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Abstract

A new Wigner–Ville distribution (WVD) estimation is proposed. This improved and efficient WVD is based on signal

decomposition (SD) by DCT or DFT harmonic wavelet transform (DCTHWT or DFTHWT) and the modified magnitude

group delay (MMGD). The MMGD processing can be either in fullband or subband. The SD by DCTHWT provides

better quality low leakage decimated subband components. The concatenation of WVDs of the subbands results in an

overall WVD, significantly free from crossterms and Gibbs ripple. As no smoothing window is used for the instantaneous

autocorrelation (IACR), MMGD removes or reduces the Gibbs ripple preserving the frequency resolution achieved by the

DCT/DFT HWT. The SD by DCTHWT compared to that of DFTHWT, has improved frequency resolution and

detectability. These are due to the symmetrical data extension and the consequential low leakage (bias and variance). As

the zeros due to the associated white noise are removed by the MMGD effectively in subband domain than in fullband, the

proposed WVD based on subband has a better noise immunity. Compared to fullband WVD, the subband WVD is

computationally efficient and achieves a significantly better: frequency resolution, detectability of low-level signal in the

presence of high-level one and variance. The SD-based methods, however cannot bring out the frequency transition path

from band to band clearly, as there will be gap in the contour plot at the transition. For the proposed methods, the heart

rate variability (HRV) real data is also considered as an example.
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1. Introduction

The Wigner–Ville distribution (WVD) is used for
the analysis of nonstationary signals. In practice,
the pseudo-WVD (PWVD), the Fourier transform
of the instantaneous autocorrelation (IACR) com-
puted only for a finite number of lags, is used. In the
PWVD, to overcome the IACR truncation effect
.
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(Gibbs ripple), a smoothing window function is used.
For a given lag length, the windowing deteriorates

the frequency resolution. For a multicomponent
signal, the WVD being quadratic in nature intro-
duces undesired crossterms. The crossterms can be
reduced by time smoothing but only at the cost of

time resolution. To suppress crossterm effectively, to
improve the frequency resolution and to maintain
the desired time–frequency representation (TFR)
properties, many distributions are proposed with
varying degree of success. The prominent are: the
Choi–William’s, Cone–Kernel and reduced inter-
ference Kernel [1].

Recently, a WVD based on signal decomposition
(SD) and modified magnitude group delay—
MMGD (FBWVD), has been proposed [3]. The
SD is realized by a perfect reconstruction filter bank
(PRFB). The Gibbs ripple due to IACR truncation,
manifests as zeros close to the unit circle. The
MMGD removes these zeros without applying any
smoothing window function [4]. The removal of
zeros doest not disturb the signal pole locations and
hence preserves the frequency resolution of a
rectangular window.

The PRFB reduces the crossterms effect for a
multicomponent signal, as the overall IACR is
achieved by the summation of their individual
IACRs computed separately [2]. However the SD
by PRFB and computation of the individual IACRs
at the original sampling rate, are computationally

intensive. The decimation for the IACR, may appear
to reduce computations. This is not so as WVD
requires both decimation and interpolation opera-
tions, which by themselves are computationally
intensive.

The DFT harmonic wavelet transform
(DFTHWT) [5] can decompose and reconstruct
the signal, without directly performing the decima-
tion and interpolation operations. In DFTHWT,
these operations are built in. As the decimated
components are readily available in the frequency
domain, certain type of processing, like group delay
is directly applicable. This makes the overall
algorithm simple and computationally efficient [9].

The DFTHWT is good as long as no processing
of the components is involved prior to inverse
transformation. It may also be tolerable for a signal
with well-separated frequency components of high
magnitude. To get improved WVD, after SD, it is
required to process individual subband components
differently. In such a case, decomposing the signal
based on DFTHWT and processing the resulting
subbands may not be very effective. This is because
the signal energy from one component to another
has already leaked during the FT computation.

As the DCT extends the signal symmetrically, it
results in a significant reduction in abruptness of
truncation and hence the leakage effect. This is due
to smooth transition from one period to another
(built-in periodicity) in DCT. It appears as if there is
no windowing and no side lobes to enhance the Gibbs

and leakage effects [10a]. It also improves the
detection ability of a smaller magnitude component
in the presence of a larger one. These facts
motivated the authors to extend the desirable
spectral properties of the DCT [10b] to harmonic
wavelet transform (HWT) by grouping the DCT
coefficients [11], instead of DFT coefficients.

This paper proposes a new efficient approach to
improve the performance of WVD. This is based on
the SD by DCT/DFTHWT and MMGD function.
The SD by DCT/DFT HWT and the MMGD
remove/reduce the existence of the crossterms and
the Gibbs ripple due to truncation of the IACR,
respectively. The application of MMGD to subband
components improves both the frequency resolution
and noise immunity compared to those of fullband.
The SD by DCTHWT is advantageous over that by
PRFB and DFTHWT as it results in reduction in
computations, improved frequency resolution and
signal detection ability.

