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LOCAL RESULTS FOR AN ITERATIVE METHOD OF
CONVERGENCE ORDER SIX AND EFFICIENCY

INDEX 1.8171

Ioannis K. Argyros1 and Santhosh George23

Abstract. We present a local convergence analysis of an iterative
method of convergence order six and efficiency index 1.8171 in order to
approximate a locally unique solution of a nonlinear equation. In earlier
studies such as [16] the convergence order of these methods was given
under hypotheses reaching up to the fourth derivative of the function al-
though only the first derivative appears in these methods. In this paper,
we expand the applicability of these methods by showing convergence
using only the first and second derivatives. Moreover, we compare the
convergence radii and provide computable error estimates for these meth-
ods using Lipschitz constants.
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1. Introduction

The problem of approximating a locally unique solution x∗ of equation

(1.1) F (x) = 0,

where F : D ⊆ R → R is a nonlinear function, D is a convex subset of R
has many applications in mathematics and engineering. Newton-like methods
are famous for finding solution of (1.1). These methods are usually studied
based on: semi-local (that is based on the information around an initial point,
to give conditions ensuring the convergence of the iterative procedure) and
local convergence (that is based on the information around a solution, to find
estimates of the radii of convergence balls [1–25]).

Many authors (see [1–25]) have used higher order multi-point methods for
approximating a locally unique solution x∗ of (1.2). Higher order methods such
as Euler’s, Halley’s, super Halley’s, Chebyshev’s [1–25] require the evaluation of
the higher order derivative of F at each step, which in general is very expensive.
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In this paper we present the local convergence analysis of method defined for
each n = 0, 1, 2, · · · by

y0 = x0,

x1 = x0 −A−1
0 F (x0),

yn = xn −A−1
n−1F (xn),

xn+1 = xn −A−1
n F (xn),(1.2)

where x0 is an initial point and

An = F ′(
1

2
(xn + yn))−

1

2

F (xn)F
′′( 12 (xn + yn))

F ′( 12 (xn + yn))
.

Method (1.2) was introduced and studied in [15]. The motivation and favorable
comparisons were also given in [15]. The sixth order of convergence was shown
in [16] using Taylor expansions, Maple software and hypotheses reaching up to

the fourth derivative. The efficiency index is 6
1
3 = 1.8171 which is larger than

the efficiency indices of other methods (see Table 1).

Method Number of function or Efficiency index

derivative evaluations

Newton, quadratic 2 2
1
2 ≈ 1.4142

Cubic methods 3 3
1
3 ≈ 1.4422

Kou’s 5th order [25] 4 5
1
4 ≈ 1.4953

Kou’s 6th order [25] 4 6
1
4 ≈ 1.5651

Jarratt’s 4th order 3 4
1
3 ≈ 1.5874

Secant 1 0.5(1 +
√
5) ≈ 1.6180

Modified Halley’s method 43 6
1
3 ≈ 1.8171

Table 1: table 1. Comparison of efficiencies of various methods

However, the hypotheses up to the fourth derivative of function F limit the
applicability of these methods. As a motivational example, let us define the
function f on D = [− 1

2 ,
5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x ̸= 0
0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.
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Then, obviously, function f ′′′ is unbounded on D. Notice that, in particular
there is a plethora of iterative methods for approximating solutions of nonlinear
equations defined on R [1–25]. These results show that if the initial point x0

is sufficiently close to the solution x∗, then the sequence {xn} converges to
x∗. But how close to the solution x∗ should the initial guess x0 be? These
local results give no information on the radius of the convergence ball for the
corresponding method. We address this question for method (1.2) in Section
2. The same technique can be used to other methods [1–25].

In the present paper we only use hypotheses up to the second derivative.
This way we expand the applicability of these methods.

The rest of the paper is organized as follows: Section 2 contains the local
convergence analysis of the method. The numerical examples are presented in
the concluding Section 3.

