
Nonlinear Engineering 2018; aop

Ioannis K. Argyros and Santhosh George*

Local convergence for an eighth order method for
solving equations and systems of equations

https://doi.org/10.1515/nleng-2017-0105
Received August 27, 2017; revised December 6, 2017; accepted April
19, 2018.

Abstract: The aim of this study is to extend the applica-
bility of an eighth convergence order method from the k−
dimensional Euclidean space to a Banach space setting.
We use hypotheses only on the �rst derivative to show
the local convergence of the method. Earlier studies use
hypotheses up to the eighth derivative although only the
�rst derivative and a divided di�erence of order one ap-
pear in the method. Moreover, we provide computable er-
ror bounds based on Lipschitz-type functions.
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1 Introduction
Let F : Ω ⊆ B1 −→ B2 be a di�erentiable operator in the
sense of Fréchet between the Banach spaces B1 and B2
and Ω be a convex set. In this study, we consider the prob-
lem of approximating the solution x* of nonlinear equa-
tion

F(x) = 0 (1.1)

We consider the following eighth ordermethod considered
in [3] for approximating x*

yn = xn − F′(xn)−1F(xn)
zn = yn − 5F′(xn)−1F(yn)

wn = zn + 1
5F
′(xn)−1(16F(yn) − F(zn)) (1.2)

xn+1 = wn − Q(sn)F′(xn)−1F(wn),

where x0 ∈ Ω is an initial point, sn = I −
5F′(xn)−1[yn , xn; F], s : B2

1 −→ L(B1,B1) and Q :
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L(B1,B2) −→ L(B1,B1), where s(xn , yn) = sn . Finding
solution for the equation (1.1) is an important problem in
mathematics due to its wide applications. So improving
the order of convergence of iterative method for solving
(1.1) is also an important problem in mathematics. In [3]
the existence of the Fréchet derivative of F of order up to
the eighth was used to show the eighth order of conver-
gence of method (1.2) in the special case when B1 = B2 =
Rk . This assumption on the higher order Fréchet deriva-
tives of the operator F restricts the applicability of method
(1.2). For example consider the following:

Example 1.1. Let B1 = B2 = C[0, 1], Ω = B̄(x*, 1)
and consider the nonlinear integral equation of the mixed
Hammerstein-type [1, 2, 6–9, 12] de�ned by

x(s) =
1∫

0

G(s, t)(x(t)3/2 + x(t)2

2 )dt,

where the kernel G is the Green’s function de�ned on the in-
terval [0, 1] × [0, 1] by

G(s, t) =
{

(1 − s)t, t ≤ s
s(1 − t), s ≤ t.

The solution x*(s) = 0 is the sameas the solution of equation
(1.1), where F : C[0, 1] −→ C[0, 1]) is de�ned by

F(x)(s) = x(s) −
1∫

0

G(s, t)(x(t)3/2 + x(t)2

2 )dt.

Notice that

‖
1∫

0

G(s, t)dt‖ ≤ 1
8 .

Then, we have that

F′(x)y(s) = y(s) −
1∫

0

G(s, t)( 3
2 x(t)1/2 + x(t))dt,

so since F′(x*(s)) = I,

‖F′(x*)−1(F′(x) − F′(y))‖ ≤ 1
8 ( 3

2‖x − y‖
1/2 + ‖x − y‖).
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One can see that, higher order derivatives of F do not exist
in this example.

Our goal is to weaken the assumptions in [3] and ap-
ply themethod for solving equation (1.1) in Banach spaces,
so that the applicability of the method (1.2) can be ex-
tended using hypotheses only on the �rst derivative and
the divided di�erence of order one which actually appear
in method (1.2). We rely on COC and ACOC for the deter-
mination of the order of convergence. Our technique can
be used on other iterative methods along the same lines
[1–27].

The rest of the paper is organized as follows. In Sec-
tion 2 we present the local convergence analysis. We also
provide a radius of convergence, computable error bounds
and a uniqueness result not provided in [3]. Special cases
and numerical examples are given in the last section.

