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In this article, we propose a high-speed decoding algorithm for binary BCH codes
that can correct up to 7 bits in error. Evaluation of the error-locator polynomial is
the most complicated and time-consuming step in the decoding of a BCH code.
We have derived equations for specifying the coefficients of the error-locator
polynomial, which can form the basis for the development of a parallel
architecture for the decoder. This approach has the advantage that all the
coefficients of the error locator polynomial are computed in parallel (in one step).
The roots of error-locator polynomial can be obtained by Chien’s search and
inverting these roots gives the error locations. This algorithm can be employed in
any application where high-speed decoding of data encoded by a binary BCH
code is required. One important application is in Flash memories where data
integrity is preserved using a long, high-rate binary BCH code. We have
synthesized generator polynomials for binary BCH codes (error-correcting
capability, t ¼ 7) that can be employed in Flash memory devices to improve
the integrity of information storage. The proposed decoding algorithm can be
used as an efficient, high-speed decoder in this important application.
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1. Introduction

The communication revolution and the advent of internet age have produced enormous
demand for the increase in storage capacity and storage density. Physical/media
improvements, along with sophisticated signal processing and coding techniques, have
played a critical role in the constant augmentation of storage/communication channel
capacities (Costello and Forney 2007). Every computer memory and data storage system
has adopted some type of error-detection code or error-correction code in order to
enhance system reliability. The reliability levels that are required by storage devices are
extremely high. This is primarily because, unlike communication systems, no retransmis-
sion is generally possible. We expect to save our data and be able to retrieve it perfectly at
any future time. Therefore, data integrity is a fundamental aspect of storage, security and
reliability. As the recording density increases, a very large number of bits have to be
packaged into a very small physical area. Consequently, the physical space available to
accommodate a bit has become smaller and smaller over the years. This results in Inter-
Symbol Interference in the sense that the detection of an information bit is influenced by
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bits that are present in the recording medium in the immediate vicinity. This problem
becomes more and more acute as the recording density increases. The use of powerful
error-control algorithms can protect the integrity of user information against errors caused
by ageing, wear out due to repeated read and write operations and manufacturing defects
(Micheloni, Marelli, and Ravasio 2008).

BCH and RS codes are amongst the most commonly used error correcting codes today
and find application in wireless communications, high-speed modems and data storage
systems. They belong to the class of cyclic codes and were independently invented by
Hocquenghem in 1959 and Bose and Ray-Chaudhuri in 1960. The construction procedure
adopted for specifying the generator polynomial of a BCH code specifies a lower bound on
the minimum distance of the code. Two fields are involved in the construction of BCH
codes. The coefficients of the generator polynomial (and hence all codewords) are drawn
from the base (ground) field Fq. The roots of the generator polynomial lie in the extension
field Fqm . Decoding operation of a BCH code is relatively complicated (as compared to the
encoding operation) because of the requirement that computational steps are performed in
the larger field Fqm . For binary BCH codes, q ¼ 2.

Binary BCH codes are relatively simple and have good error-correcting performance,
which is adequate in many applications. Many decoding algorithms have been proposed in
literature. The Berlekamp–Massey and Sugiyama (Euclid’s) algorithms are the most well-
known and widely applied iterative techniques used to decode BCH codes. These enable us
to determine the coefficients of the error-locator polynomial �ðxÞ. An alternate solution to
this problem involves the direct solution of a set of t equations in t unknowns where t is the
error-correcting capability of the code. This second method can provide an extremely fast
decoder that can be easily realized with modern VLSI technology (Kraft 1991). In this
article, we have derived equations for calculating the coefficients of error-locator
polynomial that can correct up to a maximum of 7 bits in error over the span of the
codeword. These coefficients are specified in terms of the syndromes determined from the
received codeword. Representing the syndromes in terms of a decision tree (syndrome tree)
helps us to conclude whether errors have occurred and whether decoding is possible or not.
Once we come to know that decoding is possible, we can substitute syndrome values in
appropriate equations to evaluate the coefficients of the error-locator polynomial. In case
decoding is not possible, decoding failure can be declared.