2. Local convergence analysis

We present the local convergence analysis of method (1.2) in this section.
Let L0 > 0, L > 0, N > 0 and M ≥ 1 be parameters. It is convenient for
the local convergence analysis of method (1.2) that follows to introduce some
scalar functions and parameters. Define functions p, q, hp and hq on the interval
[0, 1

L0
) by

p(t) = (L0 +
MN

2(1− L0t)
)t,

q(t) =
1

2
(4L0 +

MN

1− L0t
)t,

hp(t) = p(t)− 1,

and

hq(t) = q(t)− 1.

Notice that the functions p, q and hq are increasing on the interval [0, 1
L0

). We

have that hp(0) = −1 < 0 and hp(t) → +∞ as t → 1
L0

−
. It follows from

the intermediate value theorem that the function hp has zeros in the interval
(0, 1

L0
). Denote by rp the smallest such zero. Similarly, denote the smallest zero

of the function hq on the interval (0, 1
L0

) by rq. Notice that hq(t) = hp(t)+
L0

2 t.

In particular hq(rp) = hp(rp) +
L0

2 rp = L0

2 rp > 0, since hp(rp) = 0 and rp > 0.
Hence, we deduce that rq < rp. Moreover, define functions g1 and h1 on the
interval [0, rp) by

g1(t) =
1

2(1− L0t)
(Lt+

2Mq(t)

1− p(t)
)

and

h1(t) = g1(t)− 1.
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The functions g1 and h1 are increasing on [0, rp). We have that h1(0) =
−1 < 0 and h1(t) → +∞ as t → r−p . Denote by r1 the smallest zero of the
function h1 in the interval (0, rp). Set

(2.1) r = min{rq, r1}.

Then, we have for each t ∈ [0, r) that

(2.2) 0 ≤ p(t) < 1

(2.3) 0 ≤ q(t) < 1,

and

(2.4) 0 ≤ g1(t) < 1.

Let U(v, ρ) denote an interval in R, with center v ∈ R and of radius ρ > 0.
Then, by Ū(v, ρ) we denote the closure of the interval U(v, ρ). Next, we present
the local convergence analysis of method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊆ R → R be a twice differentiable function. Suppose
that there exist x∗ ∈ D, L0 > 0, L > 0, N > 0 and M ≥ 1 such that for each
x, y ∈ D

(2.5) F (x∗) = 0, F ′(x∗) ̸= 0,

(2.6) |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ L0|x− x∗|,

(2.7) |F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|,

(2.8) |F ′(x∗)−1F ′(x)| ≤ M,

(2.9) |F ′(x∗)−1F ′′(x)| ≤ N,

and

(2.10) Ū(x∗, r) ⊆ D,

hold, where the radius r is given by (2.1). Then, the sequence {xn} generated
for x0 ∈ U(x∗, r) − {x∗} by method (1.2) is well defined, remains in U(x∗, r)
for each n = 0, 1, 2, · · · and converges linearly to x∗. Moreover, the following
estimates hold

(2.11) |yn − x∗| ≤ c|xn − x∗| ≤ |xn − x∗| < r for each n = 1, 2, . . .

and

(2.12) |xn+1 − x∗| ≤ c|xn − x∗| ≤ |xn − x∗| for each n = 1, 2, . . . ,
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where,

(2.13) c = g1(|x0 − x∗|) ∈ [0, 1)

and the function g1 is as defined previously. Furthermore, for T ∈ [r, 2
L0

) the

solution x∗ is unique in D0 := Ū(x∗, T ) ∩D.

Proof. We shall show estimates (2.11) and (2.12) using mathematical induction.
By hypothesis x0 ∈ U(x∗, r)−{x∗}, (2.1) and (2.6), we get since | 12 (x0 + y0)−
x∗| ≤ 1

2 (|x0 − x∗|+ |y0 − x∗|) < r that

|F ′(x∗)−1(F ′(
x0 + y0

2
)− F ′(x∗))| ≤ L0|

x0 + y0
2

− x∗|

≤ L0

2
(|x0 − x∗|+ |y0 − x∗|)

= L0|x0 − x∗| < L0r < 1.(2.14)

It follows from (2.14) that F ′(x0+y0

2 ) ̸= 0 and by the Banach Lemma on in-
vertible functions [3, 4, 24]

(2.15) |F ′(
x0 + y0

2
)−1F ′(x∗)| ≤ 1

1− L0

2 (|x0 − x∗|+ |y0 − x∗|)
.