2 Local Convergence analysis
We introduce some scalar functions appearing in the local
convergence analysis of method (1.2) that follows. Let φ0 :
R0 −→ R0 be a continuous and non-decreasing function
satisfying φ0(0) = 0, where R0 = R+ ∪ {0}. De�ne the
parameter ρ by

ρ = sup{t ∈ R0 : φ0(t) < 1}. (2.1)

Let φ, φ1 : [0, ρ) −→ R0 be continuous and nondecreas-
ing functions with φ(0) = φ1(0) = 0. Moreover, de�ne
functions g1, g2, g3, h1, h2, h3 on the interval [0, ρ) by

g1(t) =
∫ 1

0 φ((1 − θ)t)dθ
1 − φ0(t) ,

h1(t) = g1(t) − 1,

g2(t) = g1(t) + 5
∫ 1

0 φ1(θg1(t)t)g1(t)dθ
1 − φ0(t) , (2.2)

h2(t) = g2(t) − 1,

g3(t) = g2(t)

+ 1
5

16
∫ 1

0 φ1(θg1(t)t)g1(t)dθ +
∫ 1

0 φ1(θg2(t)t)g2(t)dθ
1 − φ0(t)

and
h3(t) = g3(t) − 1.

Let φ2 : [0, ρ)2 −→ R0 and g : [0, ρ) −→ R0 be continu-
ous and nondecreasing functions with φ2(0, 0) = 0. Fur-
thermore, de�ne functions g4 and h4 on the interval [0, ρ)

by

g4(t) = g3(t) + g(a)
∫ 1

0 φ1(g3(t)t)g3(t)dθ
1 − φ0(t)

and
h4(t) = g4(t) − 1,

where

a =
∫ 1

0 φ1(θρ)ρdθ + 5φ2(g1(ρ)ρ, g2(ρ)ρ)
1 − φ0(ρ) .

Using hypothesis (2.1), we obtain hi(0) = −1 < 0 and
hi(t) −→ +∞ as t −→ ρ− for each i = 1, 2, 3, 4. Then,
it follows from the intermediate value theorem that func-
tions hi have zeros in the interval (0, ρ). Denote by ri the
smallest zero in (0, r) for each function hi , respectively.We
have that hi(ri−1) ≥ 0, so r4 ≤ r3 ≤ r2 ≤ r1 ≤ ρ. Denote the
radius of convergence r by

r = r4 = min{ri}. (2.3)

Then, for each t ∈ [0, r)

0 ≤ gi(t) < 1. (2.4)

Let B(u, λ) := {x ∈ B1 : ‖x − u‖ < λ} and B̄(u, λ) stand for
the closure of B(u, λ).

The local convergence analysis is based on the condi-
tions (A):
(a1) F : Ω ⊂ B1 −→ B2 is a Fréchet di�erentiable opera-

tor.
(a2) There exists p ∈ Ω such that F(p) = 0 and F′(p)−1 ∈

L(B2,B1).
(a3)There exists a continuous andnondecreasing function

φ0 : R0 −→ R0 with φ0(0) = 0 such that for each
x ∈ Ω : ‖F′(p)−1(F′(x) − F′(p))‖ ≤ φ0(‖x − p‖). Set
Ω0 = Ω ∩ B(p, ρ), where ρ is de�ned by (2.1).

(a4)There exists a divided di�erence [., .; F] : Ω2
0 −→

L(B1,B1) satisfying [x, y; F](x − y) = F(x) − F(y) for
each x, y ∈ Ω0 with x = ̸ y and F′(x) = [x, x; F].

(a5) There exists continuous and nondecreasing functions
φ, φ1 : [0, ρ) −→ R0, φ2 : [0, ρ)2 −→ R0 with φ(0) =
φ1(0) = 0 such that for each x, y ∈ Ω0 :

‖F′(p)−1(F′(x) − F′(y))‖ ≤ φ(‖x − y‖),

‖F′(p)−1F′(x)‖ ≤ φ1(‖x − p‖)

and

‖F′(p)−1[x, y; F]‖ ≤ φ2(‖x − p‖, ‖y − p‖).

