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Abstract: Hyers-Ulam stability of a linear operator between Frechet spaces is defined. Necessary and sufficient conditions for the
existence of Hyers-Ulam stability of a continuous linear operator from a Frechet space to another Frechet space are given.
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1. Introduction

Ulam [6] gave a talk before the Mathematics Club of the
University of Wisconsin in which he discussed a num-
ber of unsolved problems. Among these was the follow-
ing question concerning the stability problem of functional
equations: “For what metric groups G is it true that an ε-
automorphism of G is necessarily near to a strict automor-
phism?” In 1941, Hyers [4] gave an answer to the problem
by considering approximately mappings as follows. Let E
and E′ be real Banach spaces. If there exists an ε ≥ 0 such
that

‖f(x + y) − f(x) − f(y)‖ ≤ ε

for all x, y ∈ E, then there exists the unique additive map-
pings L : E → E′ satisfying

‖f(x) − L(x)‖ ≤ ε.

Rassias [3] provided a generalization of Hyers’s theorem
which allows the Cauchy difference to be unbounded. Since
then several mathematicians were attracted to the result of
Rassias and investigated a number of stability problems
of functional equations. This stability phenomenon that
was introduced and proved by Rassias in his 1978 paper
is called Hyers-Ulam-Rassias stability.

The notion of the Hyers-Ulam stability of a mapping
between two normed spaces was introduced in [2]. Let
(X, ‖.‖X) and (Y, ‖.‖Y ) be normed spaces and T be a (not

necessarily linear) mapping from X into Y . We say that T
has the Hyers-Ulam stability if there exists K > 0 with
the following property : For any v ∈ R(T ), ε ≥ 0 and
u ∈ X with ‖Tu − v‖Y ≤ ε, there exists a u0 ∈ X such
that Tu0 = v and

‖u − u0‖X ≤ Kε.

In other words, if T has the Hyers-Ulam stability, then to
each “ε-approximate solution” u of the equation Tx = v
there corresponds an exact solution u0 of the equation in
the Kε-neighbourhood of u.

The linearity of T implies the following condition :
For any u ∈ X and ε ≥ 0 with ‖Tu‖Y ≤ ε, there exists
a u0 ∈ X such that Tu0 = 0 and ‖u − u0‖X ≤ Kε. The
above condition is equivalent to : For given u ∈ X , there
is a u0 ∈ X such that Tu = Tu0 and ‖u0‖X ≤ K‖Tu‖Y .

We call such K > 0 a HUS constant for T , and denote
by KT the infimum of all HUS constants for T . If, in ad-
dition, KT becomes a HUS constant for T , then we call it
the HUS constant for T . Miura at el. [2] have given a nec-
essary and sufficient condition for the existence of the best
HUS constant. The existence of the best HUS constants
for the weighted composition operators and the first order
linear differential operators are shown in [1].

We define the Hyers-Ulam stability of a linear opera-
tor between Frechet spaces. A Frechet space is a complete
metrizable topological vector space [4].
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By an operator we shall mean a non-zero linear oper-
ator. R(T ) and N(T ) denote the range and null spaces of
T respectively. The closure of A is denoted by A.

2. Characterizations

Let X and Y be Frechet spaces and T : X → Y be a lin-
ear operator. T has the Hyers-Ulam stability if for a given
open neighbourhood U of 0 in X there is an open neigh-
bourhood V of 0 in Y such that for a given x ∈ X with
Tx ∈ V there is a y ∈ U satisfying Tx = Ty.

We first give a necessary and sufficient condition in
order that T have the Hyers-Ulam stability.

Theorem 1.Let X and Y be Frechet spaces and T : X →
Y be a continuous linear operator. Then the following state-
ments are equivalent:

1.T has the Hyers-Ulam stability
2.T has closed range.

Proof.Suppose R(T ) is closed in Y . We denote N = N(T )
and X̃ = X/N . Define T̃ : X̃ → R(T ) by

T̃ (x + N) = Tx.

Then T̃ is a one-to-one continuous linear operator from
X̃ onto R(T ) and by the open mapping theorem T̃−1 is
continuous. Let π : X → X̃ be the quotient mapping.
Now fix an open neighborhood U of 0 in X . Then π(U) =
U + N = Ũ (say) is an open neighborhood of 0 + N in
X̃ . Then there is an open neighborhood V of 0 in Y such
that

R(T ) ∩ V ⊆ T̃ (Ũ) = T̃ (π(U)) = T (U).

Thus, for a given x ∈ X with Tx ∈ V , there is a y ∈ U
such that Tx = Ty. This proves that T has the Hyers-
Ulam stability.