We can write by (2.5) that

(2.16) F (x0) = F (x0)− F (x∗) =

∫ 1

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ.

Notice that |x∗ + θ(y0 − x∗)− x∗| = θ|y0 − x∗| < r. That is x∗ + θ(y0 − x∗) ∈
U(x∗, r). Then, by (2.8) and (2.16), we get that

|F ′(x∗)−1F (x0)| ≤ M |x0 − x∗|.(2.17)

Next, we show that A0 ̸= 0. We have by (2.1), (2.2), (2.9), (2.15) and (2.17)
that

(2.18)

|F ′(x∗)−1(A0 − F ′(x∗))|

≤ |F ′(x∗)−1(F ′(
1

2
(x0 + y0))− F ′(x∗))|

+
1

2
|F ′(x∗)−1F (x0)||F ′(x∗)−1F ′(

1

2
(x0 + y0))||F ′(

1

2
(x0 + y0))

−1F ′(x∗)|

≤ L0|
1

2
(x0 + y0)− x∗|+ MN |x0 − x∗|

2(1− L0

2 (|x0 − x∗|+ |y0 − x∗|))

≤ L0

2
(|x0 − x∗|+ |y0 − x∗|) + MN |x0 − x∗|

2(1− L0

2 (|x0 − x∗|+ |y0 − x∗|)

≤ [L0 +
MN

2(1− L0

2 (|x0 − x∗|+ |y0 − x∗|))
]|x0 − x∗|

≤ p(|x0 − x∗|) < 1.
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That is, A0 ̸= 0 and

(2.19) |A−1
0 F ′(x∗)| ≤ 1

1− p(|x0 − x∗|)
.

Hence, x1 is well defined. Notice that we can write in turn that

x1 − x∗

= (x0 − x∗ − F ′(x0)
−1F (x0)) + (F ′(x0)

−1 −A−1
0 )F (x0)

= (x0 − x∗ − F ′(x0)
−1F (x0)) + (F ′(x0)

−1F ′(x∗))(F ′(x∗)−1(A0 − F ′(x0))

×(A−1
0 F ′(x∗))(F ′(x∗)−1F (x0)),

so

|x1 − x∗|
≤ |x0 − x∗ − F ′(x0)

−1F (x0)|+ |F ′(x0)
−1F ′(x∗)|

×|F ′(x∗)−1(A0 − F ′(x0))|
×|A−1

0 F ′(x∗)||F ′(x∗)−1F (x0)|.(2.20)

Moreover, we also have that

|F ′(x∗)−1(A0 − F ′(x0))|≤ L0|
x0 + y0

2
− x∗|+ L0|x0 − x∗|

+
1

2

|F ′(x∗)−1F (x0)||F ′(x∗)−1F ′′( 12 (x0 + y0))|
|F ′(x∗)−1F ′( 12 (x0 + y0))|

≤ 2L0|x0 − x∗|

+
1

2

MN |x0 − x∗|
1− L0

2 (|x0 − x∗|+ |y0 − x∗|)
≤ q(|x0 − x∗|).(2.21)

Then, in view of (2.1), (2.4), (2.7), (2.19), (2.20) and (2.21) we get in turn that

(2.22)

|x1 − x∗|

≤ |F ′(x0)
−1F ′(x∗)||

∫ 1

0

F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))− F ′(x0))(x0 − x∗)dθ|

+|F ′(x0)
−1F ′(x∗)||F ′(x∗)−1(A0 − F ′(x0))||A−1

0 F ′(x∗)||F ′(x∗)−1F (x0)|

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
+

Mq(|x0 − x∗|)|x0 − x∗|
(1− L0|x0 − x∗|)(1− p(|x0 − x∗|))