(a6)G(Q) : B1 −→ B1 is a linear operator for each linear
operator Q : B1 −→ B1 and there exists continuous
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and nondecreasing function g : [0, ρ) −→ R0 such
that ‖G(Q)‖ ≤ g(‖Q‖) where Q = I − 5F′(x)−1[y, z; F],
for each x, y, z ∈ Ω0.
and

(a7)B(p, r) ⊆ Ω, where the radius r is de�ned by (2.3)

Next, we provide the local convergence analysis ofmethod
(1.2) using the conditions (A) and the previously intro-
duced notation.

Theorem 2.1. Suppose that the condition (A) hold. Then,
for x0 ∈ B(p, r) − {p} the sequence generated by method
(1.2) is well de�ned in B(p, r), remains in B(p, r) for each
n = 0, 1, 2, . . . and converges to p. Moreover, the following
error bounds hold

‖yn − p‖ ≤ g1(‖xn − p‖)‖xn − p‖ ≤ ‖xn − p‖ < r, (2.5)
‖zn − p‖ ≤ g2(xn − p‖)‖xn − p‖ ≤ ‖xn − p‖, (2.6)
‖wn − p‖ ≤ g3(‖xn − p‖‖xn − p‖ ≤ ‖xn − p‖ (2.7)

and

‖xn+1 − p‖ ≤ g3(‖xn − p‖)‖xn − p‖ ≤ ‖xn − p‖, (2.8)

where the functions gi are de�ned previously. Furthermore,
if there exists r* ≥ r such that

1∫
0

φ0(θr*)dθ < 1, (2.9)

then, p is the only solution of equation F(x) = 0 in Ω1 =
Ω ∩ B̄(p, r*).

Proof. Sequence {xn} shall be shown to be convergent to
p so that error bounds (2.5)–(2.8) hold usingmathematical
induction. Let x ∈ B(p, r). Then, using (2.1) (a2) and (a3),
we have in turn that

‖F′(p)−1(F′(x) − F′(p))‖ ≤ φ0(‖x − p‖) ≤ φ0(r) ≤ φ(ρ) < 1.
(2.10)

The Banach lemma on invertible operators [4, 9, 22, 24]
and (2.10) assert that F′(x)−1 ∈ L(B2.B1) and

‖F′(x)−1F′(p)‖ ≤ 1
1 − φ0(‖x − p‖) . (2.11)

In particular, (2.11) holds for x = x0, since x0 ∈ B(p, r),
and y0, z0, w0 and x1 are well de�ned by method (1.2). We

can have by (2.3), (2.4) (for i = 1) and (a5) that

‖y0 − p‖ ≤ ‖F′(x0)−1F′(p)‖
1∫

0

F′(p)−1(F′(p + θ(x0 − p)) − F′(x0))(x0 − p)dθ

(2.12)

≤
∫ 1

0 φ((1 − θ)‖x0 − p‖)dθ‖x0 − p‖
1 − φ0(‖x0 − p‖)

= g1(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < r, (2.13)

which shows (2.5) for n = 0 and y0 ∈ B(p, r). In view of
(a1), (a2) and (a5) we get

F(y0) = F(y0) − F(p) =
1∫

0

F′(p + θ(y0 − p))dθ(y0 − p)

so

‖F′(p)−1F(y0)‖

≤‖F′(p)−1
1∫

0

F′(p + θ(y0 − p))dθ(y0 − p)‖

≤φ1(‖y0 − p‖)‖y0 − p‖
≤φ1(g1(‖x0 − p‖)‖x0 − p‖)g1(‖x0 − p‖)‖x0 − p‖, (2.14)

where we also used that p + θ(y0 − p) ∈ B(p, r), since ‖p +
θ(y0 − p) − p‖ = θ‖y0 − p‖ < r for each θ ∈ [0, 1]. Then,
by (2.3), (2.4) (for i = 2, 3), (2.11) and (2.14), we get in turn
that