2. Wigner–Ville distribution [1]

The WVD of an analytic signal x(t)is given by

W xðt;oÞ ¼
Z 1
�1

rðt; tÞ e�jo t dt, (1)

where r(t, t) ¼ x(t+t/2) x*(t�t/2) is called the
IACR function/Wigner kernel. From the computa-
tional point of view, the IACR can be considered
only for a finite number of lags. This implies
application of an inevitable rectangular window,
which results in the Gibbs ripple effect. A smooth-
ing window is applied to the IACR to reduce
the Gibbs ripple and the resulting WVD is known
as Pseudo-Wigner–Ville distribution (PWVD),
given by

PWx t;oð Þ ¼

Z 1
�1

xðtþ t=2Þxnðt� t=2Þh2
ðt=2Þ e�jot dt.

(2)

The window function h2(t/2) reduces the Gibbs
ripple. But it results in a reduction in frequency
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resolution as it eats away the correlation function at
higher lags.

The WVD introduces crossterms for multicom-
ponent signals and this is due to the quadratic
nature of WVD [1]. The crossterm has a large
magnitude. Further, there will be a crossterm with
every pair of components of the signal. Hence the
interpretation of WVD becomes difficult. Since the
crossterm oscillates in time, smoothing the WVD in
time attenuates the crossterm and enables mean-
ingful interpretation of the TFR. But this crossterm

reduction is only at the expense of time resolution.

The smoothing in time for crossterms and in
frequency for the lag window can be considered as
a two-dimensional (2D) convolution of the WVD
with a smoothing kernel [1]. The kernel determines
the properties of the distribution. The use of
different smoothing kernels results in a class of
distribution, called the Cohen’s class. But the WVD
obtained by using common smoothing kernel (other
than rectangular) do not satisfy some of the TFR
properties [1].

3. Harmonic wavelet transform [5]

The wavelet transform (WT) of a signal is
generally realized in time domain by a two-channel
PRFB using a dyadic structure. Newland intro-
duced the HWT [5] and this enables the wavelet/
wave packet implementation in the frequency
domain. For a wavelet function w(t), the WT
coefficient a(t) of a signal x(t) is

aðtÞ ¼

Z 1
�1

xðtÞwðtþ tÞdt. (3)

In terms of Fourier transform,

AðoÞ ¼ X ðoÞW �ðoÞ

aðtÞ ¼ F�1½X ðoÞW �ðoÞ�. (4)

That is, the WT coefficients can be computed
using FFT algorithm by Eq. (4) using X(o) with
W(o) for different wavelet functions. Specifically
for the HWT of Newland [5], W(o) is very simple
and it is zero except over a finite band [p/p, p/q],
where p, q can be real numbers, not necessarily
integers.

The multiplication of X(o) by W*(o) while using
the discrete Fourier transform (DFT), is equivalent
to grouping of the DFT coefficients of a signal in a
dyadic fashion. The inverse DFT of each group
yields harmonic wavelet transform coefficients
(HWC) [5]. The inverse HWT can be achieved by
deriving the complete DFT by proper concatenation
of the DFT coefficient groups obeying the possible
DFT conjugate symmetry and taking its inverse
DFT. For HWT, the above choice of W(o) though
compact in the frequency domain, is of infinite
duration in time domain. This can be overcome by
using a proper smoothing weighing function for the
grouped DFT coefficient sequence.
3.1. DCT harmonic wavelet transform (DCTHWT)

[11]

The harmonic wavelet transform based on DFT
(DFTHWT) as already explained has the features of
simplicity with its built-in decimation and inter-
polation operations. The very purpose of orthogo-
nal WT is to decompose the signal into orthogonal

components, which are independent so that their
further processing will not affect one another.
However, this is not so with the DFTHWT, as the

Fourier coefficients, which are already affected by

leakage, are grouped. The processing on any band
will affect the neighboring bands indirectly as the
leaked energy also gets processed.

Therefore to utilize the features of the harmonic
wavelet transform, it is necessary to reduce the

leakage effects and in this direction, use of DCT

instead of DFT is an important step. This is because
the DCT extends the data symmetrically. Here there
is a smooth transition from one DCT period to the
other and the discontinuity, which is the root cause

for leakage, is significantly removed. Compared to
the DFT, the DCT has a better frequency resolution
due to data extension and this enables DCT to
resolve the closely spaced spectral components.

The DCT of a N point signal x(n), n ¼ 0, 1, 2,
y(N�1); is defined as the DFT of a 2N point
symmetrically extended signal y(n)

yðnÞ ¼
xðnÞ; 0pnpN � 1;

xð2N � 1� nÞ; Npnp2N � 1;

(
(5)

where y(n) is even symmetric with respect to the
point [N�(1/2)]. This leads to DCT and is given by

CxðkÞ ¼

PN�1
n¼0

2xðnÞcos pkð2nþ1Þ
2N

; 0pkpN � 1;

�Cxð2N � kÞ; Npkp2N � 1:

8><
>:

(6)

Here, the DCT has been derived from the DFT.
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With the DFTHWT, in getting the decimated
subband component signal and in signal reconstruc-
tion, the conjugate symmetry of the DFT has to be
accounted. The component signals can also be
complex. But with the DCTHWT as the coefficients
are real and the symmetry is built-in, no conjugation
symmetry operation is required. Thus the
DCTHWT is simpler and provides better perfor-
mance.
4. MMGD for complex signals [6,7]

