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Local convergence of a fifth convergence order method in Banach space
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Abstract. We provide a local convergence analysis for a fifth convergence order method
to find a solution of a nonlinear equation in a Banach space. In our paper the sufficient
convergence conditions involve only hypotheses on the first Fréchet-derivative. Previous
works use conditions reaching up to the fourth Fréchet-derivative. This way, the applicability
of these methods is extended under weaker conditions and less computational cost for the
Lipschitz constants appearing in the convergence analysis. Numerical examples are also given
in this paper.
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1. INTRODUCTION

Let F : Ω ⊂ X −→ Y be a Fréchet-differentiable operator, where X , Y are Banach space
and Ω ⊂ X . A lot of problems from many areas can be written like the nonlinear equation

F (x) = 0. (1.1)

In this paper, we study the problem of approximating a solution α∗of Eq. (1.1). In Numerical
Analysis, finding a solution of (1.1) is related to Newton-like methods [1–13]. The Newton-
like methods are usually studied using: semi-local and local convergence. The semi-local
convergence case is: using the information about an initial guess, to find conditions that
ensure the convergence of the iterative procedure; while the local one is, using the information
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about a solution, to find radii of the convergence balls. There are numerous papers dealing
with the convergence of Newton-like methods [1–13].

We are interested in the local convergence analysis of a fifth convergence order method
defined for each n = 0, 1, 2, . . . by

βn = αn − F ′(αn)−1F (αn),

γn = βn − F ′(αn)−1(F ′(αn) − F ′(βn))(F ′(αn) + F ′(βn))−1F (αn), (1.2)

αn+1 = γn − (F ′(αn) + F ′(βn))−1(3F ′(αn) − F ′(βn))F ′(αn)−1F (γn),

where α0 is an initial guess. If X = Y = R, we obtain the method whose local convergence
was studied in [13]. The convergence in [13] was studied under the assumptions that
derivatives F (i), i = 1, 2, 3, 4 are bounded.

Similar assumptions have been used by several authors [1–13], on other high convergence
order methods. These conditions are restrictive. As an academic example, let function f on
Ω = [− 1

2 , 5
2 ] be defined by

f(x) =


x3 ln x2 + x5 − x4, x ≠ 0
0, x = 0.

Let α∗ = 1. We get that

f ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x + 22.

Then, clearly, function f ′′′ is not bounded on Ω . In our paper, we only use conditions on
the first Fréchet derivative (see conditions (2.11)–(2.15)). This way we extend the usage of
method (1.2).

In the rest of the study: The local convergence of method (1.2) is given in Section 2.
The numerical examples are given in Section 3. Some comments are given in the concluding
Section 4.

2. LOCAL CONVERGENCE ANALYSIS

We provide the local convergence analysis of method (1.2). Let B(v, ρ), B̄(v, ρ) stand for
the open and closed balls, respectively, in X with center v ∈ X and of radius ρ > 0.

Let Ł0 > 0, Ł > 0 and M ≥ 1 be given parameters. The local convergence analysis of
method (1.2) is based on some functions. Define functions on the interval [0, 1

Ł0
) by

g(t) =
Łt

2(1 − Ł0 t)
,

g1(t) =
1

1 − Ł0 t


Ł +

Ł0 M(1 + g(t))t

1 − Ł0
2 (1 + g(t))t


t,

= g(t) +
Ł0 M(1 + g(t))t

2(1 − Ł0 t)

1 − Ł0

2 (1 + g(t))t

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g2(t) =

1 +
(Ł0(3 + g(t))t + 2)M

2

1 − Ł0

2 (1 + g(t))t
 (1 − Ł0 t)

 g1(t),

= g1(t) +
(Ł0(3 + g(t))t + 2)M

2

1 − Ł0

2 (1 + g(t))t
 (1 − Ł0 t)g1(t),

h1(t) = g1(t) − 1,

h2(t) = g2(t) − 1

and parameter

r =
2

2 Ł0 +Ł
. (2.1)

We have by the choice of r that

0 ≤ g(t) < 1 for each t ∈ [0, r). (2.2)

Using the definition of function h1 we get that h1(0) = −1 < 0 and h1(t) → +∞ as
t → ( 1

Ł0
)−. Using the intermediate value theorem, we deduce that function h1 has zeros in

the interval (0, 1
Ł0

). Denote by r1 the smallest such zero. We also have that

h1(r) = g1(r) − 1 = g(r) − 1 +
Ł0 M(1 + g(r))r

2

1 − Ł0

2 (1 + g(r)r)


