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Abstract Using our new idea of restricted convergence domains, a robust convergence the-
orem for inexact Newton’s method is presented to find a solution of nonlinear inclusion
problems in Banach space. Using this technique, we obtain tighter majorizing functions.
Consequently, we get a larger convergence domain and tighter error bounds on the distances
involved. Moreover, we obtain an at least as precise information on the location of the solu-
tion than in earlier studies. Furthermore, a numerical example is presented to show that our
results apply to solve problems in cases earlier studies cannot.
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domains · Semi-local convergence
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Introduction

Let X and Y are Banach spaces, X is reflexive, D ⊆ X an open set and C ⊂ Y a nonempty
closed convex cone. We consider the inexact Newton’s method considered for solving the
nonlinear inclusion problem
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F(x) ∈ C, (1)

where F : D → Y is a nonlinear continuously differentiable function. Importance of the
nonlinear inclusion problems of the form (1) can be found in [1,3,6–8,13–15] and [16]. To
solve (1), the following Newton-type iterative method was proposed in [17]:

xk+1 = xk + dk, dk ∈ argmin
d∈X{‖d‖ : F(xk) + F ′(xk)d ∈ C}, k = 0, 1, . . . . (2)

In general, the above algorithm may fail to converge and may even fail to be well defined.
Hence Robinson [17], made the following two assumptions to ensure that the method is well
defined and converges to a solution of the nonlinear inclusion:

H1. There exists x0 ∈ X such that rgeTx0 = Y, where Tx0 : X ⇒ Y is the convex
process given by Tx0d := F ′(x0)dC, d ∈ X, and rgeTx0 = {y ∈ Y : y ∈
Tx0(x) for some ∈ X}, see [8] for additional details.

H2. F ′ is Lipschitz continuous with modulo L , i.e., ‖F ′(x) − F ′(y)‖ ≤ L‖x − y‖, for
all x, y ∈ X.

Under these assumptions, it was proved in [17], that the sequence {xk} generated by (2) is
well defined and converges to x∗ satisfying F(x∗) ∈ C, provided that the convergent criterion
‖x1 − x0‖ ≤ 1

2L‖T−1
x0 ‖ is satisfied. Further the results in [17] are extended in [12].

The inexact Newton’s method for solving nonlinear inclusion is defined by

xk+1 = xk + dk, dk ∈ argmin
d∈X{‖d‖ : F(xk) + F ′(xk)d + rk ∈ C}, (3)

max
w∈{−rk ,rk }

‖T−1
x0 w‖ ≤ θ‖T−1

x0 [−F(xk)]‖ (4)

for k = 0, 1, . . . , 0 ≤ θ < 1 is a fixed suitable tolerance, and

T−1
x0 (y) := {d ∈ X : F ′(x0)d − y ∈ C}, y ∈ Y,

where x0 is the initial point, {rk} is the residual sequence in C chosen so that conditions (3)
and (4) are satisfied. Moreover, w ∈ {−rk, rk} means that w is one of these values (see also
[14] and the conditions of Theorem 1). Notice that (1) is a particular case of the following
generalized equation

F(x) + T (x) � 0, (5)

when C(x) ≡ C and C : X ⇒ Y is a set valued mapping. In [9] (see also [2]), the following
Newton-type method was considered for solving (5):

(F(xk) + F ′(xk)(xk+1 − xk) + C(xk+1)) ∩ Rk(xk, xk+1) �= ∅, k = 0, 1, . . . , (6)

where Rk : X × X ⇒ Y is a sequence of set-value mappings with closed graphs. Note that,
in the case, when C(x) ≡ 0, θ ≡ ηk and

Rk(xk, xk+1) ≡ Bηk‖F(xk )‖(0).

As in the particular case C(x) ≡ C, the iteration (6) has (3) and (4) as a minimal norm affine
invariant version.

In the present paper using our new idea of restricted convergence domains we extended
the applicability of the results in [14]. That is we find a more precise location, where the
iterates are located than in [14]. This way the majorant functions are tighter leading to the
advantages as already stated in the abstract of this study. These advantages are obtained
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under the same computational cost, since the new majorant functions are special cases of the
majorant functions used in [14].

The organization of the paper is as follows. In “Preliminaries” section, we give the pre-
liminaries and in “Semilocal Convergence” section, we establish the semi-local convergence
of inexact Newton’s method. In “Numerical Examples” section, the advantages of the new
approach are justified with a numerical example.