If x(n) is a minimum phase complex signal with
X(o) as its Fourier transform,

ln X ðoÞ
�� �� ¼X1

n¼0

cRðnÞcosonþ cIðnÞsinon½ �, (7)

yðoÞ ¼
X1
n¼0

�cRðnÞsinonþ cIðnÞcoson½ �. (8)

The group delay t(o), the negative derivative of
phase y(o), is given by

tðoÞ ¼ �
q
qo

yðoÞ½ �

¼
X1
n¼0

ncRðnÞcosonþ ncIðnÞsinon½ �. ð9Þ

If nc(n) conjugate symmetric [6],

tðoÞ ¼ FT ncðnÞ½ �. (10)

Here, y(o) is the unwrapped phase and c(n)
(c(n) ¼ cR(n)+jcI(n)) are cepstral coefficients. The
cepstral coefficients cR(n) and cI(n)are derived from
magnitude information (Eq. (7)). t(o) is obtained
using these coefficients and hence is called magni-
tude group delay (MGD).

The ripple/variance in a spectrum can be due to
(1) signal truncation effect, (2) associated white
noise, (3) the input white noise that drives a system
in generating the signal and (4) any of the possible
combinations. These introduce zeros close to the
unit circle. Application of a smoothing window to
the signal, results in pulling the signal poles and
zeros towards the origin in addition to the zeros
near the unit circle. Hence the reduction in variance
due to signal windowing is only at the cost of
frequency resolution. The MGD modification given
in [3,4] only removes the zeros close to the unit circle
without disturbing the signal or system poles. Hence
the use of modified MGD enables variance reduc-
tion preserving the frequency resolution of the
rectangular window.

For a complex signal x(n), if X(o) ¼ N(o)/D(o),
then D(o) corresponds to the signal peaks and N(o)
mainly contributes to the ripples/variance [4,7].
Hence the ripple/variance of X(o) can be removed
by dividing it by N(o). However, this may result in
singularity problems. In the group delay domain,
the same operation can be realized by multiplication
avoiding any singularity. The MGD of X(o), t(o) is

tðoÞ ¼ tN ðoÞ � tDðoÞ, (11)

where tN(o) and tD(o) are the MGDs correspond-
ing to N(o) and D(o), respectively. The group delay
of signal v(n) is given by

tvðoÞ ¼
VRðoÞYRðoÞ þ V IðoÞY IðoÞ

V ðoÞ
�� ��2 ,

where y(n) ¼ nv(n), V(o) ¼ FT[v(n)], Y(o) ¼ FT[y(n)].
Further VR(o), YR(o) are the real and VI(o),
YI(o) are the imaginary parts of V(o) and Y(o),
respectively. Representing the numerator by K(o),

tvðoÞ ¼
KðoÞ

V ðoÞ
�� ��2 .

With this representation, Eq. (11) can be written as

tðoÞ ¼
KN ðoÞ

NðoÞ
�� ��2 � KDðoÞ

DðoÞ
�� ��2 . (12)

For the simplicity of explanation, KN(o) and
KD(o) can be considered as constants [4]. For zeros
close to the unit circle, NðoÞ

�� ��2 will be very small
and for signal poles which are relatively far from
unit circle, DðoÞ

�� ��2 is large. Hence in Eq. (12) for
t(o), the contribution is mainly from the first term
and this masks the signal peaks which are due to
second term. This masking effect of these zeros can
be reduced by multiplying t(o) by NðoÞ

�� ��2. Hence,
the modified MGD (MMGD) tmo(o), is

tmoðoÞ ¼ KN �
KD

DðoÞ
�� ��2 NðoÞ

�� ��2. (13)

The estimate of NðoÞ
�� ��2; N̂ðoÞ

�� ��2 is given by [4],

N̂ðoÞ
�� ��2 ¼ X ðoÞ

�� ��2
X̄ ðoÞ
�� ��2 , (14)

where X̄ ðoÞ
�� ��2 is the smoothed power spectrum of

the signal obtained by the truncated cepstral
coefficient sequence of x(n).
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5. Improved WVD based on SD by DFT/DCTHWT

and MMGD processing in fullband/subband

In the proposed method, the multicomponent
signal is decomposed into its components by DCT/
DFT HWT and their WVDs are computed. The
Gibbs ripple in each WVD slice is removed/reduced
by applying the MMGD. The MMGD can be
applied for the fullband WVD [8] or to the WVD of
the subband decimated signals and the processed
subband WVDs are concatenated to get the full-
band WVD. The subband MMGD processing has
an improved performance over that of the fullband.
5.1. SD by DCT/DFT HWT

To avoid the occurrence of crossterms due to the
quadratic nature of the WVD, a multicomponent
signal is decomposed into its components by
DCTHWT where the DCT coefficients are grouped
uniformly. The analytic signals of the IDCT of these
groups are considered to get the desired WVD.

