 \eta-B^{2}\right)-2 \frac{(1+\eta)}{\tau}\right)\left(\frac{m}{\tau-1}\right)^{2}<1
$$

for $\tau>2$. That is to prove that

$$
p(\tau):=\tau^{3}-2 \tau^{2}+\left(1-\left\|A^{q}\right\|^{-2}\left(2-2 \eta-B^{2}\right) m^{2}\right) \tau+2(1+\eta) m^{2}\left\|A^{q}\right\|^{-2}>0
$$

for $\tau>2$. This follows from the condition $\eta>1-\frac{B^{2}}{2}-\frac{\left\|A^{q}\right\|^{2}}{2 m^{2}}$.
Theorem 3.3. Let assumptions (B2) and (B4) hold and let $\rho<\min \left\{\frac{(\tau-1)^{2} \delta}{m}, \frac{2}{m \sqrt{\Omega}}\right\}$. Let x_{k+1}^{δ} be as in (3.1). Then for $0 \leq k<k_{*}$,

$$
\left\|x_{k+1}^{\delta}-\hat{x}\right\|= \begin{cases}O\left(q^{\frac{k+1}{2}}\right) & \text { if } \delta<q^{k+1} \\ O\left(\delta^{\frac{1}{2}}\right) & \text { if } q^{k+1} \leq \delta\end{cases}
$$

where $q:=1-\frac{\Omega m^{2}}{(\tau-1)^{2}}$.
Proof. By the definition of k_{*}, we have for $k \leq k_{*}$,

$$
\begin{equation*}
\tau \delta<\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \leq\left\|F\left(x_{k}^{\delta}\right)-F(\hat{x})\right\|+\left\|y-y^{\delta}\right\| . \tag{3.8}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left\|F\left(x_{k}^{\delta}\right)-F(\hat{x})\right\|>(\tau-1) \delta . \tag{3.9}
\end{equation*}
$$

Again by (3.8), we have

$$
\tau \delta<\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|<\left\|\int_{0}^{1} F^{\prime}\left(\hat{x}+\theta\left(x_{k}^{\delta}-\hat{x}\right)\right) d \theta\left(x_{k}^{\delta}-\hat{x}\right)\right\|+\delta \leq m\left\|x_{k}^{\delta}-\hat{x}\right\|+\delta
$$

i.e.,

$$
\begin{equation*}
\delta<\frac{m\left\|x_{k}^{\delta}-\hat{x}\right\|}{\tau-1} \tag{3.10}
\end{equation*}
$$

Thus, by (3.9) and (3.10),

$$
\begin{equation*}
\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\| \geq\left\|F\left(x_{k}^{\delta}\right)-F(\hat{x})\right\|-\delta \geq(\tau-1) \delta-\frac{m\left\|x_{k}^{\delta}-\hat{x}\right\|}{\tau-1} \geq(\tau-1) \delta-\frac{m \rho}{\tau-1}>0 \tag{3.11}
\end{equation*}
$$

It follows from (3.11) that

$$
\begin{equation*}
\left\|F\left(x_{k}^{\delta}\right)-y^{\delta}\right\|^{2} \geq(\tau-1)^{2} \delta^{2}+\left(\frac{m\left\|x_{k}^{\delta}-\hat{x}\right\|}{\tau-1}\right)^{2}-2 \delta m\left\|x_{k}^{\delta}-\hat{x}\right\| . \tag{3.12}
\end{equation*}
$$

So by (3.12) and (3.6), we have

$$
\begin{aligned}
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2} & \leq\left(1-\Omega\left(\frac{m}{\tau-1}\right)^{2}\right)\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}-\Omega(\tau-1)^{2} \delta^{2}+2 \Omega \delta m\left\|x_{k}^{\delta}-\hat{x}\right\| \\
& \leq\left(1-\Omega\left(\frac{m}{\tau-1}\right)^{2}\right)\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}-\Omega(\tau-1)^{2} \delta^{2}+2 \Omega \delta m \rho \\
& \leq\left(1-\Omega\left(\frac{m}{\tau-1}\right)^{2}\right)\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}+2 \Omega \delta m \rho
\end{aligned}
$$