‖z0 − p‖ ≤ ‖y0 − p‖ + 5‖F′(x0)−1F′(p)‖‖F′(p)−1F(y0)‖
≤ g1(‖x0 − p‖)‖x0 − p‖

+ 5
∫ 1

0 φ1(θ‖y0 − p‖)dθ‖y0 − p‖
1 − φ0(‖x0 − p‖)

≤ g1(‖x0 − p‖)‖x0 − p‖

+ 5
(
∫ 1

0 φ1(θg1(‖x0 − p‖)‖x0 − p‖)dθ)g1(‖x0 − p‖)‖x0 − p‖
1 − φ0(‖x0 − p‖)

= g2(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < r (2.15)

and

‖w0 − p‖ ≤ ‖z0 − p‖

+
1
5
‖F′(x0)−1F′(p)‖[16‖F′(p)−1F(y0)‖ + ‖F′(p)−1F(z0)‖]

≤ g2(‖x0 − p‖)‖x0 − p‖

+
1
5

16
∫ 1

0 φ1(θ‖y0 − p‖)dθ‖y0 − p‖ +
∫ 1

0 φ1(θ‖z0 − p‖)dθ‖z0 − p‖
1 − φ0(‖x0 − p‖)

≤ g3(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < r, (2.16)

which shows (2.6), (2.7) for n = 0, respectively and z0, w0 ∈
B(p, r). We need an upper bound on ‖s0‖. Notice by (a5),
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(a6), we have that

‖s0‖ ≤ ‖F′(x0)−1(F′(x0) − 5[y0, x0; F])‖
≤ ‖F′(x0)−1F′(p)‖[‖F′(p)−1F′(x0)‖ + 5‖F′(p)−1[y0, z0; F]‖]

≤
∫ 1

0 φ1(θ‖x0 − p‖)dθ‖x0 − p‖ + 5φ2(g1(ρ)ρ, g2(ρ)ρ)
1 − φ0(ρ) = a

(2.17)

and
‖G(s0)‖ ≤ g(‖s0‖) ≤ g(a). (2.18)

In view of (2.3), (2.4) (for i = 4), (2.11), (2.14) (for w0 = x0),
(2.17) and (2.18) we obtain in turn that

‖x1 − p‖ ≤ ‖w0 − p‖ + ‖G(s0)‖‖F′(x0)−1F′(p)‖‖F′(p)−1F(w0)‖

≤ g3(‖x0 − p‖‖x0 − p‖ + g(a)
∫ 1

0 φ1(θ‖w0 − p‖)dθ‖w0 − p‖
1 − φ0(‖x0 − p‖)

≤ g4(‖x0 − p‖)‖x0 − p‖ ≤ ‖x0 − p‖ < r, (2.19)

which shows (2.8) for n = 0and x1 ∈ B(p, r). Thepreceding
estimates can be repeated, if we replace x0, y0, z0, w0, x1
by xk , yk , zk , wk , xk+1. Thiswaywecomplete the induction
for (2.5)–(2.8). Then, by the estimate

‖xk+1 − p‖ ≤ c‖xk − p‖ < r, (2.20)

where c = g4(‖x0 − p‖) ∈ [0, 1), we deduce that
limk−→∞ xk = p and xk+1 ∈ B(p, r). To complete the proof,
let p* ∈ Ω1 be such that F(p*) = 0. Using (a3) and (2.9) for
T =

∫ 1
0 F
′(p + θ(p* − p))dθ, we get that

‖F′(p)−1(T − F′(p))‖ ≤
1∫

0

φ0(θ‖p − p*‖)dθ

≤
1∫

0

φ0(θr*) < 1, (2.21)

so T−1 ∈ L(B2,B1). Finally, from the identity

0 = F(p*) − F(p) = T(p* − p), (2.22)

we conclude that p* = p.
�

Remark 2.2. (a) In the case when φ0(t) = L0t, φ(t) = Lt
and Ω0 = Ω, the radius rA = 2

2L0+L was obtained
by Argyros in [2] as the convergence radius for New-
ton’smethod under condition (2.7)-(2.9). Notice that the
convergence radius forNewton’smethod given indepen-
dently by Rheinboldt [15] and Traub [27] is given by

ρ = 2
3L < rA .

