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a b s t r a c t

The aim of this article is to present the correct version of the main theorem 3.2
given in Guo and Duff (2011), concerning the semi-local convergence analysis of
the Newton-HSS (NHSS) method for solving systems of nonlinear equations. Our
analysis also includes the corrected upper bound on the initial point.
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1. Introduction

Numerous problems in computational disciplines can be reduced to solving a system of nonlinear equations
with n equations in n variables like

F (x) = 0 (1.1)

using Mathematical Modeling [1–4]. Here, F is a nonlinear continuously differentiable mapping defined on
a convex subset Ω of the n-dimensional complex linear space Cn into Cn. The Jacobian matrix F ′(x) is
sparse, non symmetric and positive definite. Most solution methods for solving equation F (x) = 0 are
iterative, since a closed form solution x∗ can be obtained only in special cases. In the rest of the paper, we use
well established and standard notation for these methods and results [3–7]. The most popular methods for
generating a sequence approximating x∗ are undoubtedly the inexact Newton (IN) methods [1,2,5,6,8–14]:

Newton’s method (NM) given for each k = 0, 1, 2, . . . by

x0 ∈ Ω , xk+1 = xk − F ′(xk)−1F (xk)
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is the most popular method for solving Eq. (1.1). In particular, one solves the system of linear equations

F ′(xk)rk = −F (xk) (1.2)

to find
xk+1 = xk + rk.

System (1.2) is usually denoted in a more general form as

Ax = b. (1.3)

Two types of methods are used for solving system (1.3) [15]. The first type is the so called Krylov methods.
Then, the Krylov subspace iteration is called an inner iteration. Moreover, the nonlinear iterate xk is called
an outer iteration. Jacobi, Successive Over-Relaxation (SOR), Gauss–Siedel, Accelerated Over-Relaxation
(AOR) and Krylov subspace methods are the most used inner iteration methods [3,4]. The most popular
outer iteration methods are the Conjugate Gradient (CG) and GMRES. If Krylov subspace methods are
employed, then we say that we use Newton–Krylov subspace methods (NKSM). Newton-CG and Newton-
GMRES methods use CG and GMRES as outer iterations. Recently, there is an increased interest to provide
efficient splitting of A for linear as well as nonlinear systems. Iterative Hermitian/ skew-Hermitian schemes
(HSS) for non-Hermitian positive definite linear systems were given by Bai. et al. in [3,4]. In order to improve
the robustness of HSS, some algorithms were also introduced based on HSS. In the case of weighted Toeplitz
least squares problems a preconditioning algorithm based on HSS was reported in [16]. In [17] Li et al.
introduced an asymmetric Hermitian/ske-Hermitian(AHSS) algorithm for large and sparse non-Hermitian
positive definite systems of linear equations. Later, in [18,19] Li et al. presented a variation of the HSS
algorithm called the Lopsided-HSS (LHSS) algorithm. Then, Bai et al. [20] presented the Picard-HSS as well
as the nonlinear HSS-like algorithms to solve large scale systems of weakly nonlinear equations. Moreover,
Bai et al. in [4] used Newton-Hss algorithms systems with positive definite Jacobian matrices. Another
variation of HSS for non-Hermitian positive definite systems was reported by Li et al. [18]. Furthermore,
Zhu in [21] introduced another class of LHSS methods to solve large sparse systems. Returning back to the
solution of (1.3), let A = B and use methods

Bxm = Cxm−1 + b, m = 0, 1, 2, . . . . (1.4)

Suppose that these methods have initial point 0 and consider them as inner iterations. Then, we introduce
the inner–outer iteration.

x0 ∈ Ω , xk+1 = xk − (T lk−1
k + · · · + Tk + I)B−1

k F (xk)
Tk = B−1

k Ck, (1.5)
F ′(xk) = Bk − Ck, k = 0, 1, . . . ,

where lk is the number of inner iteration steps. Bai et al. in [3,4] proved that this method converges to
the unique solution of the system of linear equations unconditionally and has the same upper bounds for
the rate of convergence as the CG method. Numerical examples on two-dimensional nonlinear convection–
diffusion equations showed that the Newton-HSS method outperforms in the sense of number of iterations
and CPU time other Newton-GCG, Newton-USOR and Newton-GMRES methods [17–19]. In [6] the semi-
local convergence of the Newton-HSS method was shown, which guarantees that the sequence generated by
Algorithm NHSS converges to the solution of (1.1) under reasonable hypotheses. Therefore, any initial point
can be tested to be or not to be suitably by verifying the semi-local convergence criteria. Unfortunately the
criteria given in [6] are not correct and the proof of Theorem 3.2 breaks down (see Remark 2.2). That is
there is no guarantee that algorithm NHSS converges. Because of the improvement of NHSS, we revised the
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proof of Theorem 3.2 (see our Theorem 2.1) and provided the correct sufficient convergence criterion. Notice
that we also present NHSSB and Newton-HSS method with some backtracking strategy and show global
convergence two forcing terms.