Therefore,

$$
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2} \leq q\left\|x_{k}^{\delta}-\hat{x}\right\|^{2}+L \delta
$$

where $q=1-\Omega\left(\frac{m}{\tau-1}\right)^{2}$ and $L=2 \Omega m \rho$. Then

$$
\left\|x_{k+1}^{\delta}-\hat{x}\right\|^{2} \leq q^{k+1}\left\|x_{0}^{\delta}-\hat{x}\right\|^{2}+q^{k} L \delta+\cdots+q L \delta+L \delta \leq q^{k+1} \rho^{2}+\frac{L \delta}{1-q}
$$

This completes the proof.

Funding: One of the authors, Ms. Sabari, thanks National Institute of Technology Karnataka, India, for the financial support.

References

[1] I. K. Argyros, S. George and P. Jidesh, Inverse free iterative methods for nonlinear ill-posed operator equations, Int. J. Math. Math. Sci. 2014 (2014), Article ID 754154.
[2] H. W. Engl, Regularization methods for the stable solution of inverse problems, Surveys Math. Indust. 3 (1993), no. 2, 71-143.
[3] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Math. Appl., Kluwer Academic, Dordrecht, 2000.
[4] H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989), no. 4, 523-540.
[5] S. George, On convergence of regularized modified Newton's method for nonlinear ill-posed problems, J. Inverse Ill-Posed Probl. 18 (2010), 133-146.
[6] S. George and M. T. Nair, A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations, J. Complexity 24 (2008), no. 2, 228-240.
[7] S. George and M. T. Nair, A derivative-free iterative method for nonlinear ill-posed equations with monotone operators, J. Inverse IIl-Posed Probl. (2016), DOI 10.1515/jiip-2014-0049.
[8] S. George and M. Sabari, Convergence rate results for steepest descent type method for nonlinear ill-posed equations, Appl. Math. Comput. 294 (2017), 169-179.
[9] S. F. Gilyazov, Iterative solution methods for inconsistent linear equations with non-self-adjoint operators, Moscow Univ. Comp. Math. Cyb. 1 (1997), 8-13.
[10] M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), no. 1, 21-37.
[11] Q. Jin, On a class of frozen regularized Gauss-Newton methods for nonlinear inverse problems, Math. Comp. 79 (2010), no. 272, 2191-2211.
[12] B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Ser. Comput. Appl. Math. 6, De Gruyter, Berlin, 2008.
[13] A. Neubauer, Tikhonov regularisation for nonlinear ill-posed problems: Optimal convergence rates and finite-dimensional approximation, Inverse Problems 5 (1989), no. 4, 541-557.
[14] A. Neubauer and O. Scherzer, A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems, Z. Anal. Anwend. 14 (1995), no. 2, 369-377.
[15] R. Ramlau, A modified Landweber method for inverse problems, Numer. Funct. Anal. Optim. 20 (1999), no. 1-2, 79-98.
[16] R. Ramlau, TIGRA-an iterative algorithm for regularizing nonlinear ill-posed problems, Inverse Problems 19 (2003), no. 2, 433-465.
[17] O. Scherzer, H. W. Engl and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30 (1993), no. 6, 1796-1838.
[18] E. V. Semenova, Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators, Comput. Methods Appl. Math. 10 (2010), no. 4, 444-454.
[19] V. Vasin, Irregular nonlinear operator equations: Tikhonov's regularization and iterative approximation, J. Inverse IIl-Posed Probl. 21 (2013), 109-123.
[20] V. Vasin and S. George, An analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems, Appl. Math. Comput. 230 (2014), 406-413.
[21] V. Vasin and S. George, Expanding the applicability of Tikhonov's regularization and iterative approximation for ill-posed problems, J. Inverse Ill-Posed Probl. 22 (2014), no. 4, 593-607.

[^0]: *Corresponding author: M. Sabari: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Mangaluru 575 025, India, e-mail: msabarijothi16@gmail.com
 Santhosh George: Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Mangaluru 575 025, India, e-mail: sgeorge@nitk.ac.in