Preliminaries

Let U (w, ξ), U (w, ξ), be the open and closed balls in X , respectively, with center w ∈ X
and of radius ξ > 0. A set valued mapping T : X ⇒ Y is called sublinear or convex process
when its graph is a convex cone, i.e., 0 ∈ T (0), T (λx) = λT (x), λ > 0, T (x + x ′) ⊇
T (x) + T (x ′), x, x ′ ∈ X, [8,18] and [19]. The domain and range of a sublinear mapping T
are defined, respectively, by domT := {d ∈ X : Td �= ∅} and rgeT := {y ∈ Y : y ∈ T (x)}
for some x ∈ X. The norm [8] of a sublinear mapping T is defined by ‖T ‖ := sup{‖Td‖ :
d ∈ domT, ‖d‖ ≤ 1}where ‖Td‖ := inf{‖v‖ : v ∈ Td} for Td �= ∅. We use the convention
‖Td‖ = +∞ for Td = ∅, Td + ∅ = ∅ for all d ∈ X. Let S, T : X ⇒ Y and U : Y ⇒ Z
be sublinear mappings. The scalar multiplication, addition and composition of sublinear
mappings are sublinearmappings defined, respectively, by (αS)(x) := αS(x), (S+T )(x) :=
S(x) + T (x), and UT (x) : ∪{U (y) : y ∈ T (x)}, for all x ∈ X and α > 0 and the following
norm properties there hold ‖αS‖ = |α|‖S‖, ‖S + T ‖ ≤ ‖S‖ + ‖T ‖ and ‖UT ‖ ≤ ‖U‖‖T ‖.

The linear map F(x) : X → Y denotes the Fréchet derivative of F : D → Y at x ∈ D.

Let C ⊂ Y be a nonempty closed convex cone, z ∈ D and T z : X ⇒ Y a mapping defined
as

Tzd := F ′(z)d − C. (7)

It is known that the mappings Tz and T−1
z are sublinear with closed graph, domTz =

X, ‖Tz‖ < +∞ and, moreover, rgeTz = Y if and only if ‖T−1‖ < +∞ (see [8]). Note
that T−1

z y := {d ∈ X : F ′(z)d − y ∈ C}, z ∈ D, y ∈ Y.

Lemma 1 (c.f., [8]) There holds T−1
z F ′(v)T−1

v w ⊆ T−1
z w, for all v, z ∈ D, w ∈ Y . As a

consequence, ‖T−1
z [F ′(y) − F ′(x)]‖ ≤ ‖T−1

z F ′(v)T−1
v [F ′(y) − F ′(x)]‖.

Semilocal Convergence

The semilocal convergence of the inexact Newton’s method is based on the hypotheses (H):
Let X, Y be Banach spaces, X reflexive, D ⊆ X an open set, F : D → Y a continuously
Fréchet differentiable function.

(h0) The function F satisfies the Robinson’s Condition at x0 ∈ D if rge T x0 = Y,where
T x0 : X ⇒ Y is a sublinear mapping as defined in (7).

(h1) Let R > 0 be a scalar constant. There exist continuously differentiable majorant
functions f0, f : [0, R) → R at a point x0 ∈ D for F such that

‖T−1
x0 [F ′(y) − F ′(x0)]‖ ≤ f ′

0(‖y − x0‖) − f ′
0(0) (8)

for all y ∈ B(x0, R) and for each x, y ∈ D0 = D ∩ ∪(x0, R)

‖T−1
x0 [F ′(y) − F ′(x)]‖ ≤ f ′(‖x − x0‖ + ‖y − x‖) − f ′(‖x − x0‖). (9)
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(h2) f0(0) > 0, f ′
0(0) = −1, f (0) > 0, f ′(0) = −1, f0(t) ≤ f (t) , f ′

0(t) ≤ f ′(t) for
t ∈ (0, R).

(h3) f ′
0 and f ′ are convex and strictly increasing.

(h4) f (t̄) = 0 for some t̄ ∈ (0, R).

(h5) U (x0, t̄) ⊆ D.

We also need the following condition on the majorant condition f which will be
considered to hold only when explicitly stated.

(h6) f (t) < 0 for t ∈ (0, R).