The algorithm for IN is as follows;

Algorithm IN [8]

• Given x0 and a positive constant (tolerance denoted by tol) tol.
• For k = 0, 1, 2, . . . until ∥F (xk)∥ ≤ tol∥F (x0)∥ do:

– For a given ηk ∈ (0, 1) find sk such that

∥F (xk) + F ′(xk)sk∥ < ηk∥F (xk)∥.

– Set xk+1 = xk + sk.

For large system with sparse non-Hermitian and positive-definite A, the HSS iteration method for linear
equation Ax = b is given by

Algorithm HSS [3]

• Given an initial guess x0 and positive constants tol.
• Split A into its Hermitian part H and its skew-Hermitian part S

H = 1
2(A + A∗) and S = 1

2(A − A∗)

• For ℓ = 0, 1, 2, . . . until ∥b − Axℓ∥ ≤ tol∥b − Ax0∥, compute xℓ+1 by

(αI + H)xℓ+1/2 = (αI − S)xℓ + b

(αI + S)xℓ+1/2 = (αI − H)xℓ+1/2 + b.

Next, we present a Newton-HSS algorithm to solve large systems of nonlinear equations with a positive-
definite Jacobian matrix:

Algorithm NHSS (the Newton-HSS method [4])

• Given an initial guess x0, positive constants tol, and a positive integer sequence {ℓk}∞
k=0.

• For k = 0, 1, 2, . . . until ∥F (xk)∥ ≤ tol∥F (x0)∥ do:

– Set dk,0 := 0.
– For ℓ = 0, 1, 2, . . . , ℓk − 1 apply Algorithm HSS:

(αI + H(xk))dk,ℓ+1/2 = (αI − S(xk))dk,ℓ − F (xk),
(αI + S(xk))dk,ℓ+1/2 = (αI − H(xk))dk,ℓ+1/2 − F (xk). (1.6)

and obtain dk,ℓk
such that

∥F (xk) + F ′(xk)dk,ℓk
∥ < ηk∥F (xk)∥ for some ηk ∈ [0, 1), (1.7)

where
H(xk) = 1

2(F ′(xk) + F ′(xk)∗) and S(xk) = 1
2(F ′(xk) − F ′(xk)∗) (1.8)

are the Hermitian and skew-Hermitian parts of the Jacobian matrix F ′(xk), respectively.
– Set

xk+1 = xk + dk,ℓk
. (1.9)
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Note that ηk is varying in each iterative step, unlike a fixed positive constant value used in [4]. Further
observe that if dk,ℓk

in (1.9) is given in terms of dk,0, we get

dk,ℓk
= (I − T ℓ

k)(I − Tk)−1B−1
k F (xk) (1.10)

where Tk := T (α, k), Bk := B(α, k) and

T (α, x) = B(α, x)−1C(α, x)

B(α, x) = 1
2α

(αI + H(x))(αI + S(x)) (1.11)

C(α, x) = 1
2α

(αI − H(x))(αI − S(x)).

Using the above expressions for Tk and dk,ℓk
, we can write the Newton-HSS in (1.9) as

xk+1 = xk − (I − T ℓ
k)−1F (xk)−1F (xk). (1.12)

A Kantorovich-type semi-local convergence analysis was presented in [6] for NHSS. However, the semi-
local convergence criterion (15) in [6] is not correct (see Remark 2.2). Consequently, Theorem 3.2 in [6] is
not correct as well as all subsequent results based on (15). Moreover, the upper bound function g3 (to be
defined later) on the norm of the initial point is not the best that can be used under the conditions given
in [6]. In this article, we present the correct version of Theorem 3.2 in [6] by providing the correct convergence
criterion corresponding to (15) in [6] as well as the correct bound function ḡ3 ( to be defined later). Moreover,
a corrected comparison is given with the “g” functions appearing in earlier works [6].