Conversely assume that T has the Hyers-Ulam stabil-
ity. Let (Un)∞n=1 be a sequence of balanced open neigh-
borhoods of 0 which form a local base at 0 in X such that
Un+1 + Un+1 ⊆ Un, for every n. For each Un, let us find
an open neighborhood Vn of 0 in Y such that if Tx ∈ Vn

for some x ∈ X , then Tx = Ty for some y ∈ Un. Without
loss of generality, we assume that {Vn : n = 1, 2, · · ·} is a
local base at 0 in Y such that Vn+1 +Vn+1 ⊆ Vn for every
n.

Let y0 ∈ R(T ). Find a sequence (x′
n) in X such that

Tx′
n → y0 as n → ∞, and Tx′

n+1 − Tx′
n ∈ Vn for

every n. For every n, find xn ∈ Un such that Txn =
Tx′

n+1 − Tx′
n ∈ Vn. Then, as m → ∞,

m∑
n=1

Txn = (Tx′
2 − Tx′

1) + · · · + (Tx′
m+1 − Tx′

m)

= Tx′
m+1 − Tx′

1 → y0 − Tx′
1.

Thus
∑∞

n=1 Txn converges to y0 − Tx′
1. Also for m < n,

we have

xm + · · · + xn ∈ Um + Um+1 + · · · + Un−1 + Un

⊆ Um + Um+1 + · · · + Un−1 + Un−1

⊆ Um + Um+1 + · · · + Un−2 + Un−2

⊆ · · · · · · · · · · · · · · · · · · · · ·
⊆ Um + Um

⊆ Um−1.

This proves that
∑∞

n=1 xn converges to x0, say, in the
Frechet space X , and hence

∑∞
n=1 Txn converges to Tx0

in Y . Therefore

Tx0 = y0 − Tx′
1 =

∞∑
n=1

Txn

so that y0 = Tx0 + Tx′
1 ∈ R(T ). This proves that R(T )

is closed in Y .

The following theorem gives a particular version of
the Hyers-Ulam stability of a bounded linear operator be-
tween Banach spaces which was proved in [5]. However,
our proof enjoys the standard technique for the proof of
the open mapping theorem.

Theorem 2.Let X and Y be Banach spaces and T : X →
Y be a bounded linear operator. Then the following state-
ments are equivalent:

1.T has the Hyers-Ulam stability
2.T has closed range.

Proof.Suppose R(T ) is closed in Y . Define T̃ : X̃ →
R(T ) by T̃ (x+N) = Tx, for x ∈ X . Then T̃ is a well de-
fined one-to-one continuous linear operator from X̃ onto
R(T ). Therefore, by the open mapping theorem, there ex-
ists a constant K

′
> 0 such that

‖x + N‖ ≤ K
′‖T̃ (x + N)‖ = ‖Tx‖

for every x ∈ X . Take K = K
′
+1. Then for given x ∈ X ,

if Tx 
= 0, then there is an element z ∈ N such that

‖x + z‖ ≤ ‖x + N‖ + ‖Tx‖
≤ K

′‖Tx‖ + ‖Tx‖
= K‖Tx‖.

In this case, we take y = x + z so that ‖y‖ ≤ K‖Tx‖.
If Tx = 0, then we take y = 0 so that ‖y‖ ≤ K‖Tx‖.
Thus T has the Hyers-Ulam stability with a HUS constant
K.

Conversely assume that T has a HUS constant K. Fix
y0 ∈ R(T ), the closure of R(T ) in Y . Then there is a
sequence (xn) in X such that ‖xn‖ ≤ K‖Txn‖ and for
every n = 1, 2, 3, . . .,

‖(y0 − Tx1 − Tx2 − · · · − Txn−1) − Txn‖ ≤ 1
2n+2

.
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Then 1
K ‖xn‖ ≤ ‖Txn‖ ≤ ‖y0 − Tx1 − Tx2 − · · · −

Txn‖+‖y0−Tx1 −Tx2 −· · ·−Txn−1‖ ≤ 1
2n+2 + 1

2n+1 ≤
1
2n .

Therefore, the series
∑∞

n=1xn converges to x0, say,
in X and the series

∑∞
n=1Txn converges to y0. Since T is

continuous,
∑∞

n=1Txn converges to T (
∑∞

n=1xn) = Tx0.
Therefore y0 = Tx0 ∈ R(T ). This proves that R(T ) is
closed in Y .

Corollary 1.Let X and Y be Banach spaces and T : X →
Y be a bounded linear operator. Then T has the Hyers-
Ulam stability if and only if for a given bounded sequence
(yn) in R(T ) there is a bounded sequence (xn) in X such
that Txn = yn for every n.