Note that the condition h6 implies the condition h4. The sequence {zk} generated by inexact
Newton’s method for solving the inclusion F(x) ∈ C with starting point z0 and residual
relative error tolerance θ is defined by:

zk+1 := zk + dk,

dk ∈ argmin
d∈X{‖d‖ : F(zk) + F ′(zk)d + rk ∈ C},

max
w∈{−rk ,rk }

‖T−1
x0 ‖ ≤ θ‖T−1

x0 [−F(zk)]‖}, k = 0, 1, . . .

Next we state the main result under the (H) hypotheses.

Theorem 1 Suppose that (H) hypotheses hold. Let C ⊂ Y a nonempty closed convex cone
and R > 0. Suppose that x0 ∈ D, satisfies ‖T−1

x0 [−F(x0)]‖ ≤ f (0). Let β := sup{− f (t) :
t ∈ [0, R)}. Take 0 ≤ ρ < β/2 and define the constants κρ := supρ<t<R

−( f (t)+2ρ)

| f ′
0(ρ)|(t−ρ)

, λρ :=
sup{t ∈ [ρ, R) : κρ + f ′(t) < 0}, θ̃ρ := κρ

2−κρ
. Then for any θ ∈ [0, θ̃ρ] and z0 ∈ B(x0, ρ),

the sequence {zk}, is well defined, for any particular choice of each dk, ‖T−1
z0 [−F(zk)]‖ ≤(

1+θ2

2

)k [ f (0)+2ρ], {zk} is contained in B(z0, λρ) and converges to a point x∗ ∈ B[x0, λρ]
such that F(x∗) ∈ C. Moreover, if

(h7) λρ < t̄ − ρ,

then the sequence {zk} satisfies, for k = 0, 1, 2, . . . ,

‖zk − zk+1‖ ≤ αk‖zk − zk−1‖ ≤ βk‖zk − zk−1‖ (10)

where βk := αk( f ′, f ′), and αk := αk( f ′
0, f ′) = 1+θ

1−θ
[ 1+θ

2
D− f ′(λρ+ρ)

| f ′
0(λρ+ρ)| ‖zk − zk−1‖ +

θ
2+ f ′

0(λρ+ρ)

| f ′
0(λρ+ρ)| ]. If, additionally, 0 ≤ θ < [−2(κρ +1)+√

4(κρ + 1)2 + κρ(4 + κρ)]/[4+κρ]
then {zk} converges Q-linearly as follows limk→∞ sup ‖x∗−zk+1‖

‖x∗−zk‖ ≤ 1+θ
1−θ

[ 1+θ
2 + 2θ

κρ
], k =

0, 1, . . . .

Remark 1 (a) The introduction of the center-Lipschitz-typemajorant condition (8) (i.e, func-
tion f0) leads to the introduction of restricted Lipschitz-type majorant condition (9). This
introduction was not possible before [14], since only the condition

‖T−1
x0 [F ′(y) − F ′(x)]‖ ≤ f ′

1(‖x − x0‖ + ‖y − x‖) − f ′
1(‖x − x0‖) (11)

for each x, y ∈ D was used instead of (9). Notice, that

f ′
0(t) ≤ f ′

1(t) (12)

and

f ′(t) ≤ f ′
1(t) (13)
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hold for each t ∈ [0, R) since D0 ⊆ D. If f ′
0(t) = f ′(t) = f ′

1(t) for each t ∈ [0, R), then
our results reduce to the corresponding ones in [14]. Otherwise (i.e, if strict inequality
holds in (12) or (13)) then, we obtain advantages as already stated in the abstract of this
study. Indeed notice that by (10), (12) and (13) αk ≤ βk ≤ γk where γk = α( f ′

1, f ′
1). Let¯̄t be the smallest zero of function f1 on (0, R). We can assume without loss of generality

that f (t) ≤ f1(t). Then, we have f ( ¯̄t) ≤ f1( ¯̄t) = 0 and f (0) > 0 so t̄ ≤ ¯̄t. It is also
worth noticing that these advantages are obtained under the same computational cost as
in [14], since in pratice the computation of the function f1 requires the computation of
functions f0 and f as special cases (see also the numerical examples).

(b) If f ′(t) ≤ f ′
0(t) and f (t) ≤ f0(t), then the results obtained here hold with f0 replacing

f.
(c) Clearly, our results improve the specializations of Theorem 1, [10,12], if we take θ = 0

or θk = 0, respectively.