(1 − Ł0 r)
,

=
Ł0 M(3 + g(r))r

2(1 − Ł0 r)2
> 0, (2.3)

since g(r) − 1 = 0 and r < 1
Ł0

. Then, we have by (2.1)–(2.3) that

0 < r1 < r, (2.4)

and

0 ≤ g1(t) < 1 for each t ∈ [0, r1). (2.5)

Similarly, we have that h2(0) = −1 < 0 and h2(t) → +∞ as t → ( 1
Ł0

)−. Then, function h2

has zeros in the interval (0, 1
Ł0

). Denote by r2 the smallest such zero. Then, again we have
that

h2(r1) = g1(r1) − 1 +
(Ł0(3 + g(r1))r1 + 2)M

2

1 − Ł0

2 (1 + g(r1))r1


(1 − Ł0 r1)

g1(r1)

=
(Ł0(3 + g(r1))r1 + 2)M

2

1 − Ł0

2 (1 + g(r1))r1


(1 − Ł0 r1)

> 0, (2.6)

since g1(r1) − 1 = 0, r1 < 1
Ł0

and Ł0
2 (1 + g(r1))r1 < Ł0

2 (1 + 1)r1 = Ł0 r1 < 1. Then, we
have that

r2 < r1 < r, (2.7)
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0 ≤ g(t) < 1, (2.8)

0 ≤ g1(t) < 1, (2.9)

and

0 ≤ g2(t) < 1 (2.10)

for each t ∈ [0, r2).
The local convergence analysis of method (1.2) using the preceding notation is next.

Theorem 2.1. Let F : Ω ⊆ X → Y be a Fréchet-differentiable operator. Suppose that there
exist α∗ ∈ Ω and parameter Ł0 > 0 such that for each x ∈ Ω

F (α∗) = 0, F ′(α∗)−1 ∈ L(Y, X ), (2.11)

∥F ′(α∗)−1(F ′(x) − F ′(α∗))∥ ≤ Ł0 ∥x − α∗ ∥. (2.12)

Further, suppose that there exist Ł > 0 and M ≥ 1 such that for each x, y ∈ B̄(α∗, 1
Ł0

) ∩ Ω

∥F ′(α∗)−1(F ′(x) − F ′(y))∥ ≤ Ł∥x − y∥, (2.13)

∥F ′(α∗)−1F ′(x)∥ ≤ M (2.14)

and

B̄(α∗, r2) ⊆ Ω , (2.15)

where the radius of convergence r2 is defined previously. Then, the sequence {αn} given
by method (1.2) for α0 ∈ B(α∗, r2) − {α∗ } is well defined, stays in B(α∗, r2) for each
n = 0, 1, 2, . . . and limn−→∞ αn = α∗. Moreover, the following error bounds hold for each
n = 0, 1, 2, . . . ,

∥βn − α∗ ∥ ≤ g(∥αn − α∗ ∥)∥αn − α∗ ∥ < ∥αn − α∗ ∥ < r2, (2.16)

∥γn − α∗ ∥ ≤ g1(∥αn − α∗ ∥)∥αn − α∗ ∥ < ∥αn − α∗ ∥, (2.17)

and

∥αn+1 − α∗ ∥ ≤ g2(∥αn − α∗ ∥)∥αn − α∗ ∥ < ∥αn − α∗ ∥ (2.18)

where the “g” functions are defined previously. Furthermore, for R ∈ [r2,
2

Ł0
) α∗ is the

unique solution of equation F (x) = 0 in B̄(α∗, R) ∩ Ω .

Proof. Using (2.13), the definition of r2 and the hypothesis α0 ∈ U(α∗, r2) − {α∗ }, we have
that

∥F ′(α∗)−1(F ′(α0) − F ′(α∗))∥ ≤ Ł0 ∥α0 − α∗ ∥ < Ł0 r2 < 1. (2.19)

By (2.19) and the Banach Lemma on invertible operator [2,3], we have that F ′(α0)−1 ∈
L(Y, X ) and

∥F ′(α0)−1F ′(α∗)∥ ≤ 1
1 − Ł0 ∥α0 − α∗ ∥

<
1

1 − Ł0 r2
. (2.20)
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Hence, β0 is well defined by method (1.2). Using the first sub-step in method (1.2) for n = 0,
we get that