The motivation for this study has come from our earlier work on the synthesis of BCH
codes for application in Flash memory systems where long high-rate BCH codes are
currently employed to ensure data integrity (Rajesh Shetty, Sripati, Prashantha Kumar,
and Shankarananda 2010). As Flash memories find increasing use in applications
requiring high-speed data transfer, it is mandatory that internal operations of data search,
encoding/decoding and memory access be completed in the shortest possible time. Thus,
there is an urgent need to devise high-speed decoding algorithms employing parallel
architecture (avoiding iterative steps in computation of �ðxÞ) that can meet this
requirement.

2. Synthesis of BCH codes for error protection in Flash memories

Use of error-control codes constitutes the most effective solution to improve data integrity
of memory devices. In this study, we have synthesized the generator polynomial of a t ¼ 7
error-correcting BCH code and derived equations to quantify the coefficients of the
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error-locator polynomial. This facilitates the design of parallel high-speed decoders that

can be used when this code is employed in Flash memory devices. Compared to the current

standard (Mehnert 2008), where 6 bits in error can be corrected over a span of 4096

information bits, we propose a code that can correct seven errors. We now briefly discuss

the organisation of Flash memories. As per Mehnert (2008), user memory is organized into

blocks, pages and sectors. The smallest unit is a sector. Each sector has 512 bytes reserved

for storing information and 16 bytes reserved for storing parity information. Table 1 gives

the organisation of sectors, pages and blocks in 2-GB Flash memory.
The synthesis of a t ¼ 7 BCH code for this application can be done with the help of the

following steps. We assume that information block length k is equal to the number of bits

stored in one sector (thus, k ¼ 512� 8 ¼ 4096 bits). Assuming that the BCH code is

primitive and narrow sense, we are constrained to choose n ¼ 8191, yielding a (8191, 4096)

BCH code. However, given that only 128 bits are at most available for storing redundant

information (Mehnert 2008), this is clearly not a suitable choice. The code will have to be

shortened before it can be used in this application. Let � be the primitive element of the

field F213 . From the BCH bound (Blahut 2003), the generator polynomial must have

elements f�,�2,�3,�4,�5,�6,�7,�8,�9,�10,�11,�12,�13,�14g as required roots. In addition,

the requirement of conjugacy constraints imposes the condition that the generator

polynomial also has all conjugates of these elements as roots (Wicker 1994). This is

accomplished by defining the generator polynomial gðxÞ as the least common multiple

(LCM) of the minimal polynomials of these roots. To synthesize the generator polynomial

of the shortened BCH code, we proceed as follows. Given k ¼ 4096, n� k � 128, t ¼ 7, the

relevant minimal polynomials are listed in Table 2.
Thus, gðxÞ ¼ LCMfM1ðxÞ,M3ðxÞ,M5ðxÞ,M7ðxÞ,M9ðxÞ,M11ðxÞ,M13ðxÞg. Upon com-

putation of the LCM of these polynomials, the generator polynomial is specified as

expressed in (1).

gðxÞ ¼ 1þ x2 þ x5 þ x7 þ x8 þ x10 þ x11 þ x13 þ x16 þ x18 þ x19

þ x23 þ x25 þ x26 þ x29 þ x30 þ x31 þ x32 þ x33 þ x35

þ x43 þ x44 þ x45 þ x48 þ x50 þ x51 þ x54 þ x56 þ x57 þ x59

þ x61 þ x62 þ x67 þ x75 þ x91 ð1Þ

We observe that the degree of this polynomial is equal to 91. Thus,

n� k ¼ degð gðxÞÞ ¼ 91. Since n� k also corresponds to the number of redundant bits

Table 1. Memory organisation of a 2-GB Flash
memory device.

Sector size 512 bytes

Sector/page 8
Pages/block 64
Page size 4KB
Block size 256KB
Blocks/die 4096
Dies/chip 2
Total capacity 2GB

Source: Mehnert (2008).
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in the codeword, it is clear that this redundancy requirement can be accommodated by the
Flash memory organisation. This generator polynomial defines a (8191, 8100) binary
primitive length BCH code. Since, the information block in this case consists of only
4096 bits, the code can be shortened to a (4187, 4096) shortened BCH code. In the
remaining part of this article, we have derived equations to compute the coefficients of
�ðxÞ using a non-iterative procedure which facilitates fast parallel decoding.