The SD using DCTHWT for a signal {x(n)} ¼
{x(0), x(1), y, x(7)} is illustrated. Let {X(0),
X(1), y, X(7)} be the DCT coefficients of the
signal considered. The array {X(0), X(1), y, X(7)}
is split into two uniform bands,

X 1½ � ¼ X ð0Þ; X ð1Þ; X ð2Þ; X ð3Þ½ �

and

X 2½ � ¼ X ð4Þ; X ð5Þ; X ð6Þ; X ð7Þ½ �.

The inverse DCT of these bands result in

x1ðnÞ
� �

¼ x1ð0Þ; x1ð1Þ; x1ð2Þ; x1ð3Þ
� �

and

x2ðnÞ
� �

¼ x2ð4Þ; x2ð5Þ; x2ð6Þ; x2ð7Þ
� �

and these give respective DCTHWT coefficients
which are already decimated because of built-in
decimation of the harmonic wavelet transform.
However as the WVD is computed at the original
signal sample instants, it is necessary to preserve the

original sampling time instants, for these components

derived from DCTHWT. This is realized by zero
padding to DCT coefficients sequence of each band.
In this case, zeros are added to double their lengths.
The new DCT bands are

Xd1½ � ¼ X ð0Þ; X ð1Þ; X ð2Þ; X ð3Þ; 0; 0; 0; 0½ �

and

Xd2½ � ¼ X ð4Þ; X ð5Þ; X ð6Þ; X ð7Þ; 0; 0; 0; 0½ �.
The inverse DCT of these bands are

xd1ðnÞ
� �

¼ xd1ð0Þ; xd1ð1Þ; xd1ð2Þ . . . xd1ð7Þ
� �

and

xd2ðnÞ
� �

¼ xd2ð0Þ; xd2ð1Þ; xd2ð2Þ . . . xd2ð7Þ
� �

.

These give respective DCTHWT coefficients at
the original signal sampling rate. The reconstruction
from DCTHWT coefficients is just the reverse
process of the decomposition and is obtained by
taking the DCT of {xd1} and {xd2} to get [Xd1] and
[Xd2], respectively.

½X d1� ¼ X ð0Þ; X ð1Þ; X ð2Þ; X ð3Þ
� �

and

½X d2� ¼ X ð4Þ; X ð5Þ; X ð6Þ; X ð7Þ
� �

.

The concatenation of [Xd1] and [Xd2] at their
respective positions is, [Xd1, Xd2]. That is, [Xd1,
Xd2] ¼ [X(0), X(1), X(2), X(3), X(4), X(5), X(6),
X(7)] gives the fullband DCT, [X] and its inverse
DCT gives the original signal. As DCT is real there
is no need to do the conjugate operation in placing
the coefficients symmetrically. (In DCT-II algo-
rithms used in practice, the symmetrical placement
is not needed and the inverse DCT-II gives the one
sided signal.)

To get component WVDs, the IACR of the
analytic signal for each group {xd1(n)} and {xd2(n)}
is considered.

For a SD of M components, the IACR is

computed at every input signal instant but at

decimated lags. That is, the lags are once in every

Mth (in this example M ¼ 2) data sample so that the

effective lag length is decimated by a factor M and

this reduces the computational complexity. For the
ith component the IACR is given by

riðn; kÞ ¼ xiðnþMkÞx�i ðn�MkÞ; k ¼ 1; 2; 3; . . .K .

Here, K is the maximum lag value and M is the
number of bands, considered.

The individual WVDs for the decomposed
components are obtained by taking the FT of their
IACR. By plugging back these individual compo-
nent WVDs in their corresponding position, the
complete WVD of the original signal is derived
(Fig. 1, for N ¼ 8). The use of analytic signal for the
WVD requires the processing of complex signals.

The SD by DFTHWT is similar to that of
DCTHWT and here the DFT coefficients are
grouped obeying the DFT symmetry (as for as
possible since at some stages of decomposition, the
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Fig. 1. Computation of WVD by DCTHWT.
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symmetry about a real coefficient like in normal
DFT may not be possible).
5.2. Improved WVD based on SD by DCT/DFT by

MMGD processing in fullband (IFCTWVD/

IFFTWVD) and subband (ISCTWVD/ISFTWVD)

For a given lag length, as the lag windowing eats
away the correlation function at higher lags, it
reduces the frequency resolution of the PWVD. For
the WVD, the input is an analytic signal and this is
complex. Therefore the MMGD for complex signals
(reviewed in Section 4) is used for the Gibbs ripple
reduction preserving its original frequency resolu-
tion. In WVD, as only the ripple on the floor is to be
removed, the modified group delay is given by [3]

tmDðoÞ ¼ tmðoÞ DðoÞ
�� ��2, (15)

where D(o) represents the fluctuating part of X(o)
and this is given by

N̂ðoÞ ¼
X ðoÞ
X̄ ðoÞ

¼ 1þ
DðoÞ
X̄ ðo

� �
. (16)

To apply the MMGD for the present TFR, the
starting point is the fullband WVD slice obtained
after SD. From the positivity ensured WVD [3], the
equivalent magnitude spectrum computed is used to
derive the MGD tm(o) [6]. The positivity ensured
WVD slice is realized by multiplying its IACR at
zeroth lag value by a factor much greater than
unity. This results in raising the floor level of the
WVD. The improved fullband WVD slice is
obtained from tmD(o) (using Eqs. (13) and (10)).
This will be not only free from the ripple effect but
also has better frequency resolution.
This procedure for a single WVD slice has to be
repeated for every WVD slice to get the complete
WVD (IFCTWVD/IFFTWVD), which is free from
both crossterm and ripple and better frequency
resolution. As the MMGD also removes the zeros
due to the associated white noise, the WVD
indirectly achieves better noise immunity.