β0 − α∗ = α0 − α∗ − F ′(α0)−1F (α0)

= −F ′(α0)−1F ′(α∗)
 1

0

F ′(α∗)−1

× [F (α∗ + t(α0 − α∗)) − F ′(α0)](α0 − α∗)dt. (2.21)

It follows from (2.13), (2.19) and (2.21) that

∥α0 − α∗ − F ′(α0)
−1F (α0)∥ ≤ ∥F ′(α0)

−1F ′(α∗)∥ 1

0

[F ′(α∗ + t(α0 − α∗)) − F ′(α0)](α0 − α∗)dt


≤ Ł∥α0 − α∗ ∥2

2(1 − Ł0 ∥α0 − α∗ ∥)

≤ Łr2

2(1 − Ł0 r2)
∥α0 − α∗ ∥ < ∥α0 − α∗ ∥ < r2, (2.22)

which shows (2.16) for n = 0. Using (2.14) we have that

F (α0) = F (α0) − F (α∗) =
 1

0

F ′(α∗ + θ(α0 − α∗))(α0 − α∗)dθ

so,

∥F ′(α∗)−1F (α0)∥ ≤ M∥α0 − α∗ ∥, (2.23)

since ∥α∗ − (α∗ + θ(α0 − α∗))∥ = |θ|∥α0 − α∗ ∥ < r2., i.e., α∗ + θ(α0 − α∗) ∈ B(α∗, r2)
for each θ ∈ [0, 1]. Using (2.12) and the definition of r2, we get in turn that

∥(2F ′(α∗)−1)(F ′(α0) + F ′(β0) − 2F ′(α∗))∥ ≤ 1
2
(∥F ′(α∗)−1(F ′(α0) − F ′(α∗))∥

+ ∥F ′(α∗)−1(F ′(β0) − F ′(α∗))∥)

≤ Ł0

2
(∥α0 − α∗ ∥ + ∥β0 − α∗ ∥)

<
Ł0

2
(∥α0 − α∗ ∥ + ∥α0 − α∗ ∥)

= Ł0 r2 < 1. (2.24)

It follows from (2.24) that (F ′(α0) + F ′(β0))−1 ∈ L(Y, X ) and

∥(2(F ′(α0) + F ′(β0)))−1F ′(α∗)∥ ≤ 1

1 − Ł0
2 (∥α0 − α∗ ∥ + ∥β0 − α∗ ∥)

≤ 1

1 − Ł0
2 (1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥

≤ 1

1 − Ł0
2 (1 + g(r2))r2

. (2.25)
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It also follows that γ0 is well defined by the second step of method (1.2) for n = 0. Then, we
have from the second step of method (1.2), (2.7)–(2.9), (2.20), (2.22) and (2.23) that

∥γ0 − α∗ ∥ ≤ ∥β0 − α∗ ∥ + ∥F ′(α0)−1F ′(α∗)∥(∥F ′(α∗)−1(F ′(β0) − F ′(α∗))∥
+ ∥F ′(α∗)−1(F ′(α0) − F ′(α∗))∥)
× ∥F ′(α∗)−1(F ′(β0) + F ′(α0))−1∥∥F ′(α∗)−1F ′(α0)∥

≤ Ł∥α0 − α∗ ∥2

2(1 − Ł0 ∥α0 − α∗ ∥)

+
Ł0 M(∥α0 − α∗ ∥ + ∥β0 − α∗ ∥)∥α0 − α∗ ∥

2(1 − Ł0 ∥α0 − α∗ ∥)

1 − Ł0

2 (∥α0 − α∗ ∥ + ∥β0 − α∗ ∥)


≤ Ł∥α0 − α∗ ∥2

2(1 − Ł0 ∥α0 − α∗ ∥)

+
Ł0 M(1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥2

2(1 − Ł0 ∥α0 − α∗ ∥)

1 − Ł0

2 (1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥


= g1(∥α0 − α∗ ∥)∥α0 − α∗ ∥
< ∥α0 − α∗ ∥ < r2, (2.26)

which shows (2.17) for n = 0. We also have by the third step of method (1.2) for n = 0
and (2.26) that α1 is well defined. Then, using method (1.2) for n = 0, (2.8), (2.11), (2.21),
(2.24)(for α0 replaced by γ0), (2.25) and (2.26) we obtain in turn that