Proof.Suppose T has the Hyers-Ulam stability. Then there
is a constant K > 0 such that for a given y ∈ R(T ), there
is an element x ∈ X such that ‖x‖ ≤ K‖y‖ and Tx = y.
Consider a bounded sequence (yn) in R(T ). To each yn,
there is an element xn ∈ X such that Txn = yn and
‖xn‖ ≤ K‖yn‖. Then (xn) is a bounded sequence in X
such that Txn = yn, for every n.

To prove the converse part, assume that T does not
have a Hyers-Ulam stability constant. Then, for every given
n, there is an element yn in X such that n‖yn‖ < ‖x‖, for
any x ∈ X with Tx = yn; and such that ‖yn‖ = 1. There-
fore, if there is an element xn such that Txn = yn, then
‖xn‖ > n. Thus, there is no bounded sequence (xn) in
X such that Txn = yn for all n, when (yn) is a bounded
sequence in R(T ).

3. Compositions

Let X,Y and Z be Frechet spaces. Let S : X → Y and
T : Y → Z be linear operators each of which having a
HUS constant. It is not ture in general that the composition
TS : X → Z has the Hyers-Ulam stability. The following
example shows that even for continuous linear operators
between Frechet spaces the composition of operators with
HUS constants need not have the Hyers-Ulam stability.

Example 1.Suppose X = Y = Z = �2 with the usual
norm on this Hilbert space. Define S : X → Y and T :
Y → Z by

S(x1, x2, x3, x4, · · ·) = (x1, 0, x2, 0, x3, 0, x4, 0, · · ·)
and

T (x1, x2, x3, x4, · · ·) = (x1 +x2,
x3

3
+x4,

x5

5
+x6, · · ·).

Then S and T have HUS constants. But TS does not have
a HUS constant because R(TS) is not closed in Z.

We provide a necessary and sufficient condition which
gives that the composition of operators with HUS con-
stants is again an operator with HUS constant.

Theorem 3.Suppose S : X → Y and T : Y → Z are
continuous linear operators between Frechet spaces such
that S and T have the Hyers-Ulam stability. Then TS has
the Hyers-Ulam stability if and only if R(S) + N(T ) is
closed in Y .

Proof.Let Y ′ = R(S) + N(T ). Then R(S), N(T ) and Y ′
are Frechet spaces under the subspace topologies. Define
P : R(S) × N(T ) → Y ′ by

P (x, y) = x + y,

for x ∈ R(S) and y ∈ N(T ). Then P is a continu-
ous linear mapping when the domain is endowed with the
product topology and the coordinatewise algebraic oper-
ations. Then, by the open mapping theorem, for a given
open neighborhood V1 of 0 in R(S) and V2 of 0 in N(T ),
there is an open neighborhood V3 of 0 in Y ′ such that
V1 + V2 ⊇ V3. We shall use this observation in the fol-
lowing part.

Fix an open neighborhood U of 0 in X and find, by
theorem 1, an open neighborhood V of 0 in Y such that if
x1 ∈ X and Sx1 ∈ V , then there is a x2 ∈ U such that
Sx1 = Sx2. Find an open neighborhood V ′ of 0 in Y such
that

V ′ ∩ Y ′ ⊆ [V ∩ R(S)] + [V ∩ N(T )].
For this neighborhood V ′, we find, by theorem 1, an open
neighborhood W of 0 in Z such that if y1 ∈ Y and Ty1 ∈
W , then Ty1 = Ty2 for some y2 ∈ V ′.

Now if x1 ∈ X and T (Sx1) ∈ W , then there is a
y2 ∈ V ′ such that T (Sx1) = Ty2. Then y2−Sx1 ∈ N(T )
and y2 = Sx1 +(y2 −Sx1) ∈ R(S)+N(T ) = Y ′ which
implies that

y2 ∈ V ′ ∩ Y ′ ⊆ [V ∩ R(S)] + [V ∩ N(T )].

Therefore, there are y3 and y4 in Y such that y3 ∈ V ∩
R(S) and y4 ∈ V ∩ N(T ) and y2 = y3 + y4. Since y3 ∈
V ∩ R(S), there is a x2 ∈ U such that Sx2 = y3. There-
fore T (Sx1) = Ty2 = T (y3 + y4) = T (Sx2) + Ty4 =
T (Sx2) + 0 = T (Sx2). Thus, for a given x1 ∈ X with
(TS)x1 ∈ W , there is a x2 ∈ U such that

(TS)x1 = (TS)x2.

This proves that R(TS) is closed in Z. The proof for the
other way implication comes from

R(S) + N(T ) = T−1[T (S(X))]

and T (S(X)) is closed in Z.
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