For applying MMGD in subbands (ISCTWVD/
ISFTWVD), for a particular subband, the IACR
function is computed at each time instant. Further,
from the positivity ensured WVD, the MMGD
tmD(o) and hence the improved component WVD
are computed. The complete WVD slice is obtained
by concatenating the component WVDs at their
respective positions. To get the complete WVD, this
procedure is repeated for every time instant. In
general, any processing in subbands is more
effective as frequency resolution and signal to noise
ratio are improved by a factor corresponding to the
decimation. This is due to spectral expansion and or
spectral peaks separation into different subbands
(that reduces mutual effect of spectral peaks on one
another). The MMGD processing is not an excep-
tion to this. Therefore the MMGD provides a better
performance in subbands than in fullband making
the ISCTWVD/ISFTWVD to have an edge over
IFCTWVD/IFFTWVD.

The SD will remove/reduce the crossterms of the
WVD without time smoothing and preserves the
time resolution. The MGD processing of the full-
band WVD removes/reduces the Gibbs ripple
preserving the frequency resolution of the rectan-
gular window. The MGD processing of the indivi-
dual subband WVD provides better frequency
resolution, improvement in signal to noise ratio
resulting in a better detectability of a weak signal in
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the presence of strong one. Unlike the methods
which do not use the SD to remove crossterms, the

WVD methods based on SD cannot bring out

properly the signal frequency transition path from

one band to another. But the methods not based on
SD, suffer from limitations like time resolution due
to time smoothing and trade off between crossterms
suppression and frequency resolution as in Choi–
Williams distribution [1]. In the proposed methods,
the IACR of the component signals are computed
only for a limited number of lags and the values for
higher lags are treated as zero. The FT of such an
approximate IACR cannot reproduce the original
spectrum. The autocorrelation coefficients are the
Fourier coefficients of the spectral pattern and the
removal higher order coefficients, result in a
smoothed boundary rather than a sharp one. Hence
the spectral values fall off as the band transition is
reached. This aspect of the SD-based WVD
methods was not known earlier when they were
reported [2,3,8]. Hence the desirable features of
the SD-based WVD can be fully utilized in cases
where there is no desired information across band
transitions.

5.2.1. Algorithm

Step 1: Obtain the component signals and
compute the IACR for each component as ex-
plained in Section 5.1.

For IFCTWVD/IFFTWVD

Step 2: Compute FT of each IACR component to
get the component WVD slice and concatenate to
get the full WVD slice.

Step 3: To get positivity ensured WVD: take the
inverse FT of the full WVD slice and this gives the
Table 1

Computational complexity by different methods

Method For SD

No. of multiplications, no. additions

WVD –

FBWVD

(without MMGD)

nf � dp½ � �M : 65; 536
nf � dp� ðnf þ dp� 1Þ½ � �M : 64; 770

IFTWVD

(without MMGD)
2 � dp � log2ðdpÞ
� �

� ðM þ 1Þ : 12; 288

2 � dp � log2ðdpÞ
� �

� ðM þ 1Þ : 12; 288

ICTWVD

(without MMGD)
dp � log2ðdpÞ
� �

�
3�dp
2
þ 4

h i
� 2 � ðM þ 1Þ : 3336

3 � dp � log2ðdpÞ � 1
	 


=2
� �

þ 2
� �

� 2 � ðM þ 1Þ : 1

For the parameter values are dp ¼ 256, N ¼ 128, M ¼ 2, L ¼ 16, nf ¼
complete IACR for that instant and raise the floor
level of the WVD by multiplying the IACR zeroth
lag value by a factor much greater than unity (say
5000).

Step 4: Compute the MMGD for this IACR and
get the IFCTWVD/IFFTWVD slice.

For ISCTWVD/ISFTWVD

Step 2: To get positivity ensured component
WVD, raise the floor level of each component WVD
by multiplying their respective IACR zeroth lag
value by a factor much greater than unity (say
5000).

Step 3: Compute the MMGD for each compo-
nent IACR and get the modified component WVD
slice.

Step 4: Concatenate the component WVDs to get
complete WVD slice.

Step 5: To get the complete WVD for fullband or
subband, repeat the respective above steps—2 to 4,
for all the sample time instants.