∥α1 − α∗ ∥ ≤ ∥γ0 − α∗ ∥
+ ∥(F ′(β0) + F ′(α0))−1F ′(α∗)∥(∥F ′(α∗)−1(F ′(α0) − F ′(α∗))∥
+ ∥F ′(α∗)−1(F ′(β0) − F ′(α∗))∥
+ 2∥F ′(α∗)−1(F ′(α0) − F ′(α∗))∥ + 2∥F ′(α∗)−1F ′(α∗)∥)

× ∥F ′(α0)−1F ′(α∗)∥
 1

0

F ′(α∗)−1F ′(α∗ + θ(γ0 − α∗))(γ0 − α∗)dθ


≤ ∥γ0 − α∗ ∥

+
[Ł0(1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥ + 2 Ł0 ∥α0 − α∗ ∥ + 2]M∥γ0 − α∗ ∥

2

1 − Ł0

2 (1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥


(1 − Ł0 ∥α0 − α∗ ∥)

≤

1 +
Ł0(3 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥ + 2

2

1 − Ł0

2 (1 + g(∥α0 − α∗ ∥))∥α0 − α∗ ∥


(1 − Ł0 ∥α0 − α∗ ∥)


× ∥γ0 − α∗ ∥2

= g2(∥α0 − α∗ ∥)∥α0 − α∗ ∥ < ∥α0 − α∗ ∥ < r2, (2.27)

which shows (2.19) for n = 0. The estimates (2.16)–(2.18) are obtained by using
αk, βk, γk, αk+1 for α0, β0, γ0, α1 in the preceding estimates. By the estimate ∥αk+1 −
α∗ ∥ < ∥αk − α∗ ∥ < r2, we deduce that αk+1 ∈ B(α∗, r2) and limk→∞ αk = α∗. Let
T =

 1

0
F ′(y∗ + t(α∗ − y∗))dt for some y∗ ∈ B̄(α∗, R) with F (y∗) = 0. Using (2.12) and
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the estimate

∥F ′(α∗)−1(T − F ′(α∗))∥ ≤
 1

0

Ł0 ∥y∗ + t(α∗ − y∗) − α∗ ∥dt

≤
 1

0

(1 − t)∥α∗ − y∗ ∥dt ≤ Ł0

2
R < 1,

it follows that T −1 exists. Then, from the identity 0 = F (α∗) − F (y∗) = T (α∗ − y∗), we
deduce that α∗ = y∗. �

Remark 2.2. 1. By (2.12) we get that

∥F ′(α∗)−1F ′(x)∥ = ∥F ′(α∗)−1(F ′(x) − F ′(α∗)) + I∥
≤ 1 + ∥F ′(α∗)−1(F ′(x) − F ′(α∗))∥ ≤ 1 + Ł0 ∥x − α∗ ∥.

Then, condition (2.14) can be eliminated and M can be defined by

M(t) = 1 + Ł0 t

or by M(t) = M = 2, since t ∈ [0, 1
Ł0

).
2. If the operator F satisfies the equations of the form [2]

F ′(x) = P (F (x)),

with a continuous operator P . Then, we have F ′(α∗) = P (F (α∗)) = P (0). That is we
can apply our result without knowing α∗. For example, let F (x) = ex − 1. Then, we can
choose: P (x) = x + 1.

4. The convergence radius r given by (2.1) was shown to be the convergence radius of
Newton’s method [2,3]

αn+1 = αn − F ′(αn)−1F (αn) for each n = 0, 1, 2, . . . (2.28)

under the conditions (2.12) and (2.13). By (2.1) and (2.7) the convergence radius r2 of
the method (1.2) is smaller than the convergence radius r of the second convergence order
Newton’s method (2.28). The radius r is at least as large as the convergence ball given by
Rheinboldt [10]

rR =
2
3Ł

. (2.29)

If Ł0 < Ł then, we have that

rR < r

and
rR

r
→ 1

3
as

Ł0

Ł
→ 0.

Then, the radius of convergence r is at most three times larger than Rheinboldt’s. This
value for rR is also given by Traub in [11].

5. Method (1.2) is not changing when we use the conditions of Theorem 2.1 instead of the
stronger (C) conditions used in [13]. We can find the computational order of convergence
(COC) defined by

ξ = ln


∥αn+1 − α∗ ∥
∥αn − α∗ ∥

 
ln


∥αn − α∗ ∥

∥αn−1 − α∗ ∥


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or the approximate computational order of convergence

ξ1 = ln


∥αn+1 − αn∥
∥αn − αn−1∥

 
ln


∥αn − αn−1∥

∥αn−1 − αn−2∥


.