3. Decoding of binary BCH codes

The algebraic decoding of binary BCH codes has the following general steps (Moon 2005):

. Computation of the syndromes Sj, 1 � j � 2t from the received word. Sj is
computed as Sj ¼ rð� j Þ, where � j is a root of generator polynomial gðxÞ.

. Use of an iterative algorithm (Berlekamp–Massey, Sugiyama) or direct solution
(Peterson) to calculate �ðxÞ.

. Determination of the roots of �ðxÞ using Chien’s search algorithm, which is an
exhaustive search over all the elements in the appropriate finite field. The
reciprocals (inverses) of the roots represent error locations. Since the code is
binary, flipping the erroneous bits gives the correct codeword.

The computation of the error-locator polynomial is the step that requires the highest
computational resources and time. Our aim is to propose a straightforward non-iterative
solution to this problem. In this section, we have presented a solution to the problem of
computing coefficients of �ðxÞ for BCH codes characterized by error-correcting capability
t ¼ 7 over the span of the codeword. From the equations, it can be seen that all the
necessary computational steps can be performed using simple combinational circuits. As a
result, decoding of the received codeword can be accomplished in a time span much less
than what would be needed if we had employed contemporary iterative decoding
techniques.

Suppose that a codeword cðxÞ ¼ c0 þ c1xþ c2x
2 þ � � � þ cn�1x

n�1 is transmitted.
The received polynomial (comprising a cðxÞ possibly corrupted by additive noise) is
specified by,

rðxÞ ¼ r0 þ r1xþ r2x
2 þ � � � þ rn�1x

n�1 ð2Þ

Let e(x) denote the error pattern introduced by the channel. Then

rðxÞ ¼ cðxÞ þ eðxÞ ð3Þ

Table 2. List of minimal polynomials of the required
roots for BCH code with t¼ 7.

M1ðxÞ ¼ 1þ xþ x3 þ x4 þ x13

M3ðxÞ ¼ 1þ xþ x4 þ x5 þ x7 þ x9 þ x10 þ x13

M5ðxÞ ¼ 1þ xþ x4 þ x7 þ x8 þ x11 þ x13

M7ðxÞ ¼ 1þ xþ x2 þ x3 þ x6 þ x8 þ x9 þ x10 þ x13

M9ðxÞ ¼ 1þ x5 þ x6 þ x7 þ x8 þ x12 þ x13

M11ðxÞ ¼ 1þ xþ x5 þ x7 þ x8 þ x9 þ x13

M13ðxÞ ¼ 1þ x3 þ x4 þ x5 þ x6 þ x12 þ x13
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For 1 � j � 2t, the jth component of the syndrome is given by

Sj ¼ rð� j Þ ¼ eð� j Þ ¼ r0 þ r1�
j þ r2�

2j þ r3�
3j þ � � � þ rn�1�

ðn�1Þ j ð4Þ

Let us assume that the received word r has � errors (� � t) in positions i1, i2, . . . , i�.

Since the code is binary, the errors in these positions have values eij ¼ 1. Therefore,

syndrome sequence can be re-expressed in terms of error locations as Lin and

Costello (2004)

Sj ¼
X�
l¼1

eilð�
j Þ

il ¼
X�
l¼1

ð�ilÞj ¼
X�
l¼1

Xj
l, j ¼ 1, 2, . . . , 2t ð5Þ

The fXlg represent error locations which indicate the positions of the errors in the

received codeword. Expanding (5), for j ¼ 1, 2, . . . , 2t, we obtain a sequence of 2t

syndrome equations in the � unknown error locations.

S1 ¼ X1 þ X2 þ . . .þ X�

S2 ¼ X2
1 þ X2

2 þ . . .þ X2
�

S3 ¼ X3
1 þ X3

2 þ . . .þ X3
�

..

.