5.3. Computational complexity

The computational complexity (Table 1) is
considered in three stages of the WVD. Here M is
number of subbands, nf is filter length and dp is the
signal length.
(i)
6; 140

128.
The SD using PRFB or DFTHWT or
DCTHWT in terms of multiplication and
additions: FBWVD requires the M convolu-
tions to compute filter bank outputs. The
computational complexity of a convolution is
more compared to FFT and DCT. As the
number of subbands increases, the FBWVD
For IACR No. of FFTs

(IACR to WVD slice)No. of multiplications

dpn 2Lþ 1ð Þ : 8448 dp

dpnMn 2Lþ 1ð Þ : 16; 896 dp

dpnMn 2L=M þ 1
	 


: 8704 dp

dpnMn 2L=M þ 1
	 


: 8704 dp
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Table 2

Reduction (%) in computations with respect to PRFB

Operations SD by DFTHWT

and IACR

together (%)

SD by DCTHWT

and IACR

together (%)

For multiplications 74.5 85.4

For additions 81 69.5

S.V. Narasimhan et al. / Signal Processing 88 (2008) 1–188
requires more number of computations com-
pared to IFTWVD and ICTWVD. Between
IFTWVD and ICTWVD, the latter requires
less number of computations as it involves only
real operations. In ICTWVD, sparse factors
algorithm has been considered in arriving the
DCT computational complexity of SD [12].
(ii)
 IACR computation in terms of multiplication:
As IACR is computed at a decimated rate for
improved fullband WVD (IFWVD) and im-
proved subband WVD (ISWVD), it requires
less computations than that by FBWVD.
(iii)
 Number of FFTs required to compute the
complete WVD: The FBWVD, IFWVD and
ISWVD require dp FFTs to get dp WVD slices
from the IACR function.
As seen from Table 1, for the proposed method,
the SD by DCTHWT has 72.8% reduction in
computations in terms of multiplications and it
requires 30% more additions, compared to that by
DFTHWT (for the parameters in Table 1).

Table 2 indicates the percentage of computation
reduction in terms of multiplications and additions
compared to PRFB. For using MMGD, the
IFWVD TFR slice requires 8 FFTs. However, for
the ISWVD TFR slice requires equivalent 6 FFTs.
On the whole, the ISWVD is computationally very
efficient.

6. Simulation results

The performance of the proposed IWVD algo-
rithms is illustrated for crossing chirp and sinusoi-
dal chirp signals. In these examples, the parameters
used are: number of lags ¼ 33, data points ¼ 256,
DFT length ¼ 128. To ensure positivity of the PSD,
the IACR at the zeroth lag is increased by a factor
of 5000. For the estimation of DðoÞ

�� ��2 the number of
cepstral coefficients used, for crossing chirp signal
are: 4 for fullband MMGD processing and 3 for
subband MMGD processing and for sinusoidal
chirp signal are: 4 for fullband MMGD processing
and 2 for subband MMGD processing.

For a crossing chirp signal cos[2(566�0.6n)nTs+
cos[2(76p+0.6n)nTs], the IWVD is free from Gibbs
ripple and crossterms. The IWVD is free from
Gibbs ripple but preserves the frequency resolution
of the rectangular window. Specifically the pro-
posed ISCTWVD has a better frequency resolution
than those of other algorithms, due to SD by
DCTHWT and MMGD processing in subbands
(Fig. 2). For the fullband processing, contour plots
show discontinuity. This is due to the variations in
the magnitude of the envelope of the TFR. But for
the proposed subband processing methods, the
envelope magnitude level is maintained resulting in
a continuous contour plots (Fig. 2). For ISCTWVD
only, the spectral peaks decay sharply. This results
in a wider flat region, which is not so with other
methods (specifically ISFTWVD). This indicates
that its frequency resolution is better.

For the crossing chirp signal in the presence of
white noise (SNR ¼ 6 dB), the ridge type of effect is
observed in all cases, but it is reduced in case of
ISCTWVD (Fig. 3). For ISCTWVD (Fig. 3), in the
region between the crossing chirps (along the
frequency axis), the floor is clean, the contour is
narrower and continuous; compared to the other
methods. This indicates the superior performance of
DCT and subband processing even in presence of
noise.

In this example, the SD by splitting signal
frequency band into two bands at a frequency
where the two chirps cross each other, removes the
crossterm. But along each chirp in the neighbor-
hood of band splitting, the spectral magnitude of
the chirp is reduced (as explained in Section 5.2). In
view of this, there is a discontinuity along each chirp
in the contour plot. Specifically for the inner most
contour (which corresponds to the highest magni-
tude), this discontinuity is very explicit indicating
that there is a significant reduction in spectral
magnitude due to SD.

For 2 nonstationary sinusoidal chirp signals
sin[2p{94+0.64 sin(n/16)}nTs] and sin[2p{160+
1.08sin(n/17)}nTs], the IWVD obtained by different
algorithms are shown in Fig. 4. It is evident that
resolvability of 2 peaks (sharpness of the peaks) is
better for subband processing than for fullband
processing. Also from contour plots, it can be
observed that there is better continuity in case of
subband than that in fullband. In the case of DCT-
based SD, flat region between 2 peaks is more
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Fig. 2. TFR of a crossing chirp signal by (a) IFFTWVD, (b) IFCTWVD, (c) ISFTWVD, (d) ISCTWVD, and (e)–(h) contours of plots

(a)–(d).
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compared to that of DFT-based SD indicating its
better frequency resolution.

For the nonstationary sinusoidal chirp signals in
presence of white noise (SNR ¼ 16 dB), the IWVD
obtained by different algorithms are shown in
Fig. 5. From this it is clear that even with noise,
the resolvability of 2 peaks is better in case
subband processing than in fullband processing. In
this noisy case for the DCT-based SD, the flat
region in between 2 peaks is more than in case of
DFT-based SD.