Then, we obtain in practice the local order of convergence. However, we do not use the
bounds requiring higher than the first Fréchet derivative of operator F .

3. NUMERICAL EXAMPLES

We provide numerical examples in this section. Notice that by Remark 2.2, 1, we can set
M = 2 in both examples.

Example 3.1. Let X = Y = R3,Ω = B̄(0, 1). Let F be defined on Ω for v = (x, y, z)T by

F (v) =


ex − 1,
(e − 1)y2

2
+ y, z

T

. (3.1)

The Fréchet derivative is defined by

F ′(v) =

ex 0 0
0 (e − 1)y + 1 0
0 0 1

 .

We have α∗ = (0, 0, 0)T , F ′(α∗) = F ′(α∗)−1 = diag{1, 1, 1}, Ł0 = e − 1 < Ł =
1.789572397 and M = 2. Then, we have

r2 = 0.1149 < r1 = 0.1532 < r = 0.3922

and

∥α1 − α0∥ = 1.9667e−05, ∥α2 − α0∥ = 4.7588e−17.

The values of Ł0 and Ł are found in [2,3]. Hence, conditions (2.12)–(2.15) are satisfied.
Moreover, condition (2.16) is also satisfied, since B̄(α∗, r2) ⊂ Ω . Hence, the conclusions of
Theorem 2.1 apply in this case.

Example 3.2. In view of the example at the introduction, we have Ł0 = Ł = 96.662907 and
M = 2. Then, we have by the definition of the radii that,

r2 = 0.0024 < r1 = 0.0028 < r = 0.0069

and

∥α1 − α0∥ = 1.9666e−05, ∥α2 − α0∥ = 4.7587e−17.

The values of Ł0 and Ł are found using (2.13), (2.14) and by finding the maximum of the
function F ′′(x) = 6x ln x2+20x3−12x2+10x using Matlab on the interval Ω = [− 1

2 , 5
2 ] and

dividing by three, since F ′(α∗) = 3. That is conditions (2.12)–(2.15) are satisfied. Finally,
condition (2.16) is also satisfied, since B̄(α∗, r2) ⊂ Ω . As already noted in the introduction
the results in [13] cannot apply to solve this equation.
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In the next example, F (4) is not bounded, so the results in [13] cannot apply.

Example 3.3. Let X = Y = C[0, 1],Ω = B̄(α∗, 1) and consider the nonlinear integral
equation of the mixed Hammerstein-type defined by

x(s) =
 1

0

Q(s, t)


x(t)
5
2 +

x(t)2

2


dt, (3.2)

where the kernel Q is the Green’s function defined on the interval [0, 1] × [0, 1] by

Q(s, t) =


(1 − s)t, t ≤ s
s(1 − t), s ≤ t.

(3.3)

Define F : C[0, 1] −→ C[0, 1] by

F (x)(s) := x(s) −
 1

0

Q(s, t)


x(t)
5
2 +

x(t)2

2


dt, (3.4)

and

F (x)(s) = 0.

Notice that α∗(s) = 0 is one of the solutions of (1.1). Using (3.4), we obtain 1

0

Q(s, t)dt

 ≤ 1
8
. (3.5)

Then, by (3.4)–(3.5), we have that

∥F ′(x) − F ′(y)∥ ≤ 1
8


5
2

∥x − y∥ 3
2 + ∥x − y∥


. (3.6)

In view of (3.6), the earlier results requiring F (4) to be bounded (such as [13]) cannot apply.
However, our results can apply, if we choose Ł0 = Ł = 1

8 ( 5
2

√
2 + 1) and M = 2. Then, we

have by the definition of the radii that,

r2 = 0.02808 < r1 = 0.4298

and

∥α1 − α0∥ = 1.9667e−05, ∥α2 − α0∥ = 4.7588e−17.

4. CONCLUSION

We provide a local convergence analysis of a fifth order method to compute a solution
of an equation in a Banach space setting. Previous convergence analysis (on the real line) is
based on conditions reaching up to the fourth Fréchet-derivative [1–13]. In this paper the local
convergence analysis is based only on Lipschitz conditions of the first Fréchet-derivative.
Hence, the usage of these methods is extended.
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