S2t ¼ X2t
1 þ X2t

2 þ . . .þ X2t
�

9>>>>>>>=
>>>>>>>;

ð6Þ

The above set of equations forms a set of nonlinear algebraic equations in multiple

variables and is called power-sum symmetric functions (Lin and Costello 2004; Moon

2005). Rather than attempting to solve these nonlinear equations directly, let us define a

new polynomial called error-locator polynomial, which casts the problem in a different, and

more tractable, setting. The error-locator polynomial is defined as

�ðxÞ ¼
Y�
l¼1

ð1� XlxÞ ¼ �0 þ�1xþ�2x
2 þ � � � þ���1x

��1 þ��x
� ð7Þ

where �0 ¼ 1. Once we knew the coefficients of �ðxÞ, we could find the zeros of �ðxÞ to

obtain the error locations. The roots of the error-locator polynomial are the reciprocals of

the error locators.
One key observation here is that there is a linear relationship between the syndromes

and coefficients of the error-locator polynomial. This relationship is described by

Newton’s identities, which can be applied for any field (Reed and Chen 1999). From (6),

we can write the following relationship between syndromes and the coefficients of error-

locator polynomial using Newton identities.

Sk þ�1Sk�1 þ � � � þ�k�1S1 þ k�k ¼ 0 1 � k � �

Sk þ�1Sk�1 þ � � � þ���1Sk��þ1 þ��Sk�� ¼ 0 k4 �

�
ð8Þ

Newton’s identities are linear in the � unknown coefficients of the error-locator

polynomial. In a binary field (F2), the above system of equations can be greatly simplified.

First, we note that j�j ¼ �j if j is odd, and j�j ¼ 0 if j is even. Furthermore, S2j ¼ S2
j .
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We can thus write Newton’s identities (8) as

S1 þ�1 ¼ 0

S3 þ�1S2 þ�2S1 þ�3 ¼ 0

S5 þ�1S4 þ�2S3 þ�3S2 þ�4S1 þ�5 ¼ 0

..

.

S2t�1 þ�1S2t�2 þ�2S2t�3 þ � � � þ�tSt�1 ¼ 0

9>>>>>>=
>>>>>>;

ð9Þ

In the following section, we give the closed-form solutions for solving (9) to find the
coefficients of error-locator polynomial for t ¼ 7 errors using Peterson’s direct solution
decoding algorithm. The solution for the case of t � 5 has been discussed in Michelson and
Levesque (1985). The solution for the case t ¼ 6 has been worked out, but it has not been
presented here for want of space.

4. Direct-solution decoding for BCH codes characterized by t¼ 7

Equation (9) can be expressed in matrix form as follows.

1 0 0 0 � � � 0 0

S2 S1 1 0 � � � 0 0

S4 S3 S2 S1 � � � 0 0

S6 S5 S4 S3 � � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

S2t�4 S2t�5 S2t�6 S2t�7 � � � St�2 St�3

S2t�2 S2t�3 S2t�4 S2t�5 � � � St St�1

2
66666666664

3
77777777775

�1

�2

�3

�4

..

.

�t�1

�t

2
66666666664

3
77777777775
¼

S1

S3

S5

S7

..

.

S2t�3

S2t�1

2
66666666664

3
77777777775

ð10Þ

This matrix equation is described by A�¼ S, where A represents the matrix of
syndromes, � represents the column vector of coefficients of �ðxÞ and S represents the
column vector of syndromes. If the number of errors introduced by the channel is exactly t,
then A is non-singular and the system in (10) has a unique solution. If fewer than t errors
have occurred, we proceed by eliminating the two bottom rows and the two rightmost
columns of A and check to see if the resulting matrix is non-singular (Moon 2005). This
process is continued until we obtain a reduced matrix which is non-singular. This matrix-
based approach used to determine the coefficients of �ðxÞ is called Peterson’s algorithm for
decoding binary BCH codes. Michelson and Levesque (1985) have provided explicit
formulae for computing the coefficients of �ðxÞ for values of t � 5. We present below the
closed-form expressions to determine coefficients of �ðxÞ for binary BCH codes
characterized by error-correcting capability t ¼ 7.