To evaluate the performance of the different
methods considered, average sum sample variance
(ASSV) is used as the performance index and is
given by

ASSV ¼
1

ðM�NÞ

XM
i¼1

XN

j¼1

TFRvarði; jÞ,
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where

TFRvarði; jÞ ¼
1

P

XP�1
k¼0

TFRkði; jÞ � TFRmeanði; jÞ½ �
2

and TFRmeanði; jÞ ¼ 1=P
PP�1

k¼0TFRkði; jÞ, where P is
number of segments.

From Table 3 it is observed that, for crossing
chirp signal subband MMGD processing has an
improvement over fullband MMGD processing of
38.5% and 37% for SD by DFTHWT and
DCTHWT, respectively. For sinusoidal chirp sig-
nal, subband MMGD processing has an improve-
ment over fullband MMGD processing of 19% and
20% for SD by DFTHWT and DCTHWT,
respectively. The SD by DCTHWT has an improve-
ment of 48% over that by DFTHWT for subband
MMGD processing for linear chirp signal. This is
expected as splitting the band really affects the
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Fig. 4. TFR of sinusoidal chirp signal by (a) IFFTWVD, (b) IFCTWVD, (c) ISFTWVD, (d) ISCTWVD, and (e)–(h) contour plots

of (a)–(d).

Table 3

ASSV of different IWVDs for different signals with noise

Signals SNR (dB) IFFTWVD IFCTWVD ISFTWVD ISCTWVD

Crossing chirp 4 0.0200 0.0186 0.01230 0.0117

Sinusoidal chirp 8 0.0064 0.0064 0.0052 0.0051

S.V. Narasimhan et al. / Signal Processing 88 (2008) 1–18 11
crossing point of the two linear chirps. For
sinusoidal chirp practically there is no improvement
both for fullband and subband processing, weather
the SD is done by using DFTHWT or DCTHWT.
This is expected as sinusoidal chirp are well
separated, the leakage will be less and also splitting
the bands will not have any effect on the perfor-
mance. These results indicate the reduction in
variance achieved by ISCTWVD and hence its
performance is superior compared to the other
methods considered.

For 2 nonstationary sinusoidal chirp signals
sin[2p{94+0.64 sin(n/16)}nTs] and sin[2p{160+1.08
sin(n/17)}nTs] of different amplitudes 1 and 0.4,
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Fig. 5. TFR of sinusoidal chirp signal with white noise by (a) IFFTWVD, (b) IFCTWVD, (c) ISFTWVD, (d) ISCTWVD, and (e)–(h)

contour plots of (a)–(d).

S.V. Narasimhan et al. / Signal Processing 88 (2008) 1–1812
respectively, the IWVD obtained by different algo-
rithms are shown in Fig. 6. It is clear that subband
MMGD processing is able to detect the low level
sinusoidal chirp in the presence of stronger one,
which is not possible by fullband processing. The
ISCTWVD provides better frequency resolution
(sharpness of the peaks), detectability, and also
continuity of contours compared to the other
methods, considered.

For the nonstationary sinusoidal chirp signals of
different amplitudes in presence of white noise
(SNR ¼ 7 dB) (Fig. 7), the ISCTWVD can detect
the weaker signal. Also the floor surface is clean,
compared to those of other methods.

In the above example of two sinusoidal chirps
also, the SD by splitting signal frequency band into
two bands at a frequency, which is midway between
the two component frequencies, removes the cross-
term. For this example, the individual sinusoidally
time varying chirps completely lie in each separate
band. In view of this, this example does not have
any ill effect of magnitude reduction near the border
due to band splitting (as in the case of crossing
linear chirps). Hence the SD does not affect the
WVD and its contour plots.

As an example for real data analysis, heart rate
variability (HRV) data is considered. The frequency
content of the heart rate data plays an important
role in classifying as normal and abnormal [13].
Wavelet transform, which provides information
about both time and frequency, was used for this
purpose [14]. This HRV is similar to that of a two
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sinusoidally varying nonstationary chirps consid-
ered. The proposed methods are applied to a
practical heart rate data. For the normal case, the
data has a prominent second component. However
for myocardial infraction abnormality, the second
component magnitude is very much reduced. Hence
mainly for the normal case, the signal is a multi-
component one, with two components and the
WVD suffers from crossterm effect.

To retain the computational benefit and simpli-
city of HWT, the SD should result in a number of
bins which is a power of two. To facilitate this, the
signals have been preprocessed for sampling rate
change. For the normal case, the data is decimated
by a factor 2. This expands the spectrum and
enables to locate a convenient boundary for
splitting the spectrum. The abnormal data is
decimated by 3 and interpolated by 2. These
modifications do not affect the final result as they
have been accounted.

The parameters used are: original data length 512
samples, lag length ¼ 31, number of subbands ¼ 2,
cepstral coefficients ¼ 5. For the MMGD proces-
sing, the floor level is raised by a factor of 10,000.
The cepstral coefficients to be used for subband
processing is half that of fullband. The results
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presented for subband are with 5 cepstral coeffi-
cients as it reduces the unwanted disturbances
though the main features of the results are same
as with those of 2 coefficients.