≤ g1(|x0 − x∗|)|x0 − x∗| ≤ |x0 − x∗| < r,

which shows (2.12) for n = 0 and x1 ∈ U(x∗, r), where we also used the
estimates |F ′(x∗)−1(F ′(x0)−F ′(x∗))| ≤ L0|x0 −x∗| < L0r < 1, so as in (2.15)
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|F ′(x0)
−1F ′(x∗)| ≤ 1

1−L0|x0−x∗| . Furthermore, we also get by (2.3), (2.6), (2.9),

(2.15) and (2.17) that

|F ′(x∗)−1(A0 − F ′(x1))|

≤ |F ′(x∗)−1(F ′(
1

2
(x0 + y0))− F ′(x∗))|

+|F ′(x∗)−1(F ′(x1)− F ′(x∗))|

+
1

2

|F ′(x∗)−1F (x0)||F ′(x∗)−1F ′′( 12 (x0 + y0))|
|F ′(x∗)−1F ′( 12 (x0 + y0))|

≤ L0

2
(|x0 − x∗|+ |y0 − x∗|)

+L0|x1 − x∗|+ MN |x0 − x∗|
2(1− L0

2 (|x0 − x∗|+ |y0 − x∗|))

≤ 2L0|x0 − x∗|+ MN |x0 − x∗|
2(1− L0|x0 − x∗|)

= q(|x0 − x∗|).(2.23)

We have by the third sub-step of method (1.2) for n = 0 that

|y1 − x∗|≤ |x1 − x∗ − F ′(x1)
−1F (x1)|

+|F ′(x1)
−1F ′(x∗)||F ′(x∗)−1(A0 − F ′(x1))|

×|A−1
0 F ′(x∗)||F ′(x∗)−1F (x1)|.(2.24)

Then, we also get by (2.1), (2.20) and (2.22) that

|y1 − x∗| ≤ L|x1 − x∗|2

2(1− L0|x1 − x∗|)
+

Mq(|x0 − x∗|)|x1 − x∗|
(1− L0|x1 − x∗|)(1− p(|x0 − x∗|))

≤ g1(|x0 − x∗|)|x1 − x∗| ≤ |x1 − x∗| < r,(2.25)

which shows (2.11) for n = 1 and y1 ∈ U(x∗, r) where we also used the estimates
|F ′(x∗)−1(F ′(x1) − F ′(x∗))| ≤ L0|x1 − x∗| < L0r < 1, so |F ′(x1)

−1F ′(x∗)| ≤
1

1−L0|x0−x∗| . Then, as in (2.19) and (2.21), respectively, we get that

(2.26) |A−1
1 F ′(x∗)| ≤ 1

1− p(|x0 − x∗|)

and

(2.27) |F ′(x∗)−1(A1 − F ′(x1))| ≤ q(|x1 − x∗|).

It then follows from (2.1), (2.4), (2.7), (2.20), (2.26) and (2.27) and the last
substep of method (1.2) for n = 1 since

(2.28) x2−x∗ = x1−x∗−F ′(x1)
−1F (x1)+F ′(x1)

−1(A1−F ′(x1))A
−1
1 F (x1),
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that

(2.29)

|x2 − x∗|

≤ |F ′(x1)
−1F (x∗)||

∫ 1

0

F ′(x∗ + θ(x1 − x∗))(x1 − x∗)dθ|

+|F ′(x1)
−1F ′(x∗)||F ′(x∗)−1(A1 − F ′(x1))||A−1

1 F ′(x∗)||F ′(x∗)−1F (x1)|

≤ L|x1 − x∗|2

2(1− L0|x1 − x∗|)
+

Mq(|x1 − x∗|)|x1 − x∗|
(1− L0|x1 − x∗|)(1− p(|x1 − x∗|))