2. Semi-local convergence analysis

The semi-local convergence of NHSS is based on the conditions (A). Let x0 ∈ Cn and F : Ω ⊂ Cn −→ Cn

be G−differentiable on an open neighborhood Ω0 ⊂ Ω on which F ′(x) is continuous and positive definite.
Suppose F ′(x) = H(x) + S(x) where H(x) and S(x) are as in (1.8) with xk = x.

(A1) There exist positive constants β, γ and δ such that

max{∥H(x0)∥, ∥S(x0)∥} ≤ β, ∥F ′(x0)−1∥ ≤ γ, ∥F (x0)∥ ≤ δ, (2.1)

(A2) There exist nonnegative constants Lh and Ls such that for all x, y ∈ U(x0, r) ⊂ Ω0,

∥H(x) − H(y)∥ ≤ Lh∥x − y∥
∥S(x) − S(y)∥ ≤ Ls∥x − y∥. (2.2)

Next, we present the corrected version of Theorem 3.2 in [6].

Theorem 2.1. Assume that conditions (A) hold with the constants satisfying

δγ2L ≤ ḡ3(η) (2.3)

where ḡ3(t) := (1−t)2

2(2+t+2t2−t3) , η = max{ηk} < 1, r = max{r1, r2} with

r1 = α + β

L

(√
1 + 2ατθ

(2γ + γτθ)(α + β)2 − 1
)

r2 = b −
√

b2 − 2ac

a
(2.4)

a = γL(1 + η)
1 + 2γ2δLη

, b = 1 − η, c = 2γδ,



I.K. Argyros, S. George and A. Magreñán / Applied Mathematics Letters 98 (2019) 29–35 33

and with ℓ∗ = lim infk−→∞ ℓk satisfying ℓ∗ > ⌊ ln η
ln(τ+1)θ ⌋, (Here ⌊.⌋ represents the largest integer less than or

equal to the corresponding real number) τ ∈ (0, 1−θ
θ ) and

θ ≡ θ(α, x0) = ∥T (α, x0)∥ < 1. (2.5)

Then, the iteration sequence {xk}∞
k=0 generated by the Algorithm NHSS is well defined and converges to x∗,

so that F (x∗) = 0.

Proof. Simply follow the proof of Theorem 3.2 in [6] but use function ḡ3 instead of function g3 defined in
the following remark.

Remark 2.2. The corresponding result in [6] used the function bound

g3(t) = 1 − t

2(1 + t2) (2.6)

in (2.3). That is, they used instead of (2.3)

δγ2L ≤ g3(η). (2.7)

However, condition (2.7) does not necessarily imply b2 − 2ac ≥ 0, which means that r2 does not necessarily
exist and the proof of Theorem 3.2 in [6] breaks down. That is there is no guarantee that under (2.7)
Algorithm NHSS converges. Notice that, our condition (2.3) is equivalent to b2 − 2ac ≥ 0. We also have
that

ḡ3(t) < g3(t) for each t ≥ 0, (2.8)

so (2.3) implies (2.7) but not necessarily vice versa. Hence, our version of Theorem 3.2 is correct, i.e., Algo-
rithm NHSS converges under (2.3).

3. Function bounds

The semi-local convergence of inexact Newton methods was presented in [22] under the conditions

∥F ′(x0)−1F (x0)∥ ≤ β,

∥F ′(x0)−1(F ′(x) − F ′(y))∥ ≤ γ∥x − y∥,

∥F ′(x0)−1sn∥
∥F ′(x0)−1F (xn)∥ ≤ ηn

and
βγ ≤ g1(η),

where
g1(η) =

√
(4η + 5)3 − (2η3 + 14η + 11)

(1 + η)(1 − η)2 .

More recently, Shen and Li [7] substituted g1(η) with g2(η), where

g2(η) = (1 − η)2

(1 + η)(2(1 + η) − η(1 − η)2) .

These bound functions are used to obtain semi-local convergence results for the Newton-HSS method.
In Fig. 1, we can see the graphs of the four bound functions g1, g2 and ḡ3. Clearly our bound function ḡ3
improves all the earlier results. Moreover, as noted before function g3 cannot be used, since it is incorrect
bound function.
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Fig. 1. Graphs of g1(t) (Yellow), g2(t) (Green) and ḡ3 (Red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4. Conclusion

The corrected semi-local convergence for the Newton-HSS method is presented which guarantees the
convergence of sequence {xk} generated by Algorithm NHSS to a solution of Eq. (1.1). Initial point is chosen
correctly now by combining Algorithm NHSSB with the Newton-HSS method. Numerical examples have
been used to solve convection–diffusion equations in [6], where the superiority of these results over related
inner iteration methods is shown for the least run time.
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