Next we present some auxillary results needed for the proof of Theorem 1. First, we need
a Banach-type perturbation result.

Lemma 2 Let S = sup{t ∈ [0, R) : f ′(t) < 0} and suppose x ∈ ∪̄(x0, t), t ∈ (0, S). Then
the folowing hold:

dom[T−1
x F ′(x0)] = X, rgeTx = Y,

‖T−1
x F ′(x0)‖ ≤ − 1

f ′
0(t)

≤ − 1
f ′(t) and ‖T−1

x0 F ′(x)‖ ≤ 2 + f ′
0(t).

Proof Use the needed (8) instead of the less precise (11) employed in ([10], Prop.12), (12)
and (13). ��

Remark 2 If f ′
0(t) = f ′(t) = f ′

1(t), we obtain the corresponding results in [14]. Otherwise,
our results are tighter, since − 1

f ′
0(t)

≤ − 1
f ′(t) ≤ − 1

f ′
1(t)

.

Proof of Theorem 1 Simply notice that the iterates zk lie in D0 which is a more accurate
location than D used in [14]. Then, employ the proof of Theorem 2 in [14] but use f or f ′

0
instead of f1 and Lemma 2 in places, where the old Lemma was used. ��

Numerical Examples

Remark 3 Although the advantages of our approach have already been shown in general,
we specialize operator F in such a way that f0, f, f1 can be defined and satisfy (h2), (12)
and (13) as strict inequalities, so that the advantages will hold, when Tx0 = F ′(x0). Sup-
pose that Lipschitz conditions hold: ‖F ′(x0)−1(F ′(x) − F ′(x0))‖ ≤ L0‖x − x0‖, x ∈ D,

‖F ′(x0)−1(F ′(x) − F ′(y))‖ ≤ L‖x − y‖, x, y ∈ D0, ‖F ′(x0)−1(F ′(x) − F ′(y))‖ ≤
L1‖x − y‖, x, y ∈ D and define functions

f0(t) = L0

2
t2 − t + b,

f (t) = L

2
t2 − t + b,

f1(t) = L1

2
t2 − t + b.
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Let

δ1 := (1 − √
2bL1)/(1 + √

2bL1)

and

δ := (1 − √
2bL)/(1 + √

2bL).

Then the range for θ given in [14] is defined by 0 ≤ θ ≤ δ1. However, in our case 0 ≤ θ ≤ δ

which is a better interval, if L < L1.

Example 1 Let us consider the example on X = Y = R, D = U (x0, 1 − p), p ∈
(0, 1/2), x0 = 1 and define function F on D by F(x) = x3 − p. Then, we have that
b = 1

3 (1− p), L0 = 3− p, L1 = 2(2− p) and L = 2(1+ 1
3−p ).Notice that L0 < L < L1,

so f0(t) < f (t) < f1(t).

(a) The results in [12,14,17] cannot be used since 2bL1 > 1 for all p ∈ (0, 1/2). Notice
that majorant function f1 has no real roots and the range for θ does not exist even if
θ = 0. However, our results can apply, since 2bL ≤ 1, for all p ∈ [0.461, 0.5) and δ

is well defined, so we can choose θ ∈ [0, δ]. It is worth noticing, that for θ = 0, we
have Newton’s method, but if θ ∈ (0, δ], we have the inexact Newton method. Hence,
we have shown that our results can be used where as the ones in [12,14,17] cannot be
used in both the Newton’s and inexact Newton’s case.

(b) Let us assume p ∈ (0, 1). Choose in particular p = 0.6. Then both the results in [14]
and our results apply but in [14], 0 ≤ θ ≤ δ1 = 0.073 and in our case 0 ≤ θ ≤ δ = 0.07,
so the range for θ is improved under our approach. Moreover, αk < βk < γk . Hence, the
error bounds are also improved.

Similar advantages are obtained when the majorant functions specialize to the ones given
in Smale’s alpha theory [20] or Wang’s γ -theory [21].

Remark 4 It is worth noticing that inexact Newton methods do not include only Newton’s
method as a special case but also many popular single step methods such as Stirling’s method
or the so called Newton-like methods [1,4,5,8,11,14,19]. Therefore, the applicability of the
technique introduced in this paper by far surpasses Newton’s method. Clearly the benefits
extend also in the case of these methods.
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