≤ g1(|x1 − x∗|)|x1 − x∗|
≤ g1(|x0 − x∗|)|x1 − x∗| ≤ |x1 − x∗| < r,

which shows (2.12) for n = 1 and x2 ∈ U(x∗, r), since function g1 is increasing
on [0, r) and |x1−x∗| ≤ |x0−x∗|. By simply replacing x0, y0, x1 by xk, yk, xk+1

in the preceding estimates we arrive at estimates (2.11) and (2.12). Using the
estimate

(2.30) |xk+1 − x∗| ≤ g1(|x0 − x∗|)|xk − x∗| ≤ c|xk − x∗| < r,

we deduce that xk+1 ∈ U(x∗, r), limk→∞ xk = x∗. To show the uniqueness

part, let Q =
∫ 1

0
F ′(y∗ + θ(x∗ − y∗)dθ for some y∗ ∈ D0 with F (y∗) = 0. Using

(2.6) we get that

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0

L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0

(1− θ)|x∗ − y∗|dθ ≤ L0

2
T < 1.(2.31)

It follows from (2.31) and the Banach Lemma on invertible functions that Q
is invertible. Finally, from the identity 0 = F (x∗) − F (y∗) = Q(x∗ − y∗), we
conclude that x∗ = y∗.

REMARK 2.2. 1. In view of (2.6) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x)− F ′(x∗)) + I|
≤ 1 + |F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ 1 + L0|x− x∗|

condition (2.8) can be dropped and M can be replaced by

M(t) = 1 + L0t

or by

M = M(t) = 2,

since t ∈ [0, 1
L0

). In view of (2.7) and (2.9), we can also choose L = N.
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2. The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) =
P (0), we can apply the results without actually knowing x∗. For example,
let F (x) = ex − 1. Then we can choose P (x) = x+ 1.

3. The radius rA = 2
2L0+L was shown by us to be the convergence radius of

Newton’s method [3], [4]

xn+1 = xn − F ′(xn)
−1F (xn) for each n = 0, 1, 2, · · ·

under the conditions (2.6)– (2.7). It follows from the definition that
the convergence radius r of the method (1.2) cannot be larger than the
convergence radius rA of the second order Newton’s method. As already
noted in [3, 4] rA is at least as large as the convergence ball given by
Rheinboldt [22]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < r

and
rR
rA

→ 1

3
as

L0

L
→ 0.

That is, our convergence ball rA is at most three times larger than Rhein-
boldt’s [22]. The same value for rR was given by Traub [24].

4. It is worth noticing that method (1.2) is not changing when we use
the conditions of Theorem 2.1 instead of the stronger conditions used
in [16]. Moreover, we can compute the computational order of conver-
gence (COC) defined by

ξ = ln

(
|xn+1 − x∗|
|xn − x∗|

)
/ ln

(
|xn − x∗|

|xn−1 − x∗|

)
or the approximate computational order of convergence

ξ1 = ln

(
|xn+1 − xn|
|xn − xn−1|

)
/ ln

(
|xn − xn−1|

|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds involving estimates using estimates higher than the
second derivative of operator F.



28 Ioannis K. Argyros and Santhosh George

3. Numerical Examples

We present numerical examples in this section.

EXAMPLE 3.1. Let D = (−∞,+∞). Define the function f of D by

(3.1) f(x) = sin(x).

Then we have for x∗ = 0 that L0 = L = M = N = 1. The parameters are

rp = 0.5000, rq = 0.5000 and r1 = 0.1896 = r.

EXAMPLE 3.2. Let D = [−1, 1]. Define the function f of D by

(3.2) f(x) = ex − 1.

Using (3.2) and x∗ = 0 we get that L0 = e − 1 < L = N = e,M = 2. The
parameters are

rp = 0.1776, rq = 0.1657 and r1 = 0.0503 = r.

EXAMPLE 3.3. Returning back to the motivational example at the introduc-
tion of this study, we have L0 = L = N = 146.6629073, M = 2. The parameters
are

rp = 0.0026, rq = 0.0025 and r1 = 0.0007 = r.
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