As an example, let us consider the function H(x) =
ex − 1. Then x* = 0. Set Ω = B(0, 1). Then, we have

that L0 = e − 1 < L = e, so ρ = 0.24252961 < rA =
0.324947231.
Moreover, the new error bounds [2] are:

‖xn+1 − x*‖ ≤
L

1 − L0‖xn − x*‖
‖xn − x*‖2,

whereas the old ones [5, 7]

‖xn+1 − x*‖ ≤
L

1 − L‖xn − x*‖
‖xn − x*‖2.

Clearly, the new error bounds are more precise, if L0 <
L. Clearly, we do not expect the radius of convergence
of method (1.2) given by r3 to be larger than rA .

(b) The local results can be used for projection methods
such as Arnoldi’s method, the generalized minimum
residual method(GMREM), the generalized conjugate
method(GCM) for combined Newton/�nite projection
methods and in connection to the mesh independence
principle in order to develop the cheapest and most ef-
�cient mesh re�nement strategy [1–5].

(c) The results can be also be used to solve equationswhere
the operator H′ satis�es the autonomous di�erential
equation [2–4]:

H′(x) = P(H(x)),

where P is a known continuous operator. Since H′(x*) =
P(H(x*)) = P(0), we can apply the results without actu-
ally knowing the solution x*. Let as an example H(x) =
ex − 1. Then, we can choose P(x) = x + 1 and x* = 0.

(d) It is worth noticing that method (1.2) are not changing if
we use the new instead of the old conditions [3]. More-
over, for the error bounds in practice we can use the
computational order of convergence (COC)

ξ =
ln ‖xn+2−x*‖
‖xn+1−x*‖

ln ‖xn+1−x*‖
‖xn−x*‖

, for each n = 1, 2, . . .

or the approximate computational order of convergence
(ACOC)

ξ * =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 0, 1, 2, . . . .

(e) In view of (2.4) and the estimate

‖H′(x*)−1H′(x)‖ = ‖H′(x*)−1(H′(x) − H′(x*)) + I‖
≤ 1 + ‖H′(x*)−1(H′(x) − H′(x*))‖
≤ 1 + φ0(‖x − x*‖)

condition (2.6) can be dropped and can be replaced by

v(t) = 1 + φ0(t)

or
v(t) = 1 + φ0(ρ),

since t ∈ [0, ρ).
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3 Numerical Examples
We present two examples in this section using [x, y; F] =∫ 1

0 F
′(x + θ(y − x))dθ and Q(s) = I in both examples.

Example 3.1. Let B1 = B2 = R3, D = Ū(0, 1), x* =
(0, 0, 0)T . De�ne function H on D for w = (x, y, z)T by

H(w) = (ex − 1, e − 1
2 y2 + y, z)T .

Then, the Fréchet-derivative is given by

H′(v) =

 ex 0 0
0 (e − 1)y + 1 0
0 0 1

 .

Using (2.5)–(2.7), we can choose φ0(t) = L0t, φ(t) =
e

1
L0 t, φ1(t) = e

1
L0 , φ2(s, t) = e

1
L0 and g(t) = 1 with L0 =

e − 1.
Then, the radius of convergence r is given by

r = r4 = 0.0601 < r2 = 0.0836 < r3 = 0.1345
< r1 = 0.3827.

Example 3.2. Returning back to the motivational example
given at the introduction of this study, we can choose (see
also Remark 2.2 (5) for function v) φ0(t) = φ(t) = 1

8 ( 3
2
√
t+ t)

and φ1(t) = 1 + φ0(ρ), ρ w 4.7354, φ2(s, t) = 1 + φ0(ρ)
and g(t) = 1. Then, the radius of convergence r is given by

r = r4 = 0.2130 < r3 = 0.5072 < r2 = 0.9738
< r1 = 1.6218.
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