For seven error-correcting binary BCH codes, we can write (10) as

�1

�2

�3

�4

�5

�6

�7

2
666666666664

3
777777777775

¼

1 0 0 0 0 0 0

S2
1 S1 1 0 0 0 0

S4
1 S3 S2

1 S1 1 0 0

S2
3 S5 S4

1 S3 S2
1 S1 1

S8
1 S7 S2

3 S5 S4
1 S3 S2

1

S2
5 S9 S8

1 S7 S2
3 S5 S4

1

S4
3 S11 S2

5 S9 S8
1 S7 S2

3

2
666666666664

3
777777777775

�1
S1

S3

S5

S7

S9

S11

S13

2
666666666664

3
777777777775

ð11Þ
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This system of equations when solved (and simplified using Horner’s rule) yields,
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We can observe that the coefficients of error-locator polynomials are expressed in

terms of odd syndromes. By assuming each odd syndrome to be either zero or not zero, we
can derive the syndrome decision tree as shown in Figure 1. In this diagram,
A corresponds to the no-error condition, B to the possibility of the channel having

introduced an uncorrectable error pattern and C to the channel having introduced a
correctable error pattern. D points to the channel having introduced an error pattern of

weight six. From an inspection of the tree, it is observed that leaf node B is reached
whenever one of the following conditions is satisfied:

(1) S11 6¼ 0,S1 � S9 ¼ 0
(2) S11 ¼ 0,S9 6¼ 0,S1 � S7 ¼ 0
(3) S11 6¼ 0,S9 6¼ 0,S1 � S7 ¼ 0

Whenever one of these conditions is satisfied, it will result in the solution to the matrix
equation taking on 0

0 form and hence a solution to the system of equations does not exist.
In a similar manner, leaf node D is reached whenever one of the following two

conditions is satisfied.

(1) S11 ¼ S9 ¼ S7 ¼ S3 ¼ S1 ¼ 0,S5 6¼ 0
(2) S11 ¼ S7 ¼ S3 ¼ S1 ¼ 0,S9 6¼ 0,S5 6¼ 0

Careful inspection of the A matrix under these conditions reveals that it is singular.
However, with the deletion of the bottom-most row and right-most column, the reduced

matrix is non-singular. This implies that the number of errors introduced by the channel is
six. In example 1, we have shown that if the channel introduces an error pattern, the

decoding algorithm can successfully compute the coefficients of the error-locator
polynomial from which the error locations can be correctly determined.
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Example 1: In this example, the system of equations in (12) is verified by cross-checking
the results with Berlekamp–Massey algorithm. We have considered the primitive length

(63, 24) seven-error-correcting binary BCH code. Let us assume that the all-zero vector c

of length 63 is transmitted and received vector is r ¼ ð111111100 � � � 000Þ, which has seven

errors. The syndromes are calculated using (4). Since this is a binary BCH code, we have to

calculate only t odd syndromes. The syndromes are S1 ¼ �
20, S3 ¼ �

10, S5 ¼ �
14, S7 ¼ �

12,

S9 ¼ 0, S11 ¼ �
27 and S13 ¼ �

6. From the equations derived for coefficients of error-
locator polynomial given in (12), we can calculate

�1 ¼ S1 ¼ �
20

�2 ¼
�25

�15
¼ �10

�3 ¼
�57

�15
¼ �42

�4 ¼
�60

�15
¼ �45

�5 ¼
�34

�15
¼ �19

Figure 1. Syndrome tree for seven error-correcting binary BCH codes.
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�6 ¼
�50

�15
¼ �35

�7 ¼
�36

�15
¼ �21

Therefore, �ðxÞ ¼ 1þ �20xþ �10x2 þ �42x3 þ �45x4 þ �19x5 þ �35x6 þ �21x7.

The same problem has been worked out with Berlekamp–Massy algorithm for
validation. These iterative steps are given in Table 3.

Thus, we see that the Berlekamp–Massey algorithm and the equations derived in this
article yield the same values for the coefficients of error-locator polynomial when the same
received vector r is input.

5. Conclusion

We have derived generalized equations for computing the coefficients of error-locator
polynomials for binary BCH codes that can correct up to seven errors. A survey of
literature reveals that direct computation of coefficients of the error-locator polynomial
has been worked out only for the case of five or fewer errors (Michelson and Levesque
1985). We have also derived the generator polynomial of a (4187, 4096) BCH code that can
correct up to 7 bits in error. This code can find application in protecting information
integrity in Flash memory systems. The main advantage of this approach when compared
to decoding BCH codes is design simplicity (due to use of combinational logic circuits) and
speed (due to the avoidance of iteration). Computation can be carried out by simple
combinational logic and ROM implemented look-up tables. This algorithm can also be
advantageously employed in wireless applications employing BCH codes for error
protection, in which high-speed/low-complexity decoding is essential.
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