Figs. 8(a) and (b) show the WVD (which does not
use SD and MMGD) and its contour plots of
normal HRV data. The WVD (without any time
and frequency smoothing) though provides good
time and frequency resolution, it suffers from severe
crossterm effect and Gibbs ripple. Hence it is
required to remove the crossterm and Gibbs ripple
and retain the good features of the WVD. The
WVD based on SD and MMGD shown in
Figs. 8(a), (c), (e), (g) and (i) and their contour
plots Figs. 8(b), (d), (f), (h), and (j) clearly indicate
that the crossterm and the Gibbs ripple are almost
removed. The WVD plots and their contours based
on DFT (Figs. 8(c) and (d)) and DCT (Figs. 8(e)
and (f)), which use fullband processing have similar
performance. Though the second frequency compo-
nent has been brought out well with its variations, it
is not so with the first component (Figs. 8(b), (d),
and (f)). On the other hand, the subband MMGD
processing in addition to bringing out the second
frequency component variation with an improved
frequency resolution (continuity of the contour plot
in the in between 150 and 250 samples), it has
restored the first frequency component pattern as in
the WVD (Figs. 8(b), (h) and (i)). The changes in the
frequency of the components may correspond to
physiological changes which will be taking place. In
the present HRV case, strength of the second
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Fig. 8. Normal heart rate data analysis.
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Fig. 9. Abnormal heart rate data analysis.
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component relative to that of the first decides about
the normal and abnormal classification [13]. From
this point of view, the subband processing algo-
rithms seem to have better performance as they have
retained the energy level for both the components,
throughout the duration considered. However, as
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pointed out, the frequency transition from one band
to the other may not have brought out well which is
not of importance in this case.

The performance of the proposed methods for
abnormal HRV data is shown in Fig. 9. Here also,
the WVD (without time and frequency smoothing)
suffers from severe crossterm and Gibbs ripple
effect (Figs. 9(a), (b)). The processing based on SD
and MMGD are almost free from crossterm and
Gibbs ripple effect (Figs. 9(c)–(i)). The MMGD
subband processing has brought out both the
components reasonably well compared to those of
fullband. Specifically with reference to the second
component, the performance of the fullband pro-
cessing is not good compared to that of subband
(Figs. 9(d), (f) and (h), (i)). This is evident from the
fullband processing contour plots (Figs. 9(d) and
(h)) as they are having too many breaks and lack
continuity. The reason for this is that the fullband
processing cannot bring out the details of a weak
component in the presence of a strong one. From
energy point of view, both fullband and subband
MMGD processing indicate that the energy of the
second component is lower than the first which is
the desired result.

In the above cases, it can be observed that the
Gibbs ripple is removed while maintaining the
frequency resolution of rectangular window by
MMGD. The SD by DCT/DFT HWT and subband
processing is effective in removing the spurious
spectral peaks due to noise while improving the
frequency resolution. The MMGD processing in
subbands is less affected by neighboring noise
components as components are well separated and
for the same reason a better frequency resolution is
achieved. The SD by HWT removes the crossterms
due to noise and the MMGD removes the zeros due
to noise in addition to those due to Gibbs ripple.
Hence, the MMGD processing in subbands pro-
vides an enhanced immunity to noise, compared to
that of the others. However, if there are transition
paths from one frequency band to another, they are
not brought out properly and there can be gaps in
the WVD contour plots.

7. Conclusions

A new Wigner–Ville distribution (WVD) with
improved performance based on signal decomposi-
tion (SD) by DCT/DFT HWT and modified
magnitude group delay (MMGD) processing in
fullband/subband, is proposed. The HWT decom-
poses the signal in a simple and computationally
efficient way as it involves only grouping of the
DCT/DFT coefficients without any explicit decima-
tion operation. The IACR is computed at a
decimated rate and the overall WVD slice is
obtained by plugging back the FT of the component
IACRs, in their corresponding positions without
any explicit interpolation. Thus, it does not require
any explicit filtering both for antialiasing and image
rejection. DCTHWT is simple as it does not involve
complex quantities and in terms of multiplications,
the computational load required is less compared to
that of DFTHWT. Further, the subband WVDs are
computationally efficient than the fullband ones.

The methods are applied to two linearly crossing
chirps, two sinusoidally varying chirps about two
frequencies and to real HRV data. The SD by HWT
removes the very existence of crossterms and the
MMGD removes the autocorrelation truncation
effects, without using any window function. The
proposed WVDs compared to the Cohen’s class
PWVD, have both improved frequency and time
resolution and obey the desired TFR properties
better due to the absence of time and frequency
smoothing. As MMGD is more effective in subband
processing, it provides increased frequency resolution
and signal to noise ratio. The performance of the
proposed algorithm based on DCT is better in terms
of variance and frequency resolution than that of
DFT. Compared to fullband WVD, the subband
WVDs are computationally efficient and have
significantly better detectability (of low-level signal
in the presence of high-level one) and variance. The
SD though provides a proper information about
frequency changes with in the bands, it fails to do so
for frequency transitions across the bands if any.
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